16th Scandinavian Symposium
and Workshops on Algorithm
Theory

SWAT 2018, June 18-20, 2018,
Malmo University, Malmo, Sweden

Edited by

David Eppstein

\\v LIPICS

LIPlcs — Vol. 101 — SWAT 2018 www.dagstuhl.de/lipics

Editors

David Eppstein

Computer Science Department
University of California, Irvine
Irvine, California, USA
eppstein@uci.edu

ACM Classification 2012
Theory of computation — Design and analysis of algorithms

ISBN 978-3-95977-068-2

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-068-2.

Publication date
June, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.SWAT.2018.0

ISBN 978-3-95977-068-2 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-068-2
http://www.dagstuhl.de/dagpub/978-3-95977-068-2
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-068-2
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU Miinchen)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

SWAT 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
David Eppsteino oo 0:ix

Invited Talks

Sampling-Based Motion Planning: From Intelligent CAD to Crowd Simulation to
Protein Folding
Nancy M. AMato ... 1:1-1:1

Optimizing Society? Ensuring Fairness in Automated Decision-Making
Sorelle Friedler 2:1-2:1

Robustness Meets Algorithms
Ankur Mottrao 3:1-3:1

Regular Papers

Economical Delone Sets for Approximating Convex Bodies
Ahmed Abdelkader and David M. Mount ieiiiiiieieanneann.. 4:1-4:12

Computing Shortest Paths in the Plane with Removable Obstacles
Pankaj K. Agarwal, Neeraj Kumar, Stavros Sintos, and Subhash Suri 5:1-5:15

On Romeo and Juliet Problems: Minimizing Distance-to-Sight
Hee-Kap Ahn, Eungin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash 6:1-6:13

Multistage Matchings
Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos ... 7:1-7:13

Convex Hulls in Polygonal Domains
Luis Barba, Michael Hoffmann, Matias Korman, and Alexander Pilz 8:1-8:13

Tree Containment With Soft Polytomies
Matthias Bentert, Josef Malik, and Mathias Weller 9:1-9:14

On the Size of Outer-String Representations
Therese Biedl, Ahmad Biniaz, and Martin Derka ccioiiiiii... 10:1-10:14

Flip Distance to some Plane Configurations
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid 11:1-11:14

Boundary Labeling for Rectangular Diagrams
Prosenjit Bose, Paz Carmi, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal . 12:1-12:14

Gathering by Repulsion
Prosenjit Bose and Thomas C. SRermMero.ouie i 13:1-13:12

Improved Bounds for Guarding Plane Graphs with Edges
Ahmad Biniaz, Prosenjit Bose, Aurélien Ooms, and Sander Verdonschot 14:1-14:12

Sparse Weight Tolerant Subgraph for Single Source Shortest Path
Diptarka Chakraborty and Debarati Das i, 15:1-15:15

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi

Contents

An Improved Algorithm for Incremental DFS Tree in Undirected Graphs
Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang 16:1-16:12

Succinct Dynamic One-Dimensional Point Reporting
Hicham FEl-Zein, J. Ian Munro, and Yakov Nekrichcccciiii... 17:1-17:11

Enumerating Vertices of 0/1-Polyhedra associated with 0/1-Totally Unimodular
Matrices
Khaled Elbassioni and Kazuhisa Makino 18:1-18:14

The Parameterized Hardness of the k-Center Problem in Transportation Networks
Andreas Emil Feldmann and Ddniel Marz00 . 19:1-19:13

Algorithms for the Discrete Fréchet Distance Under Translation
Omrit Filtser and Matthew J. Katz ... e 20:1-20:14

Partial Complementation of Graphs
Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Stromme, and
Dimitrios M. TRhilikoso e e 21:1-21:13

New Algorithms for Distributed Sliding Windows
Sutanu Gayen and N. V. Vinodchandran o iiiiiiiiiiieiiinnn.. 22:1-22:15

Parameterized Aspects of Strong Subgraph Closure
Petr A. Golovach, Pinar Heggernes, Athanasios L. Konstantinidis,
Paloma T. Lima, and Charis Papadopoulos i, 23:1-23:13

Parameterized Orientable Deletion
Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Yota Otachi, and
Florian STkora 24:1-24:13

SVM via Saddle Point Optimization:
New Bounds and Distributed Algorithms
Lingxiao Huang, Yifei Jin, and Jian Li i 25:1-25:13

Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts
Shang-En Huang and Seth Petlie i, 26:1-26:12

Reconfiguration of Colorable Sets in Classes of Perfect Graphs
Takehiro Ito and Yota Otachi, 27:1-27:13

Tight Lower Bounds for List Edge Coloring
fukasz Kowalik and Arkadiusz Socala 28:1-28:12

Load Thresholds for Cuckoo Hashing
with Double Hashing

Michael Mitzenmacher, Konstantinos Panagiotou, and Stefan Walzer 29:1-29:9
A Greedy Algorithm for Subspace Approximation Problem

Nguyen Kim TRANG e e e 30:1-30:7
Planar 3-SAT with a Clause/Variable Cycle

Alexander Pilz 31:1-31:13

Tree-Residue Vertex-Breaking: a new tool for proving hardness
Erik D. Demaine and Mikhail Rudoy, 32:1-32:14

Contents 0:vii

Nearly Optimal Separation Between Partially and Fully Retroactive Data

Structures
Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams,
Yinzhan Xu, and Yuancheng Yuo 33:1-33:12

SWAT 2018

Preface

The Scandinavian Symposium and Workshops on Algorithm Theory (SWAT, formerly the
Scandinavian Workshop on Algorithm Theory) has been offered every two years beginning in
1988, when it was offered in Halmstaf, Sweden. It alternates with its sister conference, the
Algorithms and Data Structures Symposium (WADS), usually held in Canada. This year
marks the 16th SWAT, and the fourth time the conference has been in Sweden.

92 regular papers were submitted to the conference; four were withdrawn, and the program
committee selected 30 of the remaining 88 papers for presentation at the conference. In
addition, the conference program includes three invited talks, whose abstracts are included
in the proceedings.

The SWAT conference series is run by a steering committee consisting of Lars Arge
(Aarhus University), Magntis M. Halldérsson (Reykjavik University), Andrzej Lingas (Lund
University), Jan Arne Telle (University of Bergen), and Esko Ukkonen (University of Helsinki).
This year’s conference is organized by Jesper Larsson and Bengt J. Nilsson (both of Malméo
University).

The program committee consisted of Mikkel Abrahamsen (University of Copenhagen),
Joan Boyar (University of Southern Denmark), Jingsen Chen (Luled University of Technology),
Devdatt Dubhashi (Chalmers University of Technology), David Eppstein (chair; University of
California, Irvine), Zachary Friggstad (University of Alberta), Travis Gagie (Diego Portales
University), Serge Gaspers (University of New South Wales), Iyad Kanj (DePaul University),
Viggo Kann (KTH Royal Institute of Technology), Tsvi Kopelowitz (University of Waterloo),
Christian Knauer (University of Bayreuth), Irina Kostitsyna (Eindhoven University of
Technology), Shi Li (University at Buffalo), Daniel Lokshtanov (University of Bergen),
Matthias Mnich (Maastricht University and Rheinische Friedrich-Wilhelms-Universitiat Bonn),
Sang-il Oum (Korea Advanced Institute of Science and Technology), Daniel Paulusma
(Durham University), Marcin Pilipczuk (University of Warsaw), Benjamin Raichel (University
of Texas at Dallas), Marcel Roeloffzen (National Institute of Informatics), Barna Saha
(University of Massachusetts Ambherst), Jukka Suomela (Aalto University), and Haitao Wang
(Utah State University).

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sampling-Based Motion Planning: From
Intelligent CAD to Crowd Simulation to Protein
Folding

Nancy M. Amato

Department of Computer Science and Engineering, Texas A&M University
College Station, Texas, USA

amato@tamu.edu

—— Abstract

Motion planning has application in robotics, animation, virtual prototyping and training, and

even for seemingly unrelated tasks such as evaluating architectural plans or simulating protein
folding. Surprisingly, sampling-based planning methods have proven effective on problems from
all these domains. In this talk, we provide an overview of sampling-based planning and describe
some variants developed in our group, including strategies suited for manipulation planning
and for user interaction. For virtual prototyping, we show that in some cases a hybrid system
incorporating both an automatic planner and haptic user input leads to superior results. For
crowd simulation, we describe techniques for evacuation planning and for evaluating architectural
designs. Finally, we describe our application of sampling-based motion planners to simulate
molecular motions, such as protein and RNA folding.

2012 ACM Subject Classification Computing methodologies — Robotic planning
Keywords and phrases motion planning, probabilistic roadmap
Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.1

Category Invited Talk

© Nancy M. Amato;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 1; pp. 1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:amato@tamu.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Optimizing Society? Ensuring Fairness in
Automated Decision-Making

Sorelle Friedler

Department of Computer Science, Haverford College
Haverford, Pennsylvania, USA
sfriedle@haverford.edu

—— Abstract

Algorithms are increasingly used to make high-stakes decisions about people; who goes to jail,
what neighborhoods police deploy to, and who should be hired for a job. But if we want these
decisions to be fair, this means we must take societal notions of fairness and express them using
the language of math. What is a fair decision and how can it be guaranteed?

In this talk, we’ll discuss recent work from the new and growing field of Fairness, Accountab-
ility, and Transparency. We will examine technical definitions of fairness and non-discrimination
that have been proposed and their societal counterparts. We'll also discuss methods for ensuring
that algorithms are making decisions as desired, from methods to audit black-box algorithms to
white-box interpretability techniques. This important field necessitates societally informed and
mathematically rigorous work; we’ll discuss open problems in this light.

2012 ACM Subject Classification Security and privacy — Social aspects of security and privacy
Keywords and phrases algorithmic fairness
Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.2

Category Invited Talk

© Sorelle Friedler;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 2; pp. 2:1-2:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sfriedle@haverford.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Robustness Meets Algorithms

Ankur Moitra

Department of Mathematics, MIT
Cambridge, Massachusetts, USA
moitra@mit.edu

—— Abstract

In every corner of machine learning and statistics, there is a need for estimators that work
not just in an idealized model but even when their assumptions are violated. Unfortunately
in high-dimensions, being provably robust and efficiently computable are often at odds with
each other. In this talk, we give the first efficient algorithm for estimating the parameters of
a high-dimensional Gaussian which is able to tolerate a constant fraction of corruptions that
is independent of the dimension. Prior to our work, all known estimators either needed time
exponential in the dimension to compute, or could tolerate only an inverse polynomial fraction
of corruptions. Not only does our algorithm bridge the gap between robustness and algorithms,
it turns out to be highly practical in a variety of settings.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms,
Computing methodologies — Machine learning algorithms

Keywords and phrases robust estimators, machine learning algorithms
Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.3

Category Invited Talk

© Ankur Moitra;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:moitra@mit.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Economical Delone Sets for Approximating
Convex Bodies

Ahmed Abdelkader

Department of Computer Science

University of Maryland, College Park MD, USA

akader@cs.umd.edu
https://orcid.org/0000-0002-6749-1807

David M. Mount

Department of Computer Science and Institute of Advanced Computer Studies
University of Maryland, College Park MD, USA

mount@cs.umd.edu

—— Abstract

Convex bodies are ubiquitous in computational geometry and optimization theory. The high
combinatorial complexity of multidimensional convex polytopes has motivated the development
of algorithms and data structures for approximate representations. This paper demonstrates an
intriguing connection between convex approximation and the classical concept of Delone sets from
the theory of metric spaces. It shows that with the help of a classical structure from convexity
theory, called a Macbeath region, it is possible to construct an e-approximation of any convex
body as the union of O(1/(?~1)/2) ellipsoids, where the center points of these ellipsoids form a
Delone set in the Hilbert metric associated with the convex body. Furthermore, a hierarchy of
such approximations yields a data structure that answers e-approximate polytope membership
queries in O(log(1/e)) time. This matches the best asymptotic results for this problem, by a
data structure that both is simpler and arguably more elegant.

2012 ACM Subject Classification Theory of computation — Computational geometry

Keywords and phrases Approximate polytope membership, Macbeath regions, Delone sets, Hil-
bert geometry

Digital Object ldentifier 10.4230/LIPIcs.SWAT.2018.4

Funding Research supported by NSF grant CCF-1618866.

1 Introduction

We consider the following fundamental query problem. Let K denote a bounded convex
polytope in R%, presented as the intersection of n halfspaces. The objective is to preprocess
K so that, given any query point ¢ € R?, it is possible to determine efficiently whether ¢ lies
in K. Throughout, we assume that d is a fixed constant and K is full-dimensional.

Polytope membership is equivalent in the dual setting to answering halfspace emptiness
queries for a set of n points in R?. In dimensions higher than three, the fastest exact data
structure with near-linear space has a query time of roughly O(nl_l/ L/ 2J) [29], which is
unacceptably high for many applications. Hence, we consider an approximate setting.

Let € be a positive real parameter, and let diam(K) denote K’s diameter. Given a query
point ¢ € R?, an e-approzimate polytope membership query returns a positive result if ¢ € K,
a negative result if the distance from ¢ to its closest point in K is greater than ¢ - diam(K),
and it may return either result otherwise.

? Ahmed Abdelkade.r and David M‘.Mount;

5v icensed under Creative Commons License CC-BY
16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 4; pp. 4:1-4:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:akader@cs.umd.edu
https://orcid.org/0000-0002-6749-1807
mailto:mount@cs.umd.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Economical Delone Sets for Approximating Convex Bodies

Polytope membership queries, both exact and approximate, arise in many application
areas, such as linear programming and ray-shooting queries [15,28, 30, 33], nearest neighbor
searching and the computation of extreme points [1, 16, 18], collision detection [21], and
machine learning [14].

Dudley [20] showed that, for any convex body K in RY, it is possible to construct an e-
approximating polytope P with O(1/e(?=1)/2) facets. This bound is asymptotically tight, and
is achieved when K is a Euclidean ball. This construction implies a (trivial) data structure
for approximate polytope membership problem with space and query time O(1/e(4=1)/2), Tt
follows from the work of Bentley et al. [11] that there is a simple grid-based solution, that
answers queries in constant time using space O(1/e?~1). Arya et al. [2,3] present algorithms
that achieve a tradeoff between these two extremes, but their data structure provides no
improvement over the storage in [11] when the query time is polylogarithmic.

A space-optimal solution for the case of polylogarithmic query time was presented in [7].
It achieves query time O(log %) with storage O(1/e(?=1)/2). This paper achieves its efficiency
by abandoning the grid- and quadtree-based approaches in favor of an approach based on
ellipsoids and a classical structure from convexity theory called a Macbeath region [27].

The approach presented in [7] is based on constructing a collection of nested eroded
bodies within K and covering the boundaries of these eroded bodies with ellipsoids that are
based on Macbeath regions. Queries are answered by shooting rays from a central point
in the polytope towards the boundary of K, and tracking an ellipsoid at each level that is
intersected by the ray. While it is asymptotically optimal, the data structure and its analysis
are complicated by various elements that are artifacts of this ray shooting approach.

In this paper, we present a simpler and more intuitive approach with the same asymptotic
complexity as the one in [7]. The key idea is to place the Macbeath regions based on Delone
sets. A Delone set is a concept from the study of metric spaces. It consists of a set of points
that have nice packing and covering properties with respect to the metric balls. Our main
result is that any maximal set of disjoint shrunken Macbeath regions defines a Delone set
with respect to the Hilbert metric induced on a suitable expansion of the convex body. This
observation leads to a simple DAG structure for membership queries. The DAG structure
arises from a hierarchy of Delone sets obtained by layering a sequence of expansions of the
body. Our results uncover a natural connection between the classical concepts of Delone sets
from the theory of metric spaces and Macbeath regions and the Hilbert geometry from the
theory of convexity.

2 Preliminaries

In this section we present a number of basic definitions and results, which will be used
throughout the paper. We consider the real d-dimensional space, R?, where d is a fixed
constant. Let O denote the origin of R?. Given a vector v € R?, let ||v|| denote its Euclidean
length, and let (-,-) denote the standard inner product. Given two points p,q € R?, the
Euclidean distance between them is ||p — ¢||. For ¢ € R% and r > 0, let B(g,r) denote the
Euclidean ball of radius r centered at ¢, and let B(r) = B(O,r).

Let K be a convex body in R?, represented as the intersection of m closed halfspaces
H; = {x € R?: (z,v;) < a;}, where a; is a nonnegative real and v; € R%. The bounding
hyperplane for H; is orthogonal to v; and lies at distance a;/|v;|| from the origin. The
boundary of K will be denoted by K. For 0 < k < 1, we say that K is in k-canonical form
if B(k/2) C K C B(1/2). Clearly, such a body has a diameter between x and 1.

A. Abdelkader and D. M. Mount

It is well known that in O(m) time it is possible to compute a non-singular affine
transformation T such that T(K) is in (1/d)-canonical form [6,23]. Further, if a convex
body P is within Hausdorff distance ¢ of T((K), then T~1(P) is within Hausdorff distance at
most de of K. (Indeed, this transformation is useful, since the resulting approximation is
directionally sensitive, being more accurate along directions where K is skinnier.) Therefore,
for the sake of approximation with respect to Hausdorff distance, we may assume that K
has been mapped to canonical form, and ¢ is scaled by a factor of 1/d. Because we assume

that d is a constant, this transformation will only affect the constant factors in our analysis.

A number of our constructions involve perturbing the body K by means of expansion,
but the exact nature of the expansion is flexible in the following sense. Given § > 0, let
K denote any convex body containing K such that the Hausdorff distance between 0K
and 0K, is ©(0 - diam(K)). For example, if K is in canonical form, K5 could result as the
Minkowski sum of K with another convex body of diameter § or from a uniform scaling
about the origin by §. Because reducing the approximation parameter by a constant factor
affects only the constant factors in our complexity bounds, the use of an appropriate Ks
instead of closely related notions of approximation, like the two just mentioned, will not
affect our asymptotic bounds. Given § > 0, we perturb each H; to obtain

Hi; = {x €R%: (z,;) < a; +0)}.

The associated bounding hyperplane is parallel to that of H; and translated away from the
origin by a distance of §/||v;|. With that, we define K as the convex polytope ()., His.
To ensure the required bound on the Hausdorff error, we require that ¢;16 < |Jv;|| < ¢ for all
i, where ¢; and co are nonnegative reals. The following argument shows that this condition
suffices. If ¢10 < ||v;|| < co, then each bounding halfspace of K is translated away from the
origin by a distance of d/||v;|| > §/ca, which establishes the lower bound on the Hausdorff
distance. Also, each bounding halfspace is translated by a distance of 6/||v;|| < 1/¢;. Since
K, being in canonical form, is nested between balls of radius x/2 and 1/2, this translation of
the halfspace is equivalent to a scaling about the origin by a factor of at most 2/¢y k, which
maps each point of K away from the origin by a distance of at most (2/¢1k)/2 = 1/c1k. This
establishes the upper bound on the Hausdorff distance.

2.1 Macbeath regions

Our algorithms and data structures will involve packings and coverings by ellipsoids, which
will possess the essential properties of Delone sets. These ellipsoids are based on a classical
concept from convexity theory, called Macbeath regions, which were described first by A. M.
Macbeath in a paper on the existence of certain lattice points in a convex body [27]. They
have found uses in diverse areas (see, e.g., Bardny’s survey [9]).

Given a convex body K, a point x € K, and a real parameter A > 0, the A-scaled
Macbeath region at z, denoted My (x), is defined to be

x4+ A(K —2)N(x— K)).

When A = 1, it is easy to verify that M (z) is the intersection of K and the reflection of K
around x (see Fig. 1a), and hence it is centrally symmetric about . My (z) is a scaled copy
of M}-(x) by the factor A\ about z. We refer to z and X as the center and scaling factor of
M3 (), respectively. To simplify the notation, when K is clear from the context, we often
omit explicit reference in the subscript and use M*(z) in place of M (z). When A\ < 1, we

4:3

SWAT 2018

4:4

Economical Delone Sets for Approximating Convex Bodies

(b)

Figure 1 (a) Macbeath regions and (b) Macbeath ellipsoids.

(b) (c)

Figure 2 (a)-(b) Expansion-containment per Lemma 1. (c) The Hilbert metric.

say M*(x) is shrunken. When A\ = 1, M'(z) is unscaled and we drop the superscript. Recall
that if C* is a uniform A-factor scaling of any bounded, full-dimensional set C' C R, then
vol(C?) = A% - vol(O).

An important property of Macbeath regions, which we call expansion-containment, is that
if two shrunken Macbeath regions overlap, then an appropriate expansion of one contains
the other (see Fig. 2a). The following is a generalization of results of Ewald, Rogers and
Larman [22] and Bronnimann, Chazelle, and Pach [13]. Our generalization allows the
shrinking factor A to be adjusted, and shows how to adjust the expansion factor g of the
first body to cover an a-scaling of the second body, e.g., the center point only (see Fig. 2b).

» Lemma 1. Let K C R? be a convex body and let 0 < A\ < 1. If z,y € K such that
M*(x) N M*(y) # 0, then for any o > 0 and 8 = w, MNy) € MPX(x) (see Fig. 2).

2.2 Delone sets and the Hilbert metric

An important concept in the context of metric spaces involves coverings and packings by
metric balls [19]. Given a metric f over X, a point = € X, and real r > 0, define the ball
By(z,r) ={y € X: f(z,y) <r}. For g,ep,e. >0, aset X C X is an:

e-packing: If the balls of radius /2 centered at every point of X do not intersect.
e-covering: If every point of X is within distance ¢ of some point of X.

(ep,ec)-Delone Set: If X is an e,-packing and an e.-covering.

Delone sets have been used in the design of data structures for answering geometric
proximity queries in metric spaces through the use of hierarchies of nets, such as navigating
nets [26], net trees [24], and cover trees [12].

In order to view a collection of Macbeath regions as a Delone set, it will be useful to
introduce an underlying metric. The Hilbert metric [25] was introduced over a century ago

A. Abdelkader and D. M. Mount

by David Hilbert as a generalization of the Cayley-Klein model of hyperbolic geometry. A
Hilbert geometry (K, fr) consists of a convex domain K in R? with the Hilbert distance fr.
For any pair of distinct points x,y € K, the line passing through them meets 0K at two
points 2’ and y’. We label these points so that they appear in the order (2/,z,y,y’) along
this line (see Fig. 2¢). The Hilbert distance fx is defined as

fi(ey) = +ln (III’—yII x—y'n)

2 2" — | [ly — ¢

When K is not bounded and either 2’ or 4 is at infinity, the corresponding ratio is taken to
be 1. To get some intuition, observe that if x is fixed and y moves along a ray starting at x
towards 0K, fk(x,y) varies from 0 to oco.

Hilbert geometries have a number of interesting properties; see the survey by Papadopoulos
and Troyanov [32] and the multimedia contribution by Nielsen and Shao [31]. First, fx can
be shown to be a metric. Second, it is invariant under projective transformations.! Finally,
when K is a unit ball in R?, the Hilbert distance is equal (up to a constant factor) to the
distance between points in the Cayley-Klein model of hyperbolic geometry.

Given a point ¢ € K and r > 0, let By (x,r) denote the ball of radius r about z in
the Hilbert metric. The following lemma shows that a shrunken Macbeath region is nested
between two Hilbert balls whose radii differ by a constant factor (depending on the scaling
factor). Thus, up to constant factors in scaling, Macbeath regions and their associated
ellipsoids can act as proxies to metric balls in Hilbert space. This nesting was observed
by Vernicos and Walsh [34] (for the conventional case of A = 1/5), and we present the
straightforward generalization to other scale factors. For example, with A = 1/5, we have
By (x,0.09) € MY5(z) C By(z,0.21) for all z € K.

» Lemma 2. Given a convex body K C R?, for allz € K and any 0 < X\ < 1,

BH(x,%ln(l—k)\)) C M z) C By (:ﬁmﬁ)

3 Macbeath regions as Delone sets

Lemma 2 justifies using Macbeath regions as Delone sets. Given a point x € K and
d > 0, define Ms(x) to be the (unscaled) Macbeath region with respect to K, that is,
M;5(z) = Mg, (z). Towards our goal of using Delone sets for approximating convex bodies,
we study the behavior of overlapping Macbeath regions at different scales of approximation
and establish a bound on the size of such Delone sets. In particular, we consider maximal
sets of disjoint shrunken Macbeath regions M g‘(x) defined with respect to Ky, such that the
centers z lie within K; let X5 denote such a set of centers. The two scale factors used to
define the Delone set will be denoted by (A,, Ac), where we assume 0 < A\, < A, < 1 are
constants. Define M}(z) = M3 (z) and M (x) = Mg‘p (z).

3.1 Varying the scale

A crucial property of metric balls is how they adapt to changing the resolution at which
the domain in question is being modeled. We show that Macbeath regions enjoy a similar

property.

1 This follows from the fact that the argument to the logarithm function is the cross ratio of the points
(z',z,y,y'), and it is well known that cross ratios are preserved under projective transformations.

4:5

SWAT 2018

4:6

Economical Delone Sets for Approximating Convex Bodies

» Lemma 3. Given a convex body K C R? and \,0,e > 0, for all x € K,

1 A
My, (z) © My, () € MET ().

Proof. The first inclusion is a simple consequence of the fact that enlarging the body can
only enlarge the Macbeath regions. To see the second inclusion, it will simplify the notation
to translate space by —z so that 2 now coincides with the origin. Thus, Mk (z) = K N —K.
Recalling our representation from Section 2, we can express K as the intersection of a set
of halfspaces H; = {y : (y,v;) < a;}. (The translation affects the value of a;, but not the
approximation, because z € K, a; > 0.) We can express My (z) as the intersection of a set of
slabs ¥; = H; N —H;, where each slab is centered about the origin. M, (z) can be similarly
expressed as the intersection of slabs 3; 5 = H; s N —H; 5, where the defining inequality is
(y,vi) < a; + 6. This applies analogously to Mk ,,.,;(z), where the defining inequality is
(y,v;) < a; + (14 ¢€)d. Since a; > 0, we have a; + (1 +¢€)d < (1 4 ¢)(a; + §), which implies
that ¥; 1105 € (14 €)%, 5. Thus, we have

m m 14
1\4[((1_*_5)5 (.’17) = ﬂi:l Zi,(l+6)(5 g mi:l(l + E)Ei’(; = MI(Q;)(:L‘)
The lemma now follows by applying a scaling factor of A to both sides. |

As we refine the approximation by using smaller values of 4, it is important to bound the
number of Macbeath regions at higher resolution that overlap any given Macbeath region at
a lower resolution. Our bound is based on a simple packing argument. We will show that
the shrunken Macbeath regions M{ (y) that overlap a fixed shrunken Macbeath region at
a coarser level of approximation M/s(z), with s > 1, lie within a suitable constant-factor
expansion of Ms(z). Let Ys () denote the set of points y such that My (y) are pairwise
disjoint and overlap M!;(x). Since these shrunken Macbeath regions are pairwise disjoint,
we can bound their number by bounding the ratio of volumes of M!s(z) and M (y).

As an immediate corollary of the second inclusion of Lemma 3 we have vol(Mg(x)) >
vol(M2y(x))/s?. This allows us to establish an upper bound on the growth rate in the number
of Macbeath regions when refining to smaller scales.

» Lemma 4. Given a convex body K C R? and x € K. Then, for constants 6 >0, s > 1
and Y5 s(x) as defined above, Y5 s(z)| = O(1).

Proof. By the first inclusion of Lemma 3, M§(y) C M!s(y), and we have M/ (z)NM.s(y) # 0.
Next, by applying Lemma 1 (with the roles of x and y swapped) we obtain M;(z) =
My (z) C Msﬁé’\c(y), witha=1and 8= 3+ X.)/(1—Ao).

By definition of X the shrunken Macbeath regions My (y) are pairwise disjoint, and so it
suffices to bound their volumes with respect to that of M s(z) to obtain a bound on |Y5 4(x)|.
Applying the corollary to Lemma 3 and scaling, we obtain

d
W) > ol(sm) = (52) wim) = (

Thus, by a packing argument the number of children is at most (ﬁ;;‘g

~—
a
I
)
=
A

3.2 Size bound

We bound the cardinality of a maximal set of disjoint shrunken Macbeath regions M3 (z)
defined with respect to Ks, such that the centers x lie within K; let X5 denote such a set of
centers. This is facilitated by associating each center x with a cap of K, where a cap C is

A. Abdelkader and D. M. Mount

€ [A,24]

(a) (b)

Figure 3 (a) Cap concepts and (b) the economical cap cover.

defined as the nonempty intersection of the convex body K with a halfspace (see Fig. 3a).
Letting h denote the hyperplane bounding this halfspace, the base of C' is defined as h N K.
The apex of C' is any point in the cap such that the supporting hyperplane of K at this point
is parallel to h. The width of C is the distance between h and this supporting hyperplane.
Of particular interest is a cap of minimum volume that contains x, which may not be unique.
A simple variational argument shows that x is the centroid of the base of this cap [22].

As each Macbeath region is associated with a cap, we can obtain the desired bound
by bounding the number of associated caps. We achieve this by appealing to the so-called
economical cap covers [10]. The following lemma is a straightforward adaptation of the
width-based economical cap cover per Lemma 3.2 of [6].

» Lemma 5. Let K C R? be a convex body in k-canonical form. Let 0 < X\ < 1/5 be any
fized constant, and let A < k/12 be a real parameter. Let C be a set of caps, whose widths lie
between A and 2\, such that the Macbeath regions M- (x) centered at the centroids x of the
bases of these caps are disjoint. Then |C| = O(1/A=1/2) (see Fig. 3a(b)).

This leads to the following bound on the number of points in Xj.

» Lemma 6. Let K C R? be a convex body in k-canonical form, and let X5 as defined above
for some § >0 and 0 < A < 1/5. Then, | X;| = O(1/§(@=1/2),

Proof. In order to apply Lemma 5 we will partition the points of X according to the widths
of their minimum-volume caps. For i > 0, define A; = ¢32%5;, where ¢y depends on the
nature of the the expansion process that yields K. Define X;; to be the subset of points
x € X such that width of #’s minimum cap with respect to K lies within [A;, 2A;]. By
choosing ¢y properly, the Hausdorff distance between K and Ky is at least cod = Ag, and
therefore any cap whose base passes through a point of Xs has width at least Ag. This
implies that every point of X5 lies in some subset X;; for i > 0.

If a convex body is in k-canonical form, it follows from a simple geometric argument that
for any point z in this body whose minimal cap is of width at least A, the body contains a
ball of radius cA centered at x, for some constant ¢ (depending on x and d). If A; > k/12,
then B(z,crk/12) C K for all x € Xs;. It follows that B(z, ck/12) C Ms(z) implying that
vol(M@(x)) > A% - vol(B(ck/12)) which is Q(1) as ¢, k and X are all constants. By a simple
packing argument |X; ;| = O(1). There are at most a constant number of levels for which
A; > k/12, and so the overall contribution of these subsets is O(1).

Henceforth, we may assume that A; < x/12. Since A < 1/5, we apply Lemma 5 to
obtain the bound | X ;| = O(l/AEdil)/z). (There is a minor technicality here. If § becomes
sufficiently large, Ks may not be in k-canonical form because its diameter is too large.
Because § = O(1) and hence diam(Ks) = O(1), we may scale it back into canonical form at

4:7

SWAT 2018

4:8

Economical Delone Sets for Approximating Convex Bodies

(b)
Figure 4 A Delone set for a convex body. (Not drawn to scale.)

the expense of increasing the constant factors hidden in the asymptotic bound.) Thus, up to
constant factors, we have

wi = g - 2o(E)” - 2o(em)” - o(()7): 1

i>0 i>0 i>0

4 Macbeath ellipsoids

For the sake of efficient computation, it will be useful to approximate Macbeath regions by
shapes of constant combinatorial complexity. We have opted to use ellipsoids. (Note that
bounding boxes [1] could be used instead, and may be preferred in contexts where polytopes
are preferred.)

Given a Macbeath region, define its associated Macbeath ellipsoid Ef‘((x) to be the
maximum-volume ellipsoid contained within M3 (x) (see Fig. 1b). Clearly, this ellipsoid is
centered at x and E¥(x) is an A-factor scaling of E (z) about z. It is well known that
the maximum-volume ellipsoid contained within a convex body is unique, and Chazelle and
Matousek showed that it can be computed for a convex polytope in time linear in the number
of its bounding halfspaces [17]. By John’s Theorem (applied in the context of centrally
symmetric bodies) it follows that E (z) C M (z) C E?(‘/E(;v) 8]

Given a point z € K and 0 > 0, define Ms(x) to be the (unscaled) Macbeath region with
respect to Ks (as defined in Section 2), that is, Ms(x) = Mk,(z). Let Es(z) denote the
maximum volume ellipsoid contained within My(x). As Ms(x) is symmetric about z, Es(z)
is centered at . For any A > 0, define M (z) and E3(z) to be the uniform scalings of M;(z)
and Es(x), respectively, about = by a factor of A. By John’s Theorem, we have

E}z) € M(z) € E)V(x). (1)

Two particular scale factors will be of interest to us. Define Mj(z) = M, 61 / *(z) and
M{(x) = Mg‘o (z), where \g = 1/(4v/d + 1). Similarly, define E}(z) = E;/Q(:r) and Ef (z) =
Eg\o (z) (see Fig. 4(a)). Given a fixed d, let X5 be any maximal set of points, all lying within
K, such that the ellipsoids Ef (z) are pairwise disjoint for all z € X.

These ellipsoids form a packing of K (see Fig. 4(b)). The following lemma shows that
their suitable expansions cover K while being contained within K (see Fig. 4(c)).

» Lemma 7. Given a convex body K in R? and a set X5 as defined above for 6 > 0,

K ¢ |J Ejx) € Ks.
r€Xs

A. Abdelkader and D. M. Mount

Proof. To establish the first inclusion, consider any point y € K. Because X; is maximal,
there exists « € X5 such that Ef (z) N Ef (y) is nonempty. By containment, My (x) N My (y)
is also nonempty. By Lemma 1 (with a = 0), it follows that y € M3 (z), where

2h0 2/(4Vd+1) 2 1

A= T-X 1-1/@4Vd+1) 4/d 2vd

By applying Eq. (1) (with A = 1/(2v/d)), we have Mlsl/(z‘/a)(x) C Eg/z(x) = Ej§(z), and
therefore y € Ej§(x). Thus, we have shown that an arbitrary point y € K is contained in the
ellipsoid Ej(z) for some x € X, implying that the union of these ellipsoids covers K. The
second inclusion follows from Ef(z) C Mj(z) C Ms(z) C Ks for any z € X5 C K. <

In conclusion, if we treat the scaling factor A in E*(z) as a proxy for the radius of a
metric ball, we have shown that Xj is a (2Ag, 1/2)-Delone set for K. By Lemma 2 this is also
true in the Hilbert metric over Ks up to a constant factor adjustment in the radii. (Note
that the scale of the Hilbert balls does not vary with §. What varies is the choice of the
expanded body K defining the metric.)

By John’s Theorem, Macbeath regions and Macbheath ellipsoids differ by a constant
scaling factor, both with respect to enclosure and containment. We remark that all the
results of the previous two sections hold equally for Macbeath ellipsoids. We omit the
straightforward, but tedious, details.

» Remark. All results from previous section on scaled Macbeath regions apply to scaled
Macbeath ellipsoids subject to appropriate modifications of the constant factors.

5 Approximate polytope membership (APM)

The Macbeath-based Delone sets developed above yield a simple data structure for answering
e-APM queries for a convex body K. We assume that K is represented as the intersection of
m halfspaces. We may assume that in O(m) time it has been transformed into x-canonical
form, for kK = 1/d. Throughout, we will assume that Delone sets are based on the Macbeath
ellipsoids EY (z) for packing and Ej(x) for coverage (defined in Section 4).

Our data structure is based on a hierarchy of Delone sets of exponentially increasing
accuracy. Define 8y = ¢, and for any integer i > 0, define §; = 2¢§,. Let X; denote a Delone
set for K5,. By Lemma 7, we may take X; to be any maximal set of points within K such
that the packing ellipsoids EY(z) are pairwise disjoint. Let £ = /. be the smallest integer
such that |X,| = 1. We will show below that £ = O(log 1/¢).

Given the sets (X, ..., X,), we build a rooted, layered DAG structure as follows. The
nodes of level i correspond 1-1 with the points of X;. The leaves reside at level 0 and the
root at level £. Each node x € X; is associated with two things. The first is its cell, denoted

cell(x), which is the covering ellipsoid Ej§(x) (the larger hollow ellipsoids shown in Fig. 5).

The second, if ¢ > 0, is a set of children, denoted ch(x), which consists of the points y € X;_1
such that cell(z) N cell(y) # 0.

To answer a query g, we start at the root and iteratively visit any one node = € X; at each
level of the DAG, such that g € cell(x). We know that if ¢ lies within K, such an x must exist
by the covering properties of Delone sets, and further at least one of x’s children contains
q. If ¢ does not lie within any of the children of the current node, the query algorithm
terminates and reports (without error) that ¢ ¢ K. Otherwise the search eventually reaches
a node z € Xy at the leaf level whose cell contains ¢. Since cell(z) C Kj, = K., this cell
serves as a witness to ¢’s approximate membership within K.

4:9

SWAT 2018

4:10

Economical Delone Sets for Approximating Convex Bodies

Figure 5 Hierarchy of ellipsoids for answering APM queries.

In order to bound the space and query time, we need to bound the total space used by
the data structure and the time to process each node in the search, which is proportional to
the number of its children. Building upon Lemmas 4 and 6, we have our main result.

» Theorem 8. Given a conver body K and € > 0, there exists a data structure of space
O(1/e4=D/2) that answers e-approzimate polytope membership queries in time O(log1/e).

Since the expansion factors §; grow exponentially from e to a suitably large constant, it
follows that the height of the tree is logarithmic in 1/, which is made formal below.

» Lemma 9. The DAG structure described above has height O(log1/e).

Proof. Let co be an appropriate constant, and let £ = [log,(2/cae)] = O(log 1/¢). Depending
the nature of the expanded body K, the constant ¢y can be chosen so the Hausdorff distance
between K and Kj, is at least codp = c22fe > 2. Because K is in k-canonical form, it is
contained within a unit ball centered at the origin. Therefore, K5, contains a ball of radius
two centered at the origin, which implies that the Macbeath ellipsoid Ej,(O) (which is scaled
by 1/2) contains the unit ball and so contains K. Thus, (assuming that the origin is added
first to the Delone set) level ¢ of the DAG contains a single node. |

By Lemma 4, each node has O(1) children and §; = 2'§y = 2’¢, we obtain the following
space bound by summing |X;| for 0 < < /.

» Lemma 10. The storage required by the DAG structure described above is O(1/e(4=1/2).

As mentioned above, by combining Lemmas 4 with 6, it follows that the query time is
O(log 1/¢) and by Lemma 10 the total space is O(1/e(4=1/2) which establish Theorem 8.

While our focus has been on demonstrating the existence of a simple data structure
derived from Delone sets, we note that it can be constructed by well-established techniques.
While obtaining the best dependencies on ¢ in the construction time will likely involve fairly
sophisticated methods, as seen in the paper of Arya et al. [5], the following shows that there
is a straightforward construction.

» Lemma 11. Given a convex body K C R? represented as the intersection of m halfspaces
and € > 0, the above DAG structure for answering e-APM queries can be computed in time
O(m + 1/e9@D), where the constant in the exponent does not depend on € or d.

A. Abdelkader and D. M. Mount

Proof. First, we transform K into canonical form, and replace it with an §-approximation
K’ of itself. This can be done in O(m + 1/e9(?), so that K’ is bounded by O(1/e(¢=1/2)
halfspaces (see, e.g., [4]). We then build the data structure to solve APM queries to an
accuracy of (£/2), so that the total error is e.

Because the number of nodes increases exponentially as we descend to the leaf level, the
most computationally intensive aspect of the remainder of the construction is computing
the set Xy, a maximal subset of K whose packing ellipsoids Ez/Slo (z) are pairwise disjoint. To
discretize the construction of Xy, we observe that by our remarks at the start of Section 2,
the Hausdorff distance between K and K, is Q(dy) = Q(e). It follows that each of the
ellipsoids Ej (x) contains a ball of radius Q(\oe) = Q(e). We restrict the points of Xo to
come from the vertices of a square grid whose side length is half this radius. Since K is in
canonical form, it suffices to generate O(1/e9(?) grid points. By decreasing the value of
e slightly (by a constant factor), it is straightforward to show that any Delone set can be
perturbed so that its centers lie on this grid.

Each Macbeath ellipsoid can be computed in time linear in the number of halfspaces
bounding K’, which is O(1/¢9(¥)) [17]. The maximal set is computed by brute force,
repeatedly selecting a point x from the grid, computing Ej (z), and marking the points of
the grid that it covers until all points interior to K are covered. The overall running time is
dominated by the product of the number of grid points and the O(1/ so(d)) time to compute
each Macbeath ellipsoid. |

—— References

1 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. J. Assoc. Comput. Mach., 51:606-635, 2004.

2 S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages 579-586, 2011.

3 S. Arya, G. D. da Fonseca, and D. M. Mount. Polytope approximation and the Mahler
volume. In Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 2942, 2012.

4 S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
SIAM J. Comput., 2017. To appear.

5 S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal e-kernel construction and
related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1—10:15,
2017.

6 S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approx-
imating polytopes. Discrete & Computational Geometry, 58(4):849-870, 2017.

7 S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017.

8 K. Ball. An elementary introduction to modern convex geometry. In S. Levy, editor, Flavors
of Geometry, pages 1-58. Cambridge University Press, 1997. (MSRI Publications, Vol. 31).

9 1. Béardny. The technique of M-regions and cap-coverings: A survey. Rend. Circ. Mat.
Palermo, 65:21-38, 2000.

10 1. Bardny and D. G. Larman. Convex bodies, economic cap coverings, random polytopes.
Mathematika, 35:274-291, 1988.

11 J. L. Bentley, M. G. Faust, and F. P. Preparata. Approximation algorithms for convex
hulls. Commun. ACM, 25(1):64-68, 1982.

12 A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proc.
23rd Internat. Conf. on Machine Learning, pages 97-104, 2006.

13 H. Brénnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete
Comput. Geom., 10:143-155, 1993.

4:11

SWAT 2018

4:12

Economical Delone Sets for Approximating Convex Bodies

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min.
Knowl. Discov., 2(2):121-167, 1998.

T. M. Chan. Fixed-dimensional linear programming queries made easy. In Proc. 12th Annu.
Sympos. Comput. Geom., pages 284-290, 1996.

T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.
Discrete Comput. Geom., 16:369-387, 1996.

B. Chazelle and J. Matousek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms, 21:579-597, 1996.

K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. Tenth Annu.
Sympos. Comput. Geom., pages 160-164, 1994.

K. L. Clarkson. Building triangulations using e-nets. In Proc. 38th Annu. ACM Sympos.
Theory Comput., pages 326-335, 2006.

R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227-236, 1974.

J. Erickson, L. J. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive collision detection
for convex objects. In Proc. Tenth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
327-336, 1999.

G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the
r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika,
17:1-20, 1970.

S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu.
IEEE Sympos. Found. Comput. Sci., pages 94-103, 2001.

S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and
their applications. STAM J. Comput., 35:1148-1184, 2006.

D. Hilbert. Ueber die gerade linie als kiirzeste verbindung zweier punkte. Mathematische
Annalen, 46:91-96, 1895.

R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search.
In Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 798-807, 2004.

A. M. Macbeath. A theorem on non-homogeneous lattices. Ann. of Math., 56:269-293,
1952.

J. Matousek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete Comput.
Geom., 10:215-232, 1993.

J. Matousek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169-186,
1992.

J. Matous$ek. Linear optimization queries. J. Algorithms, 14(3):432-448, 1993.

F. Nielsen and L. Shao. On Balls in a Hilbert Polygonal Geometry (Multimedia Contribu-
tion). In Proc. 88rd Internat. Sympos. Comput. Geom., pages 67:1-67:4, 2017.

A. Papadopoulos and M. Troyanov. Handbook of Hilbert Geometry. European Mathematical
Society, 2014.

E. A. Ramos. Linear programming queries revisited. In Proc. 16th Annu. Sympos. Comput.
Geom., pages 176-181, 2000.

C. Vernicos and C. Walsh. Flag-approximability of convex bodies and volume growth
of Hilbert geometries. ~HAL Archive (hal-01423693i), 2016. URL: https://hal.
archives-ouvertes.fr/hal-01423693.

https://hal.archives-ouvertes.fr/hal-01423693
https://hal.archives-ouvertes.fr/hal-01423693

Computing Shortest Paths in the Plane with
Removable Obstacles

Pankaj K. Agarwal
Duke University, Durham, NC, USA
pankaj@cs.duke.edu

Neeraj Kumar
University of California, Santa Barbara, CA, USA
neeraj@cs.ucsb.edu

Stavros Sintos
Duke University, Durham, NC, USA
ssintos@cs.duke.edu

Subhash Suri
University of California, Santa Barbara, CA, USA
suri@cs.ucsb.edu

—— Abstract

We consider the problem of computing a Euclidean shortest path in the presence of removable
obstacles in the plane. In particular, we have a collection of pairwise-disjoint polygonal obstacles,
each of which may be removed at some cost ¢; > 0. Given a cost budget C' > 0, and a pair of
points s, t, which obstacles should be removed to minimize the path length from s to ¢ in the
remaining workspace? We show that this problem is N P-hard even if the obstacles are vertical
line segments. Our main result is a fully-polynomial time approximation scheme (FPTAS) for
the case of convex polygons. Specifically, we compute an (1 + €)-approximate shortest path in
time O (’Z—;‘ log n log %) with removal cost at most (1 4 €)C, where h is the number of obstacles,
n is the total number of obstacle vertices, and e € (0,1) is a user-specified parameter. Our
approximation scheme also solves a shortest path problem for a stochastic model of obstacles,
where each obstacle’s presence is an independent event with a known probability. Finally, we

also present a data structure that can answer s—t path queries in polylogarithmic time, for any
pair of points s, in the plane.

2012 ACM Subject Classification Theory of computation — Shortest paths

Keywords and phrases Euclidean shortest paths, Removable polygonal obstacles, Stochastic
shortest paths, L; shortest paths

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.5

Funding Work by Agarwal and Sintos is supported by NSF under grants CCF-15-13816, CCF-
15-46392, and I1S-14-08846, by ARO grant W911NF-15-1-0408, and by Grant 2012/229 from the
U.S.-Israel Binational Science Foundation. Work by Suri and Kumar is supported by NSF under
grant CCF-1525817.

1 Introduction

We consider a variant of the classical shortest-path problem in the presence of polygonal
obstacles, in which the motion planner has the ability to remove some of the obstacles to
reduce the s—t path length. Formally, let P = {Py,..., Py} be a set of h pairwise-disjoint
polygonal obstacles in R? with n vertices, and let ¢; > 0 be the cost of removing the obstacle

© Pankaj Agarwal, Neeraj Kumar, Stavros Sintos, and Subhash Suri;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).

Editor: David Eppstein; Article No. 5; pp. 5:1-5:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:neeraj@cs.ucsb.edu
mailto:ssintos@cs.duke.edu
mailto:suri@cs.ucsb.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Computing Shortest Paths in the Plane with Removable Obstacles

P; for i =1,...,h. For a path 7 in R?, we define its cost, denoted by c(), to be the sum
of the costs of obstacles intersecting 7, and its length, denoted by |||, to be its Euclidean
length. Given two points s,¢ € R? and a budget C > 0, we wish to compute a path from s
to t of minimum length whose cost is at most C.

This obstacle-removing shortest path generalizes the classical obstacle-avoiding shortest
path problem, by giving the planner an option of essentially “tunneling” through obstacles
at some cost. Besides an interesting problem in its own right, it is also a natural formulation
of tradeoffs in some motion planning settings. For instance, it might be beneficial to remove
a few critical blockages in a workspace to significantly shorten an often traveled path, just as
an urban commuter may strategically pay money to use certain toll roads or bridges to avoid
traffic obstacles. In general, our model with removable obstacles is useful for applications
where one can adapt the environment to enable better paths such as urban planning or robot
motion planning in a warehouse setting. The problem also generalizes the recent work on
obstacle-violating paths [25, 18], in which the planner is allowed to enter the forbidden space
(obstacles) a fixed number of time. For instance, in [25], a shortest s—t path inside a simple
polygon is desired, but the path is allowed to travel outside the polygon once. In [18], a
shortest path among disjoint convex polygonal obstacles is desired, but is allowed to travel
through at most k& obstacles. The latter problem is also an obstacle-removing shortest path
where at most k obstacles can be removed, namely, each obstacle removal has cost 1 and
planner’s budget is k. We will call this the cardinality version of the obstacle-removal to
distinguish it from our cost-based model of obstacle removal.

The obstacle removal problem also has a natural connection to path planning under
uncertainty. Imagine, for instance, a workspace with n obstacles, the presence of each obstacle
is a random event. That is, the presence of the ith obstacle is determined by a Bernoulli
trial with (independent) probability 5;. A natural approach to planning a s—t path in such a
workspace is to search for a path that is both short and obstacle-free with high probability.
Given a desired probability of success 5, we can ask: what is the shortest path from s to ¢
that is obstacle free with probability at least 5. This problem is easily transformed into our
obstacle removal problem where the obstacle probabilities are mapped to obstacle removal
cost, and 3 is mapped to the cost budget C.

Our results. We first show that the obstacle-removing shortest path problem is NP-hard
for polygonal obstacles in the plane, even if obstacles are vertical line segments by reducing
the well-known PARTITION problem to it. This is in contrast with the cardinality version of
the problem, which can be solved exactly in O(k*nlogn) time [18].

Our main result is a fully-polynomial time approximation scheme (FPTAS) when each
obstacle is a convezr polygon. We first define the notion of the viability graph G, which is
an extension of the well-known visibility graph [11, 13], for geometric paths that can cross
obstacles. Using the viability graph, we present a simple algorithm that returns a path with
length at most the optimal! but cost at most (1+¢€)C. The approximation algorithm, while
simple, has a worst-case time complexity @("{ polylog(n)). Then, we develop a framework
for a more efficient and practical approximation algorithm, which also results in a number of
related results. Specifically, for any constant € > 0, we can compute a (1 + ¢)-approximate
shortest path whose total removal cost is at most (1 4 ¢)C in time O (’Z—Q log nlog %), where
h is the number of obstacles and n is the total number of vertices in the obstacles. The main
idea behind the improvement is to construct a sparse viability graph, with only O(% logn)

1 The optimal length is always with respect to the budget C.

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

edges. This approximation scheme immediately gives a corresponding result for the uncertain
model of obstacles (see Section 5).

The approximation scheme, as a byproduct, also solves the exact L; norm shortest path
problem in the cardinality model of obstacle removal: that is, in O(knlog®n) time, we can
decide which k obstacles to remove for the shortest s—t path, which is roughly a factor of k
faster than the Lo-norm result of [18]. Alternatively, we can also decide which k obstacles to
remove so that the shortest s—¢ path has length at most (1+ €) times optimal in O(*2 log? n)
time. This is again faster than the result from [18] for constant e, if &k = Q(logn).

We also construct query data structures for answering approximate obstacle removal
shortest path queries. If the source s is fixed (one point queries), we construct a data
structure of size O(:—Q logn) such that, given a query point ¢, it returns a s— path of length
(1+¢€) times the optimal with cost at most (14 €)C in time O(2 log® n + k), where ky; is the
number of edges in the path. The data structure size can be improved to O(Z lognlog %) if

we only return the length of the path. If both points s, ¢ are given in the query (two point
n2h

queries), the data structure has size O(" log? n), and the query time is O(% log? n + k).

The size of the data structure can also be improved to O(’;—: log? n log %) if we only return
the length of the path.

Related work. The problem of computing a shortest path in the presence of polygonal
obstacles in the plane is a very well studied problem in computational geometry. See the
books [16, 31], survey paper [28], recent papers [9, 6, 10, 8, 20], and references therein for a
sample of results. In the classical shortest path problem, obstacles are impenetrable, that is,
the shortest path must avoid all the obstacles. Our problem considers a more general scenario
where the obstacles can be removed by paying some cost and falls in the broad category of
geometric optimization problems where some constraints can be violated [2, 30, 26, 17].

Our problem is also closely related to the problem of computing a shortest path through
weighted polygonal regions [23, 24, 27] where the length of a path is defined as the weighted
sum of Euclidean or L; lengths of the subpaths within each region. However, in our setting
there is only a one-time fixed cost for passing through a region, and therefore does not
depend on the length of the subpath that lies inside the region.

The stochastic formulation of our problem is also related to some shortest path problems
under uncertainty [14, 15, 22, 29]. However, these results assume existence of a graph
whose edges have either an existence probability or a distribution over their lengths. In
contrast, our definition is purely geometric where the existence of obstacles is an uncertain
event. Our problem can also be seen as a variant of geometric bi-criteria shortest path
problem [1, 5, 33, 34, 35|, as our objective is to compute the shortest path with a constraint
on the total cost of obstacles that we remove.

Finally, for most geometric shortest path problems, there are efficient data structures to
answer shortest path queries. For instance, the shortest path map [19] has linear size and
can answer Euclidean shortest path queries with a fixed source in O(logn) time. If both
s,t are part of the query, quadratic space data structures [4, 21] exist for L; shortest path
queries and super quadratic space data structures [12] for Ly shortest path queries. Similar
results exist for rectilinear shortest path queries among disjoint weighted rectilinear and
convex obstacles [4, 7], and for bi-criteria shortest path problems [5, 33, 35].

Overall, our algorithms entail new techniques because (i) in our problems, paths are
allowed to pass through obstacles, (ii) the cost function in our bi-criteria optimization can
be quite general and not necessarily a metric.

5:3

SWAT 2018

5:4

Computing Shortest Paths in the Plane with Removable Obstacles

Se

ai

Figure 1 Reduction from PARTITION. The gray segment in the obstacle group G; has length a;
and can be crossed by paying a cost a;. The tall segments are drawn in black and are placed +4d
apart from their corresponding gray segment.

2 NP-hardness

Consider the decision version of the obstacle-removing shortest-path problem: Given a set P
of pairwise-disjoint obstacles along with the cost of each object being removed, two points
s,t € R?, and two parameters C, L > 0, is there a path from s to ¢ of length at most L and
cost at most C'?

We prove the hardness by a simple reduction from the well-known NP-complete problem
PARTITION. An instance of PARTITION is a set of n positive integers A = {a1,a2,...,an},
and the problem is to decide whether A can be partitioned into two sets A; and As such
that W (A;) = W(Az) = LW (A), where W(S) is the sum of the integers in S. We place
the source s at (0,0) and destination ¢ at (n + 1,0) on the z-axis. We also set C'= W (A),
L =31W(A)+ (n+1) and define a parameter § = g-. For each i < n we create a group of
obstacles, denoted G;, which consists of five vertical line segments placed close to each other
in the following way. (See also Figure 1.)

The middle segment e]* has length a;, and has its midpoint on the z-axis. The coordinates
of its endpoints are (i, —a;/2), (¢,a;/2). The cost of this obstacle is a;.

At x-coordinates i — § and i + § we place two vertical segments eé and e symmetrically
along the z-axis — each with point-sized holes on the z-axis and length 2(L + 1). The
eld

Ei2

point sized holes split the segment e,li (resp. €]) into two disjoint tall segments e,li“
(resp. el*,er?), of length (L + 1). Each of these segments has cost (C' + 1).

AR

» Lemma 1. The set A can be partitioned into two equal-weight subsets if and only if there
is a path from s to t of length at most L and cost at most C.

We thus obtain the following:

» Theorem 2. Let P be a set of n disjoint polygonal obstacles in a plane, where each obstacle
P; € P has an associated removal cost ¢;. Given a source and destination pair of points s,t,
a removal budget C' and a length L, the problem of deciding if there is a s—t path with cost at
most C and length at most L is NP-hard.

3 A Simple (1 4 €)-Approximation Algorithm

In this section, we propose a simple polynomial-time approximation scheme for the problem.
We begin by noting that an obstacle-removing shortest path only turns at obstacle vertices
and crosses the boundary of an obstacle at most twice. While these properties follow easily
due to the convexity of P and basic geometry, they are crucial for our algorithms.

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

The algorithm constructs a viability graph G = (V, E), whose nodes are all the obstacle
vertices along with s and ¢. Thus, |V| = n 4 2. The edges of F correspond to pair of nodes
(u,v) for which the line segment uv passes through obstacles of total cost at most C, the
cost budget. For each edge e € E, we associate two parameters: cost c¢(u,v) and length
|luv||, where c(u,v) is the cost of the segment uv. In the worst-case G' has ©(n?) edges. It is
important to note that the cost of a path ms; in a viability graph is defined as the sum of
the costs of its edges, whereas the cost of 74 in the plane is defined as sum of costs of all
obstacles that it goes through. Moreover, the cost of a path in the plane is at most its cost
in the viability graph. If the path crosses each obstacle at most once (which is the case for
shortest path among convex obstacles), these two costs are the same.

The following algorithm shows how to compute an approximately optimal path in this
viability graph. The main idea is that we construct copies of the vertices and the edges of G
to convert the multi-objective problem to a single-objective problem.

Let k = min(< h). To simplify the approximation error analysis, we first scale

min; ¢; ’

all the costs by k/C, so that the new target cost is k. We now construct an auxiliary
graph G’ = (V' E'), with O({@—‘) nodes and O({@—‘) edges, whose edges only have
the length parameter but not the cost parameter, as follows. We create P{”W + 1 copies
V0, Vg, Ve, V3 - - - Ur,s for each v € V. Then, for each edge (u,v) € E with cost ¢ and for each
0 <i < [2r/€], we add the edge (u;s,v;j5), where j < [2r/€] is the maximum integer with
J5 <i5 +c. All these edge copies have the same length as edge (u,v)—the cost parameter
is now implicitly encoded in the edge copies. Finally we add two new vertices s and ¢ in G’
and connect them to all s; and ¢; respectively with zero length edges, for 0 < i < [2k/e€].
We now find the minimum length path = from s to ¢ in G’, say, using Dijkstra’s algorithm,
and argue that 7 is our approximation path.

» Theorem 3. Let P be a set of h convex obstacles with n vertices, s,t be two obstacle
vertices, and C € R be a parameter. Let L* also be the length of the shortest s—t path with
cost at most C, and let G = (V, E) be a viability graph induced by this workspace. If there
exists a path © of length at most aL* with o > 1 and cost at most C in the graph G, then
a s—t path m with length at most aL* and cost at most (1 + €)C' can be computed in time

((IE|+ |V|log M)), where k = min (%,h) and 0 < € < 1 is a parameter.

Proof. First, we construct the auxiliary graph G’ as described above. Next, we construct
a path 7 in G’ corresponding to the path 7* in G by mapping edges of 7* to edges in G'.
More precisely, let e = (s,v) be the first edge in 7* and let ¢, be its cost. Now let ¢ =0
and ¢’ be the value obtained by rounding down c. to the nearest multiple of 5. We map e
to the edge (sq,ve) in G'. Setting ¢ = ¢/, we repeat the process for all edges in 7*. This
gives us the path 7/ in G’ that has the length same as that of 7* (at most aL*). Clearly, the
s—t path m computed using Dijkstra’s algorithm on G’ must also have length at most aL*.
Moreover, since (scaled) rounded cost of any s—¢ path in G’ is at most &, the rounded cost of
7 is also at most k. Now we only need to bound its original (pre-rounded) cost.

Let Cg be the true (pre-rounded) cost of the path 7 in the plane and C4 its rounded
cost in G'. The approximation error in the cost (due to rounding) is at most ¢/2 for each
obstacle that 7 passes through, and so if k is the number of obstacles 7 crosses, we have the
upper bound Cr < Cy + 1216/2. Since Cy < k, we have Cr < Kk + 156/2. We can bound k
by considering the following two cases. If k = C/ min; ¢;, the minimum cost of an obstacle
is 1, and so for each obstacle crossed, the path 7 incurs a cost of least 1 — ¢/2. Therefore,
k< =5 and Cr < k4 =5 €/2< 7 /2K<(1+€)l€ Otherwise, we have k = h, which

trivially implies k < & since h is the total number of obstacles.

5:5

SWAT 2018

5:6

Computing Shortest Paths in the Plane with Removable Obstacles

In conclusion, we have Cr < (1 + €)k, whose pre-scaled value is ((1;;2;” =(1+¢€C, as

claimed. Finally, the time complexity is dominated by an invocation of Dijkstra’s algorithm
on the graph G’, which has O(|V'|k/€) nodes and O(|E|x/¢€) edges. <

If G is the viability graph constructed in this section then it always contains the shortest
s—t path with cost at most C, i.e. @ = 1. Hence, by applying Theorem 3 to G we get a path
of at most the optimum length and cost at most (1 + €)C in Q(”;) time.

In the next section, we show that if we also allow an (1 + €) approximation of the path
length, we can improve the running time by roughly an order of magnitude.

4 A Faster (1 + €)-Approximation Algorithm

In this section, we describe our algorithm for sparsifying the graph G = (V| E). We augment
the graph by adding some vertices so that the number of viability edges can be sharply
reduced, while approximately preserving the path lengths within the cost budget. Throughout
the following discussion, we will respect the cost budget C, and only allow the path lengths
to increase slightly. With that in mind, we use the notation dg(u,v) to denote the length of
the shortest path in G from u to v whose cost is at most C. In this section we only use the
definition of the cost of a path with respect to a viability graph. Recall that the cost of a
path in a graph is the sum of the costs of the edges in the path.

Our sparse graph H, = (X, T¢) is defined for any € > 0, with V' C X, and satisfies the
following two conditions:

1. dg(u,v) < dg.(u,v) < (1+€)dg(u,v) for all pairs u,v € V.

2. The number of vertices and edges is O(% logn), that is, | X[, |Tc| = O(Z logn).

We construct H, in two stages. In the first stage we construct a graph H = (X, T") with
X DV, |X|,IT| = O(nlogn), and dg(u,v) < dg(u,v) < V2dg(u,v) for all u,v € V. Next,
we make O(1/¢) “copies” of H and combine them to construct He. Once the graphs H and
H, are constructed, we use the machinery of the previous section, namely Theorem 3, to
efficiently find the approximately optimal shortest path within the cost budget.

Recall that all the obstacles in our input are convex, and therefore the shortest path in G
does not cross the boundary of an obstacle more than twice. To avoid degenerate cases, we
assume that all obstacle vertices are in general position, namely, no three vertices are collinear
and all obstacles have non-zero area. We can, therefore, simplify the problem by replacing all
the obstacles by their constituent boundary segments, where each obstacle vertex is assigned
to its incident segment in the clockwise order. We now allocate the “obstacle removal” cost
to these segments as follows: if ¢; is the removal cost of obstacle 7, then we allocate cost ¢;/2
to each boundary segment of obstacle ¢. This ensures that any shortest path crossing the
ith obstacle incurs a cost of ¢;, while allowing us to reason about the geometry of just line
segment obstacles.

We describe the construction of the sparse viability graph by explaining how to sparsify
the “neighborhood” of an obstacle vertex, say, p. That is, we show which additional vertices
are added and which viability edges are incident to p in the final sparse graph H. To simplify
the discussion, we assume that p is at the origin, and we only discuss the edges incident to p
that lie in the positive (north-east) quadrant; the remaining three quadrants are processed
in the same way.

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

w
L]
w'o wl. w w1
w2
v w2
v /02 W e
v
/l]. 1 OUI Ul
v*
£y

Figure 2 Steiner vertices due to vertical (left) and horizontal (right) split lines. Projections are
shown with white dots, bypass vertices as squares, bypass edges shown in blue have cost zero.

4.1 An O(1)-Approximation Algorithm

In this subsection we describe the construction of H = (X,T) such that |X|, |T'| = O(nlogn),
and dg(u,v) < dg(u,v) < V2dg(u,v) for all u,v € V.

For a segment pq we use |[pg||1 to denote its Ly-length, i.e., [|pg|l1 = |xp — zq| + [Yp — yql,
where p = (zp, yp) and ¢ = (x4, y4). For a polygonal path m = pop1 ... pg, we use ||7||1 to
denote its Li-length, i.e., ||7]j; = Zle pi—1pill1- We note that ||x||; < v/2|x|]. We will
construct a graph H = (X, T") with the following property: For a pair of vertices u,v € V' if
G contains a path 7 from u to v of cost at most C; H contains a path 7 from u to v of cost
at most C such that ||7||; < |71. Hence ||7| < v2||7|| and thus dg(u,v) < v2dg(u,v).

We are now ready to describe the algorithm for constructing H. It is a simple recursive
algorithm and consists of the following steps:

1. Let x,, be the median z-coordinate of the points in V. We consider the vertical split line

Ly : x = x,, that partitions V into two almost equal-sized subsets V; and V..

a. For each point v € V, consider its projection v’ = (2, v,) on the line ¢,. If ¢(v,v") < C,
then add the projection vertex v’ to X and the corresponding edge e = (v,v’) to T’
with length ||vv'||; and cost c(v,v’).

b. Let s’ be the first obstacle segment with positive slope that the projection segment
vv’ intersects. If s’ intersects the split line ¢, we add bypass vertices and edges to
H as follows. Let v; be the point where vv’ intersects s, and let vo be the point
where s’ intersects £,. We add bypass vertices v1,vs on the segment s'. If vo lies
above vy, the bypass vertices are considered to be above the segment s’, otherwise they
are considered below the segment s’. (See also Figure 2.) We add the edges (v,v;)

and (v1,v2) to I’ with lengths ||vvy]|1, ||v1v2]|1 and costs ¢(v,v1), ¢(v1,v2), respectively.

Observe that ¢(vy,v2) = 0.

c. We repeat the procedure above for the first negative slope segment that vv’ intersects.

d. For two consecutive Steiner vertices w, w’ (projection or bypass) on £, if ¢(w,w’) < C,
then add the edge e = (w,w’) to T’ with length ||ww’||; and cost c(w,w’).
e. Recurse on the subsets V; and V. until |V;|,|V;| < 1.
2. Repeat the above process but this time using median y-coordinate y,, and a horizontal
split line ¢5, at y = yp,.
3. We add edges between consecutive vertices on the boundary of obstacles with cost 0.

At each recursive step of our algorithm, we need to find the first positive (negative) slope
obstacle segment intersected by the projection segment vv’, and compute the cost of all edges
we add. In order to find the first positive (negative) slope segment say s’, we can simply

perform a point location query in O(logn) time [32] on positive (negative) slope segments.

If s/, intersects both the projection segment vv’ and the split line passing through v’, we add
the bypass vertices. For computing the edges costs, observe that bypass edges and the edges

5:7

SWAT 2018

5:8

Computing Shortest Paths in the Plane with Removable Obstacles

Ly
Sy ¢
_— N ;’L\q
= i S
p\\ %) A// —_—~

Figure 3 The region R, is shown shaded. If R,, does not contain obstacle vertices, the type
A, B, C obstacle segments that may intersect Rp, are shown on the right. Observe that type B and
type C segments cannot both exist in Rpq.

on the boundary of obstacles have both cost zero, and all other edges are either horizontal
or vertical line segments, so we just need to compute the total cost of obstacle segments
intersected by an axis aligned segment. We show how to do this for a horizontal projection
segment vv’ and all other cases follow similarly. We preprocess all the obstacle segments in a
segment tree based data structure S. Using fractional cascading and increasing the fan-out
of the segment tree [3, 32], a (weighted) counting query runs in O(logn) time. During each
recursive call, we simply query S to compute the cost of the segment vov’. However, we need
to be careful in including the cost of the obstacle segment that v lies on. More precisely, if
P; is the obstacle incident to v, we include the cost ¢;/2 to the cost of segment vv’ only if
vv’ intersects the interior of P; (which we can decide in constant time).
We can easily obtain the following lemma.

» Lemma 4. Every input vertex adds Steiner vertices on O(logn) split lines. Moreover,
graph H has size O(nlogn) and can be constructed in O(nlog?n) time.

It is important to note here that a similar recursive algorithm was first used by Clarkson
et al. [13] to compute L; shortest obstacle-avoiding paths in the plane — each vertex was
projected on O(logn) split lines and on the obstacle closest to it in all four directions. This
was enough to capture obstacle-avoiding shortest paths (as they lie entirely in free space)
but since obstacle-removing shortest paths can also go through obstacles, things get quite
complicated. In particular, it is not clear that which of the O(n) nearby obstacles (in each
direction) should a vertex be projected on. We address this challenge in Step 1b of our
algorithm by adding bypass vertices. Since we need to guarantee that the sparsification
preserves the Ly length as well as the cost of the shortest path, our correctness argument is
quite different and can be viewed as a more general form of the result by [13].

4.2 Proof of Correctness

We now prove that dg(u,v) < v2dg(u,v) for all u,v € V. More precisely, if we set the
length of each edge e = (u,v) in G to be ||uv||;, then we show that dg(u,v) < dg(u,v). We
basically show that for any edge e = (u,v) in G there is a path 7, from u to v in H such
that ¢(me) < e(u,v) and ||7e|l1 < ||Juv|];. This claim is established in Lemma 7, whose proof
relies on the following Lemmas 5 and 6.

For convenience, we introduce the notion of the region R,, defined by two obstacle
vertices p,q € V. Let qu be the rectangle with p and ¢ as lower left and upper right
corners respectively. Now, let s, (resp. s,) be the first obstacle segment of positive
slope that intersects the two sides of R,, below (resp. above) the diagonal pg. We define
Ry, = Ry \ (B(s:) U A(sy)), where B(s,) is the area below segment s, and A(s,) is the
area above s,. If a segment s, or s, does not exist then B(s,) = 0 and A(s,) = 0. (See also
Figure 3.)

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

» Lemma 5. Let (p,q) be an edge in G with cost ¢(p,q). If the region Ry, does not contain
an obstacle vertex, then there exists a path mp, in H that is entirely contained in R,, such

that ”7qu||1 = |lpqll1 and c(mpq) = c(p, q)-

Proof. Since R,, does not contain any obstacle vertex there are only three types of obstacle

segments that intersect R,,. (See also Figure 3.)

1. Type A : these obstacle segments have negative slope and intersect both vertical and
horizontal segments of R,, adjacent to either p or g.

2. Type B : obstacle segments that intersect both vertical segments of R,,.

3. Type C : obstacle segments that intersect both horizontal segments of R,,.

It is easy to see that segments of type B and C cannot both exist in R,, because the obstacle

segments are non-intersecting. From the construction of H there is always a vertical and a

horizontal split line between two obstacle vertices. Let £, (¢5) be the first vertical (horizontal)

split line in the recursion that we consider between the vertices p,q. There are three cases.
Only Type A segments exist in R,q. This case is taken care by the Steiner vertices on the
vertical (or horizontal) split line ¢,. More precisely, £, may intersect both s, and s, one
of them, or even neither of them. We show what happens in the case where £, intersects
both s, and s, and the other cases follow easily. Since there are no obstacle vertices in
Ryq, sz, 5y are the first positive slope segments intersected by the projections of p,q on
£,,. So we have created bypass vertices p1,ps and g1, g2 on s, s,. The path 7, is defined
as Tpq = PP1P2q2q1g and it is easy to see that ||mp,|l1 = ||pg|l1. Moreover, both m,, and
the edge pg cross one time the same set of obstacle segments (only type A), so we have
that c(mpq) = c(p, q)-
Type B segments exist in R,,. In this case, observe that type B edges do not intersect
with the horizontal projection segments adjacent to p and ¢ on the vertical split line, and
therefore we can use the exact same path m,, as the previous case. The cost of the type
B segments needs to be included but since the edge pg must cross these segments, we
have that c(mpq) = ¢(p;).
Type C' segments exist in R,,. This case is symmetric to the previous case using the
horizontal split line ¢j,. <

» Lemma 6. Let (p, q) be an edge in G with cost ¢(p, q). If the region R, contains one or more
obstacle vertices, then there exists an obstacle vertex r € Ry such that ||pr||1+|rqlli = |lpgl,

and c(p,r) + c(r,q) < ¢(p, q).

Proof. We prove the lemma by exhibiting a vertex r such that (i) the triangle Aprq does
not contain any other obstacle vertex, and (ii) no obstacles segment intersects the interiors
of both pr and rq. Such a choice of r suffices for our proof since r € R,, implies that
lorlls + llrglls = llpglls and we get e(p,r) + ¢(r,q) < ¢(p,q) because any obstacle segment
crossing either pr or rq must also cross pq, otherwise that obstacle segment would terminate

inside the triangle which contradicts the choice of r. Next, we show how to find such a vertex.

We restrict our search for this vertex r in a convex polygon 1},, C R, which we construct in
the following way. (See also Figure 4.) Observe that the diagonal pq divides the region R,,
into two subsets — one above and one below it. We consider the subset R;,, that contains
at least one obstacle vertex. Since, R,, contains at least one obstacle vertex, such a subset
always exists. Without loss of generality, we can assume that R}, lies above pg. Now, let
Spq be the set of all obstacle segments that intersect a vertical or a horizontal segment of the
boundary 0R;,,, and let s,, s, € Sp, be the segments that intersect IR, closest to p and ¢

let w be the endpoint closest to the

respectively. From the endpoints of s, s, that lie in Ry,
segment pq. Moreover, let [,, be the line parallel to pg that passes through w. Now we simply

5:9

SWAT 2018

5:10

Computing Shortest Paths in the Plane with Removable Obstacles

Figure 4 The region T}, is shown shaded on left. If r» € T}, is the vertex closest to pg, then the
region Ty, C Tpq(shown shaded in dark on right) cannot contain an obstacle vertex.

clip off the region of R;q that lies above [,,. More precisely, this gives us the quadrilateral
Ry, = Ry, \ A(lw), where we use A(s) for the region above segment s. Finally, we define
the convex polygon Tp,, = R} \ (A(s},) U A(s;)), where s, s are the subsegements of s, s,
respectively that lie inside the quadrilateral R;'q.

From the set of obstacle vertices that lie inside or on the boundary of T,,, we choose the
vertex r to be the one that minimizes the area of the triangle Aprgq, or equivalently, be the
one that has the minimum distance from the segment pg. Observe that the boundary of
region T}, contains the obstacle vertex w, so we will always find one such r. It is easy to
see that the triangle Aprg is a subset of T}, and does not contain an obstacle vertex or else
it would not have the minimum area. It remains to show that there cannot be an obstacle
segment that crosses both pr and rq. To this end, let . be a line parallel to pg passing
through r. Observe that the region T, = T}, \ A(l;), i.e., the region in T}, that lies below
l., cannot contain an obstacle vertex by the choice of r. So any obstacle segment s; that
crosses both pr and rq must intersect dR;,, at either the vertical segment between p and s,,
or the horizontal segment between s, and ¢ which is a contradiction. (See also Figure 4.) <

Finally, we prove the main result of this section.

» Lemma 7. Let (p,q) be an edge in G with cost c(p,q). There is a path m,q, € H such that
Impglli = |lpgll1 and c(mpq) < c(p, q). Moreover, the path Ty lies in the region Ry,.

Proof. We prove this by induction on the number of obstacle vertices in the region R,,. Our
base case is when the region R,,; does not contain an obstacle vertex. Applying Lemma 5
gives us the desired path m,, in H. For the inductive step, let j be the number of obstacle
vertices in the region R, and assume that the lemma holds for all edges (u,v) such that the
region R, contains ¢ < j obstacle vertices. Using Lemma 6 we find an intermediate vertex r
such that ||pr{|1 + |r¢llx = ||lpgll1 and ¢(p,r) + ¢(r, q) < ¢(p,q). This gives us two disjoint sub-
regions R, C R,, and R, C R,, each with at least one less obstacle vertex than the region
R,q. By our induction hypothesis, we get the disjoint subpaths ,, from p to r and m,, from
r to ¢ in H. We then join these two paths at vertex r to obtain path =, that lies within the
region Ryy. Morcover, we have that |[Tpqlli = Imprlls + [mralls = lprlly + lIrally = lpalls
and ¢(mpq) = c(mpr) +c(mrg) < c(p7) +c(r,q) < c(p,q). <

4.3 An (1 + €)-Approximation Algorithm

We now describe how to use the preceding construction to define our final sparse graph H..
A direction in R? can be represented as a unit vector u € St. Let N C S! be a set of O(1/e)
unit vectors such that the angle between two consecutive points of N is at most €. For each
u € N, we construct a graph H" by running the algorithm in Section 4.1 but regarding u
to be the y axis — i.e., by rotating the plane so that u becomes parallel to the y-axis and

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

measure Li-distance in the rotated plane. Set H, = UueN H"“. Notice that the number of
vertices and edges in H, is O(2 logn). The following lemma follows easily by the discussion
above.

» Lemma 8. For any pair u,v € V, we have that dg. (u,v) < (1 + €)dg(u,v).

From the above lemma, it follows that the graph H. preserves pairwise shortest path
distances within a factor of (1 4 €) and at most the same cost with graph G. Let L* be the
length of the shortest s—t path in the plane that has cost at most C'. Since there exists a s—t
path of length at most L* and cost at most C' in the viability graph G, there exists a s—t
path in H, of length (1 + ¢)L* and the same cost. Applying Theorem 3 with a@ = (1 + ¢€) on
H. gives the following result.

» Theorem 9. Let P be a set of h convex polygonal obstacles with n wvertices, s,t be two
obstacle vertices and C' € R be a parameter. If L* is the length of the shortest s—t path with
cost at most C, a s—t path with length at most (1 + €)L* and cost at most (1 + €)C' can be
computed in O(’Z—Q lognlog) time.

5 Shortest Path Queries

We now describe a near-linear space data structure to answer approximate distance queries
from a fixed obstacle vertex s subject to the obstacle removal budget in O(% log? n) time.
The data structure is then extended to handle two-point shortest path queries in O(Ei2 log? n)
time with near-quadratic space.

The key idea relies on the following observation. Without loss of generality, assume that
the points s and ¢ lie in the exterior of all obstacles and let us also assume that s, ¢ were part
of the input. Now consider the shortest s—t path in the graph H, and let ¢ be the vertex
preceding ¢ in this path. It is easy to see that ¢ must be a Steiner vertex (projection or
bypass) as there are no direct edges in H, between two input vertices that do not lie on the
same obstacle. All such edges must cross some split line at Steiner vertices. Therefore, the
last edge (¥,t) in the path is the segment obtained by projecting ¢ on some split line £. Now,
suppose we have precomputed the paths to all Steiner vertices on all split lines, then we can
find the shortest path to ¢ by simply finding the neighbor of ¢’ on ¢. Using Lemma 4, we
know that ¢ can be projected on O(% logn) split lines, which gives O(% logn) choices for ¢.

Preprocessing. We apply the algorithm preceding Theorem 3 on the graph H. that we
constructed in the previous section. More precisely, first we multiply the cost of all obstacles
by h/C so that the target cost becomes h. Next we create an auxiliary graph H! with O(%)
copies of each vertex in H.. Running Dijkstra’s algorithm on H! with source s computes
a shortest path to each vertex in H!. Now for each vertex v in H., we maintain arrays
dist,, pred, each with size 1 + % = O(%) We store the length of the shortest path found by
Dijkstra’s algorithm from s to v;. (i-th copy of vertex v) at dist, (i) and its predecessor in
pred, (7). In addition, for each direction u € N that we defined in the previous section we
maintain two data structures:
A segment tree [3] based data structure S, that we also used in Section 4.1 to compute
the cost of an axis aligned segment in O(logn) time.
A balanced search tree T, over all the vertical (resp. horizontal) split lines, which is
basically the recursion tree corresponding to the algorithm from Section 4.1. More
precisely, the root of Ty, is the split line ¢,, (at the median xz-coordinate x,,), and the left
and right children are the split lines added during recursive processing of points to the
left and right of ¢,, respectively.

5:11

SWAT 2018

5:12

Computing Shortest Paths in the Plane with Removable Obstacles

~\ —_—
t/ t t/o Do |
t t
Tt 2 it :
! |
Vg s
. L * v.—.' *
l £

Figure 5 Computing path from a query point ¢ to one of the vertices in H. — using a split line
that already exists in H. (left) and using a new split line £* added at query time (right). The suffix
path 7, is shown shaded in red.

Moreover, for every split line £, we maintain a search tree over all the Steiner vertices that
lie on £. Overall, our data structure consists of all arrays dist,, pred,, O(%) search trees, and
O(%) segment trees S,. The size of the data structure is O(Z—;L logn) and the preprocessing

time is O(2£ log nlog 2).

Query. The query procedure consists of two parts. Given the target query point ¢, we first
find a subset of O(% logn) split lines L that we need to search. Next, for each line ¢ € L,
we find the Steiner vertex ' created by projecting ¢ on £ and then find the path to ¢ using
one of the two neighbors of ¢’ on £. Let v denote a neighbor of ¢ on £. Finally, we take the
shortest of all O(% logn) candidate paths.

In order to find the subset of split lines we use the search tree T, over the set of all split
lines for a direction u € N. For a node z € Ty, if ¢ lies in the region left of split line at z we
search the left child, else we search the right child. Searching T}, in this way, we reach a leaf
node such that the associated region contains exactly one obstacle vertex w and the query
point . In this case we add a new split line £* between w and ¢ and add Steiner vertices for
the obstacle vertex w on £*. This gives us a total of O(logn) + 1 split lines per direction
that we need to search.

To compute the candidate paths, for a given a split line ¢, we consider the Steiner vertices —
projection ¢ and bypass t1, ta — for the query point ¢. The shortest path from ¢ to ¢ may either
be t’ — ¢ or ty — t; — t. We find a neighbor v of ¢’ or ¢35 on ¢ (at most two neighbors are
possible). We now consider the section of the path m,; from v to ¢. If the arrays dist,, pred,
are not precomputed, which can happen if v is the projection of an obstacle vertex w on the
new split line £*, we set v = w and include the path from w to ¢ along the split line £* to
Tyt (See also Figure 5.)

At this point we have found a vertex v such that dist,, pred, are precomputed for all
cost values 0, €, 2¢, ..., h. Since the cost of bypass edges is zero, and all other segments in
the path m,; are axis-aligned, we can compute the cost ¢(m,) using the segment tree Sy,.
The remaining cost budget is h — ¢(m,;) which we round up for lookup in the dist,, pred,
arrays. More precisely, let j be the smallest integer such that h — ¢(my:) < je, then we
compute the length of the candidate s—t path via v as dist,(j) + ||7ut]|1. Finally, we take
the minimum over all O(% logn) choices of v to obtain the shortest path 7 using the pred
arrays. Using a similar argument as in the proof of Theorem 3, one can show that the length
of s is at most (1 + €) times optimal and the cost is (1 4+ ¢)C. The total query time is
O(Llogn-logn) = O(% log® n).

Instead of computing the path itself, one may ask to just find the length of the shortest
s—t path of cost at most C' for some query point ¢t. We can answer such queries approximately
in O(% log? n) time using O(% lognlog %) space. The main idea is that instead of storing

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

O(%) distance values in dist, for cost 0, ¢, 2¢, ..., %e, we store a subset of O(% log %) values.

More precisely, we only store the distance values corresponding to the cost je where j is the
smallest integer such that ¢(1 + €)* < je, for all i in 0,1,2,... logy . % The size of dist,
arrays for each vertex v is therefore O(log, . %) = O(2log). Let m,; be the path from
v to t. The length of a s—t path via v has length dist, (i) + ||my||1, where 4 is the smallest
integer with h — c(my) < €(1 + €)’. Finally we take the minimum over all O(%logn) choices

of v to obtain the shortest path ms;. We can show that the cost of 7y is at most (1 + 5¢)C.

Constructing the data structure for € < €/5 we obtain the following theorem.

» Theorem 10. Let P be a set of h convexr polygonal obstacles with n wvertices, s be an
obstacle vertex, and C € R be a parameter. A data structure of O(’Z—glog n) size can be
constructed in O(’:—Qh lognlog) time such that, given a query point t € R2, a path ms can be
returned with cost (1+ €)C and length at most (1+ €) times the optimal in O (2 log?n + kst)
time, where kg is the number of edges of mss. The length of the path ws can be returned in
time O(% log? n) using a data structure of size O(Z lognlog %)

Two point queries. Now we briefly explain how to extend the above data structure to
handle two point queries. That is, both s,t are part of the query. During the preprocessing,
we store distance values dist,,, (similarly pred,,) for every pair of vertices u,v in H, for all
cost values 0, ¢, 2¢,...,h. The idea now is to find the neighbor u of s on some split line ¢,
and neighbor v of ¢ on split line ;. We compute the cost of paths 7, and m,; as before and
set the length of this candidate s—t path to be disty,(j) + ||7Tsull1 + ||7ot|l1. Here j is the
smallest integer such that h — (7,) — ¢(my) < je. We take the minimum across O(% log” n)
choices of u and v.

» Theorem 11. Let P be a set of h convex polygonal obstacles with n vertices, and C € R be
a parameter. A data structure of O(% log? n) size can be constructed in O(”:g,h log® nlog 2)
time such that, given two query points s,t € R?, a path 7y can be returned with cost at most
(1+€)C and length at most (1+ €) times the optimal in O(% log? n + kqt) time, where ky is

the number of edges of mws;. The length of the path ws can be returned in O(Ei2 log? n) time

. . 2
using a data structure of size O(% log® nlog %)

6 Stochastic Shortest Path

In this section, we consider a stochastic model of obstacles where the existence of each
obstacle P; € P is an independent event with known probability 8;. That is, P; is part of the
input with probability £; and is not part of the input with probability 1 — 5;. We define the
probability of path 75 as [[p, cs(1 — 8;) where S C P is the set of obstacles that this path
goes through (assuming they did not exist). In such a setting, our goal is to compute the
approximate shortest path that has probability more than a given threshold 3 € (e™!,1].

Let Lg denote the length of the shortest path from s to ¢t with probability at least 5. We
convert the multiplicative costs to additive costs by setting ¢; = — In(1 — ;) for each obstacle
and setting C' = —In 8. Using Theorem 9, we find a path 7y with length L(ms) < (14€)Lg
and cost ¢(ms) < (14 ¢€)C. It can be shown that 75 has probability at least (1 —¢€)g.

» Theorem 12. Let P be a set of h convex polygonal obstacles with n vertices, where each
obstacle P; € P exists independently with a probability 5;, s,t be two obstacle vertices and
B € (e71,1] be a parameter. If Lg is the length of the shortest s—t path with probability at
least 8, a s—t path with length at most (1 + ¢)Lg and probability at least (1 — €)5 can be
computed in O(“4 lognlog) time.

5:13

SWAT 2018

5:14

Computing Shortest Paths in the Plane with Removable Obstacles

Most likely path. We now consider the following question — given a bound L on the length
of the path, what is the s— path with maximum probability? We need a bound on the
path length or else there is always a path of probability 1. To answer this question, we can
again take negative logarithms of probabilities to transform into an additive cost model and
construct the graph H, as before. Now instead of applying Theorem 3 on H,, we construct
a new graph H} that is exactly the same as H., but with length and cost parameters on
edges interchanged. More precisely, for an edge e € H. with length [, and cost c., we have
an edge e* € HY with length ¢, and cost [.. Next we apply Theorem 3 on the graph H}
with C' = (1 4 ¢)L, and scale all costs with a parameter O(Z-logn), such that the target
cost is scaled to O(% logn). We choose this value because a shortest path in H. can have
O(% logn) edges. This gives us the following result.

» Theorem 13. Let P be a set of h convex obstacles with n vertices, s,t be two obstacle
vertices, and L € R be a parameter. If By is the mazimum probability of a path from s to t
with length at most L, a path ws with length at most (1 + €)L and probability at least By
can be computed in 0(76‘—32 log? nlog %) time.

—— References

1 Esther M Arkin, Joseph SB Mitchell, and Christine D Piatko. Bicriteria shortest path
problems in the plane. In Proc. 3rd Canad. Conf. Comput. Geom, pages 153156, 1991.

2 T. M. Chan. Low-dimensional linear programming with violations. SIAM J. Comput.,
34(4):879-893, 2005.

3 T. M. Chan and Y. Nekrich. Towards an optimal method for dynamic planar point location.
In Proc. 56th Symp. Found. Comp. Science, pages 390-409. IEEE, 2015.

4 D. Z. Chen, K. S. Klenk, and H. T. Tu. Shortest path queries among weighted obstacles
in the rectilinear plane. SIAM J. Comput., 29(4):1223-1246, 2000.

5 Danny Z Chen, Ovidiu Daescu, and Kevin S Klenk. On geometric path query problems.
Int. J. Comp. Geom. & Applic., 11(06):617-645, 2001.

6 Danny Z Chen, John Hershberger, and Haitao Wang. Computing shortest paths amid
convex pseudodisks. SIAM J. Comput., 42(3):1158-1184, 2013.

7 Danny Z Chen, Rajasekhar Inkulu, and Haitao Wang. Two-point L; shortest path queries
in the plane. In Proc. 30th Annual Symp. Comput. Geom., page 406. ACM, 2014.

8 Danny Z Chen and Haitao Wang. A nearly optimal algorithm for finding L; shortest paths
among polygonal obstacles in the plane. In Proc. 19th Europ. Symp. Alg., pages 481-492.
Springer, 2011.

9 Danny Z Chen and Haitao Wang. L shortest path queries among polygonal obstacles in
the plane. In Proc. 30th Int. Symp. Theor. Asp. Comp. Science, volume 20, 2013.

10 Danny Z Chen and Haitao Wang. Computing shortest paths among curved obstacles in
the plane. ACM Transactions on Algorithms, 11(4):26, 2015.

11 Danny Z Chen and Haitao Wang. A new algorithm for computing visibility graphs of
polygonal obstacles in the plane. J. Comput. Geom., 6(1):316-345, 2015.

12 Y.J Chiang and J.S.B Mitchell. Two-point Euclidean shortest path queries in the plane. In
Proc. 10th ACM-SIAM Annual Symp. Discrete Algorithms. STAM, 1999.

13 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(nlog2 n) time. In Proc. 8rd Annual Symp. Comput. Geom., pages 251-257.
ACM, 1987.

14 T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. J. Algorithms, 62(1):1-18, 2007.

15 Y. Gao. Shortest path problem with uncertain arc lengths. Computers & Mathematics with
Applications, 62(6):2591-2600, 2011.

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

Subir Kumar Ghosh. Visibility algorithms in the plane. Cambridge university press, 2007.
S. Har-Peled and V. Koltun. Separability with outliers. In Proc. Int. Symp. Alg. and
Comput., pages 28-39. Springer, 2005.

J. Hershberger, N. Kumar, and S. Suri. Shortest paths in the plane with obstacle violations.
In Proc. 25th Annual Eur. Symp. on Alg., volume 87, pages 49:1-49:14, 2017.

J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM J. Comput., 28(6):2215-2256, 1999.

Rajasekhar Inkulu and Sanjiv Kapoor. Planar rectilinear shortest path computation using
corridors. J. Comput. Geom., 42(9):873-884, 2009.

M Iwai, H Suzuki, and T Nishizeki. Shortest path algorithm in the plane with rectilinear
polygonal obstacles. In Proc. SIGAL Workshop, 1994.

P. Kamousi, T M Chan, and S. Suri. Stochastic minimum spanning trees in Euclidean
spaces. In Proc. 27th Annual Symp. Comput. Geom., pages 65-74. ACM, 2011.

D.T Lee, C.-D. Yang, and T.H Chen. Shortest rectilinear paths among weighted obstacle.
Int. J. Comput. Geom. & Appl., 1(02):109-124, 1991.

D.T Lee, C.D Yang, and C.K. Wong. Rectilinear paths among rectilinear obstacles. Discrete
Applied Mathematics, 70(3):185-215, 1996.

A. Maheshwari, S. C. Nandy, D. Pattanayak, S. Roy, and M. Smid. Geometric path
problems with violations. Algorithmica, pages 1-24, 2016.

J. Matousek. On geometric optimization with few violated constraints. Discrete & Com-
putational Geometry, 14(4):365-384, 1995.

J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: finding shortest
paths through a weighted planar subdivision. J. ACM, 38(1):18-73, 1991.

Joseph S.B. Mitchell. Geometric shortest paths and network optimization. In Handbook of
Computational Geometry, pages 633-701. Elsevier Science Publishers B.V. North-Holland,
1998.

Evdokia Nikolova, Matthew Brand, and David R Karger. Optimal route planning under
uncertainty. In Proc. 16th Int. Conf. Autom. Plann. and Sched., volume 6, pages 131-141,
2006.

T. Roos and P. Widmayer. k-violation linear programming. Inf. Process. Lett., 52(2):109—
114, 1994.

Jorg-Riidiger Sack and Jorge Urrutia. Handbook of computational geometry. Elsevier, 1999.
Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees.
Communic. ACM, 29(7):669-679, 1986.

H. Wang. Bicriteria rectilinear shortest paths among rectilinear obstacles in the plane. In
Proc. 33rd Annual Symp. Comput. Geom., pages 60:1-60:16, 2017.

C.D Yang, D.T. Lee, and C.K Wong. On bends and lengths of rectilinear paths: a graph-
theoretic approach. Int. J. Comput. Geom. & Appl., 2(01):61-74, 1992.

C.D Yang, D.T. Lee, and C.K. Wong. Rectilinear path problems among rectilinear obstacles
revisited. SIAM J. Comput., 24(3):457-472, 1995.

5:15

SWAT 2018

On Romeo and Juliet Problems: Minimizing
Distance-to-Sight

Hee-Kap Ahn

Department of Computer Science and Engineering, POSTECH
Pohang, South Korea

heekap@postech.ac.kr

Eunjin Oh

Department of Computer Science and Engineering, POSTECH
Pohang, South Korea

jin9082@postech.ac.kr

Lena Schlipf

Theoretische Informatik, FernUniversitdt in Hagen
Hagen, Germany

lena.schlipf@fernuni-hagen.de

Fabian Stehn

Institut fir Informatik, Universitdt Bayreuth
Bayreuth, Germany
fabian.stehn@uni-bayreuth.de

Darren Strash

Department of Computer Science, Colgate University

Hamilton, USA

dstrash@cs.colgate.edu
https://orcid.org/0000-0001-7095-8749

—— Abstract

We introduce a variant of the watchman route problem, which we call the quickest pair-visibility

problem. Given two persons standing at points s and ¢ in a simple polygon P with no holes, we
want to minimize the distance these persons travel in order to see each other in P. We solve
two variants of this problem, one minimizing the longer distance the two persons travel (min-
max) and one minimizing the total travel distance (min-sum), optimally in linear time. We also
consider a query version of this problem for the min-max variant. We can preprocess a simple
n-gon in linear time so that the minimum of the longer distance the two persons travel can be
computed in O(log?n) time for any two query positions where the two persons lie.

2012 ACM Subject Classification Theory of computation — Computational geometry, Math-
ematics of computing — Paths and connectivity problems

Keywords and phrases Visibility polygon, shortest-path, watchman problems
Digital Object ldentifier 10.4230/LIPIcs.SWAT.2018.6

Funding This work by Ahn and Oh was supported by the MSIT (Ministry of Science and ICT),
Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP
(Institute for Information & Communications Technology Promotion).

Acknowledgements This research was initiated at the 19th Korean Workshop on Computational
Geometry in Wirzburg, Germany.

© Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).

Editor: David Eppstein; Article No. 6; pp. 6:1-6:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:heekap@postech.ac.kr
mailto:jin9082@postech.ac.kr
mailto:lena.schlipf@fernuni-hagen.de
mailto:fabian.stehn@uni-bayreuth.de
mailto:dstrash@cs.colgate.edu
https://orcid.org/0000-0001-7095-8749
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

On Romeo and Juliet Problems

1 Introduction

In the watchman route problem, a watchman takes a route to guard a given region—that is,
any point in the region is visible from at least one point on the route. It is desirable to make
the route as short as possible so that the entire area can be guarded as quickly as possible.
The problem was first introduced in 1986 by Chin and Ntafos [4] and has been extensively
studied in computational geometry [3, 14]. Though the problem is NP-hard for polygons
with holes [4, 5, 7], an optimal route can be computed in time O(n3logn) for simple n-gons
[6] when the tour must pass through a specified point, and O(n*logn) time otherwise.

In this paper, we study a variant we call the quickest pair-visibility problem, which can
be stated as follows.

» Problem (quickest pair-visibility problem). Given two points s and t in a simple polygon P,
compute the minimum distance that s and t must travel in order to see each other in P.

This problem may sound similar to the shortest path problem between s and ¢, in which
the objective is to compute the shortest path for s to reach t. However, they differ even for
a simple case: for any two points lying in a convex polygon, the distance in the quickest
pair-visibility problem is zero while in the shortest path problem it is their Euclidean distance.

The quickest pair-visibility problem occurs in optimization tasks. For example, mobile
robots that use a line-of-sight communication model are required to move to mutually-visible
positions to establish communication [8]. An optimization task here is to find shortest paths
for the robots to meet the visibility requirement for establishing communication among them.

Wynters and Mitchell [16] studied this problem for two agents acting in a polygonal
domain in the presence of polygonal obstacles and gave an O(nm)-time algorithm for the
min-sum variant (where m is the number of edges of the visibility graph of all corners) and
an O(n®logn)-time algorithm for the min-max variant. A query version of the quickest
visibility problem has also been studied [1, 13, 15]. In the query problem, a polygon and a
source point lying in the polygon are given, and the goal is to preprocess them and construct
a data structure that allows, for a given query point, to find the shortest path taken from the
source point to see the query point efficiently. Khosravi and Ghodsi [13] considered the case
for a simple n-gon and presented an algorithm to construct a data structure of O(n?) space
so that given a query, it finds the shortest visibility path in O(logn) time. Later, Arkin et
al. [1] improved the result and presented an algorithm for the problem in a polygonal domain.
Very recently, Wang [15] presented an improved algorithm for this problem for the case that
the number of the holes in the polygon is relatively small. Figure 1(a) illustrates differences
in these problems for a simple polygon and two points, s and ¢, in the polygon.

1.1 Our results

In this paper, we consider two variants of the quickest pair-visibility problem for a simple
polygon: either we want to minimize the maximum length of a traveled path (min-maz
variant) or we want to minimize the sum of the lengths of both traveled paths (min-sum
variant) We give a sweep-line-like approach that “rotates” the lines-of-sight along vertices
on the shortest path between the start positions, allowing us to evaluate a linear number of
candidate solutions on these lines. Throughout the sweep, we encounter solutions to both
variants of the problem. We further show that our technique can be implemented in linear
time.

We also consider a query version of this problem for the min-max variant. We can
preprocess a simple n-gon in linear time so that the minimum of the longer distance the two
query points travel can be computed in O(log?n) time for any two query points.

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash

vg =1

i R

L0;_10;0i41 < 90°

(a) (b) (©)

Figure 1 (a) The quickest pair-visibility problem finds two paths 7 (s, s1) and 7 (¢,¢1) such that
s1t1 C P and max{|n(s, s1)|,|m(t,t1)|} or |7w(s, s1)| + |7 (¢, ¢1)| is minimized. The quickest visibility
problem for query point ¢ finds a shortest 7 (s, t2) with tt2 C P. (b) min-max: Every pair (s',t*),
where t* is some point within the geodesic disk centered in t with radius 7 (s, s’), is an optimal
solution to the min-max problem. (¢) min-sum: Every pair (v;,vi41) for 1 <1 < 6 is an optimal
solution to this instance.

2 Preliminaries

Let P be a simple polygon and 9P be its boundary. The vertices of P are given in counter-
clockwise order along 0P. We denote the shortest path within P between two points p,q € P
by m(p, ¢) and its length by |7(p, q)|. Likewise, we denote the shortest path within P between
a point p € P and a line segment ¢ € P by m(p,£). We say a point p € P is visible from
another point ¢ € P (and ¢ is visible from p) if and only if line segment pg is completely
contained in P.

For two starting points s and ¢, our task is to compute a pair (s’,t') of points such that s’
and ¢’ are visible to each other, where we wish to minimize the lengths of 7(s, '), and m(¢,t').
In the min-max setting, we wish to minimize max{|r(s,s')|, |7 (¢,t')|}. For the min-sum
setting, we wish to minimize |7 (s, s")| + |7 (¢,t')|. Note that, for both variants, the optimum
is not necessarily unique; see Figure 1(b) and (c).

For our discussion, let (s*,t*) be an optimal solution for the instance at hand. Let V (p)
denote the visible region for a point p in P, that is, the portion of P that is visible from
p. Clearly, V(p) is a star-shaped polygon. Moreover, every boundary edge of V' (p) is either
(part of) an edge of P or a segment 7 that is contained in P and parallel to po, where v
is a vertex of P visible from p and ¢ is a point on the boundary of P. We call an edge of
the latter type a window edge of the visibility region. The structure of V(p) may change as
p moves along a path contained in P. It is known that a change to the structure of V(p)
occurs if and only if two vertices of P become collinear with p [2].

We say a segment g is tangent to a path m at a vertex v if v € g N7 and v’s neighboring
vertices on 7 are on the same side of g.

» Lemma 1. Unless s and t are visible to each other, the segment s*t* is tangent to the
shortest path w(s,t) at a vertex v of w(s,t).

Proof. We first show that there is a vertex of P lying on s*t*. Consider the visibility regions
V(s*) and V(t*). If s* lies on a window edge e of V(t*), then e has a vertex v of P as its
endpoint closer to t*. Therefore v lies on s*¢*. The case that t* lies on a window edge of V' (s*)
can be shown similarly. So assume that this is not the case, that is, s* is in V' (¢*) but not in
a window edge of V(t*) and t* is in V(s*) but not in a window edge of V(s*). Then there
is a point s’ on 7(s,s*) NV (¢*) infinitesimally close to s* and a point ¢’ on 7 (¢, t*) NV (s*)
infinitesimally close to ¢* such that |7 (s, s')| < |7(s,s*)| and |7 (¢, t")| < |7 (¢, t*)], and s" and
" still see each other. This contradicts the optimality of (s*,t*).

6:3

SWAT 2018

6:4

On Romeo and Juliet Problems

Figure 2 (a) Both s and t lie on the same side of £ through s* and ¢t*. (b) If there is only one
vertex v of P lying on s*t*, we can always find another optimal pair of points by rotating £ around
v and taking the closest points from s and ¢t on the rotated ¢ under the geodesic metric. (c) The
shortest path (s, t) passes through v and v’.

We now show that s*t* contains a vertex of 7(s,t). Let s’ be the last vertex that (s, t)
and 7(s, s*) have in common from s, and let ¢’ be the last vertex that w(s,t) and = (¢,t*)
have in common from ¢. Since a subpath of a shortest path is also shortest, w(s’,t’) is the
subpath of 7(s,t) from s’ to t'. Assume to the contrary that m(s’,t') (and therefore 7(s,t))
contains no vertex of P that is also on s*t*. There are two cases: (a) both s and ¢ lie on the
same side of the line ¢ through s* and t*, or (b) s and ¢ lie on different sides of /.

For case (a), OP touches ¢ at a vertex v lying between s* and ¢* locally from the same
side of £ that s and t lie. Otherwise, (s*,t*) is not optimal as both 7 (s, ¢) and 7 (¢, £) become
shorter by a rotation of ¢. See Figure 2(a). Consider the portion (line segment) of ¢ visible
from v, which is split into two segments by v, one containing s* and one containing ¢*. Since
m(s',t') does not contain v, it has to cross the segment containing s*. But then it must cross
¢ again in the segment containing t* to reach ¢’. Since the portion of the path between the
two crossing points can be shortened by the segment connecting them, which contradicts to
the assumption that 7(s’,t’) is a shortest path. Thus v lies on 7 (s,¢) and s*t* is tangent to
(s, t) at v.

For case (b), without loss of generality, assume that s lies below £ and ¢ lies above £. If
there is only one vertex v of P lying on s¥¢*, we can always find another pair of points (3,)
such that and £ are visible to each other and they satisfy either (1) |7 (s, 8)| < |7 (s, s*)| and
|m(t, 1) < |m(t,t*)| or (2) |7m(s,8)| < |n(s,s*)| and |7(t,1)| < |7(t,t*)|. (The equality holds
if s* or t* coincides with v.) Such points § and £ can be obtained by rotating ¢ around v
and taking the closest points from s and t, respectively, on the rotated ¢ under the geodesic
metric. See Figure 2(b) for an illustration. Therefore we assume that there are two vertices v
and v’ that touch s** from above and from below, respectively. Since s lies below £, v’ comes
before v from s* along s*t* to t*. See Figure 2(c). Consider the portion (line segment) of ¢
visible from v, which is split into two segments by v, one contains s* and one contains t*. If
m(s’,t') crosses the segment containing s*, it must cross £ again in the segment containing ¢*
to reach t’. Then the path between the two crossing points can be shortened by the segment
connecting them, which is a contradiction. Thus, 7(s’,¢') passes through v'. The proofs for v
and v’ are symmetric, and thus both vertices v and v’ are on the shortest path m(s,t) which
in turn also establishes, that s*¢* is (locally) tangent to 7 (s,t) at v and at v’. <

3 Computing All Events for a Sweep-Line-Like Approach

For each vertex v on m(s,t) we compute a finite collection of lines through v, each being
a configuration at which the combinatorial structure of the shortest paths 7 (s, s*) and/or
7(t,t*) changes. To be more precise, at these lines either the vertices of 7 (s, s*) or w(t,t*)

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash

{7

Figure 3 Path-, boundary-, and bend-events. (a) The endpoints of the line-of-sight through
51 make up the first path-event. The line-of-sight rotates until it hits the next path-event: the
endpoints of the line-of-sight through 717z. (b) All path- and boundary-events: the event-queue
is initialized with these events. (c¢) A bend-event (marked with a cross) occurs between the two
boundary-events. The shortest path from s to these segments changes at the bend-event.

(except for s* and t*) change or the edge of 9P changes that is intersected by the extension
of s*t*. Notice that in the remaining part of the paper (s*,¢*) is the optimal solution pair

from s,t to the a given line (and not necessarily a global optimal solution for the quickest
pair-visibility problem). To explain how to compute these lines, we introduce the concept of
a line-of-sight.

» Definition 2 (line-of-sight). We call a segment ¢ a line-of-sight if (i) ¢ C P, (ii) both
endpoints of ¢ lie on P, and (iii) ¢ is tangent to 7(s,t) at a vertex v € (s, t).

The algorithm we present is in many aspects similar to a sweep-line strategy, except that we
do not sweep over the scene in a standard fashion but rotate a line-of-sight ¢ in P around
the vertices of the shortest path 7(s,t) := (s = vg),v1,...,0k—1, (t = vx), making use of
Lemma 1. The process will be initialized with a line-of-sight that contains s and v; and is
then rotated around v; (while remaining tangent to v;) until it hits vs, see Figure 3(a). In
general, the current line-of-sight is rotated around v; in a way so that it remains tangent to
v; (it is rotated in the interior of P) until the line-of-sight contains v; and v;41, then the
process is iterated with v;11 as the new rotation center. The process terminates as soon as
the line-of-sight contains vi_; and t¢.

While performing these rotations around the shortest path vertices, we encounter all
combinatorially different lines-of-sight. As for a standard sweep-line approach, we will
compute and consider events at which the structure of a solution changes: this is either
because the interior vertices of 7 (s, s*) or 7(t,t*) change or because the line-of-sight starts
or ends at a different edge of OP. These events will be represented by points on 9P (actually,
we introduce the events as vertices on 9P unless they are already vertices). Between two
consecutive lines-of-sight, we compute the local minima of the relevant distances for the
variant at hand in constant time and hence encounter all global minima eventually.

There are three event-types to distinguish:

1. Path-Events are endpoints of lines-of-sight that contain two consecutive vertices of the

shortest path 7(s,t). See Figure 3(a).

2. Boundary-Events are endpoints of lines-of-sight that are tangent at a vertex of w(s,t)

and contain at least one vertex of P\ 7(s,t) (potentially as an endpoint). See Figure 3(b).
3. Bend-Events are endpoints of lines-of-sight where the shortest path from s (or ¢) to the

line-of-sight gains or loses a vertex while rotating the line-of-sight around a vertex v. See

Figure 3(c). Note that bend-events can coincide with path- or boundary-events.

We will need to explicitly know both endpoints of the line-of-sight on 9P at each event
and the corresponding vertex of 7(s,t) on which we rotate.

6:5

SWAT 2018

6:6

On Romeo and Juliet Problems

» Lemma 3 (Computing path- and boundary-events). For a simple polygon P with n vertices
and points s,t € P, the queue Q of all path- and boundary-events of the rotational sweep
process, ordered according to the sequence in which the sweeping line-of-sight encounters
them, can be initialized in O(n) time.

Proof. Consider some line-of-sight ¢ that is tangent to a vertex v; € m(s,t) for some
0 < i < k. Then ¢ subdivides P into a number of subpolygons. Consider ¢ as the union of
two (sub)segments £ and £~ of £ induced by v; such that £ N ¢~ = {v;} and £~ is incident
to the subpolygon of P induced by ¢ containing s.

We will discuss the computation of all boundary- and path-events swept by ¢*. The
other events swept by £~ can be computed in a second round by changing the roles of s
and t. We do not maintain a queue for the events explicitly; instead we will introduce new
vertices on OP or label existing vertices of 0P as events. Later the events will be considered
by following two pointers to vertices on 0P and hence by processing the vertices in the order
that they appear on OP.

We start with computing all path-events swept by ¢*. For this we compute the shortest
path map M of s in P. The shortest path map of s is a decomposition of P in O(n) triangular
cells such that the shortest path from s to any point within a cell is combinatorially the
same. It can be obtained by extending every edge of the shortest path tree of s towards its
descendants until it reaches P in linear time [10]. A path-event occurs when a line-of-sight
contains two consecutive vertices of 7(s,). Note that for each path-event, £t appears as an
edge of My and its endpoints appear as vertices of M. For each index i with 0 < i < k, we
find the edge incident to v; and parallel to v;_1v; by considering every edge of M, incident
to v;. This takes O(n) time in total since there are O(n) edges of M, and we consider every
edge at most once.

For computing the boundary-events, we use the following properties. While rotating
around v; from the position where ¢ contains v;_; to the position in which ¢ contains v; 1,
let A (A;) be the region of P that is swept over by ¢+ (7). (See Figure 4.) Observe that
P1 all A;F for 1 < i < k are pairwise disjoint,

P2 all A7 for 1 <14 < k are pairwise disjoint,
P3 for all 1 < i < k and all points p € A;" the shortest path m(p, s) contains v;,
P4 for all 1 < i < k and all points p € A; the shortest path m(p,t) contains v;.

To compute all boundary-events that are vertices of P swept by £T, we will make use of
the shortest path tree T for s in P. A boundary-event x is defined by a vertex v; € 7 (s, t)
such that the line-of-sight that contains z (potentially as one endpoint) is tangent to 7 (s, t) in
v;. It follows from Property P3, that ;% is an edge of Ty (and by that it cannot be obstructed
by other edges of P) and x ¢ 7(s,t). So the vertices of P whose parent vertex in T is a vertex
of 7(s,t) are possible boundary-events. In order to compute all boundary-events we consider
all consecutive path-events and compute all corresponding boundary-events by following 0P
and checking the vertices within the candidate set. We compute the boundary-events which
are vertices of P swept by £~ in a similar way.

So far we labeled all vertices x on 0P that are boundary-events. We still need to compute
the other endpoint Z of the line-of-sight xZ that is tangent in v;. Let x;Z; be the line-of-sight
at the path-event z; so that Z;,v;—1,v;,x; € £. (See Figure 4.) While rotating ¢ around v;,
£+ sweeps over Aj' until the next path-event is met. Let E;" be the sequence of the path-
and boundary-events in A;” we obtained so far sorted in counter-clockwise order along 0P.
The order of events in ;" is the same as the order in which £* sweeps over them. Our goal
is to compute # for every event in E;" in order. To do this, we consider the (triangular) cells

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash

P |~ < A Vit+1 ¢

Figure 4 Let B = (%;1,...,7:%) for an index 1 < k < n. We start at #; and follow the
(triangular) cells of M incident to v; in counter-clockwise order around v; until we find Z; 1. Then
we continue to follow such cells until we find Z; 2, and so on.

of My incident to v; one by one in counter-clockwise order around v; starting from the cell
incident to ;. Since every point in such cells is visible from v;, we can determine if Z is
contained in a cell in constant time for any event x € Ej . Therefore, we can compute Z for
every event x in Ej' in time linear in the number of the cells of M; incident to v; and the
number of events of Ej' , giving us all path- and boundary-events in O(n) total time. |

Once we initialized the event queue Q, we can now compute and process bend-events as
we proceed in our line-of-sight rotations.

» Lemma 4. All bend-events can be computed in O(n) time, sorted in the order as they
appear on the boundary of P.

Proof. We assume that all path- and boundary-events are already computed. Additionally, we
assume that all vertices of the boundary- and path-events (the endpoints of the corresponding
line-of-sights) are inserted on P. Recall that, for each event, we know both endpoints of
the line-of-sight £ on P and the corresponding vertex of 7(s,t) on which we rotate.

As in the proof of Lemma 3, we consider the line-of-sight ¢ tangent to a vertex v € 7(s, t)
as the union of two (sub)segments ¢ and ¢~ of ¢ induced by v such that £ N ¢~ = {v} and
£~ is incident to the subpolygon of P induced by ¢ containing s. We discuss the computation
of all bend-events that are encountered by ¢~. The bend-events that are swept over by £+
can be computed in a second round by changing the roles of s and t.

We start with the path-event defined by s and v1, and consider all events in the order
they appear. Let ¢ be the current line-of-sight rotating around a vertex v and denote by
x the endpoint of £~ other than v. To find the bend-events efficiently, we compute and
maintain the shortest path (s, ¢) over the events.

While ¢ rotates around v, the combinatorial structure of 7 (s, ¢) may change. Specifically,
let e = (u,w) denote the edge of 7(s,¥) incident to ¢ with w on £. Note that during the
rotation of £, all the edges of (s, £) are stationary, except that ey rotates around u. Therefore,
a change in the combinatorial structure of (s, £) occurs only when (1) e hits a vertex u’ of
P and splits into two edges sharing u’ or (2) the two edges of 7(s,¢) incident to u become

parallel. (Then they merge into one and u disappears from the shortest path.) See Figure 5.
From any event of the two event types above, e, u, and (s, ¥) are updated accordingly.

Additionally, x is updated and its new position is inserted as vertex on OP as it represents a
bend-event.

» Lemma 5. An cvent of type (1) occurs only when (a) x reaches a vertex u', or (b) ep hits a
vertex u' of w(s,t) in its interior. Moreover, for case (b), u and u' are consecutive in 7(s,t).

6:7

SWAT 2018

6:8

On Romeo and Juliet Problems

Figure 5 (a) A bend-event of type (1) occurs when x = u, reaches u'. (b) A bend-event of type
(1) occurs when e, = uw hits a vertex u’ of 7(s,t). (c) A bend-event of type (2) occurs when two
edges incident to u are parallel.

Proof. Consider the case that e, is not orthogonal to £. Then the closest point in ¢ from s is
x. Thus, the only way that e, hits a vertex of P is that = reaches u'. See Figure 5(a).
Now consider the case that e, is orthogonal to ¢. Then v’ is contained in m(u,v). See
Figure 5(b). Since 7(u,v) is a subpath of 7(s,t), v’ is a vertex of 7(s,t), and thus u is the
vertex of 7(s,t) previous to u' from s. <

» Lemma 6. Once a vertex disappears from w(s,), it never appears again on the shortest
path during the rotation of the current line-of-sight £.

Proof. Assume to the contrary that there is a vertex u that disappears from 7 (s, ¢1), but
then appears again on 7(s, ¥f2) for two line-of-sights ¢; and ¢5 during the rotation. Since
both 7(s,¢1) and 7 (s, {3) contain u in its interior, both of them also contain (s, u). Since
u disappears from 7(s, ¢1), the edge of m(s, ¢1) incident to u is orthogonal to ¢;. We claim
that u appears on m(s,) due to case (b) of type(1), that is, the edge of 7(s,¢s) incident
to 3 hits u. Assume to the contrary that u appears on 7(s, f2) due to case (a) of type (1).
However, u (and its event vertex on OP) is already swept by a line-of-sight before we consider
¢y because it appears on (s, ¢1). Thus, u appears on 7(s, £2) due to case (b) of (2), and the
edge of 7 (s, ¢3) incident to u is orthogonal to ¢3. This means that ¢; and ¢5 are parallel.
Since ¢; and ¢y are parallel, they are tangent to m(s,t) at two distinct vertices, say vy
and vy, respectively. Moreover, the path 7(p1, p2) contains vy for any two points p; € P; and
p2 € {3, where P; is the subpolygon bounded by ¢; containing s. Thus, (s, f2) contains
7(s,v1), and no vertex in P; other than the vertices of 7(s,v1) appears on 7(s, £2). Since u
is contained in Pj, it cannot appear on 7 (s, £2), which is a contradiction. |

We can update u, e;, x and 7(s,) in constant time for a type (1) event. We can update
them in O(n) time for all type (2) events in total by Lemma 6. The vertices representing the
bend-events can be inserted on JP in the same time. |

4 Algorithm Based on a Sweep-Line-Like Approach

In this section, we present a linear-time algorithm for computing the minimum distance that
two points s and ¢ in a simple polygon P travel in order to see each order. We compute all
events defined in Section 3 in linear time. The remaining task is to handle the lines-of-sight
lying between two consecutive events.

» Lemma 7. For any two consecutive events, the line-of-sight ¢ lying between them that
minimizes the sum of the distances from s and t to £ can be found in constant time.

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash

Proof. Let £ be the set of all lines-of-sight lying between the two consecutive events. Every
line-of-sight in £ contains a common vertex v of m(s,t). We assume that £ contains no
vertical line-of-sight. Otherwise, we consider the set containing all lines-of-sight of £ with
positive slopes, and then the set containing all lines-of-sight of £ with negative slopes.

By construction, the second to the last vertex u of (s, ¢) (and 7 (¢,¢)) for any £ € L
remains the same. We already obtained v and u while computing the events. We will give
an algebraic function for the length of 7 (s, ¢) for £ € L. An algebraic function for the length
of 7(t,¢) can be obtained by changing the roles of s and t.

Since the topology of m(s,{) for every £ € L remains the same, we consider only the
length of 7(u,£). Observe that 7(u,¥) is a line segment for any £ € £, and thus its length
is the same as the Euclidean distance between u and ¢. The length is either the Euclidean
distance between u and the line containing ¢, or the Euclidean distance between u and the
endpoint of £ closest to u. We show how to handle the first case only because the second
case can be handled analogously.

To use this observation, we use £(«) to denote the line of slope « passing through v for
any a > 0. There is an interval I such that ¢(«) contains a line-of-sight in £ if and only
if @ € I. The Euclidean distance between u and ¢(«) is the same as the distance between
u and the line-of-sight contained in ¢(«). Thus, in the following, we consider the distance
between u and ¢(«a) for every o € I.

Since £(«) passes through a common vertex, the line £(«) can be represented as the form
of y = ax + f(«), where f(«) is a function linear in «. Then, the distance between u and
£(a) can be represented as the form of |cia + co|/vVa? 4+ 1, where ¢; and ¢ are constants
depending only on v and wu.

Then our problem reduces to the problem of finding a minimum of the function of the form
of (lera+ co| + |+ b)) /v a? + 1 for four constants ¢y, co, ¢} and ¢, and for all « € I.
We can find a minimum in constant time using an elementary analysis. |

» Lemma 8. For any two consecutive events, the line-of-sight ¢ lying between the them that
minimizes the mazximum of the distances from s and t to £ can be found in constant time.

» Theorem 9. Given a simple n-gon P with no holes and two points s,t € P, a point-pair
(s*,t*) such that i) s*t* C P and ii) either |mw(s,s*)| + w(t,t*)| or max{|m(s, s*)|,|m (¢, t*)|}
is minimized can be computed in O(n) time.

Proof. Our algorithm first computes all path- and boundary-events as described in Lemma 3.

The number of events introduced during this phase is bounded by the number of vertices
of the shortest path maps, M, and M, respectively, which are O(n). In the next step, it

computes the bend-events on OP as described in Lemma 4, which can be done in O(n) time.

Finally, our algorithm traverses the sequence of events. Between any two consecutive events,
it computes the respective local optimum in constant time by Lemma 7. It maintains the
smallest one among the local optima computed so far, and return it once all events are
processed. Therefore the running time of the algorithm is O(n).

For the correctness, consider the combinatorial structure of a solution and how it changes.

The path-events ensure that all vertices of 7(s,t) are considered as being the vertex lying on
the segment connecting the solution (s*,¢*). While the line-of-sight rotates around one fixed
vertex of (s, t), either the endpoints of line-of-sight sweep over or become tangent to a vertex
of OP. These are exactly the boundary-events. Or the combinatorial structure of 7 (s, s*) or
m(t,t*) changes as interior vertices of (s, s*) or m(t,t*) appear or disappear. These happen
exactly at bend-events. Therefore, our algorithm returns an optimal point-pair. <

6:9

SWAT 2018

6:10

On Romeo and Juliet Problems

5 Quickest Pair-Visibility Query Problem

In this section, we consider a query version of the min-max variant of the quickest pair-
visibility problem: Preprocess a simple n-gon P so that the minimum traveling distance for
two query points s and t to see each other can be computed efficiently. We can preprocess a
simple n-gon in linear time and answer a query in O(log? n) time by combining the approach
in Section 4 with the data structure given by Guibas and Hershberger [9, 11]. For any
two query points s and ¢ in P, the query algorithm for their data structure returns (s, t)
represented as a binary tree of height O(logn) in O(logn) time [11]. Thus, we can apply
binary search on the vertices (or the edges) on 7(s,t) efficiently.

Imagine that we rotate a line-of-sight along the vertices of (s, t) for two query points s
and t in P. Lemma 1 implies that there is a line-of-sight containing s* and ¢*, where (s*,t*)
is an optimal solution. We call it an optimal line-of-sight. We define the order of any two
lines-of-sight as the order in which they appear during this rotational sweep process. By the
following lemma, we can apply binary search on the sequence of events along 9P and find
two consecutive events such that the respective local optimum achieved between them is a
global optimal solution.

» Lemma 10. The geodesic distance between s (and t) and the rotating line-of-sight increases
(and decreases) monotonically as the line-of-sight rotates along the vertices of w(s,t) from s.

Proof. Let ¢ be a line-of-sight which is tangent to m(s,t) at a vertex v. Consider the
subdivision of P induced by ¢ and let P, be the subpolygon that contains s. Let ¢ be a
line-of-sight that comes after £ during the rotational sweep process. We claim that ¢’ does
not intersect the interior of Ps. If ¢’ is tangent to 7(s,t) at v, it never intersects the interior
of P; as shown in the proof of Lemma 3. Assume that ¢ is tangent to m(s,t) at a vertex
u that comes after v along 7(s,t) from s, but intersects the interior of Ps. Without loss of
generality, assume that ¢ is horizontal and P lies locally below ¢. Then u must lie strictly
above the line containing ¢. However, since both v and u are vertices of 7(s,t) and ¢ is
tangent to m(s,t) at v, there must be another vertex u’ of 7(s,t) that lies on or below the
line containing ¢ and appears between v and u along 7(s,t). Thus, u is not visible from any
point on ¢, and ¢’ does not intersect the interior of Ps. Since 7(s,£’) intersects ¢, we have
m(s,0") > w(s,£). The claim for ¢t and the rotating line-of-sight can be shown analogously. <«

5.1 Binary Search for the Path-Events

We first consider the path-events, and find two consecutive path-events containing an optimal
line-of-sight between them. Let w(s,t) := (s = vg),v1,...,05—1,(t = vi). Due to the
shortest-path data structure by Guibas and Hershberger, we can obtain 7(s,t) represented
as a binary tree of height O(logn) in O(logn) time. Consider an edge ;v;71 of m(s,t). We
can determine whether or not an optimal line-of-sight is tangent to 7 (s,t) at a vertex lying
after v; along 7(s,t) in O(logn) time. To do this, we compute the line-of-sight ¢ containing
U071 in O(logn) time [12] and compute the length of 7(s,) and (¢, £) in O(logn) time [9)].
An optimal line-of-sight is tangent to m(s,t) at a vertex lying after v; if and only if 7 (s, ¢) is
shorter than 7(¢,¢). Therefore, we can compute the two consecutive path-events with an
optimal solution lying between them in O(log® n) time.

5.2 Binary Search for the Boundary-Events

Now we have the vertex v; of 7(s,t) contained in an optimal line-of-sight. We find two
consecutive boundary-events defined by lines-of-sight tangent to 7(s,t) at v; such that an
optimal line-of-sight lies between them. Let Z; and x; be the first points of 9P hit by the

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash

rays from any point in v;_10; towards v;_1 and v;, respectively. See Figure 4. Similarly, let
Zi;+1 and x;41 be the first points of P hit by the rays from any point in v;v;11 towards
v; and v;41, respectively. These four points of P can be found in O(logn) time by the
ray-shooting data structure [12]. Without loss of generality, we assume that a line-of-sight
rotates around v; in the counter-clockwise direction in the rotational sweep process. Let ¥
be the part of P lying from Z; to ;41 in counter-clockwise order, and 7 be the part of
OP lying from z; to z;41 in counter-clockwise order. An optimal line-of-sight ¢* has one
endpoint on 4 and the other endpoint on ~.

We first find the edge of 4 (resp. «) containing an endpoint of £* by applying binary
search on the vertices of 4 (resp. 7). This gives two consecutive boundary-events such that
£* lies between them. We now show how to find the edge of v containing an endpoint of £*.
The edge on 4 can be found analogously.

We perform a binary search on the vertices in 7 as follows. Let z* be the endpoint of £*
contained in «. For any vertex u of 7, we can determine which part of v with respect to u
contains z* in O(logn) time. To do this, we consider the line-of-sight ¢ containing the edge
of m(v;,u) incident to v;. Observe that ¢ intersects m(v;,u) only in the edge including its
endpoints as m(v;, u) is a shortest path. See Figure 6(a). Since we can obtain the edge of
7(v;, u) incident to v; in O(logn) time using the shortest-path data structure, we can obtain
£ in the same time. Here, to obtain the endpoint of £ on v, we use the ray-shooting data
structure that supports O(logn) query time [12]. Then we compare d(s,£) and d(t,£) in
O(logn) time. The point 2* comes after u from z; if and only if d(s,) < d(¢,£). Therefore,
we can determine which part of v with respect to u contains z* in O(logn) time, and thus the
binary search is completed in O(log2 n) time. In this way, we can compute two consecutive
boundary-events such that an optimal line-of-sight lies between them in O(log® n) time.

5.3 Binary Search for the Bend-Events

Now we have two consecutive events in the sequence of all path- and boundary-events
that contain an optimal line-of-sight ¢* between them. Let ¢; and /5 be two lines-of-sight
corresponding to the two consecutive events such that ¢ comes after £;. The remaining task
is to handle the bend-events lying between them. For the bend-events, we perform a binary
search on the edges of 7(s, 1) Un(s,{) in O(log® n) time. Then we perform binary search
on the edges of m(t,¢1) Un(t,£3) in O(log®n) time. In the following, we describe the binary
search on (s, ¥¢1) Un(s,f2). The other one can be done analogously.

We find the point s’ such that 7(s,s’) is the maximal common subpath of 7 (s, ¢;) and
7(s,¢2) from s in O(logn) time using the shortest-path data structure [11]. See Figure 6(b).
Then we obtain 7' = 7(s’,¢1) Un(s’, {2) represented as a binary tree of height O(logn) in
O(logn) time. For an edge e of 7/, we use ¢(e) to denote the line-of-sight containing v; and
orthogonal to the line containing e. Observe that £(e) comes after £(e’) if and only if e comes
after e’ along 7’ from ¢;. Also, given an edge e of 7/, we can compute £(e) in constant time.
Using these properties, we can find two consecutive edges e and ¢’ of 7’ such that £* lies
between £(e) and £(¢’) in O(log® n) time by applying binary search on 7’ as we did for path-
and boundary-events.

Now we have two consecutive events in the sequence of all path-, boundary- and bend-
events that contains £* between them. Recall that the combinatorial structure of (s, ¢)
(and 7(¢,¢)) is the same for every lines-of-sight lying between the two events. Let (us,ws)
and (ug, w;) be the edges of 7 (s,) and 7 (¢,¢) incident to ¢ at w, and wy, respectively, for
any line-of-sight ¢ lying between the two events. Using the shortest-path data structure,
we can obtain ug, ug, d(s,us) and d(t, us) in O(logn) time. Then we apply the algorithm in

6:11

SWAT 2018

6:12

On Romeo and Juliet Problems

Figure 6 (a) The line-of-sight intersecting m(v;, u) contains the edge of 7(v;,u) incident to v;.

(b) The maximal common subpath of 7(s,#1) and 7(s,¢2) from s is m(s,s’).

Lemma 7 to find an optimal line-of-sight in constant time. In this way, we can obtain an
optimal line-of-sight in O(log?n) time in total.

Therefore, we can find two consecutive events with an optimal solution between them,

and we can obtain an optimal solution in O(log? n) time in total.

» Theorem 11. Given a simple n-gon P, we can preprocess it in O(n) time to find the
minimum of the longer distance that s and t travel in order to see each other in P can be

computed in O(log2 n) time for any two query points s,t € P.

—— References

1

10

Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin Polishchuk,
Giinter Rote, Lena Schlipf, and Topi Talvitie. Shortest path to a segment and quickest
visibility queries. Journal of Computational Geometry, 7(2):77-100, 2016. doi:10.20382/
jocg.v7i2ab.

Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries and
maintenance in simple polygons. Discrete & Computational Geometry, 27(4):461-483, 2002.
doi:10.1007/s00454-001-0089-9.

Svante Carlsson, Hakan Jonsson, and Bengt J. Nilsson. Finding the shortest watchman
route in a simple polygon. Discrete & Computational Geometry, 22(3):377-402, 1999. doi:
10.1007/PL0O0009467.

Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. In Alok Aggarwal, ed-
itor, Proceedings of the Second Annual ACM SIGACT/SIGGRAPH Symposium on Compu-
tational Geometry, Yorktown Heights, NY, USA, June 2-4, 1986, pages 24-33. ACM, 1986.
doi:10.1145/10515.10518.

Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. Inf. Process. Lett.,
28(1):39-44, 1988. doi:10.1016/0020-0190(88)90141-X.

Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA,
USA, pages 473-482. ACM, 2003. doi:10.1145/780542.780612.

Adrian Dumitrescu and Csaba D. Téth. Watchman tours for polygons with holes. Comput.
Geom., 45(7):326-333, 2012. doi:10.1016/j.comgeo.2012.02.001.

Anurag Ganguli, Jorge Cortes, and Francesco Bullo. Visibility-based multi-agent deploy-
ment in orthogonal environments. In Proceedings of the 2007 American Control Conference
(ACC "07), pages 3426-3431, 2007. doi:10.1109/ACC.2007 .4283034.

Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. J. Comput. Syst. Sci., 39(2):126-152, 1989. doi:10.1016/0022-0000(89)90041-X.
Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre
Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated
simple polygons. Algorithmica, 2:209-233, 1987. doi:10.1007/BF01840360.

http://dx.doi.org/10.20382/jocg.v7i2a5
http://dx.doi.org/10.20382/jocg.v7i2a5
http://dx.doi.org/10.1007/s00454-001-0089-9
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1145/10515.10518
http://dx.doi.org/10.1016/0020-0190(88)90141-X
http://dx.doi.org/10.1145/780542.780612
http://dx.doi.org/10.1016/j.comgeo.2012.02.001
http://dx.doi.org/10.1109/ACC.2007.4283034
http://dx.doi.org/10.1016/0022-0000(89)90041-X
http://dx.doi.org/10.1007/BF01840360

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash

11

12

13

14

15

16

John Hershberger. A new data structure for shortest path queries in a simple polygon. Inf.
Process. Lett., 38(5):231-235, 1991. doi:10.1016/0020-0190(91)90064-0.

John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18(3):403-431, 1995. doi:10.1006/jagm.1995.1017.

Ramtin Khosravi and Mohammad Ghodsi. The fastest way to view a query point in simple
polygons. In Proceedings of the 21st European Workshop on Computational Geometry,
pages 187-190, 2005.

Joseph S. B. Mitchell. Approximating watchman routes. In Sanjeev Khanna, editor, Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 844-855. STAM,
2013. d0i:10.1137/1.9781611973105.60.

Haitao Wang. Quickest visibility queries in polygonal domains. In Boris Aronov and Mat-
thew J. Katz, editors, 33rd International Symposium on Computational Geometry, SoCG
2017, July 4-7, 2017, Brisbane, Australia, volume 77 of LIPIcs, pages 61:1-61:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.S0CG.2017.61.
Erik L. Wynters and Joseph S. B. Mitchell. Shortest paths for a two-robot rendez-vous. In
Proceedings of the 5th Canadian Conference on Computational Geometry, pages 216-221,
1993.

6:13

SWAT 2018

http://dx.doi.org/10.1016/0020-0190(91)90064-O
http://dx.doi.org/10.1006/jagm.1995.1017
http://dx.doi.org/10.1137/1.9781611973105.60
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.61

Multistage Matchings

Evripidis Bampis
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France
evripidis.bampis@lip6.fr

Bruno Escoffier
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France
bruno.escoffier@lip6.fr

Michael Lampis
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
michail.lampis@dauphine.fr

Vangelis Th. Paschos
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
vangelis.paschos@dauphine.fr

—— Abstract

We consider a multistage version of the PERFECT MATCHING problem which models the scenario
where the costs of edges change over time and we seek to obtain a solution that achieves low
total cost, while minimizing the number of changes from one instance to the next. Formally, we
are given a sequence of edge-weighted graphs on the same set of vertices V', and are asked to
produce a perfect matching in each instance so that the total edge cost plus the transition cost
(the cost of exchanging edges), is minimized. This model was introduced by Gupta et al. (ICALP
2014), who posed as an open problem its approximability for bipartite instances. We completely
resolve this question by showing that Minimum Multistage Perfect Matching (MIN-MPM) does
not admit an n'=¢

Motivated by this negative result, we go on to consider two variations of the problem. In
Metric Minimum Multistage Perfect Matching problem (METRIC-MIN-MPM) we are promised
that edge weights in each time step satisfy the triangle inequality. We show that this problem
admits a 3-approximation when the number of time steps is 2 or 3. On the other hand, we
show that even the metric case is APX-hard already for 2 time steps. We then consider the
complementary maximization version of the problem, Mazimum Multistage Perfect Matching

-approximation, even on bipartite instances with only two time steps.

problem (MAX-MPM), where we seek to maximize the total profit of all selected edges plus the
total number of non-exchanged edges. We show that MAX-MPM is also APX-hard, but admits
a constant factor approximation algorithm for any number of time steps.

2012 ACM Subject Classification Theory of computation — Approximation algorithms analysis
Keywords and phrases Perfect Matching, Temporal Optimization, Multistage Optimization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.7

Acknowledgements This work benefited from the support of the FMJH program “Gaspard
Monge in optimization and Operation Research” and from the support to this program from
EDF, via the project 2016-1760H/C16,/1507 “Stability versus Optimality in Dynamic Environ-
ment Algorithmics”.

1 Introduction

In classical Combinatorial Optimization, given an instance of a problem the goal is to find a
solution optimizing the value of the objective function. However, in many applications the

© Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).

Editor: David Eppstein; Article No. 7; pp. 7:1-7:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:evripidis.bampis@lip6.fr
mailto:bruno.escoffier@lip6.fr
mailto:michail.lampis@dauphine.fr
mailto:vangelis.paschos@dauphine.fr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Multistage Matchings

instance may change over time and the goal is to find a tradeoff between the quality of the
solution in each time step and the stability of the solution in consecutive time steps. As
an example, consider an instance of an assignment problem, where the goal is to compute
the best assignment of tasks to workers, assuming that we know the cost c;; of performing
task j by worker ¢. In the classical setting, it is possible to choose the assignment that
minimizes the total cost in polynomial time. When the costs change over time (as for
instance when a worker is not able to do some long task on a very busy day (infinite cost))
the optimal solutions of each time step may differ, inducing a transition cost for setting new
task-worker pairs between two consecutive solutions. Hence, the naive approach of finding a
new optimal solution in each time step has the drawback that it does not take care of the
penalty (transition cost) that is induced by the changes in the solution.

In this paper we study a multistage version of the Perfect Matching problem that follows
this motivation and was originally introduced by Gupta, Talwar, and Wieder [11]. In this
problem we are given a time horizon: t = 1,2,...,7T where for each time ¢ we are given an
instance Gy of Perfect Matching (that is, an edge-weighted graph) on the same set of vertices
V. The goal is to determine a sequence of solutions S = (M, My, ..., Mr) that both (1) are
near-optimal (quality), and (2) induce small transition costs (stability). In other words, the
goal is to determine a sequence of perfect matchings, one for each stage (time step) ¢, such
that their total cost is small and the solution does not change too radically from one step to
the next.

It was shown in [11] that this multistage problem is significantly harder than classical
Perfect Matching. In fact, it is NP-hard to even approximate the optimal solution within
n'~¢, for instances with only 8 times steps. Gupta et al. then posed as an explicit question
whether the problem becomes easier for bipartite instances. Their work suggests also the
question whether this hardness also applies for fewer than 8 steps. The bipartite restriction
is especially interesting because Gupta et al. showed that related matroid-based optimization
problems remain tractable for T' = 2, and bipartite Perfect Matching can be seen as a matroid
intersection problem. One could therefore hope that the matroid structure might make the
bipartite case tractable for some small values of T', or at least approximable.

Our main contribution in this paper is to settle this question from [11] in the negative:
we show that Minimum Multistage Perfect Matching (MIN-MPM) is n!~¢-inapproximable,
even for T' = 2 time steps, unless P = NP. Motivated by this very negative result, we
then investigate two other version of the problem: the Metric Minimum Multistage Perfect
Matching problem (METRIC-MIN-MPM), where the input is guaranteed to satisfy the triangle
inequality, and the Maximum Multistage Perfect Matching problem (MAx-MPM), where we
consider the complementary optimization objective.

Problem definition. Formally, the MIN-MPM problem is defined as follows: We are given
a sequence (1, ...,Gr of T undirected graphs, on the same set of vertices V. At each time
step 1 <t < T, the graph G, is given with a cost function ¢, on edges: ¢;(e) € Q> U {+00}.
We are also given a transition cost M > 0. A solution is a sequence S = (M1, ..., M;) where
M, is a perfect matching of G;. Each solution (sequence) has two costs: a matching cost
¢(S) and a transition cost D(S). The goal is to minimize ¢(S) + D(S). A matching M; has
a matching cost ¢;(M;) which is equal to the sum of the costs of the edges of the perfect
matching. The matching cost of S is ¢(S) = Zthl ct(My). The transition cost is defined
as D(S) = T:_ll Dy, where Dy = M - |Myy1 \ M| is proportional to the number of edges
removed between time ¢ and ¢ + 1 — which is equal to the number of added edges since the
matchings are perfect. Notice that by allowing infinite cost on edges we may assume w.l.o.g.
the graphs to be complete.

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:3

In the METRIC-MIN-MPM, at each stage ¢; obeys the triangle inequality: c¢;(u,v) +
ct(v,w) > ¢i(u,w). Finally, in the MAX-MPM version, we consider that ¢;(e) is the profit
obtained by taking edge e (at time t). Then a solution sequence S has a matching profit
c(S) = >, ct(My). We define the transition profit D(S) as D(S) = > ,cq_; Dy where
Dy = M - |Myy1 N M| is proportional to the number of edges that remain between time ¢
and ¢t + 1. The goal now is to maximize ¢(S) + D(S). Notice that in MAX-MPM, we may
no longer assume that the graphs are complete, since this assumption modifies the problem
(we get profit by maintaining an edge, even of profit 0, from one time step to the next one).

Related work. A model that is close to our setting is the reoptimization model of Schieber
et al. [15]. In their work, they are given a starting solution and a new instance and the goal
is to minimize the sum of the cost of the new instance and of the transition cost. The model
of multistage optimization that we use in this work has been studied earlier by Buchbinder et
al. [5] and Buchbinder, Chen and Naor [4] for solving a set of fractional problems. Eisenstat
et al. [7] studied a similar multistage optimization model for facility location problems. Their
main result was a logarithmic approximation algorithm, which was later improved to a
constant factor approximation by An et al. [1]. More broadly, many classical optimization
problems have been considered in online or semi-online settings, where the input changes over
time and the algorithm tries to adjust the solution (re-optimize) by making as few changes
as possible. We refer the reader to [2, 3, 6, 10, 13, 14] and the references therein.

As mentioned, Gupta et al. [11] studied the Multistage Maintenance Matroid problem for
both the offline and the online settings. Their main result was a logarithmic approximation
algorithm for this problem, which includes as a special case a natural multistage version of
SPANNING TREE. The same paper also introduced the study of MIN-MPM, which is the
main problem we study here. They showed that the problem becomes hard to approximate
even for a constant number of stages. More precisely, they showed the following result (n
denotes the number of vertices in the graphs).

» Theorem 1 ([11]). For any e > 0, MIN-MPM is not n'~¢-approzimable unless P = NP.
This holds even when the costs are in {0,00}, M = 1, and the number of time steps is a
constant.

Theorem 1 is proved for T' = 8, starting from the fact that 3-colorability is NP-hard in
graphs of maximum degree 4 [8]. The authors leave as an open question the approximability of
the problem in bipartite graphs, and ask for subcases with better approximatibility behavior.

Our contribution. We answer the open question of [11] by showing that the problem is
hard to approximate even for bipartite graphs and for the case of two steps (T' = 2). Then,
we focus on the case where the edge costs are metric within every time step (METRIC-MIN-
MPM). On the negative side, we prove that the problem remains APX-hard even if T' = 2.
On the positive side, we show that METRIC-MIN-MPM admits a 3-approximation algorithm
for two and three stages. Finally, for the maximization version of the problem, MAaX-MPM,
we prove that it admits a constant factor approximation algorithm but is AP X-hard.

2 Min-MPM for bipartite graphs

We answer the open question of [11] about the approximability of bipartite MIN-MPM.

» Theorem 2. For any € > 0, MIN-MPM cannot be approzimated within a factor of n'~¢,
even if the input has T = 2 time steps, the input graphs are bipartite, M = 1 and the costs
of edges are in {0,000}, unless P=NP.

SWAT 2018

7:4

Multistage Matchings

Using infinite costs, the same result immediately holds for bipartite complete graphs, as well
as for complete graphs.

Proof. We give a gap-introducing reduction from Perfect 3DM (3-Dimensional Matching),
known to be NP-complete [9]. We are given an instance of Perfect 3DM which consists of
three sets X,Y, Z, with | X| = |Y| = |Z] = n, and a set Q of elements of X x Y x Z, with
|Q| = m < n®. We are whether there exists a subset of n pair-wise disjoint elements of @, or
not.

We construct an instance of our problem as follows: first, we create four sets of vertices
A, B,C,D with |A| = |B| = n and |C| = |D| = m. To ease notation suppose that the ele-
ments of our sets X, Y, Z,Q, A, B,C, D are labeled as {x1,..., 2.}, {y1,.--,un}, {z1,---, 20},
{q1,- -, qm}, {a1,...,an}, {b1,...,0n}, {c1,...,cm}, and {d1,...,d,,} respectively.

For any j € {1,...,m} we construct a set of 2n/ €1 new vertices. We connect c¢j to d;
through a path traversing all these vertices (thus this is a path from ¢; to d; with onll +2
vertices). We set the cost of all the internal edges of these paths for both time-steps to 0.

For alli € {1,...,n},j € {1,...,m} we do the following: if z; € ¢; we set the cost of the
edge (a;,¢j) to 0 in time step 1; if y; € g; we set the cost of the edge (a;,¢;) to 0 in time
step 2; if z; € ¢; we set the cost of the edge (b;,d;) to 0 in both time steps. All other edge
costs are set to oo (or some other sufficiently large value). This completes the construction.
Observe that the new graph has 5n + 3m + o2mnl] vertices, so at most C - netd (for some
constant C') since m < n3. Note also that the new graph is bipartite because the paths
that we added from ¢; to d; have odd lengths, hence the bipartition (AU D, BU C) can be
extended to a bipartition of the whole graph.

Suppose that the original instance has a set Q' C @ such that |Q’| = n and no element of
X UY U Z appears in two elements of (). We obtain a multistage matching as follows: For
each ¢; € Q' such that g. = (2, ,¥i,, 2i;) We use the edge (a;,,¢;) in step 1, the edge (as,,¢;)
in step 2, and the edge (b;,,d;) in both time steps. Note that this fully specifies how the
vertices of AU B are matched. We now complete the matching by selecting a set of edges
from the paths connecting each ¢; to d;: if ¢; € @', then both ¢;,d; have been matched
to AU B in both time steps, and we select in both time steps the unique perfect matching
of the path connecting them; if ¢; & @', then neither ¢;, d; is matched to AU B in either
time step, so we select the perfect matching on the path from c¢; to d;, including these two
vertices. Observe that the cost of all edges we use is 0, while we only change at most n edges
from one time step to the other, hence the total transition cost is at most nM.

Suppose that the original instance does not have a solution and consider any multistage
matching in the new instance. We will show that it must make at least ne changes from one
time step to the other. We will say that g; € @ is selected in time step 1, if in that time step
¢; is matched to an element of A. If ¢; is selected in time step 1, then d; is matched to an
element of B in that time step, otherwise it would be impossible to have a perfect matching
on the path connecting c¢; to d;. If some g; is selected in time step 1, but not in time step 2,
then the solution must change all internal edges on the perfect matching on the path from
¢j to dj;, hence it makes at least ne changes, and we are done. What remains therefore to
show is that if the solution maintains the set of selected g; in the two time steps, then we
can construct a solution to the original instance. Indeed, since all of A U B is matched, we
have n selected ¢;’s. Each element of C'U D has at most one edge connecting it to AU B in
each step, hence if it is selected this edge must be used. But if we select ¢;,, g;, that overlap,
then two selected elements will have a common neighbor in A U B and will therefore not be
matched, contradiction.

Since the new graph has N vertices with nt <N Cne+t vertices, it is NP-hard to
distinguish if the optimal is at most nM < N°M or at least neM > Nl’EM/C.]

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos

3 Metric-Min-MPM

We consider in this section that ¢; obeys the triangle inequality: c¢;(u, v) + ¢ (v, w) > ¢ (u, w).
In particular, the graph is complete. As seen before, the problem is hard to approximate
even if there are only 2 time steps with general costs. We show here that while the problem
is APX-hard in the metric case even with only 2 time steps (Section 3.1), it admits a
3-approximation algorithm in this case (2 time steps), see Section 3.2. We then extend this
last result to the case of 3 time steps in Section 3.3.

3.1 APX-hardness for 2 time steps

In the case of 2 time steps the following result is proved.
» Theorem 3. METRIC-MIN-MPM is APX -hard, even if the input has T = 2 time steps.

Proof. We give a gap-preserving reduction from Max 3DM. We are given an instance of Max
3DM which consists of three sets X,Y, Z, with | X| = |Y| = |Z| = n, a set Q of elements
of X xY x Z, with |Q| = m, and an integer k. We are asked if there exists a subset of k
pair-wise disjoint elements of Q). We assume that n, m and k are even (if not simply make two
independent copies of the initial instance). This problem is APX-hard even if the occurence
of each element is bounded above by a constant C' = 3 [12]. Note that in this case the
optimum value is at least m/7 (greedy algorithm; at most 6 incompatible triplets are removed
when a triplet is chosen). So m, n and k are linearly related (3n > m >k > m/7 > n/21).

We construct an instance of METRIC-MIN-MPM as follows: first, we create five sets
of vertices X,Y,Z,G, D with X = {z1,...,z,}, Y ={y1,...,on}, Z={21,..., 20}, G =
{91, gm} and D = {dy, ... dp}.

The graph is complete, and we set the following costs:

At time step 1, Z is seen as a single point very far from the rest of the graph: (z;, z;) has

cost 0 for z;,z; € Z, and (z;,v) has infinite cost for z; € Z, u ¢ Z.

The same is done for X at time 2.

The m edges (g;,d;) have cost 1 at both time steps.

For each triplet ¢; = (x;,yp, 25): at time 1 edges (z;, ;) and (d;, yp) have cost a (a is a

sufficiently large constant, to be specified later), and, for the triangle inequality to hold,

(xj,d;) and (gs,yp) have cost a + 1. Similarly at time 2: (2, g;) and (d;,yp) have cost a,

and, for the triangle inequality to hold, (zs,d;) and (g;,y,) have cost a + 1.

All non yet defined costs are equal to 2a. The transition cost is M = 1. Figure 1 gives an
illustration of the construction.

Note that the triangle inequality holds in both time steps.

We show that (1) if there is a 3DM of size k then there exists a solution of METRIC-MIN-
MPM whose total cost is at most 2m + 4an — k/2, and (2) conversely from a solution of the
multistage problem of total cost z we can construct a 3DM of size at least 2(2m + 4an — z).
This proves APX-hardness since a is a constant, and m, n and k are linearly related.

Let us first prove (1), and suppose that we have a 3DM of size k, say (for ease of notation)
q1,-..,qr where g; = (x;,v;,2;). Then we define a solution S of the multistage matching as
follows:

We take the (m — k) edges of triplets (g;, d;) not in the 3DM, at both time steps 1 and 2;

For ¢;,1 < i < k: we take edges (z;,g;) at time 1, (z;,g;) at time 2, and (y;, d;) at time 1

and 2.

We match together the (n — k) remaining vertices of Y, choosing the same "T’k edges at

both time steps.

7:5

SWAT 2018

7:6

Multistage Matchings

Q
X G D Y
m ,/,/ o i *>./7' o
. // ./,/’/‘ a ;\‘\‘ .
o ¢ 1 I
.%/aﬂ.ﬁ./ ¢ e
I e °
~
'~
I~
a ‘\
«

S N >

Figure 1 An illustration of the reduction at time ¢ = 1, without representing Z - the construction
is symmetric for time step ¢ = 2. The third element of X is in the first, third and last triplet of Q.
The second element of Y is in the second and third triplet. The dashed edges have costs a + 1. Not
represented edges have cost 2a..

We match together the (n — k) remaining vertices of X at time 1. At time 2 we keep
these ”Tfk edges and match the remaining k vertices of X together.
We do the same for Z.
We get a solution (M7, M) whose costs are:
At time 1, the matching cost is (m — k) + 2ak + 2a™5% + 2a”5% = m + 2an — k;
The matching cost at time 2 is the same.
The number of modifications is 3k/2: k edges (x;, g;) become (2;,¢;), and k/2 edges in Z
disappear at time 1 (k/2 edges appear in X at time 2).
In all, (M7, M) has cost 2m + 4an — k/2.

Conversely, suppose that we have a solution (MY, MY) of total cost z for the instance
of METRIC-MIN-MPM. We first structure this solution using local modifications, and then
show how to derive a matching from it.

Replacement 1. First, suppose that M} takes (at time 1) an edge (z;, g;) of cost 2a - so

x; is not in the i-th triplet ¢; of Q). Then d; is matched with a vertex v with an edge

of cost at least a. By replacing (at time 1) (z;,¢;) and (d;,v) by (x;,v) and (g;,d;) we

get a matching cost for these two edges at most 2a + 1 instead of (at least) 3a. Even
considering that the transition cost may have increased by two, this replacement does
not increase the cost of the solution for ¢ > 3. The same argument applies for an edge

(xj,d;) (time step 1), an edge (y;,d;) or (y;,9;) (time step 1 or 2) and for an edge (z;, ¢;)

or (zj,d;) in M3.

Replacement 2. Now, suppose that M takes an edge of cost 2a in G U D, say (gi, g;)

with ¢ # j (the very same argument works for the 2 other cases (g;,d;) and (d;,d;)).

Let v and w be the neighbors of d; and d; in M}. By replacing the three edges (g;, g;),

(di,v) and (d;,w) by (g:,di), (gj,d;) and (v,w), we get a matching cost at most (2a + 2)

instead of (at least) 4a. Even considering that the transition cost may have increased by

three, this replacement does not increase the cost of the solution for a > 5/2. The same

holds for M.

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos

Replacement 3. Last, suppose that edges (y;,9;) and (ys,d;) are both taken at time 1
and 2. This costs 2(a + a + 1) = 4a + 2. Then we can take instead edges (g;,d;) and
(yj,ys) at both time steps, with the same cost 2 + 2(2a) = 4a + 2.

In this way, we transform (MY, M?) into a solution (Mi, Ma) of cost at most z such that:
No g; (and no d;) is matched using an edge of cost 2a (replacements 1 and 2).

g; and d; cannot be both matched to the same vertices at time 1 and 2, unless they are
matched together (replacement 3).

We now show how to find a 3DM from this solution (M, Ms). Let:
N, and N, be respectively the number of edges in X x (GUD) at time 1 and in Z x (GUD)
at time 2.
N, and N7 be respectively the number of edges in ¥ x (G U D) at time 1 and time 2,
among which A; (resp., A2) are of cost a + 1.
N, be the number of edges in Y x (G U D) that are taken at both times 1 and 2.
At time 1, besides these N, + N; edges and the n/2 edges of cost 0 (vertices of Z), the
other edges of (M, My) have cost either 1 (edges (gi,d;)) or 2a. Since N, + N, vertices in

Ny

a1
5 Ny edges of cost 1 at time 1.

G U D are already matched at time 1, there are at most am=

N

o 2m—N,—N? .
Similarly, there are at most % edges of cost 1 at time 2.

Then, computing the matching cost of (M7, Ms) we have
4m — N, — N, — N} — N2

o(My,My) > a(Ng+N,+Ny+N2)+ A+ A+

2
(nNIJrnN;JrnNernNg)
+2a
2
N, + N, + N! + N2
> 2m+4na+ A+ Ao — 5 Y v,

Now, note that at time 1 at least N, + Ny1 — Ny, + 1\;2 edges disappear, so D(My, Ms) >
N, + Ny1 - Ny, +]\;z. Similarly, at least N, + Ny2 - Ny + % edges appear at time 2. So

D(My, M) > N, + N2 — N, + &= Then,

N, + N, + N}! + N2 N, + N,

D(My, M) >

This gives:
N, + N,
—

Now, consider the set of indices ¢ such that edge (y;,d;) is taken at both time steps, or
edge (y;,9;) is taken at both time steps. Since, thanks to the preprocessing, for a given i

z > c(My, M) + D(My, M) > 2m+4na+ A+ Ao — Ny +

this cannot concern both d; or g;, we know that there are exactly N, such indices (edges).
Since there are A; 4+ Ay edges of cost a 41 between Y and G U D, among these IV, indices at
least Ny, — (A1 + A2) are such that: (1) edge (d;, y;) is used at both time steps (2) an edge
(zs,g;) of cost a is used at time 1 (since no edge of cost 2a is used for vertices in G) and (3)
an edge (zp, g;) of cost a is used at time 2.

In other words these at least N, — (A1 + A2) indices correspond to triplets of a 3DM. So
we have a 3DM of size (at least) k = N, — (A1 + A2). Then, N, > N, — (A1 + A2) =k and
similarly N, > k, so w > g All together, we get

k k
z22m+4an—kz+§:2m+4an—§. |

77

SWAT 2018

7:8

Multistage Matchings

3.2 A 3-approximation algorithm for 2 time steps

We now devise an approximation algorithm. Informally, this algorithm first guesses the
number k of edges that an optimal solution keeps between steps 1 and 2. Then it computes
a set of k edges with low matching cost that it maintains between time 1 and 2. Finally,
it completes this set of k edges into two perfect matchings, in such a way that, using the
triangle inequality, the matching cost does not increase too much.

Formally, the algorithm Metric2 runs the following procedure for k from 0 to n/2.

1. Let G142 be the graph where the edge costs are ¢(u,v) = ¢1(u,v) 4+ ca(u,v). Compute a
minimum cost matching M* of size exactly k in G4o.

2. Compute a minimum cost perfect matching M; in G;, and a minimum cost perfect
matching Ms in Gs.

3. Consider the symmetric difference of the two matchings M* and M; in G;. This is a
(vertex disjoint) set of paths P, ..., P, and cycles. Define MF as M* plus the p edges
linking the first vertex and last vertex of each path P;.

4. Do the same to get M.

5. Consider S¥ = (MF, M}).

Metric2 outputs the best solution S*.

» Theorem 4. Metric2 is a (polytime) 3-approzimation algorithm for METRIC-MIN-MPM
when T = 2.

Proof. We first prove that S* is a feasible solution, i.e., MF is a perfect matching of G;.
Since M; is a perfect matching, in all paths P; the first and last edges belong to M;. Hence
the first and last vertices are not covered by M*, so MF is a matching. Every other vertex is
covered by M¥, so the matching is perfect.

Now, let us prove the claimed approximation ratio. Let us denote S* = (M7, M3) be an
optimal solution, and consider S* where k = |M; N Mj|.

Since at least M* is common between My and M}, at least k edges are maintained
between time 1 and 2 in S¥, as in S*. So:

D(8*) < D(5%). 1)
Now, let us prove that:
e (MF) + ea(M5) < 3c1(M7) + 3ca(M). (2)

Thanks to the triangle inequality, in a path P = (vg,v1, ..., v¢), ¢;(vg, ve) < Zj ci(vj,vjg1):
when adding edges (vg,v¢) we add in total at most the total length of the paths, hence at
most ¢;(M;) + c;(MF). So ¢;(MF) < ¢;(M;) + 2¢c;(M*). Using that c;(M;) < c;(M}), we get:

1 (MF) + c2(M5) < 1 (M7) + c2(M3) 4 2(c1 (M*) + ca(M")).

By optimality of M* and since S* has k common edges between times 1 and 2, these k
common edges induce a cost in S* at least ¢ (M*) + co(M*). Then:

c1(MF) + ea(M3) < (M) + ea(M3) + 2(er (M) + e2(M3))
and Equation 2 follows. From Equations 1 and 2 we derive:
c(S) + D(S) < 3¢(S*) + D(S™).

The result immediately follows. <

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos

3.3 A 3-approximation algorithm for 3 time steps

We now extend the previous result to the case of T' = 3. As previously, if an optimal solution
preserves in total k edges (operates in total n — k modifications between time steps 1 and 2,
and 2 and 3) we would like to first compute a set of k ‘preserved’ edges inducing a low cost,
and then to complete this set as perfect matchings in each of the time steps. Now things get
more complex since an edge can be preserved between steps 1 and 2, between steps 2 and 3,
or during the whole process. It seems hard to mimic an optimal solution on these 3 types of
edges (while inducing a low matching cost), but this difficulty can be overcome as follows.

Let G be the graph with edge cost w = min{c; + ¢o + ¢3,¢1 +co + M,co +cs+ M}, If
the minimum is ¢1 4+ ¢o + ¢3 (resp., ¢1 + ca + M, ca + c3 + M) we say that the edge is of type
1 (resp., 2, 3). Intuitively, edges of type 1 will be taken in steps 1, 2 and 3, edges of type
2 (resp., 3) will be taken in steps 1 and 2 (resp., 2 and 3). We present a 3-approximation
algorithm Metric3. It runs the following procedure for k from 0 to n/2.

1. Compute a minimum cost matching M* of size exactly k in G. Denote M} the set of
edges of M* of type 1 or 2, M¥ = M* and M¥ the set of edges of M* of type 1 or 3.

2. Compute a minimum cost perfect matching M; in G;, i = 1,2, 3.

3. Consider the symmetric difference of the two matchings MZ’“ and M; in G;. This is a
(vertex disjoint) set of paths Pi,..., P, and cycles. Define M/* as the set of p edges
linking the first vertex and last vertex of each path P;.

4. Consider S* = (MF U M{*, My u Mk, MEF U MEF).

Then Metric3 outputs the best solution S*.

» Theorem 5. Metric3 is a (polytime) 3-approzimation algorithm for METRIC-MIN-MPM
when T = 3.

Proof. We first note that, as in the case for T' = 2 time steps, MU M/¥ is a perfect matching
of G;, so S* is a feasible solution.

Now let us deal with the approximation ratio. Let S* = (M7, M3, MJ) be an optimal
solution. Let us consider the set H = (M NM3) U (M3 N MJ) of edges in S* that are in (at
least) two consecutive steps. Note that H is a matching (it is included in Mj). Consider S*
where k = |H|. We now prove the following result:

» Lemma 6. D(S*) + >, ¢;(MF) < D(S*) + ¢(S*).

Proof. To prove this, let k1 = |M; N M3 N M7| be the number of edges in S* that are taken

at each of the 3 time steps. Hence, k — k1 edges are taken at (only) 2 consecutive time steps.

So there are (n/2 4+ n/2 — 2k; — (k — k1)) modifications in total, and:
D(S*) = M(n —k — ky). (3)
Recall that in G, w = min{c; +ca+c¢3,¢1 +ca+ M,co+c3+ M}. ki edges of H are present

on the 3 time steps (matching cost ¢; + ¢o + ¢3), while k — k1 are present in two consecutive
time steps (matching cost ¢; 4+ ¢2 or ¢a + ¢3).

w(H) < c(S*) + Mk — k1). (4)

Similarly, let A; be the number of edges of type 1 in M*. There are (k — ;) edges of
type 2 or 3, hence

w(M*) = 37 e (MF) + M(k - Ay). (5)

i

7:9

SWAT 2018

7:10

Multistage Matchings

Indeed, in G cost ¢; applies to edges of type 1 and 2 (¢1(MF)), cost co applies to all edges of
MP¥ (co(MF)), cost c3 applies to edges of type 1 and 3 (c3(MYF)), and cost M to the (k — A;)
edges of type 2 and 3.

Also, the number of preserved edges in S* is at least k + A1, so:

D(S*) < M(n—k—\). (6)
Since H is a matching, in G' we have w(H) > w(M¥). This gives using Equations 4 and 5:

D e MF) + M(k = M) < e(S*) + M(k — ki)

?

so Y, ci(MF) < ¢(S*) + M(A — k1). Then using Equations 3 and 6 we get:

Z ci(MF)+D(S*) < e(S*) + M\ — k) + M(n—k — X)) =c(S*) + M(n—k—ky)

=¢(57) + D(57)

which concludes the proof of Lemma 6. <
Now, by triangle inequality, and the fact that ¢;(M;) < ¢;(M}), we know that:
ci(M*) < e (M) + ei(M). (7)

Then, from Lemma 6 and Equation 7 we get:

c(S*) + D(S*) Y (e(MF) + ci(MF)) + D(S¥) < 3 (2ei(MF) + ¢ (M) + D(S")

?

IN

¢(8*) +2 (Z ci(MF) + D(S’f)) < 3c¢(S*) +2D(S¥).

The result follows. <

4 Max-MPM

In the maximization version, we consider that ¢;(e) is the profit obtained by taking edge e (at
time t). Then a solution sequence S has a matching profit ¢(S) = >, ¢;,(M;). We define the
transition profit D(S) as D(S) = >,y Dy where Dy = M - |M;, N M,| is proportional
to the number of edges that remain between time ¢ and t + 1. The goal now is to maximize
¢(S) + D(S). Recall that in the maximization version we may no longer assume that the
graphs are complete.

4.1 APX-hardness for 2 time steps

We first show that MAX-MPM, even in the case of 2 time steps is APX-hard.
» Theorem 7. MAX-MPM is APX-hard even if T = 2.

Proof. As previously, we consider the maximum 3DM problem in the case where the
occurrence of each element is bounded by 3, hence the optimal value, the number of triplets
and the size of the ground sets are linearly related.

Given three sets X,Y, Z each of size n, and m triplets ¢; of X x Y x Z, we build two
graphs G1 and G5 with n’ = 2m + 4n vertices:

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos

4 sets D, E, F,G of size n;

2 sets A={a1,...,am} and B = {by,..., by} of size m.
Vertices of D will represent elements of X, vertices of E and F' elements of Y (twice), vertices
of G elements of Z. Each triplet g; is represented by one edge (a;, ;) in both graphs. It has
cost 0.

If a triplet ¢; is (z;, yx, 1) then:

In Gy we put edges (d;, a;) and (b;, ex), both with cost M’;

In G5 we put edges (fx,a;) and (b;, z;), both with cost M’.
Note that vertices in F, G have degree 0 in G1, vertices in D, F have degree 0 in Gs.

We fix M’ = MH and M > 3.

Let us show that there is a 3DM of size (at least) k if and only if there is a solution of
profit at least Mm + k.

Suppose first that there is a set S of k independent triplets. Then we build matchings
(M, My) as follows:

if g; is not in S, we take (a;, b;) both in M7 and Ms. This gives transition profit M (m —k).

if ¢; = (z;,Yk, 2) is in S, then we take in M; the two edges (d;, a;) and (b;, ex), and in

M, the two edges (fr,a;) and (b;, z;). This gives a matching profit 4kM’.

Note that since any element of X,Y, Z is in at most one triplet of S, vertices in D, E, F,G
are adjacent to at most one chosen edge. In other words M; and M5 are matchings.

The profit of the solution is 4kM’' + M(m — k) = k(M + 1)+ M(m — k) = Mm + k.

Suppose now that there is a solution (M7, Ma) of profit at least Mm + k. Suppose first
that there is an edge (a;, b;) which is in M; but not in M,. Then we get no transition profit
for this edge. In Ms we have taken at most one edge incident to a;, and one edge incident
to b;, with matching profit at most 2M’. Since these edges are not in G they cannot give
transition profit. So we can put in My the edge (a;,b;) and remove the edges incident to a;
and b; (if any). The profit increases by M — 2M’' = M/2 —-1/2 > 0.

So we can assume that M; and Ms have the same set of edges between A and B.
Suppose now that there are two edges (a;, b;) and (as, bs) both not in M; (equiv. not in Ms)
corresponding to two intersecting triplets. Suppose for instance that x; is in both triplets.
This means that in M; we cannot take both edges (c;, a;) and (¢;, as), for instance (¢;, as) is
not in M;. Then we can add (as,bs) is M7 and Ms, and remove the (at most) 3 incident
edges. This increases profit by M — 3M’ > 0.

So, the set of edges (a;, b;) not in M; (or not in Ms) corresponds to a set of independent
triplets. Let ¢ the number of such edges. Since M is a matching, besides these edges between
A and B, there is at most two edges for each (a;,b;) not in M. Similarly, there is at most
two edges in My for each (a;,b;) not in M. So the matching profit is at most 4¢tM’, and
the transition profit is M (m — ¢). The profit is M(m —t) + 4tM' = Mm +t > Mm + k. So
t>k. |

4.2 Constant factor approximation algorithms

» Theorem 8. MaAX-MPM is 1/2-approzimable. If T = 2 it is 2/3-approxzimable, if T = 3
it is 3/5-approximable.

Proof. Note that if the graphs are assumed to be complete (bipartite complete) then the
ratio 1/2 is easily achievable. Indeed, consider two solutions:

The first one S; consisting of the same perfect matching My at all time steps;

The second one S5 consisting of a matching M, of maximum profit on G, for each t.

7:11

SWAT 2018

7:12

Multistage Matchings

Output the best one.

Let S* = (M7,...,M5}) be an optimal solution. Clearly the profit of S; is at least the
transition profit D(S*) of S*. Also, ¢(M;) < ¢(M;) so the matching profit of S* is at most
the one of Sy. The ratio 1/2 follows.

If the graphs are not assumed to be complete things get harder since one cannot trivially
optimize the transition profit by keeping a perfect matching along the multistage process.

Let us consider three consecutive time steps ¢t — 1,¢,¢ + 1. Let us consider the graph G,
which is the same as G; up to the profit on edges, which is now c}(e) where:

1. ci(e) = ci(e) + 2M if e is in Gi—1 and Gyi1;

2. otherwise, cj(e) = ct(e) + M if e is in Gy—1 or Giyq;
3. otherwise c;(e) = ¢;(e).

Let us consider a matching M| of maximum profit in Gj.

» Lemma 9. ¢, (M]) > D;_1(S*) + ci(M]) + D:(S*).

Proof. Let us consider the profit of M;* on G}. Since the set of edges preserved from time
t — 1 to time t is included in M, the profit D;_1(S*) appears in the profit of M} on G|
(+M on each common edges between the two consecutive graphs). This is also the case
for D;(S*), for the same reason. Of course, the profit ¢;(e) appears as well. Since M] is of
maximum profit, the Lemma follows. |

Because of Lemma 9, choosing the matching M/ at time steps t — 1, t and t + 1 in a
solution generates a profit at least Dy_1(S*) + ci(M;) + Dy (S*).

Note that, with similar arguments, if two times steps ¢,¢+ 1 are involved, we can compute
a matching H; that we take at time steps t, ¢+ 1 generating a profit at least ¢;(M;*) + D (S™).
Symmetrically, we can compute a matching H/ that we take at time steps ¢,¢ + 1 generating
a profit at least cipq1 (M) + D¢ (S™).

Now we consider the following 2 solutions:

S1 consists of choosing H; at steps 1,2, Hs at step 3,4, If T is even then we are
done, otherwise we take an optimal matching My at step T

So consisting of choosing an optimal matching M at step 1, then Hs at steps 2,3, Hy at
steps 4, 5,.... If T'is even we take an optimal matching My at step T.
Output the best of these two solutions. Then: S; covers the transition profit of an optimal
solution D; for ¢t odd, plus the matching profits for ¢ odd. S5 covers the transition profit of
an optimal solution D, for ¢ even, plus the matching profits for ¢ even. The ratio 1/2 follows.

Improvement for T = 3. The previous solutions S; and Sy have profit (respectively) at
least ¢1(S*) 4+ D1(S*) + ¢3(S*) and ¢1(S*) + Do (S*) + ¢2(S*). Ss takes M; at step 1 and H}
at time steps 2 and 3, with profit at least ¢1(S*) + D2(S*) + ¢3(S*); Sy takes Hj at steps 1
and 2, and Ms at step 3, with profit at least Dy (S*) 4 ¢2(S*) + ¢3(S*). S5 uses M} at the 3
steps with profit at least Dy(S*) 4 c2(S*) + D2(S*) (thanks to Lemma 9). Take the best of
these 5 solutions, and the ratio follows.

Improvement for T = 2. Simply take 3 solutions: Sy is defined as previously, with profit
at least ¢1(S*) + D1(S*). Sy takes H{ at both steps with profit at least D1(S*) 4+ ¢2(S*). S3
consists of one optimal matching at step 1, and an optimal matching at step 2, with profit at
least c1(S*) + c2(S*). The ratio 2/3 follows. <

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos

5

Concluding remarks

Following the results of Section 3, we leave as an open question the existence of a constant
factor approximation algorithm for the metric case for a number of time steps bigger than 3.
Also, we considered here an off-line version of the problem where the whole set of instances
is known in advance. It would be worth investigating the on-line case where data are not
known in advance.

—— References

1

10

11

12

13

14

15

Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via
exponential clocks. ACM Trans. Algorithms, 13(2):21:1-21:20, 2017.

Barbara M. Anthony and Anupam Gupta. Infrastructure leasing problems. In IPCO,
volume 4513 of Lecture Notes in Computer Science, pages 424-438. Springer, 2007.
Nicolas K. Blanchard and Nicolas Schabanel. Dynamic sum-radii clustering. In WALCOM,
volume 10167 of Lecture Notes in Computer Science, pages 30-41. Springer, 2017.

Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive analysis via regularization.
In SODA, pages 436-444. SIAM, 2014.

Niv Buchbinder, Shahar Chen, Joseph Naor, and Ohad Shamir. Unified algorithms for
online learning and competitive analysis. Math. Oper. Res., 41(2):612-625, 2016.

Edith Cohen, Graham Cormode, Nick G. Duffield, and Carsten Lund. On the tradeoff
between stability and fit. ACM Trans. Algorithms, 13(1):7:1-7:24, 2016.

David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving
metrics. In ICALP (2), volume 8573 of Lecture Notes in Computer Science, pages 459-470.
Springer, 2014.

M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
problems. In STOC, pages 47-63. ACM, 1974.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a
constant-competitive steiner tree online. SIAM J. Comput., 45(1):1-28, 2016.

Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In ICALP (1), volume 8572 of Lecture Notes in Computer
Science, pages 563-575. Springer, 2014.

Viggo Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf.
Process. Lett., 37(1):27-35, 1991.

Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online MST and TSP. SIAM J. Comput., 45(3):859-880, 2016.

Chandrashekhar Nagarajan and David P. Williamson. Offline and online facility leasing.

Discrete Optimization, 10(4):361-370, 2013.
Baruch Schieber, Hadas Shachnai, Gal Tamir, and Tami Tamir. A theory and algorithms
for combinatorial reoptimization. Algorithmica, 80(2):576-607, 2018.

7:13

SWAT 2018

Convex Hulls in Polygonal Domains

Luis Barba
Department of Computer Science, ETH Ziirich, Ziirich, Switzerland
luis.barba@inf.ethz.ch

Michael Hoffmann
Department of Computer Science, ETH Ziirich, Ziirich, Switzerland
hoffmann@inf.ethz.ch

https://orcid.org/0000-0001-5307-7106

Matias Korman'
Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

Alexander Pilz?

Department of Computer Science, ETH Ziirich. Ziirich, Switzerland
alexander.pilzQinf.ethz.ch
https://orcid.org/0000-0002-6059-1821

—— Abstract

We study generalizations of convex hulls to polygonal domains with holes. Convexity in Euclidean
space is based on the notion of shortest paths, which are straight-line segments. In a polygonal
domain, shortest paths are polygonal paths called geodesics. One possible generalization of convex
hulls is based on the “rubber band” conception of the convex hull boundary as a shortest curve
that encloses a given set of sites. However, it is NP-hard to compute such a curve in a general

polygonal domain. Hence, we focus on a different, more direct generalization of convexity, where
a set X is geodesically convez if it contains all geodesics between every pair of points z,y € X.
The corresponding geodesic convexr hull presents a few surprises, and turns out to behave quite
differently compared to the classic Euclidean setting or to the geodesic hull inside a simple
polygon. We describe a class of geometric objects that suffice to represent geodesic convex hulls
of sets of sites, and characterize which such domains are geodesically convex. Using such a
representation we present an algorithm to construct the geodesic convex hull of a set of O(n)
sites in a polygonal domain with a total of n vertices and h holes in O(n®h3*¢) time, for any
constant € > 0.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases geometric graph, polygonal domain, geodesic hull, shortest path

Digital Object ldentifier 10.4230/LIPIcs.SWAT.2018.8

1 Introduction

Convexity is a fundamental concept in geometry and optimization, and computing the convex
hull of a point set in the plane is a classic textbook problem in algorithm design. The convex
hull of a set S C R? is usually defined as the inclusion-minimal convex set that contains S,
and showing that this statement is well-defined is a textbook exercise in itself. If S is finite,

1 Supported in part by MEXT KAKENHI Nos. 17K12635, 15H02665, and 24106007.
2 Supported by a Schrédinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.

© Luis Barba, Michael Hoffmann, Matias Korman, and Alexander Pilz;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).

Editor: David Eppstein; Article No. 8; pp. 8:1-8:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:luis.barba@inf.ethz.ch
mailto:hoffmann@inf.ethz.ch
https://orcid.org/0000-0001-5307-7106
mailto:mati@dais.is.tohoku.ac.jp
mailto:alexander.pilz@inf.ethz.ch
https://orcid.org/0000-0002-6059-1821
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Convex Hulls in Polygonal Domains

Figure 1 Two possible definitions of “convex hull” in a polygonal domain. The domain is shown
in white, obstacles in gray, and sites are shown as blue dots. The left image depicts the relative hull,
bounded by a curve of minimum length that separates the set of sites from the boundary. The right
image depicts the definition we will use in this paper: an inclusion-minimal subset of the domain
that contains all sites and all shortest paths between any two of its points.

the convex hull of S is a convex polygon. The boundary of this polygon describes the shortest
path enclosing S, yielding an equivalent definition of the convex hull.

The definition of convexity builds on shortest paths: a set X is convex if for every pair
x,y € X the shortest path between x and y is contained in X. Hence, convexity directly
generalizes to any domain that has a notion of a shortest path. In the Euclidean setting,
shortest paths are straight-line segments. But there is a variety of other domains that have a
sensible notion of a shortest path. Specifically, shortest paths inside a simple polygon have
been studied in the computational geometry literature.

A set R is called geodesically convex w.r.t. a polygon P if the shortest path in P between
two points in R is also contained in R. Toussaint [20] studied how properties of point sets
extend to geodesic environments. He introduced the geodesic convex hull of a set of points
(called sites) inside a simple polygon P; it is the inclusion-minimal geodesically convex set
containing the sites. Among several results, he showed how to compute the geodesic convex
hull of k sites in a simple n-gon in O((n + k)log(n + k)) time. Note that the geodesic
convex hull properly generalizes the convex hull of a point set S; if we choose P to be, say, a
bounding box of S, we obtain the convex hull of S.

A classic metaphor for the convex hull boundary is a “rubber band”, describing the
continuous transformation of a curve containing the sites to a homotopy-equivalent curve of
minimal length. For geodesic convex hulls within a simple polygon P, the boundary 9P is
equivalent to the shortest cycle that separates the sites from 9P [20]. However, if we consider
sites in a polygonal domain with holes, this correspondence does not generalize.

We thus face (at least) two different ways to generalize the concept of a convex hull to
general polygonal domains. On the one hand, we have the (geodesic) convex hull as an
inclusion-minimal geodesically convex set that contains all sites (and may enclose holes). On
the other hand, we have a shortest curve that separates the sites from the boundary, also
called the relative hull of the sites. See Figure 1 for illustrations.

Both generalizations are interesting in their own right. The former definition is much
more directly tied to the notions of convexity and shortest paths. Therefore this is how
we propose to generalize the concept convexr hull to general polygonal domains. The latter
definition using relative hulls turns out rather unwieldy. For a set S of general sites inside a
polygonal domain, a relative hull is not necessarily unique and NP-hard to compute. This
follows from a slight modification of a result by Eades and Rappaport [12], who show that
it is NP-hard to find the shortest curve separating two point sets. (A reduction from the
rectilinear Steiner tree problem is also straightforward.)

L. Barba, M. Hoffmann, M. Korman, and A. Pilz

Related work. Relative hulls have been studied in general polygonal domains, but only
for a set of connected sites. Given a set of disjoint simple polygons with n vertices overall,
de Berg [10] showed how to compute the shortest curve that separates one of these polygons
from the others in O(nlogn) time. Effectively, the algorithm computes the shortest cycle
within a polygonal domain that separates a polygon P from the boundary. The proof directly
generalizes to the case where P is an arbitrary outerplane graph. In a similar fashion, Mitchell
et al. [18] compute the relative hull of paths in polynomial time.

In addition to Toussaint’s generalization of the diameter, center, and median to the
geodesic setting [20], separators [11], ham-sandwich cuts [7], spanning trees, Hamiltonian
cycles and perfect matchings [6] have been generalized to point sites in simple polygons.
Any concept defined on the order type of a point set allows for a generalization [2]. In
general polygonal domains, the complexity of these problems increases substantially. Many
problems become NP-hard, and where polynomial algorithms are known, the known bounds
are nowhere near to what is known for simple polygons. For example, the diameter and center
of a simple polygon can be computed in linear time [1, 14]. However, for a general domain,
the best known algorithms use O(n""3) [3] and O(n'!logn) [4, 21] time, respectively.

Computing shortest paths in polygonal domains has been an active area of research
(cf. [17]). While a single shortest path can be computed in O(nlogn) time [15], data structures
that support two-point shortest path queries in logarithmic time require a significant storage
overhead. The state of the art data structure, allowing O(logn) query time, uses O(n'!)
space and preprocessing time [9]. For points on the boundary of the domain, Bae and
Okamoto [5] presented a data structure with logarithmic query time using O(n5¢) space
and preprocessing time. A variant of their result is used as a subroutine in our algorithm.

Generalizations of convex hulls of point sets have also been considered in other settings.

For example, Lubiw et al. [16] consider convex hulls in 2-dimensional globally non-positively
curved polyhedral complexes. Such spaces have a unique shortest path between any two
points. They pose as an open problem the study of convexity in domains where more than
one shortest path between two points may exist. Our work is a step in this direction.

Results. We consider the inclusion-minimum geodesically convex set that contains a given
set of sites in a polygonal domain. It is the first study of this natural generalization of convex
hulls. Not even domains with a single hole have been considered so far (see also [16], where
the problem is mentioned). It turns out that the problem of computing the geodesic convex

hull within a polygonal domain is significantly more complex than within a simple polygon.

Within a simple polygon, the structure of the geodesic convex hull only depends on the order
type of the sites and the vertices, i.e., the orientation of point triples. In general polygonal
domains, the homotopy of the shortest path between two sites depends on actual distances

between sites and vertices. In particular, all direct attempts to discretize the problem failed.

The examples given in Section 2 illustrate the differences to classic convexity and demonstrate
how naive attempts to compute the geodesic convex hull fail.

As a main result, we characterize geodesically convex sets. To this end, we define a class
of geometric objects, called cactus domains, and show that this class contains all geodesic
convex hulls of finite sets of sites inside polygonal domains. More specifically, we use two
concepts (called divisibility and tightness), and show that they are sufficient and necessary
for a cactus domain to be geodesically convex. We provide algorithms to efficiently test both
properties, resulting in a polynomial-time algorithm to compute geodesic convex hulls.

» Theorem 1. Let P be a polygonal domain with n vertices and h holes, and let S C P be a
set of O(n) sites. The geodesic convex hull of S in P can be computed in O(n3h3+e) time.

8:3

SWAT 2018

8:4

Convex Hulls in Polygonal Domains

While the running time of our algorithm might look high at first sight, it must be
compared with algorithms and data structures that encode all geodesic paths in polygonal
domains. In this direction, one must consider the state-of-the-art structure developed by
Chiang and Mitchell [9] that uses O(n'!) space and preprocessing time; or the structure
of Bae and Okamoto [5] using O(n®¢) space and preprocessing time for paths connecting
points on the boundary. While no lower bounds are known, it is clear that the complexity of
these problems is high and still far from being understood.

To improve upon the running time stated in Theorem 1, more structural insights would
be required. As a first step in this direction, one could ask if a simpler algorithm can be
designed to test whether a point lies in the geodesic convex hull of a set of sites in a polygonal
domain.

2 Preliminaries

Polygonal domains. A simple polygon is a compact subset of R? that is bounded by a simple
closed curve formed by a finite number of line segments. For a simple polygon P denote by
V(P) the set of its vertices, by int(P) the interior of P, and by 0P its boundary. A polygonal
domain P is defined by a finite collection (P, Py, ..., Py) of h + 1 simple polygons with the
following properties: (1) P; C int(Fy), for each ¢ > 0, and (2) P,NP; = 0, for all 4, j > 0 with
1 # 7. We say that Py and 0P, are the outer polygon and outer boundary of P, respectively.
The boundary of P is 9P = |J!_, OP;, the interior of P is int(P) = int(Py) \ U}, P;, the
vertices of P are V(P) = UfZOV(Pi), and collectively P = int(P) UdP. The polygons
Py, ..., Py, are also referred to as holes of P. We also use the notation P = (Py, P1,..., P)
to indicate that P is defined by the polygons Py, P, ..., P, (although in principle we regard
P as a subset of the plane rather than a tuple of polygons).

Geodesic convex hulls. In the following consider a polygonal domain P with n vertices.
For two points x,y € P denote by IIp(x,y) the set of geodesics between = and y in P. That
is, every element of IIp(z,y) is a curve from x to y that is contained in P and corresponds
to a shortest path between = and y (among all curves between x and y in P). A set K C P
is geodesically convex (in P) if, for every z,y € K, all geodesics in IIp(x,y) are contained
in K. For S C P, the geodesic convex hull, or simply G-hull of S in P, is the (inclusion)
minimum geodesically convex set GHp(S) C P that contains S. In this paper, we study the
case in which S consists of a finite set of O(n) points (called sites).

One way to conceive the G-hull of S is to start with Cy = S and iteratively add more
points as follows. In the i-th step, for every pair of points z,y € C;_; (possibly infinitely
many) take all geodesics in IIp(x,y) and add them to the new set C;. Continue until
C; = C;_1 at the end of some step. Note that this procedure as described is not an algorithm
because (i) the number of pairs/geodesics to consider is not finite in general and (ii) it is not
clear whether the procedure terminates after a finite number of steps.

Visibility graphs and shortest path maps. Every geodesic in IIp(z,y), for z,y € S, forms
a path in the visibility graph Visp(S) of S with respect to P. This graph is defined on the
vertex set V' =S UV(P) and two vertices x,y € V are visible and connected by an edge in
Visp(9) if the relative open line segment 7y \ {z, y} is contained in P\ V. For given P and
S, the graph Visp(S) can be computed in O(|V|?) time and space [22].

For a point s € P, the shortest path map (SPM) for s is the subdivision of P into cells to
which the geodesic from s passes through the same sequence of vertices of P. There are O(n)

L. Barba, M. Hoffmann, M. Korman, and A. Pilz

Figure 2 No site appears in the boundary (left). In the middle figure there is no way of partitioning
the four sites so that the convex hulls of the two sets intersect. To the right, the top point (cross)
belongs to the G-hull of the four sites, but it is not included in the G-hull of any three sites. The
geodesics between pairs of sites are shown in black.

d(v,v') = 14.5
d(a,a’) =18 < d(a,v) + d(v,v") + d(v',a’) = 19.5
d(b,b") =5+ 10+ 14.5 = 19.79

<20 =d(b,a) 4+ d(a,a’) + d(a’,b")
d(a,d) =20 < d(a,v) + d(v,v’") + d(v', ') =~ 20.33
d(a’,c) =20 < d(a’,v") + d(v,v") + d(v,c) = 20.1
d(a,b") =19 < d(a,v) + d(v,v") + d(v', V") ~ 19.73
d(a’,b) =19 < d(a’,v’") + d(v,v") + d(v,b) ~ 19.66

Figure 3 A partial drawing of a domain (violet), in which eight points have been highlighted.

The geodesic between b and b’ passes through v and v’, while the geodesics between pairs a and a’
or ¢ and ¢’ do not pass through v or v'. The function d(-,-) denotes the geodesic distance.

such cells, and the boundaries between these cells are formed by curves of constant algebraic
degree. Hershberger and Suri [15] provide an O(nlogn) time algorithm to construct the
SPM for a given point s. Given the SPM for s, we can compute the geodesic distance from s
to any query point p € P in O(logn) time using point location. In the same time, we can
also get the first and last vertex (other than s and p, if any) of some path in IIp(s, p).

Remarkable properties of g-hulls. Figure 2 depicts a polygon P with all sites in the interior
of GHp(S), as well as an example where an analogue of Radon’s Theorem does not hold, i.e.,

there is no partition of S into two non-empty sets S; U .Sy such that GHp(S1) N GHp(S2) # 0.

Similarly, Figure 2 (right) depicts an example where the natural extension of Carathéodory’s
Theorem does not hold: there exists a point in GHp(.S) that does not belong to the G-hull of
any three sites of S. An example where the actual distance between points influences the
structure of the G-hull is given in the (partial) instance depicted in Figure 3. Moving the
points slightly without changing the order type can have large influence on the structure of
the G-hull.

3 Cactus domains and general properties

Even in a single simple polygon, the G-hull of two segments on its boundary forms a so-called
funnel [13], which, in general, is not simple. It is therefore natural to study a slightly
more general class of polygons to be able to describe G-hulls. A frequently used relaxation
is referred to as a weakly simple polygon, which, intuitively speaking, allows the curve
that describes the boundary to touch but not properly cross itself. However, to make this
intuition formally precise is surprisingly cumbersome [8]. For describing G-hulls, a much

more restricted class of polygons is sufficient, which we will define in the next paragraphs.

(We refrain from using the term “weakly simple polygon” to emphasize this difference.)

8:5

SWAT 2018

8:6

Convex Hulls in Polygonal Domains

In a plane drawing or embedding of a connected graph, the vertices are represented by
pairwise distinct points, edges are represented by Jordan arcs connecting their endpoints,
and no two edges intersect except at a common endpoint. In a straight-line drawing, all
Jordan arcs representing edges are (straight) line segments. A cactus is a connected graph in
which every edge belongs to at most one simple cycle. Cacti are outerplanar, that is, they
can be embedded in the plane so that all vertices are incident to one particular face (which
is usually the outer face).

A cactusgon is a domain K that is represented by an outerplane straight-line drawing
©(G) of a cactus G: The interior int(K) is formed by the union of all (open) bounded faces
in (@), the boundary 0K is formed by the union of all edges in ¢(G), and collectively
K =int(K) UJK. We obtain a combinatorial representation of K as the unique circular
sequence of edges and vertices as they appear along the boundary of the outer face of ¢(G)
in counterclockwise order. A closed curve that traverses 0K of some cactusgon K in this
fashion is a cactus curve. Note that K is a compact subset of R? and that every simple
polygon is a cactusgon whose associated graph G is a simple cycle. Consider a face of a
cactus that is incident to all vertices (which may or may not be unbounded); we call this
open subset of the plane a cactus face. The boundary of a cactus face is defined analogously
to the one of a cactusgon (but note that the boundary is not part of the cactus face).

» Definition 2. A cactus domain or, for short, C-domain K is a planar region bounded by
an outer polygon C and t > 0 inner voids K, ..., K, where (1) C is a cactusgon, (2) K; CC
is a bounded cactus face, for 1 <i <t, and Ky,..., K; are pairwise disjoint. The outer void
Ky of K is is an unbounded cactus face (or, equivalently, the outer face of C). The interior
of K is int(K) = R? \ J;_,(K; UJK;), the boundary of K is 0K = J;_, 0K;, the vertices
of K are V(K) = Uﬁ:o V(K;), and collectively K = int(K) U 0K.

Note that the above definition slightly abuses notation since V'(-) was only defined for
polygons. Along the paper we do a similar abuse for structures defined for polygons (such as
shortest path map and visibility graph) and apply them to cactusgons. The extension of
these concepts (and the algorithims) are straighforward. Thus, for simplicity we omit them.

Observe that 9C = 0Ky and so V(C) = V(Ky). Again, we write K = (C, K1,...,K};) as
a shorthand. As usual, int(K) is an open subset of R? and K is a compact subset of R?
with R?\ K = Uﬁ:o int(K;). Observe that the cycles of K may share edges or points of their
boundary. As an extreme example, if C is simple, then we may even have ¢ = 1 and one
large hole K7 = C (in this case, K is just a one-dimensional polygonal cycle). While the
theorem below is not hard to prove in a stand-alone way, it will follow from our algorithmic
construction of G-hulls, as our algorithm produces a C-domain that we prove to coincide
with the G-hull of S.

» Theorem 3. Given a polygonal domain P with n vertices in total and a set S C P of
O(n) sites, the geodesic convex hull GHp(S) of S in P is a cactus domain whose vertices are
from S U V(P) and whose edges are edges of the visibility graph Visp(S). In particular, the
boundary of GHp(S) can be described as a plane straight-line graph on O(n) vertices.

4 Characterization of geodesically convex sets

The aim of this section is to give a characterization of C-domains that are geodesically convex
in a polygonal domain P = (P, ..., P,). Consider a C-domain K = (C, Ky,...,K;). If K is
not geodesically convex, then there exist two points p,q € K and a geodesic m € IIp(p, q)
such that = ¢ K. For simplicity, assume that # N K = {p,q}. (That is, the geodesic only

L. Barba, M. Hoffmann, M. Korman, and A. Pilz

a)
R :

~x

Py Py \A Py

A X

Figure 4 a) A C-domain K that is divisible by 7. b) An indivisible C-domain K that is not tight.

¢) An indivisible and tight C-domain K.

touches K at the endpoints. This can be achieved by restricting 7.) As Ko,..., K, are
pairwise interior-disjoint, p and ¢ lie in the same component of 0K, say 0K;. Therefore, =
splits the void K; into two parts A and B; refer to Figure 4 for illustrations.

In the case in which one of the two parts, say A, contains no hole of P and also not its
outer face (Figure 4b), we use a local operation to enlarge K following the rubber band
metaphor. We show in Lemma 4 that all of A is in GHp(K). A C-domain without such a
geodesic is called tight.

The other possible situation is that both A and B contain at least one hole or the outer
face of P. In this case we have a path that is topologically different from all paths in K, and
we say that K is divisible by 7 (Figure 4a). If no such path exists, then K is indivisible.

Clearly, any geodesically convex C-domain must be indivisible and tight. In the remainder
of this section, we prove in form of a characterization that the reverse implication holds as
well, i.e., a C-domain K is geodesically convex if and only if it is indivisible and tight.

Tightness of cactus domains. For 1 <i <t, let V(i) = Up,cf, V(F;) be the vertices of
all holes P; of P for which P; is contained in the void K;. Observe that, in general, dK;
may contain vertices of holes of P not contained in K;. Thus, Vi (i) may be different from
the set of vertices of P contained in K;. As P, is not contained in any inner void of K, for
the outer void, we let Vi (0) = V(Py) U UPngo V(P;). In particular, Vg (0) # 0.

A curve v separates two compact subsets A, B C R? if every curve that connects a point
in A with a point in B intersects v. Given a void K; of K with V(i) # 0, we define
the reduction o(K;) as the minimum length curve in P that separates Vi (i) from int(K)
(possibly o(K;) = 0K;). We can think of o(K;) as being obtained by continuously tightening

a curve tracing 0K; as much as possible while maintaining separation between Vg (i) and K.

Algorithmically, an inner void K;, i > 1, can usually be treated as a simple polygon. It
follows from Toussaint’s algorithm [20] that o(K;) is a (non-simple, in general) closed walk
in Visg, (Vi (7)); in fact, o(K;) is a cactus curve. Similarly, for the outer void Ky the outside
domain is formed by the outer void and a collection of simple polygons (P, and possibly
some holes in the exterior of K). The algorithm of de Berg [10] asserts that o(Kj) is a cactus
curve in this case as well.

For an inner void Kj;, i > 1, the boundary 0K; encloses o(K;). For the outer void Ky,
the curve o(Kj) encloses 0Ky; see Figure 5. Regardless, 0K; and o(K;) form an annulus
(possibly with no interior point). We say that any point in this annulus lies between 0K; and
o(K;). Given a C-domain K, a void K; of K is tight if Vg (i) # 0 and 0K; = o(K;). We say
that K is tight if K; is tight for each 0 < i < t¢. If K is tight, then for each 1 < i < ¢, the
void K; contains at least one hole of P; otherwise, Vi (i) would be empty.

8:7

SWAT 2018

8:8

Convex Hulls in Polygonal Domains

Ky

o(Ko)

Figure 5 Left: A C-domain K with two inner voids. Right: The reductions of the voids Ko
and K are depicted. The curve (K1) is enclosed by 0K1, while 9K is enclosed by o(Ko) (curves
shown in solid red and blue, respectively). Every point between 0K; and o(K;) belongs to GHp (K).
Notice that, since K> has no hole, we have Ko C GHp(K).

» Lemma 4. Let P be a polygonal domain, K = (C,K1,...,K;) a C-domain in P, and K;
a void of K, for 0 <i <t. (1) If V(i) # 0, then each point that lies between OK; and o(K;)
belongs to GHp(K). (2) If Vk (i) =0, then K; C GHp(K).

Characterization of geodesically convex cactus domains. Using the above lemma, we are
ready to give sufficient and necessary conditions for a C-domain to be geodesically convex.
It remains to formally define divisibility. Given a void K;, we say that two points p,q € 0K;
separate K; if a geodesic in I1p(p, q), called separating geodesic, splits K; into two connected
components, each containing either at least one hole of P or the outer face of P; see Figure 4a.
We say that K; is divisible if some pair of points on JK; separates K;. Analogously, K; is
indivisible if no pair of points on JK; separates K;. A C-domain is divisible if at least one of
its voids is divisible; otherwise, it is indivisible.

» Theorem 5. A C-domain K is geodesically convex if and only if it is indivisible and tight.

Theorem 5 is the main structural result our algorithm relies on. To algorithmically test
divisibility of a C-domain, we use the following lemma.

» Lemma 6. If a C-domain K is divisible, then there exists a geodesic w separating a void
K; with the following three properties. (i) The intersection of m with OK consists only of its
endpoints. (ii) It contains a vertex of P in its relative interior or both of its endpoints are
vertices of K;. (i) It consists of at least one segment that intersects the interior of K;.

5 Computing the geodesic convex hull

In this section, we present an algorithm that, given a polygonal domain P and a set S of
sites, computes GHp(S). To simplify the presentation and the analysis, we assume that
|S| = O(n), where n is the number of vertices of P. But the exact dependency on |S| can be
easily derived from our proofs.

Our algorithm is founded upon the characterization of Theorem 5. We first start with the
C-domain formed by the union of all geodesics going from an arbitrary site of S to all other
sites. As a next step, we make use of Lemma 4 on the resulting C-domain to obtain a new
tight C-domain that we test for divisibility. If this tight C-domain is divisible, our procedure
reports a geodesic that separates it, which we add to the C-domain. The addition of this
separating geodesic generates a new C-domain that is not necessarily tight. We repeat the
procedure iteratively until we obtain a C-domain that is both tight and indivisible. Then by
Theorem 5 this domain is GHp(S).

L. Barba, M. Hoffmann, M. Korman, and A. Pilz

KZ KO

Figure 6 Left: A C-domain K and the reduction of each of its voids. Right: The new C-domain K’
obtained from K after applying steps (1) and (2) of the tightening process. In the left figure we have
two inner voids. The reduction of Ky and K; are shown in solid blue and red curves, respectively
(K2 need not be reduced because it has no holes). The right figure shows the resulting C-domain K.
This domain is not tight, so step (2) needs to be applied a second time (the region to be added is
shown dashed). Note that the indivisible void K5 may become divisible after the tightening process
(due to the geodesic between points = and y).

Computing tightenings of cactus domains. We introduce the tightening process of a C-
domain K = (C, Ky, ..., K;). Intuitively speaking, we want to enlarge K as little as possible
until it is tight. The result is another C-domain K’, which we call the tightening of K. In
order to do so, we proceed as follows: (1) for each 1 < i < ¢ such that Vg (i) = 0, we add
each point in this void to the tightening of K (effectively removing this void from K), and
(2) for each 0 < i <t such that Vg (i) # 0, compute the reduction of K; and add the space
in the annulus between 0K; and o(K;) to the tightening of K. Recall that the reduction
o(K;) of a void K; of K need not be a simple curve. Therefore, to obtain a valid C-domain,
we consider each bounded component of R? \ o(K;) (which are cactus faces) and add them
as new voids replacing K;. In particular, the resulting C-domain may have more voids than
K (and they need not be tight, see Figure 6). Thus, we apply again step (2) iteratively until
we obtain a C-domain in which the boundary of each void coincides with its reduction. Since
every newly created void needs to contain a hole of P, we obtain this C-domain after at
most h iterations. Since in the resulting domain the boundary of each void coincides with its
reduction, we obtain a tight C-domain K’, the tightening of K.

» Lemma 7. Given a C-domain K with O(n) vertices, we can compute the tightening of
K in O(hnlogn) time. Moreover, the tightening of K is a C-domain whose edges belong
to Visp(V(K)).

Testing divisibility of cactus domains. In this section we provide a deterministic algorithm
to determine if a C-domain is divisible. This property is considerably harder to test than
tightness. In fact, this test is the main bottleneck of our algorithm and the main algorithmic
challenge of this paper.

Let K = (C,Ky,...,K}:) be a tight C-domain. To test the divisibility of K, we test each
void K; separately. Using Lemma 6, it is sufficient to determine whether there is a separating
geodesic containing a vertex of P in its relative interior or that is a segment between two
vertices of K; that see each other. The latter can be easily tested using the visibility graph

of P. For testing the former, we modify an algorithm by Bae and Okamoto [5]: this O(n°*¢)-

time algorithm takes a polygonal domain on n vertices, and encodes all geodesics between
pairs of points on its boundary as the lower envelope of a collection of constant-degree distance
functions. While their algorithm serves to construct a data structure for shortest-path queries

8:9

SWAT 2018

8:10

Convex Hulls in Polygonal Domains

among points on the boundary of a polygonal domain, we are able to translate its main
ideas to test divisibility. Additionally, several new observations allow us to replace a factor
of O(n?*¢) for a factor of O(h?*) in the running time. The remaining part of this section
describes our algorithm in detail.

As a preprocessing step, compute the SPM from every vertex of P in overall O(n?logn)
time [15]. Then, for each edge e of K, split e at each point of intersection with the boundary
of a cell in the SPM of some vertex of P. In this way, we obtain the spm-subdivison of e into
spm-segments. The spm-subdivision of OK; is the union of the spm-subdivision of its edges.

Let spM(p) be the SPM for a point p. We claim that if, for some vertex v of P and cell ¢
of SPM(v), ¢ intersects OK; in three or more connected components, then there is a segment ¢
contained in this cell connecting two points of JK; through the interior of K;. Moreover, ¢
must be a separating geodesic, as otherwise ¢t would split K; into two components, one of
which would not contain a vertex of Vg (i). However, since ¢t can be used as a shortcut to
reduce the length of OK; while separating Vg (i) from K, we obtain a contradiction with
the tightness of K, which proves our claim. Thus, if a cell of the SPM of some vertex of P
intersects OK; in three or more connected components, then K; is divisible.

Therefore, to compute the spm-subdivision, we first compute the intersection points of the
SPM of each vertex with 0K, and then sort all these intersection points along the boundary
of K; to obtain the spm-subdivision of K. If at some point during this process we find a cell
of a SPM that intersects JK; in more than two connected components, then the algorithm
finishes and reports the separating geodesic contained in this cell. Thus, we assume from
now on that no cell of an SPM intersects 0K; in more than two connected components, i.e.,
each cell of an SPM contributes to O(1) spm-segments to the spm-subdivision. Because
we consider the SPM of the n vertices of P, each with O(n) cells, the spm-subdivision of
K consists of O(n?) spm-segments, and the total running time of our preprocessing step is
bounded by O(n?logn).

An important property of the spm-subdivision is that for a spm-segment s and a point
x € s, the set of vertices of P that are visible from x remains unchanged as x moves along s.
Thus, we let V; be the set of vertices of P visible from s. For a pair of spm-segments s and s’,
each geodesic with at least two segments from a point in s to a point in s’ starts with a vertex
v in Vi (i.e., v is the first vertex visited by this path after leaving s). Moreover, because s’ is
contained in a single cell of spPM(v), a geodesic from v to any point in s’ must have the same
combinatorial structure. Let v* be the last vertex visited in the path from v to any point
of s’ (note that we may have v = v*). Then, any path from a point = € s to a point y € s’
can be parametrized by the distance function f,(z,y) = d(z,v) + d(v,v*) + d(v*,y). Because
d(v,v*) is a known constant, f, is a constant degree algebraic function from s x s’ to R.
We could then compute the minimization diagram of the set Fy o = {fu(x,y) : v € Vi},
i.e., the lower envelope of these distance functions over all different starting vertices. This
diagram has the following property: the algebraic surface patch of f, appears in this lower
envelope if and only if there is a geodesic from a point x € s to a point y € s’ that passes
through v. We now look for a vertex v that lies in the interior of K; and f, appears in the
lower envelope. If this happens, there is a separating geodesic connecting s with s’ starting
at v (and thus we conclude that K; is divisible); note that by Lemma 6 this is sufficient
to determine divisibility. This gives us an algorithm to decide divisibility whose running
time is dominated by the computation of O(n?) minimization diagrams, one for each pair of
spm-segments. We will improve this later but first, we look in more detail at the starting
vertices of the geodesics we need to consider. The following observation leads to our main
improvement when compared to the algorithm of Bae and Okamoto [5].

L. Barba, M. Hoffmann, M. Korman, and A. Pilz

» Lemma 8. Given an spm-segment s and a hole H of P, there are at most two starting
vertices in H among all geodesics going from a point in s to a point in OK;. Moreover, they
are the counterclockwise- and clockwise-most vertices in Vs NV (H), when sorted radially
around any point in s.

Therefore, at most two geodesics from s to OK; can start at different vertices of V,NV (H).
That is, each hole can contribute to at most two start vertices, hence only a total of O(h)
starting vertices must be considered.

By Lemma 8, we can let V' C V; denote the set of O(h) starting vertices of paths going
from s to OK;. Moreover, we can compute V* in O(n) time by computing the maximum
and minimum element, among the vertices of each hole of P, in the radial order around
an arbitrary point of s. Because we need to consider only O(h) vertices in V*, we notice
that there are many divisions among spm-segments that do not correspond to the boundary
of a cell in the SPM of a vertex in V;*. Thus, we could modify our spm-subdivision with
respect to s and consider only the breaking points induced by the SPM of a vertex in V.
Because each SPM has complexity O(n) and since |V;*| = O(h), this induces at most O(nh)
divisions. In this way, we obtain a partition of 9K, into O(nh) s-segments, each being
a collection of consecutive spm-segments. The idea of using this subdivision is that, to
compute a minimization diagram of distance functions between s and an s-segment, we need
to consider only O(h) functions defined by the vertices in V*.

» Theorem 9. We can determine if a tight C-domain K of O(n) wvertices in a polygonal
domain P = (P, ..., Py) of n vertices is divisible in O(n3h?T¢) time.

Proof. Let s be a spm-segment. Note that, when going from one s-segment to a neighboring
one, the SPM cell of at most one vertex in V. can change. Intuitively, this means that the

distance functions we need to consider have “little” variation among neighboring s-segments.

We formalize this intuition as follows. Group h consecutive s-segments lying on the same
edge of 0K, and take their union to produce an s-block g. We claim that O(h) distance
functions need to be considered to compute the minimization diagram encoding all geodesics
from s to any s-block g. To show this, for each v € V*, let 7, be the number of cells of
SsPM(v) that intersect s-block g. Let o be a cell of sPM(v) that intersects g. Notice that
there is exactly one ending vertex v* in any geodesic from v to 0 Ng. Thus, we can define an
s-g-function f, s x (6 Ng) = R such that f, ,(z,y) = d(z,v) + d(v,v*) + d(v*,y). Note
that there are exactly 7, s-g-functions defined for each vertex v of V. Because ¢ consists
of h s-segments, we know that g can be intersected by at most O(h) cells among the SPMs
of the vertices in V*. Therefore, Zuev; Ty = O(h), i.e., there are in total O(h) s-g-functions
defined for all vertices of V. Moreover, any geodesic from s to g needs to start with a vertex
of V* and hence, it is considered in one of these functions. Consequently, the minimization
diagram of the s-g-functions encodes the distance of all geodesics going from s to g. Note
that this minimization diagram can be computed in O(h%*¢) time [19]. After computing it,
we can check within the same time whether there is a geodesic between s and g that goes
through the interior of K; by going through all elements of this lower envelope.

By grouping all O(nh) s-segments into consecutive s-blocks of at most h spm-segments,
each contained in a single edge of 9K;, we obtain O(n) s-blocks in total along 0K;. Therefore,
we need to compute O(n) minimization diagrams for a given spm-segment s, one for each
s-block, each in O(h?*¢) time. Repeating this over all O(n?) spm-segments gives a total
running time of O(n3h%+¢). <

» Theorem 1. Let P be a polygonal domain with n vertices and h holes, and let S C P be a
set of O(n) sites. The geodesic convex hull of S in P can be computed in O(n3h3+e) time.

8:11

SWAT 2018

8:12

Convex Hulls in Polygonal Domains

Proof. Let s be a site of S. For each s’ € S\ {s}, choose an arbitrary path in IIp(s,s’). Let
K9 be the plane connected graph obtained by taking the union of all chosen paths. Notice
that K° is a connected C-domain that contains all sites of S. Moreover, because K© is
plane (as no two geodesics from s can cross), K consists of O(n) vertices and edges and
K° C GHp(9) (as it consists of geodesics between points of S). We describe now a recursive
procedure that incrementally constructs the G-hull of S starting from K°.

Given a C-domain K" for some even number r, we construct K"*! as the tightening of
K" using Lemma 7 in O(hnlogn) time. Since P has h holes, K" is a tight C-domain with
at most h voids whose vertices and edges are contained in Visp(S). Thus, because K" is
plane, it has complexity O(n). We then use Theorem 9 to test whether K" ! is divisible or
not, which takes O(n3h?*¢) time. If K" is indivisible, then as it is also tight, Theorem 5
implies that K"*! is geodesically convex. Thus, as S C K"*! and since GHp(S) is the
smallest geodesically convex set that contains S, we get that GHp(S) C K"*!. Moreover,
because all points in K"*! belong to GHp(S) by Lemma 4, we know that K™+ C GHp(S).
Therefore, if K™*! is indivisible, then K™™' = GHp(S) and we are done.

Otherwise K"*! is divisible and we have found a separating geodesic, i.e., there is some
void of K™™' and two points x and y such that the path 7, (z,y) separates K"*1. In this
case, we add the path 7, (z,y) to K"! and obtain a new C-domain K™% C GHp(S) that is
not necessarily tight. Because 7 + 2 is even, we can repeat this procedure recursively until
finding a tight indivisible C-domain. One may think that one test for divisibility suffices, i.e.,
that this does not need to be repeated every time that a tightening is computed. However,
the tightening of an indivisible C-domain may be divisible; see Figure 6.

Note that in each round, if the tight C-domain K1 is divisible, then we find a new
separating geodesic that separates two holes of P that were previously in the same void of
K"+, In particular, we create a new void with at least one hole. Since we can have at most
h such voids, the above procedure will iterate at most h times and must end with a tight
indivisible domain that coincides with GHp(S).

The running time is dominated by the divisibility test given by Theorem 9 which has to be
executed at most h times. Thus, the total running time becomes O(n®h3+¢) as claimed. =

—— References

1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and
Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discrete
Comput. Geom., 56(4):836-859, 2016.

2 Oswin Aichholzer, Matias Korman, Alexander Pilz, and Birgit Vogtenhuber. Geodesic
order types. Algorithmica, 70(1):112-128, 2014. doi:10.1007/s00453-013-9818-8.

3 Sang Won Bae, Matias Korman, and Yoshio Okamoto. The geodesic diameter of polygonal
domains. Discrete Comput. Geom., 50(2):306-329, 2013.

4 Sang Won Bae, Matias Korman, and Yoshio Okamoto. Computing the geodesic centers of
a polygonal domain. In Proc. 26th Canadian Conf. on Computational Geometry, 2014.

5 Sang Won Bae and Yoshio Okamoto. Querying two boundary points for shortest paths in
a polygonal domain. Comput. Geom., 45(7):284-293, 2012. doi:10.1016/j.comgeo.2012.
01.012.

6 Ahmad Biniaz, Prosenjit Bose, Anil Maheshwari, and Michiel H. M. Smid. Plane geodesic
spanning trees, hamiltonian cycles, and perfect matchings in a simple polygon. Comput.
Geom., 57:27-39, 2016. doi:10.1016/j.comgeo.2016.05.004.

7 Prosenjit Bose, Erik D. Demaine, Ferran Hurtado, John Tacono, Stefan Langerman, and Pat
Morin. Geodesic ham-sandwich cuts. Discrete & Computational Geometry, 37(3):325-339,
2007. doi:10.1007/s00454-006-1287-2.

http://dx.doi.org/10.1007/s00453-013-9818-8
http://dx.doi.org/10.1016/j.comgeo.2012.01.012
http://dx.doi.org/10.1016/j.comgeo.2012.01.012
http://dx.doi.org/10.1016/j.comgeo.2016.05.004
http://dx.doi.org/10.1007/s00454-006-1287-2

L. Barba, M. Hoffmann, M. Korman, and A. Pilz

10

11

12

13

14

15

16

17

18

19

20

21

22

Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In Piotr
Indyk, editor, Proceedings of the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1655-1670. STAM,
2015. d0i:10.1137/1.9781611973730.110.

Yi-Jen Chiang and Joseph S. B. Mitchell. Two-point Euclidean shortest path queries in
the plane. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, 1999.

Mark de Berg. Translating polygons with applications to hidden surface removal. In John R.
Gilbert and Rolf G. Karlsson, editors, SWAT 90, 2nd Scandinavian Workshop on Algorithm
Theory, Bergen, Norway, July 11-14, 1990, Proceedings, volume 447 of Lecture Notes in
Computer Science, pages 60-70. Springer, 1990. doi:10.1007/3-540-52846-6_78.

Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Henk
Meijer, Mark H. Overmars, and Sue Whitesides. Separating point sets in polygonal
environments. Int. J. Comput. Geometry Appl., 15(4):403-420, 2005. doi:10.1142/
S0218195905001762.

Peter Eades and David Rappaport. The complexity of computing minimum separating
polygons. Pattern Recognition Letters, 14(9):715-718, 1993. doi:10.1016/0167-8655(93)
90140-9.

Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. J. Comput. Syst. Sci., 39(2):126-152, 1989.

John Hershberger and Subhash Suri. Matrix searching with the shortest-path metric. STAM
J. Comput., 26(6):1612-1634, 1997.

John Hershberger and Subhash Suri. An optimal algorithm for euclidean shortest paths in
the plane. STAM J. Comput., 28(6):2215-2256, 1999. doi:10.1137/S0097539795289604.
Anna Lubiw, Daniela Maftuleac, and Megan Owen. Shortest paths and convex hulls in 2d
complexes with non-positive curvature. CoRR, abs/1603.00847, 2016. arXiv:1603.00847.
Joseph S. B. Mitchell. Shortest paths and networks. In Handbook of Discrete and Compu-
tational Geometry, Second Edition. Chapman and Hall/CRC, 2004.

Joseph S. B. Mitchell, Giinter Rote, and Gerhard J. Woeginger. Minimum-link paths among
obstacles in the plan. Algorithmica, 8(5&6):431-459, 1992. doi:10.1007/BF01758855.
Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete
Comput. Geom., 12(3):327-345, 1994.

Godfried T. Toussaint. Computing geodesic properties inside a simple polygon. Revue
D’Intelligence Artificielle, 3(2):9-42, 1989.

Haitao Wang. On the geodesic centers of polygonal domains. In Proc. 24rd Annual European
Symposium on Algorithms, volume 57 of LIPIcs, pages 77:1-77:17, 2016.

Emo Welzl. Constructing the visibility graph for n-line segments in o(n?) time. Inf. Process.
Lett., 20(4):167-171, 1985. doi:10.1016/0020-0190(85)90044-4.

8:13

SWAT 2018

http://dx.doi.org/10.1137/1.9781611973730.110
http://dx.doi.org/10.1007/3-540-52846-6_78
http://dx.doi.org/10.1142/S0218195905001762
http://dx.doi.org/10.1142/S0218195905001762
http://dx.doi.org/10.1016/0167-8655(93)90140-9
http://dx.doi.org/10.1016/0167-8655(93)90140-9
http://dx.doi.org/10.1137/S0097539795289604
http://arxiv.org/abs/1603.00847
http://dx.doi.org/10.1007/BF01758855
http://dx.doi.org/10.1016/0020-0190(85)90044-4

Tree Containment With Soft Polytomies

Matthias Bentert

TU Berlin, Institut fiir Softwaretechnik und Theoretische Informatik, Berlin, Germany
matthias.bentert@tu-berlin.de

Josef Malik

Czech Technical University, Prague, Czech Republic
josef.malik@fit.cvut.cz

Mathias Weller
CNRS, LIGM, Université Paris Est, Marne-la-Vallée, France
mathias.weller@u-pem.fr

—— Abstract

The TREE CONTAINMENT problem has many important applications in the study of evolutionary
history. Given a phylogenetic network N and a phylogenetic tree T" whose leaves are labeled by
a set of taxa, it asks if N and T are consistent. While the case of binary N and T has received
considerable attention, the more practically relevant variant dealing with biological uncertainty
has not. Such uncertainty manifests itself as high-degree vertices (“polytomies”) that are “jokers”
in the sense that they are compatible with any binary resolution of their children. Contrasting
the binary case, we show that this problem, called SOFT TREE CONTAINMENT, is N °P-hard,
even if N is a binary, multi-labeled tree in which each taxon occurs at most thrice. On the other
hand, we reduce the case that each label occurs at most twice to solving a 2-SAT instance of
size O(|T|3). This implies N'P-hardness and polynomial-time solvability on reticulation-visible
networks in which the maximum in-degree is bounded by three and two, respectively.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and
exact algorithms, Applied computing — Biological networks

Keywords and phrases Phylogenetics, Reticulation-Visible Networks, Multifurcating Trees
Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.9

Acknowledgements The project leading to this work was conceived on the 2017 research retreat
of the Algorithmics and Computational Complexity group of TU Berlin.

1 Introduction

With the dawn of molecular biology also came the realization that evolutionary trees,
which have been widely adopted by biologists, are insufficient to describe certain processes
that have been observed in nature. In the last decade, the idea of reticulate evolution,
supporting gene flow from multiple parent species, arose [2, 15]. A reticulation event can
be caused by, for example, hybridization (occurring frequently in plants) and horizontal
gene transfer (a dominating factor in bacterial evolution). Reticulate evolution is described
using “phylogenetic networks” (see the monographs by Gusfield [11] and Huson et al. [13]).
A central question when dealing with both phylogenetic trees and networks is whether or not
they represent consistent information, formulated as the question whether or not the network
“displays” the tree. This problem is known as TREE CONTAINMENT and it has been shown
NP-hard [14, 17]. Due to its importance in the analysis of evolutionary history, attempts
have been made to identify polynomial-time computable special cases [6, 5, 1, 10, 14, 17, 7, 18],

© Matthias Bentert, Josef Malik, and Mathias Weller;

licensed under Creative Commons License CC-BY
16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No.9; pp.9:1-9:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@tu-berlin.de
mailto:josef.malik@fit.cvut.cz
mailto:mathias.weller@u-pem.fr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Tree Containment With Soft Polytomies

as well as moderately exponential-time algorithms [8, 18]. However, all of these works are
limited to binary networks and trees.

In reality, we cannot hope for perfectly precise evolutionary histories. In particular,
speciation events (a species splitting off another) occurring in rapid succession (only a few
thousand years between speciations) can often not be reliably placed in the correct order
they occurred. The fact that the correct order of bifurcations is unknown is usually modeled
by multifurcating vertices and, to tell them apart from speciation events resulting in multiple
species, the former are called “soft polytomies” and the latter are called “hard polytomies”. Of
course, the same argument holds for non-binary reticulation vertices indicating uncertainty
in the order of hybridization events. Soft polytomies have a noteworthy impact on the
question of whether a tree is compatible with a network: since a soft polytomy (also called
“fan”) on the taxa a, b, and c represents lack of knowledge regarding their history, we would
consider any binary tree on the taxa a, b, and ¢ compatible with it. In this work, we present
first algorithmic results for TREE CONTAINMENT with soft polytomies (which we call SOFT
TREE CONTAINMENT). We consider the case where the network is a multi-labeled tree
and show that the problem is cubic-time solvable if each label occurs at most twice (by
reduction to 2-SAT) and NP-hard, otherwise. This implies corresponding results for (single-
labeled) “reticulation-visible” networks, depending on their maximum in-degree. Despite
being an intermediate step in proving results for networks, multi-labeled trees are themselves
important, for example when handling gene trees, in which different versions of a gene may
be found in the same species.

Finally, our results have impact on the CLUSTER CONTAINMENT problem [13] since it is
a special case of our problem.!

Preliminaries

A phylogenetic network (or network for short) on a set X of taxa is a rooted, leaf-labeled
DAG in which all vertices that do not have in-degree at most one have out-degree exactly
one. These vertices are called reticulations and the others are called tree vertices. A network
without reticulations is called a (phylogenetic) tree. By default, no label occurs twice in
a network, and we will make exceptions explicit by calling networks in which a label may
occur more than once multi-labeled (note that networks are a special case of multi-labeled
networks in which each label occurs only once). This allows us to use leaves and labels (taxa)
interchangeably. For brevity, we abbreviate {z,y} to xy, and {z,y, 2z} to xyz. Let N be a
network with root py. We denote the set of vertices in N by V(N). We define a relation
“<n” on subsets of V(N) such that U <n W if and only if N contains a w-u-path for each
u €U and w e W. If u <y w, we call u a descendant of w and w an ancestor of u. For
each v € V(N), we let N, be the subnetwork of N induced by {u | u <y v} and we denote
the set of leaf-labels in N, by £(v) and abbreviate L(N) := L(pn). Such a set is also called
a cluster of N. Note that, if N is a tree, IV, is the subtree rooted at v. We abbreviate
n = |L(pn)|. For any X C V(N), we let LCA (X)) be the set of least common ancestors of
X, that is, the minima (wrt. <x) among all vertices v of N with X <y u (in particular, if
N is a tree, LCA N (X) is a single vertex, not a set). If clear from context, we may drop the
subscript. Note that, in trees, the LCA of any three vertices has a unique minimum. For any
U C V(N), we denote the result of removing all vertices v that do not have a descendant in

L Given a binary network N on the taxa X and some Y C X, CLUSTER CONTAINMENT asks if N displays
any binary tree T in which £(u) =Y for any w. This is equivalent to N softly displaying the tree T in
which all taxa in X \ Y are children of the root and there is another child u of the root with children Y.

M. Bentert, J. Malik, and M.Weller

U by N|r and N||1, is the result of suppressing all degree-two vertices in N|,. Suppressing a
vertex u in N with unique parent p and unique child c refers to the act of removing u and
adding the edge pc, unless this edge already exists. Note that, if N is a tree, then N|y, is the
smallest subtree of N containing the vertices in L and the root of N and N||z, is the smallest
topological minor of N containing the vertices in L and the root of N. A vertex u in N is
called stable on v if all py-v-paths contain u. If, for each reticulation v in N there is some
leaf ¢ such that u is stable on ¢, then N is called reticulation visible. A network is binary if
all vertices except the root have degree (=in-degree + out-degree) at most three and the root
has degree two. A binary network Np on three leaves a, b, and c is called a triplet and we
denote it by ab|c if ¢ is a child of the root of Ng. Np is called binary resolution of a network
N if N is a contraction of Ng. In this case, there is a surjective function x : V(Ng) — V(N)
such that, contracting all edges uv of N with x (u) = x (v) results in N (more formally, for
each x,y € V(N), the edge xy exists in IV if and only if there is an edge between ! (z)
and x~! (y) in Ng). We call such a function contraction function of Ng for N. We suppose
that all binary resolutions are minimal, that is, they do not contain biconnected components
with exactly one incoming and one outgoing edge. Observe that, when contracting edges
of Np to form NN, we never create vertices with in-degree and out-degree more than one.

» Observation 1. Let Np be a binary resolution of a network N, let x be a contraction
function of Ng for N, and let uw € V(N). Then, x~* (u) does not contain a reticulation and
a tree vertex with out-degree more than one.

If N contains a subgraph S that is isomorphic? to a tree T, then we simply say that N
contains a subdivision of T'. Slightly abusing notation, we consider each vertex v € V(T')
equal to the vertex of S (and, thus, of N) that v is mapped to by an isomorphism. Thus,
S consists of V(T') and some vertices of in- and out-degree one. The following definition is
paramount.

» Definition 2. Let NV be a network and let T" be a tree. Then,

N firmly displays T if and only if N contains a subdivision of T" and

N softly displays T if and only if there are binary resolutions Ng of N and Tg of T such

that Np firmly displays Tg.
Definition 2 is motivated by the concept of “hard” and “soft” polytomies (that is, high degree
vertices): In phylogenetics, a polytomy is called firm or hard if it corresponds to a split of
multiple species at the same time and soft if it represents a set of binary speciations whose
order cannot be determined from the available data. In this sense, a polytomy is compatible
with another if and only if there is a biological “truth”; that is, a binary resolution, that is
common to both. Note that, for binary IV and T, the two concepts coincide. Furthermore,
for trees on the same label-set, the concepts of display and binary resolution coincide.

» Observation 3. Let T and Ty be trees on the same leaf-label set and let T be binary.
Then, T softly displays Tp if and only if T is a binary resolution of T.

Throughout this work we will mostly use the soft variant and we will refer to it simply as
“display” for the sake of readability. Note that a binary tree displays another binary tree
if and only if they are isomorphic. Thus, in the special case that N is a tree, the “display’
relation is symmetrical, leading to the following observation.

)

2 In this work, “isomorphic” always refers to isomorphism respecting leaf-labels, that is, all isomorphisms
must map a leaf of label A to a leaf of label A.

9:3

SWAT 2018

9:4

Tree Containment With Soft Polytomies

» Observation 4. A tree T displays a tree T' if and only if T' displays T.
Finally, the central problem considered in this work is the following.

SOFT TREE CONTAINMENT
Input: A network N and a tree T
Question: Does N softly display T'7

2 Display with Soft Polytomies

The concept of “display” is well-researched for binary trees, in particular, triplets.

» Observation 5 ([4]). Let T be a binary tree and let a,b,c € L(Tg). Then, Tp displays ablc
if and only if LCA(ab) < LCA(bc) = LCA(ac). Indeed, Tg is uniquely identified by the
set D of displayed triplets, that is, T is the only binary tree displaying the triplets in D.

However, the “display”-relation with soft polytomies lacks a solid mathematical base in the
literature. In this section, we develop alternative characterizations of the term “(softly)
display”. To do this, we use the following characterization of isomorphism for binary trees.

» Observation 6. Binary trees Tp and Ty on the same label-set are isomorphic if and only
if, for each uw € V(Tp) and each Y C L(u), u has a child v with L(v) =Y if and only
if LCAq, (L(u)) has a child v with L(v") =Y.

» Lemma 7. Let N and T be trees. Then, N displays T if and only if, for all u € V(T)
and v € V(N), it holds that L(u) C L(v), L(u) 2 L(v) or L(u)NL(v) = 2.

Proof. Since each label appears only once in IV and T, it holds that N displays T if and only
if there are binary resolutions N2 of N and TP of T such that N? and T? are isomorphic.

“=": Let N softly display T'. Towards a contradiction, assume that there are u € V/(N)
and w € V(T) such that L(u) € L(v), L(u) 2 L(v) and L(u) N L(v) # &, that is, there
are z € L(u) \ L(w), y € L(u) N L(w), and z € L(w) \ L(u). Since there are binary
resolutions NZ and T2 of N and T, respectively, such that N? and T® are isomorphic, there
is a vertex v’ in N® with £(u') = L£(u) and a vertex v in T with £(v") = L(v). Since NB
and TF are trees and each leaf-label only appears once in each of them, Nf, contains the
leaves = and y but not the leaf z. Analogously, Tﬁ contains the leaves y and z but not the
leaf x, contradicting N? being isomorphic to T5.

“«<": In order to show the contraposition, suppose that N does not softly display T
Since N does not softly display T, for any binary resolutions N2 of N and T8 of T, it
holds that NZ and T'® are not isomorphic. By Observation 6, there are vertices p € V/(NB)
and ¢ := LCArs(L(p)) with children p1,p2 and ¢1, g2, respectively, such that L(p1) # L(q1)
and L(p1) # L(g2). We will use the fact that L(p1) W L(p2) = L(p) = L(q) = L(q1) W L(q2)-
Case 1: L(p;) € L(g;) for any 4, j. Then, there are taxa

z € L(pi) N L(g5) = £(g;) \ L(p3—i)
y € L(g5) \ £(pi) = £(g;) N £(ps—), and
z € L(g3—5) = L(g3-5) \ L(pi) = L(p3—i) \ L(q;)-
The case where £(g;) € £(p;) holds is analogous.
Case 2: None of L(p1), L(p2), L(q1), and L(g2) are subsets of one another. Then, there are

taxa x,y, z such that € L(p1) N L(q1) ¥ € L(q1) \ L(p1), and z € L(q1) \ L(p1). <
We can relate the two forms of “display” for triplets in non-binary trees.

M. Bentert, J. Malik, and M.Weller

» Observation 8. Let T be a tree and let a,b,c € L(T). Then,
(a) T firmly displays ab|c if and only if LCA(ab) <y {LCA(ac), LCA(bc)}.
(b) T firmly displays aclb or bela if and only if T does not softly display ablc.

» Lemma 9. A tree T on X softly displays a tree T' on X < for all a,b,c € X,

T firmly displays ablc = T' softly displays ab|c, and
T firmly displays ablc = T softly displays ablc

Proof. “=": By Observation 4, it suffices to show the first of the claimed implications,
so let LCAp(ab) <r LCAr(abc) and assume towards a contradiction that 7" does not
display ablc. By Observation 8, we can suppose without loss of generality that 7" firmly
displays ac|b. But then, for v := LCAr(ab) and v := LCA1 (ac), we have a € L(u) N L(v),
be L(u)\ L(v), and ¢ € L(v) \ L(u). Thus, by Lemma 7, T does not display T'.

“«”: Towards a contradiction, assume that T does not display 77. By Lemma 7, there
are u € V(T) and v € V(T") and a,b,c € X such that a € L(u) N L(v), b € L(u) \ L(v),
and ¢ € L(v) \ L(u). Thus, LCAr(ab) <7 LCAr(abc) and LCAx (ac) <y LCAp:(abc). By
Observation 8, T firmly displays ab|c and T’ firmly displays ac|b. With the implications
of the lemma, we get that T softly displays ab|c and T softly displays ac|b, contradicting
Observation 8. |

The final ingredient to our alternative characterization is the observation that, in (multi-
labeled) trees, edge contraction does not change the ancestor relation.

» Observation 10. Let T be a tree, let T' be the result of contracting a vertex u onto its
parent v, and let Y and Z be sets of leaves common to T and T'. Then,

(a) LCAT(Y) <r LCAT(Z) <~ LCAT/(Y) <7 LCAT/(Z) and

(b) LCAT(Y) <r LCAT(Z) = LCAT/(Y) <7 LCA]W(Z)

We can now prove the following alternative definition of “display”.

» Lemma 11. Let T be a tree on the label-set X.

(a) T displays the leaf-triplet ablc if and only if LCA(ab) < {LCA(bc), LCA(ac)}.

(b) T displays a binary tree Tp on X if and only if T displays oll triplets displayed by Tg.

(c) T displays a tree T' on X (and vice versa) if and only if there is a binary tree Tp on X
displayed by both T and T'.

(d) A network N displays T if and only if N contains (as subgraph) a tree T' on X that
displays T'.

Proof. (a) By definition, T displays ab|c if and only if there is a binary resolution T of T dis-
playing ab|c. By Observation 5, T displays ab|c if and only if LCAp, (ab) <1, LCAr, (abc) =
LCAr,(ac) = LCAr, (bc). Now, since T is binary, we cannot have that LCAr, (ab) =
LCAr, (bc) = LCAT, (bc) and, thus, LCAx, (ab) <1, {LCAr,(ac), LCAr,(bc)} which, by
Observation 10, is equivalent to LCAr(ab) <r {LCAr(ac), LCAr(bc)}.

(b) “=": Assume towards a contradiction that a triplet ab|c of Tp is not displayed
by T and recall that {LCAr(ab), LCAr(ac), LCAr(bc)} has a unique minimum z. Since,
by (a), LCAr(ab) €7 LCAr(abc), we have © <p LCAr(ab) <1 LCAr(abc). Without loss
of generality, let = LCAr(ac). Then, by Observation 10, LCAr, (ac) <7, LCAr, (abc),
implying that T displays ac |b. Hence, Tp displays conflicting triples, contradicting
Observation 5.

“<”: Assume towards a contradiction that T does not display T. By Lemma 7, there
are vertices u € V(T') and vg € V(Tg) such that £L(u) and L(vp) intersect, but are not in the

9:5

SWAT 2018

9:6

Tree Containment With Soft Polytomies

PN

Figure 1 Illustration of Lemma 14: (N, T) left and (N1, T4) right.

subset relation, that is, there are z € L(u) \ L(vg), y € L(vp) \ L(u) and z € L(u) N L(vE).
Thus, z,2z <p LCAp(zz2) <r u <p LCAr(zyz) and y,z <r, LCA7,(y2) <rp vB <rp
LCAr, (xzyz). Then, by (a), Tp displays yz |z implying that T displays yz |« since all
triplets displayed by Tz are displayed by T. By (a), we have LCAr(yz) <7 LCAr(zz),
implying z,y, z <7 LCAr(xz) < u, which contradicts v <p LCArp(xyz).

(¢) By definition, T" displays 7" if and only if there are binary resolutions Tp and T of T
and Tg, respectively, such that Ts displays T. Note that, if such trees exist then they are
equal since, by (b), Ts displays all triplets displayed by T and, by Observation 5, Ts = T.
Conversely, by Observation 3, all binary trees on X displayed by T and T’ are binary
resolutions of T and T".

(d) We defer this proof to the full version of this paper. <

Note that, if N contains a subdivision S of T, then any reticulation in N that is in S has in-
and out-degree one in S. Further, contracting an edge between two tree vertices of IV cannot
break softly displaying 7.

» Observation 12. Let N be a network that displays a tree T'. Then, the result of contracting
an edge between two tree-vertices or two reticulations of N displays T .

Also note that, if N displays T, then the result of removing any label from N displays the
result of removing this label from 7.

» Observation 13. Let N be a network and let T be a tree on X. Then, N displays T if
and only if N|x: displays T|x: for each X' C X.

3 Single-Labeled Trees

In a first step, we suppose that N is a tree. While Lemma 7 already provides the means to
solve this case in polynomial time, we aim to be more efficient. If N and T are both binary,
this special case is solved using the folklore “cherry reduction”: remove a pair of leaves that
are siblings in both N and 7" and label their parents in N and T" with the same new label .
Here, we prove an analog for non-binary trees that allows solving the case that N is a tree in
linear time.

» Lemma 14. Let N be a network on X with root py, let T be tree on X, let uy € V(N)
and up € V(T) and let C and Cr be sets of children of uy and ur, respectively, such that
(@) Ueecy £(6) = Uee, L(e) =Y, and

(b) for all X €Y, all pn-A-paths contain some ¢ € Chy.

Let A€ Y, let Ny := N|[x\(v—x), let Ty :=T||x\(v—»), let N2 := Nl||y, and let Ty :=T'|y.
Then, N displays T if and only if Ny displays Ty and No displays Ty (see Figure 1).

M. Bentert, J. Malik, and M.Weller

Proof. Since “=" follows directly from Observation 13, we only show “<”. By Lemma 11, for
each 7 € {1,2}, there is a tree); in N; (containing the root of N;) that displays T; and there
is a binary tree TiB that is displayed by both Q; and T;. We show that the binary tree T

resulting from replacing the leaf A in T2 by TP is displayed by both 7" and a subtree Q of N.

To this end, note that T is the result of replacing the leaf A in 77 by T5 and let @ be the result
of replacing the leaf \ in Q1 by Q2. Since T} is displayed by both T} and Q; for all i € {1,2},
the following argument holds for both T" and @, but we only state it for 7. To show that T

displays T'g, it suffices to prove that T displays all triplets displayed by T (by Lemma 11(b)).

Towards a contradiction, assume that Ts displays a triplet zy|z that T does not display.

Case 1: x,y € Y. If 2 is also in Y, then zy|z is displayed by Tf and, thus, by T, and by T

If 2z ¢ Y, then LCAr(2y) <7 LCA7(Y) <7 ur <7 {LCAr(zz),LCAr(y2)} by (a) (and
(b) when arguing for @ instead of T') and, by Lemma 11(a), T displays zy|z.

Case 2: z or y is not in Y. Without loss of generality, let © ¢ Y. If also y ¢ Y, then A can
take the role of 2 in the assumption, that is, Tz displays zy|\ but T does not. But then, T}
displays zy|A but Ty does not, contradicting the fact that Ty displays T5. Thus, y € Y and,
completely analogously, z € Y. But then, LCAp, (yz) <7, LCAr,(Y) < LCAr, (zy)
which, by Lemma 11(a), contradicts Ts displaying zy|z.

Finally, let T* be the result of contracting LCAg(Y") (that is, the former root of T5) onto its

parent in Q. Then, T* is a subtree of N since N is (isomorphic to) the result of replacing ¢

by Ny in N; and contracting the the root of Ns onto its parent in the result. Since @

displays Ty, so does T* (by Observation 12). Thus, T* is a subtree of N that displays T

and, by Lemma 11(d) N displays 7. <

In the following, the operation of splitting off a subnetwork B with root u in a network
N means to
remove B and
add a new leaf labeled A ¢ X to w.
This gives rise to the networks N7 (containing the new leaf \) and Ny := B. Lemma 14
implies correctness of the following reduction rule.

» Reduction Rule 1. Let (N, T) be an instance of SOFT TREE CONTAINMENT, let B be a
lowest biconnected component (such that B does not consist of a leaf and a non-leaf) or a
cherry of N with root w. Then, split off B from N and split-off Ty.car () from T (giving
the new leaf in N and T the same new label \).

Note that Reduction Rule 1 can be applied exhaustively in linear time. This is because

(a) biconnected components can be found in linear time [12], and

(b) no biconnected component of N (except B) is modified by application of Reduction
Rule 1.

Now, if N is a (single-labeled) tree, then Reduction Rule 1 splits-off only cherries from N

and each such cherry can be checked against the subtree split-off from 7" in linear time.

» Theorem 15. SOFT TREE CONTAINMENT can be solved in linear time if N and T are

trees.

4 Tree Containment in Multilabeled Trees

To show that SOFT TREE CONTAINMENT is NP-hard even when restricting IV to be a
multilabeled tree, we reduce from 2-UNION INDEPENDENT SET, which asks if a graph
(V, E1 U E5) has a size-k independent set, and which is NP-hard even if (V, E}) is a collection

9:7

SWAT 2018

9:8

Tree Containment With Soft Polytomies

of disjoint Kos (that is, a matching) and (V, E5) is a collection of disjoint Pys and Pss [16].
For our reduction, we allow (V, E1) to also contain K3s and demand that k equals the number
of cliques in (V, Ey). To prove that this variant remains NP-hard, we slightly modify the
reduction from 3-SAT given by van Bevern et al. [16].

» Construction 1. Consider an instance ¢ with n variables x; and m clauses c¢; of 3-SAT
such that each variable occurs at least twice in ¢ and at most once in each clause. For each
variable x;, let J; be the list of indices of clauses that contain x; or —~x; and let J;[¢] denote the
0% element of this list. Construct a graph (V, E) as follows. For each variable z;, construct

a cycle V; of 2|.J;| vertices: (ul,u},u?,u?,...). For each clause c; on the variables z;,zy, xy,

construct a triangle C; = (w}wf,wf) For each variable x; and each £ <|J;|, connect wSM

to wt if ;[contains x;, and to ul if ¢y, contains —x;. Now, (V,Ey) (bold in the figure)
j —j+lmod|J;|

i',uz } while Ey contains all other edges.

consist of all triangles and all edges {u

Note that (V, Ey) consists of disjoint Kas and K3s and (V, FEs) consist exclusively of Pss.
Also note that this generalizes to k-SAT but (V, E1) becomes a collection of disjoint Kss and
Kks.

» Lemma 16. ¢ is satisfiable if and only if (V, E) has a size-k independent set, where k is
the number of cliques in (V, Ey).

Proof. Note that
k equals the number of cliques in (V, Ey),
each clique contains at most one independent vertex, and
all vertices in V are incident with some edge in Ej.
Hence, (V, E) contains a size-k independent set, if and only if a largest independent set
in (V, E) contains exactly one vertex of each clique in (V, E1). We will first show that if (V| E)
contains an independent set of size k, then ¢ is satisfiable and afterwards the other direction.
“«<”: Let I be an independent set of size k in (V, E). Then, for each i, I contains
either u} or). By construction of V;, it holds that if u* € I for some h, then uf,v! € I for
all £ < |J;|. Analogously, if @? € I for some h, then u¢,v¢ € I for all £ < |.J;|. Consider any
7
gadget ojf x; which is either ug? for some h if —x; occurs in clause ¢ or ﬂ? otherwise. If the
neighbor is u;'-’, then all vertices ﬂ? with 1 < ¢ < |J;| are in I and otherwise all vertices uﬁ.
We set z; to true if u} is in I and to false if u} is in I. Consider any clause ¢; in ¢. The
literal whose corresponding vertex is in I is then set to true as its neighboring vertex u is

vertex w’ in the clause gadgets that is in I. Then, w§ has a unique neighbor in the variable

not in I and u has a neighbor u}* for some h if z; occurs in ¢; and a neighbor @/ for some h
if ~x; appears in c¢;. Since each clause has at least one variable set to true, ¢ is satisfiable.

“=": We will now show that if ¢ is satisfiable, then (V, E) contains an independent set
of size k. Let 8 be a satisfying assignment for ¢. We construct an independent set I for
(V, E) as follows. For each x; and each ¢ < |J;|, the set I contains the vertices u! and v
if 3(z;) = 1, and the vertices @ and ¥%, otherwise. For each clause c; we pick one literal
that is satisfied by our assignment of the variables and put the corresponding vertex into 1.
Observe that I is of size k as exactly one vertex of each clique in (V, Ey) is in I. Further, T
is independent since, in each variable gadget, we pick every second vertex and, if a vertex

M. Bentert, J. Malik, and M.Weller

N T
. i
(0@

Figure 2 Illustration of Construction 2. Left: the initial instance of 2-UNION INDEPENDENT SET
with 4 colors (@,@,0,0) and a size-4 solution encircled. Right: the non-binary tree 7' (boxes and
triangles indicating label i1 and 2 for a color 7). Middle: the binary multi-labeled tree N with a
subdivision of T' (bold, gray) corresponding to the solution to the left instance.

in a clause gadget is picked, then its neighbor in the corresponding variable gadget is not
picked. <

We reduce this version of 2-UNION INDEPENDENT SET to SOFT TREE CONTAINMENT
for multilabeled trees. To this end, we use an equivalent formulation where each clique
in (V, Eq) is represented by a color. The problem then becomes the following: Given a
vertex-colored collection of Pss, select exactly one vertex per color such that all selected
vertices are independent. Note that the number of occurrences of each color equals the size
of its corresponding clique in (V, Ey).

» Construction 2 (See Figure 2). Given a vertez-colored collection G of Pss constructed by
Construction 1, we construct a multi-labeled tree N and a tree T as follows. Construct T by
first creating a star that has exactly one leaf of each color occurring in G and then, for each
leaf x with color i, adding two new leaves colored i1 and iz, respectively, and removing the
color from x. Construct N from G as follows: For each Ps (u,v,w) where black, gray, and
white denote the colors of u, v, and w, respectively, construct the binary tree depicted below,
where a box or a triangle colored i represents color i1 or is, respectively. Then, add any
binary tree on |V(G)| leaves and identify its leaves with the roots of the constructed subtrees.
Notice u,v,w € V(G)NV(N).

» Lemma 17. Construction 2 is correct, that is, N displays T if and only if the given
collection G of Pss has a colorful independent set using each color exactly once.

Proof. Note that IV is binary and let k£ be the number of colors in G.

“=": Let N display T, that is, N contains a binary tree S displaying T which, by
Lemma 11 is equivalent to T displaying S. Consider any color i occurring in G. Then, S
contains leaves u; and us in S labeled i; and is, respectively, and we denote their least
common ancestor in S by u’. If u; and uy are neither siblings, nor in an uncle-nephew-
relation®, then we modify S to include the sibling/uncle of u; in N into S instead of us.

3 Two vertices are in an uncle-nephew relation if the sibling of one is the parent of the other

9:9

SWAT 2018

9:10

Tree Containment With Soft Polytomies

Thus, we do not lose generality by assuming that uw; and us are either siblings or in an
uncle-nephew-relation. We show that the set Q = J, u’ is a size-k colorful independent set
in G. First, for each color i, we know that S contains exactly one leaf labeled i; and one leaf
labeled is, so v’ is unique and, by construction of N, no two u* coincide, implying that Q
contains exactly one vertex of each color. Towards a contradiction, suppose that @) is not
independent in G, that is, there are colors i and j such that v* and u’ are adjacent in G.
Without loss of generality, u’ is the center of a P; in G, implying that S contains the subtree
((((J1,72),%1),42) (that is, a caterpillar with leaves labeled ji, ja2, 41, i2 in preorder). But
then, jii1|iz is displayed by S but not by T, thereby contradicting Definition 2(b).

“<": Let () be a size-k colorful independent set of GG, let L be the set of leaves that,
for each u € @ of color i, contains the leaves labeled i; and is in N, and let S := N|L.
Note that S is a subgraph of NV and, as N is binary, S is a subdivision of a binary tree.
Since @ contains exactly one vertex of each color in G, we know that S contains all labels
that occur in T. By Definition 2(d), to show that N displays T, it suffices to show that S
displays T. To this end, assume that S displays a triplet zy|z that T does not display.
Then Definition 2(a) lets us assume LCAp(zz) <r {LCAr(xy), LCAr(yz)} without loss
of generality. Thus, x = 41, 2 = i3, and y = j; for colors i # j. By Definition 2(a),
we have LCAg(i151) <g LCAg(i1iz). Then, 41 and is cannot form a cherry in S and,
thus, S|, iy.5,,5.} 15 the subtree (((j1,J2),1),42). By construction of S, this implies that Q
contains two vertices of a P3 in G, one of color ¢ and one of color j, and the latter is in the
middle, contradicting independence of @) in G. |

» Theorem 18. SOFT TREE CONTAINMENT is NP-hard, even if N is a binary 3-labeled
tree.

Note that the number of occurrences of each label in N equals the number of occurrences
of each color in G which, in turn, equals the size of a largest clique in (V, E7) (instance of
2-UNION INDEPENDENT SET), which equals the size of a largest clause (instance of 3-SAT),
we can state the following generalization of Theorem 18.

» Corollary 19. For each k, k-SAT reduces to SOFT TREE CONTAINMENT on binary k-labeled
trees. Further, CNF-SAT reduces to SOFT TREE CONTAINMENT on binary multilabeled trees.

Corollary 19 immediately raises the question of what happens in the case that N is a 2-labeled
tree and we address this question in Section 4.1. Note that, for SOFT TREE CONTAINMENT,
the case that IV is a multilabeled tree reduces straightforwardly to the case that N is a
reticulation-visible network, simply by merging all leaves with the same label ¢ into one
reticulation and adding a new child labeled ¢ to it.

» Corollary 20. SOFT TREE CONTAINMENT ¢s NP-hard on reticulation-visible networks,
even if the mazimum in-degree is three and the maximum out-degree is two.

Theorem 18 and Corollary 20 stand in contrast with results for (STRONG) TREE CONTAIN-
MENT, which is linear-time solvable in both cases [18, 7].

4.1 2-Labeled Trees

In the following, N is a 2-labeled tree and T is a (single-labeled) tree. To solve SOFT TREE
CONTAINMENT in this case, we compute a mapping M : V(T) — 2V() such that M (u)
contains the at most two minima (with respect to <) among all vertices v of N such that N,
displays Ty,. If N displays T, there is a single-labeled subtree S of N that displays T'. If, for
each u € V(T), we have LCAg(L(u)) € M(u), then we call S canonical for T. We show that
such a canonical subtree always exists.

M. Bentert, J. Malik, and M.Weller

» Lemma 21. N displays T if and only if N has a canonical subtree for T.

Proof. As “<” is evident, we just prove “=". To this end, let S be a single-labeled subtree
of N that is a subdivision of 7. If S is not canonical, then there is some u € V(T)
with z := LCAg(L(u)) ¢ M (u). Since S, displays T, so does N,. Thus, by definition of M,
there is some y € M (u) with y <y « (recall that = ¢ M (u)). But then, we can replace the
subtree of S rooted at x with the unique z-y-path in IV and the subtree of N, displaying T,.
Iterating this construction yields a canonical subtree of N for 7. |

To compute M, we consider vertices u € V(T') and p € V(N) in a bottom-up manner and
check if N, displays T,,. For each v € V(T,) with parent p in T}, each « € M (v) has at most
one ancestor y in M (p) since M contains only minima. For v = u, we let y := p. In both
cases, we call the unique z-y-path in N, the ascending path of x. A crucial lemma about
ascending paths is the following.

» Lemma 22. Let S be a canonical subtree of some N' for some T and let u,v € V(T") not
be siblings. Let LCAg(L(u)) and LCAg(L(v)) have ascending paths r and q, respectively.
Then, v and q are edge-disjoint.

Proof. Note that, if u <7 v then LCAg(L(p)) <s LCAg(L(v)) where p is the parent of u
in 7'. Thus, the highest vertex of r (with respect to <y,) is a descendant of the lowest
vertex of ¢ and, hence, the lemma holds. Thus, we suppose in the following that v and v are
incomparable in T".

Towards a contradiction, assume that there is a vertex z € V(S) that is internal vertex

of both r and ¢ and, hence, is an ancestor of both « and v in T7”. Then, L(u) W L(v) C L(z).
Further, since v and v are not siblings, one of v and v has a parent p <7+ LCAp (uwv).

Without loss of generality, let p be the parent of w, implying L£(p) N L(2) 2 L(u) # &
and L(z) \ L(p) 2 L(v) # @. Since S is canonical, we have LCAg(L(p)) € M (p) and, thus,
the ascending path r of u ends in LCAg(L(p)). Hence, as z is an internal vertex of r, it holds
that z <g¢ LCAg(L(p)), implying L(p) \ L(z) # @. Since S displays T”, the three established
relations between L£(p) and L£(z) contradict Lemma 7. <

Clearly, N displays T if and only if M(pr) # &, where pr is the root of T. Further,
computation of M(u) is trivial if « is a leaf. Thus, in the following, we show how to
compute M (u) given M (v) for all v € V(T,) — u.

In a first step, compute N|;, where L is the set of leaves of N whose label occurs in Ty,.

Then, we know that M(v) C V(N|) for all v € V(T,). Second, we mark all vertices p
in N|r, such that, for each child u; of v in T', there is some x; € M (u;) with x; <y, p. For
each marked vertex p in a bottom-up manner, we test whether N, displays T, using the
following formulation as a 2-SAT problem?.

» Construction 3. Construct ¢,—,, as follows. For each v € V(T,) — u,
(i) for each y € M(v), introduce a variable x,_,,.
(i1) add the clause @, ¢ ps() Toy (recall that [M(v)] < 2).
(iii) 4f the parent p of v in T, is not u then, for ally € M(v) and all z € M(p) withy £ N z,
add the clause Ty_y = Ty z-
(iv) for each w € V(T,) —u that is not a sibling of v and eachy € M (v) and each z € M (w)
such that the ascending paths of y and z share an edge, add the clause xy_y = Ty, .

4 We are using the XOR operation ((z@y) := (zVy)A(~zV-y)) as well as implications ((z = y) := (-zVy))
in the construction, which can be formulated as clauses with two variables as shown.

9:11

SWAT 2018

9:12

Tree Containment With Soft Polytomies

By definition of M (u), no two vertices in M (u) can be in an ancestor-descendant relation.
Thus, we can ignore all ancestors of a vertex p that satisfies ¢,—, and we can assume that
no strict ancestor of our current p satisfies @, ..

» Lemma 23. ¢,_,, is satisfiable if and only if N, displays T,.

Proof. “<=": Let S be a canonical subtree of N, for T}, and let 3 be an assignment for ¢,_,,
that sets each x,_,, to 1 if and only if y = LCAg(L(v)). Since the LCA of L(v) in S is
unique, all clauses of type (ii) are satisfied by 8. If a clause of type (iii) is not satisfied, then
there is some v with parent p in T, such that y <y z for some y € M(v) and z € M(p)
and f(zy—y) = 1 and B(zp—;) = 0. Let 2’ € M(p) — z with B(xzp—.) = 1, which exists
since all clauses of type (ii) are satisfied. Since L(p) 2 L(v), we know that y <g 2z’ and, as S
is a subtree of N, we have y <y 2/, implying z <y 2’ or 2z’ <y z, which contradicts the
construction of M. If a clause of type (iv) is not satisfied, then there are z,_,, and .
such that v and w are not siblings in T', f(zy—y) = S(Tw—-) = 1, and the ascending paths
of y =LCAg(L(v)) and z = LCAg(L(w)) share an edge. But this contradicts Lemma 22.
“=7: Let be a satisfying assignment for ¢, ,. Let » C V(T') x V(N) be a relation
such that (v,y) € ¢ if and only if f(z,—,) = 1. Since § satisfies the clauses of type (ii), ¥
describes a function and, slightly abusing notation, we call this function . Let Y be the
image of ¢ and let S := Ny, . Note that, for all v <7 u with parent p # u, we know
that 1 (v) <y ¥ (p), since § satisfies the clauses of type (iii). Thus, for all v,w € V(T,) — u,
we have w <p v = Y(w) <y ¥(v) = Y(w) <g Y (v) We show for all (v,y) € ¥ U {(u,p)}
that y = LCAg(L(v)) and Sy is a canonical subtree of N, for T,,. The proof is by induction
on the height of v in T'. Clearly, if v is a leaf, y is a leaf with the same label and the claim
follows. Otherwise, suppose that the claim holds for all w <p v. Towards a contradiction,
assume that Sy does not display T,. By Lemma 7, there are w € V(T},) and z € V(S,)
such that there are leaves a € £(z) \ L(w), b € L(w) \ L(2), and ¢ € L(w) N L(z). Note
that LCAr(be) <7 w <7 {LCAr(ab),LCAr(ac)}. Let a be the highest ancestor of a in T
with b £7 a and let p, be its parent in T'. Let be the highest ancestor of ¢ in T with b <1 v
and let p, be its parent in T". Since b, ¢ <7 w and a £ w, we know that p, <7 p,, implying
that o and v are not siblings in 7. Then, as LCAg(ac) <g z <g {LCAg(ab),LCAg(bc)},
LCAg(ab) <g ¥(pa), and LCAg(bc) <g ¥(p), we know that the ascending paths of ¢ («)
and ¥(v) share an edge, contradicting (iv). <

» Theorem 24. SOFT TREE CONTAINMENT can be solved in O(n3) time on instances (N, T)
for which N is a 2-labeled tree.

Proof. As correctness follows from Lemma 23, we only show the running time. To this end,
note the N|1 can be computed in O(|L|) = O(|£(u)|) time (see, for example [3, Section 8]).
To mark all vertices of N|j, that, for each child u; of u in T, have an ancestor in M (u;), we
compute the restriction of N| to |J; M (u;). Again, this can be done in O(degs(u)) time.
For each vertex in this restriction, we can store the set of leaves that descend from it. In a
bottom-up manner, we can thus mark the correct vertices in O(deg(u)?) time.

We construct ¢,_,, for each pair (u,p) as follows. To check y £y z efficiently in
Construction 3(iii), we can prepare a 0/1-matrix with an entry for each pair of vertices in N.
This table has size O(n?) and can be computed in the same time by a simple bottom-up
scan of N. To construct the clauses of type (iv), we first order the vertices in N,. For
each v in this order, we construct its ascending path in O(|N,|) time and store v in all
edges on this path. Thus, when constructing the clauses of type (iv) for a vertex v, we can
merge the lists of vertices whose ascending path shares an edges with that of v. Thus, .,
can be constructed and solved in O(|N,|?) = O(|£(u)|?) time and the total time to decide
whether N displays T"is O(3 v (py [£(u)]?) = O(n?). <

M. Bentert, J. Malik, and M.Weller

Theorem 24 implies ° that we can solve bifurcating reticulation-visible networks in polynomial
time, complementing Corollary 20.

» Corollary 25. SOFT TREE CONTAINMENT can be solved in O(n?) time on reticulation-
visible networks of in-degree at most two.

5 Conclusion

We introduced a practically relevant variant of the TREE CONTAINMENT problem handling
soft polytomies and showed that its (classical) complexity depends heavily on the maximum
in-degree in the network. Multiple avenues are opened for future work. Motivated by
our hardness result, the search for parameterized or approximative algorithms is a logical
next step. Previous work for TREE CONTAINMENT [8, 18] might lend promising ideas
and parameterizations to this effort. While multi-labeled trees were our starting point to
analyze SOFT TREE CONTAINMENT, only the hardness result (Theorem 20) is transferable
to multi-labeled networks, leaving many open questions in this direction. Finally, given the
close relationship to CLUSTER CONTAINMENT, (see Section 1), we hope to apply ideas and
methods used there to also attack SOFT TREE CONTAINMENT. In particular, we hope that
the ideas in Theorem 24 can be adapted since CLUSTER CONTAINMENT seems to exhibit a
close relationship to SAT [9]—similar to what we exploited to prove Theorem 24.

—— References

1 Magnus Bordewich and Charles Semple. Reticulation-visible networks. Advances in Applied
Mathematics, 78:114-141, 2016.

2 Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral evolution.
Proceedings of the National Academy of Sciences, 110(46):18566-18571, 2013.

3 Richard Cole, Martin Farach-Colton, Ramesh Hariharan, Teresa Przytycka, and Mikkel
Thorup. An O(nlogn) algorithm for the maximum agreement subtree problem for binary
trees. SIAM Journal on Computing, 30(5):1385-1404, 2000.

4 A Dress, Katharina Huber, J Koolen, Vincent Moulton, and A Spillner. Basic Phylogenetic
Combinatorics. Cambridge University Press, 2004.

5 Jittat Fakcharoenphol, Tanee Kumpijit, and Attakorn Putwattana. A faster algorithm for
the tree containment problem for binary nearly stable phylogenetic networks. In 12th In-
ternational Joint Conference on Computer Science and Software Engineering (JCSSE’15),
pages 337-342. IEEE, 2015.

6 Philippe Gambette, Andreas D. M. Gunawan, Anthony Labarre, Stéphane Vialette, and
Louxin Zhang. Locating a tree in a phylogenetic network in quadratic time. In Proceed-
ings of the 19th Annual International Conference on Research in Computational Molecular
Biology (RECOMB’15), volume 9029 of LNCS, pages 96-107. Springer, 2015.

7 Andreas D. M. Gunawan. Solving tree containment problem for reticulation-visible net-
works with optimal running time. CoRR, abs/1702.04088, 2017.

8 Andreas D. M. Gunawan, Bingxin Lu, and Louxin Zhang. A program for verification of
phylogenetic network models. Bioinformatics, 32(17):1503-i510, 2016.

9 Andreas D. M. Gunawan, Bingxin Lu, and Louxin Zhang. Fast methods for solving the
cluster containment problem for phylogenetic networks. CoRR, 1801.04498, 2018.

5 See [18] for the corresponding reduction.

9:13

SWAT 2018

9:14

Tree Containment With Soft Polytomies

10

11

12

13

14

15

16

17

18

Andreas D.M. Gunawan, Bhaskar DasGupta, and Louxin Zhang. A decomposition theo-
rem and two algorithms for reticulation-visible networks. Information and Computation,
252:161-175, 2017.

Dan Gusfield. ReCombinatorics: the algorithmics of ancestral recombination graphs and
explicit phylogenetic networks. MIT Press, 2014.

John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph manipu-
lation. Commun. ACM, 16(6):372-378, 1973.

Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press, 2010.

Iyad A Kanj, Luay Nakhleh, Cuong Than, and Ge Xia. Seeing the trees and their branches
in the network is hard. Theoretical Computer Science, 401(1-3):153-164, 2008.

Todd J Treangen and Eduardo PC Rocha. Horizontal transfer, not duplication, drives the
expansion of protein families in prokaryotes. PLoS Genet, 7(1):e1001284, 2011.

René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval
scheduling and colorful independent sets. J. Scheduling, 18(5):449-469, 2015. doi:
10.1007/s10951-014-0398-5.

Leo Van lersel, Charles Semple, and Mike Steel. Locating a tree in a phylogenetic network.
Information Processing Letters, 110(23):1037-1043, 2010.

Mathias Weller. Linear-time tree containment in phylogenetic networks. CoRR, 1702.06364,
2017.

http://dx.doi.org/10.1007/s10951-014-0398-5
http://dx.doi.org/10.1007/s10951-014-0398-5

On the Size of Outer-String Representations

Therese Biedl!

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada

biedl@Quwaterloo.ca

Ahmad Biniaz?

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
ahmad.biniaz@gmail.com

Martin Derka?

School of Computer Science, Carleton University
Ottawa, Canada
mderka@uwaterloo.ca

—— Abstract

Outer-string graphs, i.e., graphs that can be represented as intersection of curves in 2D, all of
which end in the outer-face, have recently received much interest, especially since it was shown

that the independent set problem can be solved efficiently in such graphs. However, the run-
time for the independent set problem depends on N, the number of segments in an outer-string
representation, rather than the number n of vertices of the graph. In this paper, we argue
that for some outer-string graphs, N must be exponential in n. We also study some special
string graphs, viz. monotone string graphs, and argue that for them N can be assumed to be
polynomial in n. Finally we give an algorithm for independent set in so-called strip-grounded
monotone outer-string graphs that is polynomial in n.

2012 ACM Subject Classification Theory of computation — Computational geometry, Math-
ematics of computing — Graph theory

Keywords and phrases string graph, outer-string graph, size of representation, independent set

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.10

1 Introduction

A string graph is a graph G = (V, E) that has a string representation, i.e., an assignment
of curves in the plane to the vertices in such a way that two vertices v, w are connected by
an edge (v,w) if and only if their corresponding curves v, w intersect. In this paper, we
only consider string representations where any two curves v and w intersect in a finite set of
points (denoted v Nw). We will always use bold-face v to denote the curve of a vertex wv.
The study of string graphs goes back over 50 years, see e.g. [24, 7]. It is known that
every planar graph is a string graph [7], but in general, testing whether a graph is a string
graph is NP-complete [15, 20, 22]. Many variants of string graphs have been studied in
the literature. Of chief interest to us are the so-called outer-string graphs, which have a
string representation such that for every vertex v the curve v has at least one endpoint on

1 Supported by NSERC.
2 Supported by NSERC Postdoctoral Fellowship.
3 Supported by NSERC Vanier fellowship while author was a student at University of Waterloo.

© Therese Biedl, Ahmad Biniaz, and Martin Derka;

37 licensed under Creative Commons License CC-BY
16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 10; pp. 10:1-10:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
mailto:ahmad.biniaz@gmail.com
mailto:mderka@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

On the Size of Quter-String Representations

the outer-face of the string representation. See some recent articles [2, 3] for some results
concerning outer-string graphs and some subclasses.

The class of outer-string graphs includes the circle graphs (i.e., graphs of intersections
of chords of a circle), so any decision problem that is NP-hard for circle-graphs is also
NP-hard for outer-string graphs. This includes, among others, the Coloring problem and the
Hamiltonian Cycle problem [12, 5]. However, it does not include the maximum independent
set problem, i.e., the problem where we are given a graph with vertex-weights (not necessarily
uniform), and we want to find the maximum-weight vertex-set I such that no two vertices in
I are adjacent.

The work in the current paper was inspired by a result from 2015 in which Keil, Mitchell,
Pradhan and Vatshelle presented a poly-time algorithm for maximum independent set in
outer-string graphs [14]. They assume that an outer-string representation R is given, and
“poly-time” means polynomial in the size of R (typically measured by assuming that R uses
only polygonal lines and counting the number of segments). Their algorithm runs in time
O(N3) where N is the size of R.

Since the algorithm of Keil et al. [14] requires the representation to be given, the following
question remains open: Given an outer-string graph G (but no outer-string representation),
can we find a maximum independent set of G in polynomial time? One natural approach to
this would be to try to find an outer-string representation of G. There are two obstacles
here though. First, no algorithm is known to find such a representation (but this problem is
also not known to be NP-hard). Second, even if such an algorithm were known, what would
be the size NV of the resulting outer-string representation? There are string graphs for which
any string representation requires exponential size [16]. What can be said about the size of a
representation required for outer-string graphs? This is the main topic of this paper.

1.1 Related results

We provide here an overview of some algorithmic results on string graphs. Since planar
graphs are string graphs [7], all problems that are NP-hard for planar graphs remain NP-hard
for string graphs. The converse statement is not true because there are problems that are
polynomial for planar graphs (e.g. maximum clique) but NP-hard for string graphs [19].

String representations have been used to obtain better approximation algorithms, espe-
cially for independent set. MatouSek [18] showed that every string graph with m edges admits
a vertex separator (a set S such that all components of G — S have at most 2n vertices)
of size O(y/mlogm). Fox and Pach conjectured that every string graph has a separator
of size O(y/m) [9]. This was proved, first for k-intersecting string graphs (any two strings
intersect at most k times) [8] and very recently for all string graphs [17]. One example of a
result based on separators is an n°-approximation algorithm for maximum independent set in
k-intersecting string graphs by Fox and Pach [10]. Har-Peled and Quanrund [13] showed that
separator theorems are applicable for approximation algorithms for all sparse string graphs.
However, none of these results seems to lead to approximation algorithms with factors better
than O(n®) for all string graphs.

A segment graph is a string graph that has a string representation in which all strings are
line segments. Agarwal and Mustafa [1] proved that if all these segments intersect a given
line, then an independent set of size \/a can be computed in O(n?) time where « is the size
of a maximum independent set. They also showed that any segment graph can be split into
O(logn) subgraphs that are segment graphs for which all segments intersect one line. They
used this to obtain an independent set of size \/a/log(n/«) for all segment graphs.

T.Biedl, A.Biniaz, and M.Derka

Figure 1 A graph G, its apex graph, and the subdivided apex graph G™*.

1.2 QOur contribution

In this paper we show that for some n-vertex outer-string graphs any outer-string representa-
tion requires 9(2”/ 10) crossings, and consequently exponentially many segments. This result
implies that the independent set algorithm of Keil et al. [14] does not run in polynomial
time for all outer-string graphs, but only for those that have a polynomial-size outer-string
representation. Our result also motivates exploration of algorithms whose running times
have lower dependency on the size of representation.

We next explore graph classes that do have small string representations. We consider
a natural subclass of string graphs, the monotone string graphs, where every string is a
y-monotone curve, and argue that any such representation can be transformed into one
of polynomial size. Combining this with Keil et al’s algorithm implies that for monotone
outer-string graphs, the maximum independent set is polynomial in n, however, the running
time is rather large. We also study a special case where every monotone string has one
endpoint on an enclosing strip. For this case we present a dynamic programming algorithm
that finds a maximum independent set in O(n%) time and a 2-approximation in O(n?) time.

1.3 Outer-string graphs and apices

For our proof that some outer-string graphs require large representations, it will help to have
a characterization of outer-string graphs. Although this characterization is simple (a similar
approach has been used by Middendorf and Pfeiffer to characterize so-called cylinder graphs
[20]), to our knowledge it has not been given before. Let G be a graph. The apex graph H
of GG is the graph obtained from G by adding a new vertex a connected to all vertices in G.
The subdivided apez graph of G, denoted by G7, is obtained from H by subdividing every
edge incident to a. See Figure 1. One can easily show the following (see [6] for details):

» Lemma 1. Graph G is an outer-string graph if and only if its subdivided apex graph G
is a string graph. Furthermore, any outer-string representation R of G can be turned into a
string representation of Gt without changing any curve of R.

We have two corollaries from this that should be interesting in their own right. First,
it is known that every string graph G with m edges has a string representation with 29(™)
crossings per string. (This holds since string representations of G correspond to so-called
weak realizations of another graph H with O(m) edges [22], and weak realizations can be
assumed to have at most 2™ crossings per string [23, 21].) Therefore, if G is outer-string,
then the subdivided apex-graph of G has a string representation with 200" crossings per
string. Deleting the added vertices, we get the following corollary.

» Corollary 2. If G is an outer-string graph with m edges, then it has an outer-string
representation with 2°0(™) crossings per string.

10:3

SWAT 2018

10:4

On the Size of Quter-String Representations

Secondly, while it was long known that string graph recognition is NP-hard [15], proving
that it is in NP was a long-standing open question until proved by Schaefer et al. [22]. For
any graph G we can construct the subdivided apex graph G in polynomial time. Combining
this with Lemma 1 implies the following non-trivial result.

» Corollary 3. The problem of recognizing outer-string graphs is in NP.

Naturally one wonders whether recognizing outer-string graphs is also NP-hard. This
problem is open.

2 Exponential-sized Outer-string Representations

Now we construct a graph that requires exponentially many intersections in any string
representation. This re-proves a result of Kratochvil and Matousek [16], but our graph is
different (although inspired by their construction), and can be used to prove the same for
outer-string representations later.

For any integer k£ > 1 construct graph Gy as follows. For 0 < i < k we add two vertices
x;, s, and an edge (z;,y;) for every j > ¢. We surround this graph with a gadget that forces
these vertices to appear in a certain order. This was done in [16] with a grid-like structure,
but we use a cycle C instead, in the same way that Cardinal et al. [3] used a cycle to
enforce order for their representations.* Specifically, let C' = cg,c1,...,cx_1 be a cycle with
K := 8k + 8 vertices. We connect every 4th vertex of C' to one of the vertices {z;, y; }i=o,... n;
in order (along the cycle) xo,x1, Yo, T2, Y1, T3, Y2, -« - s Tiy Yi1, Tit1s Yis -« - s Thoy Yh—1, Yk- L€t
0(x;) [resp. £(y;)] be the index of the vertex of C' that is adjacent to z; [resp. y;], thus
U(xg) = 0, £(x1) = 4, etc. See also Figure 2. This finishes the construction of G;. As
before, let GZ be the subdivided apex graph of G}, with apex vertex a. We use s; for the
subdivision-vertex incident to vertex c; € C.

Figure 3 illustrates an outer-string representation of Gy, which can be converted into a
string representation of its subdivided apex graph G: (see Lemma 1). Note that yx and xg
intersect 2! times. We now argue that this is required.

» Lemma 4. In any string representation of G;, curve yy intersects curve xq at least 2871

times.

Proof. Fix a string representation R} of G{. Delete from it all strings of all subdivision
vertices sg;41 for 0 < i < K/2 (these won’t be needed). Also, we know that ss; has only
two neighbours (a and c¢z;), and we can hence shorten its string such that sg; has exactly
two intersections, one with a and one with cg; [15]. Likewise cg;y1 intersects only two
other strings (co; and cai42) since we deleted sai41, and we may hence shorten it such that
|c2i N €2i41] = 1 = |c2i41 N Caita2l

So for any 0 < j < K, we have a unique point in ¢; N cj+1 (addition for all vertices in C
is mod K'). We use cj[c;j_1, cj+1] to denote the (unique) stretch of ¢; between cj_1 N ¢j and
c;Ncjy1. Crucial for our argument will be a curve defined by following the strings of cycle C:
define C to be Uf:_ol cjlcj—1,cjy1] and observe that it is a closed simple curve in the plane,
hence splits the plane into the inside and outside. We now make a sequence of observations:

Since the apex-vertex is not adjacent to any vertex of C, curve a is disjoint from C and

hence resides inside or outside. By symmetry, we may assume that a is outside C.

4 The correctness for their gadget was only argued for outer-1-string representations, and so we cannot
use it as a black box, but the idea is the same.

T.Biedl, A.Biniaz, and M.Derka

Figure 2 The graph G3. The apex vertex a is not shown. Subdivision vertices are squares.

Ce(xo)

Ce(ys) Ce(y2) Ce(xs) Ce(y1) Co(x2) Ce(yo) Ce(x1)

Figure 3 An outer-string representation of G3. String ys is red (dashed) for ease of legibility.

For any 0 < ¢ < k, curve x; has a point outside C. Namely, there exists a subdivision-
vertex s,, with unique neighbors a¢ and z;. Since neither a nor s,, have a neighbor on C,
and a is outside C, therefore so is sx,, and so any point in sy, N x; is outside C.

For any 0 < i < k, curve x; has a point inside C. Specifically, for any j > i any point
in x; N'y; (which exists since there is an edge (z;,y;)) must be inside C for any j > 7.
For otherwise we could use a point in x; N yj outside C to find a drawing of K, with all
vertices on one face, an impossibility. (Details are in [6].)

Thus for any 0 < ¢ < k, curve x; has points both inside and outside C. So x; must
intersect C, which is possible only at cy(y,)-

Similarly y; intersects at a point on C for all 0 < j < k, and this intersection must
happen on ¢y(y,)-

We are now almost ready to argue the number of intersections of yi with xq, which will
happen by induction on k. However, to argue the induction step it helps to permit that some
curves do not intersect. We hence use the following type of representation:

» Definition 5. A weak outer G;-representation is a collection R}, of curves C, Xo, Yo, - - - , Xi, i
that satisfies the following:
1. C is a simple closed curve such that all other curves of R} are on or inside C.

10:5

SWAT 2018

10:6

On the Size of Quter-String Representations

Yo
(a) The base case (b) Two possible routes for y;.

Figure 4 In the base case, y1 must cross xo. In the induction step, a route for yi+1 gives two
possible routes for y; to x;.

The curves x; and y; (for 0 < j <) intersect each other.

Each of the curves x; and y; (for 0 < j <) intersects C exactly once.

These intersections with C occur in order Xg, X1, Yo, X2, Y1, X3, ¥2, - - -, Xi, Yi—1, Vi
The curves x, and y; (for 0 < r < j <) may or may not intersect each other.

No other curves are allowed to intersect each other.

SR LN

It is easy to see ([6] has details) that for any 0 < ¢ < k we can find a weak outer
G;-representation for which all curves reside within the corresponding curves of Rk+. The
theorem hence holds once we have shown the following:

» Claim 6. In any weak outer G;-representation, curve y; intersects xXq at least 2'=1 times.

We proceed by induction on i. Consider the base case i = 1 (see Figure 4(a); for legibility
we extend curves slightly beyond C). The order in which curves intersect C is Xo,X1,¥0,¥1,
and the combined curve xg U yg splits C into two parts. Curves x; and y; intersect C
in different parts. To create an intersection point x; Nyj, one of them must cross paths
Yo UXg. Such a crossing must be between y; and x¢ (no other crossings are allowed). So,
y1 intersects Xg at least once.

Assume now that the claim holds for some i, and study a weak outer G;1-representation.
Curve yj41 is separated from curve xj41 by x; Uy; . Thus, curve y;4+1 has to intersect x;
on its way to xjy1. On the way to x;, it has to create at least 2'~! intersections with xg,
otherwise we could re-route y; and use fewer crossings between y; and xg. More precisely
(refer to Figure 4(b)), y; could be re-routed to stay in the proximity of the cycle C until it
reaches y;+1 NC and then follow y;11 until reaching x;. Along this new route (following y;11)
curve y; might intersect neighbors of y;,1, but all those neighbors are allowed to be neighbors
of y; as well, so this is (after deleting y;+1 and x;41) a weak outer G;-representation with less
than 2¢~1 points in y; N xq. This contradicts the induction hypothesis. So, yj;1 intersects
X0 at least 2°~! times on the way from C N Yit1 t0 yit1 N x;j.

On the way from x; to x;41, curve yj1 needs to create another 2¢=1 crossings with xg,
otherwise we could re-route y; and use fewer crossings as follows: y; stays in the proximity of
the cycle curves until it reaches x;11 N C and then follows x;41 and y;11. Thus yjy1 crosses
Xo at least 2* times as desired. |

In consequence, we have:

» Theorem 7. For any k > 1, there exists a graph Gy with O(k) vertices that has an
outer-string representation, but any outer-string representation of Gy requires two strings to
intersect at least 281 times.

T.Biedl, A.Biniaz, and M.Derka

Proof. We use graph Gy, defined earlier; it has 10k + 10 vertices total. By Lemma 4, any
string representation of G; requires at least 21 intersections between y;, and x. Since
any such representation can be obtained from an outer-string representation of G without
changing any string of Gj (see Lemma 1), any outer-string representation of Gy, requires at
least 25~ intersections between yy and xg. <

Since line segments intersect at most once, any polygonal outer-string representation of
G hence must have a string with at least v2k—1 = 2(k=1)/2 ¢ 292(n) gegments.

3 Monotone string representations

In the previous section, we showed that outer-string graphs sometimes require an exponential
number of segments in any outer-string representation. Naturally, one wonders whether there
are any natural subclasses of string graphs that have polynomial-size representations.

In this section, we prove that there are string representations of polynomial size if the
graph is a monotone string graph. By this we mean that it has a string representation where
every curve is y-monotone, i.e., intersects any horizontal line at most once. Monotone string
graphs have been studied before (e.g. in the context of coloring [25]), but to our knowledge
the following is new:

» Theorem 8. Let G be an n-vertex m-edge graph with a monotone string-representation R.
Then G has a monotone string-representation R with at most 2n(n +m) segments.

Proof. We may assume that no two y-coordinates of crossings or endpoints in R coincide,
and no string has its endpoint on another string. Define a layer-set) of y-coordinates as
follows: (1) For every vertex v, add to) the y-coordinates of the bottom and top endpoints
of v. (2) For every edge e = (v, w), pick one point p in vN'w and add to Y the y-coordinates
y. = y(p) —e and y := y(p) + ¢, where ¢ is small enough such that no other intersections or
endpoints of curves happen within this range. See also Figure 5. Now create R’ by defining,
for each vertex v, the curve v’ as a poly-line that connects, from bottom to top, the points
where v intersects a horizontal line with y-coordinate in)). In the rest of the proof we verify
that this represents the same graph and satisfies all conditions.

For any y €), define ¢y to be the horizontal line with y-coordinate Y; we call ¢y a
layer. To define the new curve v’ for a vertex v, let y; < -+ < g4 be all those values y; € Y
for which ¢,, intersects v. Now let v’ be the poly-line v ¢, ,vN{y,,...,vN{,,. (These
intersection points are unique since v is monotone.) Curve v’ is monotone and has at most
2m + 2n — 1 segments.

It remains to argue that R’ represents the same graph as R did. If e = (v, w) is an edge,
then v’ crosses w’ between the two layers that were added just above and below a point in
vNw.

For the other direction, let us assume that curves v/ and w’ cross in R/, say at point c.

The crossing ¢ cannot lie on a layer £, because both v/ and w’ cross £ at the same points as
v and w did, and)} was chosen so that no layer contains crossings of R.

So ¢ lies between two consecutive layers, say £ and ¢'. After possible renaming, assume
that v/ N ¢ lies to the left of w’ N £. Since the curves use line segments between layers and

there is a crossing, we must have the reverse order on ¢/, i.e., v/ N ¢ lies to the right of w' N ¢'.

But recall that we chose v’ such that v N¢ = v N¢, and similarly for w and ¢'. Therefore,
in R we also had v to the left of w on £ and to the right of w on . Curves v and w are
y-monotone in the stretch between ¢ and ¢'. It follows that the two curves v and w cross
somewhere within this stretch. Therefore (v, w) is an edge of the graph as required. <

10:7

SWAT 2018

10:8

On the Size of Quter-String Representations

Figure 5 A monotone string-representation of Cs, an application of our algorithm, and re-assigning
coordinates to obtain an n x (2m + 2n)-grid.

We note that R’ can be assumed to reside on an n x (2m + n)-grid. Namely, each curve
consists of line segments that connect consecutive layers. We can re-assign y-coordinates in
{1,...,2m 4+ 2n} to the layers, and re-assign z-coordinates in {1,...,n} to the points where
curves intersect layers, and the same line segments will cross between consecutive layers,
hence we obtain a string representation of the same graph. See Figure 5.

One drawback of our proof is that it needs an explicit representation R to create the
polynomial-sized representation R’. It remains open how to find such a representation R,
given just the graph.

4 Independent set in monotone outer-string graphs

Keil et al. presented an algorithm for (weighted) independent set on outer-string graphs that
runs in time O(N3) (as before, N is the size of an outer-string representation) [14]. However,
due to Theorem 7, N may need to be in 22("), In this section we study the independent
set problem on monotone string graphs, which have a polynomial-size representation by
Theorem 8. Since planar graphs are segment graphs [4] (hence monotone string graphs),
and since maximum independent set is NP-hard for planar graphs [11], we have:

» Proposition 9. Mazimum independent set is NP-hard even for monotone string graphs.

We therefore turn our attention to monotone outer-string graphs. Here, we know from
Keil et al’s result that the maximum independent set problem is solvable in polynomial
time in the size of representation, and from Theorem 8 that there exists a representation
with size N € O(nm) and at most O(m + n) line segments per string. Presuming such a
representation is given, we can hence solve the independent set problem in O(n®*m?) time.
We now show that for two special cases of monotone outer-string graphs, a better run-time
can be achieved.

» Definition 10. Let G be a monotone outer-string graph. We say that G is strip-grounded
if there exists a monotone string representation of G with a bounding rectangle p such that
all strings have one end at the top or bottom side of p. We say that G is line-grounded if all
strings have one end on the bottom side of p.

T.Biedl, A.Biniaz, and M.Derka

<

Figure 6 Line-grounded strings, and an illustration of the formula for W (%, j).

Figures 6 and 7 illustrate line-grounded and strip-grounded graphs, respectively. We
may, after shortening some strings, assume that no string in such a representation touches
both the bottom and the top of p. For a string v, we use b(v) and ¢(v) to denote the
y-coordinates of the bottom and top endpoints of v, respectively. For ease of description, we
add two negative-weight dummy vertices with strings along the left and right sides of p (no
optimal solution will include these two vertices/strings). Enumerate the bottom-grounded
vertices (i.e., vertices whose strings attach at the bottom side of p) as vy, ..., vy, from left
to right by bottom endpoint. Enumerate the top-ground vertices as uq, ..., us, from left to
right by top endpoint. Here, v1 = u; and v, = u; are the dummy vertices.

4.1 Line-grounded monotone string graphs

We first show how to find the maximum independent set in a line-grounded monotone
string graph Gj this will be a useful subroutine later. We only have vertices vy, ..., v, (with
b =n+ 2 due to the dummy vertices). We proceed by dynamic programming, and define
sub-problems as follows (a similar technique has been used in [1] for computing approximate
maximum independent set of segments that cross a straight line). For any pair (7,), with
1<i<j<band (v;,v;) € E, define S(i, j) to be the set of vertices vy € {viy1,...,vj-1}
that satisfy ¢(vy) < min{t(v;),t(v;)}, (vi,v;) € E and (vg,v;) € E. Put differently, S(4, j)
contains every vertex vy for which vy is strictly within the region bounded by v;, the bottom
side of p, vj, and the horizontal line with y-coordinate min{t(v;),t(v;)} (see Figure 6). Due
to the dummy vertices, we have S(1,b) = V.

Let w(v) be the weight of vertex v, and set W(i,j) to be the weight of a maximum
independent set in S(i, j).

0 if S(i,j) is empty

> Claim 11. W(i, j) = { max,, cs(i,j) Wi, k) + W(k,j) +w(vy) otherwise.

Proof. See Figure 6 for an illustration of this proof. Consider an optimal solution I* for
S(%,7). Let v be the vertex that maximizes ¢(vg) among the vertices in I* (if there is no
such v, then S(i,7) = () and the equality holds). Let v be some other vertex in I*. Since I* is
an independent set, v does not intersect vi. It also intersects neither v; nor v; by definition
of S(i,7). Finally t(v) < ¢(vg) by choice of vi. It follows that v € S(i, k) or v € S(k,). So
I'* — {vy} induces two independent sets for S(i, k) and S(k,j). So “<” holds for this choice
of vi, and even more so for the maximum among all v in S(, j).

For the other direction, let k be the index where the maximum is achieved and fix
maximum independent sets I; and I; of S(i,k) and S(k, j). Observe that no string of I; can
intersect one in I; since they reside within disjoint regions, and neither of them can intersect
vk by definition of S(i, k) and S(k,7). So I; U I; U{vs} is an independent set of S(7,j) and
“>" holds. <

10:9

SWAT 2018

10:10

On the Size of Quter-String Representations

By computing S(1,b) recursively with standard dynamic programming techniques, we
can hence find the maximum independent set of G. We briefly discuss the run time. To
find set S(7,7), we mark all neighbours of v;, all neighbours of v;, and all vertices v with
t(v) > min{t(v;), t(v;)}. Then we take all unmarked vertices in {v;11,...,v;-1}; clearly this
takes O(n) time per set S(i,j). Evaluating the recursive formula takes O(n) time as well,
and since we have O(n?) subproblems, the overall run-time is O(n?). (Note that for this
algorithm, we do not even need an explicit line-grounded monotone string representation:
it suffices to have graph G, and the coordinates of the top and bottom endpoints, together
with the promise that they correspond to such a representation.)

» Theorem 12. Given a vertex-weighted graph G with a line-grounded monotone string
representation, we can compute the mazimum-weight independent set of G in O(n?) time.

4.2 Strip-grounded monotone string graphs

Now we turn to strip-grounded monotone string graphs. First note that by applying the
algorithm for line-grounded monotone string graphs twice (once for the bottom-grounded
vertices and once for the top-grounded vertices), we immediately obtain a 2-approximation
algorithm, which runs in O(n3) time. At the price of an increased run-time, we show how to
solve this problem optimally. For this, we need a more complicated set of subproblems:
Let v be a bottom-grounded string and u be a top-grounded string such that (v,u) ¢ E
and t(v) > b(u). We say that a vertex x lies between v and u if there exists a horizontal line
¢ that intersects all of v, u, x, and for which the point ¢ N x lies between the points /N v and
¢Nu. Define the following sets (see also Figure 7):
Let 1 < i< j<band 1l < a < f <t be indices such that {v;, ua,v;,us} is an
independent set, and further ¢(v;) > b(us) and t(v;) > b(ug). Define S(i, @; j, 5) to be
all those vertices in {vj41,...,v-1} U {tay1,...,ug—1} that are adjacent to none of
Vi, Vj, Ua, ug, and do not lie between v; and u, or between v; and ug.
Let 1 <i <k <band 1< a <t be indices such that {v;, us,vr} is an independent set
and t(v;) > b(ugy). Define SV (i, a; k) to be all those vertices v in {vi1,...,v,_1} that
are adjacent to none of v;, vy, un, do not lie between v; and u,, and for which t(v) < t(v).
We symmetrically define S°F(k; 7, 8), SNV (i,a;7) and S*W (v; 4, 8). See also Figure 7.

Finally we also need the set S(i,j) defined earlier (we denote it S, (i, j) since it uses the
bottom-grounded vertices), and symmetrically set S, (c, 8) for top-grounded vertices.

Let W (i, j; o, B) be the weight of a maximum independent set in subgraph induced by
vertex set S(i, ; 7, B), and similarly for all other sets. We already had the formula for W, (i, j)
(Claim 11), and a symmetric one holds for W, («, 8). With much the same proof one can
show (see also Figure 7(c)):

» Claim 13. W% (i, k;a) = 0 if SSW (i, k; a) is empty. Otherwise,
WY (i, k;) = max WY (i,ra) + Wy(r, k) + w(vg).

v-€S5W (i,k;)

The formula for WW_ WNE and WNW are symmetric. As for W (i, j; a, 8), based on
whether the maximum independent set contains bottom-grounded or top-grounded vertices,
and how they interact, one can show the following formula:

T.Biedl, A.Biniaz, and M.Derka

(a) (b) (c)
Figure 7 A strip-grounded graph. Strings in S(i, «;j, 8) must be in the striped region. We

illustrate recursive formulas (a) for W (i, o, j, k) for t(vk) < b(uy), (b) for W (i, «, 4, k) for t(ve) >
b(u~), and (c) for WV (i, a; k).

» Claim 14. W (i, j;a,8) = 0 if S(i, 7, 8) is empty. Otherwise, it is the maximum of

maX'ukES(i,a;j,ﬂ) WSW(i7 (& k) + WSE(kv j7 ﬁ) + W(Uk),
maxuWGS(i,a;j,ﬁ) WNW (Z, Q; ,Y) + WNE(’% ja 6) + w(u"/)?
MAXy, u, €5(i,01,8)t(vr) <b(ur) WS (i, a5 k) + W5 (k; 4, B) + w(vr)

WYY (i, ;) + WNE (334, 8) + w(u,), and
maka,u.y€S(i,a;j,B),t(vk)>b(u7),(vk,u,Y)QE W('La k; avly) + W(kvja v, ﬂ) + 'lU('Uk) + ’LU(’U,,Y)

Proof. To show ‘>’ observe that each term of the maximum on the right-hand side cor-
responds to two or four independent sets in two or four regions defined by the parameters.
As one easily verifies, these regions are disjoint for all cases, and none of them contains vy
and/or u,. We can hence combine these independent sets and add vy and/or u-, and obtain
an independent set for S(i, «; j,). The optimum independent set cannot be smaller.

To prove ‘<’; consider an optimal solution I* for S(i, a; 4, 3). We may assume that I* is
non-empty; else S(i, a; 4, 8) is empty and the equation holds. We distinguish cases:

Case 1: [* contains no top-grounded vertex. Since I* is non-empty, it therefore contains
some vy, with i < k < j. Let vy be the vertex that maximizes t(vy). With this choice, any
other vertex in I* is bottom-grounded and belongs to S°W (i, a; k) or S*#(k; 5, 3), depending
on whether its index is before or after k. Therefore I'* — {v;} splits into two independent
sets for SSW (i, a; k) and SF (k; j, B), and w(I*) + w(vi) < WY (i, a; k) + W5E (k; 5, B).

Case 2: [* contains no bottom-grounded vertex. Symmetrically then one shows that
w(I*) < WNW (i a;v) + WNE(y; 4, B) + w(uy) where u, is the top-grounded vertex in I*
that minimizes b(u.).

Case 3: I* contains a bottom-grounded vertex v;, and a top-grounded vertex u., but for
any two such vertices we have t(vy) < b(u,). Choose vj so that it maximizes t(vj) and
u so that it minimizes b(u,). Then any other bottom-grounded vertex v in I* satisfies
t(v) < t(vy) and so belongs to SV (i, a; k) or S°F(k; j, 3). Any other top-grounded vertex u
in I* satisfies b(u) > b(u,) and so belongs to SNE (i, a;) or SNE(v; 4, 8). Thus I* — {vg, u- }
splits into four independent sets for these four vertex sets, hence w(I*) < WW (i, a; k) +
WSE (k; 4, 8) + w(ve) + WY (i, 059) + WNE(y; 4, B) + w(u,).

10:11

SWAT 2018

10:12

On the Size of Quter-String Representations

Case 4: I* contains a bottom-grounded vertex v, and a top-grounded vertex w. with
t(vg) > b(uy). Thus, any line ¢ with y-coordinate in [b(u,),t(vx)] intersects both vi and u,.
We may assume that any such line ¢ intersects no other string of I* in the range between
£N vy and £ Ny, else we can replace either vy or u, with the intersected string. Thus no
other vertex = in I* is between vy and u,. Therefore any vertex x # vy, u, in I* belongs
to either S(i,a; k,v) or to S(k,v;4,3). So I* — {vg,u~} splits into two independent sets for
these two subsets. This proves that w(I*) < W (i, a; k,v)+W(k,v; 7, 8) +w(vg) +w(uy). <

Since S(1,a;1,b) =V with our choice of dummy vertices, therefore we can compute the
maximum independent set in G with dynamic programming. To analyze its run-time, observe
that we have defined O(n*) sets. To compute each set, we need to test quickly whether z is
between v; and u, for some independent set {z,v;, u, . We first test whether there exists
some Y with b(u,) <Y < t(v;) and b(z) <Y < t(z); otherwise x is surely not between
them. If there is such a Y, then next find the points p,, py, p» Where the horizontal line with
y-coordinate Y intersects the three strings, and test their order. Recall that we assumed the
strings to have O(m + n) segments, so finding these points (and hence testing whether x is
between v; and u,,) can be done with binary search in O(logn) time.

With this, each set can be found in O(n?) time. For example, to find S(i, a; 7, 3), scan
the vertices v;q1,...,vj—1 and uq41,...,ug—1. For each, test in O(n) time whether it is
non-adjacent to v;, U, vj,ug, and test in O(logn) time that it is neither between v; and uq,
nor between v; and ug. The computation for the other types of sets is similar.

Given all the sets, the evaluation of the formula can be done in O(n?) time per set, or
O(n") total for all O(n*) sets. Therefore, we get the following theorem.

» Theorem 15. The mazimum independent set in a vertex-weighted graph with a strip-
grounded monotone string representation can be computed in O(n®) time.

5 Conclusions

In this paper, we studied graphs that do or do not have string representations of polynomial
size. We argued that for some outer-string graphs any outer-string representation must have
exponential size. On the other hand, all monotone string graphs have a string representation
of polynomial size. Inspired by an algorithm of Keil et al. for maximum independent set
for outer-string graphs, we give an algorithm for maximum independent set for monotone
strip-grounded outer-string graphs, whose run-time is O(n%), presuming we are given such a
representation of polynomial size. We leave a number of open problems:
We have introduced some variants of string graphs (e.g., monotone string graphs, monotone
strip-grounded string graphs). What is the complexity of recognizing these graphs classes
and finding corresponding representations? Note that it is not even known whether
recognizing outer-string graphs is NP-hard (we proved that it is in NP).
What is the complexity of recognizing whether a graph has a string representation (or
outer-string representation) with at most k segments?
Is there an algorithm for independent set on outer-string graphs that is polynomial in
n? Our results show that this is not possible if we use an explicit description of a string
representation. But perhaps the string representation could be given implicitly in a
different way? Or perhaps it could be described (similarly as in [22]) with O(log N) bits,
by listing how it intersects a (suitably) chosen triangulation? Note that log N € O(m),
so this would be polynomial.

T.Biedl, A.Biniaz, and M.Derka

—— References

1

10

11

12

13

14

15

16

Pankaj K. Agarwal and Nabil H. Mustafa. Independent set of intersection graphs of convex
objects in 2D. Comput. Geom., 34(2):83-95, 2006.
Sergio Cabello and Miha Jejcic. Refining the hierarchies of classes of geometric intersection

graphs. Electronic Notes in Discrete Mathematics, 54:223-228, 2016. doi:10.1016/j.endm.

2016.09.039.

Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber.
Intersection graphs of rays and grounded segments. In Hans L. Bodlaender and Gerhard J.
Woeginger, editors, Graph-Theoretic Concepts in Computer Science - 43rd International
Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected
Papers, volume 10520 of Lecture Notes in Computer Science, pages 153-166. Springer,
2017. doi:10.1007/978-3-319-68705-6_12.

Jérémie Chalopin and Daniel Gongalves. Every planar graph is the intersection graph of
segments in the plane: extended abstract. In Michael Mitzenmacher, editor, Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 631-638. ACM, 2009. doi:10.1145/1536414.1536500.
Peter Damaschke. The hamiltonian circuit problem for circle graphs is np-complete. Inf.
Process. Lett., 32(1):1-2, 1989. doi:10.1016/0020-0190(89)90059-8.

Martin Derka. Restricted String Representations. PhD thesis, David R. Cheriton School of
Computer Science, 2017. URL: https://uwspace.uwaterloo.ca/handle/10012/12253.
Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs of curves
in the plane. J. Comb. Theory, Ser. B, 21(1):8-20, 1976. doi:10.1016/0095-8956(76)
90022-8.

Jacob Fox and Janos Pach. Separator theorems and Turdn-type results for planar intersec-
tion graphs. Adv. Math., 219:1070-1080, 2008.

Jacob Fox and Janos Pach. A separator theorem for string graphs and its applica-
tions. Combinatorics, Probability & Computing, 19(3):371-390, 2010. doi:10.1017/
S0963548309990459.

Jacob Fox and Janos Pach. Computing the independence number of intersection graphs. In
Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1161-1165. STAM, 2011. doi:10.1137/1.9781611973082.87.

M. R. Garey and David S. Johnson. The rectilinear steiner tree problem in NP complete.
SIAM Journal of Applied Mathematics, 32:826-834, 1977.

M. R. Garey, David S. Johnson, G. L. Miller, and Christos H. Papadimitriou. The complex-
ity of coloring circular arcs and chords. STAM J. Matriz Analysis Applications, 1(2):216-227,
1980. doi:10.1137/0601025.

Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion
and low-density graphs. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA
2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceed-
ings, volume 9294 of Lecture Notes in Computer Science, pages 717-728. Springer, 2015.
doi:10.1007/978-3-662-48350-3_60.

J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An
algorithm for the maximum weight independent set problem on outerstring graphs. Comput.
Geom., 60:19-25, 2017. Appeared also in the Proceedings of CCCG 2015.

Jan Kratochvil. String graphs. II. recognizing string graphs is np-hard. J. Comb. Theory,
Ser. B, 52(1):67-78, 1991. doi:10.1016/0095-8956(91)90091-W.

Jan Kratochvil and Jifi Matousek. String graphs requiring exponential representations. J.
Comb. Theory, Ser. B, 53(1):1-4, 1991. doi:10.1016/0095-8956(91)90050-T.

10:13

SWAT 2018

http://dx.doi.org/10.1016/j.endm.2016.09.039
http://dx.doi.org/10.1016/j.endm.2016.09.039
http://dx.doi.org/10.1007/978-3-319-68705-6_12
http://dx.doi.org/10.1145/1536414.1536500
http://dx.doi.org/10.1016/0020-0190(89)90059-8
https://uwspace.uwaterloo.ca/handle/10012/12253
http://dx.doi.org/10.1016/0095-8956(76)90022-8
http://dx.doi.org/10.1016/0095-8956(76)90022-8
http://dx.doi.org/10.1017/S0963548309990459
http://dx.doi.org/10.1017/S0963548309990459
http://dx.doi.org/10.1137/1.9781611973082.87
http://dx.doi.org/10.1137/0601025
http://dx.doi.org/10.1007/978-3-662-48350-3_60
http://dx.doi.org/10.1016/0095-8956(91)90091-W
http://dx.doi.org/10.1016/0095-8956(91)90050-T

10:14

On the Size of Quter-String Representations

17

18

19

20

21

22

23

24

25

James R. Lee. Separators in region intersection graphs. In Innovations in Theoretical
Computer Science, ITCS’17, 2017.

Jifi Matousek. Near-optimal separators in string graphs. CoRR, abs/1302.6482, 2013.
arXiv:1302.6482.

Matthias Middendorf and Frank Pfeiffer. The max clique problem in classes of string-graphs.
Discrete Mathematics, 108(1-3):365-372, 1992. doi:10.1016/0012-365X(92)90688-C.
Matthias Middendorf and Frank Pfeiffer. Weakly transitive orientations, hasse dia-
grams and string graphs. Discrete Mathematics, 111(1-3):393-400, 1993. doi:10.1016/
0012-365X(93)90176-T.

Jénos Pach and Géza Téth. Recognizing string graphs is decidable. Discrete & Computa-
tional Geometry, 28(4):593-606, 2002. doi:10.1007/s00454-002-2891-4.

Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovi¢. Recognizing string graphs is in
NP. Journal of Computer and System Sciences, 67(2):365-380, 2003.

Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs. In Jeffrey Scott
Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages
241-246. ACM, 2001. doi:10.1145/380752.380807.

F. W. Sinden. Topology of thin film rc-circuits. Bell System Technical Journal, 45:1639—
1662, 1966. doi:10.1002/j.1538-7305.1966.tb01713.x.

Andrew Suk. Coloring intersection graphs of x-monotone curves in the plane. Combinat-
orica, 34(4):487-505, 2014. doi:10.1007/s00493-014-2942-5.

http://arxiv.org/abs/1302.6482
http://dx.doi.org/10.1016/0012-365X(92)90688-C
http://dx.doi.org/10.1016/0012-365X(93)90176-T
http://dx.doi.org/10.1016/0012-365X(93)90176-T
http://dx.doi.org/10.1007/s00454-002-2891-4
http://dx.doi.org/10.1145/380752.380807
http://dx.doi.org/10.1002/j.1538-7305.1966.tb01713.x
http://dx.doi.org/10.1007/s00493-014-2942-5

Flip Distance to some Plane Configurations

Ahmad Biniaz'

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
ahmad.biniaz@gmail.com

Anil Maheshwari?

School of Computer Science, Carleton University
Ottawa, Canada
anil@scs.carleton.ca

Michiel Smid?

School of Computer Science, Carleton University
Ottawa, Canada

michiel@scs.carleton.ca

—— Abstract

We study an old geometric optimization problem in the plane. Given a perfect matching M
on a set of n points in the plane, we can transform it to a non-crossing perfect matching by a
finite sequence of flip operations. The flip operation removes two crossing edges from M and
adds two non-crossing edges. Let f(M) and F(M) denote the minimum and maximum lengths
of a flip sequence on M, respectively. It has been proved by Bonnet and Miltzow (2016) that
f(M) = O(n?) and by van Leeuwen and Schoone (1980) that F(M) = O(n®). We prove that
f(M) = O(nA) where A is the spread of the point set, which is defined as the ratio between the
longest and the shortest pairwise distances. This improves the previous bound for point sets with
sublinear spread. For a matching M on n points in convex position we prove that f(M) =n/2—1
and F(M) = ("éz); these bounds are tight.

Any bound on F(-) carries over to the bichromatic setting, while this is not necessarily true
for f(-). Let M’ be a bichromatic matching. The best known upper bound for f(M’) is the same
as for F(M'), which is essentially O(n®). We prove that f(M’) < n — 2 for points in convex
position, and f(M’) = O(n?) for semi-collinear points.

The flip operation can also be defined on spanning trees. For a spanning tree T on a convex
point set we show that f(T) = O(nlogn).

2012 ACM Subject Classification Theory of computation — Computational geometry, Math-
ematics of computing — Discrete mathematics

Keywords and phrases flip distance, non-crossing edges, perfect matchings, spanning trees

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.11

1 Introduction

A geometric graph is a graph whose vertices are points in the plane, and whose edges are
straight-line segments connecting the points. All graphs that we consider in this paper are
geometric. A graph is plane if no pair of its edges cross each other. Let n > 2 be an even
integer, and let P be a set of n points in the plane that is in general position (no three points

1 Supported by NSERC and Fields Institute.
2 Supported by NSERC.
3 Supported by NSERC.

© Ahmad Binaiz, Anil Maheshwari, and Michiel Smid;

37 licensed under Creative Commons License CC-BY
16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 11; pp.11:1-11:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ahmad.biniaz@gmail.com
mailto:anil@scs.carleton.ca
mailto:michiel@scs.carleton.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Flip Distance to some Plane Configurations

(c) (d)

Figure 1 (a) Two ways to flip a crossing in a monochromatic matching. (b) The only way to flip
a crossing in a bichromatic matching. (c) One way to flip a crossing in a monochromatic tree. (d)
No way to flip a crossing in a bichromatic Hamiltonian cycle.

on a line). For two points a and b in the plane, we denote by ab the segment with endpoints
a and b. Let M be a perfect matching on P. If two edges in M cross each other, we can
remove this crossing by a flip operation. The flip operation (or flip for short) removes two
crossing edges and adds two non-crossing edges to obtain a new perfect matching. In other
words, if two segments ab and cd cross, then a flip removes ab and cd from the matching, and
adds either ac and bd, or ad and bc to the matching; see Figure 1(a). Every flip decreases
the total length of the edges of M, and thus, after a finite sequence of flips, M can be
transformed to a plane perfect matching. This process of transforming a crossing matching
to a plane matching is referred to as uncrossing or untangling a matching. Motivated by this
old folklore result, we investigate the minimum and the maximum lengths of a sequence of
flips to reach a plane matching.

To uncross a perfect matching M, we say that the sequence (M=My, My, ..., M) is a
valid flip sequence if M, is obtained from M; by a single flip, and Mj, is plane. The number
k denotes the length of this flip sequence. We define f(M) to be the minimum length of any
valid flip sequence to uncross M, that is, the minimum number of flips required to transform
M to a plane perfect matching. We define F(M) to be the maximum length of any valid flip
sequence. As for F(M), one can imagine that an adversary imposes which of the two flips to
apply on which of the crossings.

In the bichromatic setting, we are given n/2 red and n/2 blue points and a bichromatic
matching, that is a perfect matching in which the two endpoints of every segment have
distinct colors. Contrary to the monochromatic setting, there is only one way to flip two
crossing bichromatic edges; see Figure 1(b). In the bichromatic setting the adversary can only
impose the crossing to flip. Thus, any upper bound on F(M) for monochromatic matchings
carries over to bichromatic matchings; this statement is not necessarily true for f(M).

The flip operation can be defined for a spanning tree (resp. a Hamiltonian cycle) analog-
ously, that is, we remove a pair of crossing edges and add two other edges so that the graph
remains a spanning tree (resp. a Hamiltonian cycle) after this operation. We define f(-) and
F(-) for spanning trees and Hamiltonian cycles, analogously. As shown in Figure 1(c), there
is only one way to flip a crossing in a spanning tree (resp. a Hamiltonian cycle). Contrary
to the bichromatic matching, it is not always possible to flip a crossing in a bichromatic
spanning tree nor in a bichromatic Hamiltonian cycle; see Figure 1(d).

A. Biniaz, A. Maheshwari, and M. Smid

1.1 Related Work

The most relevant works are by van Leeuwen and Schoone [21], and Oda and Watanabe [17]
for Hamiltonian cycles, and by Bonnet and Miltzow [7] for matchings. They proved, with
elegant arguments, the following results.

» Theorem 1 (van Leeuwen and Schoone, 1981 [21]). For every Hamiltonian cycle H on n
points in the plane we have that F(H) = O(n?).

» Theorem 2 (Oda and Watanabe, 2007 [17]). For every Hamiltonian cycle H on n points
in the plane in convex position we have that f(H) < 2n —17.

As for a lower bound, they presented a Hamiltonian cycle H on n > 7 points in the plane
in convex position for which f(H) > n — 2.

» Theorem 3 (Bonnet and Miltzow, 2016 [7]). For every perfect matching M on a set of n
points in the plane in general position we have that f(M) = O(n?).

The O(n?) upper bound of Theorem 1 carries over to perfect matchings. As for lower
bounds, Bonnet and Miltzow [7] presented two matchings M; and M; such that f(M;) = Q(n)
and F (M) = Q(n?). The bound F(M) = O(n?®) holds even if M is a bichromatic matching,
while the proof of f(M) = O(n?) does not generalize for the bichromatic setting.

An alternate definition of an edge flip in a graph is the operation of removing one edge

and inserting a different edge such that the resulting graph remains in the same graph class.

The edge flip operation has been studied for many different graph classes, in particular,
for two given graphs with an equal number of vertices and edges, the number of edge flips
required to transform one into another. See the survey by Bose and Hurtado [8] on edge flips
in planar graphs both in the combinatorial and the geometric settings, and see [3, 9, 14, 16]
for edge flips in triangulations.

A related problem is the compatible matching problem in which we are given two perfect
matchings on the same point set and the goal is to transform one to another by a sequence
of compatible matchings (two perfect matchings, on the same point set, are said to be
compatible if they are edge disjoint and their union is non-crossing). See [1, 2, 4, 15] for
recent work on compatible matchings, and [18] for its extension to compatible trees.

1.2 QOur Contribution

In this paper we decrease the gap between lower and upper bounds for f(-) and F(-) for
some input configurations. In Section 2 we show that for every perfect matching M, on a set
P of n points in the plane, we have f(M) = O(nA) where A is the spread of P.

Assume that P is in convex position. In Section 3 we show that for every perfect matching
M on P we have that f(M) < n/2—1and F(M) < ("42) These bounds are tight as Bonnet
and Miltzow [7] showed the existence of two perfect matchings M; and M, on n points in
convex position such that f(M7) > n/2—1and F(Ms) > ("42) We also prove that for every
spanning tree 7' on P we have that f(T) = O(nlogn).

In Section 4 we study bichromatic matchings on special point sets. Assume that the
points of P are colored red and blue. We prove that, if P is in convex position, then for
every perfect bichromatic matching M on P we have that f(M) < n — 2. Also, we prove
that, if P is semi-collinear, i.e., the blue points are on a straight line, then for every perfect

bichromatic matching M on P we have that f(M) = O(n?). Table 1 summarizes the results.

11:3

SWAT 2018

11:4

Flip Distance to some Plane Configurations

Table 1 Upper bounds on the minimum and maximum number of flips (A is the spread).

minimum # of flips | f(-)-general position f(-)-convex position

matchings o) 7] n/2—1 Theorem 11
O(nA) Theorem 4

bichromatic matchings | O(n®) [21] n—2 Theorem 15

trees O(n?) [21] O(nlogn) Theorem 14

Hamiltonian cycles O(n?) [21] 2n -7 [17]

bichromatic matching on semi-collinear points f(-) = O(n?) Theorem 17 ‘

maximum # of flips | F(-)-general position F(-)-convex position
matchings/trees/cycles | O(n®) [21] ("42) Theorem 11

1.3 Preliminaries

Let a and b be two points in the plane. We denote by ab the straight line-segment between a
and b, and by ab the line through a and b. Let P be a set of points in the plane in convex
position. For two points p and ¢ in P we define the depth of the segment pg as the minimum
number of points of P\ {p, ¢} on either side of pg. A boundary edge is a segment of depth
zero, i.e., an edge of the convex hull of P. An edge e in a graph G is said to be free if e is
not crossed by other edges of G.

2 Minimum Number of Flips

The spread A of a set of points (also called the distance ratio [11]) is the ratio between the
largest and the smallest interpoint distances. It is well known that the spread of a set of n
points in the plane is Q(y/n) (see e.g., [19]). In this section, we prove an upper bound on
the minimum length of a flip sequence in terms of n and A. In fact we prove the following
theorem.

» Theorem 4. For every perfect matching M on a set of n points in the plane in general
position we have that f(M) = O(nA), where A is the spread of the point set.

For point sets with spread o(n), the upper bound of Theorem 4 is better than the O(n?)
upper bound of Theorem 3. For example, for dense point sets, which have spread O(y/n),
Theorem 4 gives an upper bound of O(n+/n) on the number of flips. According to [13], dense
point sets commonly appear in nature, and they have applications in computer graphics.
Valtr and others [13, 19, 20] have established several combinatorial bounds for dense point
sets that improve corresponding bounds for arbitrary point sets.

Let P be a set of n points in the plane with spread A. Let M be a perfect matching on
P. We prove that M can be untangled by O(nA) flips, i.e., f(M) = O(nA). The main idea
of our proof is as follows. Let px be the minimum distance between any pair of points in P.
Let |pg| denote the Euclidean distance between two points p,q € P. Since P has spread A,
we have |pg| < pA. For the matching M we define its weight, w(M), to be the total length
of its edges. Since M has n/2 edges,

w(M) =" |pg| = O(npA). (1)
pgeM

Recall that a pair of crossing segments can be flipped in two different ways as depicted in
Figure 1(a). In the remainder of this section we show that one of these two flip operations

A. Biniaz, A. Maheshwari, and M. Smid

(a) (b)

Figure 2 Illustrations of the proofs of (a) Lemma 7 and (b) Lemma 6.

reduces w(M) by at least tu, for some constant ¢ > 0. Combining this with Equality (1)
implies the existence of a flip sequence of length O(nA) that uncrosses M.

Take any two crossing edges pg and rs in M, and let o be their intersection point. We
flip pg and s to ps and rq, if Zrog < 7/2, and to pr and g¢s, otherwise. In other words, we
flip pq and rs to the two edges that face the two smaller angles at 0. In Lemma 7 we prove
that this flip reduces the length of edges by at least tu', for some constant ¢ > 0, where u’ is
the minimum distance between any pair of points in {p, ¢,r, s}. Since the minimum distance
between pairs in {p, q,r, s} is at least the minimum distance between pairs in P, our result
follows. We use the following two lemmas in the proof of Lemma 7; we prove these two
lemmas later.

» Lemma 5. Let ab and cd be two crossing segments, and let o be their intersection point.
Let 1" be the minimum distance between any pair of points in {a,b,c,d}. If Zcob < /3,
then

(lab| + |ed]) — (lad| + |cb]) > u".

» Lemma 6. Let ab and cd be two perpendicular segments that cross each other. Let p"
be the minimum distance between any pair of points in {a,b,c,d}. Then for any constant
t' < (2 —+/2)/2 it holds that

(lab| + |ed]) — (lad] + |cb]) > t'n".

» Lemma 7. Let pg and rs be two crossing segments, and let o be their intersection point.
Let i be the minimum distance between any pair of points in {p,q,r,s}. If Zroq < 7/2, then
for some constant t it holds that

(Ipgl +Irsl) — (Ips| + |rql) > tu'.

Proof. If Zrog < w/3, then our claim follows, with ¢ = 1, from Lemma 5 where p, ¢, r, s play
the roles of a, b, ¢, d, respectively. Assume that Zroq > m/3. Observe that Zroq = Zpos.
After a suitable rotation and/or a horizontal reflection and/or relabeling assume that
Ipg| = |rs|, pq is horizontal, p is to the left of ¢, and r lies above pg. Rotate rs counterclockwise
about o, while keeping o on this segment, until rs is vertical. See Figure 2(a). After this
rotation, let 7’ and s’ denote the two points that correspond to r and s, respectively.

» Claim 8. |r'p| > |rp|/2 and |gs’| > |gs|/2.

We prove only the first inequality of this claim; the proof of the second inequality is
analogous. Since r'p is the hypotenuse of the right triangle Ar’op, we have |r'o| < |r'p|.

11:5

SWAT 2018

11:6

Flip Distance to some Plane Configurations

Since Ar'or is isosceles and Zr'or < /6, we have |rr'| < |r'o|, and thus, |r7'| < |r'p|. By
the triangle inequality we have |rp| < |rr/| + |#'p| < 2|r'p|, which implies |r'p| > |rp|/2. This
proves Claim 8.

Observe that |r'q| > |rql, |ps’| = |ps|, |r's’| = |rs|, and by Claim 8, |r'p| > |rp|/2 and
lgs’| = |gs|/2. Thus, the minimum distance u”” between any pair of points in {p, ¢,r’,s'} is
not smaller than half the minimum distance between any pair of points in {p, q,r, s}, i.e.,
W > p'/2. Lemma 6 implies that (|pg| + |'s'|) — (|ps’| + |7'q]) = t'p”’, for some constant
t' > 0, where p,q,r’,s play the roles of a,b,c,d, respectively. We will see in the proof of
Lemma 6 that this inequality is valid for any positive constant ¢’ < (2 — v/2)/2. Combining
these inequalities, we get

(Ipal + Irsl) = (Ips| + Iral) = (lpal + |r's"]) = (Ips'[+ Ir'al)

22 242
>z

Therefore, the claimed inequality in the statement of this lemma is valid for any positive
constant t < (2 — v/2)/4. <

» Note 9. The constants t' = (2 —/2)/2 and t = (2 — \/2)/4 in the proofs of Lemmas 6
and 7 are not optimized. To keep our proofs short and simple, we avoid optimizing these
constants.

» Note 10. The angle constraint in the statement of Lemma 7 cannot be dropped; the figure
to the right shows two crossing segments pq and rs for which (|pq| + |rs|) — (|ps| + |rq|) tends
to zero as Zroq tends to .

Proof of Lemma 5. We recall the simple fact that the largest side of every triangle always
faces the largest angle of the triangle. Since Zcob < m/3, we have that Zcbo > /3 or
Zbco > 7/3. Without loss of generality assume that Zbco > 7/3, and thus, Zbco > Zcob.
This implies that |ob| > |cb|. By a similar reasoning, we get that |oa| > |ad| or |od| > |ad|. If
loa| = |ad|, then

|abl + |cd| — (lad| + |cbl) = (loal + |obl) + |ed| — (lad| + |eb]) > |ed| > p",

and if |od| > |ad|, then

"

Jab|+ led| — (Jad] +|cbl) = (Joa| + |ob]) + (Joc| + lod]) — (|ad| +|cb]) > |oa| +|oc| > |ac| > 4. <

Proof of Lemma 6. Refer to Figure 2(b) for an illustration of the proof. Let o be the
intersection point of ab and cd. Let o' be the intersection point between cb and the line
that is perpendicular to ¢b. Without loss of generality assume that ob is longer than oc,
ie., |ob] = |oc|. Then Zocb > Zobe, and thus, Zocb > w/4. Since Zoo'c = /2 and
Zoco' = ZLoch = /4, we get that Zcoo' is the smallest angle in the triangle Aoco’, and thus,
o'c is its smallest side. By doing some simple algebra we get that |o'c| < |oc|/v/2.

Let o” be the intersection point between ad and the line that is perpendicular to ad. We
consider two cases depending on which of oa and od is longer.

A. Biniaz, A. Maheshwari, and M. Smid

loa| > |od|: By a similar reasoning as for ob and oc we get that |o”d| < |od|/+/2. Observe
that |ob] > |0o'b| and |oa| > |0”a|. By combining these inequalities we get

(lab] + |ed]) — (Jad| + |cb]) = (loal + [0bl) + (loc| + |od|) — (0" a| +[o"d]) — (Jo'c| +[o'b])

d
> Joc| + lod| — |o"d| - |o'e| > [oc| + Jod| — 1241 _ lod

V2 V2
1 2 -2 2-v2 ,
= (1—\/§> (loc| + lod]) = 5 [

d| >

loa| < |od|: Again, by a similar reasoning as for ob and oc we get that |o”a| < |oal/v/2.

Also, by a similar reasoning as in the previous case we get

loal |oc|
ab| + |cd|) — (|ad| + |cb|) = |oc| + |oa| — —= — —
2-2 2—-v2 "

=g el >

Therefore, the claimed inequality in the statement of this lemma is valid for any positive
constant ¢’ < (2 — \@)/2 <

3 Points in Convex Position

In this section we study the problem of uncrossing perfect matchings and spanning trees
on points in convex position. For perfect matchings, Bonnet and Miltzow [7] exhibited
two perfect matchings M; and M, on n points in the plane in convex position such that
f(My) 2 n/2 =1 and F(My) > ("42) The following theorem provides matching upper
bounds for f(-) and F(-).

» Theorem 11. For every perfect matching M on a set of n points in the plane in conver
position we have f(M) < § —1 and F(M) < (”42)

Proof. The matching M contains n/2 edges. First we prove that F(M) < (néz) Notice
that the number of crossings between the edges of M is at most ("52) We show that any
flip reduces this number by at least one, and thus, our claim follows. Take any pair ab and
cd of crossing edges of M. Flip this crossing, and let ac and bd be the new edges, after a
suitable relabeling. After this flip operation, the crossing between ab and cd disappears.
Moreover, any edge of M that crosses ac (or bd) used to cross ab or cd, and any edge of M
that crosses both ac and bd used to cross both ab and cd. Therefore, the total number of
crossings reduces by at least one, and thus, our claim follows.

Now, we prove, by induction on n, that f(M) < n/2 — 1. If n = 2, then M has only one
edge, and thus, f(M) = 0. Assume that n > 4. First, we show how to transform M, by at
most one flip, to a perfect matching M’ containing a boundary edge, i.e., an edge of the
boundary of the convex hull. Let p1,...,p, be the points in clockwise order. Let p;p; be an
edge of M with minimum depth m. If m = 0, then M’ = M is a matching in which p;p; is
a boundary edge. Suppose that m > 1. Without loss of generality assume that i = 1 and
j =m+2. Let p; be the point that is matched to ps by M. Because of the minimality of m,
the edge papi crosses p1Pm4o. By flipping popr and p1pm12 to p1pe and pp,1opk We obtain
M’ in which pyps is a boundary edge. Let M’ be the matching on n — 2 points obtaining
from M’ by removing a boundary edge. By the induction hypothesis, it holds that

f(M)<1+f(M")<1+(";2—1>:Z-L <

11:7

SWAT 2018

11:8

Flip Distance to some Plane Configurations

(b)

Figure 3 (a) Ilustration of the proof of Lemma 12: Flipping pi1pm+2 and pm+t1prs t0 p1pm+1
and pmy2pys, and then flipping p1pm+1 and papr to p1p2 and prpm+1. (b) Mlustration of the proof
of Lemma 13: vv’ is the first counterclockwise edge incident on v that is crossed by some edges
incident on u, and uu’ is the first counterclockwise edge incident on u that crosses vv'.

In the rest of this section we study spanning trees. The argument of [21] for Hamiltonian
cycles also extends to spanning trees, that is, if 73 is a spanning tree on n points in the plane,
then F(T;) = O(n®). Also, by an argument similar to the one in the proof of Theorem 11,
it can easily be shown that for every spanning tree 7" on n points in the plane in convex
position we have that F(T) = O(n?). In this section we prove that f(T) = O(nlogn). Recall
that a boundary edge is an edge of the boundary of the convex hull.

» Lemma 12. Any spanning tree on a point set in convex position can be transformed, by at
most two flips, into a spanning tree containing a boundary edge.

Proof. Let T be a spanning tree on n points in the plane in convex position, and let p1,...,p,
be the points in clockwise order. Let p;p; be an edge of T with minimum depth m (recall
the definition of depth from Section 1.3). If m = 0, then p;p; is a boundary edge. Suppose
that m > 1. Without loss of generality assume that ¢ = 1 and j = m + 2. Because of the
minimality of m, all edges of T that are incident on pa, ..., Pmy1 Cross P1Pmt2. We consider
two cases with m =1 and m > 1.
m = 1. In this case p;,,+1 = p2 and p,,+2 = p3. Let & be the path between ps to ps in T
and let pi be the vertex that is adjacent to po in §. If § contains py, then we flip p1p3 and
popr to p1p2 and pspg; this gives a spanning tree in which pips is a boundary edge. If §
does not contain p;, then we flip p1p3 and popy to paps and pipg; this gives a spanning
tree in which pops is a boundary edge.
m > 1. Let § be the path between py to py,+2 in T', and let p; be the vertex that is
adjacent to pg in 0. If 0 contains p;, then we flip p1pm+2 and papr to p1p2 and ppy2pk;
this gives the a spanning tree in which p;ps is a boundary edge. Assume that § does not
contain p;. Let ¢’ be the path between p,,11 to p1 in T, and let pys be the vertex that is
adjacent to pp,o1 in ¢'; it may be that &' = k. If §’ contains p,,12, then we flip p1pmao
and pm+1Pk 10 Pmt1Pm2 and pipys; this gives a spanning tree in which p,4+1pm+2 is
a boundary edge. Assume that §’ does not contain p,,+2. See Figure 3(a). In this case
we have that k' # k, because otherwise T would have a cycle. First we flip p1pm12 and
Pm41Pk’ t0 P1Dmy1 and Py yopi, then we flip p1py, 11 and papy to p1p2 and prpy,41; this
gives a spanning tree in which p;ps is a boundary edge. |

For the following lemma we do not need the vertices to be in convex position.

» Lemma 13. Let T be a spanning tree containing an edge uwv such that every other edge is
incident on either u orv. Then f(T) < min(deg (u),deg (v)) — 1, and this bound is tight.

A. Biniaz, A. Maheshwari, and M. Smid

Proof. After a suitable rotation and/or a horizontal reflection and/or relabeling assume that
v is horizontal, u is to the left of v, and that deg (v) < deg (u). The edges that are incident
on points above uv do not cross the edges incident on points below wv. Thus, the crossings
above wv can be handled independently of the ones below uv. Because of symmetry, we
describe how to handle the crossings above wo. See Figure 3(b). We show how to increase, by
one flip, the number of free edges that are incident on v. By repeating this process, our claim
follows. To that end, let v’ be the first vertex, in counterclockwise order, that is adjacent
to v, and such that vv’ is crossed by at least one edge incident on u. Let u’ be the first
vertex, in counterclockwise order, that is adjacent to u, and such that uu’ crosses vv'; see
Figure 3(b). Flip this crossing to obtain new edges vu’ and wv’. The edge vu’ is free, because
otherwise uu’ cannot be the first counterclockwise edge that crosses vv’. Moreover, any edge
that is crossed by uv’ used to be crossed by uu’. Thus, the number of free edges that are
incident on v increases by at least one. By repeating this process, after at most deg (v) — 1
iterations, all incident edges on v become free (notice that the edge uv is already free); this
transforms 7T to a plane spanning tree. This proves the first statement of the lemma.
Recall that the statement of this lemma is not restricted to points in convex position,
and thus, the vertices of our tight example do not need to be in convex position. To verify
the tightness of the bound, consider a tree in which every edge incident on v (except uv) is
crossed by exactly one of the edges incident on u, and every edge incident on u crosses at most
one of the edges incident on v. This tree needs exactly deg (v) — 1 flips to be transformed to
a plane tree. |

» Theorem 14. For every spanning tree T on n points in the plane in convex position we
have that f(T) = O(nlogn).

Proof. We present a recursive algorithm that uncrosses T by O(nlogn) flips. As for the
base case, if n < 3, then T is plane, and thus, no flip is needed. Assume that n > 4. By
Lemma 12, by at most two flips, we can transform T to a tree T’ containing a boundary
edge uv. Contract the edge wv and denote the resulting tree with n — 1 vertices by T"; this
can be done by removing the vertex u together with its incident edges, and then connecting
its neighbors, by straight-line edges, to v. We call every such new edge a u-edge. Recursively
uncross 7" with f(T") flips. During the uncrossing process of 7", whenever we flip/remove
a u-edge, we call the new edge that gets connected to v a u-edge. After uncrossing 7" we
return the vertex u back and connect it to v. Then we remove every u-edge vv’, which is
incident on v, and connect v’ to u. In the resulting tree, every crossing is between an edge
that is incident on u and an edge that is incident on v. Thus, after at most 2+ f(T") flips, T
can be transformed into a tree in which any two crossing edges are incident on u and v. Then
by Lemma 13, we can obtain a plane tree by performing at most min(deg(u),deg(v)) — 1
more flips. Notice that the flip operation does not change the degree of vertices, and thus,
every vertex in the resulting tree has the same degree as in T'. Therefore, we have that

J(T) <2+ F(T") + min(deg (u), deg (v)) - 1
— 1+ min(deg (u), deg (v)) + £(T").

It remains to show that f(7') = O(nlogn). To that end, we interpret the above recursion
by a union-find data structure with the linked-list representation and the weighted-union
heuristic [12, Chapter 21]. The number of flips in the above recursion can be interpreted
as the total time for union operations as follows: each time that we contract an edge uv
and recurse on a smaller tree we perform at most 1 4+ min(deg (u), deg (v)) flips. Consider
every vertex z of T as a set with deg (x) elements. Also, assume that all the elements of
these sets are pairwise distinct. Thus, we have n disjoint sets of total size 2(n — 1); this is
coming from the fact that 7" has n — 1 edges and its total vertex degree is 2(n — 1). The

11:9

SWAT 2018

11:10

Flip Distance to some Plane Configurations

Pk a

Figure 4 Illustration of the proof of Theorem 15. Flipping bb’ and pipm+2 to b'pmie and bp,
and then flipping bp1 and aa’ to pi1a’ and ab.

contraction of an edge uv can be interpreted as a union operation of the sets u and v whose
cost (number of flips) is at most 1 4+ min(|ul, |v|), where |z| denotes the size of the set x.
From the union-find data structure we have that the cost of a sequence of s operations on
m elements is O(s + mlogm). In our case, the number m of elements is 2(n — 1), and the
number s of union operations (edge contractions) is n — 3 (no contraction is needed when
we hit the base case). Thus, it follows that the total cost (the total number of flips) is
O(nlogn). <

4 Bichromatic Matchings

In this section we study the problem of uncrossing perfect bichromatic matchings for points
in convex position and for semi-collinear points. Let n > 2 be an even integer, and let P be a
set of n points in the plane, /2 of which are colored red and n/2 are colored blue. If P is in
general position, then for any bichromatic matching M on P, the best known upper bound
for both f(M) and F(M) is the O(n?) bound that has been proved in [7, 21]. If P is in
convex position, the n/2 — 1 and (”42) lower bounds that are shown in [7] for f(-) and F'(-),
respectively, in the monochromatic setting, also hold in the bichromatic setting. Theorem 11
implies that the (”42) bound for F(-) is tight. The following theorem gives an upper bound
on f(-) for points in convex position.

» Theorem 15. For every perfect bichromatic matching M on n points in the plane in
convex position we have that f(M) <n— 2.

Proof. Our proof is by induction on n. If n = 2, then f(M) = 0. Assume that n > 4. First
we show how to transform M, by at most two flips, to a perfect bichromatic matching M’
containing a boundary edge. Let p1,...,p, be the points in clockwise order. Let p;p; be an
edge of M with minimum depth m. If m = 0, then M’ = M is a matching in which p;p;
is a boundary edge. Suppose that m > 1. Without loss of generality assume that i = 1,
j=m+ 2, py is red, and p,,4+2 is blue as in Figure 4. Let p; and pps be the points that
are matched to py and p,,+1, respectively; it may be that m + 1 =2 and k' = k. Because
of the minimality of m, all edges that are incident on points ps, ..., pm+1 Cross p1pmia. If
p2 is blue, then by flipping p1pma2 and popr to pips and pp,ropr we obtain M’ in which
p1p2 is a boundary edge. Assume that pg is red. If p,,41 is red, then by flipping pipm+o
and Py11Pk $0 Prt1Pm+2 and piprr we obtain M’ in which p,,4+1Pm+2 is a boundary edge.
Assume that p,,+1 is blue. See Figure 4. To this end, ps and p,,+1 have different colors, and
thus, m+ 1 # 2 and k" # k.

A. Biniaz, A. Maheshwari, and M. Smid

Figure 5 Reappearance of the crossing between br and b'r’.

For an illustration of the rest of the proof, follow Figure 4. The sequence po, ..., Pm+1
starts with a red point and ends with a blue point. Thus, in this sequence there are two
points of distinct colors, say a and b, that are consecutive. Let b be the first blue point after
p1. Let @’ and b’ be the two points that are matched to a and b respectively. By flipping bb’
and p1pmao t0 b'ppao and bpy, and then flipping bp; and aa’ to p1a’ and ab we obtain M’
in which ab is a boundary edge.

Let M” be the bichromatic matching on n — 2 points obtaining from M’ by removing a
boundary edge. By the induction hypothesis, it holds that

FM) <2+ f(M")<2+((n—2)—2)=n—2. <

In the rest of this section we study the case where P is semi-collinear, i.e., its blue
points are on a straight line and its red points are in general position. Semi-collinear points
have been studied in may problems related to plane matchings (see e.g., [5, 6, 10]). We

prove that for every perfect bichromatic matching M on P, it holds that f(M) = O(n?).

Before we prove this upper bound, observe that similar to the general position setting, in
the semi-collinear setting the total number of crossings might increase after a flip. Also,
it is possible that a crossing, that has disappeared after a flip, reappears after some more
flips (see the crossing between br and b7’ in Figure 5). The O(n?) upper bound given in [7]
for f(-) on uncolored points, which is obtained by connecting the two leftmost points of a
crossing, does not apply to our semi-collinear bichromatic setting, because in this setting the
two leftmost points might have the same color. These observations imply that there is no
straightforward way of getting a good upper bound.

Let ¢ be the line that contains all the blue points of P. By a suitable rotation we assume
that ¢ is horizontal. For every perfect bichromatic matching M on P, the edges of M, that
are above £, do not cross the ones that are below £. Thus, we can handle these two sets of
edges independently of each other. Therefore, in the rest of this section we assume that the
red points of P lie above £. Recall that P contains n/2 blue points and n/2 red points.

» Lemma 16. Let M be a perfect bichromatic matching on P in which the rightmost blue
point b is matched to the topmost red point r. If M\ {br} is plane, then f(M) < 5 —1, and
this bound is tight.

Proof. See Figure 6(a) for an illustration of the statement of this lemma; notice that if we
remove br from M, then we get a plane matching. Our proof is by induction on n. If n = 2,
then M has one edge which is plane, and thus, f(M) = 0. Assume that n > 4. If br does not
intersect any other edge, then M is plane and f(M) = 0. Suppose that br intersects some

edges of M \ {br}, and let R’ be the set of the red endpoints of those edges; see Figure 6(a).

Let 7’ be the first red point in the counterclockwise order of the red points around b; observe
that " belongs to R’. Let b’ be the blue point that is matched to r’. Flip br and b'r’ to br’
and b'r as in Figure 6(b), and let M’ be the resulting matching. The edge br’ does not cross
any other edge of M’, because of our choice of r’, but the edge b’'r may cross some edges of
M'. Let M" be the subset of edges of M’ that are to the left of b'7/; see Figure 6(b). Notice
that br’ ¢ M", and thus M" is a matching on at most n — 2 points.

11:11

SWAT 2018

11:12

Flip Distance to some Plane Configurations

(a) (b)

Figure 6 Illustration of the proof of Lemma 16.

b1 bl bj

Figure 7 Illustration of the proof of Theorem 17.

Because of the planarity of M \ {br} and since r is the topmost red point, we have that
M’ \ M" is plane. Moreover, M" and M’ \ M" are separated by b'r’. Observe that V' is the
rightmost blue point in M” that is matched to the topmost red point r, moreover, M" \ {b'r}
is plane. Therefore, we can repeat the above process on M", which is a smaller instance of
the initial problem. By the induction hypothesis, it holds that

-2
f(M)1+f(M”)<1+(n2 1> :gfl.
To verify the tightness, Figure 6(c) shows a matching example for which we need exactly
n/2—1 flips to transform it to a plane matching. Each time there exists exactly one crossing,
and after flipping that crossing, only one other crossing appears (except for the last flip). <«

» Theorem 17. For every perfect bichromatic matching M on P we have f(M) < %2 + 7.
Proof. We present an iterative algorithm that uncrosses M by O(n?) flips. Let by, ...,b, /2
be the blue points from left to right. By a suitable relabeling assume that M = {byrq, ...,
bn2mns2}. To simplify the description of the proof, we add, to M, a dummy edge boro such
that by is a blue point on ¢ that is to the left of all the blue points, 7y is a red point that is
higher than all the red points, and all points of P are to the right of boro.

We describe one iteration of our algorithm. If M is plane, then the algorithm terminates.
Assume that M is not plane. Let ¢ € {1,...,n/2} be the smallest index such that b;r;
intersects some edges of M see Figure 7-left. To simplify the rest of our description, we refer
to the current iteration as iteration i. Notice that the blue endpoint of every non-free edge is
strictly to the right of b;_;. Let r; be the first red point that we meet in the following walk
along the edges of M. Starting from b;, we walk along b;r; until we see the first edge e that
crosses b;r;. Then we turn left on e and keep walking until we see a red point or another
crossing edge. If we see a red point, then we call it 7; and finish the walk. If we see a crossing
edge €', then we turn left on ¢’ and keep walking until we see a red point, namely r;, or we
see another crossing edge. In the latter case we repeat this process and stop as soon as we

A. Biniaz, A. Maheshwari, and M. Smid

see the first red point, which we call it r;. Let b; be the blue point that is matched to r;.
Let w denote the convex polygonal path that we traversed from b; to r;.

Flip b;r; and b;r; to byr; and b;r;, and let M’ denote the resulting matching. See
Figure 7-right. Shoot a horizontal ray, from r;, to the left, and stop as soon as it hits an edge
byry in M'. Let M"” be the subset of the edges of M’ that are incident on byy1,...,b;, that
is, M"" = {bgi17241, ..., bi—17i—1,b;7;}. By the way that we picked r;, the edges of M" are
in a convex region whose interior is disjoint from the edges of M’ \ M"; this convex region is
bounded by ¢, b,r,, w, and the ray from r;, as depicted in Figure 7-right. The matching M"
has ¢« — x edges. Observe that, in M", we have that b; is the rightmost blue point that is
matched to the topmost red point r;, and M" \ {b;r;} is plane. Thus, by Lemma 16 we can
uncross M" by at most ¢ —x — 1 flips. To this end, we have transformed M to a matching in
which the edges that are incident on by, ..., b; are free. The total number of flips performed
in iteration ¢ is at most 14+ (i —x — 1) =i —x < 4.

In the next iteration, the smallest index 4, for which b; 7 is not free, is larger than i.
Thus, this smallest index moves at least one step to the right after each iteration. This means
that the number of free edges, that are connected to the blue points of lower indices, increases.
Therefore, after at most n/2 iterations our algorithm terminates. The total number of flips is

n
T

5 Conclusions

We investigated the number of flips that are necessary and sufficient to reach a non-crossing
perfect matching on n points in the plane. It is known that the minimum and the maximum
lengths of a flip sequence are O(n?) and O(n?), respectively. We proved, with a new approach,
that the minimum length of a flip sequence is O(nA) where A is the spread of the points
set; this improves the bound for point sets with sublinear spread. A natural open problem
is to improve any of these bounds. Another open problem is to improve our O(nlogn)
upper bound on the number of sufficient flips to reach a plane spanning tree on points in
convex position, or to show that this bound is tight. One potential way to do this, is that in
Theorem 14, we get a boundary edge wv such that one of u or v has a constant degree.

It is worth mentioning that the number of flips, in a flip sequence, is highly dependent
on the order in which we choose crossings to flip, and the type of a flip that we perform
(among the two possible types). This dependency can be used to improve the bounds on the
minimum number of flips. In Theorems 11, 14, 15, and 17 we used the order and proved
some upper bounds, while in Theorem 4 we used the flip type. One may think of using the
order and the flip type together to improve the current bounds. Notice that for bichromatic
matchings, spanning trees, and Hamiltonian cycles only one type of flip is possible, and thus,
only the order can be used for further improvements. Also, notice that none of the order and
the flip type can be used to improve the bounds on the maximum number of flips, because,
in this case, an adversary chooses the order and the type.

—— References

1 Oswin Aichholzer, Andrei Asinowski, and Tillmann Miltzow. Disjoint compatibility graph
of non-crossing matchings of points in convex position. Electr. J. Comb., 22(1):P1.65, 2015.
2 Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo Garcia Olaverri, Clemens
Huemer, Ferran Hurtado, Mikio Kano, Alberto Marquez, David Rappaport, Shakhar

11:13

SWAT 2018

11:14

Flip Distance to some Plane Configurations

10

11

12

13

14

15

16

17

18

19

20

21

Smorodinsky, Diane L. Souvaine, Jorge Urrutia, and David R. Wood. Compatible geo-
metric matchings. Comput. Geom., 42(6-7):617-626, 2009.

Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-
tions of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368—
389, 2015.

Greg Aloupis, Luis Barba, Stefan Langerman, and Diane L. Souvaine. Bichromatic com-
patible matchings. Comput. Geom., 48(8):622-633, 2015.

Greg Aloupis, Jean Cardinal, Sébastien Collette, Erik D. Demaine, Martin L. Demaine,
Muriel Dulieu, Ruy Fabila Monroy, Vi Hart, Ferran Hurtado, Stefan Langerman, Maria
Saumell, Carlos Seara, and Perouz Taslakian. Non-crossing matchings of points with geo-
metric objects. Computational Geometry: theory and Applications, 46(1):78-92, 2013.
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Bottleneck bichromatic plane matching
of points. In Proceedings of the 26th Canadian Conference on Computational Geometry
(CCCG), pages 431-435, 2014.

Edouard Bonnet and Tillmann Miltzow. Flip distance to a non-crossing perfect matching.
EuroCG, 2016.

Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom., 42(1):60-80,
2009.

Prosenjit Bose and Sander Verdonschot. A history of flips in combinatorial triangulations.
In XIV Spanish Meeting on Computational Geometry (EGC), pages 29-44, 2011.

John Gunnar Carlsson, Benjamin Armbruster, Saladi Rahul, and Haritha Bellam. A bot-
tleneck matching problem with edge-crossing constraints. International Journal of Compu-
tational Geometry and Applcations, 25(4):245-262, 2015.

Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete & Computational
Geometry, 22(1):63-93, 1999.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, chapter 21: Data structures for Disjoint Sets. The MIT Press and McGraw-
Hill Book Company, second edition, 2001.

Herbert Edelsbrunner, Pavel Valtr, and Emo Welzl. Cutting dense point sets in half.
Discrete & Computational Geometry, 17(3):243-255, 1997.

Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
& Computational Geometry, 22(3):333-346, 1999.

Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Téth. Disjoint compatible geometric
matchings. Discrete & Computational Geometry, 49(1):89-131, 2013.

Charles L Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365-372, 1972.
Yoshiaki Oda and Mamoru Watanabe. The number of flips required to obtain non-crossing
convex cycles. In Proceedings of the International Conference on Computational Geometry
and Graph Theory (KyotoCGGT), pages 155-165, 2007.

Alfredo Garcia Olaverri, Clemens Huemer, Ferran Hurtado, and Javier Tejel. Compatible
spanning trees. Comput. Geom., 47(5):563-584, 2014.

Pavel Valtr. Planar point sets with bounded ratios of distances. PhD thesis, Fachbereich
Mathematik, Freie Universitdt Berlin, 1994.

Pavel Valtr. Lines, line-point incidences and crossing families in dense sets. Combinatorica,
16(2):269-294, 1996.

Jan van Leeuwen and Anneke A. Schoone. Untangling a travelling salesman tour in the
plane. In Proceedings of the 7th Conference Graphtheoretic Concepts in Computer Science
(WG@), pages 87-98, 1981.

Boundary Labeling for Rectangular Diagrams

Prosenjit Bose
School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

Paz Carmi
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
carmip@cs.bgu.ac.il

J. Mark Keil

Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
mark.keil@Qusask.ca

Saeed Mehrabi

School of Computer Science, Carleton University, Ottawa, Canada
saeed.mehrabi@carleton.ca

Debajyoti Mondal

Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
d.mondal@usask.ca

—— Abstract

Given a set of n points (sites) inside a rectangle R and n points (label locations or ports) on
its boundary, a boundary labeling problem seeks ways of connecting every site to a distinct port
while achieving different labeling aesthetics. We examine the scenario when the connecting lines
(leaders) are drawn as axis-aligned polylines with few bends, every leader lies strictly inside R,
no two leaders cross, and the sum of the lengths of all the leaders is minimized. In a k-sided
boundary labeling problem, where 1 < k < 4, the label locations are located on the k consecutive
sides of R.

In this paper we develop an O(n®logn)-time algorithm for 2-sided boundary labeling, where
the leaders are restricted to have one bend. This improves the previously best known O(n®log n)-
time algorithm of Kindermann et al. (Algorithmica, 76(1):225-258, 2016). We show the problem
is polynomial-time solvable in more general settings such as when the ports are located on more
than two sides of R, in the presence of obstacles, and even when the objective is to minimize
the total number of bends. Our results improve the previous algorithms on boundary labeling
with obstacles, as well as provide the first polynomial-time algorithms for minimizing the total
leader length and number of bends for 3- and 4-sided boundary labeling. These results settle
a number of open questions on the boundary labeling problems (Wolff, Handbook of Graph
Drawing, Chapter 23, Table 23.1, 2014).

2012 ACM Subject Classification Theory of computation, Theory of computation — Algorithm
design techniques, Theory of computation — Computational geometry

Keywords and phrases Boundary labeling, Dynamic programming, Outerstring graphs
Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.12
Related Version See [8], https://arxiv.org/abs/1803.10812 for the full version of the paper.

Funding Research of Prosenjit Bose and Saeed Mehrabi is supported in part by Natural Sci-
ences and Engineering Research Council of Canada (NSERC). Saeed Mehrabi is also suppor-
ted by a Carleton-Fields postdoctoral fellowship. Debajyoti Mondal is supported in part by
Global Water Futures project (GWF) and Natural Sciences and Engineering Research Council

of Canada (NSERC).

© Prosenjit Bose, Paz Carmi, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal;
37 licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).

Editor: David Eppstein; Article No. 12; pp. 12:1-12:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jit@scs.carleton.ca
mailto:carmip@cs.bgu.ac.il
mailto:mark.keil@usask.ca
mailto:saeed.mehrabi@carleton.ca
mailto:d.mondal@usask.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.12
https://arxiv.org/abs/1803.10812
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Boundary Labeling for Rectangular Diagrams

]

T B &

S

(b) ()

Figure 1 (a) A 1-bend 2-sided boundary labeling (i.e., with po-leaders) on a geographic map
showing (ice cover on the Great Lakes [14]). (b) A 2-bend 2-sided boundary labeling (i.e., with
opo-leaders). This example does not have a feasible solution with 1-bend leaders. (c) Boundary
labeling in 1-bend opposite 2-sided model. (d) A 1-bend 4-sided boundary labeling in the presence
of obstacles.

1 Introduction

Labeling problems appear in a variety of scenarios such as in annotating educational dia-
grams, wiring schematics, system manuals, as well as in many information visualization and
engineering applications. The increasing trend of automation in these areas has motivated
the research in labeling algorithms. Crossings among the leaders (i.e., the lines connecting
labels to the sites), number of bends per leader, and the sum of leader lengths are some
important aesthetics of a diagram labeling. To achieve clarity and better readability, all
these parameters are often preferred to be kept small.

Many labeling problems are NP-hard [12, 5]. A rich body of research attempts to develop
efficient approximation and heuristic algorithms [13, 15, 10, 21, 22], both in the static and
the dynamic settings [3, 10]. In this paper we examine a well-known variant of the labeling
problem called b-bend k-sided boundary labeling, e.g., see Figure 1. The input for this problem
is a set of kn sites and kn ports, where the sites lie in the interior of a rectangle R, the
ports are located on k consecutive sides of R, and each side contains n ports. Both the
sites and ports are represented as points. The goal is to decide whether each site can be
connected to a unique port using axis-aligned leaders such that the leaders are disjoint, each
leader lies strictly inside R and each leader has at most b bends. If such a labeling exists,
then we compute a labeling that optimizes these labeling aesthetics. We examine two such
optimization criteria: one is to minimize the sum of the leader lengths, and the other is to
minimize the total number of bends.

The strict-containment inside R, bend restrictions and orthogonal constraints impose
certain shapes on the leader. An orthogonal leader containing exactly one bend (resp., two
bends) is known as a po-leader (resp., an opo-leader)! [17]. We note that there are 1-bend
leaders with 135° degrees at the bend, which are knowns as do-leaders [2]. Since we are
only interested in orthogonal leaders in this paper, we say 1-bend leaders to always mean
“po-leaders” for the rest of the paper.

Related work. Boundary labeling has been an active area of research in the last decade,
e.g., see the surveys [1, 20]. The boundary labeling problem was first introduced by Bekos
et al. [6]. They gave O(nlogn)-time algorithms to decide labeling feasibility for the 1-bend

L The letters ‘o’ and ‘p’ stand for ‘orthogonal’ and ‘parallel’, respectively. So, an opo-leader starts
orthogonally at the site, and ends orthogonally at the port.

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal

1-sided and opposite 2-sided models, i.e., the labels are located on two opposite sides of
R. In addition, they gave an O(n?)-time algorithm that minimizes the total leader length.
For the 2-bend 4-sided model, they could test the feasibility in O(nlogn) time and reduced
the length minimization to a minimum-cost bipartite matching problem. Benkert et al. [7]
improved Bekos et al’s [6] result on the 1-bend 1-sided model by devising an O(n logn)-time
algorithm for the length minimization. They also considered general cost functions (i.e.,
beyond Euclidean length), as well as other types of leaders. We refer the reader to [19, 4]
for other variants of boundary labeling problem.

The 2-sided model considered by Bekos et al. [6] and Benkert et al. [7] is an opposite-sided
model, i.e., ports are placed on two opposite sides of R. This model is different from the
adjacent 2-sided model, where the labels are always placed on adjacent sides. The adjacent
2-sided model was first considered by Kindermann et al. [17]. For the 1-bend 2-sided model,
they gave an O(n?)-time algorithm to check feasibility, and an O(n®logn)-time algorithm for
total leader length minimization; to our knowledge, this is the fastest algorithm known for
the 1-bend 2-sided model. Note that the labeling problem in this model seems surprisingly
more difficult than the corresponding opposite 2-sided model (also mentioned by Kindermann
et al. [17]). For the 1-bend 3-sided (resp., 4-sided) model, they gave an O(n*)-time (resp.,
O(n?)-time) algorithm for checking the labeling feasibility, but they were unable to solve the
length minimization problem. They posed this as an open question, i.e., can a minimum-
length solution for the 3- and 4-sided boundary labeling be computed in polynomial time?
These challenges motivated us to examine the adjacent model in more detail.

Fink and Suri [11] studied the boundary labeling problem in the presence of obstacles. In
addition to the set of sites, they allowed a set of orthogonal polygons (equivalently, obstacles)
to lie inside R. The objective is to minimize the total leader length with the constraint
that the leaders must not intersect the obstacles. They gave polynomial-time algorithms
for minimizing the total leader length in the 1-sided and opposite 2-sided models, but the
running time of these algorithms while using po- and opo-leaders is fairly high, i.e., O(n%),
O(n®) for the 1-sided model, and O(n?), O(n?!) for the opposite 2-sided model. They also
examined the case when the leaders have non-uniform lengths and the leader locations can
be chosen, which they proved to be NP-hard.

A different generalization of boundary labeling considers sliding ports, i.e., labels are
assigned disjoint intervals on the boundary of R, and a site can be connected to any point in
such an interval. In the 1-sided model, Bekos et al. [6] gave an O(n?)-time algorithm that can
minimize the total number of bends using opo-leader (they did not require the opo-leaders to
lie strictly inside R). They posed an open question to determine the time complexity for
the 3- and 4-sided case. Benkert et al. [7] considered bend minimization with po-leaders.
They gave an O(n?)-time algorithm for the 1-sided model, and O(n®)-time algorithm for
the opposite 2-sided model. The ‘Handbook of Graph Drawing’ [20] lists a number of open
problems related to the minimization of the total number of bends for different variants of
boundary labeling.

The 1-, 3- and 4-sided models for the boundary labeling problem are always adjacent
models, but a 2-sided model can be either adjacent or opposite. Throughout the paper we
will refer to the ‘opposite’ variant as an ‘opposite 2-sided’ model.

Our contributions. We give an algorithm for the 1-bend 2-sided boundary labeling problem
that minimizes the total leader length in O(n3logn) time (if such a labeling exists). Ours is
an adjacent model and uses po-leaders, and hence improves the O(n®logn)-time algorithm
of Kindermann et al. [17]. Since the best known algorithm for the length minimization in the

12:3

SWAT 2018

12:4

Boundary Labeling for Rectangular Diagrams

1-bend opposite 2-sided model takes O(n?) time [7], our result raises an intriguing question
that whether the adjacent boundary labeling model can further be improved to reach (or,
even break) the O(n?) barrier.

We show that many variants of the boundary labeling problems can be related to
outerstring graphs, where the minimization of total leader lengths or bends reduces to an
optimization problem in those outerstring graphs. We notice that this relation is previously
pointed out in a different context [18]. This idea leads us to the following results:

The first polynomial-time algorithm with a running time of O(n%) for the 1-bend 3-sided

and 4-sided boundary labeling problem that minimize the total leader length. This settles

the time-complexity question posed by Kindermann et al. [17].

Polynomial-time algorithms for minimizing the total leader length or the total number

of bends, even in the presence of obstacles. Our algorithms work for both po- and

opo-leaders, as well as for all possible distributions of the ports to the boundary of R,

i.e., both adjacent and opposite models. The running time for the opposite 2-sided model

is O(n®) for po-leaders and O(n?) for opo-leaders; these improve, respectively, the O(n?)-

and O(n?!)-time algorithms of Fink and Suri [11]. This technique can also be applied to

the sliding port model, which settles the time-complexity question posed in [6, 20] related
to the bend minimization.

2 Computing 1-Bend 2-Sided Boundary Labelings

In this section we give an O(n3logn)-time algorithm to find a solution to the 1-bend 2-sided
boundary labeling problem. Throughout this section, we assume that the sites and ports are
in general position, i.e., no axis-aligned straight line passing through a site intersects a port
or another site. Consequently, each leader must have exactly one bend. We thus omit the
term ‘l1-bend’ in the rest of this section. Moreover, we assume that the ports lie on the top
and right sides of the rectangle R.

2.1 Technical Background

Let R(t), R(b), R(l), R(r) be the top, bottom, left and right sides of R, respectively. An zy-
separating curve is an axis-aligned xy-monotone polygonal chain that starts at the bottom-left
corner of R and ends at the top-right corner of R. A 2-sided boundary labeling solution is
xy-separated if there exists an xy-separating curve such that the leaders incident to R(t)
(resp., R(r)) lie on or above (resp., below) the zy-separating curve.

» Lemma 1 (Kindermann et al. [17]). If a 2-sided boundary labeling problem has an affirmative
solution with 1-bend leaders, then there exists such an xy-separated solution that minimizes
the sum of all leader lengths.

Figure 2(a) illustrates an zy-separated solution of a 2-sided boundary labeling problem.
An zxy-separated curve is shown in a light-green. Let Z be an instance of a 2-sided boundary
labeling problem. Without loss of generality assume that the ports are distributed along
the sides R(t) and R(r). Let ports(R(t)) (resp., ports(R(r))) be the set of ports along R(t)
(resp., R(r)). A leader is called inward if the 90° angle formed at its bend point contains the
top-right corner of R. Otherwise, we call the leader an outward leader. The leaders incident
to £ and ¢’ in Figure 2(a), are inward and outward leaders, respectively.

Assume that Z has an affirmative solution S and let C' be a corresponding zy-separating
curve. Let up(C) be the polygonal region above C' bounded by R(¢) and R(l). Similarly, let
right(C) be the polygonal region to the right of C bounded by R(b) and R(r). By C, (resp.,
C,) we denote the xy-separating curve that minimizes the area of up(C,) (resp., right(C,.)),

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal

(o =

l'——z l'——z 2 l&‘——z i
I
Cr \(aw:by) '

(a) (b) ()

cY’u.

Figure 2 (a) An zy-separated solution to a 2-sided boundary labeling. The zy-separating curve
C' is shown in light-green. (b) Illustration for the curves C, and C;. (c) R.

e.g., see Figure 2(b). For a point p, let p, and p, be its « and y-coordinates, respectively.
Given C, and C,., we define a sequence of rectangles R = (Ry, Ra, ..., Ry) as follows:
Each rectangle is a maximal rectangle between C,, and Ci..
The bottom-left corner of R; coincides with that of R.
For ¢ > 1, we first consider R; 1. Since R;_; is maximal, the top and right sides of R; 1
must be determined by a pair of leaders, e.g., see R; in Figure 2(c). Denote these leaders
by Ei_l and ¢!, respectively. Let a € ﬁi_l be the rightmost point of ££~! on the top
side of R;_1, and let b € £:=! be the topmost point on the right side of R;_1. We define
R; to be the maximal empty rectangle with the bottom-left corner at (a,,b,) and the
sides bounded by C,, and C,..

2.2 Algorithm

The idea of the algorithm is to employ a dynamic programming algorithm based on the
idea of finding the optimal rectangle sequence R. Note that for any rectangle R; € R,
we can think of a subproblem A(R;) that seeks a solution including the leaders E{ and /£1.
More formally, A(R;) is an instance of the 2-sided boundary labeling problem for which
the rectangle B(R;) corresponding to this problem is determined by the vertical segment
of 6{ , the horizontal segment of ¢ as well as the top and right sides of the rectangle R; see
the gray rectangle in Figure 3(a). It is straightforward to add a dummy rectangle Ry with
corresponding leaders £9 and 9 such that A(Ry) represents the original 2-sided boundary
labeling problem; e.g., see Figure 3(b).

Given Rj, we try to find R;41 by checking all possible candidate rectangles. For conveni-
ence, we defer the details of finding all candidate rectangles, and focus on the computation
of the solution cost (sum of leader length) assuming that we have found R, ;. Figure 3(c)
illustrates such a scenario. Let Rﬁ)]’ 11 be the region bounded by the lines determined by
the vertical segments of #/ and £/ the horizontal segment of ¢ and R(t). Define Ry 4
symmetrically, e.g., see the top of Figure 4(i). Observe that A(RY ;) is a 1-sided boundary
labeling problem with leaders Ei and e{ *1. In other words, since R; 1 is an empty rectangle,
all the ports between ¢/ and £/ 7' must be connected to some site interior to R We
define A(Rj ; ;) symmetrically. It is now straightforward to express the solution of A\(R;) in
terms of the solutions of A(Rf ; 1), \(R} ;1 1), and AM(Rj41).

12:5

SWAT 2018

12:6

Boundary Labeling for Rectangular Diagrams

00 O0—0—
[]
L4 °
[) []
C []
B(R;)
[[]
i "
© [)
*ly
1 . "
Rj ° Fo

(a) (b)

Figure 3 Illustration for the dynamic programming algorithm.

For any leader I, we denote its length by |I|. Let |A(R;)| be the sum of the leader lengths

in an optimal solution of A(R;) (excluding the lengths of ¢/ and #). Let ports(B(R;)) and
sites(B(;)) be the number of ports and sites interior to B([;), excluding those that are

incident to #; and #/. We now have the following recursive formula, where C denotes the set
of candidate rectangles.

00, if ports(B(Rj;)) # sites(B(R;)).
IAR;)| = (4] + 16D+

min {|A(R} j11)|+IAR] j11)|+A(Rj41)[}, otherwise.

Rj41€C

Finding candidate rectangles. Given a rectangle I?;, we now describe how to find a set of
candidate rectangles that must include I2;11. Recall that we can compute the bottom-left
corner (ag,b,) of Rji1 from R;. Figures 4(a)—(d) illustrate the scenarios where ¢/ and ¢/ are
inward. The point (as,b,) is marked with a cross. We claim that the top side or the right
side of R;11 must contain a site (Lemma 3). We will use the following result of Benkert et
al. [7] to prove Lemma 3.

» Lemma 2 (Benkert et al. [7]). For any solution S to a 1-bend 1-sided boundary labeling
problem that minimizes the total leader length (possibly with crossings), there exists a crossing-
free labeling with the total leader length at most the total leader length of S.

» Lemma 3. The top side or the right side of Rjy1 must contain a site.

Proof. Suppose for a contradiction that neither the top nor the right side of R;y; contains

a site. We now consider four cases.

Case 1 (both £/ and £+ are inward): In this case the leaders ' and #+! must in-
tersect (see Figure 4(e)), which contradicts that the underlying solution is crossing-free.

Case 2 (#7" is inward and #9171 is outward): If £ is outward, then it must intersect ¢7 1!
(see Figure 4(f)). Therefore, the leader £/ must be inward, as illustrated in Figure 4(g).
Note that by our general position assumption, the ‘y-intervals’ determined by the vertical
segments of #2 and 7! must overlap. Consequently, by swapping the site assignments,
we can obtain a solution (possibly with crossings) with strictly smaller total leader length.
Figure 4(i) illustrates such a scenario. By Lemma 2, we can replace this labeling of
A(Rjj+1) with a crossing free labeling that lies inside R} ; ; and does not increase the
total leader length, e.g., see Figure 4(j). Note that the total leader length of the resulting
solution would be strictly smaller, contradicting that the current solution is optimal.

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal

j+1
l

Figure 4 Illustration for (a)—(d) (as,by), (¢)—(j) Lemma 3, and (k)—(1) candidate rectangles.

Case 3 (/11! is outward and £3+1 is inward): This case is symmetric to Case 2.
Case 4 (both £§+1 and ¢ 11 are outward): We can process this case in the same way as
we did in Case 2. <

Recall that we know the bottom-left point w of R;,;. We first assume that the right side
of Rj;1 contains a site. For every site s with s, > w, and s, > w,, we consider all possible
empty rectangles with bottom-left corner w, right side passing through s and the top side
determined by a horizontal line passing through a site above s. Figures 4(k)—(1) illustrate
the candidate rectangles for the bottom left point w. We then assume that the top side of
R; 1 contains a site, and find the candidate rectangles symmetrically. We can now obtain
an upper bound on the distinct candidate rectangles.

» Lemma 4. The overall number of distinct candidate rectangles is O(n?).

Proof. For a particular bottom-left corner w, it may initially appear that there are O(n?)

possible candidate rectangles to explore. But we can prove an O(n) upper bound, as follows.

Let D be the region dominated by w; i.e., for each point ¢ € D, the x and y-coordinates
of ¢ are at least as large as those of w. Let S = {s1,89,..., 5} be the set of sites in D
(ordered by increasing y-coordinates) such that no site in S is dominated by any other site
in D (except possibly for w). We may assume without loss of generality (see Lemma 3) that
the right side of ;1 contains a site. Since the proper interior of the rectangle is empty, for
each s;, where 1 <4 < k, we only need to consider a set of heights H(s;) that lie between s;
and s;41 (or, between s; and R(t) when ¢ = k). For every pair of sites {s,s'} € S, we have
the property that neither s nor s’ dominates the other. Therefore, we have H(s)N H(s") = 0,
> H(si) = O(n), and thus a linear number of candidate rectangles for w.

12:7

SWAT 2018

12:8

Boundary Labeling for Rectangular Diagrams

The number of possible intersections (i.e., bottom-left corners) among the horizontal and
vertical lines passing through the ports and sites is O(n?). Therefore, the number of distinct
candidate rectangles that may appear over the run of the algorithm is O(n?). |

Data structures and time complexity. If we use an O(n?) x O(n?) dynamic programming
table and compute each entry by checking O(n) candidate rectangles, then we need at least
O(n®) time. To improve the running time to O(n®logn), we preprocess the input. For every
possible matching of a pair of ports (on the same side of R) to a pair of sites, we compute and
store the solution to the corresponding 1-sided boundary labeling problem. Since there are
O(n?) such 1-sided problems, and each of them can be answered in O(nlogn) time [7], this
takes O(n®logn) time. We first show how to reduce this preprocessing time to O(n3logn).

Consider a subproblem)\(Ré j +1)- Such a problem can easily be expressed by the ports
and sites incident to #/ and 7', Here we encode A(RY ;1) in a slightly different way. We
use the parameters p,p’, «, 8, where p,p’ are the ports incident to Z{ and E{H, « is either
oo or the y-coordinate of a site that indicates the top side of an “empty rectangle”, which
is used in our preprocessing, and f is the ‘type’ of A(R} ;). We will express (R} ;) as
S(p,p’,a,). In the following we describe the details of S(p,p’, o, 8).

Note that to solve)\(R}j +1) affirmatively, we need exactly as many free sites as the
number of ports between p and p’. Thus for any subproblem, if the number of free sites
and free ports interior to R§-7 j+1 do not match, then we can immediately return a negative
answer. We assume that the points and ports are stored in an orthogonal range counting
data structure (with O(nlogn)-time preprocessing) such that given an orthogonal rectangle,
one can report the number of ports and points interior to the rectangle in O(logn) time [9)].
We only focus on those instances that have the same number of free sites and ports, and
express them in the form S(p,p’, a, B).

Let s, s’ be the sites that are incident to E{ and E{'H, respectively. By the property of the
optimal solution, we may assume that s, < s;. We define)\(R;j_H) as having Type 1, 2, 3
or 4 depending on whether s, s’ belongs to R§7j+1 or not.

Type 1 (both s, s’ are outside R;,j+1): In this case the rectangle determined by the bend
points of é{ and K{H must be empty (i.e., the gray region in Figure 5(a)). We set a to
be 0o, and S to be 1. During the algorithm execution, if)\(R;,jﬂ) is of Type 1, then we

will seek a solution to S(p,p’, 00,1).

Note that for any instance of the form S(p,p’,00,1), we can determine in O(1) time?

the point s” such that the rectangle B determined by p,p’, s” contains an equal number

of free ports and sites. Note that the solution to the labeling problem inside B will be
equivalent to that of /\(R; j+1)- We will precompute the solutions of S(p,p’,00,1) so
that A(R’ ;,,) can be answered in O(1) time by a table look-up. This general idea of

answering a problem A(-) using S(-) applies also to the other types; i.e., Types 2, 3 and 4.
Type 2 (both s, s’ are inside R§’j+1): In this case the rectangle determined by the bend
point of /7! and s must be empty; see Figures 5(c). (Notice that the case shown in
Figure 5(b) is not possible in an optimal solution because re-routing p’ to s and p to s’
would result in a feasible solution with a smaller total leader length.) We thus set « to
be y(s'), and 8 to be 2. Observe now that given S(p,p’, @, 2), we can find both s and s’
in O(1) time? by counting the number of ports between p and p’, and using .

2 Tt is straightforward to preprocess the ports and sites in O(n?®) time in a data structure to answer such
queries in O(1) time.

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal

p p J4 P P p P P D p
o " i+ o
. ét éi’ . °
os// ° 8' ° S/ 'S” ,
- s T e o s’ =
| e | ! o 1 o | |
| S | | S”I ‘ 5//| 1 1
S S —’S - s s S
S(p,p’,00,1) S(p,p',y(s"),2) S(p,p',y(s"),2) S(p,p',y(s"),3) S(p,p',y(s"),4)

(c) (d) (e)

Figure 5 (a)—(e) Illustration for different Types of subproblems.

Type 3 (s € R;,H—l and s’ ¢ Rﬁ',ﬂ-l): In this case the rectangle determined by the bend

point of #77! and s must be empty (Figure 5(d)). We thus set o to be y(s'), and 8 to be
3. Given S(p,p’,, 3), we can recover s and s’ using the range counting data structures?.
The same argument holds even when s, > pl..
Type 4 (s & R;,j—i-l and s’ € R;-’j+1): In this case the rectangle determined by the bend
points of £ and £ must be empty (Figure 5(e)). We thus set o to be y(s'), and § to
be 4. Given S(p,p’, @, 4), we can recover s’ using a. Here we do not need to find s since

the solution must lie inside the rectangle determined by p,p’ and s'.

» Lemma 5. The solution to the problems S(p,p’, a, B) can be computed in O(n3logn) time.

Proof. Since there are O(n) possible choices for each of p,p’, a, and a constant number of
choices for 3, we have at most O(n?) subproblems. We can employ a dynamic programming
to compute the solution to these problems. The idea is to select the bottommost free point s”
and connect it to a port p”’ between p and p’. This splits the problem into two subproblems,
which can again be expressed in the form S(p,p’, @,). Such a split may generate a new
type of subproblem Q, where E{ has a shorter height than that of @{ *1. Since K{ was initially
incident to s”, we can process Q as follows: For every pair of ports, we use Benkert et al’s [7]
algorithm to precompute the solution to the boundary labeling problem inside the stripe
bounded by the vertical lines through p, p’. If there are k ports between p and p’, then we

use the topmost & sites in the stripe (if it exists). This preprocessing takes O(n3logn) time.

To answer Q, we use the precomputed solution for the corresponding stripe.

Since the number of choices for p” is at most n, we can compute an entry of the dynamic
programming table by a linear number of table look-up. Since the number of entries is
O(n?), the running time is bounded by O(n*). An involved analysis shows that there is only
O(1) candidate choices for p”, and these candidates can be found in O(logn) time. The full
version of the paper [8] includes the details. Since an entry of the dynamic programming
table can now be computed using O(1) number of table look-ups, the running time reduces
to O(n®logn). <

» Theorem 6. Given a 1-bend 2-sided boundary labeling problem with O(n) sites and labels,
one can find a labeling (if exists) that minimizes the total leader length in O(n®logn)-time.

Proof. Every subproblem A(R;) can be defined by a pair of leaders, and hence we can define
an O(n?) x O(n?) table T to store the solutions to the subproblems. To compute an entry
of the table T, we look at a set of candidate rectangles with two nice properties. First, all
these rectangles have the same bottom-left corner, and second, none of these rectangles can
be a candidate rectangle for any other entry of 7. Therefore, the number of ‘candidate

12:9

SWAT 2018

12:10

Boundary Labeling for Rectangular Diagrams

rectangle queries’ to fill all the entries of T is bounded asymptotically by the number of
distinct candidate rectangles, which is O(n?) (by Lemma 4). Since we do not recompute
solutions, and the table look-up takes O(1) time, the total running time is bounded by O(n?),
which dominates the preprocessing time.

Observe that the complexity O(n*) comes from considering all possible pairs of leaders,
whereas only O(n?) options are relevant (by Lemma 4). Therefore, instead of a table, we
can keep the relevant entries in a dynamic binary search tree, which increases the cost for
solution look-up to O(logn), but limits the time for both the memory initialization and
look-up queries to O(n®logn). Thus the total running time improves to O(n3logn). |

3 Relating Boundary Labeling to Outerstring Graphs

In this section, we reduce the boundary labeling problem to the independent set problem
on a class of weighted geometric intersection graphs in the plane called outerstring graphs.
We show that if one can discretize a boundary labeling problem such that the number of
candidate leaders is a polynomial in n, then our approach will yield a polynomial-time
algorithm for the problem.

An outerstring graph is an intersection graph of a set of curves in the Euclidean plane that
lie inside a polygon such that one of the endpoints of each curve is attached to the boundary
of the polygon. Keil et al. [16] gave an O(N?3)-time algorithm for the maximum-weighted
independent set problem on outerstring graphs. The algorithm requires an outerstring
graph as an input, where each curve is given as a polygonal line (i.e., a chain of straight
line segments) and N is the number of segments in the representation. We show that by
discretizing the boundary labeling problem and assigning an appropriate weight to each
candidate leader, one can reduce the boundary labeling problem to the maximum-weighted
independent set problem on outerstring graphs. Here, as an example, we show the reduction
for the boundary labeling problem using po- and opo-leaders in the presence of obstacles.

Boundary labeling with orthogonal obstacles. Fink and Suri [11] gave O(n?) and O(n?!)-
time algorithms for the opposite 2-sided boundary labeling with po- and opo-leaders, respect-
ively. Our approach will yield O(n%) and O(n'?)-time algorithms for po- and opo-leaders,
respectively, irrespective of the labeling model (opposite, adjacent, or for any port distribution
on the boundary). For the opposite 2-sided case, the running time reduces to O(n®) and
O(n?) (for po- and opo-leaders, respectively). This will settle the time complexity question of
1-bend 3- and 4-sided boundary labeling [17]. In the rest of this section, we relax the general
position assumption and denote n to be the total number of sites and obstacle vertices.

First consider the case of po-leaders. Let I be an instance of the boundary labeling
problem. Given a site and a port, there is at most one way of connecting them. Let M
denote the set of all possible leaders that do not intersect any obstacle. Then [M| € O(n?).
It is straightforward to compute M in O(n?) time. Observe that each leader | € M can be
viewed as an outerstring, and let st(l) be the corresponding outerstring. Let |I| be the length
of the leader [, and define = := max;eps |!| and y := minjeps |I|. Let C be a number such
that C' > nz — (n — 1)y > 0. For each leader | € M, we assign a weight w(st(l)) to st(l),
where w(st(l)) := C — |l|. The following lemma and Keil et al’s [16] algorithm lead us to the
results for po-leaders (Theorem 8).

» Lemma 7. [has a feasible solution with total leader length L if and only if the corresponding
outerstring graph G has a feasible solution with total weight (nC — L).

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal

Proof. A feasible solution S of I with total leader length L gives a feasible solution for Gy
with total weight

> w(st(l)) =Y (C—I]) =nC =Y _|I| = (nC - L).

les les les

We now assume that G has a feasible solution S’ with total weight W = (nC — L),
and show that the corresponding leaders S yields a feasible solution of I of total leader
length L. Since S’ is an independent set, the leaders in S are crossing-free, as well as
no site or port is incident to more than one leader. It now suffices to show that every
site is connected to a string, i.e., |S| = n and the total leader length is L. Observe that
W=nC—-L>nC—nx>nC—-(n—-1y—C=(n-1)(C—y). If |S] <n, then the total
leader length is at most (n — 1)z, and S’ has weight at most (n —1)(C —y), which contradicts
that W > (n — 1)(C — y). Therefore, |S| = n, and we have

W=> ws)=Y (C—l))=nC=>_|I.

seS’ ses’ les’
Since W = (nC — L), we have), ¢, = L. <

» Theorem 8. The boundary labeling problem can be solved in O(n%) time using po-leaders,
for both adjacent and opposite sided models, even in the presence of obstacles (where n is the
total number of sites and vertices of the obstacles).

Consider now the case for opo-leaders. For opposite 2-sided case, Fink and Suri [11]
showed that one can discretize the problem such that if there exists a feasible solution, then
there is one where the z-coordinate of the middle segment of every leader lies in the set of all
x-coordinates of the sites and obstacle vertices. Therefore, we have O(n) potential leaders
for each port-site pair, and thus O(n?®) leaders in total. Hence applying Keil et al’s [16]
algorithm gives a running time of O(n?).

The discretization of [11] does not apply to the 3- and 4-sided case. However, consider a

grid H determined by the axis-aligned lines through the ports, sites and obstacle vertices.

For each pair of consecutive parallel lines of H, place a set of n parallel lines in between. Let
the resulting grid be H'. If there is a feasible solution to the boundary labeling problem,
then for any pair of consecutive parallel vertical lines ¢, ¢ (similarly for horizontal) of H, we
can have at most n middle vertical segments of the leaders. We thus can distribute them
by moving horizontally to the n lines of H’ (e.g., see [11]), which does not change the total

leader length. By construction, there is no site, port or obstacle vertex between ¢ and ¢'.

Hence such a modification can be performed without introducing any crossing. Since H' is
an O(n?) x O(n?) grid and since we have O(n?) potential leaders for each port-site pair, the
number of candidate leaders is O(n?). Hence applying Keil et al’s [16] algorithm gives a
running time of O(n!?).

» Theorem 9. The adjacent boundary labeling problem can be solved in O(n'?) time using
opo-leaders, even in the presence of obstacles (where n is the total number of sites and vertices
of the obstacles). For opposite 2-sided models, the running time reduces to O(n?).

Sliding ports and bend minimization. The outerstring-graph approach can also be applied
to the sliding port model, where each label is assigned a distinct interval on the boundary of
R and a site can be connected to any point of an interval. The goal here is to minimize the
total leader length or the number of bends. We only need to discretize the problem such

12:11

SWAT 2018

12:12

Boundary Labeling for Rectangular Diagrams

that the number of strings that we need to consider is a polynomial in n. Define H to be
a grid determined by the axis-aligned lines through sites, interval boundaries and obstacle
vertices. Construct H’ from H by introducing for every pair of consecutive parallel lines of
H, a set of 2n parallel lines in between.

The grid H' can be used to discretize the problem, as follows. The segments incident
to the sites are already on H. Consider now a vertical (similarly for horizontal) segment
¢ that is incident to an interval I, but not incident to any site. Let ¢/ and ¢’ be a pair of
consecutive horizontal lines of H such that ¢ lies between them. There can be at most 2n
horizontal lines between ¢, ¢/, which we can distribute to the lines of H’ by moving vertically
(e.g., see [11]). Since there cannot be any site, interval boundary or obstacle vertex between
£, ¢, such a modification neither introduce crossings nor increase the number of total bends.
By the construction of H, the boundary of R between £, ¢ lies in the interval I. Hence ¢
will still be incident to I. Finally, the middle segments of the leaders can be processed in
the same way as we did for Theorem 9. It is straightforward to observe that the number of
potential strings is a polynomial in n. We can now assign certain weights to these strings
such that the maximum-weight independent set of the corresponding outerstring graph yields
a minimum-bend solution for the boundary labeling problem.

We first consider the case of po-leaders. Let I be an instance of this problem. Consider
the set M of outerstrings as before. For each outerstring st(l) € M, we assign the weight
w(st(l)), where

n+ 2, if [has no bends.
n+ 1, if [has one bend.

w(st(l)) = { (1)

This forms our instance G of an outerstring graph on which we solve the maximum-weighted
independent set problem by running Keil et al’s algorithm [16].

» Lemma 10. Let I be an instance of the boundary labeling problem with po-leaders. Then
I has a feasible solution with k bends if and only if the instance Gy has a feasible solution
W with total weight at least (n® + 2n — k).

Proof. Let S be a feasible solution of I. Clearly, the strings corresponding to the leader of
S’ is a feasible solution for G;. Let k be the total number of bends in S. Then the weight of
Sis Y egw(l) = (n+ Dk + (n+2)(n—k) =n?+2n — k.

Assume now that G; has a feasible solution S with weight at least n2 + 2n — k. Let S’
be the corresponding set of leaders in I. Since S is an independent set, a port or site can be
incident to at most one leader of S. If a site is not connected to any port in S/, then at most
(n — 1) sites are incident to a leader. Since the maximum weight of a leader can be at most
(n+2), the weight of S is at most (n—1)(n+2) = (n?4+n —2), which is a contradiction since
the weight of S is at least n? + 2n — k > (n? +n — 2) (because n > k). Therefore, |S’| = n.

It now remains to show that the weight of S’ is at most k. Suppose for a contradiction
that S’ has at least (k 4 1) po-leaders. Therefore, the weight of S is at most (n+1)(k+ 1) +
m+2)(n—k—-1)=n%2+2n— (2k+1) < (n? + 2n — k), which is a contradiction that the
weight of S is at least (n? + 2n — k). <

Now, we consider the case of opo-leaders. Let I be an instance of this problem. Consider
the set M of outerstrings as before. For each outerstring st(l) € M, we assign the weight

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal

w(st(l)) as follows:

a + 3, if [has no bends,
w(st(l)) =< a+2, ifl has one bend, (2)
a+1, if [has two bends.

Here, a = 2n.

» Lemma 11. Let I be an instance of the boundary labeling problem with opo-leaders. Then
I has a feasible solution with k bends if and only if the instance Gy has a feasible solution
W with total weight at least (an + 3n — k).

Proof. Let S be a feasible solution of I. Clearly, the strings corresponding to the leader of
S’ is a feasible solution for G';. Let k be the total number of bends in S, and let k1 and ks be
the number of strings with 1-bend and 2-bends, respectively. Therefore, k1 +2ko = k, and the
weight of S"is). qw(l) = (a+2)k1 +(a+ 1)k + (a+3)(n—k1 —k2) = an+3n—ky —2ky =
an+3n — k.

Assume now that Gy has a feasible solution S with weight at least (an + 3n — k). Let S’
be the corresponding set of leaders in I. Since S is an independent set, a port or site can
be incident to at most one leader of S. If a site is not connected to any port in S’, then at
most (n — 1) sites are incident to a leader. Since the maximum weight of a leader can be
at most (a+ 3), the weight of S is at most (n — 1)(a+ 3) = (an + 3n — a — 3), which is a
contradiction since the weight of S is at least an + 3n — k > (an + 3n — o — 3) (because
a = 2n > k). Therefore, |S'| = n.

It now remains to show that the leaders of S’ has at most k bends. Suppose for a

contradiction that S’ has at least ki po-leaders and kg opo-leaders such that ki +2ky > k+ 1.

Therefore, the weight of S is at most (a + 2)k1 + (@ + ks + (a + 3)(n — ky — ko) =
an+3n— (k1 +2ks) — (2k1 + ko) + (2k1 + ko) = an+3n — (k1 +2kz). Since k1 +2ks > k+1,
the weight of S is strictly less than an + 3n — k, which is a contradiction. <

By Lemmas 10 and 11, we have the following theorem (which settles two open questions
of [20, Table 23.1]).

» Theorem 12. A boundary labeling that minimizes the total number of bends can be computed
(if exists) in polynomial time for both adjacent and opposite models (with sliding ports, po
and opo-leaders), even in the presence of obstacles.

4 Conclusion

The most natural directions for future research is to improve the time complexity of our
algorithm for the 1-bend adjacent 2-sided model. A number of intriguing questions follow:
Can we find a non-trivial lower bound on the time-complexity? Is the problem 3-sum hard
or, as hard as ‘sorting X + Y’? Can we check the feasibility in near-linear time? It would
also be interesting to find fast approximation algorithms for boundary labeling problems.

—— References

1 Alexander Wolff and Tycho Strijk. The map-labeling bibliography. http://illwww.ira.

uka.de/map-labeling/bibliography/. Online; accessed 10 February, 2018.

2 Lukas Barth, Andreas Gemsa, Benjamin Niedermann, and Martin Nollenburg. On the
readability of boundary labeling. In 23rd International Symposium Graph Drawing and
Network Visualization (GD 2015), Los Angeles, CA, USA, pages 515527, 2015.

12:13

SWAT 2018

http://i11www.ira.uka.de/map-labeling/bibliography/
http://i11www.ira.uka.de/map-labeling/bibliography/

12:14

Boundary Labeling for Rectangular Diagrams

10

11

12

13

14
15

16

17

18

19

20

21

22

Lukas Barth, Benjamin Niedermann, Martin Noéllenburg, and Darren Strash. Temporal
map labeling: A new unified framework with experiments. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS), pages 23:1-23:10. ACM, 2016.

Michael A. Bekos, Sabine Cornelsen, Martin Fink, Seok-Hee Hong, Michael Kaufmann,
Martin Néllenburg, Ignaz Rutter, and Antonios Symvonis. Many-to-one boundary labeling
with backbones. J. Graph Algorithms Appl., 19(3):779-816, 2015.

Michael A. Bekos, Michael Kaufmann, Martin Nollenburg, and Antonios Symvonis. Bound-
ary labeling with octilinear leaders. Algorithmica, 57(3):436-461, 2010.

Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary
labeling: Models and efficient algorithms for rectangular maps. Comput. Geom., 36(3):215—
236, 2007.

Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Néllenburg. Algorithms for
multi-criteria boundary labeling. J. Graph Algorithms Appl., 13(3):289-317, 2009.
Prosenjit Bose, Paz Carmi, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal. Boundary
labeling for rectangular diagrams. CoRR, abs/1803.10812, 2018. URL: https://arxiv.
org/abs/1803.10812.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, Berlin Heidelberg, 2008.

Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M. E. Moret, and Binhai
Zhu. Map labeling and its generalizations. In Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 148-157, 1997.

Martin Fink and Subhash Suri. Boundary labeling with obstacles. In Proceedings of the
28th Canadian Conference on Computational Geometry (CCCG), pages 86-92, 2016.
Michael Formann and Frank Wagner. A packing problem with applications to lettering
of maps. In Proceedings of the Seventh Annual Symposium on Computational Geometry
(SoCG), pages 281-288. ACM, 1991.

Herbert Freeman. An expert system for the automatic placement of names on a geographic
map. Inf. Sci., 45(3):367-378, 1988.

GLEAM. http://www.greatlakesmapping.org/. Ounline; accessed 10 February, 2018.
Stephen A. Hirsch. An algorithm for automatic name placement around point data. The
American Cartographer, 9(1):5-17, 1982.

J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An
algorithm for the maximum weight independent set problem on outerstring graphs. Comput.
Geom., 60:19-25, 2017.

Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, André Schulz,
and Alexander Wolff. Multi-sided boundary labeling. Algorithmica, 76(1):225-258, 2016.
Benjamin Niedermann, Martin Néllenburg, and Ignaz Rutter. Radial contour labeling with
straight leaders. In 2017 IEEE Pacific Visualization Symposium (PacificVis 2017), Seoul,
South Korea, pages 295-304, 2017.

Martin Nollenburg, Valentin Polishchuk, and Mikko Sysikaski. Dynamic one-sided bound-
ary labeling. In 18th ACM SIGSPATIAL International Symposium on Advances in Geo-
graphic Information Systems (GIS), pages 310-319, 2010.

Alexander Wolff. Graph drawing and cartography. In Roberto Tamassia, editor, Handbook
of graph drawing and visualization, chapter 23, pages 697-736. CRC Press, 2014.

Steven Zoraster. The solution of large 0-1 integer programming problems encountered in
automated cartography. Operations Research, 38(5):752-759, 1990.

Steven Zoraster. Practical results using simulated annealing for point feature label place-
ment. Cartography and GIS, 24(4):228-238, 1997.

https://arxiv.org/abs/1803.10812
https://arxiv.org/abs/1803.10812
http://www.greatlakesmapping.org/

Gathering by Repulsion

Prosenjit Bose!
School of Computer Science, Carleton University, Canada
jit@scs.carleton.ca

Thomas C. Shermer
School of Computing Science, Simon Fraser University, Canada
shermer@sfu.ca

—— Abstract

We consider a repulsion actuator located in an n-sided convex environment full of point particles.

When the actuator is activated, all the particles move away from the actuator. We study the
problem of gathering all the particles to a point. We give an O(n?) time algorithm to compute
all the actuator locations that gather the particles to one point with one activation, and an O(n)
time algorithm to find a single such actuator location if one exists. We then provide an O(n)
time algorithm to place the optimal number of actuators whose sequential activation results in
the gathering of the particles when such a placement exists.

2012 ACM Subject Classification Mathematics of computing — Graph theory, Theory of compu-
tation — Design and analysis of algorithms, Theory of computation — Computational geometry

Keywords and phrases polygon, kernel, beacon attraction

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.13

1 Introduction

In this paper, we consider some basic questions about movement by repulsion. Here a point
actuator repels particles, or put another way, particles move so as to locally maximize
their distance from the actuator. This problem models magnetic repulsion, movement of
floating objects due to waves, robot movement (if robots are programmed to move away
from certain stimuli), and crowd movement in an emergency or panic situation. It is, in one
sense, the opposite of movement by attraction, which has recently been an active topic of
research [2, 3, 11, 10, 14, 9, 1, §].

1.1 Related work

We initiate the study of repulsion in polygonal settings. The closest comparable work is the
work on attraction. Although attraction and repulsion have a similar definition, each has a
distinct character. Attraction as it has been studied is mainly a two-point relation: a point p
attracts a point ¢ if ¢, moving locally to minimize distance to p, eventually reaches p. In
replusion, p cannot repulse ¢ to itself; p must always repulse g to some other point r. Thus
repulsion is a three-point relation.

In attraction, if a particle is attracted onto an edge by a beacon, it is pulled towards the
point p where there is a perpendicular from the beacon to the line through the edge. If p is
on the edge, this creates a stable minimum at p, and particles accumulate at such mimima.
As well, particles can accumulate on some convex vertices.

! Research supported in part by NSERC.

© Prosenjit Bose and Thomas C. Shermer;

oY licensed under Creative Commons License CC-BY
16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 13; pp. 13:1-13:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2

Gathering by Repulsion

In repulsion, if a particle is repelled onto an edge by a repulsion actuator, it is pushed
away from the point p with the perpendicular to the actuator. This implies that p is an
unstable maximum. We forbid particles from stopping at unstable maxima, so in repulsion
the only accumulation points will be convex vertices. We elaborate further on our model in
Subsection 1.2.

In this article, we highlight some of the similarities as well as distinctions between these
two concepts. For instance, Biro [2] designed an O(n?) time algorithm for computing the
attraction kernel of a simple n-vertex polygon P; these are all points p € P that attract all
points ¢ € P. The closest counterpart of this for repulsion which we call the repulsion kernel
of a polygon P, which is all points p € P such that there exists a point r € P such that
p repels all points in P to 7. We give an O(n?) time algorithm to compute the repulsion
kernel of an n-vertex convex polygon, and an O(n) time algorithm to find a single-point in
the repulsion kernel or report that the kernel is empty.

Both the attraction kernel and the repulsion kernel are concerned with the problem of
gathering particles to a point. When the repulsion kernel is empty, it may be the case that
we can still gather all particles to a point using more than one repulsion actuator. In this
vein, we prove that this is impossible in a polygon with three acute angles. In a convex
polygon with at most two acute angles, two repulsion actuators are always sufficient and
sometimes necessary. We then provide an O(n) time algorithm to place the optimal number
of actuators.

1.2 The model

We start with an n-vertex convex polygon P, which includes its interior. Before the activation
of any repulsion actuator, there is a particle on every point of the polygon, including the
boundary. During and after activation, we allow many particles to be on the same point;
once two particles reach the same point, they travel identically, so we consider them to be
one particle.

We restrict the location of the repulsion actuator to points in P; allowing the actuator
to reside outside P leads to a variation of the problem in which convex polygons are easily
dispensed.

See Figure 1 for an illustration of the following definitions. The activation of an actuator
will cause all particles to move to locally maximize their distance from the actuator. This
means that if a particle is in the interior of P, then it moves in a straight line away from the
actuator’s location. If a particle is on an edge of the polygon, then it proceeds along the
edge in the direction that will further its distance from the active actuator. Once moving,
a particle moves until it is stable and can no longer locally increase its distance from the
actuator. Stable maxima happen at vertices where neither of the two edges allows movement
away from the actuator. We call such vertices the accumulation points of the activation.

Unstable maxima happen when a particle is on an edge where one or both directions give
no differential change of distance from the actuator; this happens only at the perpendicular
projection of the actuator onto the edge (see Figure 1c). A particle at an unstable maximum
will move off of it in a direction of no improvement and then will be able to increase the
distance from the actuator by continuing in that direction. To maintain a deterministic
model, we will assume that particles move counterclockwise around the polygon at unstable
maxima if there is a choice of two directions of no improvement. However, the choice of
counterclockwise motion is arbitrary, and does not affect our results.

We may activate actuators sequentially from several places inside the polygon. We would
like for every activation of an actuator to be from a location without particles, but the
particle-on-every-point model forbids this on the first activation. So, when we choose a

P. Bose and T.C. Shermer

a b c

Figure 1 (a) An activation at w drives the particle at ¢ away from w. On reaching an edge at ¢,
it will continue to move away from w, until it reaches a local maximum of distance from w at a. (b)
Accumulation points of an active actuator at w. (c) At an unstable maximum, such as ¢’, particles
will turn left.

location for the first actuator, we remove the particle at that location from the problem. For
subsequent activations, however, we do require that the actuator’s position be chosen from
the points of the polygon without particles.

The main question we consider is when can we place a sequence of points such that
repulsion from those points gathers all other points in the polygon to one point? When the
replusion kernel is non-empty, one point is sufficient. In general, our goal is to minimize the
number of sequential activations performed to gather all the particles to one point. If all the
particles in a polygon can be gathered to a point with k sequential activations of actuators,
we call the polygon k-gatherable. If this is not possible for any k, then we call the polygon
ungatherable.

2 Background, notation, and terminology

2.1 General notation

We will use the convention that the vertices of P are vg, v1,...,v,_1 in counterclockwise order
around the polygon. Vertex indices are taken modulo n, so v_1 = v,_1,v9 = Up, V1 = Upy1,
etc. Edges are denoted eg,e1,...e,—1, with e; being the edge between v; and v; ;. The
boundary of the polygon P will be denoted 0P, and by dP(p,q) we mean the part of 9P
from p counterclockwise to ¢. In reference to curves, line segments, or intervals, we use the
usual parentheses to denote relatively open ends and square brackets to denote relatively
closed ends. Thus 9P][p, q) is the boundary from p to ¢, including p but not ¢. Given three
distinct points a, b, ¢ in the plane, by Zabc we mean the counterclockwise angle between the
ray from b to a and the ray from b to c.

2.2 Slabs and the three regions of an edge

Consider a polygon edge with particles covering it. When an actuator is activated, depending
on its location relative to the edge, there are three possible effects on the particles: it drives
them counterclockwise over the entire edge, it drives them clockwise over the entire edge, or it
drives some of them clockwise and some of them counterclockwise (see Figure 2). In the latter
case, a perpendicular from the edge to the actuator exists, and the particles clockwise of the
perpendicular are driven clockwise, and the particles counterclockwise of the perpendicular
are driven counterclockwise. The point where the perpendicular hits the edge is called a split
point. We allow split points at the endpoint of an edge if a perpendicular from the endpoint
to the actuator exists.

13:3

SWAT 2018

13:4 Gathering by Repulsion

QOO

Figure 2 We use arrows in the diagrams to show the direction that the particles are driven. (a)
The activation drives the particles (on the indicated edge) clockwise. (b) The activation drives the
particles counterclockwise. (c) The activation splits the particles at s, driving some clockwise and
some counterclockwise.

S3
a

dai
as

Figure 3 A flow diagram, showing the direction of particle movement, along with the accumulation
points and split points, given an actuator at w.

We divide the inner halfplane of an edge e into three regions depending on what effect
an activation in the region has on the particles on the edge. This is done by drawing
interior-facing perpendiculars to the edge at each of its vertices. The regions are Rcy(e),
where an activation drives the particles clockwise, R (€), where an activation drives the
particles counterclockwise, and S(e), where an activation drives some particles clockwise and
some counterclockwise. We refer to S(e) as the slab of e. The slab is closed on its boundaries,
and Rew(€e) and Re.w(e) are open where they meet S(e).

2.3 Flow diagrams

Given a polygon P and a location w of an actuator, we may find the accumulation points
and the split points, and mark each edge (or portion of a split edge) with the direction of
particle movement along that edge, as in Figure 3. We call a diagram of this a flow diagram
for w with respect to P.

» Lemma 1. In a traversal of OP, accumulation and split points alternate.

Proof. Note that in a flow diagram the only points of the boundary with two opposing
directions of particle movement are the accumulation points, where the movement is towards
the point, and the split points, where the movement is away from the point. Thus, between
any two consecutive split points on the boundary, there must be an accumulation point, and
between any two consecutive accumulation points, there must be a split point. This implies
the lemma. <

P. Bose and T.C. Shermer

» Theorem 2. A convex polygon P is 1-gatherable from w iff w lies in the slab of exactly
one of the edges of P.

Proof. A polygon is 1-gatherable from w iff an actuator at w has one accumulation point.

Since accumulation and split points alternate, this holds iff the actuator has exactly one split
point. Since an actuator has a single split point in every slab that it is in (and no others),
the result follows. |

The boundary of the slab for edge e consists of e and two rays perpendicular to e. If we
produce these two rays for each edge of P, and intersect all these rays with P, we get a set

of at most 2n chords that define a decomposition that we call the slab decomposition of P.

An example slab decomposition is shown in Figure 5. The cells of this decomposition have
the property that if two points are in a cell, then these two points are in exactly the same
set of slabs of P.

Theorem 2 then immediately implies that the repulsion kernel of P is the union of zero or
more cells of the slab decomposition of P. This gives us the basis for an O(n?) time algorithm
for finding the repulsion kernel. We start by constructing the slab decomposition. We can
use topological sweep to compute a quad-edge data structure for the slab decomposition in
O(n?) time [5, 4, 6].

» Theorem 3. The repulsion kernel of a convex polygon can be computed in O(n?) time.

Proof. We construct the slab decomposition. As we construct the decomposition, we augment
each edge with information about which slab or slabs it borders and to which side of the
edge said slabs are on. (An edge may border two slabs if the two slabs each have a defining
ray that are collinear.). Choose an arbitrary cell ¢ of the decomposition and determine how

many slabs it is in. From this cell, perform a graph search on the dual of the decomposition.

Each time we step over an edge, from one cell to another, during this search, we update in
constant time the number slabs we are in, according to the information on the edge. We
maintain a list of all cells where this value is one. At the end of the search, this list is the
repulsion kernel. <

If we allow actuators to be located outside a polygon P, then every convex polygon is
1-gatherable.

» Lemma 4. FEvery convez polygon is 1-gatherable from some point in the plane.

Proof. If you go far enough away, you can always find a point that is not covered by any
slab. For this point, there is only one accumulation point. Therefore, an activation of an
actuator from this point moves all the particles to the accumulation point. <

Given the above, one may be tempted to believe that every convex polygon is 1-gatherable
when the actuators are restricted to be inside the polygon. However, this is not always the
case.

» Lemma 5. For k > 2, the regular (2k + 1)-gon Ps11 is not 1-gatherable.

Proof. Assume that the edge length of Psy41 is 2, and that ey is oriented with direction 0
(horizontal on the bottom of the polygon). This is illustrated in Figure 4 for Ps.

By Lemma 12, we need only show that Psj41 is not 1-gatherable from its boundary. By
symmetry, we need consider only e41. The edge ej41 starts at the top center of the polygon
and proceeds downward to the left. The slab S(eg) contains the upper half of ey 1, as the

13:5

SWAT 2018

13:6

Gathering by Repulsion

N :

Figure 4 (a) S(eo) covers the top half of e3. (b) S(e1) covers the bottom half.

distance ¢ (see figure) is greater than 1. (It is 1/sin«, to be precise, where « is half the
(251;_12)” .) Similarly, the slab S(e;) contains the bottom half of ej;.

Thus, each point of eg41 is in S(egx41) and either S(ep) or S(ey) or both. Thus, by
Theorem 2, the polygon is not 1-gatherable from any point of eg41.

The vertices are sometimes special cases, but here the vertex vii1 (the top vertex of
the polygon) is in S(ep), S(ex), and S(eg+1), and thus the polygon is not 1-gatherable from

there. By symmetry, it is not 1-gatherable from any vertex. |

vertex angle, or

In fact, some convex polygons may be ungatherable. It turns out that acute angles are a
major impediment to gathering.

» Lemma 6. A particle that is at an acute vertex v of P cannot be moved by an actuator
activated at any point in P\ v.

Proof. Given any point p € P \ v, the acute vertex v is a local maximum with respect to
distance since any point in P that is infinitesimially close to v is closer to p than v. |

This immediately implies the following.
» Theorem 7. A convex polygon with three acute vertices is not k-gatherable for any k > 0.

For the remainder of the paper, we only consider convex polygons with at most two acute
vertices.

3 1-Gatherability

We have shown so far that not all convex polygons are 1-gatherable. We have also given
a complete characterization of when a convex polygon is 1-gatherable by computing the
repulsion kernel of a polygon in O(n?) time. This begs the question whether it is possible
to find a point from which the polygon is 1-gatherable more efficiently, without having to
compute the repulsion kernel. We answer this question in the affirmative by providing an
O(n) time algorithm. Before presenting the algorithm, we highlight some useful geometric
properties.

» Lemma 8. Let a be an accumulation point of an actuator activated at w in P. The line L
that goes through a and is perpendicular to wa is a line of support of the polygon.

Proof. Since a is an accumulation point, it is a local maximum of distance from w. Thus,
the circle C' with center w and radius aw encloses the polygon in the neighborhood of a. The
line L is tangent to (outside of) C' at a and thus locally supports the polygon at a. Since the
polygon is convex, L also globally supports the polygon. <

P. Bose and T.C. Shermer

We now show that we can restrict our attention to particles starting only on the boundary
of P.

» Lemma 9. An actuator in P that 1-gathers all the particles on OP also 1-gathers all
particles in P.

Proof. The activation of an actuator in P forces a particle p in the interior of P to move
directly away from the actuator until it hits the boundary at some point b. Since there was
a particle p’ whose initial position is b, the particle p will follow the path of p’ and stop at
the same place p’ stops. Thus, the location of p will always be accounted for by the position
of p’. In other words, p is redundant and can be removed from the problem. |

We can take this a step further and show that particles located on the interior of edges
are redundant.

» Lemma 10. An actuator in P that 1-gathers all the particles on the vertices P also
1-gathers all particles on OP.

Proof. The activation of an actuator in P forces a particle p in the interior of an edge of P
to move along along the edge until it reaches a vertex v. There was a particle p’ that started
at v, and we can follow the proof of Lemma 9. <

The above lemmas show that particle movement can be restricted to the boundary. In
fact, to solve the general problem, we only need to consider the problem where particles are
only on vertices. We show a relationship between self-approaching paths and the path on the
boundary followed by a particle under the influence of an actuator. Recall that a directed
path II is self-approaching if for any three consecutive points x,y, z on the path, we have the
property that |xz| > |yz| [7].

» Lemma 11. If OP(z,y) is self-approaching from x to y then activating an actuator aty
sends all the particles on OP(z,y) to x along the boundary.

Proof. Let z be an arbitrary point on dP(x,y). We observed that activating an actuator at
y will move z along the boundary. We need to establish in which direction the particle will
move. Since OP(z,y) is self-approaching from z to y, we have that |yz| < |yz|. Therefore,
the particle z will move to x since particles move in a direction to increase their distance
from an actuator. |

Next, we show that if the repulsion kernel is not empty, then there is at least one point
on the boundary that is in the repulsion kernel.

» Lemma 12. Let P be a convex polygon that is 1-gatherable from a point w in the interior
of P, and let a be the accumulation point for w. Let R be the ray from a through w, not
including the point a. Then P is 1-gatherable from the point w' = RN AP, with a as its
accumulation point (see Figure 5).

Proof. By Theorem 2, the point of gatherability w is in one edge e’s perpendicular slab.

Without loss of generality, we assume that e is horizontal at or below w (by rotation), that a
is not to the right of w (by reflection), and that e is eg = vov1 (by labelling). Let m be such

that a = v,,. See Figure 6. Let p be the point on e which has a perpendicular through w.

Note that p is a split point for w.
To show that P is 1-gatherable from the point w’ on OP, by Lemma 10, it suffices to
show that the particles located on the vertices of P move to one accumulation point with

13:7

SWAT 2018

13:8

Gathering by Repulsion

Figure 5 P is 1-gatherable from w’. Each slab in P is shown, with areas darkness corresponding
to the number of slabs overlapping there.

Vo p Vi

Figure 6 Some relevant points on the polygon.

the activation of an actuator at w’. We will show that this accumulation point is a. We
assume without loss of generality that w’ is located on the edge ey = [vgvg41). Recall that if
w’ happens to be on vy, then the placement of the actuator on w’ means the particle located
at w’ is removed from consideration.

We begin with the claim that an accumulation point for w’ is a. If this were not the
case, then there would be a way to increase the distance from w’ on the boundary in the
neighborhood of a. By Lemma 8, there is a line L perpendicular to wa that is a line of
support of P at a. By construction, L is perpendicular to w’a. Therefore, a is a local
maximum with respect to w’, and thus is an accumulation point for w’. We will now show
that particles located at all other vertices move to a when an actuator is activated at w’.

Since p is a split point for w, we have that upon activation of w, the particles on the
vertices on P (a,p) move clockwise along the boundary to a. Similarly, the particles on the
vertices on 9P (p, a) move counterclockwise along the boundary to a. By Theorem 2, this
means that w is in all of the regions Recw(€1), Reew(€1)s - -+, Reew(€m—1) and w is in Rew(em),
Rew(ema1), - -+, Rew(en—1). See Figure 8.

P. Bose and T.C. Shermer

Figure 8 w is in the regions Rew(em) to Rew(en).

Since all of the slabs S(ey,), S(em+1), - - -, S(en—1) cross the chord aw’ between a and w, we
have