
16th Scandinavian Symposium
and Workshops on Algorithm
Theory

SWAT 2018, June 18–20, 2018,
Malmö University, Malmö, Sweden

Edited by

David Eppstein

LIPIcs – Vo l . 101 – SWAT 2018 www.dagstuh l .de/ l ip i c s

Editors
David Eppstein
Computer Science Department
University of California, Irvine
Irvine, California, USA
eppstein@uci.edu

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-068-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-068-2.

Publication date
June, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SWAT.2018.0

ISBN 978-3-95977-068-2 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-068-2
http://www.dagstuhl.de/dagpub/978-3-95977-068-2
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-068-2
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

SWAT 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
David Eppstein . 0:ix

Invited Talks

Sampling-Based Motion Planning: From Intelligent CAD to Crowd Simulation to
Protein Folding

Nancy M. Amato . 1:1–1:1

Optimizing Society? Ensuring Fairness in Automated Decision-Making
Sorelle Friedler . 2:1–2:1

Robustness Meets Algorithms
Ankur Moitra . 3:1–3:1

Regular Papers

Economical Delone Sets for Approximating Convex Bodies
Ahmed Abdelkader and David M. Mount . 4:1–4:12

Computing Shortest Paths in the Plane with Removable Obstacles
Pankaj K. Agarwal, Neeraj Kumar, Stavros Sintos, and Subhash Suri 5:1–5:15

On Romeo and Juliet Problems: Minimizing Distance-to-Sight
Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash 6:1–6:13

Multistage Matchings
Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos . . . 7:1–7:13

Convex Hulls in Polygonal Domains
Luis Barba, Michael Hoffmann, Matias Korman, and Alexander Pilz 8:1–8:13

Tree Containment With Soft Polytomies
Matthias Bentert, Josef Malík, and Mathias Weller . 9:1–9:14

On the Size of Outer-String Representations
Therese Biedl, Ahmad Biniaz, and Martin Derka . 10:1–10:14

Flip Distance to some Plane Configurations
Ahmad Biniaz, Anil Maheshwari, and Michiel Smid . 11:1–11:14

Boundary Labeling for Rectangular Diagrams
Prosenjit Bose, Paz Carmi, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal . 12:1–12:14

Gathering by Repulsion
Prosenjit Bose and Thomas C. Shermer . 13:1–13:12

Improved Bounds for Guarding Plane Graphs with Edges
Ahmad Biniaz, Prosenjit Bose, Aurélien Ooms, and Sander Verdonschot 14:1–14:12

Sparse Weight Tolerant Subgraph for Single Source Shortest Path
Diptarka Chakraborty and Debarati Das . 15:1–15:15

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

An Improved Algorithm for Incremental DFS Tree in Undirected Graphs
Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang 16:1–16:12

Succinct Dynamic One-Dimensional Point Reporting
Hicham El-Zein, J. Ian Munro, and Yakov Nekrich . 17:1–17:11

Enumerating Vertices of 0/1-Polyhedra associated with 0/1-Totally Unimodular
Matrices

Khaled Elbassioni and Kazuhisa Makino . 18:1–18:14

The Parameterized Hardness of the k-Center Problem in Transportation Networks
Andreas Emil Feldmann and Dániel Marx . 19:1–19:13

Algorithms for the Discrete Fréchet Distance Under Translation
Omrit Filtser and Matthew J. Katz . 20:1–20:14

Partial Complementation of Graphs
Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Strømme, and
Dimitrios M. Thilikos . 21:1–21:13

New Algorithms for Distributed Sliding Windows
Sutanu Gayen and N. V. Vinodchandran . 22:1–22:15

Parameterized Aspects of Strong Subgraph Closure
Petr A. Golovach, Pinar Heggernes, Athanasios L. Konstantinidis,
Paloma T. Lima, and Charis Papadopoulos . 23:1–23:13

Parameterized Orientable Deletion
Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Yota Otachi, and
Florian Sikora . 24:1–24:13

SVM via Saddle Point Optimization:
New Bounds and Distributed Algorithms

Lingxiao Huang, Yifei Jin, and Jian Li . 25:1–25:13

Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts
Shang-En Huang and Seth Pettie . 26:1–26:12

Reconfiguration of Colorable Sets in Classes of Perfect Graphs
Takehiro Ito and Yota Otachi . 27:1–27:13

Tight Lower Bounds for List Edge Coloring
Łukasz Kowalik and Arkadiusz Socała . 28:1–28:12

Load Thresholds for Cuckoo Hashing
with Double Hashing

Michael Mitzenmacher, Konstantinos Panagiotou, and Stefan Walzer 29:1–29:9

A Greedy Algorithm for Subspace Approximation Problem
Nguyen Kim Thang . 30:1–30:7

Planar 3-SAT with a Clause/Variable Cycle
Alexander Pilz . 31:1–31:13

Tree-Residue Vertex-Breaking: a new tool for proving hardness
Erik D. Demaine and Mikhail Rudoy . 32:1–32:14

Contents 0:vii

Nearly Optimal Separation Between Partially and Fully Retroactive Data
Structures

Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams,
Yinzhan Xu, and Yuancheng Yu . 33:1–33:12

SWAT 2018

Preface

The Scandinavian Symposium and Workshops on Algorithm Theory (SWAT, formerly the
Scandinavian Workshop on Algorithm Theory) has been offered every two years beginning in
1988, when it was offered in Halmstaf, Sweden. It alternates with its sister conference, the
Algorithms and Data Structures Symposium (WADS), usually held in Canada. This year
marks the 16th SWAT, and the fourth time the conference has been in Sweden.

92 regular papers were submitted to the conference; four were withdrawn, and the program
committee selected 30 of the remaining 88 papers for presentation at the conference. In
addition, the conference program includes three invited talks, whose abstracts are included
in the proceedings.

The SWAT conference series is run by a steering committee consisting of Lars Arge
(Aarhus University), Magnús M. Halldórsson (Reykjavík University), Andrzej Lingas (Lund
University), Jan Arne Telle (University of Bergen), and Esko Ukkonen (University of Helsinki).
This year’s conference is organized by Jesper Larsson and Bengt J. Nilsson (both of Malmö
University).

The program committee consisted of Mikkel Abrahamsen (University of Copenhagen),
Joan Boyar (University of Southern Denmark), Jingsen Chen (Luleå University of Technology),
Devdatt Dubhashi (Chalmers University of Technology), David Eppstein (chair; University of
California, Irvine), Zachary Friggstad (University of Alberta), Travis Gagie (Diego Portales
University), Serge Gaspers (University of New South Wales), Iyad Kanj (DePaul University),
Viggo Kann (KTH Royal Institute of Technology), Tsvi Kopelowitz (University of Waterloo),
Christian Knauer (University of Bayreuth), Irina Kostitsyna (Eindhoven University of
Technology), Shi Li (University at Buffalo), Daniel Lokshtanov (University of Bergen),
Matthias Mnich (Maastricht University and Rheinische Friedrich-Wilhelms-Universität Bonn),
Sang-il Oum (Korea Advanced Institute of Science and Technology), Daniel Paulusma
(Durham University), Marcin Pilipczuk (University of Warsaw), Benjamin Raichel (University
of Texas at Dallas), Marcel Roeloffzen (National Institute of Informatics), Barna Saha
(University of Massachusetts Amherst), Jukka Suomela (Aalto University), and Haitao Wang
(Utah State University).

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Sampling-Based Motion Planning: From
Intelligent CAD to Crowd Simulation to Protein
Folding
Nancy M. Amato
Department of Computer Science and Engineering, Texas A&M University
College Station, Texas, USA
amato@tamu.edu

Abstract
Motion planning has application in robotics, animation, virtual prototyping and training, and
even for seemingly unrelated tasks such as evaluating architectural plans or simulating protein
folding. Surprisingly, sampling-based planning methods have proven effective on problems from
all these domains. In this talk, we provide an overview of sampling-based planning and describe
some variants developed in our group, including strategies suited for manipulation planning
and for user interaction. For virtual prototyping, we show that in some cases a hybrid system
incorporating both an automatic planner and haptic user input leads to superior results. For
crowd simulation, we describe techniques for evacuation planning and for evaluating architectural
designs. Finally, we describe our application of sampling-based motion planners to simulate
molecular motions, such as protein and RNA folding.

2012 ACM Subject Classification Computing methodologies → Robotic planning

Keywords and phrases motion planning, probabilistic roadmap

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.1

Category Invited Talk

© Nancy M. Amato;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amato@tamu.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Optimizing Society? Ensuring Fairness in
Automated Decision-Making
Sorelle Friedler
Department of Computer Science, Haverford College
Haverford, Pennsylvania, USA
sfriedle@haverford.edu

Abstract
Algorithms are increasingly used to make high-stakes decisions about people; who goes to jail,
what neighborhoods police deploy to, and who should be hired for a job. But if we want these
decisions to be fair, this means we must take societal notions of fairness and express them using
the language of math. What is a fair decision and how can it be guaranteed?

In this talk, we’ll discuss recent work from the new and growing field of Fairness, Accountab-
ility, and Transparency. We will examine technical definitions of fairness and non-discrimination
that have been proposed and their societal counterparts. We’ll also discuss methods for ensuring
that algorithms are making decisions as desired, from methods to audit black-box algorithms to
white-box interpretability techniques. This important field necessitates societally informed and
mathematically rigorous work; we’ll discuss open problems in this light.

2012 ACM Subject Classification Security and privacy → Social aspects of security and privacy

Keywords and phrases algorithmic fairness

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.2

Category Invited Talk

© Sorelle Friedler;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sfriedle@haverford.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Robustness Meets Algorithms
Ankur Moitra
Department of Mathematics, MIT
Cambridge, Massachusetts, USA
moitra@mit.edu

Abstract
In every corner of machine learning and statistics, there is a need for estimators that work
not just in an idealized model but even when their assumptions are violated. Unfortunately
in high-dimensions, being provably robust and efficiently computable are often at odds with
each other. In this talk, we give the first efficient algorithm for estimating the parameters of
a high-dimensional Gaussian which is able to tolerate a constant fraction of corruptions that
is independent of the dimension. Prior to our work, all known estimators either needed time
exponential in the dimension to compute, or could tolerate only an inverse polynomial fraction
of corruptions. Not only does our algorithm bridge the gap between robustness and algorithms,
it turns out to be highly practical in a variety of settings.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Computing methodologies → Machine learning algorithms

Keywords and phrases robust estimators, machine learning algorithms

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.3

Category Invited Talk

© Ankur Moitra;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moitra@mit.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Economical Delone Sets for Approximating
Convex Bodies
Ahmed Abdelkader
Department of Computer Science
University of Maryland, College Park MD, USA
akader@cs.umd.edu

https://orcid.org/0000-0002-6749-1807

David M. Mount
Department of Computer Science and Institute of Advanced Computer Studies
University of Maryland, College Park MD, USA
mount@cs.umd.edu

Abstract
Convex bodies are ubiquitous in computational geometry and optimization theory. The high
combinatorial complexity of multidimensional convex polytopes has motivated the development
of algorithms and data structures for approximate representations. This paper demonstrates an
intriguing connection between convex approximation and the classical concept of Delone sets from
the theory of metric spaces. It shows that with the help of a classical structure from convexity
theory, called a Macbeath region, it is possible to construct an ε-approximation of any convex
body as the union of O(1/ε(d−1)/2) ellipsoids, where the center points of these ellipsoids form a
Delone set in the Hilbert metric associated with the convex body. Furthermore, a hierarchy of
such approximations yields a data structure that answers ε-approximate polytope membership
queries in O(log(1/ε)) time. This matches the best asymptotic results for this problem, by a
data structure that both is simpler and arguably more elegant.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Approximate polytope membership, Macbeath regions, Delone sets, Hil-
bert geometry

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.4

Funding Research supported by NSF grant CCF–1618866.

1 Introduction

We consider the following fundamental query problem. Let K denote a bounded convex
polytope in Rd, presented as the intersection of n halfspaces. The objective is to preprocess
K so that, given any query point q ∈ Rd, it is possible to determine efficiently whether q lies
in K. Throughout, we assume that d is a fixed constant and K is full-dimensional.

Polytope membership is equivalent in the dual setting to answering halfspace emptiness
queries for a set of n points in Rd. In dimensions higher than three, the fastest exact data
structure with near-linear space has a query time of roughly O

(
n1−1/bd/2c) [29], which is

unacceptably high for many applications. Hence, we consider an approximate setting.
Let ε be a positive real parameter, and let diam(K) denote K’s diameter. Given a query

point q ∈ Rd, an ε-approximate polytope membership query returns a positive result if q ∈ K,
a negative result if the distance from q to its closest point in K is greater than ε · diam(K),
and it may return either result otherwise.

© Ahmed Abdelkader and David M. Mount;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akader@cs.umd.edu
https://orcid.org/0000-0002-6749-1807
mailto:mount@cs.umd.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Economical Delone Sets for Approximating Convex Bodies

Polytope membership queries, both exact and approximate, arise in many application
areas, such as linear programming and ray-shooting queries [15,28,30,33], nearest neighbor
searching and the computation of extreme points [1, 16, 18], collision detection [21], and
machine learning [14].

Dudley [20] showed that, for any convex body K in Rd, it is possible to construct an ε-
approximating polytope P with O(1/ε(d−1)/2) facets. This bound is asymptotically tight, and
is achieved when K is a Euclidean ball. This construction implies a (trivial) data structure
for approximate polytope membership problem with space and query time O(1/ε(d−1)/2). It
follows from the work of Bentley et al. [11] that there is a simple grid-based solution, that
answers queries in constant time using space O(1/εd−1). Arya et al. [2, 3] present algorithms
that achieve a tradeoff between these two extremes, but their data structure provides no
improvement over the storage in [11] when the query time is polylogarithmic.

A space-optimal solution for the case of polylogarithmic query time was presented in [7].
It achieves query time O(log 1

ε) with storage O(1/ε(d−1)/2). This paper achieves its efficiency
by abandoning the grid- and quadtree-based approaches in favor of an approach based on
ellipsoids and a classical structure from convexity theory called a Macbeath region [27].

The approach presented in [7] is based on constructing a collection of nested eroded
bodies within K and covering the boundaries of these eroded bodies with ellipsoids that are
based on Macbeath regions. Queries are answered by shooting rays from a central point
in the polytope towards the boundary of K, and tracking an ellipsoid at each level that is
intersected by the ray. While it is asymptotically optimal, the data structure and its analysis
are complicated by various elements that are artifacts of this ray shooting approach.

In this paper, we present a simpler and more intuitive approach with the same asymptotic
complexity as the one in [7]. The key idea is to place the Macbeath regions based on Delone
sets. A Delone set is a concept from the study of metric spaces. It consists of a set of points
that have nice packing and covering properties with respect to the metric balls. Our main
result is that any maximal set of disjoint shrunken Macbeath regions defines a Delone set
with respect to the Hilbert metric induced on a suitable expansion of the convex body. This
observation leads to a simple DAG structure for membership queries. The DAG structure
arises from a hierarchy of Delone sets obtained by layering a sequence of expansions of the
body. Our results uncover a natural connection between the classical concepts of Delone sets
from the theory of metric spaces and Macbeath regions and the Hilbert geometry from the
theory of convexity.

2 Preliminaries

In this section we present a number of basic definitions and results, which will be used
throughout the paper. We consider the real d-dimensional space, Rd, where d is a fixed
constant. Let O denote the origin of Rd. Given a vector v ∈ Rd, let ‖v‖ denote its Euclidean
length, and let 〈·, ·〉 denote the standard inner product. Given two points p, q ∈ Rd, the
Euclidean distance between them is ‖p− q‖. For q ∈ Rd and r > 0, let B(q, r) denote the
Euclidean ball of radius r centered at q, and let B(r) = B(O, r).

Let K be a convex body in Rd, represented as the intersection of m closed halfspaces
Hi = {x ∈ Rd : 〈x, vi〉 ≤ ai}, where ai is a nonnegative real and vi ∈ Rd. The bounding
hyperplane for Hi is orthogonal to vi and lies at distance ai/‖vi‖ from the origin. The
boundary of K will be denoted by ∂K. For 0 < κ ≤ 1, we say that K is in κ-canonical form
if B(κ/2) ⊆ K ⊆ B(1/2). Clearly, such a body has a diameter between κ and 1.

A. Abdelkader and D.M. Mount 4:3

It is well known that in O(m) time it is possible to compute a non-singular affine
transformation T such that T (K) is in (1/d)-canonical form [6, 23]. Further, if a convex
body P is within Hausdorff distance ε of T (K), then T−1(P) is within Hausdorff distance at
most dε of K. (Indeed, this transformation is useful, since the resulting approximation is
directionally sensitive, being more accurate along directions where K is skinnier.) Therefore,
for the sake of approximation with respect to Hausdorff distance, we may assume that K
has been mapped to canonical form, and ε is scaled by a factor of 1/d. Because we assume
that d is a constant, this transformation will only affect the constant factors in our analysis.

A number of our constructions involve perturbing the body K by means of expansion,
but the exact nature of the expansion is flexible in the following sense. Given δ > 0, let
Kδ denote any convex body containing K such that the Hausdorff distance between ∂K

and ∂Kδ is Θ(δ · diam(K)). For example, if K is in canonical form, Kδ could result as the
Minkowski sum of K with another convex body of diameter δ or from a uniform scaling
about the origin by δ. Because reducing the approximation parameter by a constant factor
affects only the constant factors in our complexity bounds, the use of an appropriate Kδ

instead of closely related notions of approximation, like the two just mentioned, will not
affect our asymptotic bounds. Given δ > 0, we perturb each Hi to obtain

Hi,δ = {x ∈ Rd : 〈x,~vi〉 ≤ ai + δ)}.

The associated bounding hyperplane is parallel to that of Hi and translated away from the
origin by a distance of δ/‖vi‖. With that, we define Kδ as the convex polytope

⋂n
i=1 Hi,δ.

To ensure the required bound on the Hausdorff error, we require that c1δ ≤ ‖vi‖ ≤ c2 for all
i, where c1 and c2 are nonnegative reals. The following argument shows that this condition
suffices. If c1δ ≤ ‖vi‖ ≤ c2, then each bounding halfspace of K is translated away from the
origin by a distance of δ/‖vi‖ ≥ δ/c2, which establishes the lower bound on the Hausdorff
distance. Also, each bounding halfspace is translated by a distance of δ/‖vi‖ ≤ 1/c1. Since
K, being in canonical form, is nested between balls of radius κ/2 and 1/2, this translation of
the halfspace is equivalent to a scaling about the origin by a factor of at most 2/c1κ, which
maps each point of K away from the origin by a distance of at most (2/c1κ)/2 = 1/c1κ. This
establishes the upper bound on the Hausdorff distance.

2.1 Macbeath regions
Our algorithms and data structures will involve packings and coverings by ellipsoids, which
will possess the essential properties of Delone sets. These ellipsoids are based on a classical
concept from convexity theory, called Macbeath regions, which were described first by A. M.
Macbeath in a paper on the existence of certain lattice points in a convex body [27]. They
have found uses in diverse areas (see, e.g., Bárány’s survey [9]).

Given a convex body K, a point x ∈ K, and a real parameter λ ≥ 0, the λ-scaled
Macbeath region at x, denoted Mλ

K(x), is defined to be

x+ λ((K − x) ∩ (x−K)).

When λ = 1, it is easy to verify that M1
K(x) is the intersection of K and the reflection of K

around x (see Fig. 1a), and hence it is centrally symmetric about x. Mλ
K(x) is a scaled copy

of M1
K(x) by the factor λ about x. We refer to x and λ as the center and scaling factor of

Mλ
K(x), respectively. To simplify the notation, when K is clear from the context, we often

omit explicit reference in the subscript and use Mλ(x) in place of Mλ
K(x). When λ < 1, we

SWAT 2018

4:4 Economical Delone Sets for Approximating Convex Bodies

K

x

M(x)

M1/2(x)

2x−K

(a)

K

x

E(x)

E
√
d(x)

M(x)

(b)

Figure 1 (a) Macbeath regions and (b) Macbeath ellipsoids.

y

x

Mλ(x)

Mcλ(x)

Mλ(y)

(a)

y

x

Mλ(x)

Mcλ(x)

Mλ(y)

(b)

K
x′

x

y

y′

(c)

Figure 2 (a)-(b) Expansion-containment per Lemma 1. (c) The Hilbert metric.

say Mλ(x) is shrunken. When λ = 1, M1(x) is unscaled and we drop the superscript. Recall
that if Cλ is a uniform λ-factor scaling of any bounded, full-dimensional set C ⊂ Rd, then
vol(Cλ) = λd · vol(C).

An important property of Macbeath regions, which we call expansion-containment, is that
if two shrunken Macbeath regions overlap, then an appropriate expansion of one contains
the other (see Fig. 2a). The following is a generalization of results of Ewald, Rogers and
Larman [22] and Brönnimann, Chazelle, and Pach [13]. Our generalization allows the
shrinking factor λ to be adjusted, and shows how to adjust the expansion factor β of the
first body to cover an α-scaling of the second body, e.g., the center point only (see Fig. 2b).

I Lemma 1. Let K ⊂ Rd be a convex body and let 0 < λ < 1. If x, y ∈ K such that
Mλ(x) ∩Mλ(y) 6= ∅, then for any α ≥ 0 and β = 2+α(1+λ)

1−λ , Mαλ(y) ⊆Mβλ(x) (see Fig. 2).

2.2 Delone sets and the Hilbert metric
An important concept in the context of metric spaces involves coverings and packings by
metric balls [19]. Given a metric f over X, a point x ∈ X, and real r > 0, define the ball
Bf (x, r) = {y ∈ X : f(x, y) ≤ r}. For ε, εp, εc > 0, a set X ⊆ X is an:
ε-packing: If the balls of radius ε/2 centered at every point of X do not intersect.
ε-covering: If every point of X is within distance ε of some point of X.
(εp, εc)-Delone Set: If X is an εp-packing and an εc-covering.

Delone sets have been used in the design of data structures for answering geometric
proximity queries in metric spaces through the use of hierarchies of nets, such as navigating
nets [26], net trees [24], and cover trees [12].

In order to view a collection of Macbeath regions as a Delone set, it will be useful to
introduce an underlying metric. The Hilbert metric [25] was introduced over a century ago

A. Abdelkader and D.M. Mount 4:5

by David Hilbert as a generalization of the Cayley-Klein model of hyperbolic geometry. A
Hilbert geometry (K, fK) consists of a convex domain K in Rd with the Hilbert distance fK .
For any pair of distinct points x, y ∈ K, the line passing through them meets ∂K at two
points x′ and y′. We label these points so that they appear in the order 〈x′, x, y, y′〉 along
this line (see Fig. 2c). The Hilbert distance fK is defined as

fK(x, y) = 1
2 ln

(
‖x′ − y‖
‖x′ − x‖

‖x− y′‖
‖y − y′‖

)
.

When K is not bounded and either x′ or y′ is at infinity, the corresponding ratio is taken to
be 1. To get some intuition, observe that if x is fixed and y moves along a ray starting at x
towards ∂K, fK(x, y) varies from 0 to ∞.

Hilbert geometries have a number of interesting properties; see the survey by Papadopoulos
and Troyanov [32] and the multimedia contribution by Nielsen and Shao [31]. First, fK can
be shown to be a metric. Second, it is invariant under projective transformations.1 Finally,
when K is a unit ball in Rd, the Hilbert distance is equal (up to a constant factor) to the
distance between points in the Cayley-Klein model of hyperbolic geometry.

Given a point x ∈ K and r > 0, let BH(x, r) denote the ball of radius r about x in
the Hilbert metric. The following lemma shows that a shrunken Macbeath region is nested
between two Hilbert balls whose radii differ by a constant factor (depending on the scaling
factor). Thus, up to constant factors in scaling, Macbeath regions and their associated
ellipsoids can act as proxies to metric balls in Hilbert space. This nesting was observed
by Vernicos and Walsh [34] (for the conventional case of λ = 1/5), and we present the
straightforward generalization to other scale factors. For example, with λ = 1/5, we have
BH(x, 0.09) ⊆M1/5(x) ⊆ BH(x, 0.21) for all x ∈ K.

I Lemma 2. Given a convex body K ⊂ Rd, for all x ∈ K and any 0 ≤ λ < 1,

BH
(
x,

1
2 ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x,

1
2 ln 1 + λ

1− λ

)
.

3 Macbeath regions as Delone sets

Lemma 2 justifies using Macbeath regions as Delone sets. Given a point x ∈ K and
δ > 0, define Mδ(x) to be the (unscaled) Macbeath region with respect to Kδ, that is,
Mδ(x) = MKδ(x). Towards our goal of using Delone sets for approximating convex bodies,
we study the behavior of overlapping Macbeath regions at different scales of approximation
and establish a bound on the size of such Delone sets. In particular, we consider maximal
sets of disjoint shrunken Macbeath regions Mλ

δ (x) defined with respect to Kδ, such that the
centers x lie within K; let Xδ denote such a set of centers. The two scale factors used to
define the Delone set will be denoted by (λp, λc), where we assume 0 < λp < λc < 1 are
constants. Define M ′δ(x) = Mλc

δ (x) and M ′′δ (x) = M
λp
δ (x).

3.1 Varying the scale
A crucial property of metric balls is how they adapt to changing the resolution at which
the domain in question is being modeled. We show that Macbeath regions enjoy a similar
property.

1 This follows from the fact that the argument to the logarithm function is the cross ratio of the points
(x′, x, y, y′), and it is well known that cross ratios are preserved under projective transformations.

SWAT 2018

4:6 Economical Delone Sets for Approximating Convex Bodies

I Lemma 3. Given a convex body K ⊂ Rd and λ, δ, ε ≥ 0, for all x ∈ K,

Mλ
Kδ

(x) ⊆ Mλ
K(1+ε)δ

(x) ⊆ M
(1+ε)λ
Kδ

(x).

Proof. The first inclusion is a simple consequence of the fact that enlarging the body can
only enlarge the Macbeath regions. To see the second inclusion, it will simplify the notation
to translate space by −x so that x now coincides with the origin. Thus, MK(x) = K ∩ −K.
Recalling our representation from Section 2, we can express K as the intersection of a set
of halfspaces Hi = {y : 〈y, vi〉 ≤ ai}. (The translation affects the value of ai, but not the
approximation, because x ∈ K, ai ≥ 0.) We can express MK(x) as the intersection of a set of
slabs Σi = Hi ∩ −Hi, where each slab is centered about the origin. MKδ (x) can be similarly
expressed as the intersection of slabs Σi,δ = Hi,δ ∩ −Hi,δ, where the defining inequality is
〈y, vi〉 ≤ ai + δ. This applies analogously to MK(1+ε)δ(x), where the defining inequality is
〈y, vi〉 ≤ ai + (1 + ε)δ. Since ai ≥ 0, we have ai + (1 + ε)δ ≤ (1 + ε)(ai + δ), which implies
that Σi,(1+ε)δ ⊆ (1 + ε)Σi,δ. Thus, we have

MK(1+ε)δ(x) =
⋂m

i=1
Σi,(1+ε)δ ⊆

⋂m

i=1
(1 + ε)Σi,δ = M

(1+ε)
Kδ

(x).

The lemma now follows by applying a scaling factor of λ to both sides. J

As we refine the approximation by using smaller values of δ, it is important to bound the
number of Macbeath regions at higher resolution that overlap any given Macbeath region at
a lower resolution. Our bound is based on a simple packing argument. We will show that
the shrunken Macbeath regions M ′′δ (y) that overlap a fixed shrunken Macbeath region at
a coarser level of approximation M ′sδ(x), with s ≥ 1, lie within a suitable constant-factor
expansion of M ′sδ(x). Let Yδ,s(x) denote the set of points y such that M ′′δ (y) are pairwise
disjoint and overlap M ′sδ(x). Since these shrunken Macbeath regions are pairwise disjoint,
we can bound their number by bounding the ratio of volumes of M ′sδ(x) and M ′′δ (y).

As an immediate corollary of the second inclusion of Lemma 3 we have vol(Mλ
δ (x)) ≥

vol(Mλ
sδ(x))/sd. This allows us to establish an upper bound on the growth rate in the number

of Macbeath regions when refining to smaller scales.

I Lemma 4. Given a convex body K ⊂ Rd and x ∈ K. Then, for constants δ ≥ 0, s ≥ 1
and Yδ,s(x) as defined above, |Yδ,s(x)| = O(1).

Proof. By the first inclusion of Lemma 3,M ′δ(y) ⊆M ′sδ(y), and we haveM ′sδ(x)∩M ′sδ(y) 6= ∅.
Next, by applying Lemma 1 (with the roles of x and y swapped) we obtain M ′sδ(x) =
Mλc
sδ (x) ⊆Mβλc

sδ (y), with α = 1 and β = (3 + λc)/(1− λc).
By definition of Xδ the shrunken Macbeath regions M ′′δ (y) are pairwise disjoint, and so it

suffices to bound their volumes with respect to that of M ′sδ(x) to obtain a bound on |Yδ,s(x)|.
Applying the corollary to Lemma 3 and scaling, we obtain

vol(M ′′δ (y)) ≥ 1
sd

vol(M ′′sδ(y)) =
(

λp
βλcs

)d
vol(Mβλc

sδ (y)) ≥
(

λp
βλcs

)d
vol(M ′sδ(x)).

Thus, by a packing argument the number of children is at most
(
βλcs
λp

)d
= O(1). J

3.2 Size bound
We bound the cardinality of a maximal set of disjoint shrunken Macbeath regions Mλ

δ (x)
defined with respect to Kδ, such that the centers x lie within K; let Xδ denote such a set of
centers. This is facilitated by associating each center x with a cap of K, where a cap C is

A. Abdelkader and D.M. Mount 4:7

C

h

bas
e

wid
th

wapex K

(a)

K

∈ [∆, 2∆]

(b)

Figure 3 (a) Cap concepts and (b) the economical cap cover.

defined as the nonempty intersection of the convex body K with a halfspace (see Fig. 3a).
Letting h denote the hyperplane bounding this halfspace, the base of C is defined as h ∩K.
The apex of C is any point in the cap such that the supporting hyperplane of K at this point
is parallel to h. The width of C is the distance between h and this supporting hyperplane.
Of particular interest is a cap of minimum volume that contains x, which may not be unique.
A simple variational argument shows that x is the centroid of the base of this cap [22].

As each Macbeath region is associated with a cap, we can obtain the desired bound
by bounding the number of associated caps. We achieve this by appealing to the so-called
economical cap covers [10]. The following lemma is a straightforward adaptation of the
width-based economical cap cover per Lemma 3.2 of [6].

I Lemma 5. Let K ⊂ Rd be a convex body in κ-canonical form. Let 0 < λ ≤ 1/5 be any
fixed constant, and let ∆ ≤ κ/12 be a real parameter. Let C be a set of caps, whose widths lie
between ∆ and 2∆, such that the Macbeath regions Mλ

K(x) centered at the centroids x of the
bases of these caps are disjoint. Then |C| = O(1/∆(d−1)/2) (see Fig. 3a(b)).

This leads to the following bound on the number of points in Xδ.

I Lemma 6. Let K ⊂ Rd be a convex body in κ-canonical form, and let Xδ as defined above
for some δ > 0 and 0 < λ ≤ 1/5. Then, |Xδ| = O(1/δ(d−1)/2).

Proof. In order to apply Lemma 5 we will partition the points of Xδ according to the widths
of their minimum-volume caps. For i ≥ 0, define ∆i = c22iδi, where c2 depends on the
nature of the the expansion process that yields Kδ. Define Xδ,i to be the subset of points
x ∈ Xδ such that width of x’s minimum cap with respect to Kδ lies within [∆i, 2∆i]. By
choosing c2 properly, the Hausdorff distance between K and Kδ is at least c2δ = ∆0, and
therefore any cap whose base passes through a point of Xδ has width at least ∆0. This
implies that every point of Xδ lies in some subset Xδ,i for i ≥ 0.

If a convex body is in κ-canonical form, it follows from a simple geometric argument that
for any point x in this body whose minimal cap is of width at least ∆, the body contains a
ball of radius c∆ centered at x, for some constant c (depending on κ and d). If ∆i > κ/12,
then B(x, cκ/12) ⊆ Kδ for all x ∈ Xδ,i. It follows that B(x, cκ/12) ⊆Mδ(x) implying that
vol(Mλ

δ (x)) ≥ λd · vol(B(cκ/12)) which is Ω(1) as c, κ and λ are all constants. By a simple
packing argument |Xi,j | = O(1). There are at most a constant number of levels for which
∆j > κ/12, and so the overall contribution of these subsets is O(1).

Henceforth, we may assume that ∆j ≤ κ/12. Since λ ≤ 1/5, we apply Lemma 5 to
obtain the bound |Xδ,i| = O(1/∆(d−1)/2

i). (There is a minor technicality here. If δ becomes
sufficiently large, Kδ may not be in κ-canonical form because its diameter is too large.
Because δ = O(1) and hence diam(Kδ) = O(1), we may scale it back into canonical form at

SWAT 2018

4:8 Economical Delone Sets for Approximating Convex Bodies

K
Kδ

E′′
δ (x)

E′
δ(x)

x

(a) (b)

x

(c)

Figure 4 A Delone set for a convex body. (Not drawn to scale.)

the expense of increasing the constant factors hidden in the asymptotic bound.) Thus, up to
constant factors, we have

|Xδ| =
∑
i≥0
|Xδ,i| =

∑
i≥0

O

(
1

∆i

) d−1
2

=
∑
i≥0

O

(
1

c22iδ

) d−1
2

= O

((
1
δ

) d−1
2
)
. J

4 Macbeath ellipsoids

For the sake of efficient computation, it will be useful to approximate Macbeath regions by
shapes of constant combinatorial complexity. We have opted to use ellipsoids. (Note that
bounding boxes [1] could be used instead, and may be preferred in contexts where polytopes
are preferred.)

Given a Macbeath region, define its associated Macbeath ellipsoid EλK(x) to be the
maximum-volume ellipsoid contained within Mλ

K(x) (see Fig. 1b). Clearly, this ellipsoid is
centered at x and EλK(x) is an λ-factor scaling of E1

K(x) about x. It is well known that
the maximum-volume ellipsoid contained within a convex body is unique, and Chazelle and
Matoušek showed that it can be computed for a convex polytope in time linear in the number
of its bounding halfspaces [17]. By John’s Theorem (applied in the context of centrally
symmetric bodies) it follows that EλK(x) ⊆Mλ

K(x) ⊆ Eλ
√
d

K (x) [8].
Given a point x ∈ K and δ > 0, define Mδ(x) to be the (unscaled) Macbeath region with

respect to Kδ (as defined in Section 2), that is, Mδ(x) = MKδ(x). Let Eδ(x) denote the
maximum volume ellipsoid contained within Mδ(x). As Mδ(x) is symmetric about x, Eδ(x)
is centered at x. For any λ > 0, define Mλ

δ (x) and Eλδ (x) to be the uniform scalings of Mδ(x)
and Eδ(x), respectively, about x by a factor of λ. By John’s Theorem, we have

Eλδ (x) ⊆ Mλ
δ (x) ⊆ Eλ

√
d

δ (x). (1)

Two particular scale factors will be of interest to us. Define M ′δ(x) = M
1/2
δ (x) and

M ′′δ (x) = Mλ0
δ (x), where λ0 = 1/(4

√
d+ 1). Similarly, define E′δ(x) = E

1/2
δ (x) and E′′δ (x) =

Eλ0
δ (x) (see Fig. 4(a)). Given a fixed δ, let Xδ be any maximal set of points, all lying within

K, such that the ellipsoids E′′δ (x) are pairwise disjoint for all x ∈ Xδ.
These ellipsoids form a packing of Kδ (see Fig. 4(b)). The following lemma shows that

their suitable expansions cover K while being contained within Kδ (see Fig. 4(c)).

I Lemma 7. Given a convex body K in Rd and a set Xδ as defined above for δ > 0,

K ⊆
⋃
x∈Xδ

E′δ(x) ⊆ Kδ.

A. Abdelkader and D.M. Mount 4:9

Proof. To establish the first inclusion, consider any point y ∈ K. Because Xδ is maximal,
there exists x ∈ Xδ such that E′′δ (x) ∩E′′δ (y) is nonempty. By containment, M ′′δ (x) ∩M ′′δ (y)
is also nonempty. By Lemma 1 (with α = 0), it follows that y ∈Mλ

δ (x), where

λ = 2λ0

1− λ0
= 2/(4

√
d+ 1)

1− 1/(4
√
d+ 1)

= 2
4
√
d

= 1
2
√
d
.

By applying Eq. (1) (with λ = 1/(2
√
d)), we have M1/(2

√
d)

δ (x) ⊆ E
1/2
δ (x) = E′δ(x), and

therefore y ∈ E′δ(x). Thus, we have shown that an arbitrary point y ∈ K is contained in the
ellipsoid E′δ(x) for some x ∈ Xδ, implying that the union of these ellipsoids covers K. The
second inclusion follows from E′δ(x) ⊆M ′δ(x) ⊆Mδ(x) ⊆ Kδ for any x ∈ Xδ ⊆ K. J

In conclusion, if we treat the scaling factor λ in Eλ(x) as a proxy for the radius of a
metric ball, we have shown that Xδ is a (2λ0, 1/2)-Delone set for K. By Lemma 2 this is also
true in the Hilbert metric over Kδ up to a constant factor adjustment in the radii. (Note
that the scale of the Hilbert balls does not vary with δ. What varies is the choice of the
expanded body Kδ defining the metric.)

By John’s Theorem, Macbeath regions and Macbeath ellipsoids differ by a constant
scaling factor, both with respect to enclosure and containment. We remark that all the
results of the previous two sections hold equally for Macbeath ellipsoids. We omit the
straightforward, but tedious, details.
I Remark. All results from previous section on scaled Macbeath regions apply to scaled
Macbeath ellipsoids subject to appropriate modifications of the constant factors.

5 Approximate polytope membership (APM)

The Macbeath-based Delone sets developed above yield a simple data structure for answering
ε-APM queries for a convex body K. We assume that K is represented as the intersection of
m halfspaces. We may assume that in O(m) time it has been transformed into κ-canonical
form, for κ = 1/d. Throughout, we will assume that Delone sets are based on the Macbeath
ellipsoids E′′δ (x) for packing and E′δ(x) for coverage (defined in Section 4).

Our data structure is based on a hierarchy of Delone sets of exponentially increasing
accuracy. Define δ0 = ε, and for any integer i ≥ 0, define δi = 2iδ0. Let Xi denote a Delone
set for Kδi . By Lemma 7, we may take Xi to be any maximal set of points within K such
that the packing ellipsoids E′′δ (x) are pairwise disjoint. Let ` = `ε be the smallest integer
such that |X`| = 1. We will show below that ` = O(log 1/ε).

Given the sets 〈X0, . . . , X`〉, we build a rooted, layered DAG structure as follows. The
nodes of level i correspond 1–1 with the points of Xi. The leaves reside at level 0 and the
root at level `. Each node x ∈ Xi is associated with two things. The first is its cell, denoted
cell(x), which is the covering ellipsoid E′δ(x) (the larger hollow ellipsoids shown in Fig. 5).
The second, if i > 0, is a set of children, denoted ch(x), which consists of the points y ∈ Xi−1
such that cell(x) ∩ cell(y) 6= ∅.

To answer a query q, we start at the root and iteratively visit any one node x ∈ Xi at each
level of the DAG, such that q ∈ cell(x). We know that if q lies within K, such an x must exist
by the covering properties of Delone sets, and further at least one of x’s children contains
q. If q does not lie within any of the children of the current node, the query algorithm
terminates and reports (without error) that q /∈ K. Otherwise the search eventually reaches
a node x ∈ X0 at the leaf level whose cell contains q. Since cell(x) ⊆ Kδ0 = Kε, this cell
serves as a witness to q’s approximate membership within K.

SWAT 2018

4:10 Economical Delone Sets for Approximating Convex Bodies

level 0level 1level 2level 3

Kδ0Kδ1Kδ2
Kδ3

Figure 5 Hierarchy of ellipsoids for answering APM queries.

In order to bound the space and query time, we need to bound the total space used by
the data structure and the time to process each node in the search, which is proportional to
the number of its children. Building upon Lemmas 4 and 6, we have our main result.

I Theorem 8. Given a convex body K and ε > 0, there exists a data structure of space
O(1/ε(d−1)/2) that answers ε-approximate polytope membership queries in time O(log 1/ε).

Since the expansion factors δi grow exponentially from ε to a suitably large constant, it
follows that the height of the tree is logarithmic in 1/ε, which is made formal below.

I Lemma 9. The DAG structure described above has height O(log 1/ε).

Proof. Let c2 be an appropriate constant, and let ` = dlog2(2/c2ε)e = O(log 1/ε). Depending
the nature of the expanded body Kδ, the constant c2 can be chosen so the Hausdorff distance
between K and Kδ` is at least c2δ` = c22`ε ≥ 2. Because K is in κ-canonical form, it is
contained within a unit ball centered at the origin. Therefore, Kδ` contains a ball of radius
two centered at the origin, which implies that the Macbeath ellipsoid E′δ`(O) (which is scaled
by 1/2) contains the unit ball and so contains K. Thus, (assuming that the origin is added
first to the Delone set) level ` of the DAG contains a single node. J

By Lemma 4, each node has O(1) children and δi = 2iδ0 = 2iε, we obtain the following
space bound by summing |Xi| for 0 ≤ i ≤ `.

I Lemma 10. The storage required by the DAG structure described above is O(1/ε(d−1)/2).

As mentioned above, by combining Lemmas 4 with 6, it follows that the query time is
O(log 1/ε) and by Lemma 10 the total space is O(1/ε(d−1)/2), which establish Theorem 8.

While our focus has been on demonstrating the existence of a simple data structure
derived from Delone sets, we note that it can be constructed by well-established techniques.
While obtaining the best dependencies on ε in the construction time will likely involve fairly
sophisticated methods, as seen in the paper of Arya et al. [5], the following shows that there
is a straightforward construction.

I Lemma 11. Given a convex body K ⊂ Rd represented as the intersection of m halfspaces
and ε > 0, the above DAG structure for answering ε-APM queries can be computed in time
O(m+ 1/εO(d)), where the constant in the exponent does not depend on ε or d.

A. Abdelkader and D.M. Mount 4:11

Proof. First, we transform K into canonical form, and replace it with an ε
2 -approximation

K ′ of itself. This can be done in O(m+ 1/εO(d)), so that K ′ is bounded by O(1/ε(d−1)/2)
halfspaces (see, e.g., [4]). We then build the data structure to solve APM queries to an
accuracy of (ε/2), so that the total error is ε.

Because the number of nodes increases exponentially as we descend to the leaf level, the
most computationally intensive aspect of the remainder of the construction is computing
the set X0, a maximal subset of K whose packing ellipsoids E′′δ0

(x) are pairwise disjoint. To
discretize the construction of X0, we observe that by our remarks at the start of Section 2,
the Hausdorff distance between K and Kδ0 is Ω(δ0) = Ω(ε). It follows that each of the
ellipsoids E′′δ0

(x) contains a ball of radius Ω(λ0ε) = Ω(ε). We restrict the points of X0 to
come from the vertices of a square grid whose side length is half this radius. Since K is in
canonical form, it suffices to generate O(1/εO(d)) grid points. By decreasing the value of
ε slightly (by a constant factor), it is straightforward to show that any Delone set can be
perturbed so that its centers lie on this grid.

Each Macbeath ellipsoid can be computed in time linear in the number of halfspaces
bounding K ′, which is O(1/εO(d)) [17]. The maximal set is computed by brute force,
repeatedly selecting a point x from the grid, computing E′′δ0

(x), and marking the points of
the grid that it covers until all points interior to K are covered. The overall running time is
dominated by the product of the number of grid points and the O(1/εO(d)) time to compute
each Macbeath ellipsoid. J

References
1 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of

points. J. Assoc. Comput. Mach., 51:606–635, 2004.
2 S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.

In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages 579–586, 2011.
3 S. Arya, G. D. da Fonseca, and D. M. Mount. Polytope approximation and the Mahler

volume. In Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 29–42, 2012.
4 S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.

SIAM J. Comput., 2017. To appear.
5 S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and

related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1––10:15,
2017.

6 S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approx-
imating polytopes. Discrete & Computational Geometry, 58(4):849–870, 2017.

7 S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.

8 K. Ball. An elementary introduction to modern convex geometry. In S. Levy, editor, Flavors
of Geometry, pages 1–58. Cambridge University Press, 1997. (MSRI Publications, Vol. 31).

9 I. Bárány. The technique of M-regions and cap-coverings: A survey. Rend. Circ. Mat.
Palermo, 65:21–38, 2000.

10 I. Bárány and D. G. Larman. Convex bodies, economic cap coverings, random polytopes.
Mathematika, 35:274–291, 1988.

11 J. L. Bentley, M. G. Faust, and F. P. Preparata. Approximation algorithms for convex
hulls. Commun. ACM, 25(1):64–68, 1982.

12 A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proc.
23rd Internat. Conf. on Machine Learning, pages 97–104, 2006.

13 H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete
Comput. Geom., 10:143–155, 1993.

SWAT 2018

4:12 Economical Delone Sets for Approximating Convex Bodies

14 C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min.
Knowl. Discov., 2(2):121–167, 1998.

15 T. M. Chan. Fixed-dimensional linear programming queries made easy. In Proc. 12th Annu.
Sympos. Comput. Geom., pages 284–290, 1996.

16 T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.
Discrete Comput. Geom., 16:369–387, 1996.

17 B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms, 21:579–597, 1996.

18 K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. Tenth Annu.
Sympos. Comput. Geom., pages 160–164, 1994.

19 K. L. Clarkson. Building triangulations using ε-nets. In Proc. 38th Annu. ACM Sympos.
Theory Comput., pages 326–335, 2006.

20 R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227–236, 1974.

21 J. Erickson, L. J. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive collision detection
for convex objects. In Proc. Tenth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
327–336, 1999.

22 G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the
r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika,
17:1–20, 1970.

23 S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu.
IEEE Sympos. Found. Comput. Sci., pages 94–103, 2001.

24 S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and
their applications. SIAM J. Comput., 35:1148–1184, 2006.

25 D. Hilbert. Ueber die gerade linie als kürzeste verbindung zweier punkte. Mathematische
Annalen, 46:91–96, 1895.

26 R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search.
In Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 798–807, 2004.

27 A. M. Macbeath. A theorem on non-homogeneous lattices. Ann. of Math., 56:269–293,
1952.

28 J. Matoušek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete Comput.
Geom., 10:215–232, 1993.

29 J. Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186,
1992.

30 J. Matoušek. Linear optimization queries. J. Algorithms, 14(3):432–448, 1993.
31 F. Nielsen and L. Shao. On Balls in a Hilbert Polygonal Geometry (Multimedia Contribu-

tion). In Proc. 33rd Internat. Sympos. Comput. Geom., pages 67:1–67:4, 2017.
32 A. Papadopoulos and M. Troyanov. Handbook of Hilbert Geometry. European Mathematical

Society, 2014.
33 E. A. Ramos. Linear programming queries revisited. In Proc. 16th Annu. Sympos. Comput.

Geom., pages 176–181, 2000.
34 C. Vernicos and C. Walsh. Flag-approximability of convex bodies and volume growth

of Hilbert geometries. HAL Archive (hal-01423693i), 2016. URL: https://hal.
archives-ouvertes.fr/hal-01423693.

https://hal.archives-ouvertes.fr/hal-01423693
https://hal.archives-ouvertes.fr/hal-01423693

Computing Shortest Paths in the Plane with
Removable Obstacles
Pankaj K. Agarwal
Duke University, Durham, NC, USA
pankaj@cs.duke.edu

Neeraj Kumar
University of California, Santa Barbara, CA, USA
neeraj@cs.ucsb.edu

Stavros Sintos
Duke University, Durham, NC, USA
ssintos@cs.duke.edu

Subhash Suri
University of California, Santa Barbara, CA, USA
suri@cs.ucsb.edu

Abstract
We consider the problem of computing a Euclidean shortest path in the presence of removable
obstacles in the plane. In particular, we have a collection of pairwise-disjoint polygonal obstacles,
each of which may be removed at some cost ci > 0. Given a cost budget C > 0, and a pair of
points s, t, which obstacles should be removed to minimize the path length from s to t in the
remaining workspace? We show that this problem is NP -hard even if the obstacles are vertical
line segments. Our main result is a fully-polynomial time approximation scheme (FPTAS) for
the case of convex polygons. Specifically, we compute an (1 + ε)-approximate shortest path in
time O

(
nh
ε2 logn log n

ε

)
with removal cost at most (1 + ε)C, where h is the number of obstacles,

n is the total number of obstacle vertices, and ε ∈ (0, 1) is a user-specified parameter. Our
approximation scheme also solves a shortest path problem for a stochastic model of obstacles,
where each obstacle’s presence is an independent event with a known probability. Finally, we
also present a data structure that can answer s–t path queries in polylogarithmic time, for any
pair of points s, t in the plane.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Euclidean shortest paths, Removable polygonal obstacles, Stochastic
shortest paths, L1 shortest paths

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.5

Funding Work by Agarwal and Sintos is supported by NSF under grants CCF-15-13816, CCF-
15-46392, and IIS-14-08846, by ARO grant W911NF-15-1-0408, and by Grant 2012/229 from the
U.S.-Israel Binational Science Foundation. Work by Suri and Kumar is supported by NSF under
grant CCF-1525817.

1 Introduction

We consider a variant of the classical shortest-path problem in the presence of polygonal
obstacles, in which the motion planner has the ability to remove some of the obstacles to
reduce the s–t path length. Formally, let P = {P1, . . . , Ph} be a set of h pairwise-disjoint
polygonal obstacles in R2 with n vertices, and let ci > 0 be the cost of removing the obstacle

© Pankaj Agarwal, Neeraj Kumar, Stavros Sintos, and Subhash Suri;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:neeraj@cs.ucsb.edu
mailto:ssintos@cs.duke.edu
mailto:suri@cs.ucsb.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Computing Shortest Paths in the Plane with Removable Obstacles

Pi for i = 1, . . . , h. For a path π in R2, we define its cost, denoted by c(π), to be the sum
of the costs of obstacles intersecting π, and its length, denoted by ‖π‖, to be its Euclidean
length. Given two points s, t ∈ R2 and a budget C > 0, we wish to compute a path from s

to t of minimum length whose cost is at most C.
This obstacle-removing shortest path generalizes the classical obstacle-avoiding shortest

path problem, by giving the planner an option of essentially “tunneling” through obstacles
at some cost. Besides an interesting problem in its own right, it is also a natural formulation
of tradeoffs in some motion planning settings. For instance, it might be beneficial to remove
a few critical blockages in a workspace to significantly shorten an often traveled path, just as
an urban commuter may strategically pay money to use certain toll roads or bridges to avoid
traffic obstacles. In general, our model with removable obstacles is useful for applications
where one can adapt the environment to enable better paths such as urban planning or robot
motion planning in a warehouse setting. The problem also generalizes the recent work on
obstacle-violating paths [25, 18], in which the planner is allowed to enter the forbidden space
(obstacles) a fixed number of time. For instance, in [25], a shortest s–t path inside a simple
polygon is desired, but the path is allowed to travel outside the polygon once. In [18], a
shortest path among disjoint convex polygonal obstacles is desired, but is allowed to travel
through at most k obstacles. The latter problem is also an obstacle-removing shortest path
where at most k obstacles can be removed, namely, each obstacle removal has cost 1 and
planner’s budget is k. We will call this the cardinality version of the obstacle-removal to
distinguish it from our cost-based model of obstacle removal.

The obstacle removal problem also has a natural connection to path planning under
uncertainty. Imagine, for instance, a workspace with n obstacles, the presence of each obstacle
is a random event. That is, the presence of the ith obstacle is determined by a Bernoulli
trial with (independent) probability βi. A natural approach to planning a s–t path in such a
workspace is to search for a path that is both short and obstacle-free with high probability.
Given a desired probability of success β, we can ask: what is the shortest path from s to t
that is obstacle free with probability at least β. This problem is easily transformed into our
obstacle removal problem where the obstacle probabilities are mapped to obstacle removal
cost, and β is mapped to the cost budget C.

Our results. We first show that the obstacle-removing shortest path problem is NP-hard
for polygonal obstacles in the plane, even if obstacles are vertical line segments by reducing
the well-known Partition problem to it. This is in contrast with the cardinality version of
the problem, which can be solved exactly in O(k2n logn) time [18].

Our main result is a fully-polynomial time approximation scheme (FPTAS) when each
obstacle is a convex polygon. We first define the notion of the viability graph G, which is
an extension of the well-known visibility graph [11, 13], for geometric paths that can cross
obstacles. Using the viability graph, we present a simple algorithm that returns a path with
length at most the optimal1 but cost at most (1 + ε)C. The approximation algorithm, while
simple, has a worst-case time complexity Θ(n

3

ε polylog(n)). Then, we develop a framework
for a more efficient and practical approximation algorithm, which also results in a number of
related results. Specifically, for any constant ε > 0, we can compute a (1 + ε)-approximate
shortest path whose total removal cost is at most (1 + ε)C in time O

(
nh
ε2 logn log n

ε

)
, where

h is the number of obstacles and n is the total number of vertices in the obstacles. The main
idea behind the improvement is to construct a sparse viability graph, with only O(nε logn)

1 The optimal length is always with respect to the budget C.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:3

edges. This approximation scheme immediately gives a corresponding result for the uncertain
model of obstacles (see Section 5).

The approximation scheme, as a byproduct, also solves the exact L1 norm shortest path
problem in the cardinality model of obstacle removal: that is, in O(kn log2 n) time, we can
decide which k obstacles to remove for the shortest s–t path, which is roughly a factor of k
faster than the L2-norm result of [18]. Alternatively, we can also decide which k obstacles to
remove so that the shortest s–t path has length at most (1 + ε) times optimal in O(knε log2 n)
time. This is again faster than the result from [18] for constant ε, if k = Ω(logn).

We also construct query data structures for answering approximate obstacle removal
shortest path queries. If the source s is fixed (one point queries), we construct a data
structure of size O(nhε2 logn) such that, given a query point t, it returns a s–t path of length
(1 + ε) times the optimal with cost at most (1 + ε)C in time O(1

ε log2 n+kst), where kst is the
number of edges in the path. The data structure size can be improved to O(nε2 logn log h

ε) if
we only return the length of the path. If both points s, t are given in the query (two point
queries), the data structure has size O(n

2h
ε3 log2 n), and the query time is O(1

ε2 log2 n+ kst).
The size of the data structure can also be improved to O(n

2

ε3 log2 n log h
ε) if we only return

the length of the path.

Related work. The problem of computing a shortest path in the presence of polygonal
obstacles in the plane is a very well studied problem in computational geometry. See the
books [16, 31], survey paper [28], recent papers [9, 6, 10, 8, 20], and references therein for a
sample of results. In the classical shortest path problem, obstacles are impenetrable, that is,
the shortest path must avoid all the obstacles. Our problem considers a more general scenario
where the obstacles can be removed by paying some cost and falls in the broad category of
geometric optimization problems where some constraints can be violated [2, 30, 26, 17].

Our problem is also closely related to the problem of computing a shortest path through
weighted polygonal regions [23, 24, 27] where the length of a path is defined as the weighted
sum of Euclidean or L1 lengths of the subpaths within each region. However, in our setting
there is only a one-time fixed cost for passing through a region, and therefore does not
depend on the length of the subpath that lies inside the region.

The stochastic formulation of our problem is also related to some shortest path problems
under uncertainty [14, 15, 22, 29]. However, these results assume existence of a graph
whose edges have either an existence probability or a distribution over their lengths. In
contrast, our definition is purely geometric where the existence of obstacles is an uncertain
event. Our problem can also be seen as a variant of geometric bi-criteria shortest path
problem [1, 5, 33, 34, 35], as our objective is to compute the shortest path with a constraint
on the total cost of obstacles that we remove.

Finally, for most geometric shortest path problems, there are efficient data structures to
answer shortest path queries. For instance, the shortest path map [19] has linear size and
can answer Euclidean shortest path queries with a fixed source in O(logn) time. If both
s, t are part of the query, quadratic space data structures [4, 21] exist for L1 shortest path
queries and super quadratic space data structures [12] for L2 shortest path queries. Similar
results exist for rectilinear shortest path queries among disjoint weighted rectilinear and
convex obstacles [4, 7], and for bi-criteria shortest path problems [5, 33, 35].

Overall, our algorithms entail new techniques because (i) in our problems, paths are
allowed to pass through obstacles, (ii) the cost function in our bi-criteria optimization can
be quite general and not necessarily a metric.

SWAT 2018

5:4 Computing Shortest Paths in the Plane with Removable Obstacles

ai

t

Gi

a1
an

.s

Figure 1 Reduction from Partition. The gray segment in the obstacle group Gi has length ai
and can be crossed by paying a cost ai. The tall segments are drawn in black and are placed ±δ
apart from their corresponding gray segment.

2 NP-hardness

Consider the decision version of the obstacle-removing shortest-path problem: Given a set P
of pairwise-disjoint obstacles along with the cost of each object being removed, two points
s, t ∈ R2, and two parameters C,L > 0, is there a path from s to t of length at most L and
cost at most C?

We prove the hardness by a simple reduction from the well-known NP-complete problem
Partition. An instance of Partition is a set of n positive integers A = {a1, a2, . . . , an},
and the problem is to decide whether A can be partitioned into two sets A1 and A2 such
that W (A1) = W (A2) = 1

2W (A), where W (S) is the sum of the integers in S. We place
the source s at (0, 0) and destination t at (n+ 1, 0) on the x-axis. We also set C = 1

2W (A),
L = 1

2W (A) + (n+ 1) and define a parameter δ = 1
8n . For each i ≤ n we create a group of

obstacles, denoted Gi, which consists of five vertical line segments placed close to each other
in the following way. (See also Figure 1.)

The middle segment emi has length ai, and has its midpoint on the x-axis. The coordinates
of its endpoints are (i,−ai/2), (i, ai/2). The cost of this obstacle is ai.
At x-coordinates i− δ and i+ δ we place two vertical segments eli and eri symmetrically
along the x-axis – each with point-sized holes on the x-axis and length 2(L+ 1). The
point sized holes split the segment eli (resp. eri) into two disjoint tall segments elui , eldi
(resp. erui , erdi), of length (L+ 1). Each of these segments has cost (C + 1).

I Lemma 1. The set A can be partitioned into two equal-weight subsets if and only if there
is a path from s to t of length at most L and cost at most C.

We thus obtain the following:

I Theorem 2. Let P be a set of n disjoint polygonal obstacles in a plane, where each obstacle
Pi ∈ P has an associated removal cost ci. Given a source and destination pair of points s, t,
a removal budget C and a length L, the problem of deciding if there is a s–t path with cost at
most C and length at most L is NP-hard.

3 A Simple (1 + ε)-Approximation Algorithm

In this section, we propose a simple polynomial-time approximation scheme for the problem.
We begin by noting that an obstacle-removing shortest path only turns at obstacle vertices
and crosses the boundary of an obstacle at most twice. While these properties follow easily
due to the convexity of P and basic geometry, they are crucial for our algorithms.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:5

The algorithm constructs a viability graph G = (V,E), whose nodes are all the obstacle
vertices along with s and t. Thus, |V | = n+ 2. The edges of E correspond to pair of nodes
(u, v) for which the line segment uv passes through obstacles of total cost at most C, the
cost budget. For each edge e ∈ E, we associate two parameters: cost c(u, v) and length
‖uv‖, where c(u, v) is the cost of the segment uv. In the worst-case G has Θ(n2) edges. It is
important to note that the cost of a path πst in a viability graph is defined as the sum of
the costs of its edges, whereas the cost of πst in the plane is defined as sum of costs of all
obstacles that it goes through. Moreover, the cost of a path in the plane is at most its cost
in the viability graph. If the path crosses each obstacle at most once (which is the case for
shortest path among convex obstacles), these two costs are the same.

The following algorithm shows how to compute an approximately optimal path in this
viability graph. The main idea is that we construct copies of the vertices and the edges of G
to convert the multi-objective problem to a single-objective problem.

Let κ = min
(

C
mini ci , h

)
. To simplify the approximation error analysis, we first scale

all the costs by κ/C, so that the new target cost is κ. We now construct an auxiliary
graph G′ = (V ′, E′), with O

(⌈ 2κ|V |
ε

⌉)
nodes and O

(⌈ 2κ|E|
ε

⌉)
edges, whose edges only have

the length parameter but not the cost parameter, as follows. We create
⌈ 2κ
ε

⌉
+ 1 copies

v0, v ε2 , vε, v 3
2 ε
. . . , vκ, for each v ∈ V . Then, for each edge (u, v) ∈ E with cost c and for each

0 ≤ i ≤ d2κ/εe, we add the edge (ui ε2 , vj ε2), where j ≤ d2κ/εe is the maximum integer with
j ε2 ≤ i

ε
2 + c. All these edge copies have the same length as edge (u, v)—the cost parameter

is now implicitly encoded in the edge copies. Finally we add two new vertices s and t in G′
and connect them to all si and ti respectively with zero length edges, for 0 ≤ i ≤ d2κ/εe.
We now find the minimum length path π from s to t in G′, say, using Dijkstra’s algorithm,
and argue that π is our approximation path.

I Theorem 3. Let P be a set of h convex obstacles with n vertices, s, t be two obstacle
vertices, and C ∈ R be a parameter. Let L∗ also be the length of the shortest s–t path with
cost at most C, and let G = (V,E) be a viability graph induced by this workspace. If there
exists a path π∗ of length at most αL∗ with α ≥ 1 and cost at most C in the graph G, then
a s–t path π with length at most αL∗ and cost at most (1 + ε)C can be computed in time
O
(
κ
ε (|E|+ |V | log |V |ε)

)
, where κ = min

(
C

mini ci , h
)
and 0 < ε < 1 is a parameter.

Proof. First, we construct the auxiliary graph G′ as described above. Next, we construct
a path π′ in G′ corresponding to the path π∗ in G by mapping edges of π∗ to edges in G′.
More precisely, let e = (s, v) be the first edge in π∗ and let ce be its cost. Now let c = 0
and c′ be the value obtained by rounding down ce to the nearest multiple of ε

2 . We map e
to the edge (sc, vc′) in G′. Setting c = c′, we repeat the process for all edges in π∗. This
gives us the path π′ in G′ that has the length same as that of π∗ (at most αL∗). Clearly, the
s–t path π computed using Dijkstra’s algorithm on G′ must also have length at most αL∗.
Moreover, since (scaled) rounded cost of any s–t path in G′ is at most κ, the rounded cost of
π is also at most κ. Now we only need to bound its original (pre-rounded) cost.

Let CR be the true (pre-rounded) cost of the path π in the plane and CA its rounded
cost in G′. The approximation error in the cost (due to rounding) is at most ε/2 for each
obstacle that π passes through, and so if k̄ is the number of obstacles π crosses, we have the
upper bound CR ≤ CA + k̄ε/2. Since CA ≤ κ, we have CR ≤ κ + k̄ε/2. We can bound k̄
by considering the following two cases. If κ = C/mini ci, the minimum cost of an obstacle
is 1, and so for each obstacle crossed, the path π incurs a cost of least 1− ε/2. Therefore,
k̄ ≤ κ

1−ε/2 and CR ≤ κ+ κ
1−ε/2 · ε/2 ≤

1
1−ε/2κ ≤ (1 + ε)κ. Otherwise, we have κ = h, which

trivially implies k̄ ≤ κ since h is the total number of obstacles.

SWAT 2018

5:6 Computing Shortest Paths in the Plane with Removable Obstacles

In conclusion, we have CR ≤ (1 + ε)κ, whose pre-scaled value is (1+ε)κ
(κ/C) = (1 + ε)C, as

claimed. Finally, the time complexity is dominated by an invocation of Dijkstra’s algorithm
on the graph G′, which has O(|V |κ/ε) nodes and O(|E|κ/ε) edges. J

If G is the viability graph constructed in this section then it always contains the shortest
s–t path with cost at most C, i.e. α = 1. Hence, by applying Theorem 3 to G we get a path
of at most the optimum length and cost at most (1 + ε)C in Ω(n

3

ε) time.
In the next section, we show that if we also allow an (1 + ε) approximation of the path

length, we can improve the running time by roughly an order of magnitude.

4 A Faster (1 + ε)-Approximation Algorithm

In this section, we describe our algorithm for sparsifying the graph G = (V,E). We augment
the graph by adding some vertices so that the number of viability edges can be sharply
reduced, while approximately preserving the path lengths within the cost budget. Throughout
the following discussion, we will respect the cost budget C, and only allow the path lengths
to increase slightly. With that in mind, we use the notation dG(u, v) to denote the length of
the shortest path in G from u to v whose cost is at most C. In this section we only use the
definition of the cost of a path with respect to a viability graph. Recall that the cost of a
path in a graph is the sum of the costs of the edges in the path.

Our sparse graph Hε = (Xε, Tε) is defined for any ε > 0, with V ⊆ Xε, and satisfies the
following two conditions:
1. dG(u, v) ≤ dHε(u, v) ≤ (1 + ε)dG(u, v) for all pairs u, v ∈ V .
2. The number of vertices and edges is O(nε logn), that is, |Xε|, |Tε| = O(nε logn).

We construct Hε in two stages. In the first stage we construct a graph H = (X,Γ) with
X ⊇ V , |X|, |Γ| = O(n logn), and dG(u, v) ≤ dH(u, v) ≤

√
2dG(u, v) for all u, v ∈ V . Next,

we make O(1/ε) “copies” of H and combine them to construct Hε. Once the graphs H and
Hε are constructed, we use the machinery of the previous section, namely Theorem 3, to
efficiently find the approximately optimal shortest path within the cost budget.

Recall that all the obstacles in our input are convex, and therefore the shortest path in G
does not cross the boundary of an obstacle more than twice. To avoid degenerate cases, we
assume that all obstacle vertices are in general position, namely, no three vertices are collinear
and all obstacles have non-zero area. We can, therefore, simplify the problem by replacing all
the obstacles by their constituent boundary segments, where each obstacle vertex is assigned
to its incident segment in the clockwise order. We now allocate the “obstacle removal” cost
to these segments as follows: if ci is the removal cost of obstacle i, then we allocate cost ci/2
to each boundary segment of obstacle i. This ensures that any shortest path crossing the
ith obstacle incurs a cost of ci, while allowing us to reason about the geometry of just line
segment obstacles.

We describe the construction of the sparse viability graph by explaining how to sparsify
the “neighborhood” of an obstacle vertex, say, p. That is, we show which additional vertices
are added and which viability edges are incident to p in the final sparse graph H. To simplify
the discussion, we assume that p is at the origin, and we only discuss the edges incident to p
that lie in the positive (north-east) quadrant; the remaining three quadrants are processed
in the same way.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:7

v

w

`v

w2

v′

w′

`h

v

v2 w′
v′

w

w2

v1v1

w1

v2

w1

Figure 2 Steiner vertices due to vertical (left) and horizontal (right) split lines. Projections are
shown with white dots, bypass vertices as squares, bypass edges shown in blue have cost zero.

4.1 An O(1)-Approximation Algorithm
In this subsection we describe the construction of H = (X,Γ) such that |X|, |Γ| = O(n logn),
and dG(u, v) ≤ dH(u, v) ≤

√
2dG(u, v) for all u, v ∈ V .

For a segment pq we use ‖pq‖1 to denote its L1-length, i.e., ‖pq‖1 = |xp − xq|+ |yp − yq|,
where p = (xp, yp) and q = (xq, yq). For a polygonal path π = p0p1 . . . pk, we use ‖π‖1 to
denote its L1-length, i.e., ‖π‖1 =

∑k
i=1 ‖pi−1pi‖1. We note that ‖π‖1 ≤

√
2‖π‖. We will

construct a graph H = (X,Γ) with the following property: For a pair of vertices u, v ∈ V if
G contains a path π from u to v of cost at most C, H contains a path π̄ from u to v of cost
at most C such that ‖π̄‖1 ≤ ‖π‖1. Hence ‖π̄‖ ≤

√
2‖π‖ and thus dH(u, v) ≤

√
2dG(u, v).

We are now ready to describe the algorithm for constructing H. It is a simple recursive
algorithm and consists of the following steps:

1. Let xm be the median x-coordinate of the points in V . We consider the vertical split line
`v : x = xm that partitions V into two almost equal-sized subsets Vl and Vr.
a. For each point v ∈ V , consider its projection v′ = (xm, vy) on the line `v. If c(v, v′) ≤ C,

then add the projection vertex v′ to X and the corresponding edge e = (v, v′) to Γ
with length ‖vv′‖1 and cost c(v, v′).

b. Let s′ be the first obstacle segment with positive slope that the projection segment
vv′ intersects. If s′ intersects the split line `v, we add bypass vertices and edges to
H as follows. Let v1 be the point where vv′ intersects s′, and let v2 be the point
where s′ intersects `v. We add bypass vertices v1, v2 on the segment s′. If v2 lies
above v1, the bypass vertices are considered to be above the segment s′, otherwise they
are considered below the segment s′. (See also Figure 2.) We add the edges (v, v1)
and (v1, v2) to Γ with lengths ‖vv1‖1, ‖v1v2‖1 and costs c(v, v1), c(v1, v2), respectively.
Observe that c(v1, v2) = 0.

c. We repeat the procedure above for the first negative slope segment that vv′ intersects.
d. For two consecutive Steiner vertices w,w′ (projection or bypass) on `v, if c(w,w′) ≤ C,

then add the edge e = (w,w′) to Γ with length ‖ww′‖1 and cost c(w,w′).
e. Recurse on the subsets Vl and Vr until |Vl|, |Vr| ≤ 1.

2. Repeat the above process but this time using median y-coordinate ym and a horizontal
split line `h at y = ym.

3. We add edges between consecutive vertices on the boundary of obstacles with cost 0.

At each recursive step of our algorithm, we need to find the first positive (negative) slope
obstacle segment intersected by the projection segment vv′, and compute the cost of all edges
we add. In order to find the first positive (negative) slope segment say s′, we can simply
perform a point location query in O(logn) time [32] on positive (negative) slope segments.
If s′, intersects both the projection segment vv′ and the split line passing through v′, we add
the bypass vertices. For computing the edges costs, observe that bypass edges and the edges

SWAT 2018

5:8 Computing Shortest Paths in the Plane with Removable Obstacles

p

sy

sx
p

q

`v

B

A

C

Figure 3 The region Rpq is shown shaded. If Rpq does not contain obstacle vertices, the type
A,B,C obstacle segments that may intersect Rpq are shown on the right. Observe that type B and
type C segments cannot both exist in Rpq.

on the boundary of obstacles have both cost zero, and all other edges are either horizontal
or vertical line segments, so we just need to compute the total cost of obstacle segments
intersected by an axis aligned segment. We show how to do this for a horizontal projection
segment vv′ and all other cases follow similarly. We preprocess all the obstacle segments in a
segment tree based data structure S. Using fractional cascading and increasing the fan-out
of the segment tree [3, 32], a (weighted) counting query runs in O(logn) time. During each
recursive call, we simply query S to compute the cost of the segment vv′. However, we need
to be careful in including the cost of the obstacle segment that v lies on. More precisely, if
Pi is the obstacle incident to v, we include the cost ci/2 to the cost of segment vv′ only if
vv′ intersects the interior of Pi (which we can decide in constant time).

We can easily obtain the following lemma.

I Lemma 4. Every input vertex adds Steiner vertices on O(logn) split lines. Moreover,
graph H has size O(n logn) and can be constructed in O(n log2 n) time.

It is important to note here that a similar recursive algorithm was first used by Clarkson
et al. [13] to compute L1 shortest obstacle-avoiding paths in the plane – each vertex was
projected on O(logn) split lines and on the obstacle closest to it in all four directions. This
was enough to capture obstacle-avoiding shortest paths (as they lie entirely in free space)
but since obstacle-removing shortest paths can also go through obstacles, things get quite
complicated. In particular, it is not clear that which of the O(n) nearby obstacles (in each
direction) should a vertex be projected on. We address this challenge in Step 1b of our
algorithm by adding bypass vertices. Since we need to guarantee that the sparsification
preserves the L1 length as well as the cost of the shortest path, our correctness argument is
quite different and can be viewed as a more general form of the result by [13].

4.2 Proof of Correctness
We now prove that dH(u, v) ≤

√
2dG(u, v) for all u, v ∈ V . More precisely, if we set the

length of each edge e = (u, v) in G to be ‖uv‖1, then we show that dH(u, v) ≤ dG(u, v). We
basically show that for any edge e = (u, v) in G there is a path πe from u to v in H such
that c(πe) ≤ c(u, v) and ‖πe‖1 ≤ ‖uv‖1. This claim is established in Lemma 7, whose proof
relies on the following Lemmas 5 and 6.

For convenience, we introduce the notion of the region Rpq defined by two obstacle
vertices p, q ∈ V . Let R̄pq be the rectangle with p and q as lower left and upper right
corners respectively. Now, let sx (resp. sy) be the first obstacle segment of positive
slope that intersects the two sides of R̄pq below (resp. above) the diagonal pq. We define
Rpq = R̄pq \ (B(sx) ∪ A(sy)), where B(sx) is the area below segment sx, and A(sy) is the
area above sy. If a segment sx or sy does not exist then B(sx) = ∅ and A(sy) = ∅. (See also
Figure 3.)

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:9

I Lemma 5. Let (p, q) be an edge in G with cost c(p, q). If the region Rpq does not contain
an obstacle vertex, then there exists a path πpq in H that is entirely contained in Rpq such
that ‖πpq‖1 = ‖pq‖1 and c(πpq) = c(p, q).

Proof. Since Rpq does not contain any obstacle vertex there are only three types of obstacle
segments that intersect Rpq. (See also Figure 3.)
1. Type A : these obstacle segments have negative slope and intersect both vertical and

horizontal segments of Rpq adjacent to either p or q.
2. Type B : obstacle segments that intersect both vertical segments of Rpq.
3. Type C : obstacle segments that intersect both horizontal segments of Rpq.
It is easy to see that segments of type B and C cannot both exist in Rpq because the obstacle
segments are non-intersecting. From the construction of H there is always a vertical and a
horizontal split line between two obstacle vertices. Let `v (`h) be the first vertical (horizontal)
split line in the recursion that we consider between the vertices p, q. There are three cases.

Only Type A segments exist in Rpq. This case is taken care by the Steiner vertices on the
vertical (or horizontal) split line `v. More precisely, `v may intersect both sx and sy, one
of them, or even neither of them. We show what happens in the case where `v intersects
both sx and sy and the other cases follow easily. Since there are no obstacle vertices in
Rpq, sx, sy are the first positive slope segments intersected by the projections of p, q on
`v. So we have created bypass vertices p1, p2 and q1, q2 on sx, sy. The path πpq is defined
as πpq = pp1p2q2q1q and it is easy to see that ‖πpq‖1 = ‖pq‖1. Moreover, both πpq and
the edge pq cross one time the same set of obstacle segments (only type A), so we have
that c(πpq) = c(p, q).
Type B segments exist in Rpq. In this case, observe that type B edges do not intersect
with the horizontal projection segments adjacent to p and q on the vertical split line, and
therefore we can use the exact same path πpq as the previous case. The cost of the type
B segments needs to be included but since the edge pq must cross these segments, we
have that c(πpq) = c(p, q).
Type C segments exist in Rpq. This case is symmetric to the previous case using the
horizontal split line `h. J

I Lemma 6. Let (p, q) be an edge in G with cost c(p, q). If the region Rpq contains one or more
obstacle vertices, then there exists an obstacle vertex r ∈ Rpq such that ‖pr‖1 +‖rq‖1 = ‖pq‖1,
and c(p, r) + c(r, q) ≤ c(p, q).

Proof. We prove the lemma by exhibiting a vertex r such that (i) the triangle ∆prq does
not contain any other obstacle vertex, and (ii) no obstacles segment intersects the interiors
of both pr and rq. Such a choice of r suffices for our proof since r ∈ Rpq implies that
‖pr‖1 + ‖rq‖1 = ‖pq‖1 and we get c(p, r) + c(r, q) ≤ c(p, q) because any obstacle segment
crossing either pr or rq must also cross pq, otherwise that obstacle segment would terminate
inside the triangle which contradicts the choice of r. Next, we show how to find such a vertex.
We restrict our search for this vertex r in a convex polygon Tpq ⊆ Rpq which we construct in
the following way. (See also Figure 4.) Observe that the diagonal pq divides the region Rpq
into two subsets – one above and one below it. We consider the subset R′pq that contains
at least one obstacle vertex. Since, Rpq contains at least one obstacle vertex, such a subset
always exists. Without loss of generality, we can assume that R′pq lies above pq. Now, let
Spq be the set of all obstacle segments that intersect a vertical or a horizontal segment of the
boundary ∂R′pq, and let sp, sq ∈ Spq be the segments that intersect ∂R′pq closest to p and q
respectively. From the endpoints of sp, sq that lie in R′pq, let w be the endpoint closest to the
segment pq. Moreover, let lw be the line parallel to pq that passes through w. Now we simply

SWAT 2018

5:10 Computing Shortest Paths in the Plane with Removable Obstacles

p

q

p

q

sp

sq

w

lr

lw
r

Figure 4 The region Tpq is shown shaded on left. If r ∈ Tpq is the vertex closest to pq, then the
region T ′pq ⊆ Tpq(shown shaded in dark on right) cannot contain an obstacle vertex.

clip off the region of R′pq that lies above lw. More precisely, this gives us the quadrilateral
R′′pq = R′pq \ A(lw), where we use A(s) for the region above segment s. Finally, we define
the convex polygon Tpq = R′′pq \ (A(s′p) ∪ A(s′q)), where s′p, s′q are the subsegements of sp, sq
respectively that lie inside the quadrilateral R′′pq.

From the set of obstacle vertices that lie inside or on the boundary of Tpq, we choose the
vertex r to be the one that minimizes the area of the triangle ∆prq, or equivalently, be the
one that has the minimum distance from the segment pq. Observe that the boundary of
region Tpq contains the obstacle vertex w, so we will always find one such r. It is easy to
see that the triangle ∆prq is a subset of Tpq and does not contain an obstacle vertex or else
it would not have the minimum area. It remains to show that there cannot be an obstacle
segment that crosses both pr and rq. To this end, let lr be a line parallel to pq passing
through r. Observe that the region T ′pq = Tpq \ A(lr), i.e., the region in Tpq that lies below
lr, cannot contain an obstacle vertex by the choice of r. So any obstacle segment sj that
crosses both pr and rq must intersect ∂R′pq at either the vertical segment between p and sp
or the horizontal segment between sq and q which is a contradiction. (See also Figure 4.) J

Finally, we prove the main result of this section.

I Lemma 7. Let (p, q) be an edge in G with cost c(p, q). There is a path πpq ∈ H such that
‖πpq‖1 = ‖pq‖1 and c(πpq) ≤ c(p, q). Moreover, the path πpq lies in the region Rpq.

Proof. We prove this by induction on the number of obstacle vertices in the region Rpq. Our
base case is when the region Rpq does not contain an obstacle vertex. Applying Lemma 5
gives us the desired path πpq in H. For the inductive step, let j be the number of obstacle
vertices in the region Rpq and assume that the lemma holds for all edges (u, v) such that the
region Ruv contains i < j obstacle vertices. Using Lemma 6 we find an intermediate vertex r
such that ‖pr‖1 + ‖rq‖1 = ‖pq‖1 and c(p, r) + c(r, q) ≤ c(p, q). This gives us two disjoint sub-
regions Rpr ⊂ Rpq and Rrq ⊂ Rpq each with at least one less obstacle vertex than the region
Rpq. By our induction hypothesis, we get the disjoint subpaths πpr from p to r and πrq from
r to q in H. We then join these two paths at vertex r to obtain path πpq that lies within the
region Rpq. Moreover, we have that ‖πpq‖1 = ‖πpr‖1 + ‖πrq‖1 = ‖pr‖1 + ‖rq‖1 = ‖pq‖1
and c(πpq) = c(πpr) + c(πrq) ≤ c(p, r) + c(r, q) ≤ c(p, q). J

4.3 An (1 + ε)-Approximation Algorithm
We now describe how to use the preceding construction to define our final sparse graph Hε.
A direction in R2 can be represented as a unit vector u ∈ S1. Let N ⊂ S1 be a set of O(1/ε)
unit vectors such that the angle between two consecutive points of N is at most ε. For each
u ∈ N, we construct a graph Hu by running the algorithm in Section 4.1 but regarding u
to be the y axis — i.e., by rotating the plane so that u becomes parallel to the y-axis and

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:11

measure L1-distance in the rotated plane. Set Hε =
⋃

u∈N H
u. Notice that the number of

vertices and edges in Hε is O(nε logn). The following lemma follows easily by the discussion
above.

I Lemma 8. For any pair u, v ∈ V , we have that dHε(u, v) ≤ (1 + ε)dG(u, v).

From the above lemma, it follows that the graph Hε preserves pairwise shortest path
distances within a factor of (1 + ε) and at most the same cost with graph G. Let L∗ be the
length of the shortest s–t path in the plane that has cost at most C. Since there exists a s–t
path of length at most L∗ and cost at most C in the viability graph G, there exists a s–t
path in Hε of length (1 + ε)L∗ and the same cost. Applying Theorem 3 with α = (1 + ε) on
Hε gives the following result.

I Theorem 9. Let P be a set of h convex polygonal obstacles with n vertices, s, t be two
obstacle vertices and C ∈ R be a parameter. If L∗ is the length of the shortest s–t path with
cost at most C, a s–t path with length at most (1 + ε)L∗ and cost at most (1 + ε)C can be
computed in O(nhε2 logn log n

ε) time.

5 Shortest Path Queries

We now describe a near-linear space data structure to answer approximate distance queries
from a fixed obstacle vertex s subject to the obstacle removal budget in O(1

ε log2 n) time.
The data structure is then extended to handle two-point shortest path queries in O(1

ε2 log2 n)
time with near-quadratic space.

The key idea relies on the following observation. Without loss of generality, assume that
the points s and t lie in the exterior of all obstacles and let us also assume that s, t were part
of the input. Now consider the shortest s–t path in the graph Hε and let t′ be the vertex
preceding t in this path. It is easy to see that t′ must be a Steiner vertex (projection or
bypass) as there are no direct edges in Hε between two input vertices that do not lie on the
same obstacle. All such edges must cross some split line at Steiner vertices. Therefore, the
last edge (t′, t) in the path is the segment obtained by projecting t on some split line `. Now,
suppose we have precomputed the paths to all Steiner vertices on all split lines, then we can
find the shortest path to t by simply finding the neighbor of t′ on `. Using Lemma 4, we
know that t can be projected on O(1

ε logn) split lines, which gives O(1
ε logn) choices for `.

Preprocessing. We apply the algorithm preceding Theorem 3 on the graph Hε that we
constructed in the previous section. More precisely, first we multiply the cost of all obstacles
by h/C so that the target cost becomes h. Next we create an auxiliary graph H ′ε with O(hε)
copies of each vertex in Hε. Running Dijkstra’s algorithm on H ′ε with source s computes
a shortest path to each vertex in H ′ε. Now for each vertex v in Hε, we maintain arrays
distv, predv each with size 1 + h

ε = O(hε). We store the length of the shortest path found by
Dijkstra’s algorithm from s to viε (i-th copy of vertex v) at distv(i) and its predecessor in
predv(i). In addition, for each direction u ∈ N that we defined in the previous section we
maintain two data structures:

A segment tree [3] based data structure Su that we also used in Section 4.1 to compute
the cost of an axis aligned segment in O(logn) time.
A balanced search tree Tu over all the vertical (resp. horizontal) split lines, which is
basically the recursion tree corresponding to the algorithm from Section 4.1. More
precisely, the root of Tu is the split line `m (at the median x-coordinate xm), and the left
and right children are the split lines added during recursive processing of points to the
left and right of `m respectively.

SWAT 2018

5:12 Computing Shortest Paths in the Plane with Removable Obstacles

`

tt′
t2

t1

`∗
v

tt′
t2

t1

v

Figure 5 Computing path from a query point t to one of the vertices in Hε – using a split line
that already exists in Hε (left) and using a new split line `∗ added at query time (right). The suffix
path πvt is shown shaded in red.

Moreover, for every split line `, we maintain a search tree over all the Steiner vertices that
lie on `. Overall, our data structure consists of all arrays distv, predv, O(nε) search trees, and
O(1

ε) segment trees Su. The size of the data structure is O(nhε2 logn) and the preprocessing
time is O(nhε2 logn log n

ε).

Query. The query procedure consists of two parts. Given the target query point t, we first
find a subset of O(1

ε logn) split lines L that we need to search. Next, for each line ` ∈ L,
we find the Steiner vertex t′ created by projecting t on ` and then find the path to t using
one of the two neighbors of t′ on `. Let v denote a neighbor of t′ on `. Finally, we take the
shortest of all O(1

ε logn) candidate paths.
In order to find the subset of split lines we use the search tree Tu over the set of all split

lines for a direction u ∈ N. For a node z ∈ Tu, if t lies in the region left of split line at z we
search the left child, else we search the right child. Searching Tu in this way, we reach a leaf
node such that the associated region contains exactly one obstacle vertex w and the query
point t. In this case we add a new split line `∗ between w and t and add Steiner vertices for
the obstacle vertex w on `∗. This gives us a total of O(logn) + 1 split lines per direction
that we need to search.

To compute the candidate paths, for a given a split line `, we consider the Steiner vertices –
projection t′ and bypass t1, t2 – for the query point t. The shortest path from ` to t may either
be t′ → t or t2 → t1 → t. We find a neighbor v of t′ or t2 on ` (at most two neighbors are
possible). We now consider the section of the path πvt from v to t. If the arrays distv, predv
are not precomputed, which can happen if v is the projection of an obstacle vertex w on the
new split line `∗, we set v = w and include the path from w to t along the split line `∗ to
πvt. (See also Figure 5.)

At this point we have found a vertex v such that distv, predv are precomputed for all
cost values 0, ε, 2ε, . . . , h. Since the cost of bypass edges is zero, and all other segments in
the path πvt are axis-aligned, we can compute the cost c(πvt) using the segment tree Su.
The remaining cost budget is h − c(πvt) which we round up for lookup in the distv, predv
arrays. More precisely, let j be the smallest integer such that h − c(πvt) ≤ jε, then we
compute the length of the candidate s–t path via v as distv(j) + ‖πvt‖1. Finally, we take
the minimum over all O(1

ε logn) choices of v to obtain the shortest path πst using the pred
arrays. Using a similar argument as in the proof of Theorem 3, one can show that the length
of πst is at most (1 + ε) times optimal and the cost is (1 + ε)C. The total query time is
O(1

ε logn · logn) = O(1
ε log2 n).

Instead of computing the path itself, one may ask to just find the length of the shortest
s–t path of cost at most C for some query point t. We can answer such queries approximately
in O(1

ε log2 n) time using O(nε2 logn log h
ε) space. The main idea is that instead of storing

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:13

O(hε) distance values in distv for cost 0, ε, 2ε, . . . , hε ε, we store a subset of O(1
ε log h

ε) values.
More precisely, we only store the distance values corresponding to the cost jε where j is the
smallest integer such that ε(1 + ε)i ≤ jε, for all i in 0, 1, 2, . . . , log1+ε

h
ε . The size of distv

arrays for each vertex v is therefore O(log1+ε
h
ε) = O(1

ε log h
ε). Let πvt be the path from

v to t. The length of a s–t path via v has length distv(i) + ‖πvt‖1, where i is the smallest
integer with h− c(πvt) ≤ ε(1 + ε)i. Finally we take the minimum over all O(1

ε logn) choices
of v to obtain the shortest path πst. We can show that the cost of πst is at most (1 + 5ε)C.
Constructing the data structure for ε← ε/5 we obtain the following theorem.

I Theorem 10. Let P be a set of h convex polygonal obstacles with n vertices, s be an
obstacle vertex, and C ∈ R be a parameter. A data structure of O(nhε2 logn) size can be
constructed in O(nhε2 logn log n

ε) time such that, given a query point t ∈ R2, a path πst can be
returned with cost (1 + ε)C and length at most (1 + ε) times the optimal in O

(1
ε log2 n+ kst

)
time, where kst is the number of edges of πst. The length of the path πst can be returned in
time O

(1
ε log2 n

)
using a data structure of size O(nε2 logn log h

ε).

Two point queries. Now we briefly explain how to extend the above data structure to
handle two point queries. That is, both s, t are part of the query. During the preprocessing,
we store distance values distuv (similarly preduv) for every pair of vertices u, v in Hε for all
cost values 0, ε, 2ε, . . . , h. The idea now is to find the neighbor u of s on some split line `s
and neighbor v of t on split line `t. We compute the cost of paths πsv and πvt as before and
set the length of this candidate s–t path to be distuv(j) + ‖πsu‖1 + ‖πvt‖1. Here j is the
smallest integer such that h− c(πsu)− c(πvt) ≤ jε. We take the minimum across O(1

ε2 log2 n)
choices of u and v.

I Theorem 11. Let P be a set of h convex polygonal obstacles with n vertices, and C ∈ R be
a parameter. A data structure of O(n

2h
ε3 log2 n) size can be constructed in O(n

2h
ε3 log2 n log n

ε)
time such that, given two query points s, t ∈ R2, a path πst can be returned with cost at most
(1 + ε)C and length at most (1 + ε) times the optimal in O(1

ε2 log2 n+ kst) time, where kst is
the number of edges of πst. The length of the path πst can be returned in O(1

ε2 log2 n) time
using a data structure of size O(n

2

ε3 log2 n log h
ε).

6 Stochastic Shortest Path

In this section, we consider a stochastic model of obstacles where the existence of each
obstacle Pi ∈ P is an independent event with known probability βi. That is, Pi is part of the
input with probability βi and is not part of the input with probability 1− βi. We define the
probability of path πst as

∏
Pi∈S(1− βi) where S ⊆ P is the set of obstacles that this path

goes through (assuming they did not exist). In such a setting, our goal is to compute the
approximate shortest path that has probability more than a given threshold β ∈ (e−1, 1].

Let Lβ denote the length of the shortest path from s to t with probability at least β. We
convert the multiplicative costs to additive costs by setting ci = − ln(1−βi) for each obstacle
and setting C = − ln β. Using Theorem 9, we find a path πst with length L(πst) ≤ (1 + ε)Lβ
and cost c(πst) ≤ (1 + ε)C. It can be shown that πst has probability at least (1− ε)β.

I Theorem 12. Let P be a set of h convex polygonal obstacles with n vertices, where each
obstacle Pi ∈ P exists independently with a probability βi, s, t be two obstacle vertices and
β ∈ (e−1, 1] be a parameter. If Lβ is the length of the shortest s–t path with probability at
least β, a s–t path with length at most (1 + ε)Lβ and probability at least (1 − ε)β can be
computed in O(nhε2 logn log n

ε) time.

SWAT 2018

5:14 Computing Shortest Paths in the Plane with Removable Obstacles

Most likely path. We now consider the following question – given a bound L on the length
of the path, what is the s–t path with maximum probability? We need a bound on the
path length or else there is always a path of probability 1. To answer this question, we can
again take negative logarithms of probabilities to transform into an additive cost model and
construct the graph Hε as before. Now instead of applying Theorem 3 on Hε, we construct
a new graph H∗ε that is exactly the same as Hε, but with length and cost parameters on
edges interchanged. More precisely, for an edge e ∈ Hε with length le and cost ce, we have
an edge e∗ ∈ H∗ε with length ce and cost le. Next we apply Theorem 3 on the graph H∗ε
with C = (1 + ε)L, and scale all costs with a parameter O(n

Cε logn), such that the target
cost is scaled to O(nε logn). We choose this value because a shortest path in Hε can have
O(nε logn) edges. This gives us the following result.

I Theorem 13. Let P be a set of h convex obstacles with n vertices, s, t be two obstacle
vertices, and L ∈ R be a parameter. If βM is the maximum probability of a path from s to t
with length at most L, a path πst with length at most (1 + ε)L and probability at least βM
can be computed in O(n

2

ε3 log2 n log n
ε) time.

References
1 Esther M Arkin, Joseph SB Mitchell, and Christine D Piatko. Bicriteria shortest path

problems in the plane. In Proc. 3rd Canad. Conf. Comput. Geom, pages 153–156, 1991.
2 T. M. Chan. Low-dimensional linear programming with violations. SIAM J. Comput.,

34(4):879–893, 2005.
3 T. M. Chan and Y. Nekrich. Towards an optimal method for dynamic planar point location.

In Proc. 56th Symp. Found. Comp. Science, pages 390–409. IEEE, 2015.
4 D. Z. Chen, K. S. Klenk, and H. T. Tu. Shortest path queries among weighted obstacles

in the rectilinear plane. SIAM J. Comput., 29(4):1223–1246, 2000.
5 Danny Z Chen, Ovidiu Daescu, and Kevin S Klenk. On geometric path query problems.

Int. J. Comp. Geom. & Applic., 11(06):617–645, 2001.
6 Danny Z Chen, John Hershberger, and Haitao Wang. Computing shortest paths amid

convex pseudodisks. SIAM J. Comput., 42(3):1158–1184, 2013.
7 Danny Z Chen, Rajasekhar Inkulu, and Haitao Wang. Two-point L1 shortest path queries

in the plane. In Proc. 30th Annual Symp. Comput. Geom., page 406. ACM, 2014.
8 Danny Z Chen and Haitao Wang. A nearly optimal algorithm for finding L1 shortest paths

among polygonal obstacles in the plane. In Proc. 19th Europ. Symp. Alg., pages 481–492.
Springer, 2011.

9 Danny Z Chen and Haitao Wang. L1 shortest path queries among polygonal obstacles in
the plane. In Proc. 30th Int. Symp. Theor. Asp. Comp. Science, volume 20, 2013.

10 Danny Z Chen and Haitao Wang. Computing shortest paths among curved obstacles in
the plane. ACM Transactions on Algorithms, 11(4):26, 2015.

11 Danny Z Chen and Haitao Wang. A new algorithm for computing visibility graphs of
polygonal obstacles in the plane. J. Comput. Geom., 6(1):316–345, 2015.

12 Y.J Chiang and J.S.B Mitchell. Two-point Euclidean shortest path queries in the plane. In
Proc. 10th ACM-SIAM Annual Symp. Discrete Algorithms. SIAM, 1999.

13 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2 n) time. In Proc. 3rd Annual Symp. Comput. Geom., pages 251–257.
ACM, 1987.

14 T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. J. Algorithms, 62(1):1–18, 2007.

15 Y. Gao. Shortest path problem with uncertain arc lengths. Computers & Mathematics with
Applications, 62(6):2591–2600, 2011.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 5:15

16 Subir Kumar Ghosh. Visibility algorithms in the plane. Cambridge university press, 2007.
17 S. Har-Peled and V. Koltun. Separability with outliers. In Proc. Int. Symp. Alg. and

Comput., pages 28–39. Springer, 2005.
18 J. Hershberger, N. Kumar, and S. Suri. Shortest paths in the plane with obstacle violations.

In Proc. 25th Annual Eur. Symp. on Alg., volume 87, pages 49:1–49:14, 2017.
19 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.

SIAM J. Comput., 28(6):2215–2256, 1999.
20 Rajasekhar Inkulu and Sanjiv Kapoor. Planar rectilinear shortest path computation using

corridors. J. Comput. Geom., 42(9):873–884, 2009.
21 M Iwai, H Suzuki, and T Nishizeki. Shortest path algorithm in the plane with rectilinear

polygonal obstacles. In Proc. SIGAL Workshop, 1994.
22 P. Kamousi, T M Chan, and S. Suri. Stochastic minimum spanning trees in Euclidean

spaces. In Proc. 27th Annual Symp. Comput. Geom., pages 65–74. ACM, 2011.
23 D.T Lee, C.-D. Yang, and T.H Chen. Shortest rectilinear paths among weighted obstacle.

Int. J. Comput. Geom. & Appl., 1(02):109–124, 1991.
24 D.T Lee, C.D Yang, and C.K. Wong. Rectilinear paths among rectilinear obstacles. Discrete

Applied Mathematics, 70(3):185–215, 1996.
25 A. Maheshwari, S. C. Nandy, D. Pattanayak, S. Roy, and M. Smid. Geometric path

problems with violations. Algorithmica, pages 1–24, 2016.
26 J. Matoušek. On geometric optimization with few violated constraints. Discrete & Com-

putational Geometry, 14(4):365–384, 1995.
27 J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: finding shortest

paths through a weighted planar subdivision. J. ACM, 38(1):18–73, 1991.
28 Joseph S.B. Mitchell. Geometric shortest paths and network optimization. In Handbook of

Computational Geometry, pages 633–701. Elsevier Science Publishers B.V. North-Holland,
1998.

29 Evdokia Nikolova, Matthew Brand, and David R Karger. Optimal route planning under
uncertainty. In Proc. 16th Int. Conf. Autom. Plann. and Sched., volume 6, pages 131–141,
2006.

30 T. Roos and P. Widmayer. k-violation linear programming. Inf. Process. Lett., 52(2):109–
114, 1994.

31 Jörg-Rüdiger Sack and Jorge Urrutia. Handbook of computational geometry. Elsevier, 1999.
32 Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees.

Communic. ACM, 29(7):669–679, 1986.
33 H. Wang. Bicriteria rectilinear shortest paths among rectilinear obstacles in the plane. In

Proc. 33rd Annual Symp. Comput. Geom., pages 60:1–60:16, 2017.
34 C.D Yang, D.T. Lee, and C.K Wong. On bends and lengths of rectilinear paths: a graph-

theoretic approach. Int. J. Comput. Geom. & Appl., 2(01):61–74, 1992.
35 C.D Yang, D.T. Lee, and C.K. Wong. Rectilinear path problems among rectilinear obstacles

revisited. SIAM J. Comput., 24(3):457–472, 1995.

SWAT 2018

On Romeo and Juliet Problems: Minimizing
Distance-to-Sight
Hee-Kap Ahn
Department of Computer Science and Engineering, POSTECH
Pohang, South Korea
heekap@postech.ac.kr

Eunjin Oh
Department of Computer Science and Engineering, POSTECH
Pohang, South Korea
jin9082@postech.ac.kr

Lena Schlipf
Theoretische Informatik, FernUniversität in Hagen
Hagen, Germany
lena.schlipf@fernuni-hagen.de

Fabian Stehn
Institut für Informatik, Universität Bayreuth
Bayreuth, Germany
fabian.stehn@uni-bayreuth.de

Darren Strash
Department of Computer Science, Colgate University
Hamilton, USA
dstrash@cs.colgate.edu

https://orcid.org/0000-0001-7095-8749

Abstract
We introduce a variant of the watchman route problem, which we call the quickest pair-visibility
problem. Given two persons standing at points s and t in a simple polygon P with no holes, we
want to minimize the distance these persons travel in order to see each other in P . We solve
two variants of this problem, one minimizing the longer distance the two persons travel (min-
max) and one minimizing the total travel distance (min-sum), optimally in linear time. We also
consider a query version of this problem for the min-max variant. We can preprocess a simple
n-gon in linear time so that the minimum of the longer distance the two persons travel can be
computed in O(log2 n) time for any two query positions where the two persons lie.

2012 ACM Subject Classification Theory of computation → Computational geometry, Math-
ematics of computing → Paths and connectivity problems

Keywords and phrases Visibility polygon, shortest-path, watchman problems

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.6

Funding This work by Ahn and Oh was supported by the MSIT (Ministry of Science and ICT),
Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP
(Institute for Information & Communications Technology Promotion).

Acknowledgements This research was initiated at the 19th Korean Workshop on Computational
Geometry in Würzburg, Germany.

© Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heekap@postech.ac.kr
mailto:jin9082@postech.ac.kr
mailto:lena.schlipf@fernuni-hagen.de
mailto:fabian.stehn@uni-bayreuth.de
mailto:dstrash@cs.colgate.edu
https://orcid.org/0000-0001-7095-8749
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 On Romeo and Juliet Problems

1 Introduction

In the watchman route problem, a watchman takes a route to guard a given region—that is,
any point in the region is visible from at least one point on the route. It is desirable to make
the route as short as possible so that the entire area can be guarded as quickly as possible.
The problem was first introduced in 1986 by Chin and Ntafos [4] and has been extensively
studied in computational geometry [3, 14]. Though the problem is NP-hard for polygons
with holes [4, 5, 7], an optimal route can be computed in time O(n3 logn) for simple n-gons
[6] when the tour must pass through a specified point, and O(n4 logn) time otherwise.

In this paper, we study a variant we call the quickest pair-visibility problem, which can
be stated as follows.

I Problem (quickest pair-visibility problem). Given two points s and t in a simple polygon P ,
compute the minimum distance that s and t must travel in order to see each other in P .

This problem may sound similar to the shortest path problem between s and t, in which
the objective is to compute the shortest path for s to reach t. However, they differ even for
a simple case: for any two points lying in a convex polygon, the distance in the quickest
pair-visibility problem is zero while in the shortest path problem it is their Euclidean distance.

The quickest pair-visibility problem occurs in optimization tasks. For example, mobile
robots that use a line-of-sight communication model are required to move to mutually-visible
positions to establish communication [8]. An optimization task here is to find shortest paths
for the robots to meet the visibility requirement for establishing communication among them.

Wynters and Mitchell [16] studied this problem for two agents acting in a polygonal
domain in the presence of polygonal obstacles and gave an O(nm)-time algorithm for the
min-sum variant (where m is the number of edges of the visibility graph of all corners) and
an O(n3 logn)-time algorithm for the min-max variant. A query version of the quickest
visibility problem has also been studied [1, 13, 15]. In the query problem, a polygon and a
source point lying in the polygon are given, and the goal is to preprocess them and construct
a data structure that allows, for a given query point, to find the shortest path taken from the
source point to see the query point efficiently. Khosravi and Ghodsi [13] considered the case
for a simple n-gon and presented an algorithm to construct a data structure of O(n2) space
so that given a query, it finds the shortest visibility path in O(logn) time. Later, Arkin et
al. [1] improved the result and presented an algorithm for the problem in a polygonal domain.
Very recently, Wang [15] presented an improved algorithm for this problem for the case that
the number of the holes in the polygon is relatively small. Figure 1(a) illustrates differences
in these problems for a simple polygon and two points, s and t, in the polygon.

1.1 Our results
In this paper, we consider two variants of the quickest pair-visibility problem for a simple
polygon: either we want to minimize the maximum length of a traveled path (min-max
variant) or we want to minimize the sum of the lengths of both traveled paths (min-sum
variant) We give a sweep-line-like approach that “rotates” the lines-of-sight along vertices
on the shortest path between the start positions, allowing us to evaluate a linear number of
candidate solutions on these lines. Throughout the sweep, we encounter solutions to both
variants of the problem. We further show that our technique can be implemented in linear
time.

We also consider a query version of this problem for the min-max variant. We can
preprocess a simple n-gon in linear time so that the minimum of the longer distance the two
query points travel can be computed in O(log2 n) time for any two query points.

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:3

s
t

s1 t1

t2

t
s

s′

s = v1

v2

v3

v4

v5

v6 = t

6 vi−1vivi+1 < 90◦

(a) (b) (c)

P

Figure 1 (a) The quickest pair-visibility problem finds two paths π(s, s1) and π(t, t1) such that
s1t1 ⊂ P and max{|π(s, s1)|, |π(t, t1)|} or |π(s, s1)|+ |π(t, t1)| is minimized. The quickest visibility
problem for query point t finds a shortest π(s, t2) with tt2 ⊂ P . (b) min-max: Every pair (s′, t∗),
where t∗ is some point within the geodesic disk centered in t with radius π(s, s′), is an optimal
solution to the min-max problem. (c) min-sum: Every pair (vi, vi+1) for 1 ≤ i < 6 is an optimal
solution to this instance.

2 Preliminaries

Let P be a simple polygon and ∂P be its boundary. The vertices of P are given in counter-
clockwise order along ∂P . We denote the shortest path within P between two points p, q ∈ P
by π(p, q) and its length by |π(p, q)|. Likewise, we denote the shortest path within P between
a point p ∈ P and a line segment ` ∈ P by π(p, `). We say a point p ∈ P is visible from
another point q ∈ P (and q is visible from p) if and only if line segment pq is completely
contained in P .

For two starting points s and t, our task is to compute a pair (s′, t′) of points such that s′
and t′ are visible to each other, where we wish to minimize the lengths of π(s, s′), and π(t, t′).
In the min-max setting, we wish to minimize max{|π(s, s′)|, |π(t, t′)|}. For the min-sum
setting, we wish to minimize |π(s, s′)|+ |π(t, t′)|. Note that, for both variants, the optimum
is not necessarily unique; see Figure 1(b) and (c).

For our discussion, let (s∗, t∗) be an optimal solution for the instance at hand. Let V (p)
denote the visible region for a point p in P , that is, the portion of P that is visible from
p. Clearly, V (p) is a star-shaped polygon. Moreover, every boundary edge of V (p) is either
(part of) an edge of P or a segment vq that is contained in P and parallel to pv, where v
is a vertex of P visible from p and q is a point on the boundary of P . We call an edge of
the latter type a window edge of the visibility region. The structure of V (p) may change as
p moves along a path contained in P . It is known that a change to the structure of V (p)
occurs if and only if two vertices of P become collinear with p [2].

We say a segment g is tangent to a path π at a vertex v if v ∈ g ∩ π and v’s neighboring
vertices on π are on the same side of g.

I Lemma 1. Unless s and t are visible to each other, the segment s∗t∗ is tangent to the
shortest path π(s, t) at a vertex v of π(s, t).

Proof. We first show that there is a vertex of P lying on s∗t∗. Consider the visibility regions
V (s∗) and V (t∗). If s∗ lies on a window edge e of V (t∗), then e has a vertex v of P as its
endpoint closer to t∗. Therefore v lies on s∗t∗. The case that t∗ lies on a window edge of V (s∗)
can be shown similarly. So assume that this is not the case, that is, s∗ is in V (t∗) but not in
a window edge of V (t∗) and t∗ is in V (s∗) but not in a window edge of V (s∗). Then there
is a point s′ on π(s, s∗) ∩ V (t∗) infinitesimally close to s∗ and a point t′ on π(t, t∗) ∩ V (s∗)
infinitesimally close to t∗ such that |π(s, s′)| < |π(s, s∗)| and |π(t, t′)| < |π(t, t∗)|, and s′ and
t′ still see each other. This contradicts the optimality of (s∗, t∗).

SWAT 2018

6:4 On Romeo and Juliet Problems

s

t

t∗
s∗

(a) (b) (c)

s

t∗s∗

t(t′) s

t∗

s∗

s′ s′ s′

t′

v v v

t(t′)

` `

`

v′

Figure 2 (a) Both s and t lie on the same side of ` through s∗ and t∗. (b) If there is only one
vertex v of P lying on s∗t∗, we can always find another optimal pair of points by rotating ` around
v and taking the closest points from s and t on the rotated ` under the geodesic metric. (c) The
shortest path π(s, t) passes through v and v′.

We now show that s∗t∗ contains a vertex of π(s, t). Let s′ be the last vertex that π(s, t)
and π(s, s∗) have in common from s, and let t′ be the last vertex that π(s, t) and π(t, t∗)
have in common from t. Since a subpath of a shortest path is also shortest, π(s′, t′) is the
subpath of π(s, t) from s′ to t′. Assume to the contrary that π(s′, t′) (and therefore π(s, t))
contains no vertex of P that is also on s∗t∗. There are two cases: (a) both s and t lie on the
same side of the line ` through s∗ and t∗, or (b) s and t lie on different sides of `.

For case (a), ∂P touches ` at a vertex v lying between s∗ and t∗ locally from the same
side of ` that s and t lie. Otherwise, (s∗, t∗) is not optimal as both π(s, `) and π(t, `) become
shorter by a rotation of `. See Figure 2(a). Consider the portion (line segment) of ` visible
from v, which is split into two segments by v, one containing s∗ and one containing t∗. Since
π(s′, t′) does not contain v, it has to cross the segment containing s∗. But then it must cross
` again in the segment containing t∗ to reach t′. Since the portion of the path between the
two crossing points can be shortened by the segment connecting them, which contradicts to
the assumption that π(s′, t′) is a shortest path. Thus v lies on π(s, t) and s∗t∗ is tangent to
π(s, t) at v.

For case (b), without loss of generality, assume that s lies below ` and t lies above `. If
there is only one vertex v of P lying on s∗t∗, we can always find another pair of points (ŝ, t̂)
such that ŝ and t̂ are visible to each other and they satisfy either (1) |π(s, ŝ)| < |π(s, s∗)| and
|π(t, t̂)| ≤ |π(t, t∗)| or (2) |π(s, ŝ)| ≤ |π(s, s∗)| and |π(t, t̂)| < |π(t, t∗)|. (The equality holds
if s∗ or t∗ coincides with v.) Such points ŝ and t̂ can be obtained by rotating ` around v
and taking the closest points from s and t, respectively, on the rotated ` under the geodesic
metric. See Figure 2(b) for an illustration. Therefore we assume that there are two vertices v
and v′ that touch s∗t∗ from above and from below, respectively. Since s lies below `, v′ comes
before v from s∗ along s∗t∗ to t∗. See Figure 2(c). Consider the portion (line segment) of `
visible from v, which is split into two segments by v, one contains s∗ and one contains t∗. If
π(s′, t′) crosses the segment containing s∗, it must cross ` again in the segment containing t∗
to reach t′. Then the path between the two crossing points can be shortened by the segment
connecting them, which is a contradiction. Thus, π(s′, t′) passes through v′. The proofs for v
and v′ are symmetric, and thus both vertices v and v′ are on the shortest path π(s, t) which
in turn also establishes, that s∗t∗ is (locally) tangent to π(s, t) at v and at v′. J

3 Computing All Events for a Sweep-Line-Like Approach

For each vertex v on π(s, t) we compute a finite collection of lines through v, each being
a configuration at which the combinatorial structure of the shortest paths π(s, s∗) and/or
π(t, t∗) changes. To be more precise, at these lines either the vertices of π(s, s∗) or π(t, t∗)

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:5

s

t

s

t

s

t

v2

v1

(a) (b) (c)

Figure 3 Path-, boundary-, and bend-events. (a) The endpoints of the line-of-sight through
sv1 make up the first path-event. The line-of-sight rotates until it hits the next path-event: the
endpoints of the line-of-sight through v1v2. (b) All path- and boundary-events: the event-queue
is initialized with these events. (c) A bend-event (marked with a cross) occurs between the two
boundary-events. The shortest path from s to these segments changes at the bend-event.

(except for s∗ and t∗) change or the edge of ∂P changes that is intersected by the extension
of s∗t∗. Notice that in the remaining part of the paper (s∗, t∗) is the optimal solution pair
from s, t to the a given line (and not necessarily a global optimal solution for the quickest
pair-visibility problem). To explain how to compute these lines, we introduce the concept of
a line-of-sight.

I Definition 2 (line-of-sight). We call a segment ` a line-of-sight if (i) ` ⊂ P , (ii) both
endpoints of ` lie on ∂P , and (iii) ` is tangent to π(s, t) at a vertex v ∈ π(s, t).

The algorithm we present is in many aspects similar to a sweep-line strategy, except that we
do not sweep over the scene in a standard fashion but rotate a line-of-sight ` in P around
the vertices of the shortest path π(s, t) := (s = v0), v1, . . . , vk−1, (t = vk), making use of
Lemma 1. The process will be initialized with a line-of-sight that contains s and v1 and is
then rotated around v1 (while remaining tangent to v1) until it hits v2, see Figure 3(a). In
general, the current line-of-sight is rotated around vi in a way so that it remains tangent to
vi (it is rotated in the interior of P) until the line-of-sight contains vi and vi+1, then the
process is iterated with vi+1 as the new rotation center. The process terminates as soon as
the line-of-sight contains vk−1 and t.

While performing these rotations around the shortest path vertices, we encounter all
combinatorially different lines-of-sight. As for a standard sweep-line approach, we will
compute and consider events at which the structure of a solution changes: this is either
because the interior vertices of π(s, s∗) or π(t, t∗) change or because the line-of-sight starts
or ends at a different edge of ∂P . These events will be represented by points on ∂P (actually,
we introduce the events as vertices on ∂P unless they are already vertices). Between two
consecutive lines-of-sight, we compute the local minima of the relevant distances for the
variant at hand in constant time and hence encounter all global minima eventually.

There are three event-types to distinguish:
1. Path-Events are endpoints of lines-of-sight that contain two consecutive vertices of the

shortest path π(s, t). See Figure 3(a).
2. Boundary-Events are endpoints of lines-of-sight that are tangent at a vertex of π(s, t)

and contain at least one vertex of P \π(s, t) (potentially as an endpoint). See Figure 3(b).
3. Bend-Events are endpoints of lines-of-sight where the shortest path from s (or t) to the

line-of-sight gains or loses a vertex while rotating the line-of-sight around a vertex v. See
Figure 3(c). Note that bend-events can coincide with path- or boundary-events.

We will need to explicitly know both endpoints of the line-of-sight on ∂P at each event
and the corresponding vertex of π(s, t) on which we rotate.

SWAT 2018

6:6 On Romeo and Juliet Problems

I Lemma 3 (Computing path- and boundary-events). For a simple polygon P with n vertices
and points s, t ∈ P , the queue Q of all path- and boundary-events of the rotational sweep
process, ordered according to the sequence in which the sweeping line-of-sight encounters
them, can be initialized in O(n) time.

Proof. Consider some line-of-sight ` that is tangent to a vertex vi ∈ π(s, t) for some
0 < i < k. Then ` subdivides P into a number of subpolygons. Consider ` as the union of
two (sub)segments `+ and `− of ` induced by vi such that `+ ∩ `− = {vi} and `− is incident
to the subpolygon of P induced by ` containing s.

We will discuss the computation of all boundary- and path-events swept by `+. The
other events swept by `− can be computed in a second round by changing the roles of s
and t. We do not maintain a queue for the events explicitly; instead we will introduce new
vertices on ∂P or label existing vertices of ∂P as events. Later the events will be considered
by following two pointers to vertices on ∂P and hence by processing the vertices in the order
that they appear on ∂P .

We start with computing all path-events swept by `+. For this we compute the shortest
path mapMs of s in P . The shortest path map of s is a decomposition of P in O(n) triangular
cells such that the shortest path from s to any point within a cell is combinatorially the
same. It can be obtained by extending every edge of the shortest path tree of s towards its
descendants until it reaches ∂P in linear time [10]. A path-event occurs when a line-of-sight
contains two consecutive vertices of π(s, t). Note that for each path-event, `+ appears as an
edge of Ms and its endpoints appear as vertices of Ms. For each index i with 0 < i ≤ k, we
find the edge incident to vi and parallel to vi−1vi by considering every edge of Ms incident
to vi. This takes O(n) time in total since there are O(n) edges of Ms and we consider every
edge at most once.

For computing the boundary-events, we use the following properties. While rotating
around vi from the position where ` contains vi−1 to the position in which ` contains vi+1,
let A+

i (A−i) be the region of P that is swept over by `+ (`−). (See Figure 4.) Observe that
P1 all A+

i for 1 < i < k are pairwise disjoint,
P2 all A−i for 1 < i < k are pairwise disjoint,
P3 for all 1 < i < k and all points p ∈ A+

i the shortest path π(p, s) contains vi,
P4 for all 1 < i < k and all points p ∈ A−i the shortest path π(p, t) contains vi.

To compute all boundary-events that are vertices of P swept by `+, we will make use of
the shortest path tree Ts for s in P . A boundary-event x is defined by a vertex vi ∈ π(s, t)
such that the line-of-sight that contains x (potentially as one endpoint) is tangent to π(s, t) in
vi. It follows from Property P3, that vix is an edge of Ts (and by that it cannot be obstructed
by other edges of P) and x /∈ π(s, t). So the vertices of P whose parent vertex in Ts is a vertex
of π(s, t) are possible boundary-events. In order to compute all boundary-events we consider
all consecutive path-events and compute all corresponding boundary-events by following ∂P
and checking the vertices within the candidate set. We compute the boundary-events which
are vertices of P swept by `− in a similar way.

So far we labeled all vertices x on ∂P that are boundary-events. We still need to compute
the other endpoint x̃ of the line-of-sight xx̃ that is tangent in vi. Let xix̃i be the line-of-sight
at the path-event xi so that x̃i, vi−1, vi, xi ∈ `. (See Figure 4.) While rotating ` around vi,
`+ sweeps over A+

i until the next path-event is met. Let E+
i be the sequence of the path-

and boundary-events in A+
i we obtained so far sorted in counter-clockwise order along ∂P .

The order of events in E+
i is the same as the order in which `+ sweeps over them. Our goal

is to compute x̃ for every event in E+
i in order. To do this, we consider the (triangular) cells

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:7

vi

vi+1

xi,1

xi,2

xi,3

xi

A+
i

A−
i

x̃i

x̃i,1

vi−1

∂P

Figure 4 Let E+
i = 〈xi,1, . . . , xi,k〉 for an index 1 ≤ k ≤ n. We start at x̃i and follow the

(triangular) cells of Mt incident to vi in counter-clockwise order around vi until we find x̃i,1. Then
we continue to follow such cells until we find x̃i,2, and so on.

of Mt incident to vi one by one in counter-clockwise order around vi starting from the cell
incident to x̃i. Since every point in such cells is visible from vi, we can determine if x̃ is
contained in a cell in constant time for any event x ∈ E+

i . Therefore, we can compute x̃ for
every event x in E+

i in time linear in the number of the cells of Mt incident to vi and the
number of events of E+

i , giving us all path- and boundary-events in O(n) total time. J

Once we initialized the event queue Q, we can now compute and process bend-events as
we proceed in our line-of-sight rotations.

I Lemma 4. All bend-events can be computed in O(n) time, sorted in the order as they
appear on the boundary of P .

Proof. We assume that all path- and boundary-events are already computed. Additionally, we
assume that all vertices of the boundary- and path-events (the endpoints of the corresponding
line-of-sights) are inserted on ∂P . Recall that, for each event, we know both endpoints of
the line-of-sight ` on ∂P and the corresponding vertex of π(s, t) on which we rotate.

As in the proof of Lemma 3, we consider the line-of-sight ` tangent to a vertex v ∈ π(s, t)
as the union of two (sub)segments `+ and `− of ` induced by v such that `+ ∩ `− = {v} and
`− is incident to the subpolygon of P induced by ` containing s. We discuss the computation
of all bend-events that are encountered by `−. The bend-events that are swept over by `+

can be computed in a second round by changing the roles of s and t.
We start with the path-event defined by s and v1, and consider all events in the order

they appear. Let ` be the current line-of-sight rotating around a vertex v and denote by
x the endpoint of `− other than v. To find the bend-events efficiently, we compute and
maintain the shortest path π(s, `) over the events.

While ` rotates around v, the combinatorial structure of π(s, `) may change. Specifically,
let e` = (u,w) denote the edge of π(s, `) incident to ` with w on `. Note that during the
rotation of `, all the edges of π(s, `) are stationary, except that e` rotates around u. Therefore,
a change in the combinatorial structure of π(s, `) occurs only when (1) e` hits a vertex u′ of
P and splits into two edges sharing u′ or (2) the two edges of π(s, `) incident to u become
parallel. (Then they merge into one and u disappears from the shortest path.) See Figure 5.
From any event of the two event types above, e`, u, and π(s, `) are updated accordingly.
Additionally, x is updated and its new position is inserted as vertex on ∂P as it represents a
bend-event.

I Lemma 5. An event of type (1) occurs only when (a) x reaches a vertex u′, or (b) e` hits a
vertex u′ of π(s, t) in its interior. Moreover, for case (b), u and u′ are consecutive in π(s, t).

SWAT 2018

6:8 On Romeo and Juliet Problems

(a) (b)

s

t

v

(c)

u

u′ `−

w

s

t

v

u

u′
`−

w

s

t

w

u

`−
v

Figure 5 (a) A bend-event of type (1) occurs when x = u` reaches u′. (b) A bend-event of type
(1) occurs when e` = uw hits a vertex u′ of π(s, t). (c) A bend-event of type (2) occurs when two
edges incident to u are parallel.

Proof. Consider the case that e` is not orthogonal to `. Then the closest point in ` from s is
x. Thus, the only way that e` hits a vertex of P is that x reaches u′. See Figure 5(a).

Now consider the case that e` is orthogonal to `. Then u′ is contained in π(u, v). See
Figure 5(b). Since π(u, v) is a subpath of π(s, t), u′ is a vertex of π(s, t), and thus u is the
vertex of π(s, t) previous to u′ from s. J

I Lemma 6. Once a vertex disappears from π(s, `), it never appears again on the shortest
path during the rotation of the current line-of-sight `.

Proof. Assume to the contrary that there is a vertex u that disappears from π(s, `1), but
then appears again on π(s, `2) for two line-of-sights `1 and `2 during the rotation. Since
both π(s, `1) and π(s, `2) contain u in its interior, both of them also contain π(s, u). Since
u disappears from π(s, `1), the edge of π(s, `1) incident to u is orthogonal to `1. We claim
that u appears on π(s, `2) due to case (b) of type(1), that is, the edge of π(s, `2) incident
to `2 hits u. Assume to the contrary that u appears on π(s, `2) due to case (a) of type (1).
However, u (and its event vertex on ∂P) is already swept by a line-of-sight before we consider
`2 because it appears on π(s, `1). Thus, u appears on π(s, `2) due to case (b) of (2), and the
edge of π(s, `2) incident to u is orthogonal to `2. This means that `1 and `2 are parallel.

Since `1 and `2 are parallel, they are tangent to π(s, t) at two distinct vertices, say v1
and v2, respectively. Moreover, the path π(p1, p2) contains v1 for any two points p1 ∈ P1 and
p2 ∈ `2, where P1 is the subpolygon bounded by `−1 containing s. Thus, π(s, `2) contains
π(s, v1), and no vertex in P1 other than the vertices of π(s, v1) appears on π(s, `2). Since u
is contained in P1, it cannot appear on π(s, `2), which is a contradiction. J

We can update u, e`, x and π(s, `) in constant time for a type (1) event. We can update
them in O(n) time for all type (2) events in total by Lemma 6. The vertices representing the
bend-events can be inserted on ∂P in the same time. J

4 Algorithm Based on a Sweep-Line-Like Approach

In this section, we present a linear-time algorithm for computing the minimum distance that
two points s and t in a simple polygon P travel in order to see each order. We compute all
events defined in Section 3 in linear time. The remaining task is to handle the lines-of-sight
lying between two consecutive events.

I Lemma 7. For any two consecutive events, the line-of-sight ` lying between them that
minimizes the sum of the distances from s and t to ` can be found in constant time.

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:9

Proof. Let L be the set of all lines-of-sight lying between the two consecutive events. Every
line-of-sight in L contains a common vertex v of π(s, t). We assume that L contains no
vertical line-of-sight. Otherwise, we consider the set containing all lines-of-sight of L with
positive slopes, and then the set containing all lines-of-sight of L with negative slopes.

By construction, the second to the last vertex u of π(s, `) (and π(t, `)) for any ` ∈ L
remains the same. We already obtained v and u while computing the events. We will give
an algebraic function for the length of π(s, `) for ` ∈ L. An algebraic function for the length
of π(t, `) can be obtained by changing the roles of s and t.

Since the topology of π(s, `) for every ` ∈ L remains the same, we consider only the
length of π(u, `). Observe that π(u, `) is a line segment for any ` ∈ L, and thus its length
is the same as the Euclidean distance between u and `. The length is either the Euclidean
distance between u and the line containing `, or the Euclidean distance between u and the
endpoint of ` closest to u. We show how to handle the first case only because the second
case can be handled analogously.

To use this observation, we use `(α) to denote the line of slope α passing through v for
any α > 0. There is an interval I such that `(α) contains a line-of-sight in L if and only
if α ∈ I. The Euclidean distance between u and `(α) is the same as the distance between
u and the line-of-sight contained in `(α). Thus, in the following, we consider the distance
between u and `(α) for every α ∈ I.

Since `(α) passes through a common vertex, the line `(α) can be represented as the form
of y = αx+ f(α), where f(α) is a function linear in α. Then, the distance between u and
`(α) can be represented as the form of |c1α+ c2|/

√
α2 + 1, where c1 and c2 are constants

depending only on v and u.
Then our problem reduces to the problem of finding a minimum of the function of the form

of (|c1α+ c2|+ |c′1α+ c′2|)/
√
α2 + 1 for four constants c1, c2, c

′
1 and c′2, and for all α ∈ I.

We can find a minimum in constant time using an elementary analysis. J

I Lemma 8. For any two consecutive events, the line-of-sight ` lying between the them that
minimizes the maximum of the distances from s and t to ` can be found in constant time.

I Theorem 9. Given a simple n-gon P with no holes and two points s, t ∈ P , a point-pair
(s∗, t∗) such that i) s∗t∗ ⊂ P and ii) either |π(s, s∗)|+ π(t, t∗)| or max{|π(s, s∗)|, |π(t, t∗)|}
is minimized can be computed in O(n) time.

Proof. Our algorithm first computes all path- and boundary-events as described in Lemma 3.
The number of events introduced during this phase is bounded by the number of vertices
of the shortest path maps, Ms and Mt, respectively, which are O(n). In the next step, it
computes the bend-events on ∂P as described in Lemma 4, which can be done in O(n) time.
Finally, our algorithm traverses the sequence of events. Between any two consecutive events,
it computes the respective local optimum in constant time by Lemma 7. It maintains the
smallest one among the local optima computed so far, and return it once all events are
processed. Therefore the running time of the algorithm is O(n).

For the correctness, consider the combinatorial structure of a solution and how it changes.
The path-events ensure that all vertices of π(s, t) are considered as being the vertex lying on
the segment connecting the solution (s∗, t∗). While the line-of-sight rotates around one fixed
vertex of π(s, t), either the endpoints of line-of-sight sweep over or become tangent to a vertex
of ∂P . These are exactly the boundary-events. Or the combinatorial structure of π(s, s∗) or
π(t, t∗) changes as interior vertices of π(s, s∗) or π(t, t∗) appear or disappear. These happen
exactly at bend-events. Therefore, our algorithm returns an optimal point-pair. J

SWAT 2018

6:10 On Romeo and Juliet Problems

5 Quickest Pair-Visibility Query Problem

In this section, we consider a query version of the min-max variant of the quickest pair-
visibility problem: Preprocess a simple n-gon P so that the minimum traveling distance for
two query points s and t to see each other can be computed efficiently. We can preprocess a
simple n-gon in linear time and answer a query in O(log2 n) time by combining the approach
in Section 4 with the data structure given by Guibas and Hershberger [9, 11]. For any
two query points s and t in P , the query algorithm for their data structure returns π(s, t)
represented as a binary tree of height O(logn) in O(logn) time [11]. Thus, we can apply
binary search on the vertices (or the edges) on π(s, t) efficiently.

Imagine that we rotate a line-of-sight along the vertices of π(s, t) for two query points s
and t in P . Lemma 1 implies that there is a line-of-sight containing s∗ and t∗, where (s∗, t∗)
is an optimal solution. We call it an optimal line-of-sight. We define the order of any two
lines-of-sight as the order in which they appear during this rotational sweep process. By the
following lemma, we can apply binary search on the sequence of events along ∂P and find
two consecutive events such that the respective local optimum achieved between them is a
global optimal solution.

I Lemma 10. The geodesic distance between s (and t) and the rotating line-of-sight increases
(and decreases) monotonically as the line-of-sight rotates along the vertices of π(s, t) from s.

Proof. Let ` be a line-of-sight which is tangent to π(s, t) at a vertex v. Consider the
subdivision of P induced by ` and let Ps be the subpolygon that contains s. Let `′ be a
line-of-sight that comes after ` during the rotational sweep process. We claim that `′ does
not intersect the interior of Ps. If `′ is tangent to π(s, t) at v, it never intersects the interior
of Ps as shown in the proof of Lemma 3. Assume that `′ is tangent to π(s, t) at a vertex
u that comes after v along π(s, t) from s, but intersects the interior of Ps. Without loss of
generality, assume that ` is horizontal and Ps lies locally below `. Then u must lie strictly
above the line containing `. However, since both v and u are vertices of π(s, t) and ` is
tangent to π(s, t) at v, there must be another vertex u′ of π(s, t) that lies on or below the
line containing ` and appears between v and u along π(s, t). Thus, u is not visible from any
point on `, and `′ does not intersect the interior of Ps. Since π(s, `′) intersects `, we have
π(s, `′) ≥ π(s, `). The claim for t and the rotating line-of-sight can be shown analogously. J

5.1 Binary Search for the Path-Events
We first consider the path-events, and find two consecutive path-events containing an optimal
line-of-sight between them. Let π(s, t) := (s = v0), v1, . . . , vk−1, (t = vk). Due to the
shortest-path data structure by Guibas and Hershberger, we can obtain π(s, t) represented
as a binary tree of height O(logn) in O(logn) time. Consider an edge vivi+1 of π(s, t). We
can determine whether or not an optimal line-of-sight is tangent to π(s, t) at a vertex lying
after vi along π(s, t) in O(logn) time. To do this, we compute the line-of-sight ` containing
vivi+1 in O(logn) time [12] and compute the length of π(s, `) and π(t, `) in O(logn) time [9].
An optimal line-of-sight is tangent to π(s, t) at a vertex lying after vi if and only if π(s, `) is
shorter than π(t, `). Therefore, we can compute the two consecutive path-events with an
optimal solution lying between them in O(log2 n) time.

5.2 Binary Search for the Boundary-Events
Now we have the vertex vi of π(s, t) contained in an optimal line-of-sight. We find two
consecutive boundary-events defined by lines-of-sight tangent to π(s, t) at vi such that an
optimal line-of-sight lies between them. Let x̃i and xi be the first points of ∂P hit by the

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:11

rays from any point in vi−1vi towards vi−1 and vi, respectively. See Figure 4. Similarly, let
x̃i+1 and xi+1 be the first points of ∂P hit by the rays from any point in vivi+1 towards
vi and vi+1, respectively. These four points of ∂P can be found in O(logn) time by the
ray-shooting data structure [12]. Without loss of generality, we assume that a line-of-sight
rotates around vi in the counter-clockwise direction in the rotational sweep process. Let γ̃
be the part of ∂P lying from x̃i to x̃i+1 in counter-clockwise order, and γ be the part of
∂P lying from xi to xi+1 in counter-clockwise order. An optimal line-of-sight `∗ has one
endpoint on γ̃ and the other endpoint on γ.

We first find the edge of γ̃ (resp. γ) containing an endpoint of `∗ by applying binary
search on the vertices of γ̃ (resp. γ). This gives two consecutive boundary-events such that
`∗ lies between them. We now show how to find the edge of γ containing an endpoint of `∗.
The edge on γ̃ can be found analogously.

We perform a binary search on the vertices in γ as follows. Let x∗ be the endpoint of `∗
contained in γ. For any vertex u of γ, we can determine which part of γ with respect to u
contains x∗ in O(logn) time. To do this, we consider the line-of-sight ` containing the edge
of π(vi, u) incident to vi. Observe that ` intersects π(vi, u) only in the edge including its
endpoints as π(vi, u) is a shortest path. See Figure 6(a). Since we can obtain the edge of
π(vi, u) incident to vi in O(logn) time using the shortest-path data structure, we can obtain
` in the same time. Here, to obtain the endpoint of ` on γ, we use the ray-shooting data
structure that supports O(logn) query time [12]. Then we compare d(s, `) and d(t, `) in
O(logn) time. The point x∗ comes after u from xi if and only if d(s, `) < d(t, `). Therefore,
we can determine which part of γ with respect to u contains x∗ in O(logn) time, and thus the
binary search is completed in O(log2 n) time. In this way, we can compute two consecutive
boundary-events such that an optimal line-of-sight lies between them in O(log2 n) time.

5.3 Binary Search for the Bend-Events
Now we have two consecutive events in the sequence of all path- and boundary-events
that contain an optimal line-of-sight `∗ between them. Let `1 and `2 be two lines-of-sight
corresponding to the two consecutive events such that `2 comes after `1. The remaining task
is to handle the bend-events lying between them. For the bend-events, we perform a binary
search on the edges of π(s, `1) ∪ π(s, `2) in O(log2 n) time. Then we perform binary search
on the edges of π(t, `1) ∪ π(t, `2) in O(log2 n) time. In the following, we describe the binary
search on π(s, `1) ∪ π(s, `2). The other one can be done analogously.

We find the point s′ such that π(s, s′) is the maximal common subpath of π(s, `1) and
π(s, `2) from s in O(logn) time using the shortest-path data structure [11]. See Figure 6(b).
Then we obtain π′ = π(s′, `1) ∪ π(s′, `2) represented as a binary tree of height O(logn) in
O(logn) time. For an edge e of π′, we use `(e) to denote the line-of-sight containing vi and
orthogonal to the line containing e. Observe that `(e) comes after `(e′) if and only if e comes
after e′ along π′ from `1. Also, given an edge e of π′, we can compute `(e) in constant time.
Using these properties, we can find two consecutive edges e and e′ of π′ such that `∗ lies
between `(e) and `(e′) in O(log2 n) time by applying binary search on π′ as we did for path-
and boundary-events.

Now we have two consecutive events in the sequence of all path-, boundary- and bend-
events that contains `∗ between them. Recall that the combinatorial structure of π(s, `)
(and π(t, `)) is the same for every lines-of-sight lying between the two events. Let (us, ws)
and (ut, wt) be the edges of π(s, `) and π(t, `) incident to ` at ws and wt, respectively, for
any line-of-sight ` lying between the two events. Using the shortest-path data structure,
we can obtain us, ut, d(s, us) and d(t, ut) in O(logn) time. Then we apply the algorithm in

SWAT 2018

6:12 On Romeo and Juliet Problems

vi u

vi−1

vi+1

xi

xi+1

π(vi, u)

(a) (b)

vi

`1

`2

ss′

e

`(e)`

π′

Figure 6 (a) The line-of-sight intersecting π(vi, u) contains the edge of π(vi, u) incident to vi.
(b) The maximal common subpath of π(s, `1) and π(s, `2) from s is π(s, s′).

Lemma 7 to find an optimal line-of-sight in constant time. In this way, we can obtain an
optimal line-of-sight in O(log2 n) time in total.

Therefore, we can find two consecutive events with an optimal solution between them,
and we can obtain an optimal solution in O(log2 n) time in total.

I Theorem 11. Given a simple n-gon P , we can preprocess it in O(n) time to find the
minimum of the longer distance that s and t travel in order to see each other in P can be
computed in O(log2 n) time for any two query points s, t ∈ P .

References
1 Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin Polishchuk,

Günter Rote, Lena Schlipf, and Topi Talvitie. Shortest path to a segment and quickest
visibility queries. Journal of Computational Geometry, 7(2):77–100, 2016. doi:10.20382/
jocg.v7i2a5.

2 Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries and
maintenance in simple polygons. Discrete & Computational Geometry, 27(4):461–483, 2002.
doi:10.1007/s00454-001-0089-9.

3 Svante Carlsson, Håkan Jonsson, and Bengt J. Nilsson. Finding the shortest watchman
route in a simple polygon. Discrete & Computational Geometry, 22(3):377–402, 1999. doi:
10.1007/PL00009467.

4 Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. In Alok Aggarwal, ed-
itor, Proceedings of the Second Annual ACM SIGACT/SIGGRAPH Symposium on Compu-
tational Geometry, Yorktown Heights, NY, USA, June 2-4, 1986, pages 24–33. ACM, 1986.
doi:10.1145/10515.10518.

5 Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. Inf. Process. Lett.,
28(1):39–44, 1988. doi:10.1016/0020-0190(88)90141-X.

6 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA,
USA, pages 473–482. ACM, 2003. doi:10.1145/780542.780612.

7 Adrian Dumitrescu and Csaba D. Tóth. Watchman tours for polygons with holes. Comput.
Geom., 45(7):326–333, 2012. doi:10.1016/j.comgeo.2012.02.001.

8 Anurag Ganguli, Jorge Cortes, and Francesco Bullo. Visibility-based multi-agent deploy-
ment in orthogonal environments. In Proceedings of the 2007 American Control Conference
(ACC ’07), pages 3426–3431, 2007. doi:10.1109/ACC.2007.4283034.

9 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. J. Comput. Syst. Sci., 39(2):126–152, 1989. doi:10.1016/0022-0000(89)90041-X.

10 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre
Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated
simple polygons. Algorithmica, 2:209–233, 1987. doi:10.1007/BF01840360.

http://dx.doi.org/10.20382/jocg.v7i2a5
http://dx.doi.org/10.20382/jocg.v7i2a5
http://dx.doi.org/10.1007/s00454-001-0089-9
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1145/10515.10518
http://dx.doi.org/10.1016/0020-0190(88)90141-X
http://dx.doi.org/10.1145/780542.780612
http://dx.doi.org/10.1016/j.comgeo.2012.02.001
http://dx.doi.org/10.1109/ACC.2007.4283034
http://dx.doi.org/10.1016/0022-0000(89)90041-X
http://dx.doi.org/10.1007/BF01840360

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:13

11 John Hershberger. A new data structure for shortest path queries in a simple polygon. Inf.
Process. Lett., 38(5):231–235, 1991. doi:10.1016/0020-0190(91)90064-O.

12 John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18(3):403–431, 1995. doi:10.1006/jagm.1995.1017.

13 Ramtin Khosravi and Mohammad Ghodsi. The fastest way to view a query point in simple
polygons. In Proceedings of the 21st European Workshop on Computational Geometry,
pages 187–190, 2005.

14 Joseph S. B. Mitchell. Approximating watchman routes. In Sanjeev Khanna, editor, Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 844–855. SIAM,
2013. doi:10.1137/1.9781611973105.60.

15 Haitao Wang. Quickest visibility queries in polygonal domains. In Boris Aronov and Mat-
thew J. Katz, editors, 33rd International Symposium on Computational Geometry, SoCG
2017, July 4-7, 2017, Brisbane, Australia, volume 77 of LIPIcs, pages 61:1–61:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.SoCG.2017.61.

16 Erik L. Wynters and Joseph S. B. Mitchell. Shortest paths for a two-robot rendez-vous. In
Proceedings of the 5th Canadian Conference on Computational Geometry, pages 216–221,
1993.

SWAT 2018

http://dx.doi.org/10.1016/0020-0190(91)90064-O
http://dx.doi.org/10.1006/jagm.1995.1017
http://dx.doi.org/10.1137/1.9781611973105.60
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.61

Multistage Matchings
Evripidis Bampis
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France
evripidis.bampis@lip6.fr

Bruno Escoffier
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris, France
bruno.escoffier@lip6.fr

Michael Lampis
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
michail.lampis@dauphine.fr

Vangelis Th. Paschos
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
vangelis.paschos@dauphine.fr

Abstract
We consider a multistage version of the Perfect Matching problem which models the scenario
where the costs of edges change over time and we seek to obtain a solution that achieves low
total cost, while minimizing the number of changes from one instance to the next. Formally, we
are given a sequence of edge-weighted graphs on the same set of vertices V , and are asked to
produce a perfect matching in each instance so that the total edge cost plus the transition cost
(the cost of exchanging edges), is minimized. This model was introduced by Gupta et al. (ICALP
2014), who posed as an open problem its approximability for bipartite instances. We completely
resolve this question by showing that Minimum Multistage Perfect Matching (Min-MPM) does
not admit an n1−ε-approximation, even on bipartite instances with only two time steps.

Motivated by this negative result, we go on to consider two variations of the problem. In
Metric Minimum Multistage Perfect Matching problem (Metric-Min-MPM) we are promised
that edge weights in each time step satisfy the triangle inequality. We show that this problem
admits a 3-approximation when the number of time steps is 2 or 3. On the other hand, we
show that even the metric case is APX-hard already for 2 time steps. We then consider the
complementary maximization version of the problem, Maximum Multistage Perfect Matching
problem (Max-MPM), where we seek to maximize the total profit of all selected edges plus the
total number of non-exchanged edges. We show that Max-MPM is also APX-hard, but admits
a constant factor approximation algorithm for any number of time steps.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Perfect Matching, Temporal Optimization, Multistage Optimization

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.7

Acknowledgements This work benefited from the support of the FMJH program “Gaspard
Monge in optimization and Operation Research” and from the support to this program from
EDF, via the project 2016-1760H/C16/1507 “Stability versus Optimality in Dynamic Environ-
ment Algorithmics”.

1 Introduction

In classical Combinatorial Optimization, given an instance of a problem the goal is to find a
solution optimizing the value of the objective function. However, in many applications the

© Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evripidis.bampis@lip6.fr
mailto:bruno.escoffier@lip6.fr
mailto:michail.lampis@dauphine.fr
mailto:vangelis.paschos@dauphine.fr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Multistage Matchings

instance may change over time and the goal is to find a tradeoff between the quality of the
solution in each time step and the stability of the solution in consecutive time steps. As
an example, consider an instance of an assignment problem, where the goal is to compute
the best assignment of tasks to workers, assuming that we know the cost cij of performing
task j by worker i. In the classical setting, it is possible to choose the assignment that
minimizes the total cost in polynomial time. When the costs change over time (as for
instance when a worker is not able to do some long task on a very busy day (infinite cost))
the optimal solutions of each time step may differ, inducing a transition cost for setting new
task-worker pairs between two consecutive solutions. Hence, the naïve approach of finding a
new optimal solution in each time step has the drawback that it does not take care of the
penalty (transition cost) that is induced by the changes in the solution.

In this paper we study a multistage version of the Perfect Matching problem that follows
this motivation and was originally introduced by Gupta, Talwar, and Wieder [11]. In this
problem we are given a time horizon: t = 1, 2, . . . , T where for each time t we are given an
instance Gt of Perfect Matching (that is, an edge-weighted graph) on the same set of vertices
V . The goal is to determine a sequence of solutions S = (M1,M2, . . . ,MT) that both (1) are
near-optimal (quality), and (2) induce small transition costs (stability). In other words, the
goal is to determine a sequence of perfect matchings, one for each stage (time step) t, such
that their total cost is small and the solution does not change too radically from one step to
the next.

It was shown in [11] that this multistage problem is significantly harder than classical
Perfect Matching. In fact, it is NP-hard to even approximate the optimal solution within
n1−ε, for instances with only 8 times steps. Gupta et al. then posed as an explicit question
whether the problem becomes easier for bipartite instances. Their work suggests also the
question whether this hardness also applies for fewer than 8 steps. The bipartite restriction
is especially interesting because Gupta et al. showed that related matroid-based optimization
problems remain tractable for T = 2, and bipartite Perfect Matching can be seen as a matroid
intersection problem. One could therefore hope that the matroid structure might make the
bipartite case tractable for some small values of T , or at least approximable.

Our main contribution in this paper is to settle this question from [11] in the negative:
we show that Minimum Multistage Perfect Matching (Min-MPM) is n1−ε-inapproximable,
even for T = 2 time steps, unless P = NP . Motivated by this very negative result, we
then investigate two other version of the problem: the Metric Minimum Multistage Perfect
Matching problem (Metric-Min-MPM), where the input is guaranteed to satisfy the triangle
inequality, and the Maximum Multistage Perfect Matching problem (Max-MPM), where we
consider the complementary optimization objective.

Problem definition. Formally, the Min-MPM problem is defined as follows: We are given
a sequence G1, . . . , GT of T undirected graphs, on the same set of vertices V . At each time
step 1 ≤ t ≤ T , the graph Gt is given with a cost function ct on edges: ct(e) ∈ Q≥0 ∪ {+∞}.
We are also given a transition cost M ≥ 0. A solution is a sequence S = (M1, . . . ,Mt) where
Mt is a perfect matching of Gt. Each solution (sequence) has two costs: a matching cost
c(S) and a transition cost D(S). The goal is to minimize c(S) +D(S). A matching Mt has
a matching cost ct(Mt) which is equal to the sum of the costs of the edges of the perfect
matching. The matching cost of S is c(S) =

∑T
t=1 ct(Mt). The transition cost is defined

as D(S) =
∑T−1
t=1 Dt, where Dt = M · |Mt+1 \Mt| is proportional to the number of edges

removed between time t and t+ 1 – which is equal to the number of added edges since the
matchings are perfect. Notice that by allowing infinite cost on edges we may assume w.l.o.g.
the graphs to be complete.

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:3

In the Metric-Min-MPM, at each stage ct obeys the triangle inequality: ct(u, v) +
ct(v, w) ≥ ct(u,w). Finally, in the Max-MPM version, we consider that ct(e) is the profit
obtained by taking edge e (at time t). Then a solution sequence S has a matching profit
c(S) =

∑
t ct(Mt). We define the transition profit D(S) as D(S) =

∑
t≤T−1 Dt where

Dt = M · |Mt+1 ∩Mt| is proportional to the number of edges that remain between time t
and t+ 1. The goal now is to maximize c(S) +D(S). Notice that in Max-MPM, we may
no longer assume that the graphs are complete, since this assumption modifies the problem
(we get profit by maintaining an edge, even of profit 0, from one time step to the next one).

Related work. A model that is close to our setting is the reoptimization model of Schieber
et al. [15]. In their work, they are given a starting solution and a new instance and the goal
is to minimize the sum of the cost of the new instance and of the transition cost. The model
of multistage optimization that we use in this work has been studied earlier by Buchbinder et
al. [5] and Buchbinder, Chen and Naor [4] for solving a set of fractional problems. Eisenstat
et al. [7] studied a similar multistage optimization model for facility location problems. Their
main result was a logarithmic approximation algorithm, which was later improved to a
constant factor approximation by An et al. [1]. More broadly, many classical optimization
problems have been considered in online or semi-online settings, where the input changes over
time and the algorithm tries to adjust the solution (re-optimize) by making as few changes
as possible. We refer the reader to [2, 3, 6, 10, 13, 14] and the references therein.

As mentioned, Gupta et al. [11] studied the Multistage Maintenance Matroid problem for
both the offline and the online settings. Their main result was a logarithmic approximation
algorithm for this problem, which includes as a special case a natural multistage version of
Spanning Tree. The same paper also introduced the study of Min-MPM, which is the
main problem we study here. They showed that the problem becomes hard to approximate
even for a constant number of stages. More precisely, they showed the following result (n
denotes the number of vertices in the graphs).

I Theorem 1 ([11]). For any ε > 0, Min-MPM is not n1−ε-approximable unless P = NP .
This holds even when the costs are in {0,∞}, M = 1, and the number of time steps is a
constant.

Theorem 1 is proved for T = 8, starting from the fact that 3-colorability is NP-hard in
graphs of maximum degree 4 [8]. The authors leave as an open question the approximability of
the problem in bipartite graphs, and ask for subcases with better approximatibility behavior.

Our contribution. We answer the open question of [11] by showing that the problem is
hard to approximate even for bipartite graphs and for the case of two steps (T = 2). Then,
we focus on the case where the edge costs are metric within every time step (Metric-Min-
MPM). On the negative side, we prove that the problem remains APX-hard even if T = 2.
On the positive side, we show that Metric-Min-MPM admits a 3-approximation algorithm
for two and three stages. Finally, for the maximization version of the problem, Max-MPM,
we prove that it admits a constant factor approximation algorithm but is APX-hard.

2 Min-MPM for bipartite graphs

We answer the open question of [11] about the approximability of bipartite Min-MPM.

I Theorem 2. For any ε > 0, Min-MPM cannot be approximated within a factor of n1−ε,
even if the input has T = 2 time steps, the input graphs are bipartite, M = 1 and the costs
of edges are in {0,∞}, unless P=NP.

SWAT 2018

7:4 Multistage Matchings

Using infinite costs, the same result immediately holds for bipartite complete graphs, as well
as for complete graphs.

Proof. We give a gap-introducing reduction from Perfect 3DM (3-Dimensional Matching),
known to be NP-complete [9]. We are given an instance of Perfect 3DM which consists of
three sets X,Y, Z, with |X| = |Y | = |Z| = n, and a set Q of elements of X × Y × Z, with
|Q| = m ≤ n3. We are whether there exists a subset of n pair-wise disjoint elements of Q, or
not.

We construct an instance of our problem as follows: first, we create four sets of vertices
A,B,C,D with |A| = |B| = n and |C| = |D| = m. To ease notation suppose that the ele-
ments of our sets X,Y, Z,Q,A,B,C,D are labeled as {x1, . . . , xn}, {y1, . . . , yn}, {z1, . . . , zn},
{q1, . . . , qm}, {a1, . . . , an}, {b1, . . . , bn}, {c1, . . . , cm}, and {d1, . . . , dm} respectively.

For any j ∈ {1, . . . ,m} we construct a set of 2nd 4
ε e new vertices. We connect cj to dj

through a path traversing all these vertices (thus this is a path from cj to dj with 2nd 4
ε e + 2

vertices). We set the cost of all the internal edges of these paths for both time-steps to 0.
For all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} we do the following: if xi ∈ qj we set the cost of the

edge (ai, cj) to 0 in time step 1; if yi ∈ qj we set the cost of the edge (ai, cj) to 0 in time
step 2; if zi ∈ qj we set the cost of the edge (bi, dj) to 0 in both time steps. All other edge
costs are set to ∞ (or some other sufficiently large value). This completes the construction.
Observe that the new graph has 5n+ 3m+ 2mnd 4

ε e vertices, so at most C · n 4
ε+4 (for some

constant C) since m ≤ n3. Note also that the new graph is bipartite because the paths
that we added from cj to dj have odd lengths, hence the bipartition (A ∪D,B ∪ C) can be
extended to a bipartition of the whole graph.

Suppose that the original instance has a set Q′ ⊆ Q such that |Q′| = n and no element of
X ∪ Y ∪ Z appears in two elements of Q′. We obtain a multistage matching as follows: For
each qj ∈ Q′ such that qe = (xi1 , yi2 , zi3) we use the edge (ai1 , cj) in step 1, the edge (ai2 , cj)
in step 2, and the edge (bi3 , dj) in both time steps. Note that this fully specifies how the
vertices of A ∪B are matched. We now complete the matching by selecting a set of edges
from the paths connecting each cj to dj : if qj ∈ Q′, then both cj , dj have been matched
to A ∪B in both time steps, and we select in both time steps the unique perfect matching
of the path connecting them; if qj 6∈ Q′, then neither cj , dj is matched to A ∪ B in either
time step, so we select the perfect matching on the path from cj to dj , including these two
vertices. Observe that the cost of all edges we use is 0, while we only change at most n edges
from one time step to the other, hence the total transition cost is at most nM .

Suppose that the original instance does not have a solution and consider any multistage
matching in the new instance. We will show that it must make at least n 4

ε changes from one
time step to the other. We will say that qj ∈ Q is selected in time step 1, if in that time step
cj is matched to an element of A. If qj is selected in time step 1, then dj is matched to an
element of B in that time step, otherwise it would be impossible to have a perfect matching
on the path connecting cj to dj . If some qj is selected in time step 1, but not in time step 2,
then the solution must change all internal edges on the perfect matching on the path from
cj to dj , hence it makes at least n 4

ε changes, and we are done. What remains therefore to
show is that if the solution maintains the set of selected qj in the two time steps, then we
can construct a solution to the original instance. Indeed, since all of A ∪B is matched, we
have n selected qj ’s. Each element of C ∪D has at most one edge connecting it to A ∪B in
each step, hence if it is selected this edge must be used. But if we select qj1 , qj2 that overlap,
then two selected elements will have a common neighbor in A ∪B and will therefore not be
matched, contradiction.

Since the new graph has N vertices with n 1
ε ≤ N ≤ Cn

4
ε+4 vertices, it is NP-hard to

distinguish if the optimal is at most nM ≤ N εM or at least n 4
εM ≥ N1−εM/C. J

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:5

3 Metric-Min-MPM

We consider in this section that ct obeys the triangle inequality: ct(u, v) + ct(v, w) ≥ ct(u,w).
In particular, the graph is complete. As seen before, the problem is hard to approximate
even if there are only 2 time steps with general costs. We show here that while the problem
is APX-hard in the metric case even with only 2 time steps (Section 3.1), it admits a
3-approximation algorithm in this case (2 time steps), see Section 3.2. We then extend this
last result to the case of 3 time steps in Section 3.3.

3.1 APX-hardness for 2 time steps
In the case of 2 time steps the following result is proved.

I Theorem 3. Metric-Min-MPM is APX-hard, even if the input has T = 2 time steps.

Proof. We give a gap-preserving reduction from Max 3DM. We are given an instance of Max
3DM which consists of three sets X,Y, Z, with |X| = |Y | = |Z| = n, a set Q of elements
of X × Y × Z, with |Q| = m, and an integer k. We are asked if there exists a subset of k
pair-wise disjoint elements of Q. We assume that n, m and k are even (if not simply make two
independent copies of the initial instance). This problem is APX-hard even if the occurence
of each element is bounded above by a constant C = 3 [12]. Note that in this case the
optimum value is at least m/7 (greedy algorithm; at most 6 incompatible triplets are removed
when a triplet is chosen). So m, n and k are linearly related (3n ≥ m ≥ k ≥ m/7 ≥ n/21).

We construct an instance of Metric-Min-MPM as follows: first, we create five sets
of vertices X,Y, Z,G,D with X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn}, G =
{g1, . . . , gm} and D = {d1, . . . , dm}.

The graph is complete, and we set the following costs:
At time step 1, Z is seen as a single point very far from the rest of the graph: (zi, zj) has
cost 0 for zi, zj ∈ Z, and (zi, v) has infinite cost for zi ∈ Z, u 6∈ Z.
The same is done for X at time 2.
The m edges (gi, di) have cost 1 at both time steps.
For each triplet qi = (xj , yp, zs): at time 1 edges (xj , gi) and (di, yp) have cost a (a is a
sufficiently large constant, to be specified later), and, for the triangle inequality to hold,
(xj , di) and (gi, yp) have cost a+ 1. Similarly at time 2: (zs, gi) and (di, yp) have cost a,
and, for the triangle inequality to hold, (zs, di) and (gi, yp) have cost a+ 1.

All non yet defined costs are equal to 2a. The transition cost is M = 1. Figure 1 gives an
illustration of the construction.

Note that the triangle inequality holds in both time steps.
We show that (1) if there is a 3DM of size k then there exists a solution of Metric-Min-

MPM whose total cost is at most 2m+ 4an− k/2, and (2) conversely from a solution of the
multistage problem of total cost z we can construct a 3DM of size at least 2(2m+ 4an− z).
This proves APX-hardness since a is a constant, and m, n and k are linearly related.

Let us first prove (1), and suppose that we have a 3DM of size k, say (for ease of notation)
q1, . . . , qk where qi = (xi, yi, zi). Then we define a solution S of the multistage matching as
follows:

We take the (m− k) edges of triplets (gj , dj) not in the 3DM, at both time steps 1 and 2;
For qi, 1 ≤ i ≤ k: we take edges (xi, gi) at time 1, (zi, gi) at time 2, and (yi, di) at time 1
and 2.
We match together the (n− k) remaining vertices of Y , choosing the same n−k

2 edges at
both time steps.

SWAT 2018

7:6 Multistage Matchings

X

Q

G D Y

a

a

a

a

a

1

1

1

... ...

...

Figure 1 An illustration of the reduction at time t = 1, without representing Z - the construction
is symmetric for time step t = 2. The third element of X is in the first, third and last triplet of Q.
The second element of Y is in the second and third triplet. The dashed edges have costs a + 1. Not
represented edges have cost 2a..

We match together the (n − k) remaining vertices of X at time 1. At time 2 we keep
these n−k

2 edges and match the remaining k vertices of X together.
We do the same for Z.

We get a solution (M1,M2) whose costs are:
At time 1, the matching cost is (m− k) + 2ak + 2an−k2 + 2an−k2 = m+ 2an− k;
The matching cost at time 2 is the same.
The number of modifications is 3k/2: k edges (xi, gi) become (zi, gi), and k/2 edges in Z
disappear at time 1 (k/2 edges appear in X at time 2).

In all, (M1,M2) has cost 2m+ 4an− k/2.

Conversely, suppose that we have a solution (M0
1 ,M

0
2) of total cost z for the instance

of Metric-Min-MPM. We first structure this solution using local modifications, and then
show how to derive a matching from it.

Replacement 1. First, suppose that M0
1 takes (at time 1) an edge (xj , gi) of cost 2a - so

xj is not in the i-th triplet qi of Q. Then di is matched with a vertex v with an edge
of cost at least a. By replacing (at time 1) (xj , gi) and (di, v) by (xj , v) and (gi, di) we
get a matching cost for these two edges at most 2a + 1 instead of (at least) 3a. Even
considering that the transition cost may have increased by two, this replacement does
not increase the cost of the solution for a ≥ 3. The same argument applies for an edge
(xj , di) (time step 1), an edge (yj , di) or (yj , gi) (time step 1 or 2) and for an edge (zj , gi)
or (zj , di) in M0

2 .
Replacement 2. Now, suppose that M0

1 takes an edge of cost 2a in G ∪D, say (gi, gj)
with i 6= j (the very same argument works for the 2 other cases (gi, dj) and (di, dj)).
Let v and w be the neighbors of di and dj in M0

1 . By replacing the three edges (gi, gj),
(di, v) and (dj , w) by (gi, di), (gj , dj) and (v, w), we get a matching cost at most (2a+ 2)
instead of (at least) 4a. Even considering that the transition cost may have increased by
three, this replacement does not increase the cost of the solution for a ≥ 5/2. The same
holds for M0

2 .

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:7

Replacement 3. Last, suppose that edges (yj , gi) and (ys, di) are both taken at time 1
and 2. This costs 2(a + a + 1) = 4a + 2. Then we can take instead edges (gi, di) and
(yj , ys) at both time steps, with the same cost 2 + 2(2a) = 4a+ 2.

In this way, we transform (M0
1 ,M

0
2) into a solution (M1,M2) of cost at most z such that:

No gi (and no di) is matched using an edge of cost 2a (replacements 1 and 2).
gi and di cannot be both matched to the same vertices at time 1 and 2, unless they are
matched together (replacement 3).

We now show how to find a 3DM from this solution (M1,M2). Let:
Nx and Nz be respectively the number of edges in X×(G∪D) at time 1 and in Z×(G∪D)
at time 2.
N1
y and N2

y be respectively the number of edges in Y × (G ∪D) at time 1 and time 2,
among which λ1 (resp., λ2) are of cost a+ 1.
Ny be the number of edges in Y × (G ∪D) that are taken at both times 1 and 2.

At time 1, besides these Nx + N1
y edges and the n/2 edges of cost 0 (vertices of Z), the

other edges of (M1,M2) have cost either 1 (edges (gi, di)) or 2a. Since Nx +N1
y vertices in

G∪D are already matched at time 1, there are at most 2m−Nx−N1
y

2 edges of cost 1 at time 1.
Similarly, there are at most 2m−Nz−N2

y

2 edges of cost 1 at time 2.
Then, computing the matching cost of (M1,M2) we have

c(M1,M2) ≥ a
(
Nx +Nz +N1

y +N2
y

)
+ λ1 + λ2 +

4m−Nx −Nz −N1
y −N2

y

2

+2a
(
n−Nx + n−N1

y + n−Nz + n−N2
y

2

)

≥ 2m+ 4na+ λ1 + λ2 −
Nx +Nz +N1

y +N2
y

2 .

Now, note that at time 1 at least Nx +N1
y −Ny + Nz

2 edges disappear, so D(M1,M2) ≥
Nx + N1

y − Ny + Nz
2 . Similarly, at least Nz + N2

y − Ny + Nx
2 edges appear at time 2. So

D(M1,M2) ≥ Nz +N2
y −Ny + Nx

2 . Then,

D(M1,M2) ≥
Nx +Nz +N1

y +N2
y

2 −Ny + Nx +Nz
4 .

This gives:

z ≥ c(M1,M2) +D(M1,M2) ≥ 2m+ 4na+ λ1 + λ2 −Ny + Nx +Nz
4 .

Now, consider the set of indices i such that edge (yj , di) is taken at both time steps, or
edge (yj , gi) is taken at both time steps. Since, thanks to the preprocessing, for a given i
this cannot concern both di or gi, we know that there are exactly Ny such indices (edges).
Since there are λ1 + λ2 edges of cost a+ 1 between Y and G∪D, among these Ny indices at
least Ny − (λ1 + λ2) are such that: (1) edge (di, yj) is used at both time steps (2) an edge
(xs, gi) of cost a is used at time 1 (since no edge of cost 2a is used for vertices in G) and (3)
an edge (zp, gi) of cost a is used at time 2.

In other words these at least Ny − (λ1 + λ2) indices correspond to triplets of a 3DM. So
we have a 3DM of size (at least) k = Ny − (λ1 + λ2). Then, Nx ≥ Ny − (λ1 + λ2) = k and
similarly Nz ≥ k, so Nz+Nx

4 ≥ k
2 . All together, we get

z ≥ 2m+ 4an− k + k

2 = 2m+ 4an− k

2 . J

SWAT 2018

7:8 Multistage Matchings

3.2 A 3-approximation algorithm for 2 time steps
We now devise an approximation algorithm. Informally, this algorithm first guesses the
number k of edges that an optimal solution keeps between steps 1 and 2. Then it computes
a set of k edges with low matching cost that it maintains between time 1 and 2. Finally,
it completes this set of k edges into two perfect matchings, in such a way that, using the
triangle inequality, the matching cost does not increase too much.

Formally, the algorithm Metric2 runs the following procedure for k from 0 to n/2.

1. Let G1+2 be the graph where the edge costs are c(u, v) = c1(u, v) + c2(u, v). Compute a
minimum cost matching Mk of size exactly k in G1+2.

2. Compute a minimum cost perfect matching M1 in G1, and a minimum cost perfect
matching M2 in G2.

3. Consider the symmetric difference of the two matchings Mk and M1 in G1. This is a
(vertex disjoint) set of paths P1, . . . , Pp and cycles. Define Mk

1 as Mk plus the p edges
linking the first vertex and last vertex of each path Pj .

4. Do the same to get Mk
2 .

5. Consider Sk = (Mk
1 ,M

k
2).

Metric2 outputs the best solution Sk.

I Theorem 4. Metric2 is a (polytime) 3-approximation algorithm for Metric-Min-MPM
when T = 2.

Proof. We first prove that Sk is a feasible solution, i.e., Mk
i is a perfect matching of Gi.

Since Mi is a perfect matching, in all paths Pj the first and last edges belong to Mi. Hence
the first and last vertices are not covered by Mk, so Mk

1 is a matching. Every other vertex is
covered by Mk, so the matching is perfect.

Now, let us prove the claimed approximation ratio. Let us denote S∗ = (M∗1 ,M∗2) be an
optimal solution, and consider Sk where k = |M∗1 ∩M∗2 |.

Since at least Mk is common between Mk
1 and Mk

2 , at least k edges are maintained
between time 1 and 2 in Sk, as in S∗. So:

D(Sk) ≤ D(S∗). (1)

Now, let us prove that:

c1(Mk
1) + c2(Mk

2) ≤ 3c1(M∗1) + 3c2(M∗2). (2)

Thanks to the triangle inequality, in a path P = (v0, v1, . . . , vt), ci(v0, vt) ≤
∑
j ci(vj , vj+1):

when adding edges (v0, vt) we add in total at most the total length of the paths, hence at
most ci(Mi) + ci(Mk). So ci(Mk

i) ≤ ci(Mi) + 2ci(Mk). Using that ci(Mi) ≤ ci(M∗i), we get:

c1(Mk
1) + c2(Mk

2) ≤ c1(M∗1) + c2(M∗2) + 2(c1(Mk) + c2(Mk)).

By optimality of Mk and since S∗ has k common edges between times 1 and 2, these k
common edges induce a cost in S∗ at least c1(Mk) + c2(Mk). Then:

c1(Mk
1) + c2(Mk

2) ≤ c1(M∗1) + c2(M∗2) + 2(c1(M∗1) + c2(M∗2))

and Equation 2 follows. From Equations 1 and 2 we derive:

c(S) +D(S) ≤ 3c(S∗) +D(S∗).

The result immediately follows. J

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:9

3.3 A 3-approximation algorithm for 3 time steps
We now extend the previous result to the case of T = 3. As previously, if an optimal solution
preserves in total k edges (operates in total n− k modifications between time steps 1 and 2,
and 2 and 3) we would like to first compute a set of k ‘preserved’ edges inducing a low cost,
and then to complete this set as perfect matchings in each of the time steps. Now things get
more complex since an edge can be preserved between steps 1 and 2, between steps 2 and 3,
or during the whole process. It seems hard to mimic an optimal solution on these 3 types of
edges (while inducing a low matching cost), but this difficulty can be overcome as follows.

Let G be the graph with edge cost w = min{c1 + c2 + c3, c1 + c2 +M, c2 + c3 +M}. If
the minimum is c1 + c2 + c3 (resp., c1 + c2 +M , c2 + c3 +M) we say that the edge is of type
1 (resp., 2, 3). Intuitively, edges of type 1 will be taken in steps 1, 2 and 3, edges of type
2 (resp., 3) will be taken in steps 1 and 2 (resp., 2 and 3). We present a 3-approximation
algorithm Metric3. It runs the following procedure for k from 0 to n/2.

1. Compute a minimum cost matching Mk of size exactly k in G. Denote Mk
1 the set of

edges of Mk of type 1 or 2, Mk
2 = Mk and Mk

3 the set of edges of Mk of type 1 or 3.
2. Compute a minimum cost perfect matching Mi in Gi, i = 1, 2, 3.
3. Consider the symmetric difference of the two matchings Mk

i and Mi in Gi. This is a
(vertex disjoint) set of paths P1, . . . , Pp and cycles. Define M ′ki as the set of p edges
linking the first vertex and last vertex of each path Pj .

4. Consider Sk = (Mk
1 ∪M ′k1 ,Mk

2 ∪M ′k2 ,Mk
3 ∪M ′k3).

Then Metric3 outputs the best solution Sk.

I Theorem 5. Metric3 is a (polytime) 3-approximation algorithm for Metric-Min-MPM
when T = 3.

Proof. We first note that, as in the case for T = 2 time steps, Mk
i ∪M ′ki is a perfect matching

of Gi, so Sk is a feasible solution.
Now let us deal with the approximation ratio. Let S∗ = (M∗1 ,M∗2 ,M∗3) be an optimal

solution. Let us consider the set H = (M∗1 ∩M∗2)∪ (M∗2 ∩M∗3) of edges in S∗ that are in (at
least) two consecutive steps. Note that H is a matching (it is included in M∗2). Consider Sk
where k = |H|. We now prove the following result:

I Lemma 6. D(Sk) +
∑
i ci(Mk

i) ≤ D(S∗) + c(S∗).

Proof. To prove this, let k1 = |M∗1 ∩M∗2 ∩M∗3 | be the number of edges in S∗ that are taken
at each of the 3 time steps. Hence, k − k1 edges are taken at (only) 2 consecutive time steps.
So there are (n/2 + n/2− 2k1 − (k − k1)) modifications in total, and:

D(S∗) = M(n− k − k1). (3)

Recall that in G, w = min{c1 + c2 + c3, c1 + c2 +M, c2 + c3 +M}. k1 edges of H are present
on the 3 time steps (matching cost c1 + c2 + c3), while k − k1 are present in two consecutive
time steps (matching cost c1 + c2 or c2 + c3).

w(H) ≤ c(S∗) +M(k − k1). (4)

Similarly, let λ1 be the number of edges of type 1 in Mk. There are (k − λ1) edges of
type 2 or 3, hence

w(Mk) =
∑
i

ci(Mk
i) +M(k − λ1). (5)

SWAT 2018

7:10 Multistage Matchings

Indeed, in G cost c1 applies to edges of type 1 and 2 (c1(Mk
1)), cost c2 applies to all edges of

Mk (c2(Mk
2)), cost c3 applies to edges of type 1 and 3 (c3(Mk

3)), and cost M to the (k − λ1)
edges of type 2 and 3.

Also, the number of preserved edges in Sk is at least k + λ1, so:

D(Sk) ≤M(n− k − λ1). (6)

Since H is a matching, in G we have w(H) ≥ w(Mk). This gives using Equations 4 and 5:∑
i

ci(Mk
i) +M(k − λ1) ≤ c(S∗) +M(k − k1)

so
∑
i ci(Mk

i) ≤ c(S∗) +M(λ1 − k1). Then using Equations 3 and 6 we get:∑
i

ci(Mk
i) +D(Sk) ≤ c(S∗) +M(λ1 − k1) +M(n− k − λ1) = c(S∗) +M(n− k − k1)

= c(S∗) +D(S∗)

which concludes the proof of Lemma 6. J

Now, by triangle inequality, and the fact that ci(Mi) ≤ ci(M∗i), we know that:

ci(M ′ki) ≤ ci(M∗i) + ci(Mk
i). (7)

Then, from Lemma 6 and Equation 7 we get:

c(Sk) +D(Sk) =
∑
i

(ci(Mk
i) + ci(M ′ki)) +D(Sk) ≤

∑
i

(2ci(Mk
i) + ci(M∗i)) +D(Sk)

≤ c(S∗) + 2
(∑

i

ci(Mk
i) +D(Sk)

)
≤ 3c(S∗) + 2D(S∗).

The result follows. J

4 Max-MPM

In the maximization version, we consider that ct(e) is the profit obtained by taking edge e (at
time t). Then a solution sequence S has a matching profit c(S) =

∑
t ct(Mt). We define the

transition profit D(S) as D(S) =
∑
t≤T−1 Dt where Dt = M · |Mt+1 ∩Mt| is proportional

to the number of edges that remain between time t and t+ 1. The goal now is to maximize
c(S) + D(S). Recall that in the maximization version we may no longer assume that the
graphs are complete.

4.1 APX-hardness for 2 time steps
We first show that Max-MPM, even in the case of 2 time steps is APX-hard.

I Theorem 7. Max-MPM is APX-hard even if T = 2.

Proof. As previously, we consider the maximum 3DM problem in the case where the
occurrence of each element is bounded by 3, hence the optimal value, the number of triplets
and the size of the ground sets are linearly related.

Given three sets X,Y, Z each of size n, and m triplets qi of X × Y × Z, we build two
graphs G1 and G2 with n′ = 2m+ 4n vertices:

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:11

4 sets D,E, F,G of size n;
2 sets A = {a1, . . . , am} and B = {b1, . . . , bm} of size m.

Vertices of D will represent elements of X, vertices of E and F elements of Y (twice), vertices
of G elements of Z. Each triplet qi is represented by one edge (ai, bi) in both graphs. It has
cost 0.

If a triplet qi is (xj , yk, zl) then:
In G1 we put edges (dj , ai) and (bi, ek), both with cost M ′;
In G2 we put edges (fk, ai) and (bi, zl), both with cost M ′.

Note that vertices in F,G have degree 0 in G1, vertices in D,E have degree 0 in G2.
We fix M ′ = M+1

4 , and M ≥ 3.
Let us show that there is a 3DM of size (at least) k if and only if there is a solution of

profit at least Mm+ k.
Suppose first that there is a set S of k independent triplets. Then we build matchings

(M1,M2) as follows:
if qi is not in S, we take (ai, bi) both inM1 andM2. This gives transition profitM(m−k).
if qi = (xj , yk, zl) is in S, then we take in M1 the two edges (dj , ai) and (bi, ek), and in
M2 the two edges (fk, ai) and (bi, zl). This gives a matching profit 4kM ′.

Note that since any element of X,Y, Z is in at most one triplet of S, vertices in D,E, F,G
are adjacent to at most one chosen edge. In other words M1 and M2 are matchings.

The profit of the solution is 4kM ′ +M(m− k) = k(M + 1) +M(m− k) = Mm+ k.
Suppose now that there is a solution (M1,M2) of profit at least Mm+ k. Suppose first

that there is an edge (ai, bi) which is in M1 but not in M2. Then we get no transition profit
for this edge. In M2 we have taken at most one edge incident to ai, and one edge incident
to bi, with matching profit at most 2M ′. Since these edges are not in G1 they cannot give
transition profit. So we can put in M2 the edge (ai, bi) and remove the edges incident to ai
and bi (if any). The profit increases by M − 2M ′ = M/2− 1/2 ≥ 0.

So we can assume that M1 and M2 have the same set of edges between A and B.
Suppose now that there are two edges (ai, bi) and (as, bs) both not in M1 (equiv. not in M2)
corresponding to two intersecting triplets. Suppose for instance that xj is in both triplets.
This means that in M1 we cannot take both edges (cj , ai) and (cj , as), for instance (cj , as) is
not in M1. Then we can add (as, bs) is M1 and M2, and remove the (at most) 3 incident
edges. This increases profit by M − 3M ′ ≥ 0.

So, the set of edges (ai, bi) not in M1 (or not in M2) corresponds to a set of independent
triplets. Let t the number of such edges. Since M1 is a matching, besides these edges between
A and B, there is at most two edges for each (ai, bi) not in M1. Similarly, there is at most
two edges in M2 for each (ai, bi) not in M2. So the matching profit is at most 4tM ′, and
the transition profit is M(m− t). The profit is M(m− t) + 4tM ′ = Mm+ t ≥Mm+ k. So
t ≥ k. J

4.2 Constant factor approximation algorithms
I Theorem 8. Max-MPM is 1/2-approximable. If T = 2 it is 2/3-approximable, if T = 3
it is 3/5-approximable.

Proof. Note that if the graphs are assumed to be complete (bipartite complete) then the
ratio 1/2 is easily achievable. Indeed, consider two solutions:

The first one S1 consisting of the same perfect matching M0 at all time steps;
The second one S2 consisting of a matching M̂t of maximum profit on Gt for each t.

SWAT 2018

7:12 Multistage Matchings

Output the best one.
Let S∗ = (M∗1 , . . . ,M∗T) be an optimal solution. Clearly the profit of S1 is at least the

transition profit D(S∗) of S∗. Also, c(M∗i) ≤ c(M̂i) so the matching profit of S∗ is at most
the one of S2. The ratio 1/2 follows.

If the graphs are not assumed to be complete things get harder since one cannot trivially
optimize the transition profit by keeping a perfect matching along the multistage process.

Let us consider three consecutive time steps t− 1, t, t+ 1. Let us consider the graph G′t
which is the same as Gt up to the profit on edges, which is now c′t(e) where:
1. c′t(e) = ct(e) + 2M if e is in Gt−1 and Gt+1;
2. otherwise, c′t(e) = ct(e) +M if e is in Gt−1 or Gt+1;
3. otherwise c′t(e) = ct(e).
Let us consider a matching M ′t of maximum profit in G′t.

I Lemma 9. c′t(M ′t) ≥ Dt−1(S∗) + ct(M∗t) +Dt(S∗).

Proof. Let us consider the profit of M∗t on G′t. Since the set of edges preserved from time
t − 1 to time t is included in M∗t , the profit Dt−1(S∗) appears in the profit of M∗t on G′t
(+M on each common edges between the two consecutive graphs). This is also the case
for Dt(S∗), for the same reason. Of course, the profit ct(e) appears as well. Since M ′t is of
maximum profit, the Lemma follows. J

Because of Lemma 9, choosing the matching M ′t at time steps t − 1, t and t + 1 in a
solution generates a profit at least Dt−1(S∗) + ct(M∗t) +Dt(S∗).

Note that, with similar arguments, if two times steps t, t+ 1 are involved, we can compute
a matching Hi that we take at time steps t, t+ 1 generating a profit at least ct(M∗t) +Dt(S∗).
Symmetrically, we can compute a matching H ′i that we take at time steps t, t+ 1 generating
a profit at least ct+1(M∗t) +Dt(S∗).

Now we consider the following 2 solutions:
S1 consists of choosing H1 at steps 1, 2, H3 at step 3, 4, If T is even then we are
done, otherwise we take an optimal matching M̂T at step T .
S2 consisting of choosing an optimal matching M̂1 at step 1, then H2 at steps 2, 3, H4 at
steps 4, 5,. . . . If T is even we take an optimal matching M̂T at step T .

Output the best of these two solutions. Then: S1 covers the transition profit of an optimal
solution Dt for t odd, plus the matching profits for t odd. S2 covers the transition profit of
an optimal solution Dt for t even, plus the matching profits for t even. The ratio 1/2 follows.

Improvement for T = 3. The previous solutions S1 and S2 have profit (respectively) at
least c1(S∗) +D1(S∗) + c3(S∗) and c1(S∗) +D2(S∗) + c2(S∗). S3 takes M̂1 at step 1 and H ′2
at time steps 2 and 3, with profit at least c1(S∗) +D2(S∗) + c3(S∗); S4 takes H ′1 at steps 1
and 2, and M̂3 at step 3, with profit at least D1(S∗) + c2(S∗) + c3(S∗). S5 uses M ′2 at the 3
steps with profit at least D1(S∗) + c2(S∗) +D2(S∗) (thanks to Lemma 9). Take the best of
these 5 solutions, and the ratio follows.

Improvement for T = 2. Simply take 3 solutions: S1 is defined as previously, with profit
at least c1(S∗) +D1(S∗). S2 takes H ′1 at both steps with profit at least D1(S∗) + c2(S∗). S3
consists of one optimal matching at step 1, and an optimal matching at step 2, with profit at
least c1(S∗) + c2(S∗). The ratio 2/3 follows. J

E. Bampis, B. Escoffier, M. Lampis, and V. Th. Paschos 7:13

5 Concluding remarks

Following the results of Section 3, we leave as an open question the existence of a constant
factor approximation algorithm for the metric case for a number of time steps bigger than 3.
Also, we considered here an off-line version of the problem where the whole set of instances
is known in advance. It would be worth investigating the on-line case where data are not
known in advance.

References
1 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via

exponential clocks. ACM Trans. Algorithms, 13(2):21:1–21:20, 2017.
2 Barbara M. Anthony and Anupam Gupta. Infrastructure leasing problems. In IPCO,

volume 4513 of Lecture Notes in Computer Science, pages 424–438. Springer, 2007.
3 Nicolas K. Blanchard and Nicolas Schabanel. Dynamic sum-radii clustering. In WALCOM,

volume 10167 of Lecture Notes in Computer Science, pages 30–41. Springer, 2017.
4 Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive analysis via regularization.

In SODA, pages 436–444. SIAM, 2014.
5 Niv Buchbinder, Shahar Chen, Joseph Naor, and Ohad Shamir. Unified algorithms for

online learning and competitive analysis. Math. Oper. Res., 41(2):612–625, 2016.
6 Edith Cohen, Graham Cormode, Nick G. Duffield, and Carsten Lund. On the tradeoff

between stability and fit. ACM Trans. Algorithms, 13(1):7:1–7:24, 2016.
7 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving

metrics. In ICALP (2), volume 8573 of Lecture Notes in Computer Science, pages 459–470.
Springer, 2014.

8 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
problems. In STOC, pages 47–63. ACM, 1974.

9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

10 Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a
constant-competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016.

11 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In ICALP (1), volume 8572 of Lecture Notes in Computer
Science, pages 563–575. Springer, 2014.

12 Viggo Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf.
Process. Lett., 37(1):27–35, 1991.

13 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online MST and TSP. SIAM J. Comput., 45(3):859–880, 2016.

14 Chandrashekhar Nagarajan and David P. Williamson. Offline and online facility leasing.
Discrete Optimization, 10(4):361–370, 2013.

15 Baruch Schieber, Hadas Shachnai, Gal Tamir, and Tami Tamir. A theory and algorithms
for combinatorial reoptimization. Algorithmica, 80(2):576–607, 2018.

SWAT 2018

Convex Hulls in Polygonal Domains
Luis Barba
Department of Computer Science, ETH Zürich, Zürich, Switzerland
luis.barba@inf.ethz.ch

Michael Hoffmann
Department of Computer Science, ETH Zürich, Zürich, Switzerland
hoffmann@inf.ethz.ch

https://orcid.org/0000-0001-5307-7106

Matias Korman1

Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

Alexander Pilz2

Department of Computer Science, ETH Zürich. Zürich, Switzerland
alexander.pilz@inf.ethz.ch

https://orcid.org/0000-0002-6059-1821

Abstract
We study generalizations of convex hulls to polygonal domains with holes. Convexity in Euclidean
space is based on the notion of shortest paths, which are straight-line segments. In a polygonal
domain, shortest paths are polygonal paths called geodesics. One possible generalization of convex
hulls is based on the “rubber band” conception of the convex hull boundary as a shortest curve
that encloses a given set of sites. However, it is NP-hard to compute such a curve in a general
polygonal domain. Hence, we focus on a different, more direct generalization of convexity, where
a set X is geodesically convex if it contains all geodesics between every pair of points x, y ∈ X.
The corresponding geodesic convex hull presents a few surprises, and turns out to behave quite
differently compared to the classic Euclidean setting or to the geodesic hull inside a simple
polygon. We describe a class of geometric objects that suffice to represent geodesic convex hulls
of sets of sites, and characterize which such domains are geodesically convex. Using such a
representation we present an algorithm to construct the geodesic convex hull of a set of O(n)
sites in a polygonal domain with a total of n vertices and h holes in O(n3h3+ε) time, for any
constant ε > 0.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases geometric graph, polygonal domain, geodesic hull, shortest path

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.8

1 Introduction

Convexity is a fundamental concept in geometry and optimization, and computing the convex
hull of a point set in the plane is a classic textbook problem in algorithm design. The convex
hull of a set S ⊂ R2 is usually defined as the inclusion-minimal convex set that contains S,
and showing that this statement is well-defined is a textbook exercise in itself. If S is finite,

1 Supported in part by MEXT KAKENHI Nos. 17K12635, 15H02665, and 24106007.
2 Supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.

© Luis Barba, Michael Hoffmann, Matias Korman, and Alexander Pilz;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luis.barba@inf.ethz.ch
mailto:hoffmann@inf.ethz.ch
https://orcid.org/0000-0001-5307-7106
mailto:mati@dais.is.tohoku.ac.jp
mailto:alexander.pilz@inf.ethz.ch
https://orcid.org/0000-0002-6059-1821
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Convex Hulls in Polygonal Domains

Figure 1 Two possible definitions of “convex hull” in a polygonal domain. The domain is shown
in white, obstacles in gray, and sites are shown as blue dots. The left image depicts the relative hull,
bounded by a curve of minimum length that separates the set of sites from the boundary. The right
image depicts the definition we will use in this paper: an inclusion-minimal subset of the domain
that contains all sites and all shortest paths between any two of its points.

the convex hull of S is a convex polygon. The boundary of this polygon describes the shortest
path enclosing S, yielding an equivalent definition of the convex hull.

The definition of convexity builds on shortest paths: a set X is convex if for every pair
x, y ∈ X the shortest path between x and y is contained in X. Hence, convexity directly
generalizes to any domain that has a notion of a shortest path. In the Euclidean setting,
shortest paths are straight-line segments. But there is a variety of other domains that have a
sensible notion of a shortest path. Specifically, shortest paths inside a simple polygon have
been studied in the computational geometry literature.

A set R is called geodesically convex w.r.t. a polygon P if the shortest path in P between
two points in R is also contained in R. Toussaint [20] studied how properties of point sets
extend to geodesic environments. He introduced the geodesic convex hull of a set of points
(called sites) inside a simple polygon P ; it is the inclusion-minimal geodesically convex set
containing the sites. Among several results, he showed how to compute the geodesic convex
hull of k sites in a simple n-gon in O((n + k) log(n + k)) time. Note that the geodesic
convex hull properly generalizes the convex hull of a point set S; if we choose P to be, say, a
bounding box of S, we obtain the convex hull of S.

A classic metaphor for the convex hull boundary is a “rubber band”, describing the
continuous transformation of a curve containing the sites to a homotopy-equivalent curve of
minimal length. For geodesic convex hulls within a simple polygon P , the boundary ∂P is
equivalent to the shortest cycle that separates the sites from ∂P [20]. However, if we consider
sites in a polygonal domain with holes, this correspondence does not generalize.

We thus face (at least) two different ways to generalize the concept of a convex hull to
general polygonal domains. On the one hand, we have the (geodesic) convex hull as an
inclusion-minimal geodesically convex set that contains all sites (and may enclose holes). On
the other hand, we have a shortest curve that separates the sites from the boundary, also
called the relative hull of the sites. See Figure 1 for illustrations.

Both generalizations are interesting in their own right. The former definition is much
more directly tied to the notions of convexity and shortest paths. Therefore this is how
we propose to generalize the concept convex hull to general polygonal domains. The latter
definition using relative hulls turns out rather unwieldy. For a set S of general sites inside a
polygonal domain, a relative hull is not necessarily unique and NP-hard to compute. This
follows from a slight modification of a result by Eades and Rappaport [12], who show that
it is NP-hard to find the shortest curve separating two point sets. (A reduction from the
rectilinear Steiner tree problem is also straightforward.)

L. Barba, M. Hoffmann, M. Korman, and A. Pilz 8:3

Related work. Relative hulls have been studied in general polygonal domains, but only
for a set of connected sites. Given a set of disjoint simple polygons with n vertices overall,
de Berg [10] showed how to compute the shortest curve that separates one of these polygons
from the others in O(n logn) time. Effectively, the algorithm computes the shortest cycle
within a polygonal domain that separates a polygon P from the boundary. The proof directly
generalizes to the case where P is an arbitrary outerplane graph. In a similar fashion, Mitchell
et al. [18] compute the relative hull of paths in polynomial time.

In addition to Toussaint’s generalization of the diameter, center, and median to the
geodesic setting [20], separators [11], ham-sandwich cuts [7], spanning trees, Hamiltonian
cycles and perfect matchings [6] have been generalized to point sites in simple polygons.
Any concept defined on the order type of a point set allows for a generalization [2]. In
general polygonal domains, the complexity of these problems increases substantially. Many
problems become NP-hard, and where polynomial algorithms are known, the known bounds
are nowhere near to what is known for simple polygons. For example, the diameter and center
of a simple polygon can be computed in linear time [1, 14]. However, for a general domain,
the best known algorithms use O(n7.73) [3] and O(n11 logn) [4, 21] time, respectively.

Computing shortest paths in polygonal domains has been an active area of research
(cf. [17]). While a single shortest path can be computed in O(n logn) time [15], data structures
that support two-point shortest path queries in logarithmic time require a significant storage
overhead. The state of the art data structure, allowing O(logn) query time, uses O(n11)
space and preprocessing time [9]. For points on the boundary of the domain, Bae and
Okamoto [5] presented a data structure with logarithmic query time using O(n5+ε) space
and preprocessing time. A variant of their result is used as a subroutine in our algorithm.

Generalizations of convex hulls of point sets have also been considered in other settings.
For example, Lubiw et al. [16] consider convex hulls in 2-dimensional globally non-positively
curved polyhedral complexes. Such spaces have a unique shortest path between any two
points. They pose as an open problem the study of convexity in domains where more than
one shortest path between two points may exist. Our work is a step in this direction.

Results. We consider the inclusion-minimum geodesically convex set that contains a given
set of sites in a polygonal domain. It is the first study of this natural generalization of convex
hulls. Not even domains with a single hole have been considered so far (see also [16], where
the problem is mentioned). It turns out that the problem of computing the geodesic convex
hull within a polygonal domain is significantly more complex than within a simple polygon.
Within a simple polygon, the structure of the geodesic convex hull only depends on the order
type of the sites and the vertices, i.e., the orientation of point triples. In general polygonal
domains, the homotopy of the shortest path between two sites depends on actual distances
between sites and vertices. In particular, all direct attempts to discretize the problem failed.
The examples given in Section 2 illustrate the differences to classic convexity and demonstrate
how naive attempts to compute the geodesic convex hull fail.

As a main result, we characterize geodesically convex sets. To this end, we define a class
of geometric objects, called cactus domains, and show that this class contains all geodesic
convex hulls of finite sets of sites inside polygonal domains. More specifically, we use two
concepts (called divisibility and tightness), and show that they are sufficient and necessary
for a cactus domain to be geodesically convex. We provide algorithms to efficiently test both
properties, resulting in a polynomial-time algorithm to compute geodesic convex hulls.

I Theorem 1. Let P be a polygonal domain with n vertices and h holes, and let S ⊂ P be a
set of O(n) sites. The geodesic convex hull of S in P can be computed in O(n3h3+ε) time.

SWAT 2018

8:4 Convex Hulls in Polygonal Domains

While the running time of our algorithm might look high at first sight, it must be
compared with algorithms and data structures that encode all geodesic paths in polygonal
domains. In this direction, one must consider the state-of-the-art structure developed by
Chiang and Mitchell [9] that uses O(n11) space and preprocessing time; or the structure
of Bae and Okamoto [5] using O(n5+ε) space and preprocessing time for paths connecting
points on the boundary. While no lower bounds are known, it is clear that the complexity of
these problems is high and still far from being understood.

To improve upon the running time stated in Theorem 1, more structural insights would
be required. As a first step in this direction, one could ask if a simpler algorithm can be
designed to test whether a point lies in the geodesic convex hull of a set of sites in a polygonal
domain.

2 Preliminaries

Polygonal domains. A simple polygon is a compact subset of R2 that is bounded by a simple
closed curve formed by a finite number of line segments. For a simple polygon P denote by
V(P) the set of its vertices, by int(P) the interior of P , and by ∂P its boundary. A polygonal
domain P is defined by a finite collection (P0, P1, . . . , Ph) of h+ 1 simple polygons with the
following properties: (1) Pi ⊂ int(P0), for each i > 0, and (2) Pi ∩Pj = ∅, for all i, j > 0 with
i 6= j. We say that P0 and ∂P0 are the outer polygon and outer boundary of P , respectively.
The boundary of P is ∂P =

⋃h
i=0 ∂Pi, the interior of P is int(P) = int(P0) \

⋃h
i=1 Pi, the

vertices of P are V(P) =
⋃h
i=0 V(Pi), and collectively P = int(P) ∪ ∂P . The polygons

P1, . . . , Ph are also referred to as holes of P . We also use the notation P = (P0, P1, . . . , Ph)
to indicate that P is defined by the polygons P0, P1, . . . , Ph (although in principle we regard
P as a subset of the plane rather than a tuple of polygons).

Geodesic convex hulls. In the following consider a polygonal domain P with n vertices.
For two points x, y ∈ P denote by ΠP (x, y) the set of geodesics between x and y in P . That
is, every element of ΠP (x, y) is a curve from x to y that is contained in P and corresponds
to a shortest path between x and y (among all curves between x and y in P). A set K ⊆ P
is geodesically convex (in P) if, for every x, y ∈ K, all geodesics in ΠP (x, y) are contained
in K. For S ⊆ P , the geodesic convex hull, or simply g-hull of S in P , is the (inclusion)
minimum geodesically convex set GHP (S) ⊆ P that contains S. In this paper, we study the
case in which S consists of a finite set of O(n) points (called sites).

One way to conceive the g-hull of S is to start with C0 = S and iteratively add more
points as follows. In the i-th step, for every pair of points x, y ∈ Ci−1 (possibly infinitely
many) take all geodesics in ΠP (x, y) and add them to the new set Ci. Continue until
Ci = Ci−1 at the end of some step. Note that this procedure as described is not an algorithm
because (i) the number of pairs/geodesics to consider is not finite in general and (ii) it is not
clear whether the procedure terminates after a finite number of steps.

Visibility graphs and shortest path maps. Every geodesic in ΠP (x, y), for x, y ∈ S, forms
a path in the visibility graph VisP (S) of S with respect to P . This graph is defined on the
vertex set V = S ∪ V(P) and two vertices x, y ∈ V are visible and connected by an edge in
VisP (S) if the relative open line segment xy \ {x, y} is contained in P \ V . For given P and
S, the graph VisP (S) can be computed in O(|V |2) time and space [22].

For a point s ∈ P , the shortest path map (SPM) for s is the subdivision of P into cells to
which the geodesic from s passes through the same sequence of vertices of P . There are O(n)

L. Barba, M. Hoffmann, M. Korman, and A. Pilz 8:5

Figure 2 No site appears in the boundary (left). In the middle figure there is no way of partitioning
the four sites so that the convex hulls of the two sets intersect. To the right, the top point (cross)
belongs to the g-hull of the four sites, but it is not included in the g-hull of any three sites. The
geodesics between pairs of sites are shown in black.

a
b

b′ a′c′

c

v

v′

14.5

5

8

d(v, v′) = 14.5
d(a, a′) = 18 < d(a, v) + d(v, v′) + d(v′, a′) = 19.5

d(b, b′) =
√
5 +
√
10 + 14.5 ≈ 19.79

< 20 = d(b, a) + d(a, a′) + d(a′, b′)
d(a, c′) = 20 < d(a, v) + d(v, v′) + d(v′, c′) ≈ 20.33
d(a′, c) = 20 < d(a′, v′) + d(v, v′) + d(v, c) ≈ 20.1
d(a, b′) = 19 < d(a, v) + d(v, v′) + d(v′, b′) ≈ 19.73
d(a′, b) = 19 < d(a′, v′) + d(v, v′) + d(v, b) ≈ 19.66

3

2

5

Figure 3 A partial drawing of a domain (violet), in which eight points have been highlighted.
The geodesic between b and b′ passes through v and v′, while the geodesics between pairs a and a′

or c and c′ do not pass through v or v′. The function d(·, ·) denotes the geodesic distance.

such cells, and the boundaries between these cells are formed by curves of constant algebraic
degree. Hershberger and Suri [15] provide an O(n logn) time algorithm to construct the
SPM for a given point s. Given the SPM for s, we can compute the geodesic distance from s

to any query point p ∈ P in O(logn) time using point location. In the same time, we can
also get the first and last vertex (other than s and p, if any) of some path in ΠP (s, p).

Remarkable properties of g-hulls. Figure 2 depicts a polygon P with all sites in the interior
of GHP (S), as well as an example where an analogue of Radon’s Theorem does not hold, i.e.,
there is no partition of S into two non-empty sets S1 ∪S2 such that GHP (S1)∩GHP (S2) 6= ∅.
Similarly, Figure 2 (right) depicts an example where the natural extension of Carathéodory’s
Theorem does not hold: there exists a point in GHP (S) that does not belong to the g-hull of
any three sites of S. An example where the actual distance between points influences the
structure of the g-hull is given in the (partial) instance depicted in Figure 3. Moving the
points slightly without changing the order type can have large influence on the structure of
the g-hull.

3 Cactus domains and general properties

Even in a single simple polygon, the g-hull of two segments on its boundary forms a so-called
funnel [13], which, in general, is not simple. It is therefore natural to study a slightly
more general class of polygons to be able to describe g-hulls. A frequently used relaxation
is referred to as a weakly simple polygon, which, intuitively speaking, allows the curve
that describes the boundary to touch but not properly cross itself. However, to make this
intuition formally precise is surprisingly cumbersome [8]. For describing g-hulls, a much
more restricted class of polygons is sufficient, which we will define in the next paragraphs.
(We refrain from using the term “weakly simple polygon” to emphasize this difference.)

SWAT 2018

8:6 Convex Hulls in Polygonal Domains

In a plane drawing or embedding of a connected graph, the vertices are represented by
pairwise distinct points, edges are represented by Jordan arcs connecting their endpoints,
and no two edges intersect except at a common endpoint. In a straight-line drawing, all
Jordan arcs representing edges are (straight) line segments. A cactus is a connected graph in
which every edge belongs to at most one simple cycle. Cacti are outerplanar, that is, they
can be embedded in the plane so that all vertices are incident to one particular face (which
is usually the outer face).

A cactusgon is a domain K that is represented by an outerplane straight-line drawing
ϕ(G) of a cactus G: The interior int(K) is formed by the union of all (open) bounded faces
in ϕ(G), the boundary ∂K is formed by the union of all edges in ϕ(G), and collectively
K = int(K) ∪ ∂K. We obtain a combinatorial representation of ∂K as the unique circular
sequence of edges and vertices as they appear along the boundary of the outer face of ϕ(G)
in counterclockwise order. A closed curve that traverses ∂K of some cactusgon K in this
fashion is a cactus curve. Note that K is a compact subset of R2 and that every simple
polygon is a cactusgon whose associated graph G is a simple cycle. Consider a face of a
cactus that is incident to all vertices (which may or may not be unbounded); we call this
open subset of the plane a cactus face. The boundary of a cactus face is defined analogously
to the one of a cactusgon (but note that the boundary is not part of the cactus face).

I Definition 2. A cactus domain or, for short, C-domain K is a planar region bounded by
an outer polygon C and t ≥ 0 inner voids K1, . . . ,Kt, where (1) C is a cactusgon, (2) Ki ⊆ C
is a bounded cactus face, for 1 ≤ i ≤ t, and K1, . . . ,Kt are pairwise disjoint. The outer void
K0 of K is is an unbounded cactus face (or, equivalently, the outer face of C). The interior
of K is int(K) = R2 \

⋃t
i=0(Ki ∪ ∂Ki), the boundary of K is ∂K =

⋃t
i=0 ∂Ki, the vertices

of K are V(K) =
⋃t
i=0 V(Ki), and collectively K = int(K) ∪ ∂K.

Note that the above definition slightly abuses notation since V (·) was only defined for
polygons. Along the paper we do a similar abuse for structures defined for polygons (such as
shortest path map and visibility graph) and apply them to cactusgons. The extension of
these concepts (and the algorithims) are straighforward. Thus, for simplicity we omit them.

Observe that ∂C = ∂K0 and so V(C) = V(K0). Again, we write K = (C,K1, . . . ,Kt) as
a shorthand. As usual, int(K) is an open subset of R2 and K is a compact subset of R2

with R2 \K =
⋃t
i=0 int(Ki). Observe that the cycles of K may share edges or points of their

boundary. As an extreme example, if C is simple, then we may even have t = 1 and one
large hole K1 = C (in this case, K is just a one-dimensional polygonal cycle). While the
theorem below is not hard to prove in a stand-alone way, it will follow from our algorithmic
construction of g-hulls, as our algorithm produces a C-domain that we prove to coincide
with the g-hull of S.

I Theorem 3. Given a polygonal domain P with n vertices in total and a set S ⊂ P of
O(n) sites, the geodesic convex hull GHP (S) of S in P is a cactus domain whose vertices are
from S ∪ V(P) and whose edges are edges of the visibility graph VisP (S). In particular, the
boundary of GHP (S) can be described as a plane straight-line graph on O(n) vertices.

4 Characterization of geodesically convex sets

The aim of this section is to give a characterization of C-domains that are geodesically convex
in a polygonal domain P = (P0, . . . , Ph). Consider a C-domain K = (C,K1, . . . ,Kt). If K is
not geodesically convex, then there exist two points p, q ∈ K and a geodesic π ∈ ΠP (p, q)
such that π 6⊂ K. For simplicity, assume that π ∩K = {p, q}. (That is, the geodesic only

L. Barba, M. Hoffmann, M. Korman, and A. Pilz 8:7

π

P0

P1

K

p q
a)

π

P0

P1

K p

q

b)
P0

P1

c)

K
A

Figure 4 a) A C-domain K that is divisible by π. b) An indivisible C-domain K that is not tight.
c) An indivisible and tight C-domain K.

touches K at the endpoints. This can be achieved by restricting π.) As K0, . . . ,Kt are
pairwise interior-disjoint, p and q lie in the same component of ∂K, say ∂Ki. Therefore, π
splits the void Ki into two parts A and B; refer to Figure 4 for illustrations.

In the case in which one of the two parts, say A, contains no hole of P and also not its
outer face (Figure 4b), we use a local operation to enlarge K following the rubber band
metaphor. We show in Lemma 4 that all of A is in GHP (K). A C-domain without such a
geodesic is called tight.

The other possible situation is that both A and B contain at least one hole or the outer
face of P . In this case we have a path that is topologically different from all paths in K, and
we say that K is divisible by π (Figure 4a). If no such path exists, then K is indivisible.

Clearly, any geodesically convex C-domain must be indivisible and tight. In the remainder
of this section, we prove in form of a characterization that the reverse implication holds as
well, i.e., a C-domain K is geodesically convex if and only if it is indivisible and tight.

Tightness of cactus domains. For 1 ≤ i ≤ t, let VK(i) =
⋃
Pj⊆Ki

V(Pj) be the vertices of
all holes Pj of P for which Pj is contained in the void Ki. Observe that, in general, ∂Ki

may contain vertices of holes of P not contained in Ki. Thus, VK(i) may be different from
the set of vertices of P contained in Ki. As P0 is not contained in any inner void of K, for
the outer void, we let VK(0) = V(P0) ∪

⋃
Pj⊆K0

V(Pj). In particular, VK(0) 6= ∅.
A curve γ separates two compact subsets A,B ⊂ R2 if every curve that connects a point

in A with a point in B intersects γ. Given a void Ki of K with VK(i) 6= ∅, we define
the reduction %(Ki) as the minimum length curve in P that separates VK(i) from int(K)
(possibly %(Ki) = ∂Ki). We can think of %(Ki) as being obtained by continuously tightening
a curve tracing ∂Ki as much as possible while maintaining separation between VK(i) and K.

Algorithmically, an inner void Ki, i ≥ 1, can usually be treated as a simple polygon. It
follows from Toussaint’s algorithm [20] that %(Ki) is a (non-simple, in general) closed walk
in VisKi

(VK(i)); in fact, %(Ki) is a cactus curve. Similarly, for the outer void K0 the outside
domain is formed by the outer void and a collection of simple polygons (P0 and possibly
some holes in the exterior of K). The algorithm of de Berg [10] asserts that %(K0) is a cactus
curve in this case as well.

For an inner void Ki, i ≥ 1, the boundary ∂Ki encloses %(Ki). For the outer void K0,
the curve %(K0) encloses ∂K0; see Figure 5. Regardless, ∂Ki and %(Ki) form an annulus
(possibly with no interior point). We say that any point in this annulus lies between ∂Ki and
%(Ki). Given a C-domain K, a void Ki of K is tight if VK(i) 6= ∅ and ∂Ki = %(Ki). We say
that K is tight if Ki is tight for each 0 ≤ i ≤ t. If K is tight, then for each 1 ≤ i ≤ t, the
void Ki contains at least one hole of P ; otherwise, VK(i) would be empty.

SWAT 2018

8:8 Convex Hulls in Polygonal Domains

K

K0

K
K1

K0

K1

%(K0)

%(K1)

K2 K2

Figure 5 Left: A C-domain K with two inner voids. Right: The reductions of the voids K0

and K1 are depicted. The curve %(K1) is enclosed by ∂K1, while ∂K0 is enclosed by %(K0) (curves
shown in solid red and blue, respectively). Every point between ∂Ki and %(Ki) belongs to GHP (K).
Notice that, since K2 has no hole, we have K2 ⊆ GHP (K).

I Lemma 4. Let P be a polygonal domain, K = (C,K1, . . . ,Kt) a C-domain in P , and Ki

a void of K, for 0 ≤ i ≤ t. (1) If VK(i) 6= ∅, then each point that lies between ∂Ki and %(Ki)
belongs to GHP (K). (2) If VK(i) = ∅, then Ki ⊆ GHP (K).

Characterization of geodesically convex cactus domains. Using the above lemma, we are
ready to give sufficient and necessary conditions for a C-domain to be geodesically convex.
It remains to formally define divisibility. Given a void Ki, we say that two points p, q ∈ ∂Ki

separate Ki if a geodesic in ΠP (p, q), called separating geodesic, splits Ki into two connected
components, each containing either at least one hole of P or the outer face of P ; see Figure 4a.
We say that Ki is divisible if some pair of points on ∂Ki separates Ki. Analogously, Ki is
indivisible if no pair of points on ∂Ki separates Ki. A C-domain is divisible if at least one of
its voids is divisible; otherwise, it is indivisible.

I Theorem 5. A C-domain K is geodesically convex if and only if it is indivisible and tight.

Theorem 5 is the main structural result our algorithm relies on. To algorithmically test
divisibility of a C-domain, we use the following lemma.

I Lemma 6. If a C-domain K is divisible, then there exists a geodesic π separating a void
Ki with the following three properties. (i) The intersection of π with ∂K consists only of its
endpoints. (ii) It contains a vertex of P in its relative interior or both of its endpoints are
vertices of Ki. (iii) It consists of at least one segment that intersects the interior of Ki.

5 Computing the geodesic convex hull

In this section, we present an algorithm that, given a polygonal domain P and a set S of
sites, computes GHP (S). To simplify the presentation and the analysis, we assume that
|S| = O(n), where n is the number of vertices of P . But the exact dependency on |S| can be
easily derived from our proofs.

Our algorithm is founded upon the characterization of Theorem 5. We first start with the
C-domain formed by the union of all geodesics going from an arbitrary site of S to all other
sites. As a next step, we make use of Lemma 4 on the resulting C-domain to obtain a new
tight C-domain that we test for divisibility. If this tight C-domain is divisible, our procedure
reports a geodesic that separates it, which we add to the C-domain. The addition of this
separating geodesic generates a new C-domain that is not necessarily tight. We repeat the
procedure iteratively until we obtain a C-domain that is both tight and indivisible. Then by
Theorem 5 this domain is GHP (S).

L. Barba, M. Hoffmann, M. Korman, and A. Pilz 8:9

K

K0

K1
K ′

K ′
0

K ′
1

K ′
3

K ′
2

K2

x

y

Figure 6 Left: A C-domainK and the reduction of each of its voids. Right: The new C-domainK′

obtained from K after applying steps (1) and (2) of the tightening process. In the left figure we have
two inner voids. The reduction of K0 and K1 are shown in solid blue and red curves, respectively
(K2 need not be reduced because it has no holes). The right figure shows the resulting C-domain K′.
This domain is not tight, so step (2) needs to be applied a second time (the region to be added is
shown dashed). Note that the indivisible void K′

2 may become divisible after the tightening process
(due to the geodesic between points x and y).

Computing tightenings of cactus domains. We introduce the tightening process of a C-
domain K = (C,K1, . . . ,Kt). Intuitively speaking, we want to enlarge K as little as possible
until it is tight. The result is another C-domain K ′, which we call the tightening of K. In
order to do so, we proceed as follows: (1) for each 1 ≤ i ≤ t such that VK(i) = ∅, we add
each point in this void to the tightening of K (effectively removing this void from K), and
(2) for each 0 ≤ i ≤ t such that VK(i) 6= ∅, compute the reduction of Ki and add the space
in the annulus between ∂Ki and %(Ki) to the tightening of K. Recall that the reduction
%(Ki) of a void Ki of K need not be a simple curve. Therefore, to obtain a valid C-domain,
we consider each bounded component of R2 \ %(Ki) (which are cactus faces) and add them
as new voids replacing Ki. In particular, the resulting C-domain may have more voids than
K (and they need not be tight, see Figure 6). Thus, we apply again step (2) iteratively until
we obtain a C-domain in which the boundary of each void coincides with its reduction. Since
every newly created void needs to contain a hole of P , we obtain this C-domain after at
most h iterations. Since in the resulting domain the boundary of each void coincides with its
reduction, we obtain a tight C-domain K ′, the tightening of K.

I Lemma 7. Given a C-domain K with O(n) vertices, we can compute the tightening of
K in O(hn logn) time. Moreover, the tightening of K is a C-domain whose edges belong
to VisP (V(K)).

Testing divisibility of cactus domains. In this section we provide a deterministic algorithm
to determine if a C-domain is divisible. This property is considerably harder to test than
tightness. In fact, this test is the main bottleneck of our algorithm and the main algorithmic
challenge of this paper.

Let K = (C,K1, . . . ,Kt) be a tight C-domain. To test the divisibility of K, we test each
void Ki separately. Using Lemma 6, it is sufficient to determine whether there is a separating
geodesic containing a vertex of P in its relative interior or that is a segment between two
vertices of Ki that see each other. The latter can be easily tested using the visibility graph
of P . For testing the former, we modify an algorithm by Bae and Okamoto [5]: this O(n5+ε)-
time algorithm takes a polygonal domain on n vertices, and encodes all geodesics between
pairs of points on its boundary as the lower envelope of a collection of constant-degree distance
functions. While their algorithm serves to construct a data structure for shortest-path queries

SWAT 2018

8:10 Convex Hulls in Polygonal Domains

among points on the boundary of a polygonal domain, we are able to translate its main
ideas to test divisibility. Additionally, several new observations allow us to replace a factor
of O(n2+ε) for a factor of O(h2+ε) in the running time. The remaining part of this section
describes our algorithm in detail.

As a preprocessing step, compute the SPM from every vertex of P in overall O(n2 logn)
time [15]. Then, for each edge e of Ki, split e at each point of intersection with the boundary
of a cell in the SPM of some vertex of P . In this way, we obtain the spm-subdivison of e into
spm-segments. The spm-subdivision of ∂Ki is the union of the spm-subdivision of its edges.

Let spm(p) be the SPM for a point p. We claim that if, for some vertex v of P and cell c
of spm(v), c intersects ∂Ki in three or more connected components, then there is a segment t
contained in this cell connecting two points of ∂Ki through the interior of Ki. Moreover, t
must be a separating geodesic, as otherwise t would split Ki into two components, one of
which would not contain a vertex of VK(i). However, since t can be used as a shortcut to
reduce the length of ∂Ki while separating VK(i) from K, we obtain a contradiction with
the tightness of Ki, which proves our claim. Thus, if a cell of the SPM of some vertex of P
intersects ∂Ki in three or more connected components, then Ki is divisible.

Therefore, to compute the spm-subdivision, we first compute the intersection points of the
SPM of each vertex with ∂Ki, and then sort all these intersection points along the boundary
of Ki to obtain the spm-subdivision of ∂Ki. If at some point during this process we find a cell
of a SPM that intersects ∂Ki in more than two connected components, then the algorithm
finishes and reports the separating geodesic contained in this cell. Thus, we assume from
now on that no cell of an SPM intersects ∂Ki in more than two connected components, i.e.,
each cell of an SPM contributes to O(1) spm-segments to the spm-subdivision. Because
we consider the SPM of the n vertices of P , each with O(n) cells, the spm-subdivision of
K consists of O(n2) spm-segments, and the total running time of our preprocessing step is
bounded by O(n2 logn).

An important property of the spm-subdivision is that for a spm-segment s and a point
x ∈ s, the set of vertices of P that are visible from x remains unchanged as x moves along s.
Thus, we let Vs be the set of vertices of P visible from s. For a pair of spm-segments s and s′,
each geodesic with at least two segments from a point in s to a point in s′ starts with a vertex
v in Vs (i.e., v is the first vertex visited by this path after leaving s). Moreover, because s′ is
contained in a single cell of spm(v), a geodesic from v to any point in s′ must have the same
combinatorial structure. Let v∗ be the last vertex visited in the path from v to any point
of s′ (note that we may have v = v∗). Then, any path from a point x ∈ s to a point y ∈ s′
can be parametrized by the distance function fv(x, y) = d(x, v) + d(v, v∗) + d(v∗, y). Because
d(v, v∗) is a known constant, fv is a constant degree algebraic function from s × s′ to R.
We could then compute the minimization diagram of the set Fs,s′ = {fv(x, y) : v ∈ Vs},
i.e., the lower envelope of these distance functions over all different starting vertices. This
diagram has the following property: the algebraic surface patch of fv appears in this lower
envelope if and only if there is a geodesic from a point x ∈ s to a point y ∈ s′ that passes
through v. We now look for a vertex v that lies in the interior of Ki and fv appears in the
lower envelope. If this happens, there is a separating geodesic connecting s with s′ starting
at v (and thus we conclude that Ki is divisible); note that by Lemma 6 this is sufficient
to determine divisibility. This gives us an algorithm to decide divisibility whose running
time is dominated by the computation of O(n4) minimization diagrams, one for each pair of
spm-segments. We will improve this later but first, we look in more detail at the starting
vertices of the geodesics we need to consider. The following observation leads to our main
improvement when compared to the algorithm of Bae and Okamoto [5].

L. Barba, M. Hoffmann, M. Korman, and A. Pilz 8:11

I Lemma 8. Given an spm-segment s and a hole H of P , there are at most two starting
vertices in H among all geodesics going from a point in s to a point in ∂Ki. Moreover, they
are the counterclockwise- and clockwise-most vertices in Vs ∩ V (H), when sorted radially
around any point in s.

Therefore, at most two geodesics from s to ∂Ki can start at different vertices of Vs∩V (H).
That is, each hole can contribute to at most two start vertices, hence only a total of O(h)
starting vertices must be considered.

By Lemma 8, we can let V ∗s ⊆ Vs denote the set of O(h) starting vertices of paths going
from s to ∂Ki. Moreover, we can compute V ∗s in O(n) time by computing the maximum
and minimum element, among the vertices of each hole of P , in the radial order around
an arbitrary point of s. Because we need to consider only O(h) vertices in V ∗s , we notice
that there are many divisions among spm-segments that do not correspond to the boundary
of a cell in the SPM of a vertex in V ∗s . Thus, we could modify our spm-subdivision with
respect to s and consider only the breaking points induced by the SPM of a vertex in V ∗s .
Because each SPM has complexity O(n) and since |V ∗s | = O(h), this induces at most O(nh)
divisions. In this way, we obtain a partition of ∂Ki into O(nh) s-segments, each being
a collection of consecutive spm-segments. The idea of using this subdivision is that, to
compute a minimization diagram of distance functions between s and an s-segment, we need
to consider only O(h) functions defined by the vertices in V ∗s .

I Theorem 9. We can determine if a tight C-domain K of O(n) vertices in a polygonal
domain P = (P0, . . . , Ph) of n vertices is divisible in O(n3h2+ε) time.

Proof. Let s be a spm-segment. Note that, when going from one s-segment to a neighboring
one, the SPM cell of at most one vertex in V ∗s can change. Intuitively, this means that the
distance functions we need to consider have “little” variation among neighboring s-segments.
We formalize this intuition as follows. Group h consecutive s-segments lying on the same
edge of ∂Ki and take their union to produce an s-block g. We claim that O(h) distance
functions need to be considered to compute the minimization diagram encoding all geodesics
from s to any s-block g. To show this, for each v ∈ V ∗s , let τv be the number of cells of
spm(v) that intersect s-block g. Let σ be a cell of spm(v) that intersects g. Notice that
there is exactly one ending vertex v∗ in any geodesic from v to σ ∩ g. Thus, we can define an
s-g-function fv,σ : s× (σ ∩ g)→ R such that fv,σ(x, y) = d(x, v) + d(v, v∗) + d(v∗, y). Note
that there are exactly τv s-g-functions defined for each vertex v of V ∗s . Because g consists
of h s-segments, we know that g can be intersected by at most O(h) cells among the SPMs
of the vertices in V ∗s . Therefore,

∑
v∈V ∗s

τv = O(h), i.e., there are in total O(h) s-g-functions
defined for all vertices of V ∗s . Moreover, any geodesic from s to g needs to start with a vertex
of V ∗s and hence, it is considered in one of these functions. Consequently, the minimization
diagram of the s-g-functions encodes the distance of all geodesics going from s to g. Note
that this minimization diagram can be computed in O(h2+ε) time [19]. After computing it,
we can check within the same time whether there is a geodesic between s and g that goes
through the interior of Ki by going through all elements of this lower envelope.

By grouping all O(nh) s-segments into consecutive s-blocks of at most h spm-segments,
each contained in a single edge of ∂Ki, we obtain O(n) s-blocks in total along ∂Ki. Therefore,
we need to compute O(n) minimization diagrams for a given spm-segment s, one for each
s-block, each in O(h2+ε) time. Repeating this over all O(n2) spm-segments gives a total
running time of O(n3h2+ε). J

I Theorem 1. Let P be a polygonal domain with n vertices and h holes, and let S ⊂ P be a
set of O(n) sites. The geodesic convex hull of S in P can be computed in O(n3h3+ε) time.

SWAT 2018

8:12 Convex Hulls in Polygonal Domains

Proof. Let s be a site of S. For each s′ ∈ S \ {s}, choose an arbitrary path in ΠP (s, s′). Let
K0 be the plane connected graph obtained by taking the union of all chosen paths. Notice
that K0 is a connected C-domain that contains all sites of S. Moreover, because K0 is
plane (as no two geodesics from s can cross), K0 consists of O(n) vertices and edges and
K0 ⊆ GHP (S) (as it consists of geodesics between points of S). We describe now a recursive
procedure that incrementally constructs the g-hull of S starting from K0.

Given a C-domain Kr for some even number r, we construct Kr+1 as the tightening of
Kr using Lemma 7 in O(hn logn) time. Since P has h holes, Kr is a tight C-domain with
at most h voids whose vertices and edges are contained in VisP (S). Thus, because Kr+1 is
plane, it has complexity O(n). We then use Theorem 9 to test whether Kr+1 is divisible or
not, which takes O(n3h2+ε) time. If Kr+1 is indivisible, then as it is also tight, Theorem 5
implies that Kr+1 is geodesically convex. Thus, as S ⊂ Kr+1 and since GHP (S) is the
smallest geodesically convex set that contains S, we get that GHP (S) ⊆ Kr+1. Moreover,
because all points in Kr+1 belong to GHP (S) by Lemma 4, we know that Kr+1 ⊆ GHP (S).
Therefore, if Kr+1 is indivisible, then Kr+1 = GHP (S) and we are done.

Otherwise Kr+1 is divisible and we have found a separating geodesic, i.e., there is some
void of Kr+1 and two points x and y such that the path π

P
(x, y) separates Kr+1. In this

case, we add the path π
P

(x, y) to Kr+1 and obtain a new C-domain Kr+2 ⊂ GHP (S) that is
not necessarily tight. Because r + 2 is even, we can repeat this procedure recursively until
finding a tight indivisible C-domain. One may think that one test for divisibility suffices, i.e.,
that this does not need to be repeated every time that a tightening is computed. However,
the tightening of an indivisible C-domain may be divisible; see Figure 6.

Note that in each round, if the tight C-domain Kr+1 is divisible, then we find a new
separating geodesic that separates two holes of P that were previously in the same void of
Kr+1. In particular, we create a new void with at least one hole. Since we can have at most
h such voids, the above procedure will iterate at most h times and must end with a tight
indivisible domain that coincides with GHP (S).

The running time is dominated by the divisibility test given by Theorem 9 which has to be
executed at most h times. Thus, the total running time becomes O(n3h3+ε) as claimed. J

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and

Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discrete
Comput. Geom., 56(4):836–859, 2016.

2 Oswin Aichholzer, Matias Korman, Alexander Pilz, and Birgit Vogtenhuber. Geodesic
order types. Algorithmica, 70(1):112–128, 2014. doi:10.1007/s00453-013-9818-8.

3 Sang Won Bae, Matias Korman, and Yoshio Okamoto. The geodesic diameter of polygonal
domains. Discrete Comput. Geom., 50(2):306–329, 2013.

4 Sang Won Bae, Matias Korman, and Yoshio Okamoto. Computing the geodesic centers of
a polygonal domain. In Proc. 26th Canadian Conf. on Computational Geometry, 2014.

5 Sang Won Bae and Yoshio Okamoto. Querying two boundary points for shortest paths in
a polygonal domain. Comput. Geom., 45(7):284–293, 2012. doi:10.1016/j.comgeo.2012.
01.012.

6 Ahmad Biniaz, Prosenjit Bose, Anil Maheshwari, and Michiel H. M. Smid. Plane geodesic
spanning trees, hamiltonian cycles, and perfect matchings in a simple polygon. Comput.
Geom., 57:27–39, 2016. doi:10.1016/j.comgeo.2016.05.004.

7 Prosenjit Bose, Erik D. Demaine, Ferran Hurtado, John Iacono, Stefan Langerman, and Pat
Morin. Geodesic ham-sandwich cuts. Discrete & Computational Geometry, 37(3):325–339,
2007. doi:10.1007/s00454-006-1287-2.

http://dx.doi.org/10.1007/s00453-013-9818-8
http://dx.doi.org/10.1016/j.comgeo.2012.01.012
http://dx.doi.org/10.1016/j.comgeo.2012.01.012
http://dx.doi.org/10.1016/j.comgeo.2016.05.004
http://dx.doi.org/10.1007/s00454-006-1287-2

L. Barba, M. Hoffmann, M. Korman, and A. Pilz 8:13

8 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In Piotr
Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1655–1670. SIAM,
2015. doi:10.1137/1.9781611973730.110.

9 Yi-Jen Chiang and Joseph S. B. Mitchell. Two-point Euclidean shortest path queries in
the plane. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, 1999.

10 Mark de Berg. Translating polygons with applications to hidden surface removal. In John R.
Gilbert and Rolf G. Karlsson, editors, SWAT 90, 2nd Scandinavian Workshop on Algorithm
Theory, Bergen, Norway, July 11-14, 1990, Proceedings, volume 447 of Lecture Notes in
Computer Science, pages 60–70. Springer, 1990. doi:10.1007/3-540-52846-6_78.

11 Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Henk
Meijer, Mark H. Overmars, and Sue Whitesides. Separating point sets in polygonal
environments. Int. J. Comput. Geometry Appl., 15(4):403–420, 2005. doi:10.1142/
S0218195905001762.

12 Peter Eades and David Rappaport. The complexity of computing minimum separating
polygons. Pattern Recognition Letters, 14(9):715–718, 1993. doi:10.1016/0167-8655(93)
90140-9.

13 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. J. Comput. Syst. Sci., 39(2):126–152, 1989.

14 John Hershberger and Subhash Suri. Matrix searching with the shortest-path metric. SIAM
J. Comput., 26(6):1612–1634, 1997.

15 John Hershberger and Subhash Suri. An optimal algorithm for euclidean shortest paths in
the plane. SIAM J. Comput., 28(6):2215–2256, 1999. doi:10.1137/S0097539795289604.

16 Anna Lubiw, Daniela Maftuleac, and Megan Owen. Shortest paths and convex hulls in 2d
complexes with non-positive curvature. CoRR, abs/1603.00847, 2016. arXiv:1603.00847.

17 Joseph S. B. Mitchell. Shortest paths and networks. In Handbook of Discrete and Compu-
tational Geometry, Second Edition. Chapman and Hall/CRC, 2004.

18 Joseph S. B. Mitchell, Günter Rote, and Gerhard J. Woeginger. Minimum-link paths among
obstacles in the plan. Algorithmica, 8(5&6):431–459, 1992. doi:10.1007/BF01758855.

19 Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete
Comput. Geom., 12(3):327–345, 1994.

20 Godfried T. Toussaint. Computing geodesic properties inside a simple polygon. Revue
D’Intelligence Artificielle, 3(2):9–42, 1989.

21 Haitao Wang. On the geodesic centers of polygonal domains. In Proc. 24rd Annual European
Symposium on Algorithms, volume 57 of LIPIcs, pages 77:1–77:17, 2016.

22 Emo Welzl. Constructing the visibility graph for n-line segments in o(n2) time. Inf. Process.
Lett., 20(4):167–171, 1985. doi:10.1016/0020-0190(85)90044-4.

SWAT 2018

http://dx.doi.org/10.1137/1.9781611973730.110
http://dx.doi.org/10.1007/3-540-52846-6_78
http://dx.doi.org/10.1142/S0218195905001762
http://dx.doi.org/10.1142/S0218195905001762
http://dx.doi.org/10.1016/0167-8655(93)90140-9
http://dx.doi.org/10.1016/0167-8655(93)90140-9
http://dx.doi.org/10.1137/S0097539795289604
http://arxiv.org/abs/1603.00847
http://dx.doi.org/10.1007/BF01758855
http://dx.doi.org/10.1016/0020-0190(85)90044-4

Tree Containment With Soft Polytomies
Matthias Bentert
TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
matthias.bentert@tu-berlin.de

Josef Malík
Czech Technical University, Prague, Czech Republic
josef.malik@fit.cvut.cz

Mathias Weller
CNRS, LIGM, Université Paris Est, Marne-la-Vallée, France
mathias.weller@u-pem.fr

Abstract
The Tree Containment problem has many important applications in the study of evolutionary
history. Given a phylogenetic network N and a phylogenetic tree T whose leaves are labeled by
a set of taxa, it asks if N and T are consistent. While the case of binary N and T has received
considerable attention, the more practically relevant variant dealing with biological uncertainty
has not. Such uncertainty manifests itself as high-degree vertices (“polytomies”) that are “jokers”
in the sense that they are compatible with any binary resolution of their children. Contrasting
the binary case, we show that this problem, called Soft Tree Containment, is NP-hard,
even if N is a binary, multi-labeled tree in which each taxon occurs at most thrice. On the other
hand, we reduce the case that each label occurs at most twice to solving a 2-SAT instance of
size O(|T |3). This implies NP-hardness and polynomial-time solvability on reticulation-visible
networks in which the maximum in-degree is bounded by three and two, respectively.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Applied computing → Biological networks

Keywords and phrases Phylogenetics, Reticulation-Visible Networks, Multifurcating Trees

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.9

Acknowledgements The project leading to this work was conceived on the 2017 research retreat
of the Algorithmics and Computational Complexity group of TU Berlin.

1 Introduction

With the dawn of molecular biology also came the realization that evolutionary trees,
which have been widely adopted by biologists, are insufficient to describe certain processes
that have been observed in nature. In the last decade, the idea of reticulate evolution,
supporting gene flow from multiple parent species, arose [2, 15]. A reticulation event can
be caused by, for example, hybridization (occurring frequently in plants) and horizontal
gene transfer (a dominating factor in bacterial evolution). Reticulate evolution is described
using “phylogenetic networks” (see the monographs by Gusfield [11] and Huson et al. [13]).
A central question when dealing with both phylogenetic trees and networks is whether or not
they represent consistent information, formulated as the question whether or not the network
“displays” the tree. This problem is known as Tree Containment and it has been shown
NP-hard [14, 17]. Due to its importance in the analysis of evolutionary history, attempts
have been made to identify polynomial-time computable special cases [6, 5, 1, 10, 14, 17, 7, 18],

© Matthias Bentert, Josef Malík, and Mathias Weller;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@tu-berlin.de
mailto:josef.malik@fit.cvut.cz
mailto:mathias.weller@u-pem.fr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Tree Containment With Soft Polytomies

as well as moderately exponential-time algorithms [8, 18]. However, all of these works are
limited to binary networks and trees.

In reality, we cannot hope for perfectly precise evolutionary histories. In particular,
speciation events (a species splitting off another) occurring in rapid succession (only a few
thousand years between speciations) can often not be reliably placed in the correct order
they occurred. The fact that the correct order of bifurcations is unknown is usually modeled
by multifurcating vertices and, to tell them apart from speciation events resulting in multiple
species, the former are called “soft polytomies” and the latter are called “hard polytomies”. Of
course, the same argument holds for non-binary reticulation vertices indicating uncertainty
in the order of hybridization events. Soft polytomies have a noteworthy impact on the
question of whether a tree is compatible with a network: since a soft polytomy (also called
“fan”) on the taxa a, b, and c represents lack of knowledge regarding their history, we would
consider any binary tree on the taxa a, b, and c compatible with it. In this work, we present
first algorithmic results for Tree Containment with soft polytomies (which we call Soft
Tree Containment). We consider the case where the network is a multi-labeled tree
and show that the problem is cubic-time solvable if each label occurs at most twice (by
reduction to 2-SAT) and NP-hard, otherwise. This implies corresponding results for (single-
labeled) “reticulation-visible” networks, depending on their maximum in-degree. Despite
being an intermediate step in proving results for networks, multi-labeled trees are themselves
important, for example when handling gene trees, in which different versions of a gene may
be found in the same species.

Finally, our results have impact on the Cluster Containment problem [13] since it is
a special case of our problem.1

Preliminaries

A phylogenetic network (or network for short) on a set X of taxa is a rooted, leaf-labeled
DAG in which all vertices that do not have in-degree at most one have out-degree exactly
one. These vertices are called reticulations and the others are called tree vertices. A network
without reticulations is called a (phylogenetic) tree. By default, no label occurs twice in
a network, and we will make exceptions explicit by calling networks in which a label may
occur more than once multi-labeled (note that networks are a special case of multi-labeled
networks in which each label occurs only once). This allows us to use leaves and labels (taxa)
interchangeably. For brevity, we abbreviate {x, y} to xy, and {x, y, z} to xyz. Let N be a
network with root ρN . We denote the set of vertices in N by V (N). We define a relation
“≤N” on subsets of V (N) such that U ≤N W if and only if N contains a w-u-path for each
u ∈ U and w ∈ W . If u ≤N w, we call u a descendant of w and w an ancestor of u. For
each v ∈ V (N), we let Nv be the subnetwork of N induced by {u | u ≤N v} and we denote
the set of leaf-labels in Nv by L(v) and abbreviate L(N) := L(ρN). Such a set is also called
a cluster of N . Note that, if N is a tree, Nv is the subtree rooted at v. We abbreviate
n := |L(ρN)|. For any X ⊆ V (N), we let LCAN (X) be the set of least common ancestors of
X, that is, the minima (wrt. ≤N) among all vertices u of N with X ≤N u (in particular, if
N is a tree, LCAN (X) is a single vertex, not a set). If clear from context, we may drop the
subscript. Note that, in trees, the LCA of any three vertices has a unique minimum. For any
U ⊆ V (N), we denote the result of removing all vertices v that do not have a descendant in

1 Given a binary network N on the taxa X and some Y ⊆ X, Cluster Containment asks if N displays
any binary tree T in which L(u) = Y for any u. This is equivalent to N softly displaying the tree T in
which all taxa in X \ Y are children of the root and there is another child u of the root with children Y .

M. Bentert, J. Malík, and M.Weller 9:3

U by N |L and N ||L is the result of suppressing all degree-two vertices in N |L. Suppressing a
vertex u in N with unique parent p and unique child c refers to the act of removing u and
adding the edge pc, unless this edge already exists. Note that, if N is a tree, then N |L is the
smallest subtree of N containing the vertices in L and the root of N and N ||L is the smallest
topological minor of N containing the vertices in L and the root of N . A vertex u in N is
called stable on v if all ρN -v-paths contain u. If, for each reticulation u in N there is some
leaf ` such that u is stable on `, then N is called reticulation visible. A network is binary if
all vertices except the root have degree (=in-degree + out-degree) at most three and the root
has degree two. A binary network NB on three leaves a, b, and c is called a triplet and we
denote it by ab|c if c is a child of the root of NB . NB is called binary resolution of a network
N if N is a contraction of NB . In this case, there is a surjective function χ : V (NB)→ V (N)
such that, contracting all edges uv of NB with χ (u) = χ (v) results in N (more formally, for
each x, y ∈ V (N), the edge xy exists in N if and only if there is an edge between χ−1 (x)
and χ−1 (y) in NB). We call such a function contraction function of NB for N . We suppose
that all binary resolutions are minimal, that is, they do not contain biconnected components
with exactly one incoming and one outgoing edge. Observe that, when contracting edges
of NB to form N , we never create vertices with in-degree and out-degree more than one.

I Observation 1. Let NB be a binary resolution of a network N , let χ be a contraction
function of NB for N , and let u ∈ V (N). Then, χ−1 (u) does not contain a reticulation and
a tree vertex with out-degree more than one.

If N contains a subgraph S that is isomorphic2 to a tree T , then we simply say that N
contains a subdivision of T . Slightly abusing notation, we consider each vertex v ∈ V (T)
equal to the vertex of S (and, thus, of N) that v is mapped to by an isomorphism. Thus,
S consists of V (T) and some vertices of in- and out-degree one. The following definition is
paramount.

I Definition 2. Let N be a network and let T be a tree. Then,
N firmly displays T if and only if N contains a subdivision of T and
N softly displays T if and only if there are binary resolutions NB of N and TB of T such
that NB firmly displays TB .

Definition 2 is motivated by the concept of “hard” and “soft” polytomies (that is, high degree
vertices): In phylogenetics, a polytomy is called firm or hard if it corresponds to a split of
multiple species at the same time and soft if it represents a set of binary speciations whose
order cannot be determined from the available data. In this sense, a polytomy is compatible
with another if and only if there is a biological “truth”, that is, a binary resolution, that is
common to both. Note that, for binary N and T , the two concepts coincide. Furthermore,
for trees on the same label-set, the concepts of display and binary resolution coincide.

I Observation 3. Let T and TB be trees on the same leaf-label set and let TB be binary.
Then, T softly displays TB if and only if TB is a binary resolution of T .

Throughout this work we will mostly use the soft variant and we will refer to it simply as
“display” for the sake of readability. Note that a binary tree displays another binary tree
if and only if they are isomorphic. Thus, in the special case that N is a tree, the “display”
relation is symmetrical, leading to the following observation.

2 In this work, “isomorphic” always refers to isomorphism respecting leaf-labels, that is, all isomorphisms
must map a leaf of label λ to a leaf of label λ.

SWAT 2018

9:4 Tree Containment With Soft Polytomies

I Observation 4. A tree T displays a tree T ′ if and only if T ′ displays T .

Finally, the central problem considered in this work is the following.

Soft Tree Containment
Input: A network N and a tree T
Question: Does N softly display T?

2 Display with Soft Polytomies

The concept of “display” is well-researched for binary trees, in particular, triplets.

I Observation 5 ([4]). Let TB be a binary tree and let a, b, c ∈ L(TB). Then, TB displays ab|c
if and only if LCA(ab) < LCA(bc) = LCA(ac). Indeed, TB is uniquely identified by the
set D of displayed triplets, that is, TB is the only binary tree displaying the triplets in D.

However, the “display”-relation with soft polytomies lacks a solid mathematical base in the
literature. In this section, we develop alternative characterizations of the term “(softly)
display”. To do this, we use the following characterization of isomorphism for binary trees.

I Observation 6. Binary trees TB and T ′B on the same label-set are isomorphic if and only
if, for each u ∈ V (TB) and each Y ⊆ L(u), u has a child v with L(v) = Y if and only
if LCAT ′

B
(L(u)) has a child v′ with L(v′) = Y .

I Lemma 7. Let N and T be trees. Then, N displays T if and only if, for all u ∈ V (T)
and v ∈ V (N), it holds that L(u) ⊆ L(v), L(u) ⊇ L(v) or L(u) ∩ L(v) = ∅.

Proof. Since each label appears only once in N and T , it holds that N displays T if and only
if there are binary resolutions NB of N and TB of T such that NB and TB are isomorphic.

“⇒”: Let N softly display T . Towards a contradiction, assume that there are u ∈ V (N)
and w ∈ V (T) such that L(u) * L(v), L(u) + L(v) and L(u) ∩ L(v) 6= ∅, that is, there
are x ∈ L(u) \ L(w), y ∈ L(u) ∩ L(w), and z ∈ L(w) \ L(u). Since there are binary
resolutions NB and TB of N and T , respectively, such that NB and TB are isomorphic, there
is a vertex u′ in NB with L(u′) = L(u) and a vertex v′ in T with L(v′) = L(v). Since NB

and TB are trees and each leaf-label only appears once in each of them, NB
u′ contains the

leaves x and y but not the leaf z. Analogously, TBv′ contains the leaves y and z but not the
leaf x, contradicting NB being isomorphic to TB .

“⇐”: In order to show the contraposition, suppose that N does not softly display T .
Since N does not softly display T , for any binary resolutions NB of N and TB of T , it
holds that NB and TB are not isomorphic. By Observation 6, there are vertices p ∈ V (NB)
and q := LCATB (L(p)) with children p1, p2 and q1, q2, respectively, such that L(p1) 6= L(q1)
and L(p1) 6= L(q2). We will use the fact that L(p1)] L(p2) = L(p) = L(q) = L(q1)] L(q2).
Case 1: L(pi) (L(qj) for any i, j. Then, there are taxa

x ∈ L(pi) ∩ L(qj) = L(qj) \ L(p3−i)
y ∈ L(qj) \ L(pi) = L(qj) ∩ L(p3−i), and
z ∈ L(q3−j) = L(q3−j) \ L(pi) = L(p3−i) \ L(qj).

The case where L(qj) (L(pi) holds is analogous.
Case 2: None of L(p1), L(p2), L(q1), and L(q2) are subsets of one another. Then, there are

taxa x, y, z such that x ∈ L(p1) ∩ L(q1) y ∈ L(q1) \ L(p1), and z ∈ L(q1) \ L(p1). J
We can relate the two forms of “display” for triplets in non-binary trees.

M. Bentert, J. Malík, and M.Weller 9:5

I Observation 8. Let T be a tree and let a, b, c ∈ L(T). Then,
(a) T firmly displays ab|c if and only if LCA(ab) <T {LCA(ac),LCA(bc)}.
(b) T firmly displays ac|b or bc|a if and only if T does not softly display ab|c.

I Lemma 9. A tree T on X softly displays a tree T ′ on X ⇔ for all a, b, c ∈ X,

T firmly displays ab|c⇒ T ′ softly displays ab|c, and
T ′ firmly displays ab|c⇒ T softly displays ab|c

Proof. “⇒”: By Observation 4, it suffices to show the first of the claimed implications,
so let LCAT (ab) <T LCAT (abc) and assume towards a contradiction that T ′ does not
display ab|c. By Observation 8, we can suppose without loss of generality that T ′ firmly
displays ac|b. But then, for u := LCAT (ab) and v := LCAT ′(ac), we have a ∈ L(u) ∩ L(v),
b ∈ L(u) \ L(v), and c ∈ L(v) \ L(u). Thus, by Lemma 7, T does not display T .

“⇐”: Towards a contradiction, assume that T does not display T ′. By Lemma 7, there
are u ∈ V (T) and v ∈ V (T ′) and a, b, c ∈ X such that a ∈ L(u) ∩ L(v), b ∈ L(u) \ L(v),
and c ∈ L(v) \ L(u). Thus, LCAT (ab) <T LCAT (abc) and LCAT ′(ac) <T ′ LCAT ′(abc). By
Observation 8, T firmly displays ab|c and T ′ firmly displays ac|b. With the implications
of the lemma, we get that T ′ softly displays ab|c and T softly displays ac|b, contradicting
Observation 8. J

The final ingredient to our alternative characterization is the observation that, in (multi-
labeled) trees, edge contraction does not change the ancestor relation.

I Observation 10. Let T be a tree, let T ′ be the result of contracting a vertex u onto its
parent v, and let Y and Z be sets of leaves common to T and T ′. Then,
(a) LCAT (Y) ≤T LCAT (Z)⇔ LCAT ′(Y) ≤T ′ LCAT ′(Z) and
(b) LCAT (Y) <T LCAT (Z)⇐ LCAT ′(Y) <T ′ LCAT ′(Z).
We can now prove the following alternative definition of “display”.

I Lemma 11. Let T be a tree on the label-set X.
(a) T displays the leaf-triplet ab|c if and only if LCA(ab) ≤ {LCA(bc),LCA(ac)}.
(b) T displays a binary tree TB on X if and only if T displays all triplets displayed by TB.
(c) T displays a tree T ′ on X (and vice versa) if and only if there is a binary tree TB on X

displayed by both T and T ′.
(d) A network N displays T if and only if N contains (as subgraph) a tree T ′ on X that

displays T .

Proof. (a) By definition, T displays ab|c if and only if there is a binary resolution TB of T dis-
playing ab|c. By Observation 5, TB displays ab|c if and only if LCATB (ab) <TB LCATB (abc) =
LCATB (ac) = LCATB (bc). Now, since TB is binary, we cannot have that LCATB (ab) =
LCATB (bc) = LCATB (bc) and, thus, LCATB (ab) ≤TB {LCATB (ac),LCATB (bc)} which, by
Observation 10, is equivalent to LCAT (ab) ≤T {LCAT (ac),LCAT (bc)}.

(b) “⇒”: Assume towards a contradiction that a triplet ab | c of TB is not displayed
by T and recall that {LCAT (ab),LCAT (ac),LCAT (bc)} has a unique minimum x. Since,
by (a), LCAT (ab) 6≤T LCAT (abc), we have x <T LCAT (ab) ≤T LCAT (abc). Without loss
of generality, let x = LCAT (ac). Then, by Observation 10, LCATB (ac) <TB LCATB (abc),
implying that TB displays ac | b. Hence, TB displays conflicting triples, contradicting
Observation 5.

“⇐”: Assume towards a contradiction that T does not display TB . By Lemma 7, there
are vertices u ∈ V (T) and vB ∈ V (TB) such that L(u) and L(vB) intersect, but are not in the

SWAT 2018

9:6 Tree Containment With Soft Polytomies

ρN

uN

︸ ︷︷ ︸
Y

CN

uT

︸ ︷︷ ︸
Y

CT

ρN

uN

λ

uT

λ

Figure 1 Illustration of Lemma 14: (N,T) left and (N1, T1) right.

subset relation, that is, there are x ∈ L(u) \ L(vB), y ∈ L(vB) \ L(u) and z ∈ L(u) ∩ L(vB).
Thus, x, z <T LCAT (xz) ≤T u <T LCAT (xyz) and y, z <TB LCATB (yz) ≤TB vB <TB
LCATB (xyz). Then, by (a), TB displays yz | x implying that T displays yz | x since all
triplets displayed by TB are displayed by T . By (a), we have LCAT (yz) ≤T LCAT (xz),
implying x, y, z <T LCAT (xz) ≤T u, which contradicts u <T LCAT (xyz).

(c) By definition, T displays T ′ if and only if there are binary resolutions TB and T ′B of T
and TB , respectively, such that TB displays T ′B . Note that, if such trees exist then they are
equal since, by (b), TB displays all triplets displayed by T ′B and, by Observation 5, TB = T ′B .
Conversely, by Observation 3, all binary trees on X displayed by T and T ′ are binary
resolutions of T and T ′.

(d) We defer this proof to the full version of this paper. J

Note that, if N contains a subdivision S of T , then any reticulation in N that is in S has in-
and out-degree one in S. Further, contracting an edge between two tree vertices of N cannot
break softly displaying T .

I Observation 12. Let N be a network that displays a tree T . Then, the result of contracting
an edge between two tree-vertices or two reticulations of N displays T .

Also note that, if N displays T , then the result of removing any label from N displays the
result of removing this label from T .

I Observation 13. Let N be a network and let T be a tree on X. Then, N displays T if
and only if N |X′ displays T |X′ for each X ′ ⊆ X.

3 Single-Labeled Trees

In a first step, we suppose that N is a tree. While Lemma 7 already provides the means to
solve this case in polynomial time, we aim to be more efficient. If N and T are both binary,
this special case is solved using the folklore “cherry reduction”: remove a pair of leaves that
are siblings in both N and T and label their parents in N and T with the same new label λ.
Here, we prove an analog for non-binary trees that allows solving the case that N is a tree in
linear time.

I Lemma 14. Let N be a network on X with root ρN , let T be tree on X, let uN ∈ V (N)
and uT ∈ V (T) and let CN and CT be sets of children of uN and uT , respectively, such that
(a)

⋃
c∈CN L(c) =

⋃
c∈CT L(c) =: Y , and

(b) for all λ ∈ Y , all ρN -λ-paths contain some c ∈ CN .
Let λ ∈ Y , let N1 := N ||X\(Y−λ), let T1 := T ||X\(Y−λ), let N2 := N ||Y , and let T2 := T ||Y .
Then, N displays T if and only if N1 displays T1 and N2 displays T2 (see Figure 1).

M. Bentert, J. Malík, and M.Weller 9:7

Proof. Since “⇒” follows directly from Observation 13, we only show “⇐”. By Lemma 11, for
each i ∈ {1, 2}, there is a tree Qi in Ni (containing the root of Ni) that displays Ti and there
is a binary tree TBi that is displayed by both Qi and Ti. We show that the binary tree TB
resulting from replacing the leaf λ in TB1 by TB2 is displayed by both T and a subtree Q of N .
To this end, note that T is the result of replacing the leaf λ in T1 by T2 and let Q be the result
of replacing the leaf λ in Q1 by Q2. Since TBi is displayed by both Ti and Qi for all i ∈ {1, 2},
the following argument holds for both T and Q, but we only state it for T . To show that T
displays TB , it suffices to prove that T displays all triplets displayed by TB (by Lemma 11(b)).
Towards a contradiction, assume that TB displays a triplet xy|z that T does not display.
Case 1: x, y ∈ Y . If z is also in Y , then xy|z is displayed by TB2 and, thus, by T2 and by T .

If z /∈ Y , then LCAT (xy) ≤T LCAT (Y) ≤T uT ≤T {LCAT (xz),LCAT (yz)} by (a) (and
(b) when arguing for Q instead of T) and, by Lemma 11(a), T displays xy|z.

Case 2: x or y is not in Y . Without loss of generality, let x /∈ Y . If also y /∈ Y , then λ can
take the role of z in the assumption, that is, TB displays xy|λ but T does not. But then, T 1

B

displays xy|λ but T1 does not, contradicting the fact that T1 displays T 1
B . Thus, y ∈ Y and,

completely analogously, z ∈ Y . But then, LCATB (yz) ≤TB LCATB (Y) < LCATB (xy)
which, by Lemma 11(a), contradicts TB displaying xy|z.

Finally, let T ∗ be the result of contracting LCAQ(Y) (that is, the former root of T ∗2) onto its
parent in Q. Then, T ∗ is a subtree of N since N is (isomorphic to) the result of replacing `
by N2 in N1 and contracting the the root of N2 onto its parent in the result. Since Q
displays TB, so does T ∗ (by Observation 12). Thus, T ∗ is a subtree of N that displays T
and, by Lemma 11(d) N displays T . J

In the following, the operation of splitting off a subnetwork B with root u in a network
N means to
remove B and
add a new leaf labeled λ /∈ X to u.

This gives rise to the networks N1 (containing the new leaf λ) and N2 := B. Lemma 14
implies correctness of the following reduction rule.

I Reduction Rule 1. Let (N,T) be an instance of Soft Tree Containment, let B be a
lowest biconnected component (such that B does not consist of a leaf and a non-leaf) or a
cherry of N with root u. Then, split off B from N and split-off TLCAT (L(u)) from T (giving
the new leaf in N and T the same new label λ).

Note that Reduction Rule 1 can be applied exhaustively in linear time. This is because
(a) biconnected components can be found in linear time [12], and
(b) no biconnected component of N (except B) is modified by application of Reduction

Rule 1.
Now, if N is a (single-labeled) tree, then Reduction Rule 1 splits-off only cherries from N

and each such cherry can be checked against the subtree split-off from T in linear time.

I Theorem 15. Soft Tree Containment can be solved in linear time if N and T are
trees.

4 Tree Containment in Multilabeled Trees

To show that Soft Tree Containment is NP-hard even when restricting N to be a
multilabeled tree, we reduce from 2-Union Independent Set, which asks if a graph
(V,E1 ∪E2) has a size-k independent set, and which is NP-hard even if (V,E1) is a collection

SWAT 2018

9:8 Tree Containment With Soft Polytomies

of disjoint K2s (that is, a matching) and (V,E2) is a collection of disjoint P2s and P3s [16].
For our reduction, we allow (V,E1) to also contain K3s and demand that k equals the number
of cliques in (V,E1). To prove that this variant remains NP-hard, we slightly modify the
reduction from 3-SAT given by van Bevern et al. [16].

I Construction 1. Consider an instance ϕ with n variables xi and m clauses cj of 3-SAT
such that each variable occurs at least twice in ϕ and at most once in each clause. For each
variable xi, let Ji be the list of indices of clauses that contain xi or ¬xi and let Ji[`] denote the
`th element of this list. Construct a graph (V,E) as follows. For each variable xi, construct
a cycle Vi of 2|Ji| vertices: (u1

i , u
1
i , u

2
i , u

2
i , . . .). For each clause cj on the variables xi, xk, x`,

construct a triangle Cj = (wij , wkj , w`j). For each variable xi and each ` ≤ |Ji|, connect wiJi[`]
to u`i if cJi[`] contains xi, and to u`i if cJi[`] contains ¬xi. Now, (V,E1) (bold in the figure)
consist of all triangles and all edges {uji , u

j+1 mod |Ji|
i } while E2 contains all other edges.

V0 V1

C0

Note that (V,E1) consists of disjoint K2s and K3s and (V,E2) consist exclusively of P3s.
Also note that this generalizes to k-SAT but (V,E1) becomes a collection of disjoint K2s and
Kks.

I Lemma 16. ϕ is satisfiable if and only if (V,E) has a size-k independent set, where k is
the number of cliques in (V,E1).

Proof. Note that
k equals the number of cliques in (V,E1),
each clique contains at most one independent vertex, and
all vertices in V are incident with some edge in E1.
Hence, (V,E) contains a size-k independent set, if and only if a largest independent set
in (V,E) contains exactly one vertex of each clique in (V,E1). We will first show that if (V,E)
contains an independent set of size k, then ϕ is satisfiable and afterwards the other direction.

“⇐”: Let I be an independent set of size k in (V,E). Then, for each i, I contains
either u1

i or u1
i . By construction of Vi, it holds that if uhi ∈ I for some h, then u`i , v`i ∈ I for

all ` ≤ |Ji|. Analogously, if uhi ∈ I for some h, then u`i , v`i ∈ I for all ` ≤ |Ji|. Consider any
vertex wij in the clause gadgets that is in I. Then, wij has a unique neighbor in the variable
gadget of xj which is either uhj for some h if ¬xj occurs in clause i or u`j otherwise. If the
neighbor is uhj , then all vertices u`j with 1 ≤ ` ≤ |Jj | are in I and otherwise all vertices u`j .

We set xi to true if u1
i is in I and to false if u1

i is in I. Consider any clause cj in ϕ. The
literal whose corresponding vertex is in I is then set to true as its neighboring vertex u is
not in I and u has a neighbor uhi for some h if xi occurs in cj and a neighbor uhi for some h
if ¬xi appears in cj . Since each clause has at least one variable set to true, ϕ is satisfiable.

“⇒”: We will now show that if ϕ is satisfiable, then (V,E) contains an independent set
of size k. Let β be a satisfying assignment for ϕ. We construct an independent set I for
(V,E) as follows. For each xi and each ` ≤ |Ji|, the set I contains the vertices u`i and v`i
if β(xi) = 1, and the vertices u`i and v`i , otherwise. For each clause cj we pick one literal
that is satisfied by our assignment of the variables and put the corresponding vertex into I.
Observe that I is of size k as exactly one vertex of each clique in (V,E1) is in I. Further, I
is independent since, in each variable gadget, we pick every second vertex and, if a vertex

M. Bentert, J. Malík, and M.Weller 9:9

N T

Figure 2 Illustration of Construction 2. Left: the initial instance of 2-Union Independent Set
with 4 colors (, , ,) and a size-4 solution encircled. Right: the non-binary tree T (boxes and
triangles indicating label i1 and i2 for a color i). Middle: the binary multi-labeled tree N with a
subdivision of T (bold, gray) corresponding to the solution to the left instance.

in a clause gadget is picked, then its neighbor in the corresponding variable gadget is not
picked. J

We reduce this version of 2-Union Independent Set to Soft Tree Containment
for multilabeled trees. To this end, we use an equivalent formulation where each clique
in (V,E1) is represented by a color. The problem then becomes the following: Given a
vertex-colored collection of P3s, select exactly one vertex per color such that all selected
vertices are independent. Note that the number of occurrences of each color equals the size
of its corresponding clique in (V,E1).

I Construction 2 (See Figure 2). Given a vertex-colored collection G of P3s constructed by
Construction 1, we construct a multi-labeled tree N and a tree T as follows. Construct T by
first creating a star that has exactly one leaf of each color occurring in G and then, for each
leaf x with color i, adding two new leaves colored i1 and i2, respectively, and removing the
color from x. Construct N from G as follows: For each P3 (u, v, w) where black, gray, and
white denote the colors of u, v, and w, respectively, construct the binary tree depicted below,
where a box or a triangle colored i represents color i1 or i2, respectively. Then, add any
binary tree on |V (G)| leaves and identify its leaves with the roots of the constructed subtrees.
Notice u, v, w ∈ V (G) ∩ V (N).

v

u w

I Lemma 17. Construction 2 is correct, that is, N displays T if and only if the given
collection G of P3s has a colorful independent set using each color exactly once.

Proof. Note that N is binary and let k be the number of colors in G.
“⇒”: Let N display T , that is, N contains a binary tree S displaying T which, by

Lemma 11 is equivalent to T displaying S. Consider any color i occurring in G. Then, S
contains leaves u1 and u2 in S labeled i1 and i2, respectively, and we denote their least
common ancestor in S by ui. If u1 and u2 are neither siblings, nor in an uncle-nephew-
relation3, then we modify S to include the sibling/uncle of u1 in N into S instead of u2.

3 Two vertices are in an uncle-nephew relation if the sibling of one is the parent of the other

SWAT 2018

9:10 Tree Containment With Soft Polytomies

Thus, we do not lose generality by assuming that u1 and u2 are either siblings or in an
uncle-nephew-relation. We show that the set Q =

⋃
i u

i is a size-k colorful independent set
in G. First, for each color i, we know that S contains exactly one leaf labeled i1 and one leaf
labeled i2, so ui is unique and, by construction of N , no two ui coincide, implying that Q
contains exactly one vertex of each color. Towards a contradiction, suppose that Q is not
independent in G, that is, there are colors i and j such that ui and uj are adjacent in G.
Without loss of generality, ui is the center of a P3 in G, implying that S contains the subtree
((((j1, j2), i1), i2) (that is, a caterpillar with leaves labeled j1, j2, i1, i2 in preorder). But
then, j1i1|i2 is displayed by S but not by T , thereby contradicting Definition 2(b).

“⇐”: Let Q be a size-k colorful independent set of G, let L be the set of leaves that,
for each u ∈ Q of color i, contains the leaves labeled i1 and i2 in Nu, and let S := N |L.
Note that S is a subgraph of N and, as N is binary, S is a subdivision of a binary tree.
Since Q contains exactly one vertex of each color in G, we know that S contains all labels
that occur in T . By Definition 2(d), to show that N displays T , it suffices to show that S
displays T . To this end, assume that S displays a triplet xy |z that T does not display.
Then Definition 2(a) lets us assume LCAT (xz) <T {LCAT (xy),LCAT (yz)} without loss
of generality. Thus, x = i1, z = i2, and y = j1 for colors i 6= j. By Definition 2(a),
we have LCAS(i1j1) ≤S LCAS(i1i2). Then, i1 and i2 cannot form a cherry in S and,
thus, S|{i1,i2,j1,j2} is the subtree (((j1, j2), i1), i2). By construction of S, this implies that Q
contains two vertices of a P3 in G, one of color i and one of color j, and the latter is in the
middle, contradicting independence of Q in G. J

I Theorem 18. Soft Tree Containment is NP-hard, even if N is a binary 3-labeled
tree.

Note that the number of occurrences of each label in N equals the number of occurrences
of each color in G which, in turn, equals the size of a largest clique in (V,E1) (instance of
2-Union Independent Set), which equals the size of a largest clause (instance of 3-SAT),
we can state the following generalization of Theorem 18.

I Corollary 19. For each k, k-SAT reduces to Soft Tree Containment on binary k-labeled
trees. Further, CNF-SAT reduces to Soft Tree Containment on binary multilabeled trees.

Corollary 19 immediately raises the question of what happens in the case that N is a 2-labeled
tree and we address this question in Section 4.1. Note that, for Soft Tree Containment,
the case that N is a multilabeled tree reduces straightforwardly to the case that N is a
reticulation-visible network, simply by merging all leaves with the same label i into one
reticulation and adding a new child labeled i to it.

I Corollary 20. Soft Tree Containment is NP-hard on reticulation-visible networks,
even if the maximum in-degree is three and the maximum out-degree is two.

Theorem 18 and Corollary 20 stand in contrast with results for (Strong) Tree Contain-
ment, which is linear-time solvable in both cases [18, 7].

4.1 2-Labeled Trees
In the following, N is a 2-labeled tree and T is a (single-labeled) tree. To solve Soft Tree
Containment in this case, we compute a mapping M : V (T) → 2V (N) such that M(u)
contains the at most two minima (with respect to ≤N) among all vertices v of N such that Nv
displays Tu. If N displays T , there is a single-labeled subtree S of N that displays T . If, for
each u ∈ V (T), we have LCAS(L(u)) ∈M(u), then we call S canonical for T . We show that
such a canonical subtree always exists.

M. Bentert, J. Malík, and M.Weller 9:11

I Lemma 21. N displays T if and only if N has a canonical subtree for T .

Proof. As “⇐” is evident, we just prove “⇒”. To this end, let S be a single-labeled subtree
of N that is a subdivision of T . If S is not canonical, then there is some u ∈ V (T)
with x := LCAS(L(u)) /∈M(u). Since Sx displays Tu, so does Nx. Thus, by definition of M ,
there is some y ∈M(u) with y <N x (recall that x /∈M(u)). But then, we can replace the
subtree of S rooted at x with the unique x-y-path in N and the subtree of Ny displaying Tu.
Iterating this construction yields a canonical subtree of N for T . J

To compute M , we consider vertices u ∈ V (T) and ρ ∈ V (N) in a bottom-up manner and
check if Nρ displays Tu. For each v ∈ V (Tu) with parent p in Tu, each x ∈M(v) has at most
one ancestor y in M(p) since M contains only minima. For v = u, we let y := ρ. In both
cases, we call the unique x-y-path in Nρ the ascending path of x. A crucial lemma about
ascending paths is the following.

I Lemma 22. Let S be a canonical subtree of some N ′ for some T ′ and let u, v ∈ V (T ′) not
be siblings. Let LCAS(L(u)) and LCAS(L(v)) have ascending paths r and q, respectively.
Then, r and q are edge-disjoint.

Proof. Note that, if u <T ′ v then LCAS(L(p)) ≤S LCAS(L(v)) where p is the parent of u
in T ′. Thus, the highest vertex of r (with respect to ≤Nρ) is a descendant of the lowest
vertex of q and, hence, the lemma holds. Thus, we suppose in the following that u and v are
incomparable in T ′.

Towards a contradiction, assume that there is a vertex z ∈ V (S) that is internal vertex
of both r and q and, hence, is an ancestor of both u and v in T ′. Then, L(u)] L(v) ⊆ L(z).
Further, since u and v are not siblings, one of u and v has a parent p <T ′ LCAT ′(uv).
Without loss of generality, let p be the parent of u, implying L(p) ∩ L(z) ⊇ L(u) 6= ∅
and L(z) \ L(p) ⊇ L(v) 6= ∅. Since S is canonical, we have LCAS(L(p)) ∈M(p) and, thus,
the ascending path r of u ends in LCAS(L(p)). Hence, as z is an internal vertex of r, it holds
that z <S LCAS(L(p)), implying L(p) \ L(z) 6= ∅. Since S displays T ′, the three established
relations between L(p) and L(z) contradict Lemma 7. J

Clearly, N displays T if and only if M(ρT) 6= ∅, where ρT is the root of T . Further,
computation of M(u) is trivial if u is a leaf. Thus, in the following, we show how to
compute M(u) given M(v) for all v ∈ V (Tu)− u.

In a first step, compute N |L where L is the set of leaves of N whose label occurs in Tu.
Then, we know that M(v) ⊆ V (N |L) for all v ∈ V (Tu). Second, we mark all vertices ρ
in N |L such that, for each child ui of u in T , there is some xi ∈M(ui) with xi ≤N|L ρ. For
each marked vertex ρ in a bottom-up manner, we test whether Nρ displays Tu using the
following formulation as a 2-SAT problem4.

I Construction 3. Construct ϕu→ρ as follows. For each v ∈ V (Tu)− u,
(i) for each y ∈M(v), introduce a variable xv→y.
(ii) add the clause

⊕
y∈M(v) xv→y (recall that |M(v)| ≤ 2).

(iii) if the parent p of v in Tu is not u then, for all y ∈M(v) and all z ∈M(p) with y �N z,
add the clause xv→y ⇒ ¬xw→z.

(iv) for each w ∈ V (Tu)−u that is not a sibling of v and each y ∈M(v) and each z ∈M(w)
such that the ascending paths of y and z share an edge, add the clause xv→y ⇒ ¬xw→z.

4 We are using the XOR operation ((x⊕y) := (x∨y)∧(¬x∨¬y)) as well as implications ((x⇒ y) := (¬x∨y))
in the construction, which can be formulated as clauses with two variables as shown.

SWAT 2018

9:12 Tree Containment With Soft Polytomies

By definition of M(u), no two vertices in M(u) can be in an ancestor-descendant relation.
Thus, we can ignore all ancestors of a vertex ρ that satisfies ϕu→ρ and we can assume that
no strict ancestor of our current ρ satisfies ϕu→z.

I Lemma 23. ϕu→ρ is satisfiable if and only if Nρ displays Tu.

Proof. “⇐”: Let S be a canonical subtree of Nρ for Tu and let β be an assignment for ϕu→ρ
that sets each xv→y to 1 if and only if y = LCAS(L(v)). Since the LCA of L(v) in S is
unique, all clauses of type (ii) are satisfied by β. If a clause of type (iii) is not satisfied, then
there is some v with parent p in Tu such that y ≤N z for some y ∈ M(v) and z ∈ M(p)
and β(xv→y) = 1 and β(xp→z) = 0. Let z′ ∈ M(p) − z with β(xp→z′) = 1, which exists
since all clauses of type (ii) are satisfied. Since L(p) ⊇ L(v), we know that y ≤S z′ and, as S
is a subtree of N , we have y ≤N z′, implying z ≤N z′ or z′ ≤N z, which contradicts the
construction of M . If a clause of type (iv) is not satisfied, then there are xv→y and xw→z
such that v and w are not siblings in T , β(xv→y) = β(xw→z) = 1, and the ascending paths
of y = LCAS(L(v)) and z = LCAS(L(w)) share an edge. But this contradicts Lemma 22.

“⇒”: Let β be a satisfying assignment for ϕu→ρ. Let ψ ⊆ V (T)× V (N) be a relation
such that (v, y) ∈ ψ if and only if β(xv→y) = 1. Since β satisfies the clauses of type (ii), ψ
describes a function and, slightly abusing notation, we call this function ψ. Let Y be the
image of ψ and let S := N |Y ∪{ρ}. Note that, for all v <T u with parent p 6= u, we know
that ψ(v) ≤N ψ(p), since β satisfies the clauses of type (iii). Thus, for all v, w ∈ V (Tu)− u,
we have w ≤T v ⇒ ψ(w) ≤N ψ(v) ⇒ ψ(w) ≤S ψ(v) We show for all (v, y) ∈ ψ ∪ {(u, ρ)}
that y = LCAS(L(v)) and Sy is a canonical subtree of Ny for Tv. The proof is by induction
on the height of v in T . Clearly, if v is a leaf, y is a leaf with the same label and the claim
follows. Otherwise, suppose that the claim holds for all w <T v. Towards a contradiction,
assume that Sy does not display Tv. By Lemma 7, there are w ∈ V (Tv) and z ∈ V (Sy)
such that there are leaves a ∈ L(z) \ L(w), b ∈ L(w) \ L(z), and c ∈ L(w) ∩ L(z). Note
that LCAT (bc) ≤T w <T {LCAT (ab),LCAT (ac)}. Let α be the highest ancestor of a in T
with b �T α and let pα be its parent in T . Let γ be the highest ancestor of c in T with b �T γ
and let pγ be its parent in T . Since b, c <T w and a �T w, we know that pγ <T pα, implying
that α and γ are not siblings in T . Then, as LCAS(ac) ≤S z <S {LCAS(ab),LCAS(bc)},
LCAS(ab) ≤S ψ(pα), and LCAS(bc) ≤S ψ(pγ), we know that the ascending paths of ψ(α)
and ψ(γ) share an edge, contradicting (iv). J

I Theorem 24. Soft Tree Containment can be solved in O(n3) time on instances (N,T)
for which N is a 2-labeled tree.

Proof. As correctness follows from Lemma 23, we only show the running time. To this end,
note the N |L can be computed in O(|L|) = O(|L(u)|) time (see, for example [3, Section 8]).
To mark all vertices of N |L that, for each child ui of u in T , have an ancestor in M(ui), we
compute the restriction of N |L to

⋃
iM(ui). Again, this can be done in O(degT (u)) time.

For each vertex in this restriction, we can store the set of leaves that descend from it. In a
bottom-up manner, we can thus mark the correct vertices in O(degT (u)2) time.

We construct ϕu→ρ for each pair (u, ρ) as follows. To check y �N z efficiently in
Construction 3(iii), we can prepare a 0/1-matrix with an entry for each pair of vertices in N .
This table has size O(n2) and can be computed in the same time by a simple bottom-up
scan of N . To construct the clauses of type (iv), we first order the vertices in Nρ. For
each v in this order, we construct its ascending path in O(|Nρ|) time and store v in all
edges on this path. Thus, when constructing the clauses of type (iv) for a vertex v, we can
merge the lists of vertices whose ascending path shares an edges with that of v. Thus, ϕu→ρ
can be constructed and solved in O(|Nρ|2) = O(|L(u)|2) time and the total time to decide
whether N displays T is O(

∑
u∈V (T) |L(u)|2) = O(n3). J

M. Bentert, J. Malík, and M.Weller 9:13

Theorem 24 implies 5 that we can solve bifurcating reticulation-visible networks in polynomial
time, complementing Corollary 20.

I Corollary 25. Soft Tree Containment can be solved in O(n3) time on reticulation-
visible networks of in-degree at most two.

5 Conclusion

We introduced a practically relevant variant of the Tree Containment problem handling
soft polytomies and showed that its (classical) complexity depends heavily on the maximum
in-degree in the network. Multiple avenues are opened for future work. Motivated by
our hardness result, the search for parameterized or approximative algorithms is a logical
next step. Previous work for Tree Containment [8, 18] might lend promising ideas
and parameterizations to this effort. While multi-labeled trees were our starting point to
analyze Soft Tree Containment, only the hardness result (Theorem 20) is transferable
to multi-labeled networks, leaving many open questions in this direction. Finally, given the
close relationship to Cluster Containment, (see Section 1), we hope to apply ideas and
methods used there to also attack Soft Tree Containment. In particular, we hope that
the ideas in Theorem 24 can be adapted since Cluster Containment seems to exhibit a
close relationship to SAT [9]—similar to what we exploited to prove Theorem 24.

References

1 Magnus Bordewich and Charles Semple. Reticulation-visible networks. Advances in Applied
Mathematics, 78:114–141, 2016.

2 Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral evolution.
Proceedings of the National Academy of Sciences, 110(46):18566–18571, 2013.

3 Richard Cole, Martin Farach-Colton, Ramesh Hariharan, Teresa Przytycka, and Mikkel
Thorup. An O(n logn) algorithm for the maximum agreement subtree problem for binary
trees. SIAM Journal on Computing, 30(5):1385–1404, 2000.

4 A Dress, Katharina Huber, J Koolen, Vincent Moulton, and A Spillner. Basic Phylogenetic
Combinatorics. Cambridge University Press, 2004.

5 Jittat Fakcharoenphol, Tanee Kumpijit, and Attakorn Putwattana. A faster algorithm for
the tree containment problem for binary nearly stable phylogenetic networks. In 12th In-
ternational Joint Conference on Computer Science and Software Engineering (JCSSE’15),
pages 337–342. IEEE, 2015.

6 Philippe Gambette, Andreas D. M. Gunawan, Anthony Labarre, Stéphane Vialette, and
Louxin Zhang. Locating a tree in a phylogenetic network in quadratic time. In Proceed-
ings of the 19th Annual International Conference on Research in Computational Molecular
Biology (RECOMB’15), volume 9029 of LNCS, pages 96–107. Springer, 2015.

7 Andreas D. M. Gunawan. Solving tree containment problem for reticulation-visible net-
works with optimal running time. CoRR, abs/1702.04088, 2017.

8 Andreas D. M. Gunawan, Bingxin Lu, and Louxin Zhang. A program for verification of
phylogenetic network models. Bioinformatics, 32(17):i503–i510, 2016.

9 Andreas D. M. Gunawan, Bingxin Lu, and Louxin Zhang. Fast methods for solving the
cluster containment problem for phylogenetic networks. CoRR, 1801.04498, 2018.

5 See [18] for the corresponding reduction.

SWAT 2018

9:14 Tree Containment With Soft Polytomies

10 Andreas D.M. Gunawan, Bhaskar DasGupta, and Louxin Zhang. A decomposition theo-
rem and two algorithms for reticulation-visible networks. Information and Computation,
252:161–175, 2017.

11 Dan Gusfield. ReCombinatorics: the algorithmics of ancestral recombination graphs and
explicit phylogenetic networks. MIT Press, 2014.

12 John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph manipu-
lation. Commun. ACM, 16(6):372–378, 1973.

13 Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press, 2010.

14 Iyad A Kanj, Luay Nakhleh, Cuong Than, and Ge Xia. Seeing the trees and their branches
in the network is hard. Theoretical Computer Science, 401(1-3):153–164, 2008.

15 Todd J Treangen and Eduardo PC Rocha. Horizontal transfer, not duplication, drives the
expansion of protein families in prokaryotes. PLoS Genet, 7(1):e1001284, 2011.

16 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval
scheduling and colorful independent sets. J. Scheduling, 18(5):449–469, 2015. doi:
10.1007/s10951-014-0398-5.

17 Leo Van Iersel, Charles Semple, and Mike Steel. Locating a tree in a phylogenetic network.
Information Processing Letters, 110(23):1037–1043, 2010.

18 Mathias Weller. Linear-time tree containment in phylogenetic networks. CoRR, 1702.06364,
2017.

http://dx.doi.org/10.1007/s10951-014-0398-5
http://dx.doi.org/10.1007/s10951-014-0398-5

On the Size of Outer-String Representations
Therese Biedl1

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
biedl@uwaterloo.ca

Ahmad Biniaz2

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
ahmad.biniaz@gmail.com

Martin Derka3

School of Computer Science, Carleton University
Ottawa, Canada
mderka@uwaterloo.ca

Abstract
Outer-string graphs, i.e., graphs that can be represented as intersection of curves in 2D, all of
which end in the outer-face, have recently received much interest, especially since it was shown
that the independent set problem can be solved efficiently in such graphs. However, the run-
time for the independent set problem depends on N , the number of segments in an outer-string
representation, rather than the number n of vertices of the graph. In this paper, we argue
that for some outer-string graphs, N must be exponential in n. We also study some special
string graphs, viz. monotone string graphs, and argue that for them N can be assumed to be
polynomial in n. Finally we give an algorithm for independent set in so-called strip-grounded
monotone outer-string graphs that is polynomial in n.

2012 ACM Subject Classification Theory of computation → Computational geometry, Math-
ematics of computing → Graph theory

Keywords and phrases string graph, outer-string graph, size of representation, independent set

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.10

1 Introduction

A string graph is a graph G = (V,E) that has a string representation, i.e., an assignment
of curves in the plane to the vertices in such a way that two vertices v, w are connected by
an edge (v, w) if and only if their corresponding curves v,w intersect. In this paper, we
only consider string representations where any two curves v and w intersect in a finite set of
points (denoted v ∩w). We will always use bold-face v to denote the curve of a vertex v.

The study of string graphs goes back over 50 years, see e.g. [24, 7]. It is known that
every planar graph is a string graph [7], but in general, testing whether a graph is a string
graph is NP-complete [15, 20, 22]. Many variants of string graphs have been studied in
the literature. Of chief interest to us are the so-called outer-string graphs, which have a
string representation such that for every vertex v the curve v has at least one endpoint on

1 Supported by NSERC.
2 Supported by NSERC Postdoctoral Fellowship.
3 Supported by NSERC Vanier fellowship while author was a student at University of Waterloo.

© Therese Biedl, Ahmad Biniaz, and Martin Derka;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
mailto:ahmad.biniaz@gmail.com
mailto:mderka@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 On the Size of Outer-String Representations

the outer-face of the string representation. See some recent articles [2, 3] for some results
concerning outer-string graphs and some subclasses.

The class of outer-string graphs includes the circle graphs (i.e., graphs of intersections
of chords of a circle), so any decision problem that is NP-hard for circle-graphs is also
NP-hard for outer-string graphs. This includes, among others, the Coloring problem and the
Hamiltonian Cycle problem [12, 5]. However, it does not include the maximum independent
set problem, i.e., the problem where we are given a graph with vertex-weights (not necessarily
uniform), and we want to find the maximum-weight vertex-set I such that no two vertices in
I are adjacent.

The work in the current paper was inspired by a result from 2015 in which Keil, Mitchell,
Pradhan and Vatshelle presented a poly-time algorithm for maximum independent set in
outer-string graphs [14]. They assume that an outer-string representation R is given, and
“poly-time” means polynomial in the size of R (typically measured by assuming that R uses
only polygonal lines and counting the number of segments). Their algorithm runs in time
O(N3) where N is the size of R.

Since the algorithm of Keil et al. [14] requires the representation to be given, the following
question remains open: Given an outer-string graph G (but no outer-string representation),
can we find a maximum independent set of G in polynomial time? One natural approach to
this would be to try to find an outer-string representation of G. There are two obstacles
here though. First, no algorithm is known to find such a representation (but this problem is
also not known to be NP-hard). Second, even if such an algorithm were known, what would
be the size N of the resulting outer-string representation? There are string graphs for which
any string representation requires exponential size [16]. What can be said about the size of a
representation required for outer-string graphs? This is the main topic of this paper.

1.1 Related results

We provide here an overview of some algorithmic results on string graphs. Since planar
graphs are string graphs [7], all problems that are NP-hard for planar graphs remain NP-hard
for string graphs. The converse statement is not true because there are problems that are
polynomial for planar graphs (e.g. maximum clique) but NP-hard for string graphs [19].

String representations have been used to obtain better approximation algorithms, espe-
cially for independent set. Matoušek [18] showed that every string graph with m edges admits
a vertex separator (a set S such that all components of G − S have at most 2

3n vertices)
of size O(

√
m logm). Fox and Pach conjectured that every string graph has a separator

of size O(
√
m) [9]. This was proved, first for k-intersecting string graphs (any two strings

intersect at most k times) [8] and very recently for all string graphs [17]. One example of a
result based on separators is an nε-approximation algorithm for maximum independent set in
k-intersecting string graphs by Fox and Pach [10]. Har-Peled and Quanrund [13] showed that
separator theorems are applicable for approximation algorithms for all sparse string graphs.
However, none of these results seems to lead to approximation algorithms with factors better
than O(nε) for all string graphs.

A segment graph is a string graph that has a string representation in which all strings are
line segments. Agarwal and Mustafa [1] proved that if all these segments intersect a given
line, then an independent set of size

√
α can be computed in O(n3) time where α is the size

of a maximum independent set. They also showed that any segment graph can be split into
O(logn) subgraphs that are segment graphs for which all segments intersect one line. They
used this to obtain an independent set of size

√
α/ log(n/α) for all segment graphs.

T.Biedl, A.Biniaz, and M.Derka 10:3

a a

Figure 1 A graph G, its apex graph, and the subdivided apex graph G+.

1.2 Our contribution
In this paper we show that for some n-vertex outer-string graphs any outer-string representa-
tion requires Ω(2n/10) crossings, and consequently exponentially many segments. This result
implies that the independent set algorithm of Keil et al. [14] does not run in polynomial
time for all outer-string graphs, but only for those that have a polynomial-size outer-string
representation. Our result also motivates exploration of algorithms whose running times
have lower dependency on the size of representation.

We next explore graph classes that do have small string representations. We consider
a natural subclass of string graphs, the monotone string graphs, where every string is a
y-monotone curve, and argue that any such representation can be transformed into one
of polynomial size. Combining this with Keil et al.’s algorithm implies that for monotone
outer-string graphs, the maximum independent set is polynomial in n, however, the running
time is rather large. We also study a special case where every monotone string has one
endpoint on an enclosing strip. For this case we present a dynamic programming algorithm
that finds a maximum independent set in O(n6) time and a 2-approximation in O(n3) time.

1.3 Outer-string graphs and apices
For our proof that some outer-string graphs require large representations, it will help to have
a characterization of outer-string graphs. Although this characterization is simple (a similar
approach has been used by Middendorf and Pfeiffer to characterize so-called cylinder graphs
[20]), to our knowledge it has not been given before. Let G be a graph. The apex graph H

of G is the graph obtained from G by adding a new vertex a connected to all vertices in G.
The subdivided apex graph of G, denoted by G+, is obtained from H by subdividing every
edge incident to a. See Figure 1. One can easily show the following (see [6] for details):

I Lemma 1. Graph G is an outer-string graph if and only if its subdivided apex graph G+

is a string graph. Furthermore, any outer-string representation R of G can be turned into a
string representation of G+ without changing any curve of R.

We have two corollaries from this that should be interesting in their own right. First,
it is known that every string graph G with m edges has a string representation with 2O(m)

crossings per string. (This holds since string representations of G correspond to so-called
weak realizations of another graph H with O(m) edges [22], and weak realizations can be
assumed to have at most 2m crossings per string [23, 21].) Therefore, if G is outer-string,
then the subdivided apex-graph of G has a string representation with 2O(m) crossings per
string. Deleting the added vertices, we get the following corollary.

I Corollary 2. If G is an outer-string graph with m edges, then it has an outer-string
representation with 2O(m) crossings per string.

SWAT 2018

10:4 On the Size of Outer-String Representations

Secondly, while it was long known that string graph recognition is NP-hard [15], proving
that it is in NP was a long-standing open question until proved by Schaefer et al. [22]. For
any graph G we can construct the subdivided apex graph G+ in polynomial time. Combining
this with Lemma 1 implies the following non-trivial result.

I Corollary 3. The problem of recognizing outer-string graphs is in NP.

Naturally one wonders whether recognizing outer-string graphs is also NP-hard. This
problem is open.

2 Exponential-sized Outer-string Representations

Now we construct a graph that requires exponentially many intersections in any string
representation. This re-proves a result of Kratochvíl and Matoušek [16], but our graph is
different (although inspired by their construction), and can be used to prove the same for
outer-string representations later.

For any integer k ≥ 1 construct graph Gk as follows. For 0 ≤ i ≤ k we add two vertices
xi, yi, and an edge (xi, yj) for every j ≥ i. We surround this graph with a gadget that forces
these vertices to appear in a certain order. This was done in [16] with a grid-like structure,
but we use a cycle C instead, in the same way that Cardinal et al. [3] used a cycle to
enforce order for their representations.4 Specifically, let C = c0, c1, . . . , cK−1 be a cycle with
K := 8k+ 8 vertices. We connect every 4th vertex of C to one of the vertices {xi, yi}i=0,...,n,
in order (along the cycle) x0, x1, y0, x2, y1, x3, y2, . . . , xi, yi−1, xi+1, yi, . . . , xk, yk−1, yk. Let
`(xi) [resp. `(yi)] be the index of the vertex of C that is adjacent to xi [resp. yi], thus
`(x0) = 0, `(x1) = 4, etc. See also Figure 2. This finishes the construction of Gk. As
before, let G+

k be the subdivided apex graph of Gk with apex vertex a. We use sj for the
subdivision-vertex incident to vertex cj ∈ C.

Figure 3 illustrates an outer-string representation of Gk, which can be converted into a
string representation of its subdivided apex graph G+

k (see Lemma 1). Note that yk and x0
intersect 2k−1 times. We now argue that this is required.

I Lemma 4. In any string representation of G+
k , curve yk intersects curve x0 at least 2k−1

times.

Proof. Fix a string representation R+
k of G+

k . Delete from it all strings of all subdivision
vertices s2i+1 for 0 ≤ i < K/2 (these won’t be needed). Also, we know that s2i has only
two neighbours (a and c2i), and we can hence shorten its string such that s2i has exactly
two intersections, one with a and one with c2i [15]. Likewise c2i+1 intersects only two
other strings (c2i and c2i+2) since we deleted s2i+1, and we may hence shorten it such that
|c2i ∩ c2i+1| = 1 = |c2i+1 ∩ c2i+2|.

So for any 0 ≤ j < K, we have a unique point in cj ∩ cj+1 (addition for all vertices in C
is mod K). We use cj[cj−1, cj+1] to denote the (unique) stretch of cj between cj−1 ∩ cj and
cj∩cj+1. Crucial for our argument will be a curve defined by following the strings of cycle C:
define C to be

⋃K−1
j=0 cj[cj−1, cj+1] and observe that it is a closed simple curve in the plane,

hence splits the plane into the inside and outside. We now make a sequence of observations:
Since the apex-vertex is not adjacent to any vertex of C, curve a is disjoint from C and
hence resides inside or outside. By symmetry, we may assume that a is outside C.

4 The correctness for their gadget was only argued for outer-1-string representations, and so we cannot
use it as a black box, but the idea is the same.

T.Biedl, A.Biniaz, and M.Derka 10:5

c`(y0)c`(y1)c`(y2) c`(x2)c`(y3) c`(x3)
c`(x1)

y0y1y2y3

x0x1x2x3

c`(x0)

Figure 2 The graph G+
3 . The apex vertex a is not shown. Subdivision vertices are squares.

c`(y0)c`(y1)c`(y2) c`(x2)c`(y3) c`(x3) c`(x1)

y0y1y2
y3

x0

x1x2x3

c`(x0)

Figure 3 An outer-string representation of G3. String y3 is red (dashed) for ease of legibility.

For any 0 ≤ i ≤ k, curve xi has a point outside C. Namely, there exists a subdivision-
vertex sxi with unique neighbors a and xi. Since neither a nor sxi have a neighbor on C,
and a is outside C, therefore so is sxi , and so any point in sxi ∩ xi is outside C.
For any 0 ≤ i ≤ k, curve xi has a point inside C. Specifically, for any j ≥ i any point
in xi ∩ yj (which exists since there is an edge (xi, yj)) must be inside C for any j > i.
For otherwise we could use a point in xi ∩ yj outside C to find a drawing of K4 with all
vertices on one face, an impossibility. (Details are in [6].)
Thus for any 0 ≤ i ≤ k, curve xi has points both inside and outside C. So xi must
intersect C, which is possible only at c`(xi).
Similarly yj intersects at a point on C for all 0 ≤ j ≤ k, and this intersection must
happen on c`(yj).

We are now almost ready to argue the number of intersections of yk with x0, which will
happen by induction on k. However, to argue the induction step it helps to permit that some
curves do not intersect. We hence use the following type of representation:

IDefinition 5. A weak outer Gi-representation is a collectionR′i of curves C,x0,y0, . . . ,xi,yi
that satisfies the following:
1. C is a simple closed curve such that all other curves of R′i are on or inside C.

SWAT 2018

10:6 On the Size of Outer-String Representations

x0

y0

x1

y1

(a) The base case.

xi+1
yi

xi
yi+1

(b) Two possible routes for yi.

Figure 4 In the base case, y1 must cross x0. In the induction step, a route for yi+1 gives two
possible routes for yi to xi.

2. The curves xj and yj (for 0 ≤ j ≤ i) intersect each other.
3. Each of the curves xj and yj (for 0 ≤ j ≤ i) intersects C exactly once.
4. These intersections with C occur in order x0, x1, y0, x2, y1, x3, y2, . . . ,xi, yi−1, yi.
5. The curves xr and yj (for 0 ≤ r < j ≤ i) may or may not intersect each other.
6. No other curves are allowed to intersect each other.

It is easy to see ([6] has details) that for any 0 ≤ i ≤ k we can find a weak outer
Gi-representation for which all curves reside within the corresponding curves of R+

k . The
theorem hence holds once we have shown the following:

I Claim 6. In any weak outer Gi-representation, curve yi intersects x0 at least 2i−1 times.

We proceed by induction on i. Consider the base case i = 1 (see Figure 4(a); for legibility
we extend curves slightly beyond C). The order in which curves intersect C is x0,x1,y0,y1,
and the combined curve x0 ∪ y0 splits C into two parts. Curves x1 and y1 intersect C
in different parts. To create an intersection point x1 ∩ y1, one of them must cross paths
y0 ∪ x0. Such a crossing must be between y1 and x0 (no other crossings are allowed). So,
y1 intersects x0 at least once.

Assume now that the claim holds for some i, and study a weak outer Gi+1-representation.
Curve yi+1 is separated from curve xi+1 by xi ∪ yi . Thus, curve yi+1 has to intersect xi
on its way to xi+1. On the way to xi, it has to create at least 2i−1 intersections with x0,
otherwise we could re-route yi and use fewer crossings between yi and x0. More precisely
(refer to Figure 4(b)), yi could be re-routed to stay in the proximity of the cycle C until it
reaches yi+1∩C and then follow yi+1 until reaching xi. Along this new route (following yi+1)
curve yi might intersect neighbors of yi+1, but all those neighbors are allowed to be neighbors
of yi as well, so this is (after deleting yi+1 and xi+1) a weak outer Gi-representation with less
than 2i−1 points in yi ∩ x0. This contradicts the induction hypothesis. So, yi+1 intersects
x0 at least 2i−1 times on the way from C ∩ yi+1 to yi+1 ∩ xi.

On the way from xi to xi+1, curve yi+1 needs to create another 2i−1 crossings with x0,
otherwise we could re-route yi and use fewer crossings as follows: yi stays in the proximity of
the cycle curves until it reaches xi+1 ∩C and then follows xi+1 and yi+1. Thus yi+1 crosses
x0 at least 2i times as desired. J

In consequence, we have:

I Theorem 7. For any k ≥ 1, there exists a graph Gk with O(k) vertices that has an
outer-string representation, but any outer-string representation of Gk requires two strings to
intersect at least 2k−1 times.

T.Biedl, A.Biniaz, and M.Derka 10:7

Proof. We use graph Gk defined earlier; it has 10k + 10 vertices total. By Lemma 4, any
string representation of G+

k requires at least 2k−1 intersections between yk and x0. Since
any such representation can be obtained from an outer-string representation of Gk without
changing any string of Gk (see Lemma 1), any outer-string representation of Gk requires at
least 2k−1 intersections between yk and x0. J

Since line segments intersect at most once, any polygonal outer-string representation of
Gk hence must have a string with at least

√
2k−1 = 2(k−1)/2 ∈ 2Ω(n) segments.

3 Monotone string representations

In the previous section, we showed that outer-string graphs sometimes require an exponential
number of segments in any outer-string representation. Naturally, one wonders whether there
are any natural subclasses of string graphs that have polynomial-size representations.

In this section, we prove that there are string representations of polynomial size if the
graph is a monotone string graph. By this we mean that it has a string representation where
every curve is y-monotone, i.e., intersects any horizontal line at most once. Monotone string
graphs have been studied before (e.g. in the context of coloring [25]), but to our knowledge
the following is new:

I Theorem 8. Let G be an n-vertex m-edge graph with a monotone string-representation R.
Then G has a monotone string-representation R′ with at most 2n(n+m) segments.

Proof. We may assume that no two y-coordinates of crossings or endpoints in R coincide,
and no string has its endpoint on another string. Define a layer-set Y of y-coordinates as
follows: (1) For every vertex v, add to Y the y-coordinates of the bottom and top endpoints
of v. (2) For every edge e = (v, w), pick one point p in v∩w and add to Y the y-coordinates
y−e := y(p)−ε and y+

e := y(p)+ε, where ε is small enough such that no other intersections or
endpoints of curves happen within this range. See also Figure 5. Now create R′ by defining,
for each vertex v, the curve v′ as a poly-line that connects, from bottom to top, the points
where v intersects a horizontal line with y-coordinate in Y . In the rest of the proof we verify
that this represents the same graph and satisfies all conditions.

For any y ∈ Y, define `Y to be the horizontal line with y-coordinate Y ; we call `Y a
layer. To define the new curve v′ for a vertex v, let y1 < · · · < yd be all those values yi ∈ Y
for which `yi intersects v. Now let v′ be the poly-line v ∩ `y1 ,v ∩ `y2 , . . . ,v ∩ `yd . (These
intersection points are unique since v is monotone.) Curve v′ is monotone and has at most
2m+ 2n− 1 segments.

It remains to argue that R′ represents the same graph as R did. If e = (v, w) is an edge,
then v′ crosses w′ between the two layers that were added just above and below a point in
v ∩w.

For the other direction, let us assume that curves v′ and w′ cross in R′, say at point c.
The crossing c cannot lie on a layer `, because both v′ and w′ cross ` at the same points as
v and w did, and Y was chosen so that no layer contains crossings of R.

So c lies between two consecutive layers, say ` and `′. After possible renaming, assume
that v′ ∩ ` lies to the left of w′ ∩ `. Since the curves use line segments between layers and
there is a crossing, we must have the reverse order on `′, i.e., v′ ∩ `′ lies to the right of w′ ∩ `′.

But recall that we chose v′ such that v′ ∩ ` = v∩ `, and similarly for w and `′. Therefore,
in R we also had v to the left of w on ` and to the right of w on `′. Curves v and w are
y-monotone in the stretch between ` and `′. It follows that the two curves v and w cross
somewhere within this stretch. Therefore (v, w) is an edge of the graph as required. J

SWAT 2018

10:8 On the Size of Outer-String Representations

1

2

3

4
5

1

2

3

4
5

1
2

3

4
5

Figure 5 A monotone string-representation of C5, an application of our algorithm, and re-assigning
coordinates to obtain an n× (2m+ 2n)-grid.

We note that R′ can be assumed to reside on an n× (2m+ n)-grid. Namely, each curve
consists of line segments that connect consecutive layers. We can re-assign y-coordinates in
{1, . . . , 2m+ 2n} to the layers, and re-assign x-coordinates in {1, . . . , n} to the points where
curves intersect layers, and the same line segments will cross between consecutive layers,
hence we obtain a string representation of the same graph. See Figure 5.

One drawback of our proof is that it needs an explicit representation R to create the
polynomial-sized representation R′. It remains open how to find such a representation R′,
given just the graph.

4 Independent set in monotone outer-string graphs

Keil et al. presented an algorithm for (weighted) independent set on outer-string graphs that
runs in time O(N3) (as before, N is the size of an outer-string representation) [14]. However,
due to Theorem 7, N may need to be in 2Ω(n). In this section we study the independent
set problem on monotone string graphs, which have a polynomial-size representation by
Theorem 8. Since planar graphs are segment graphs [4] (hence monotone string graphs),
and since maximum independent set is NP-hard for planar graphs [11], we have:

I Proposition 9. Maximum independent set is NP-hard even for monotone string graphs.

We therefore turn our attention to monotone outer-string graphs. Here, we know from
Keil et al.’s result that the maximum independent set problem is solvable in polynomial
time in the size of representation, and from Theorem 8 that there exists a representation
with size N ∈ O(nm) and at most O(m + n) line segments per string. Presuming such a
representation is given, we can hence solve the independent set problem in O(n3m3) time.
We now show that for two special cases of monotone outer-string graphs, a better run-time
can be achieved.

I Definition 10. Let G be a monotone outer-string graph. We say that G is strip-grounded
if there exists a monotone string representation of G with a bounding rectangle ρ such that
all strings have one end at the top or bottom side of ρ. We say that G is line-grounded if all
strings have one end on the bottom side of ρ.

T.Biedl, A.Biniaz, and M.Derka 10:9

vi vj

t(vi)

t(vj)

vk

Figure 6 Line-grounded strings, and an illustration of the formula for W (i, j).

Figures 6 and 7 illustrate line-grounded and strip-grounded graphs, respectively. We
may, after shortening some strings, assume that no string in such a representation touches
both the bottom and the top of ρ. For a string v, we use b(v) and t(v) to denote the
y-coordinates of the bottom and top endpoints of v, respectively. For ease of description, we
add two negative-weight dummy vertices with strings along the left and right sides of ρ (no
optimal solution will include these two vertices/strings). Enumerate the bottom-grounded
vertices (i.e., vertices whose strings attach at the bottom side of ρ) as v1, . . . , vb, from left
to right by bottom endpoint. Enumerate the top-ground vertices as u1, . . . , ut, from left to
right by top endpoint. Here, v1 = u1 and vb = ut are the dummy vertices.

4.1 Line-grounded monotone string graphs
We first show how to find the maximum independent set in a line-grounded monotone
string graph G; this will be a useful subroutine later. We only have vertices v1, . . . , vb (with
b = n+ 2 due to the dummy vertices). We proceed by dynamic programming, and define
sub-problems as follows (a similar technique has been used in [1] for computing approximate
maximum independent set of segments that cross a straight line). For any pair (i, j), with
1 ≤ i < j ≤ b and (vi, vj) 6∈ E, define S(i, j) to be the set of vertices vk ∈ {vi+1, . . . , vj−1}
that satisfy t(vk) ≤ min{t(vi), t(vj)}, (vk, vi) 6∈ E and (vk, vj) 6∈ E. Put differently, S(i, j)
contains every vertex vk for which vk is strictly within the region bounded by vi, the bottom
side of ρ, vj, and the horizontal line with y-coordinate min{t(vi), t(vj)} (see Figure 6). Due
to the dummy vertices, we have S(1, b) = V .

Let w(v) be the weight of vertex v, and set W (i, j) to be the weight of a maximum
independent set in S(i, j).

I Claim 11. W (i, j) =
{

0 if S(i, j) is empty
maxvk∈S(i,j)W (i, k) +W (k, j) + w(vk) otherwise.

Proof. See Figure 6 for an illustration of this proof. Consider an optimal solution I∗ for
S(i, j). Let vk be the vertex that maximizes t(vk) among the vertices in I∗ (if there is no
such vk then S(i, j) = ∅ and the equality holds). Let v be some other vertex in I∗. Since I∗ is
an independent set, v does not intersect vk. It also intersects neither vi nor vj by definition
of S(i, j). Finally t(v) ≤ t(vk) by choice of vk. It follows that v ∈ S(i, k) or v ∈ S(k, j). So
I∗ − {vk} induces two independent sets for S(i, k) and S(k, j). So “≤” holds for this choice
of vk, and even more so for the maximum among all vk in S(i, j).

For the other direction, let k be the index where the maximum is achieved and fix
maximum independent sets Ii and Ij of S(i, k) and S(k, j). Observe that no string of Ii can
intersect one in Ij since they reside within disjoint regions, and neither of them can intersect
vk by definition of S(i, k) and S(k, j). So Ii ∪ Ij ∪ {vk} is an independent set of S(i, j) and
“≥” holds. J

SWAT 2018

10:10 On the Size of Outer-String Representations

By computing S(1, b) recursively with standard dynamic programming techniques, we
can hence find the maximum independent set of G. We briefly discuss the run time. To
find set S(i, j), we mark all neighbours of vi, all neighbours of vj , and all vertices v with
t(v) > min{t(vi), t(vj)}. Then we take all unmarked vertices in {vi+1, . . . , vj−1}; clearly this
takes O(n) time per set S(i, j). Evaluating the recursive formula takes O(n) time as well,
and since we have O(n2) subproblems, the overall run-time is O(n3). (Note that for this
algorithm, we do not even need an explicit line-grounded monotone string representation:
it suffices to have graph G, and the coordinates of the top and bottom endpoints, together
with the promise that they correspond to such a representation.)

I Theorem 12. Given a vertex-weighted graph G with a line-grounded monotone string
representation, we can compute the maximum-weight independent set of G in O(n3) time.

4.2 Strip-grounded monotone string graphs

Now we turn to strip-grounded monotone string graphs. First note that by applying the
algorithm for line-grounded monotone string graphs twice (once for the bottom-grounded
vertices and once for the top-grounded vertices), we immediately obtain a 2-approximation
algorithm, which runs in O(n3) time. At the price of an increased run-time, we show how to
solve this problem optimally. For this, we need a more complicated set of subproblems:

Let v be a bottom-grounded string and u be a top-grounded string such that (v, u) 6∈ E
and t(v) ≥ b(u). We say that a vertex x lies between v and u if there exists a horizontal line
` that intersects all of v,u,x, and for which the point `∩ x lies between the points `∩ v and
` ∩ u. Define the following sets (see also Figure 7):

Let 1 ≤ i ≤ j ≤ b and 1 ≤ α ≤ β ≤ t be indices such that {vi, uα, vj , uβ} is an
independent set, and further t(vi) ≥ b(uα) and t(vj) ≥ b(uβ). Define S(i, α; j, β) to be
all those vertices in {vi+1, . . . , vj−1} ∪ {uα+1, . . . , uβ−1} that are adjacent to none of
vi, vj , uα, uβ , and do not lie between vi and uα or between vj and uβ .
Let 1 ≤ i ≤ k ≤ b and 1 ≤ α ≤ t be indices such that {vi, uα, vk} is an independent set
and t(vi) ≥ b(uα). Define SSW (i, α; k) to be all those vertices v in {vi+1, . . . , vk−1} that
are adjacent to none of vi, vk, uα, do not lie between vi and uα, and for which t(v) ≤ t(vk).
We symmetrically define SSE(k; j, β), SNW (i, α; γ) and SSW (γ; j, β). See also Figure 7.
Finally we also need the set S(i, j) defined earlier (we denote it Sv(i, j) since it uses the
bottom-grounded vertices), and symmetrically set Su(α, β) for top-grounded vertices.

Let W (i, j;α, β) be the weight of a maximum independent set in subgraph induced by
vertex set S(i, α; j, β), and similarly for all other sets. We already had the formula forWv(i, j)
(Claim 11), and a symmetric one holds for Wu(α, β). With much the same proof one can
show (see also Figure 7(c)):

I Claim 13. WSW (i, k;α) = 0 if SSW (i, k;α) is empty. Otherwise,

WSW (i, k;α) = max
vr∈SSW (i,k;α)

WSW (i, r;α) +Wv(r, k) + w(vk).

The formula for WSW , WNE and WNW are symmetric. As for W (i, j;α, β), based on
whether the maximum independent set contains bottom-grounded or top-grounded vertices,
and how they interact, one can show the following formula:

T.Biedl, A.Biniaz, and M.Derka 10:11

vi vj

uα uβuγ

SSW (i, α; k)
SSE(k; j, β)

SNW (i, α; γ) SNE(γ; j, β)

vk

(a)

vi vj

uα uβ

vk

uγ
S(i, α; k, γ)

S(k, γ; j, β)

(b)

vi

uα

SSW(i, α; r)

vk

vr

Sv(r, k)

(c)

Figure 7 A strip-grounded graph. Strings in S(i, α; j, β) must be in the striped region. We
illustrate recursive formulas (a) for W (i, α, j, k) for t(vk) < b(uγ), (b) for W (i, α, j, k) for t(vk) ≥
b(uγ), and (c) for WSW (i, α; k).

I Claim 14. W (i, j;α, β) = 0 if S(i, α; j, β) is empty. Otherwise, it is the maximum of

maxvk∈S(i,α;j,β) WSW (i, α; k) +WSE(k; j, β) + w(vk),
maxuγ∈S(i,α;j,β) WNW (i, α; γ) +WNE(γ; j, β) + w(uγ),

maxvk,uγ∈S(i,α;j,β),t(vk)<b(uγ) WSW (i, α; k) +WSE(k; j, β) + w(vk)
+WNW (i, α; γ) +WNE(γ; j, β) + w(uγ), and

maxvk,uγ∈S(i,α;j,β),t(vk)>b(uγ),(vk,uγ)6∈E W (i, k;α, γ) +W (k, j; γ, β) + w(vk) + w(uγ)

Proof. To show ‘≥’, observe that each term of the maximum on the right-hand side cor-
responds to two or four independent sets in two or four regions defined by the parameters.
As one easily verifies, these regions are disjoint for all cases, and none of them contains vk
and/or uγ . We can hence combine these independent sets and add vk and/or uγ , and obtain
an independent set for S(i, α; j, β). The optimum independent set cannot be smaller.

To prove ‘≤’, consider an optimal solution I∗ for S(i, α; j, β). We may assume that I∗ is
non-empty; else S(i, α; j, β) is empty and the equation holds. We distinguish cases:

Case 1: I∗ contains no top-grounded vertex. Since I∗ is non-empty, it therefore contains
some vk with i < k < j. Let vk be the vertex that maximizes t(vk). With this choice, any
other vertex in I∗ is bottom-grounded and belongs to SSW (i, α; k) or SSE(k; j, β), depending
on whether its index is before or after k. Therefore I∗ − {vk} splits into two independent
sets for SSW (i, α; k) and SSE(k; j, β), and w(I∗) + w(vk) ≤WSW (i, α; k) +WSE(k; j, β).

Case 2: I∗ contains no bottom-grounded vertex. Symmetrically then one shows that
w(I∗) ≤ WNW (i, α; γ) +WNE(γ; j, β) + w(uγ) where uγ is the top-grounded vertex in I∗
that minimizes b(uγ).

Case 3: I∗ contains a bottom-grounded vertex vk and a top-grounded vertex uγ , but for
any two such vertices we have t(vk) < b(uγ). Choose vk so that it maximizes t(vk) and
uγ so that it minimizes b(uγ). Then any other bottom-grounded vertex v in I∗ satisfies
t(v) ≤ t(vk) and so belongs to SSW (i, α; k) or SSE(k; j, β). Any other top-grounded vertex u
in I∗ satisfies b(u) ≥ b(uγ) and so belongs to SNE(i, α; γ) or SNE(γ; j, β). Thus I∗−{vk, uγ}
splits into four independent sets for these four vertex sets, hence w(I∗) ≤ WSW (i, α; k) +
WSE(k; j, β) + w(vk) +WNW (i, α; γ) +WNE(γ; j, β) + w(uγ).

SWAT 2018

10:12 On the Size of Outer-String Representations

Case 4: I∗ contains a bottom-grounded vertex vk and a top-grounded vertex uγ with
t(vk) ≥ b(uγ). Thus, any line ` with y-coordinate in [b(uγ), t(vk)] intersects both vk and uγ .
We may assume that any such line ` intersects no other string of I∗ in the range between
` ∩ vk and ` ∩ uγ , else we can replace either vk or uγ with the intersected string. Thus no
other vertex x in I∗ is between vk and uγ . Therefore any vertex x 6= vk, uγ in I∗ belongs
to either S(i, α; k, γ) or to S(k, γ; j, β). So I∗ − {vk, uγ} splits into two independent sets for
these two subsets. This proves that w(I∗) ≤W (i, α; k, γ)+W (k, γ; j, β)+w(vk)+w(uγ). J

Since S(1, a; 1, b) = V with our choice of dummy vertices, therefore we can compute the
maximum independent set in G with dynamic programming. To analyze its run-time, observe
that we have defined O(n4) sets. To compute each set, we need to test quickly whether x is
between vi and uα for some independent set {x, vi, uα}. We first test whether there exists
some Y with b(uα) ≤ Y ≤ t(vi) and b(x) ≤ Y ≤ t(x); otherwise x is surely not between
them. If there is such a Y , then next find the points pu, pv, px where the horizontal line with
y-coordinate Y intersects the three strings, and test their order. Recall that we assumed the
strings to have O(m+ n) segments, so finding these points (and hence testing whether x is
between vi and uα) can be done with binary search in O(logn) time.

With this, each set can be found in O(n2) time. For example, to find S(i, α; j, β), scan
the vertices vi+1, . . . , vj−1 and uα+1, . . . , uβ−1. For each, test in O(n) time whether it is
non-adjacent to vi, uα, vj , uβ , and test in O(logn) time that it is neither between vi and uα,
nor between vj and uβ . The computation for the other types of sets is similar.

Given all the sets, the evaluation of the formula can be done in O(n2) time per set, or
O(n6) total for all O(n4) sets. Therefore, we get the following theorem.

I Theorem 15. The maximum independent set in a vertex-weighted graph with a strip-
grounded monotone string representation can be computed in O(n6) time.

5 Conclusions

In this paper, we studied graphs that do or do not have string representations of polynomial
size. We argued that for some outer-string graphs any outer-string representation must have
exponential size. On the other hand, all monotone string graphs have a string representation
of polynomial size. Inspired by an algorithm of Keil et al. for maximum independent set
for outer-string graphs, we give an algorithm for maximum independent set for monotone
strip-grounded outer-string graphs, whose run-time is O(n6), presuming we are given such a
representation of polynomial size. We leave a number of open problems:

We have introduced some variants of string graphs (e.g., monotone string graphs, monotone
strip-grounded string graphs). What is the complexity of recognizing these graphs classes
and finding corresponding representations? Note that it is not even known whether
recognizing outer-string graphs is NP-hard (we proved that it is in NP).
What is the complexity of recognizing whether a graph has a string representation (or
outer-string representation) with at most k segments?
Is there an algorithm for independent set on outer-string graphs that is polynomial in
n? Our results show that this is not possible if we use an explicit description of a string
representation. But perhaps the string representation could be given implicitly in a
different way? Or perhaps it could be described (similarly as in [22]) with O(logN) bits,
by listing how it intersects a (suitably) chosen triangulation? Note that logN ∈ O(m),
so this would be polynomial.

T.Biedl, A.Biniaz, and M.Derka 10:13

References
1 Pankaj K. Agarwal and Nabil H. Mustafa. Independent set of intersection graphs of convex

objects in 2D. Comput. Geom., 34(2):83–95, 2006.
2 Sergio Cabello and Miha Jejcic. Refining the hierarchies of classes of geometric intersection

graphs. Electronic Notes in Discrete Mathematics, 54:223–228, 2016. doi:10.1016/j.endm.
2016.09.039.

3 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber.
Intersection graphs of rays and grounded segments. In Hans L. Bodlaender and Gerhard J.
Woeginger, editors, Graph-Theoretic Concepts in Computer Science - 43rd International
Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected
Papers, volume 10520 of Lecture Notes in Computer Science, pages 153–166. Springer,
2017. doi:10.1007/978-3-319-68705-6_12.

4 Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of
segments in the plane: extended abstract. In Michael Mitzenmacher, editor, Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 631–638. ACM, 2009. doi:10.1145/1536414.1536500.

5 Peter Damaschke. The hamiltonian circuit problem for circle graphs is np-complete. Inf.
Process. Lett., 32(1):1–2, 1989. doi:10.1016/0020-0190(89)90059-8.

6 Martin Derka. Restricted String Representations. PhD thesis, David R. Cheriton School of
Computer Science, 2017. URL: https://uwspace.uwaterloo.ca/handle/10012/12253.

7 Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs of curves
in the plane. J. Comb. Theory, Ser. B, 21(1):8–20, 1976. doi:10.1016/0095-8956(76)
90022-8.

8 Jacob Fox and János Pach. Separator theorems and Turán-type results for planar intersec-
tion graphs. Adv. Math., 219:1070–1080, 2008.

9 Jacob Fox and János Pach. A separator theorem for string graphs and its applica-
tions. Combinatorics, Probability & Computing, 19(3):371–390, 2010. doi:10.1017/
S0963548309990459.

10 Jacob Fox and János Pach. Computing the independence number of intersection graphs. In
Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1161–1165. SIAM, 2011. doi:10.1137/1.9781611973082.87.

11 M. R. Garey and David S. Johnson. The rectilinear steiner tree problem in NP complete.
SIAM Journal of Applied Mathematics, 32:826–834, 1977.

12 M. R. Garey, David S. Johnson, G. L. Miller, and Christos H. Papadimitriou. The complex-
ity of coloring circular arcs and chords. SIAM J. Matrix Analysis Applications, 1(2):216–227,
1980. doi:10.1137/0601025.

13 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion
and low-density graphs. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA
2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceed-
ings, volume 9294 of Lecture Notes in Computer Science, pages 717–728. Springer, 2015.
doi:10.1007/978-3-662-48350-3_60.

14 J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An
algorithm for the maximum weight independent set problem on outerstring graphs. Comput.
Geom., 60:19–25, 2017. Appeared also in the Proceedings of CCCG 2015.

15 Jan Kratochvíl. String graphs. II. recognizing string graphs is np-hard. J. Comb. Theory,
Ser. B, 52(1):67–78, 1991. doi:10.1016/0095-8956(91)90091-W.

16 Jan Kratochvíl and Jiří Matoušek. String graphs requiring exponential representations. J.
Comb. Theory, Ser. B, 53(1):1–4, 1991. doi:10.1016/0095-8956(91)90050-T.

SWAT 2018

http://dx.doi.org/10.1016/j.endm.2016.09.039
http://dx.doi.org/10.1016/j.endm.2016.09.039
http://dx.doi.org/10.1007/978-3-319-68705-6_12
http://dx.doi.org/10.1145/1536414.1536500
http://dx.doi.org/10.1016/0020-0190(89)90059-8
https://uwspace.uwaterloo.ca/handle/10012/12253
http://dx.doi.org/10.1016/0095-8956(76)90022-8
http://dx.doi.org/10.1016/0095-8956(76)90022-8
http://dx.doi.org/10.1017/S0963548309990459
http://dx.doi.org/10.1017/S0963548309990459
http://dx.doi.org/10.1137/1.9781611973082.87
http://dx.doi.org/10.1137/0601025
http://dx.doi.org/10.1007/978-3-662-48350-3_60
http://dx.doi.org/10.1016/0095-8956(91)90091-W
http://dx.doi.org/10.1016/0095-8956(91)90050-T

10:14 On the Size of Outer-String Representations

17 James R. Lee. Separators in region intersection graphs. In Innovations in Theoretical
Computer Science, ITCS’17, 2017.

18 Jiří Matoušek. Near-optimal separators in string graphs. CoRR, abs/1302.6482, 2013.
arXiv:1302.6482.

19 Matthias Middendorf and Frank Pfeiffer. The max clique problem in classes of string-graphs.
Discrete Mathematics, 108(1-3):365–372, 1992. doi:10.1016/0012-365X(92)90688-C.

20 Matthias Middendorf and Frank Pfeiffer. Weakly transitive orientations, hasse dia-
grams and string graphs. Discrete Mathematics, 111(1-3):393–400, 1993. doi:10.1016/
0012-365X(93)90176-T.

21 János Pach and Géza Tóth. Recognizing string graphs is decidable. Discrete & Computa-
tional Geometry, 28(4):593–606, 2002. doi:10.1007/s00454-002-2891-4.

22 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string graphs is in
NP. Journal of Computer and System Sciences, 67(2):365–380, 2003.

23 Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs. In Jeffrey Scott
Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages
241–246. ACM, 2001. doi:10.1145/380752.380807.

24 F. W. Sinden. Topology of thin film rc-circuits. Bell System Technical Journal, 45:1639–
1662, 1966. doi:10.1002/j.1538-7305.1966.tb01713.x.

25 Andrew Suk. Coloring intersection graphs of x-monotone curves in the plane. Combinat-
orica, 34(4):487–505, 2014. doi:10.1007/s00493-014-2942-5.

http://arxiv.org/abs/1302.6482
http://dx.doi.org/10.1016/0012-365X(92)90688-C
http://dx.doi.org/10.1016/0012-365X(93)90176-T
http://dx.doi.org/10.1016/0012-365X(93)90176-T
http://dx.doi.org/10.1007/s00454-002-2891-4
http://dx.doi.org/10.1145/380752.380807
http://dx.doi.org/10.1002/j.1538-7305.1966.tb01713.x
http://dx.doi.org/10.1007/s00493-014-2942-5

Flip Distance to some Plane Configurations
Ahmad Biniaz1

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
ahmad.biniaz@gmail.com

Anil Maheshwari2

School of Computer Science, Carleton University
Ottawa, Canada
anil@scs.carleton.ca

Michiel Smid3

School of Computer Science, Carleton University
Ottawa, Canada
michiel@scs.carleton.ca

Abstract
We study an old geometric optimization problem in the plane. Given a perfect matching M

on a set of n points in the plane, we can transform it to a non-crossing perfect matching by a
finite sequence of flip operations. The flip operation removes two crossing edges from M and
adds two non-crossing edges. Let f(M) and F (M) denote the minimum and maximum lengths
of a flip sequence on M , respectively. It has been proved by Bonnet and Miltzow (2016) that
f(M) = O(n2) and by van Leeuwen and Schoone (1980) that F (M) = O(n3). We prove that
f(M) = O(n∆) where ∆ is the spread of the point set, which is defined as the ratio between the
longest and the shortest pairwise distances. This improves the previous bound for point sets with
sublinear spread. For a matchingM on n points in convex position we prove that f(M) = n/2−1
and F (M) =

(
n/2

2
)
; these bounds are tight.

Any bound on F (·) carries over to the bichromatic setting, while this is not necessarily true
for f(·). Let M ′ be a bichromatic matching. The best known upper bound for f(M ′) is the same
as for F (M ′), which is essentially O(n3). We prove that f(M ′) 6 n − 2 for points in convex
position, and f(M ′) = O(n2) for semi-collinear points.

The flip operation can also be defined on spanning trees. For a spanning tree T on a convex
point set we show that f(T) = O(n logn).

2012 ACM Subject Classification Theory of computation → Computational geometry, Math-
ematics of computing → Discrete mathematics

Keywords and phrases flip distance, non-crossing edges, perfect matchings, spanning trees

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.11

1 Introduction

A geometric graph is a graph whose vertices are points in the plane, and whose edges are
straight-line segments connecting the points. All graphs that we consider in this paper are
geometric. A graph is plane if no pair of its edges cross each other. Let n > 2 be an even
integer, and let P be a set of n points in the plane that is in general position (no three points

1 Supported by NSERC and Fields Institute.
2 Supported by NSERC.
3 Supported by NSERC.

© Ahmad Binaiz, Anil Maheshwari, and Michiel Smid;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahmad.biniaz@gmail.com
mailto:anil@scs.carleton.ca
mailto:michiel@scs.carleton.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Flip Distance to some Plane Configurations

⇒ or

a

bc

d
a

bc

d a

bc

d

(a)

⇒

(b)

⇒

(c) (d)

Figure 1 (a) Two ways to flip a crossing in a monochromatic matching. (b) The only way to flip
a crossing in a bichromatic matching. (c) One way to flip a crossing in a monochromatic tree. (d)
No way to flip a crossing in a bichromatic Hamiltonian cycle.

on a line). For two points a and b in the plane, we denote by ab the segment with endpoints
a and b. Let M be a perfect matching on P . If two edges in M cross each other, we can
remove this crossing by a flip operation. The flip operation (or flip for short) removes two
crossing edges and adds two non-crossing edges to obtain a new perfect matching. In other
words, if two segments ab and cd cross, then a flip removes ab and cd from the matching, and
adds either ac and bd, or ad and bc to the matching; see Figure 1(a). Every flip decreases
the total length of the edges of M , and thus, after a finite sequence of flips, M can be
transformed to a plane perfect matching. This process of transforming a crossing matching
to a plane matching is referred to as uncrossing or untangling a matching. Motivated by this
old folklore result, we investigate the minimum and the maximum lengths of a sequence of
flips to reach a plane matching.

To uncross a perfect matching M , we say that the sequence (M=M0,M1, . . . ,Mk) is a
valid flip sequence if Mi+1 is obtained from Mi by a single flip, and Mk is plane. The number
k denotes the length of this flip sequence. We define f(M) to be the minimum length of any
valid flip sequence to uncross M , that is, the minimum number of flips required to transform
M to a plane perfect matching. We define F (M) to be the maximum length of any valid flip
sequence. As for F (M), one can imagine that an adversary imposes which of the two flips to
apply on which of the crossings.

In the bichromatic setting, we are given n/2 red and n/2 blue points and a bichromatic
matching, that is a perfect matching in which the two endpoints of every segment have
distinct colors. Contrary to the monochromatic setting, there is only one way to flip two
crossing bichromatic edges; see Figure 1(b). In the bichromatic setting the adversary can only
impose the crossing to flip. Thus, any upper bound on F (M) for monochromatic matchings
carries over to bichromatic matchings; this statement is not necessarily true for f(M).

The flip operation can be defined for a spanning tree (resp. a Hamiltonian cycle) analog-
ously, that is, we remove a pair of crossing edges and add two other edges so that the graph
remains a spanning tree (resp. a Hamiltonian cycle) after this operation. We define f(·) and
F (·) for spanning trees and Hamiltonian cycles, analogously. As shown in Figure 1(c), there
is only one way to flip a crossing in a spanning tree (resp. a Hamiltonian cycle). Contrary
to the bichromatic matching, it is not always possible to flip a crossing in a bichromatic
spanning tree nor in a bichromatic Hamiltonian cycle; see Figure 1(d).

A. Biniaz, A. Maheshwari, and M. Smid 11:3

1.1 Related Work

The most relevant works are by van Leeuwen and Schoone [21], and Oda and Watanabe [17]
for Hamiltonian cycles, and by Bonnet and Miltzow [7] for matchings. They proved, with
elegant arguments, the following results.

I Theorem 1 (van Leeuwen and Schoone, 1981 [21]). For every Hamiltonian cycle H on n
points in the plane we have that F (H) = O(n3).

I Theorem 2 (Oda and Watanabe, 2007 [17]). For every Hamiltonian cycle H on n points
in the plane in convex position we have that f(H) 6 2n− 7.

As for a lower bound, they presented a Hamiltonian cycle H on n > 7 points in the plane
in convex position for which f(H) > n− 2.

I Theorem 3 (Bonnet and Miltzow, 2016 [7]). For every perfect matching M on a set of n
points in the plane in general position we have that f(M) = O(n2).

The O(n3) upper bound of Theorem 1 carries over to perfect matchings. As for lower
bounds, Bonnet and Miltzow [7] presented two matchingsM1 andM2 such that f(M1) = Ω(n)
and F (M2) = Ω(n2). The bound F (M) = O(n3) holds even if M is a bichromatic matching,
while the proof of f(M) = O(n2) does not generalize for the bichromatic setting.

An alternate definition of an edge flip in a graph is the operation of removing one edge
and inserting a different edge such that the resulting graph remains in the same graph class.
The edge flip operation has been studied for many different graph classes, in particular,
for two given graphs with an equal number of vertices and edges, the number of edge flips
required to transform one into another. See the survey by Bose and Hurtado [8] on edge flips
in planar graphs both in the combinatorial and the geometric settings, and see [3, 9, 14, 16]
for edge flips in triangulations.

A related problem is the compatible matching problem in which we are given two perfect
matchings on the same point set and the goal is to transform one to another by a sequence
of compatible matchings (two perfect matchings, on the same point set, are said to be
compatible if they are edge disjoint and their union is non-crossing). See [1, 2, 4, 15] for
recent work on compatible matchings, and [18] for its extension to compatible trees.

1.2 Our Contribution

In this paper we decrease the gap between lower and upper bounds for f(·) and F (·) for
some input configurations. In Section 2 we show that for every perfect matching M , on a set
P of n points in the plane, we have f(M) = O(n∆) where ∆ is the spread of P .

Assume that P is in convex position. In Section 3 we show that for every perfect matching
M on P we have that f(M) 6 n/2−1 and F (M) 6

(
n/2

2
)
. These bounds are tight as Bonnet

and Miltzow [7] showed the existence of two perfect matchings M1 and M2 on n points in
convex position such that f(M1) > n/2− 1 and F (M2) >

(
n/2

2
)
. We also prove that for every

spanning tree T on P we have that f(T) = O(n logn).
In Section 4 we study bichromatic matchings on special point sets. Assume that the

points of P are colored red and blue. We prove that, if P is in convex position, then for
every perfect bichromatic matching M on P we have that f(M) 6 n − 2. Also, we prove
that, if P is semi-collinear, i.e., the blue points are on a straight line, then for every perfect
bichromatic matching M on P we have that f(M) = O(n2). Table 1 summarizes the results.

SWAT 2018

11:4 Flip Distance to some Plane Configurations

Table 1 Upper bounds on the minimum and maximum number of flips (∆ is the spread).

minimum # of flips f(·)-general position f(·)-convex position

matchings O(n2) [7]
n/2 − 1 Theorem 11

O(n∆) Theorem 4
bichromatic matchings O(n3) [21] n − 2 Theorem 15
trees O(n3) [21] O(n log n) Theorem 14
Hamiltonian cycles O(n3) [21] 2n − 7 [17]

bichromatic matching on semi-collinear points f(·) = O(n2) Theorem 17

maximum # of flips F (·)-general position F (·)-convex position
matchings/trees/cycles O(n3) [21]

(
n/2

2

)
Theorem 11

1.3 Preliminaries
Let a and b be two points in the plane. We denote by ab the straight line-segment between a
and b, and by ab the line through a and b. Let P be a set of points in the plane in convex
position. For two points p and q in P we define the depth of the segment pq as the minimum
number of points of P \ {p, q} on either side of pq. A boundary edge is a segment of depth
zero, i.e., an edge of the convex hull of P . An edge e in a graph G is said to be free if e is
not crossed by other edges of G.

2 Minimum Number of Flips

The spread ∆ of a set of points (also called the distance ratio [11]) is the ratio between the
largest and the smallest interpoint distances. It is well known that the spread of a set of n
points in the plane is Ω(

√
n) (see e.g., [19]). In this section, we prove an upper bound on

the minimum length of a flip sequence in terms of n and ∆. In fact we prove the following
theorem.

I Theorem 4. For every perfect matching M on a set of n points in the plane in general
position we have that f(M) = O(n∆), where ∆ is the spread of the point set.

For point sets with spread o(n), the upper bound of Theorem 4 is better than the O(n2)
upper bound of Theorem 3. For example, for dense point sets, which have spread O(

√
n),

Theorem 4 gives an upper bound of O(n
√
n) on the number of flips. According to [13], dense

point sets commonly appear in nature, and they have applications in computer graphics.
Valtr and others [13, 19, 20] have established several combinatorial bounds for dense point
sets that improve corresponding bounds for arbitrary point sets.

Let P be a set of n points in the plane with spread ∆. Let M be a perfect matching on
P . We prove that M can be untangled by O(n∆) flips, i.e., f(M) = O(n∆). The main idea
of our proof is as follows. Let µ be the minimum distance between any pair of points in P .
Let |pq| denote the Euclidean distance between two points p, q ∈ P . Since P has spread ∆,
we have |pq| 6 µ∆. For the matching M we define its weight, w(M), to be the total length
of its edges. Since M has n/2 edges,

w(M) =
∑

pq∈M

|pq| = O(nµ∆). (1)

Recall that a pair of crossing segments can be flipped in two different ways as depicted in
Figure 1(a). In the remainder of this section we show that one of these two flip operations

A. Biniaz, A. Maheshwari, and M. Smid 11:5

p
q

r′

s′

o

r

s

(a)

a

b

c

d

o

o′

o′′

(b)

Figure 2 Illustrations of the proofs of (a) Lemma 7 and (b) Lemma 6.

reduces w(M) by at least tµ, for some constant t > 0. Combining this with Equality (1)
implies the existence of a flip sequence of length O(n∆) that uncrosses M .

Take any two crossing edges pq and rs in M , and let o be their intersection point. We
flip pq and rs to ps and rq, if ∠roq 6 π/2, and to pr and qs, otherwise. In other words, we
flip pq and rs to the two edges that face the two smaller angles at o. In Lemma 7 we prove
that this flip reduces the length of edges by at least tµ′, for some constant t > 0, where µ′ is
the minimum distance between any pair of points in {p, q, r, s}. Since the minimum distance
between pairs in {p, q, r, s} is at least the minimum distance between pairs in P , our result
follows. We use the following two lemmas in the proof of Lemma 7; we prove these two
lemmas later.

I Lemma 5. Let ab and cd be two crossing segments, and let o be their intersection point.
Let µ′′ be the minimum distance between any pair of points in {a, b, c, d}. If ∠cob 6 π/3,
then

(|ab|+ |cd|)− (|ad|+ |cb|) > µ′′.

I Lemma 6. Let ab and cd be two perpendicular segments that cross each other. Let µ′′
be the minimum distance between any pair of points in {a, b, c, d}. Then for any constant
t′ 6 (2−

√
2)/2 it holds that

(|ab|+ |cd|)− (|ad|+ |cb|) > t′µ′′.

I Lemma 7. Let pq and rs be two crossing segments, and let o be their intersection point.
Let µ′ be the minimum distance between any pair of points in {p, q, r, s}. If ∠roq 6 π/2, then
for some constant t it holds that

(|pq|+ |rs|)− (|ps|+ |rq|) > tµ′.

Proof. If ∠roq < π/3, then our claim follows, with t = 1, from Lemma 5 where p, q, r, s play
the roles of a, b, c, d, respectively. Assume that ∠roq > π/3. Observe that ∠roq = ∠pos.

After a suitable rotation and/or a horizontal reflection and/or relabeling assume that
|pq| > |rs|, pq is horizontal, p is to the left of q, and r lies above pq. Rotate rs counterclockwise
about o, while keeping o on this segment, until rs is vertical. See Figure 2(a). After this
rotation, let r′ and s′ denote the two points that correspond to r and s, respectively.

I Claim 8. |r′p| > |rp|/2 and |qs′| > |qs|/2.

We prove only the first inequality of this claim; the proof of the second inequality is
analogous. Since r′p is the hypotenuse of the right triangle 4r′op, we have |r′o| 6 |r′p|.

SWAT 2018

11:6 Flip Distance to some Plane Configurations

Since 4r′or is isosceles and ∠r′or 6 π/6, we have |rr′| < |r′o|, and thus, |rr′| < |r′p|. By
the triangle inequality we have |rp| 6 |rr′|+ |r′p| < 2|r′p|, which implies |r′p| > |rp|/2. This
proves Claim 8.

Observe that |r′q| > |rq|, |ps′| > |ps|, |r′s′| = |rs|, and by Claim 8, |r′p| > |rp|/2 and
|qs′| > |qs|/2. Thus, the minimum distance µ′′ between any pair of points in {p, q, r′, s′} is
not smaller than half the minimum distance between any pair of points in {p, q, r, s}, i.e.,
µ′′ > µ′/2. Lemma 6 implies that (|pq| + |r′s′|) − (|ps′| + |r′q|) > t′µ′′, for some constant
t′ > 0, where p, q, r′, s′ play the roles of a, b, c, d, respectively. We will see in the proof of
Lemma 6 that this inequality is valid for any positive constant t′ 6 (2−

√
2)/2. Combining

these inequalities, we get

(|pq|+ |rs|)− (|ps|+ |rq|) > (|pq|+ |r′s′|)− (|ps′|+ |r′q|)

>
2−
√

2
2 µ′′ >

2−
√

2
4 µ′.

Therefore, the claimed inequality in the statement of this lemma is valid for any positive
constant t 6 (2−

√
2)/4. J

I Note 9. The constants t′ = (2 −
√

2)/2 and t = (2 −
√

2)/4 in the proofs of Lemmas 6
and 7 are not optimized. To keep our proofs short and simple, we avoid optimizing these
constants.

I Note 10. The angle constraint in the statement of Lemma 7 cannot be dropped; the figure
to the right shows two crossing segments pq and rs for which (|pq|+ |rs|)− (|ps|+ |rq|) tends
to zero as ∠roq tends to π.

p
q

r

s
o

Proof of Lemma 5. We recall the simple fact that the largest side of every triangle always
faces the largest angle of the triangle. Since ∠cob 6 π/3, we have that ∠cbo > π/3 or
∠bco > π/3. Without loss of generality assume that ∠bco > π/3, and thus, ∠bco > ∠cob.
This implies that |ob| > |cb|. By a similar reasoning, we get that |oa| > |ad| or |od| > |ad|. If
|oa| > |ad|, then

|ab|+ |cd| − (|ad|+ |cb|) = (|oa|+ |ob|) + |cd| − (|ad|+ |cb|) > |cd| > µ′′,

and if |od| > |ad|, then

|ab|+ |cd|−(|ad|+ |cb|) = (|oa|+ |ob|)+(|oc|+ |od|)−(|ad|+ |cb|) > |oa|+ |oc| > |ac| > µ′′.J

Proof of Lemma 6. Refer to Figure 2(b) for an illustration of the proof. Let o be the
intersection point of ab and cd. Let o′ be the intersection point between cb and the line
that is perpendicular to cb. Without loss of generality assume that ob is longer than oc,
i.e., |ob| > |oc|. Then ∠ocb > ∠obc, and thus, ∠ocb > π/4. Since ∠oo′c = π/2 and
∠oco′ = ∠ocb > π/4, we get that ∠coo′ is the smallest angle in the triangle 4oco′, and thus,
o′c is its smallest side. By doing some simple algebra we get that |o′c| 6 |oc|/

√
2.

Let o′′ be the intersection point between ad and the line that is perpendicular to ad. We
consider two cases depending on which of oa and od is longer.

A. Biniaz, A. Maheshwari, and M. Smid 11:7

|oa| > |od|: By a similar reasoning as for ob and oc we get that |o′′d| 6 |od|/
√

2. Observe
that |ob| > |o′b| and |oa| > |o′′a|. By combining these inequalities we get

(|ab|+ |cd|)− (|ad|+ |cb|) = (|oa|+ |ob|) + (|oc|+ |od|)− (|o′′a|+ |o′′d|)− (|o′c|+ |o′b|)

> |oc|+ |od| − |o′′d| − |o′c| > |oc|+ |od| − |od|√
2
− |oc|√

2

=
(

1− 1√
2

)
(|oc|+ |od|) = 2−

√
2

2 |cd| > 2−
√

2
2 µ′′.

|oa| 6 |od|: Again, by a similar reasoning as for ob and oc we get that |o′′a| 6 |oa|/
√

2.
Also, by a similar reasoning as in the previous case we get

(|ab|+ |cd|)− (|ad|+ |cb|) > |oc|+ |oa| − |oa|√
2
− |oc|√

2

= 2−
√

2
2 |ca| > 2−

√
2

2 µ′′.

Therefore, the claimed inequality in the statement of this lemma is valid for any positive
constant t′ 6 (2−

√
2)/2. J

3 Points in Convex Position

In this section we study the problem of uncrossing perfect matchings and spanning trees
on points in convex position. For perfect matchings, Bonnet and Miltzow [7] exhibited
two perfect matchings M1 and M2 on n points in the plane in convex position such that
f(M1) > n/2 − 1 and F (M2) >

(
n/2

2
)
. The following theorem provides matching upper

bounds for f(·) and F (·).

I Theorem 11. For every perfect matching M on a set of n points in the plane in convex
position we have f(M) 6 n

2 − 1 and F (M) 6
(

n/2
2
)
.

Proof. The matching M contains n/2 edges. First we prove that F (M) 6
(

n/2
2
)
. Notice

that the number of crossings between the edges of M is at most
(

n/2
2
)
. We show that any

flip reduces this number by at least one, and thus, our claim follows. Take any pair ab and
cd of crossing edges of M . Flip this crossing, and let ac and bd be the new edges, after a
suitable relabeling. After this flip operation, the crossing between ab and cd disappears.
Moreover, any edge of M that crosses ac (or bd) used to cross ab or cd, and any edge of M
that crosses both ac and bd used to cross both ab and cd. Therefore, the total number of
crossings reduces by at least one, and thus, our claim follows.

Now, we prove, by induction on n, that f(M) 6 n/2− 1. If n = 2, then M has only one
edge, and thus, f(M) = 0. Assume that n > 4. First, we show how to transform M , by at
most one flip, to a perfect matching M ′ containing a boundary edge, i.e., an edge of the
boundary of the convex hull. Let p1, . . . , pn be the points in clockwise order. Let pipj be an
edge of M with minimum depth m. If m = 0, then M ′ = M is a matching in which pipj is
a boundary edge. Suppose that m > 1. Without loss of generality assume that i = 1 and
j = m+ 2. Let pk be the point that is matched to p2 by M . Because of the minimality of m,
the edge p2pk crosses p1pm+2. By flipping p2pk and p1pm+2 to p1p2 and pm+2pk we obtain
M ′ in which p1p2 is a boundary edge. Let M ′′ be the matching on n− 2 points obtaining
from M ′ by removing a boundary edge. By the induction hypothesis, it holds that

f(M) 6 1 + f(M ′′) 6 1 +
(
n− 2

2 − 1
)

= n

2 − 1. J

SWAT 2018

11:8 Flip Distance to some Plane Configurations

pm+2

pm+1

pk′

p1

p2

pk

⇒

δ δ′

pm+2

pm+1

pk′

p1

p2

pk

δ δ′

(a)

v
uv

u

v′
u′

(b)

Figure 3 (a) Illustration of the proof of Lemma 12: Flipping p1pm+2 and pm+1pk′ to p1pm+1

and pm+2pk′ , and then flipping p1pm+1 and p2pk to p1p2 and pkpm+1. (b) Illustration of the proof
of Lemma 13: vv′ is the first counterclockwise edge incident on v that is crossed by some edges
incident on u, and uu′ is the first counterclockwise edge incident on u that crosses vv′.

In the rest of this section we study spanning trees. The argument of [21] for Hamiltonian
cycles also extends to spanning trees, that is, if T1 is a spanning tree on n points in the plane,
then F (T1) = O(n3). Also, by an argument similar to the one in the proof of Theorem 11,
it can easily be shown that for every spanning tree T on n points in the plane in convex
position we have that F (T) = O(n2). In this section we prove that f(T) = O(n logn). Recall
that a boundary edge is an edge of the boundary of the convex hull.

I Lemma 12. Any spanning tree on a point set in convex position can be transformed, by at
most two flips, into a spanning tree containing a boundary edge.

Proof. Let T be a spanning tree on n points in the plane in convex position, and let p1, . . . , pn

be the points in clockwise order. Let pipj be an edge of T with minimum depth m (recall
the definition of depth from Section 1.3). If m = 0, then pipj is a boundary edge. Suppose
that m > 1. Without loss of generality assume that i = 1 and j = m+ 2. Because of the
minimality of m, all edges of T that are incident on p2, . . . , pm+1 cross p1pm+2. We consider
two cases with m = 1 and m > 1.

m = 1. In this case pm+1 = p2 and pm+2 = p3. Let δ be the path between p2 to p3 in T ,
and let pk be the vertex that is adjacent to p2 in δ. If δ contains p1, then we flip p1p3 and
p2pk to p1p2 and p3pk; this gives a spanning tree in which p1p2 is a boundary edge. If δ
does not contain p1, then we flip p1p3 and p2pk to p2p3 and p1pk; this gives a spanning
tree in which p2p3 is a boundary edge.
m > 1. Let δ be the path between p2 to pm+2 in T , and let pk be the vertex that is
adjacent to p2 in δ. If δ contains p1, then we flip p1pm+2 and p2pk to p1p2 and pm+2pk;
this gives the a spanning tree in which p1p2 is a boundary edge. Assume that δ does not
contain p1. Let δ′ be the path between pm+1 to p1 in T , and let pk′ be the vertex that is
adjacent to pm+1 in δ′; it may be that k′ = k. If δ′ contains pm+2, then we flip p1pm+2
and pm+1pk′ to pm+1pm+2 and p1pk′ ; this gives a spanning tree in which pm+1pm+2 is
a boundary edge. Assume that δ′ does not contain pm+2. See Figure 3(a). In this case
we have that k′ 6= k, because otherwise T would have a cycle. First we flip p1pm+2 and
pm+1pk′ to p1pm+1 and pm+2pk′ , then we flip p1pm+1 and p2pk to p1p2 and pkpm+1; this
gives a spanning tree in which p1p2 is a boundary edge. J

For the following lemma we do not need the vertices to be in convex position.

I Lemma 13. Let T be a spanning tree containing an edge uv such that every other edge is
incident on either u or v. Then f(T) 6 min(deg (u),deg (v))− 1, and this bound is tight.

A. Biniaz, A. Maheshwari, and M. Smid 11:9

Proof. After a suitable rotation and/or a horizontal reflection and/or relabeling assume that
uv is horizontal, u is to the left of v, and that deg (v) 6 deg (u). The edges that are incident
on points above uv do not cross the edges incident on points below uv. Thus, the crossings
above uv can be handled independently of the ones below uv. Because of symmetry, we
describe how to handle the crossings above uv. See Figure 3(b). We show how to increase, by
one flip, the number of free edges that are incident on v. By repeating this process, our claim
follows. To that end, let v′ be the first vertex, in counterclockwise order, that is adjacent
to v, and such that vv′ is crossed by at least one edge incident on u. Let u′ be the first
vertex, in counterclockwise order, that is adjacent to u, and such that uu′ crosses vv′; see
Figure 3(b). Flip this crossing to obtain new edges vu′ and uv′. The edge vu′ is free, because
otherwise uu′ cannot be the first counterclockwise edge that crosses vv′. Moreover, any edge
that is crossed by uv′ used to be crossed by uu′. Thus, the number of free edges that are
incident on v increases by at least one. By repeating this process, after at most deg (v)− 1
iterations, all incident edges on v become free (notice that the edge uv is already free); this
transforms T to a plane spanning tree. This proves the first statement of the lemma.

Recall that the statement of this lemma is not restricted to points in convex position,
and thus, the vertices of our tight example do not need to be in convex position. To verify
the tightness of the bound, consider a tree in which every edge incident on v (except uv) is
crossed by exactly one of the edges incident on u, and every edge incident on u crosses at most
one of the edges incident on v. This tree needs exactly deg (v)− 1 flips to be transformed to
a plane tree. J

I Theorem 14. For every spanning tree T on n points in the plane in convex position we
have that f(T) = O(n logn).

Proof. We present a recursive algorithm that uncrosses T by O(n logn) flips. As for the
base case, if n 6 3, then T is plane, and thus, no flip is needed. Assume that n > 4. By
Lemma 12, by at most two flips, we can transform T to a tree T ′ containing a boundary
edge uv. Contract the edge uv and denote the resulting tree with n− 1 vertices by T ′′; this
can be done by removing the vertex u together with its incident edges, and then connecting
its neighbors, by straight-line edges, to v. We call every such new edge a u-edge. Recursively
uncross T ′′ with f(T ′′) flips. During the uncrossing process of T ′′, whenever we flip/remove
a u-edge, we call the new edge that gets connected to v a u-edge. After uncrossing T ′′ we
return the vertex u back and connect it to v. Then we remove every u-edge vv′, which is
incident on v, and connect v′ to u. In the resulting tree, every crossing is between an edge
that is incident on u and an edge that is incident on v. Thus, after at most 2 + f(T ′′) flips, T
can be transformed into a tree in which any two crossing edges are incident on u and v. Then
by Lemma 13, we can obtain a plane tree by performing at most min(deg(u), deg(v)) − 1
more flips. Notice that the flip operation does not change the degree of vertices, and thus,
every vertex in the resulting tree has the same degree as in T . Therefore, we have that

f(T) 6 2 + f(T ′′) + min(deg (u), deg (v))− 1
= 1 + min(deg (u), deg (v)) + f(T ′′).

It remains to show that f(T) = O(n logn). To that end, we interpret the above recursion
by a union-find data structure with the linked-list representation and the weighted-union
heuristic [12, Chapter 21]. The number of flips in the above recursion can be interpreted
as the total time for union operations as follows: each time that we contract an edge uv
and recurse on a smaller tree we perform at most 1 + min(deg (u), deg (v)) flips. Consider
every vertex x of T as a set with deg (x) elements. Also, assume that all the elements of
these sets are pairwise distinct. Thus, we have n disjoint sets of total size 2(n− 1); this is
coming from the fact that T has n − 1 edges and its total vertex degree is 2(n − 1). The

SWAT 2018

11:10 Flip Distance to some Plane Configurations

p1pm+2

p2pm+1

pk

pk′

a

a′

b

b′

⇒
p1pm+2

p2pm+1

pk

pk′

a

a′

b

b′

Figure 4 Illustration of the proof of Theorem 15. Flipping bb′ and p1pm+2 to b′pm+2 and bp′,
and then flipping bp1 and aa′ to p1a′ and ab.

contraction of an edge uv can be interpreted as a union operation of the sets u and v whose
cost (number of flips) is at most 1 + min(|u|, |v|), where |x| denotes the size of the set x.
From the union-find data structure we have that the cost of a sequence of s operations on
m elements is O(s+m logm). In our case, the number m of elements is 2(n− 1), and the
number s of union operations (edge contractions) is n− 3 (no contraction is needed when
we hit the base case). Thus, it follows that the total cost (the total number of flips) is
O(n logn). J

4 Bichromatic Matchings

In this section we study the problem of uncrossing perfect bichromatic matchings for points
in convex position and for semi-collinear points. Let n > 2 be an even integer, and let P be a
set of n points in the plane, n/2 of which are colored red and n/2 are colored blue. If P is in
general position, then for any bichromatic matching M on P , the best known upper bound
for both f(M) and F (M) is the O(n3) bound that has been proved in [7, 21]. If P is in
convex position, the n/2− 1 and

(
n/2

2
)
lower bounds that are shown in [7] for f(·) and F (·),

respectively, in the monochromatic setting, also hold in the bichromatic setting. Theorem 11
implies that the

(
n/2

2
)
bound for F (·) is tight. The following theorem gives an upper bound

on f(·) for points in convex position.

I Theorem 15. For every perfect bichromatic matching M on n points in the plane in
convex position we have that f(M) 6 n− 2.

Proof. Our proof is by induction on n. If n = 2, then f(M) = 0. Assume that n > 4. First
we show how to transform M , by at most two flips, to a perfect bichromatic matching M ′
containing a boundary edge. Let p1, . . . , pn be the points in clockwise order. Let pipj be an
edge of M with minimum depth m. If m = 0, then M ′ = M is a matching in which pipj

is a boundary edge. Suppose that m > 1. Without loss of generality assume that i = 1,
j = m + 2, p1 is red, and pm+2 is blue as in Figure 4. Let pk and pk′ be the points that
are matched to p2 and pm+1, respectively; it may be that m+ 1 = 2 and k′ = k. Because
of the minimality of m, all edges that are incident on points p2, . . . , pm+1 cross p1pm+2. If
p2 is blue, then by flipping p1pm+2 and p2pk to p1p2 and pm+2pk we obtain M ′ in which
p1p2 is a boundary edge. Assume that p2 is red. If pm+1 is red, then by flipping p1pm+2
and pm+1pk′ to pm+1pm+2 and p1pk′ we obtain M ′ in which pm+1pm+2 is a boundary edge.
Assume that pm+1 is blue. See Figure 4. To this end, p2 and pm+1 have different colors, and
thus, m+ 1 6= 2 and k′ 6= k.

A. Biniaz, A. Maheshwari, and M. Smid 11:11

r

b

⇒ ⇒ ⇒

b b b

r r r

b′

r′

b′

r′

b′

r′

b′

r′

Figure 5 Reappearance of the crossing between br and b′r′.

For an illustration of the rest of the proof, follow Figure 4. The sequence p2, . . . , pm+1
starts with a red point and ends with a blue point. Thus, in this sequence there are two
points of distinct colors, say a and b, that are consecutive. Let b be the first blue point after
p1. Let a′ and b′ be the two points that are matched to a and b respectively. By flipping bb′
and p1pm+2 to b′pm+2 and bp1, and then flipping bp1 and aa′ to p1a

′ and ab we obtain M ′
in which ab is a boundary edge.

Let M ′′ be the bichromatic matching on n− 2 points obtaining from M ′ by removing a
boundary edge. By the induction hypothesis, it holds that

f(M) 6 2 + f(M ′′) 6 2 + ((n− 2)− 2) = n− 2. J

In the rest of this section we study the case where P is semi-collinear, i.e., its blue
points are on a straight line and its red points are in general position. Semi-collinear points
have been studied in may problems related to plane matchings (see e.g., [5, 6, 10]). We
prove that for every perfect bichromatic matching M on P , it holds that f(M) = O(n2).
Before we prove this upper bound, observe that similar to the general position setting, in
the semi-collinear setting the total number of crossings might increase after a flip. Also,
it is possible that a crossing, that has disappeared after a flip, reappears after some more
flips (see the crossing between br and b′r′ in Figure 5). The O(n2) upper bound given in [7]
for f(·) on uncolored points, which is obtained by connecting the two leftmost points of a
crossing, does not apply to our semi-collinear bichromatic setting, because in this setting the
two leftmost points might have the same color. These observations imply that there is no
straightforward way of getting a good upper bound.

Let ` be the line that contains all the blue points of P . By a suitable rotation we assume
that ` is horizontal. For every perfect bichromatic matching M on P , the edges of M , that
are above `, do not cross the ones that are below `. Thus, we can handle these two sets of
edges independently of each other. Therefore, in the rest of this section we assume that the
red points of P lie above `. Recall that P contains n/2 blue points and n/2 red points.

I Lemma 16. Let M be a perfect bichromatic matching on P in which the rightmost blue
point b is matched to the topmost red point r. If M \ {br} is plane, then f(M) 6 n

2 − 1, and
this bound is tight.

Proof. See Figure 6(a) for an illustration of the statement of this lemma; notice that if we
remove br from M , then we get a plane matching. Our proof is by induction on n. If n = 2,
then M has one edge which is plane, and thus, f(M) = 0. Assume that n > 4. If br does not
intersect any other edge, then M is plane and f(M) = 0. Suppose that br intersects some
edges of M \ {br}, and let R′ be the set of the red endpoints of those edges; see Figure 6(a).
Let r′ be the first red point in the counterclockwise order of the red points around b; observe
that r′ belongs to R′. Let b′ be the blue point that is matched to r′. Flip br and b′r′ to br′
and b′r as in Figure 6(b), and let M ′ be the resulting matching. The edge br′ does not cross
any other edge of M ′, because of our choice of r′, but the edge b′r may cross some edges of
M ′. Let M ′′ be the subset of edges of M ′ that are to the left of b′r′; see Figure 6(b). Notice
that br′ /∈M ′′, and thus M ′′ is a matching on at most n− 2 points.

SWAT 2018

11:12 Flip Distance to some Plane Configurations

b
`

r

r′

b′

R′

(a)

b
`

r

r′

b′

M ′′ b′r′

(b)
(c)

Figure 6 Illustration of the proof of Lemma 16.

b1 bj

`
bi

rj
ri

e

e′

w

b1 bj

`
bi

rj

ri

M ′′

bx

rx

Figure 7 Illustration of the proof of Theorem 17.

Because of the planarity of M \ {br} and since r is the topmost red point, we have that
M ′ \M ′′ is plane. Moreover, M ′′ and M ′ \M ′′ are separated by b′r′. Observe that b′ is the
rightmost blue point in M ′′ that is matched to the topmost red point r, moreover, M ′′ \{b′r}
is plane. Therefore, we can repeat the above process on M ′′, which is a smaller instance of
the initial problem. By the induction hypothesis, it holds that

f(M) = 1 + f(M ′′) 6 1 +
(
n− 2

2 − 1
)

= n

2 − 1.

To verify the tightness, Figure 6(c) shows a matching example for which we need exactly
n/2−1 flips to transform it to a plane matching. Each time there exists exactly one crossing,
and after flipping that crossing, only one other crossing appears (except for the last flip). J

I Theorem 17. For every perfect bichromatic matching M on P we have f(M) 6 n2

8 + n
4 .

Proof. We present an iterative algorithm that uncrosses M by O(n2) flips. Let b1, . . . , bn/2
be the blue points from left to right. By a suitable relabeling assume that M = {b1r1, . . . ,

bn/2rn/2}. To simplify the description of the proof, we add, to M , a dummy edge b0r0 such
that b0 is a blue point on ` that is to the left of all the blue points, r0 is a red point that is
higher than all the red points, and all points of P are to the right of b0r0.

We describe one iteration of our algorithm. If M is plane, then the algorithm terminates.
Assume that M is not plane. Let i ∈ {1, . . . , n/2} be the smallest index such that biri

intersects some edges of M ; see Figure 7-left. To simplify the rest of our description, we refer
to the current iteration as iteration i. Notice that the blue endpoint of every non-free edge is
strictly to the right of bi−1. Let rj be the first red point that we meet in the following walk
along the edges of M . Starting from bi, we walk along biri until we see the first edge e that
crosses biri. Then we turn left on e and keep walking until we see a red point or another
crossing edge. If we see a red point, then we call it rj and finish the walk. If we see a crossing
edge e′, then we turn left on e′ and keep walking until we see a red point, namely rj , or we
see another crossing edge. In the latter case we repeat this process and stop as soon as we

A. Biniaz, A. Maheshwari, and M. Smid 11:13

see the first red point, which we call it rj . Let bj be the blue point that is matched to rj .
Let w denote the convex polygonal path that we traversed from bi to rj .

Flip biri and bjrj to birj and bjri, and let M ′ denote the resulting matching. See
Figure 7-right. Shoot a horizontal ray, from rj , to the left, and stop as soon as it hits an edge
bxrx in M ′. Let M ′′ be the subset of the edges of M ′ that are incident on bx+1, . . . , bi, that
is, M ′′ = {bx+1rx+1, . . . , bi−1ri−1, birj}. By the way that we picked rj , the edges of M ′′ are
in a convex region whose interior is disjoint from the edges of M ′ \M ′′; this convex region is
bounded by `, bxrx, w, and the ray from rj , as depicted in Figure 7-right. The matching M ′′
has i − x edges. Observe that, in M ′′, we have that bi is the rightmost blue point that is
matched to the topmost red point rj , and M ′′ \ {birj} is plane. Thus, by Lemma 16 we can
uncross M ′′ by at most i− x− 1 flips. To this end, we have transformed M to a matching in
which the edges that are incident on b1, . . . , bi are free. The total number of flips performed
in iteration i is at most 1 + (i− x− 1) = i− x 6 i.

In the next iteration, the smallest index i′, for which bi′ri′ is not free, is larger than i.
Thus, this smallest index moves at least one step to the right after each iteration. This means
that the number of free edges, that are connected to the blue points of lower indices, increases.
Therefore, after at most n/2 iterations our algorithm terminates. The total number of flips is

f(M) 6
n/2∑
i=1

i = n2

8 + n

4 . J

5 Conclusions

We investigated the number of flips that are necessary and sufficient to reach a non-crossing
perfect matching on n points in the plane. It is known that the minimum and the maximum
lengths of a flip sequence are O(n2) and O(n3), respectively. We proved, with a new approach,
that the minimum length of a flip sequence is O(n∆) where ∆ is the spread of the points
set; this improves the bound for point sets with sublinear spread. A natural open problem
is to improve any of these bounds. Another open problem is to improve our O(n logn)
upper bound on the number of sufficient flips to reach a plane spanning tree on points in
convex position, or to show that this bound is tight. One potential way to do this, is that in
Theorem 14, we get a boundary edge uv such that one of u or v has a constant degree.

It is worth mentioning that the number of flips, in a flip sequence, is highly dependent
on the order in which we choose crossings to flip, and the type of a flip that we perform
(among the two possible types). This dependency can be used to improve the bounds on the
minimum number of flips. In Theorems 11, 14, 15, and 17 we used the order and proved
some upper bounds, while in Theorem 4 we used the flip type. One may think of using the
order and the flip type together to improve the current bounds. Notice that for bichromatic
matchings, spanning trees, and Hamiltonian cycles only one type of flip is possible, and thus,
only the order can be used for further improvements. Also, notice that none of the order and
the flip type can be used to improve the bounds on the maximum number of flips, because,
in this case, an adversary chooses the order and the type.

References
1 Oswin Aichholzer, Andrei Asinowski, and Tillmann Miltzow. Disjoint compatibility graph

of non-crossing matchings of points in convex position. Electr. J. Comb., 22(1):P1.65, 2015.
2 Oswin Aichholzer, Sergey Bereg, Adrian Dumitrescu, Alfredo García Olaverri, Clemens

Huemer, Ferran Hurtado, Mikio Kano, Alberto Márquez, David Rappaport, Shakhar

SWAT 2018

11:14 Flip Distance to some Plane Configurations

Smorodinsky, Diane L. Souvaine, Jorge Urrutia, and David R. Wood. Compatible geo-
metric matchings. Comput. Geom., 42(6-7):617–626, 2009.

3 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-
tions of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368–
389, 2015.

4 Greg Aloupis, Luis Barba, Stefan Langerman, and Diane L. Souvaine. Bichromatic com-
patible matchings. Comput. Geom., 48(8):622–633, 2015.

5 Greg Aloupis, Jean Cardinal, Sébastien Collette, Erik D. Demaine, Martin L. Demaine,
Muriel Dulieu, Ruy Fabila Monroy, Vi Hart, Ferran Hurtado, Stefan Langerman, Maria
Saumell, Carlos Seara, and Perouz Taslakian. Non-crossing matchings of points with geo-
metric objects. Computational Geometry: theory and Applications, 46(1):78–92, 2013.

6 Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Bottleneck bichromatic plane matching
of points. In Proceedings of the 26th Canadian Conference on Computational Geometry
(CCCG), pages 431–435, 2014.

7 Édouard Bonnet and Tillmann Miltzow. Flip distance to a non-crossing perfect matching.
EuroCG, 2016.

8 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom., 42(1):60–80,
2009.

9 Prosenjit Bose and Sander Verdonschot. A history of flips in combinatorial triangulations.
In XIV Spanish Meeting on Computational Geometry (EGC), pages 29–44, 2011.

10 John Gunnar Carlsson, Benjamin Armbruster, Saladi Rahul, and Haritha Bellam. A bot-
tleneck matching problem with edge-crossing constraints. International Journal of Compu-
tational Geometry and Applcations, 25(4):245–262, 2015.

11 Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete & Computational
Geometry, 22(1):63–93, 1999.

12 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, chapter 21: Data structures for Disjoint Sets. The MIT Press and McGraw-
Hill Book Company, second edition, 2001.

13 Herbert Edelsbrunner, Pavel Valtr, and Emo Welzl. Cutting dense point sets in half.
Discrete & Computational Geometry, 17(3):243–255, 1997.

14 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
& Computational Geometry, 22(3):333–346, 1999.

15 Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. Disjoint compatible geometric
matchings. Discrete & Computational Geometry, 49(1):89–131, 2013.

16 Charles L Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365–372, 1972.
17 Yoshiaki Oda and Mamoru Watanabe. The number of flips required to obtain non-crossing

convex cycles. In Proceedings of the International Conference on Computational Geometry
and Graph Theory (KyotoCGGT), pages 155–165, 2007.

18 Alfredo García Olaverri, Clemens Huemer, Ferran Hurtado, and Javier Tejel. Compatible
spanning trees. Comput. Geom., 47(5):563–584, 2014.

19 Pavel Valtr. Planar point sets with bounded ratios of distances. PhD thesis, Fachbereich
Mathematik, Freie Universität Berlin, 1994.

20 Pavel Valtr. Lines, line-point incidences and crossing families in dense sets. Combinatorica,
16(2):269–294, 1996.

21 Jan van Leeuwen and Anneke A. Schoone. Untangling a travelling salesman tour in the
plane. In Proceedings of the 7th Conference Graphtheoretic Concepts in Computer Science
(WG), pages 87–98, 1981.

Boundary Labeling for Rectangular Diagrams
Prosenjit Bose
School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

Paz Carmi
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
carmip@cs.bgu.ac.il

J. Mark Keil
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
mark.keil@usask.ca

Saeed Mehrabi
School of Computer Science, Carleton University, Ottawa, Canada
saeed.mehrabi@carleton.ca

Debajyoti Mondal
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
d.mondal@usask.ca

Abstract
Given a set of n points (sites) inside a rectangle R and n points (label locations or ports) on
its boundary, a boundary labeling problem seeks ways of connecting every site to a distinct port
while achieving different labeling aesthetics. We examine the scenario when the connecting lines
(leaders) are drawn as axis-aligned polylines with few bends, every leader lies strictly inside R,
no two leaders cross, and the sum of the lengths of all the leaders is minimized. In a k-sided
boundary labeling problem, where 1 ≤ k ≤ 4, the label locations are located on the k consecutive
sides of R.

In this paper we develop an O(n3 logn)-time algorithm for 2-sided boundary labeling, where
the leaders are restricted to have one bend. This improves the previously best known O(n8 logn)-
time algorithm of Kindermann et al. (Algorithmica, 76(1):225–258, 2016). We show the problem
is polynomial-time solvable in more general settings such as when the ports are located on more
than two sides of R, in the presence of obstacles, and even when the objective is to minimize
the total number of bends. Our results improve the previous algorithms on boundary labeling
with obstacles, as well as provide the first polynomial-time algorithms for minimizing the total
leader length and number of bends for 3- and 4-sided boundary labeling. These results settle
a number of open questions on the boundary labeling problems (Wolff, Handbook of Graph
Drawing, Chapter 23, Table 23.1, 2014).

2012 ACM Subject Classification Theory of computation, Theory of computation→ Algorithm
design techniques, Theory of computation → Computational geometry

Keywords and phrases Boundary labeling, Dynamic programming, Outerstring graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.12

Related Version See [8], https://arxiv.org/abs/1803.10812 for the full version of the paper.

Funding Research of Prosenjit Bose and Saeed Mehrabi is supported in part by Natural Sci-
ences and Engineering Research Council of Canada (NSERC). Saeed Mehrabi is also suppor-
ted by a Carleton-Fields postdoctoral fellowship. Debajyoti Mondal is supported in part by
Global Water Futures project (GWF) and Natural Sciences and Engineering Research Council
of Canada (NSERC).

© Prosenjit Bose, Paz Carmi, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jit@scs.carleton.ca
mailto:carmip@cs.bgu.ac.il
mailto:mark.keil@usask.ca
mailto:saeed.mehrabi@carleton.ca
mailto:d.mondal@usask.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.12
https://arxiv.org/abs/1803.10812
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Boundary Labeling for Rectangular Diagrams

(a) (b) (c) (d)

Figure 1 (a) A 1-bend 2-sided boundary labeling (i.e., with po-leaders) on a geographic map
showing (ice cover on the Great Lakes [14]). (b) A 2-bend 2-sided boundary labeling (i.e., with
opo-leaders). This example does not have a feasible solution with 1-bend leaders. (c) Boundary
labeling in 1-bend opposite 2-sided model. (d) A 1-bend 4-sided boundary labeling in the presence
of obstacles.

1 Introduction

Labeling problems appear in a variety of scenarios such as in annotating educational dia-
grams, wiring schematics, system manuals, as well as in many information visualization and
engineering applications. The increasing trend of automation in these areas has motivated
the research in labeling algorithms. Crossings among the leaders (i.e., the lines connecting
labels to the sites), number of bends per leader, and the sum of leader lengths are some
important aesthetics of a diagram labeling. To achieve clarity and better readability, all
these parameters are often preferred to be kept small.

Many labeling problems are NP-hard [12, 5]. A rich body of research attempts to develop
efficient approximation and heuristic algorithms [13, 15, 10, 21, 22], both in the static and
the dynamic settings [3, 10]. In this paper we examine a well-known variant of the labeling
problem called b-bend k-sided boundary labeling, e.g., see Figure 1. The input for this problem
is a set of kn sites and kn ports, where the sites lie in the interior of a rectangle R, the
ports are located on k consecutive sides of R, and each side contains n ports. Both the
sites and ports are represented as points. The goal is to decide whether each site can be
connected to a unique port using axis-aligned leaders such that the leaders are disjoint, each
leader lies strictly inside R and each leader has at most b bends. If such a labeling exists,
then we compute a labeling that optimizes these labeling aesthetics. We examine two such
optimization criteria: one is to minimize the sum of the leader lengths, and the other is to
minimize the total number of bends.

The strict-containment inside R, bend restrictions and orthogonal constraints impose
certain shapes on the leader. An orthogonal leader containing exactly one bend (resp., two
bends) is known as a po-leader (resp., an opo-leader)1 [17]. We note that there are 1-bend
leaders with 135◦ degrees at the bend, which are knowns as do-leaders [2]. Since we are
only interested in orthogonal leaders in this paper, we say 1-bend leaders to always mean
“po-leaders” for the rest of the paper.

Related work. Boundary labeling has been an active area of research in the last decade,
e.g., see the surveys [1, 20]. The boundary labeling problem was first introduced by Bekos
et al. [6]. They gave O(n logn)-time algorithms to decide labeling feasibility for the 1-bend

1 The letters ‘o’ and ‘p’ stand for ‘orthogonal’ and ‘parallel’, respectively. So, an opo-leader starts
orthogonally at the site, and ends orthogonally at the port.

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal 12:3

1-sided and opposite 2-sided models, i.e., the labels are located on two opposite sides of
R. In addition, they gave an O(n2)-time algorithm that minimizes the total leader length.
For the 2-bend 4-sided model, they could test the feasibility in O(n logn) time and reduced
the length minimization to a minimum-cost bipartite matching problem. Benkert et al. [7]
improved Bekos et al.’s [6] result on the 1-bend 1-sided model by devising an O(n logn)-time
algorithm for the length minimization. They also considered general cost functions (i.e.,
beyond Euclidean length), as well as other types of leaders. We refer the reader to [19, 4]
for other variants of boundary labeling problem.

The 2-sided model considered by Bekos et al. [6] and Benkert et al. [7] is an opposite-sided
model, i.e., ports are placed on two opposite sides of R. This model is different from the
adjacent 2-sided model, where the labels are always placed on adjacent sides. The adjacent
2-sided model was first considered by Kindermann et al. [17]. For the 1-bend 2-sided model,
they gave an O(n2)-time algorithm to check feasibility, and an O(n8 logn)-time algorithm for
total leader length minimization; to our knowledge, this is the fastest algorithm known for
the 1-bend 2-sided model. Note that the labeling problem in this model seems surprisingly
more difficult than the corresponding opposite 2-sided model (also mentioned by Kindermann
et al. [17]). For the 1-bend 3-sided (resp., 4-sided) model, they gave an O(n4)-time (resp.,
O(n9)-time) algorithm for checking the labeling feasibility, but they were unable to solve the
length minimization problem. They posed this as an open question, i.e., can a minimum-
length solution for the 3- and 4-sided boundary labeling be computed in polynomial time?
These challenges motivated us to examine the adjacent model in more detail.

Fink and Suri [11] studied the boundary labeling problem in the presence of obstacles. In
addition to the set of sites, they allowed a set of orthogonal polygons (equivalently, obstacles)
to lie inside R. The objective is to minimize the total leader length with the constraint
that the leaders must not intersect the obstacles. They gave polynomial-time algorithms
for minimizing the total leader length in the 1-sided and opposite 2-sided models, but the
running time of these algorithms while using po- and opo-leaders is fairly high, i.e., O(n4),
O(n8) for the 1-sided model, and O(n9), O(n21) for the opposite 2-sided model. They also
examined the case when the leaders have non-uniform lengths and the leader locations can
be chosen, which they proved to be NP-hard.

A different generalization of boundary labeling considers sliding ports, i.e., labels are
assigned disjoint intervals on the boundary of R, and a site can be connected to any point in
such an interval. In the 1-sided model, Bekos et al. [6] gave an O(n2)-time algorithm that can
minimize the total number of bends using opo-leader (they did not require the opo-leaders to
lie strictly inside R). They posed an open question to determine the time complexity for
the 3- and 4-sided case. Benkert et al. [7] considered bend minimization with po-leaders.
They gave an O(n2)-time algorithm for the 1-sided model, and O(n8)-time algorithm for
the opposite 2-sided model. The ‘Handbook of Graph Drawing’ [20] lists a number of open
problems related to the minimization of the total number of bends for different variants of
boundary labeling.

The 1-, 3- and 4-sided models for the boundary labeling problem are always adjacent
models, but a 2-sided model can be either adjacent or opposite. Throughout the paper we
will refer to the ‘opposite’ variant as an ‘opposite 2-sided’ model.

Our contributions. We give an algorithm for the 1-bend 2-sided boundary labeling problem
that minimizes the total leader length in O(n3 logn) time (if such a labeling exists). Ours is
an adjacent model and uses po-leaders, and hence improves the O(n8 logn)-time algorithm
of Kindermann et al. [17]. Since the best known algorithm for the length minimization in the

SWAT 2018

12:4 Boundary Labeling for Rectangular Diagrams

1-bend opposite 2-sided model takes O(n2) time [7], our result raises an intriguing question
that whether the adjacent boundary labeling model can further be improved to reach (or,
even break) the O(n2) barrier.

We show that many variants of the boundary labeling problems can be related to
outerstring graphs, where the minimization of total leader lengths or bends reduces to an
optimization problem in those outerstring graphs. We notice that this relation is previously
pointed out in a different context [18]. This idea leads us to the following results:

The first polynomial-time algorithm with a running time of O(n6) for the 1-bend 3-sided
and 4-sided boundary labeling problem that minimize the total leader length. This settles
the time-complexity question posed by Kindermann et al. [17].
Polynomial-time algorithms for minimizing the total leader length or the total number
of bends, even in the presence of obstacles. Our algorithms work for both po- and
opo-leaders, as well as for all possible distributions of the ports to the boundary of R,
i.e., both adjacent and opposite models. The running time for the opposite 2-sided model
is O(n6) for po-leaders and O(n9) for opo-leaders; these improve, respectively, the O(n9)-
and O(n21)-time algorithms of Fink and Suri [11]. This technique can also be applied to
the sliding port model, which settles the time-complexity question posed in [6, 20] related
to the bend minimization.

2 Computing 1-Bend 2-Sided Boundary Labelings

In this section we give an O(n3 logn)-time algorithm to find a solution to the 1-bend 2-sided
boundary labeling problem. Throughout this section, we assume that the sites and ports are
in general position, i.e., no axis-aligned straight line passing through a site intersects a port
or another site. Consequently, each leader must have exactly one bend. We thus omit the
term ‘1-bend’ in the rest of this section. Moreover, we assume that the ports lie on the top
and right sides of the rectangle R.

2.1 Technical Background
Let R(t), R(b), R(l), R(r) be the top, bottom, left and right sides of R, respectively. An xy-
separating curve is an axis-aligned xy-monotone polygonal chain that starts at the bottom-left
corner of R and ends at the top-right corner of R. A 2-sided boundary labeling solution is
xy-separated if there exists an xy-separating curve such that the leaders incident to R(t)
(resp., R(r)) lie on or above (resp., below) the xy-separating curve.

I Lemma 1 (Kindermann et al. [17]). If a 2-sided boundary labeling problem has an affirmative
solution with 1-bend leaders, then there exists such an xy-separated solution that minimizes
the sum of all leader lengths.

Figure 2(a) illustrates an xy-separated solution of a 2-sided boundary labeling problem.
An xy-separated curve is shown in a light-green. Let I be an instance of a 2-sided boundary
labeling problem. Without loss of generality assume that the ports are distributed along
the sides R(t) and R(r). Let ports(R(t)) (resp., ports(R(r))) be the set of ports along R(t)
(resp., R(r)). A leader is called inward if the 90◦ angle formed at its bend point contains the
top-right corner of R. Otherwise, we call the leader an outward leader. The leaders incident
to ` and `′ in Figure 2(a), are inward and outward leaders, respectively.

Assume that I has an affirmative solution S and let C be a corresponding xy-separating
curve. Let up(C) be the polygonal region above C bounded by R(t) and R(l). Similarly, let
right(C) be the polygonal region to the right of C bounded by R(b) and R(r). By Cu (resp.,
Cr) we denote the xy-separating curve that minimizes the area of up(Cu) (resp., right(Cr)),

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal 12:5

(a) (b) (c)

l1t (= l2t) l3t

l1r

l2r

l3r

` `′

Cu

Cr

R1
R2

R3

(ax, by)

Figure 2 (a) An xy-separated solution to a 2-sided boundary labeling. The xy-separating curve
C is shown in light-green. (b) Illustration for the curves Cu and Cr. (c) R.

e.g., see Figure 2(b). For a point p, let px and py be its x and y-coordinates, respectively.
Given Cu and Cr, we define a sequence of rectangles R = (R1, R2, . . . , Rk) as follows:

Each rectangle is a maximal rectangle between Cu and Cr.
The bottom-left corner of R1 coincides with that of R.
For i > 1, we first consider Ri−1. Since Ri−1 is maximal, the top and right sides of Ri−1
must be determined by a pair of leaders, e.g., see R1 in Figure 2(c). Denote these leaders
by `i−1

t and `i−1
r , respectively. Let a ∈ `i−1

t be the rightmost point of `i−1
r on the top

side of Ri−1, and let b ∈ `i−1
r be the topmost point on the right side of Ri−1. We define

Ri to be the maximal empty rectangle with the bottom-left corner at (ax, by) and the
sides bounded by Cu and Cr.

2.2 Algorithm
The idea of the algorithm is to employ a dynamic programming algorithm based on the
idea of finding the optimal rectangle sequence R. Note that for any rectangle Rj ∈ R,
we can think of a subproblem λ(Rj) that seeks a solution including the leaders `j

t and `j
r.

More formally, λ(Rj) is an instance of the 2-sided boundary labeling problem for which
the rectangle B(Rj) corresponding to this problem is determined by the vertical segment
of `j

t , the horizontal segment of `j
r as well as the top and right sides of the rectangle R; see

the gray rectangle in Figure 3(a). It is straightforward to add a dummy rectangle R0 with
corresponding leaders `0

t and `0
r such that λ(R0) represents the original 2-sided boundary

labeling problem; e.g., see Figure 3(b).
Given Rj , we try to find Rj+1 by checking all possible candidate rectangles. For conveni-

ence, we defer the details of finding all candidate rectangles, and focus on the computation
of the solution cost (sum of leader length) assuming that we have found Rj+1. Figure 3(c)
illustrates such a scenario. Let Rt

j,j+1 be the region bounded by the lines determined by
the vertical segments of `j

t and `j+1
t , the horizontal segment of `j

t , and R(t). Define Rr
j,j+1

symmetrically, e.g., see the top of Figure 4(i). Observe that λ(Rt
j,j+1) is a 1-sided boundary

labeling problem with leaders `j
t and `j+1

t . In other words, since Rj+1 is an empty rectangle,
all the ports between `j

t and `j+1
t must be connected to some site interior to Rt

j,j+1. We
define λ(Rr

j,j+1) symmetrically. It is now straightforward to express the solution of λ(Rj) in
terms of the solutions of λ(Rt

j,j+1), λ(Rr
j,j+1), and λ(Rj+1).

SWAT 2018

12:6 Boundary Labeling for Rectangular Diagrams

ljt

ljr

B(Rj)

Rj

l0r
R0

l0t

ljr

Rj

lj+1
tljt

lj+1
r

λ(Rt
j,j+1)

λ(Rr
j,j+1)

λ(Rj+1)

(c)(a) (b)

Figure 3 Illustration for the dynamic programming algorithm.

For any leader l, we denote its length by |l|. Let |λ(Rj)| be the sum of the leader lengths
in an optimal solution of λ(Rj) (excluding the lengths of `j

t and `j
r). Let ports(B(Rj)) and

sites(B(Rj)) be the number of ports and sites interior to B(Rj), excluding those that are
incident to `j

t and `j
r. We now have the following recursive formula, where C denotes the set

of candidate rectangles.

|λ(Rj)| =


∞, if ports(B(Rj)) 6= sites(B(Rj)).
(|`j

t | + |`j
r|)+

min
Rj+1∈C

{|λ(Rt
j,j+1)|+|λ(Rr

j,j+1)|+|λ(Rj+1)|}, otherwise.

Finding candidate rectangles. Given a rectangle Rj , we now describe how to find a set of
candidate rectangles that must include Rj+1. Recall that we can compute the bottom-left
corner (ax, by) of Rj+1 from Rj . Figures 4(a)–(d) illustrate the scenarios where `j

t and `j
r are

inward. The point (ax, by) is marked with a cross. We claim that the top side or the right
side of Rj+1 must contain a site (Lemma 3). We will use the following result of Benkert et
al. [7] to prove Lemma 3.

I Lemma 2 (Benkert et al. [7]). For any solution S to a 1-bend 1-sided boundary labeling
problem that minimizes the total leader length (possibly with crossings), there exists a crossing-
free labeling with the total leader length at most the total leader length of S.

I Lemma 3. The top side or the right side of Rj+1 must contain a site.

Proof. Suppose for a contradiction that neither the top nor the right side of Rj+1 contains
a site. We now consider four cases.
Case 1 (both `j+1

t and `j+1
r are inward): In this case the leaders `j+1

t and `j+1
r must in-

tersect (see Figure 4(e)), which contradicts that the underlying solution is crossing-free.
Case 2 (`j+1

t is inward and `j+1
r is outward): If `j

r is outward, then it must intersect `j+1
r

(see Figure 4(f)). Therefore, the leader `j
r must be inward, as illustrated in Figure 4(g).

Note that by our general position assumption, the ‘y-intervals’ determined by the vertical
segments of `j

r and `j+1
r must overlap. Consequently, by swapping the site assignments,

we can obtain a solution (possibly with crossings) with strictly smaller total leader length.
Figure 4(i) illustrates such a scenario. By Lemma 2, we can replace this labeling of
λ(Rj,j+1) with a crossing free labeling that lies inside Rr

j,j+1 and does not increase the
total leader length, e.g., see Figure 4(j). Note that the total leader length of the resulting
solution would be strictly smaller, contradicting that the current solution is optimal.

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal 12:7

Rj

Rj+1

(a) (b)

Rj+1

lj+1
t

lj+1
r

lj+1
t

lj+1
r

Rj+1

ljr

(e) (f)

lj+1
r

ljr

ljr

lj+1
r

ljr

lj+1
r

(k)(j)

Rr
j,j+1

Rr
j,j+1

Rr
j,j+1

(l)

s
s

Rj

Rj+1

(c) (d)

lj+1
t

lj+1
r

Rj+1

ljr

lj+1
t

lj+1
r

Rj+1 ljr

ljt

(g) (h)

lj+1
r

ljr

(i)

Rr
j,j+1

w w

Rj

Rj+1

ljr

ljt

Cu

Cr

Figure 4 Illustration for (a)–(d) (ax, by), (e)–(j) Lemma 3, and (k)–(l) candidate rectangles.

Case 3 (`j+1
t is outward and `j+1

r is inward): This case is symmetric to Case 2.
Case 4 (both `j+1

t and `j+1
r are outward): We can process this case in the same way as

we did in Case 2. J

Recall that we know the bottom-left point w of Rj+1. We first assume that the right side
of Rj+1 contains a site. For every site s with sx > wx and sy > wy, we consider all possible
empty rectangles with bottom-left corner w, right side passing through s and the top side
determined by a horizontal line passing through a site above s. Figures 4(k)–(l) illustrate
the candidate rectangles for the bottom left point w. We then assume that the top side of
Rj+1 contains a site, and find the candidate rectangles symmetrically. We can now obtain
an upper bound on the distinct candidate rectangles.

I Lemma 4. The overall number of distinct candidate rectangles is O(n3).

Proof. For a particular bottom-left corner w, it may initially appear that there are O(n2)
possible candidate rectangles to explore. But we can prove an O(n) upper bound, as follows.

Let D be the region dominated by w; i.e., for each point q ∈ D, the x and y-coordinates
of q are at least as large as those of w. Let S = {s1, s2, . . . , sk} be the set of sites in D

(ordered by increasing y-coordinates) such that no site in S is dominated by any other site
in D (except possibly for w). We may assume without loss of generality (see Lemma 3) that
the right side of Rj+1 contains a site. Since the proper interior of the rectangle is empty, for
each si, where 1 ≤ i ≤ k, we only need to consider a set of heights H(si) that lie between si

and si+1 (or, between si and R(t) when i = k). For every pair of sites {s, s′} ∈ S, we have
the property that neither s nor s′ dominates the other. Therefore, we have H(s)∩H(s′) = ∅,∑

i H(si) = O(n), and thus a linear number of candidate rectangles for w.

SWAT 2018

12:8 Boundary Labeling for Rectangular Diagrams

The number of possible intersections (i.e., bottom-left corners) among the horizontal and
vertical lines passing through the ports and sites is O(n2). Therefore, the number of distinct
candidate rectangles that may appear over the run of the algorithm is O(n3). J

Data structures and time complexity. If we use an O(n2)×O(n2) dynamic programming
table and compute each entry by checking O(n) candidate rectangles, then we need at least
O(n5) time. To improve the running time to O(n3 logn), we preprocess the input. For every
possible matching of a pair of ports (on the same side of R) to a pair of sites, we compute and
store the solution to the corresponding 1-sided boundary labeling problem. Since there are
O(n4) such 1-sided problems, and each of them can be answered in O(n logn) time [7], this
takes O(n5 logn) time. We first show how to reduce this preprocessing time to O(n3 logn).

Consider a subproblem λ(Rt
j,j+1). Such a problem can easily be expressed by the ports

and sites incident to `j
t and `j+1

t . Here we encode λ(Rt
j,j+1) in a slightly different way. We

use the parameters p, p′, α, β, where p, p′ are the ports incident to `j
t and `j+1

t , α is either
∞ or the y-coordinate of a site that indicates the top side of an “empty rectangle”, which
is used in our preprocessing, and β is the ‘type’ of λ(Rt

j,j+1). We will express λ(Rt
j,j+1) as

S(p, p′, α, β). In the following we describe the details of S(p, p′, α, β).
Note that to solve λ(Rt

j,j+1) affirmatively, we need exactly as many free sites as the
number of ports between p and p′. Thus for any subproblem, if the number of free sites
and free ports interior to Rt

j,j+1 do not match, then we can immediately return a negative
answer. We assume that the points and ports are stored in an orthogonal range counting
data structure (with O(n logn)-time preprocessing) such that given an orthogonal rectangle,
one can report the number of ports and points interior to the rectangle in O(logn) time [9].
We only focus on those instances that have the same number of free sites and ports, and
express them in the form S(p, p′, α, β).

Let s, s′ be the sites that are incident to `j
t and `j+1

t , respectively. By the property of the
optimal solution, we may assume that sy < s′y. We define λ(Rt

j,j+1) as having Type 1, 2, 3
or 4 depending on whether s, s′ belongs to Rt

j,j+1 or not.
Type 1 (both s, s′ are outside Rt

j,j+1): In this case the rectangle determined by the bend
points of `j

t and `j+1
t must be empty (i.e., the gray region in Figure 5(a)). We set α to

be ∞, and β to be 1. During the algorithm execution, if λ(Rt
j,j+1) is of Type 1, then we

will seek a solution to S(p, p′,∞, 1).
Note that for any instance of the form S(p, p′,∞, 1), we can determine in O(1) time2
the point s′′ such that the rectangle B determined by p, p′, s′′ contains an equal number
of free ports and sites. Note that the solution to the labeling problem inside B will be
equivalent to that of λ(Rt

j,j+1). We will precompute the solutions of S(p, p′,∞, 1) so
that λ(Rt

j,j+1) can be answered in O(1) time by a table look-up. This general idea of
answering a problem λ(·) using S(·) applies also to the other types; i.e., Types 2, 3 and 4.

Type 2 (both s, s′ are inside Rt
j,j+1): In this case the rectangle determined by the bend

point of `j+1
t and s must be empty; see Figures 5(c). (Notice that the case shown in

Figure 5(b) is not possible in an optimal solution because re-routing p′ to s and p to s′
would result in a feasible solution with a smaller total leader length.) We thus set α to
be y(s′), and β to be 2. Observe now that given S(p, p′, α, 2), we can find both s and s′
in O(1) time2 by counting the number of ports between p and p′, and using α.

2 It is straightforward to preprocess the ports and sites in O(n3) time in a data structure to answer such
queries in O(1) time.

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal 12:9

S(p, p′,∞, 1) S(p, p′, y(s′), 2) S(p, p′, y(s′), 2) S(p, p′, y(s′), 3) S(p, p′, y(s′), 4)

s′

s

s′′ s′

s

`jt `j+1
t

s

s′

s

s′ s′

s

s′′

s′′

p p′ p p′ p p′ p p′p′p

(a) (b) (c) (d) (e)

s′′ s′′

Figure 5 (a)–(e) Illustration for different Types of subproblems.

Type 3 (s ∈ Rt
j,j+1 and s′ 6∈ Rt

j,j+1): In this case the rectangle determined by the bend
point of `j+1

t and s must be empty (Figure 5(d)). We thus set α to be y(s′), and β to be
3. Given S(p, p′, α, 3), we can recover s and s′ using the range counting data structures2.
The same argument holds even when sx > p′x.

Type 4 (s 6∈ Rt
j,j+1 and s′ ∈ Rt

j,j+1): In this case the rectangle determined by the bend
points of `j

t and `j+1
t must be empty (Figure 5(e)). We thus set α to be y(s′), and β to

be 4. Given S(p, p′, α, 4), we can recover s′ using α. Here we do not need to find s since
the solution must lie inside the rectangle determined by p, p′ and s′.

I Lemma 5. The solution to the problems S(p, p′, α, β) can be computed in O(n3 logn) time.

Proof. Since there are O(n) possible choices for each of p, p′, α, and a constant number of
choices for β, we have at most O(n3) subproblems. We can employ a dynamic programming
to compute the solution to these problems. The idea is to select the bottommost free point s′′
and connect it to a port p′′ between p and p′. This splits the problem into two subproblems,
which can again be expressed in the form S(p, p′, α, β). Such a split may generate a new
type of subproblem Q, where `j

t has a shorter height than that of `j+1
t . Since `j

t was initially
incident to s′′, we can process Q as follows: For every pair of ports, we use Benkert et al.’s [7]
algorithm to precompute the solution to the boundary labeling problem inside the stripe
bounded by the vertical lines through p, p′. If there are k ports between p and p′, then we
use the topmost k sites in the stripe (if it exists). This preprocessing takes O(n3 logn) time.
To answer Q, we use the precomputed solution for the corresponding stripe.

Since the number of choices for p′′ is at most n, we can compute an entry of the dynamic
programming table by a linear number of table look-up. Since the number of entries is
O(n3), the running time is bounded by O(n4). An involved analysis shows that there is only
O(1) candidate choices for p′′, and these candidates can be found in O(logn) time. The full
version of the paper [8] includes the details. Since an entry of the dynamic programming
table can now be computed using O(1) number of table look-ups, the running time reduces
to O(n3 logn). J

I Theorem 6. Given a 1-bend 2-sided boundary labeling problem with O(n) sites and labels,
one can find a labeling (if exists) that minimizes the total leader length in O(n3 logn)-time.

Proof. Every subproblem λ(Rj) can be defined by a pair of leaders, and hence we can define
an O(n2)×O(n2) table T to store the solutions to the subproblems. To compute an entry
of the table T , we look at a set of candidate rectangles with two nice properties. First, all
these rectangles have the same bottom-left corner, and second, none of these rectangles can
be a candidate rectangle for any other entry of T . Therefore, the number of ‘candidate

SWAT 2018

12:10 Boundary Labeling for Rectangular Diagrams

rectangle queries’ to fill all the entries of T is bounded asymptotically by the number of
distinct candidate rectangles, which is O(n3) (by Lemma 4). Since we do not recompute
solutions, and the table look-up takes O(1) time, the total running time is bounded by O(n4),
which dominates the preprocessing time.

Observe that the complexity O(n4) comes from considering all possible pairs of leaders,
whereas only O(n3) options are relevant (by Lemma 4). Therefore, instead of a table, we
can keep the relevant entries in a dynamic binary search tree, which increases the cost for
solution look-up to O(logn), but limits the time for both the memory initialization and
look-up queries to O(n3 logn). Thus the total running time improves to O(n3 logn). J

3 Relating Boundary Labeling to Outerstring Graphs

In this section, we reduce the boundary labeling problem to the independent set problem
on a class of weighted geometric intersection graphs in the plane called outerstring graphs.
We show that if one can discretize a boundary labeling problem such that the number of
candidate leaders is a polynomial in n, then our approach will yield a polynomial-time
algorithm for the problem.

An outerstring graph is an intersection graph of a set of curves in the Euclidean plane that
lie inside a polygon such that one of the endpoints of each curve is attached to the boundary
of the polygon. Keil et al. [16] gave an O(N3)-time algorithm for the maximum-weighted
independent set problem on outerstring graphs. The algorithm requires an outerstring
graph as an input, where each curve is given as a polygonal line (i.e., a chain of straight
line segments) and N is the number of segments in the representation. We show that by
discretizing the boundary labeling problem and assigning an appropriate weight to each
candidate leader, one can reduce the boundary labeling problem to the maximum-weighted
independent set problem on outerstring graphs. Here, as an example, we show the reduction
for the boundary labeling problem using po- and opo-leaders in the presence of obstacles.

Boundary labeling with orthogonal obstacles. Fink and Suri [11] gave O(n9) and O(n21)-
time algorithms for the opposite 2-sided boundary labeling with po- and opo-leaders, respect-
ively. Our approach will yield O(n6) and O(n12)-time algorithms for po- and opo-leaders,
respectively, irrespective of the labeling model (opposite, adjacent, or for any port distribution
on the boundary). For the opposite 2-sided case, the running time reduces to O(n6) and
O(n9) (for po- and opo-leaders, respectively). This will settle the time complexity question of
1-bend 3- and 4-sided boundary labeling [17]. In the rest of this section, we relax the general
position assumption and denote n to be the total number of sites and obstacle vertices.

First consider the case of po-leaders. Let I be an instance of the boundary labeling
problem. Given a site and a port, there is at most one way of connecting them. Let M
denote the set of all possible leaders that do not intersect any obstacle. Then |M | ∈ O(n2).
It is straightforward to compute M in O(n3) time. Observe that each leader l ∈M can be
viewed as an outerstring, and let st(l) be the corresponding outerstring. Let |l| be the length
of the leader l, and define x := maxl∈M |l| and y := minl∈M |l|. Let C be a number such
that C > nx − (n − 1)y > 0. For each leader l ∈ M , we assign a weight w(st(l)) to st(l),
where w(st(l)) := C − |l|. The following lemma and Keil et al.’s [16] algorithm lead us to the
results for po-leaders (Theorem 8).

I Lemma 7. I has a feasible solution with total leader length L if and only if the corresponding
outerstring graph GI has a feasible solution with total weight (nC − L).

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal 12:11

Proof. A feasible solution S of I with total leader length L gives a feasible solution for GI

with total weight∑
l∈S

w(st(l)) =
∑
l∈S

(C − |l|) = nC −
∑
l∈S

|l| = (nC − L).

We now assume that GI has a feasible solution S′ with total weight W = (nC − L),
and show that the corresponding leaders S yields a feasible solution of I of total leader
length L. Since S′ is an independent set, the leaders in S are crossing-free, as well as
no site or port is incident to more than one leader. It now suffices to show that every
site is connected to a string, i.e., |S| = n and the total leader length is L. Observe that
W = nC − L ≥ nC − nx > nC − (n− 1)y − C = (n− 1)(C − y). If |S| < n, then the total
leader length is at most (n−1)x, and S′ has weight at most (n−1)(C−y), which contradicts
that W > (n− 1)(C − y). Therefore, |S| = n, and we have

W =
∑
s∈S′

w(s) =
∑
s∈S′

(C − |li|) = nC −
∑
l∈S′

|l|.

Since W = (nC − L), we have
∑

l∈S′ = L. J

I Theorem 8. The boundary labeling problem can be solved in O(n6) time using po-leaders,
for both adjacent and opposite sided models, even in the presence of obstacles (where n is the
total number of sites and vertices of the obstacles).

Consider now the case for opo-leaders. For opposite 2-sided case, Fink and Suri [11]
showed that one can discretize the problem such that if there exists a feasible solution, then
there is one where the x-coordinate of the middle segment of every leader lies in the set of all
x-coordinates of the sites and obstacle vertices. Therefore, we have O(n) potential leaders
for each port-site pair, and thus O(n3) leaders in total. Hence applying Keil et al.’s [16]
algorithm gives a running time of O(n9).

The discretization of [11] does not apply to the 3- and 4-sided case. However, consider a
grid H determined by the axis-aligned lines through the ports, sites and obstacle vertices.
For each pair of consecutive parallel lines of H, place a set of n parallel lines in between. Let
the resulting grid be H ′. If there is a feasible solution to the boundary labeling problem,
then for any pair of consecutive parallel vertical lines `, `′ (similarly for horizontal) of H, we
can have at most n middle vertical segments of the leaders. We thus can distribute them
by moving horizontally to the n lines of H ′ (e.g., see [11]), which does not change the total
leader length. By construction, there is no site, port or obstacle vertex between ` and `′.
Hence such a modification can be performed without introducing any crossing. Since H ′ is
an O(n2)×O(n2) grid and since we have O(n2) potential leaders for each port-site pair, the
number of candidate leaders is O(n4). Hence applying Keil et al.’s [16] algorithm gives a
running time of O(n12).

I Theorem 9. The adjacent boundary labeling problem can be solved in O(n12) time using
opo-leaders, even in the presence of obstacles (where n is the total number of sites and vertices
of the obstacles). For opposite 2-sided models, the running time reduces to O(n9).

Sliding ports and bend minimization. The outerstring-graph approach can also be applied
to the sliding port model, where each label is assigned a distinct interval on the boundary of
R and a site can be connected to any point of an interval. The goal here is to minimize the
total leader length or the number of bends. We only need to discretize the problem such

SWAT 2018

12:12 Boundary Labeling for Rectangular Diagrams

that the number of strings that we need to consider is a polynomial in n. Define H to be
a grid determined by the axis-aligned lines through sites, interval boundaries and obstacle
vertices. Construct H ′ from H by introducing for every pair of consecutive parallel lines of
H, a set of 2n parallel lines in between.

The grid H ′ can be used to discretize the problem, as follows. The segments incident
to the sites are already on H. Consider now a vertical (similarly for horizontal) segment
` that is incident to an interval I, but not incident to any site. Let `′ and `′ be a pair of
consecutive horizontal lines of H such that ` lies between them. There can be at most 2n
horizontal lines between `, `′, which we can distribute to the lines of H ′ by moving vertically
(e.g., see [11]). Since there cannot be any site, interval boundary or obstacle vertex between
`, `′, such a modification neither introduce crossings nor increase the number of total bends.
By the construction of H, the boundary of R between `, `′ lies in the interval I. Hence `
will still be incident to I. Finally, the middle segments of the leaders can be processed in
the same way as we did for Theorem 9. It is straightforward to observe that the number of
potential strings is a polynomial in n. We can now assign certain weights to these strings
such that the maximum-weight independent set of the corresponding outerstring graph yields
a minimum-bend solution for the boundary labeling problem.

We first consider the case of po-leaders. Let I be an instance of this problem. Consider
the set M of outerstrings as before. For each outerstring st(l) ∈ M , we assign the weight
w(st(l)), where

w(st(l)) =
{
n+ 2, if l has no bends.
n+ 1, if l has one bend.

(1)

This forms our instance GI of an outerstring graph on which we solve the maximum-weighted
independent set problem by running Keil et al.’s algorithm [16].

I Lemma 10. Let I be an instance of the boundary labeling problem with po-leaders. Then
I has a feasible solution with k bends if and only if the instance GI has a feasible solution
W with total weight at least (n2 + 2n− k).

Proof. Let S be a feasible solution of I. Clearly, the strings corresponding to the leader of
S′ is a feasible solution for GI . Let k be the total number of bends in S. Then the weight of
S′ is

∑
l∈S w(l) ≥ (n+ 1)k + (n+ 2)(n− k) = n2 + 2n− k.

Assume now that GI has a feasible solution S with weight at least n2 + 2n− k. Let S′
be the corresponding set of leaders in I. Since S is an independent set, a port or site can be
incident to at most one leader of S. If a site is not connected to any port in S′, then at most
(n− 1) sites are incident to a leader. Since the maximum weight of a leader can be at most
(n+ 2), the weight of S is at most (n−1)(n+ 2) = (n2 +n−2), which is a contradiction since
the weight of S is at least n2 + 2n− k > (n2 + n− 2) (because n ≥ k). Therefore, |S′| = n.

It now remains to show that the weight of S′ is at most k. Suppose for a contradiction
that S′ has at least (k + 1) po-leaders. Therefore, the weight of S is at most (n+ 1)(k + 1) +
(n+ 2)(n− k − 1) = n2 + 2n− (2k + 1) < (n2 + 2n− k), which is a contradiction that the
weight of S is at least (n2 + 2n− k). J

Now, we consider the case of opo-leaders. Let I be an instance of this problem. Consider
the set M of outerstrings as before. For each outerstring st(l) ∈ M , we assign the weight

P. Bose, P. Carmi, J. M. Keil, S. Mehrabi, and D. Mondal 12:13

w(st(l)) as follows:

w(st(l)) =


α+ 3, if l has no bends,
α+ 2, if l has one bend,
α+ 1, if l has two bends.

(2)

Here, α = 2n.

I Lemma 11. Let I be an instance of the boundary labeling problem with opo-leaders. Then
I has a feasible solution with k bends if and only if the instance GI has a feasible solution
W with total weight at least (αn+ 3n− k).

Proof. Let S be a feasible solution of I. Clearly, the strings corresponding to the leader of
S′ is a feasible solution for GI . Let k be the total number of bends in S, and let k1 and k2 be
the number of strings with 1-bend and 2-bends, respectively. Therefore, k1 +2k2 = k, and the
weight of S′ is

∑
l∈S w(l) = (α+2)k1 +(α+1)k2 +(α+3)(n−k1−k2) = αn+3n−k1−2k2 =

αn+ 3n− k.
Assume now that GI has a feasible solution S with weight at least (αn+ 3n− k). Let S′

be the corresponding set of leaders in I. Since S is an independent set, a port or site can
be incident to at most one leader of S. If a site is not connected to any port in S′, then at
most (n− 1) sites are incident to a leader. Since the maximum weight of a leader can be
at most (α+ 3), the weight of S is at most (n− 1)(α+ 3) = (αn+ 3n− α− 3), which is a
contradiction since the weight of S is at least αn + 3n − k > (αn + 3n − α − 3) (because
α = 2n ≥ k). Therefore, |S′| = n.

It now remains to show that the leaders of S′ has at most k bends. Suppose for a
contradiction that S′ has at least k1 po-leaders and k2 opo-leaders such that k1 + 2k2 ≥ k+ 1.
Therefore, the weight of S is at most (α + 2)k1 + (α + 1)k2 + (α + 3)(n − k1 − k2) =
αn+ 3n− (k1 + 2k2)− (2k1 +k2) + (2k1 +k2) = αn+ 3n− (k1 + 2k2). Since k1 + 2k2 ≥ k+ 1,
the weight of S is strictly less than αn+ 3n− k, which is a contradiction. J

By Lemmas 10 and 11, we have the following theorem (which settles two open questions
of [20, Table 23.1]).

I Theorem 12. A boundary labeling that minimizes the total number of bends can be computed
(if exists) in polynomial time for both adjacent and opposite models (with sliding ports, po
and opo-leaders), even in the presence of obstacles.

4 Conclusion

The most natural directions for future research is to improve the time complexity of our
algorithm for the 1-bend adjacent 2-sided model. A number of intriguing questions follow:
Can we find a non-trivial lower bound on the time-complexity? Is the problem 3-sum hard
or, as hard as ‘sorting X + Y ’? Can we check the feasibility in near-linear time? It would
also be interesting to find fast approximation algorithms for boundary labeling problems.

References
1 Alexander Wolff and Tycho Strijk. The map-labeling bibliography. http://i11www.ira.

uka.de/map-labeling/bibliography/. Online; accessed 10 February, 2018.
2 Lukas Barth, Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg. On the

readability of boundary labeling. In 23rd International Symposium Graph Drawing and
Network Visualization (GD 2015), Los Angeles, CA, USA, pages 515–527, 2015.

SWAT 2018

http://i11www.ira.uka.de/map-labeling/bibliography/
http://i11www.ira.uka.de/map-labeling/bibliography/

12:14 Boundary Labeling for Rectangular Diagrams

3 Lukas Barth, Benjamin Niedermann, Martin Nöllenburg, and Darren Strash. Temporal
map labeling: A new unified framework with experiments. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS), pages 23:1–23:10. ACM, 2016.

4 Michael A. Bekos, Sabine Cornelsen, Martin Fink, Seok-Hee Hong, Michael Kaufmann,
Martin Nöllenburg, Ignaz Rutter, and Antonios Symvonis. Many-to-one boundary labeling
with backbones. J. Graph Algorithms Appl., 19(3):779–816, 2015.

5 Michael A. Bekos, Michael Kaufmann, Martin Nöllenburg, and Antonios Symvonis. Bound-
ary labeling with octilinear leaders. Algorithmica, 57(3):436–461, 2010.

6 Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary
labeling: Models and efficient algorithms for rectangular maps. Comput. Geom., 36(3):215–
236, 2007.

7 Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Nöllenburg. Algorithms for
multi-criteria boundary labeling. J. Graph Algorithms Appl., 13(3):289–317, 2009.

8 Prosenjit Bose, Paz Carmi, J. Mark Keil, Saeed Mehrabi, and Debajyoti Mondal. Boundary
labeling for rectangular diagrams. CoRR, abs/1803.10812, 2018. URL: https://arxiv.
org/abs/1803.10812.

9 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, Berlin Heidelberg, 2008.

10 Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M. E. Moret, and Binhai
Zhu. Map labeling and its generalizations. In Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 148–157, 1997.

11 Martin Fink and Subhash Suri. Boundary labeling with obstacles. In Proceedings of the
28th Canadian Conference on Computational Geometry (CCCG), pages 86–92, 2016.

12 Michael Formann and Frank Wagner. A packing problem with applications to lettering
of maps. In Proceedings of the Seventh Annual Symposium on Computational Geometry
(SoCG), pages 281–288. ACM, 1991.

13 Herbert Freeman. An expert system for the automatic placement of names on a geographic
map. Inf. Sci., 45(3):367–378, 1988.

14 GLEAM. http://www.greatlakesmapping.org/. Online; accessed 10 February, 2018.
15 Stephen A. Hirsch. An algorithm for automatic name placement around point data. The

American Cartographer, 9(1):5–17, 1982.
16 J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An

algorithm for the maximum weight independent set problem on outerstring graphs. Comput.
Geom., 60:19–25, 2017.

17 Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, André Schulz,
and Alexander Wolff. Multi-sided boundary labeling. Algorithmica, 76(1):225–258, 2016.

18 Benjamin Niedermann, Martin Nöllenburg, and Ignaz Rutter. Radial contour labeling with
straight leaders. In 2017 IEEE Pacific Visualization Symposium (PacificVis 2017), Seoul,
South Korea, pages 295–304, 2017.

19 Martin Nöllenburg, Valentin Polishchuk, and Mikko Sysikaski. Dynamic one-sided bound-
ary labeling. In 18th ACM SIGSPATIAL International Symposium on Advances in Geo-
graphic Information Systems (GIS), pages 310–319, 2010.

20 Alexander Wolff. Graph drawing and cartography. In Roberto Tamassia, editor, Handbook
of graph drawing and visualization, chapter 23, pages 697–736. CRC Press, 2014.

21 Steven Zoraster. The solution of large 0-1 integer programming problems encountered in
automated cartography. Operations Research, 38(5):752–759, 1990.

22 Steven Zoraster. Practical results using simulated annealing for point feature label place-
ment. Cartography and GIS, 24(4):228–238, 1997.

https://arxiv.org/abs/1803.10812
https://arxiv.org/abs/1803.10812
http://www.greatlakesmapping.org/

Gathering by Repulsion
Prosenjit Bose1

School of Computer Science, Carleton University, Canada
jit@scs.carleton.ca

Thomas C. Shermer
School of Computing Science, Simon Fraser University, Canada
shermer@sfu.ca

Abstract
We consider a repulsion actuator located in an n-sided convex environment full of point particles.
When the actuator is activated, all the particles move away from the actuator. We study the
problem of gathering all the particles to a point. We give an O(n2) time algorithm to compute
all the actuator locations that gather the particles to one point with one activation, and an O(n)
time algorithm to find a single such actuator location if one exists. We then provide an O(n)
time algorithm to place the optimal number of actuators whose sequential activation results in
the gathering of the particles when such a placement exists.

2012 ACM Subject Classification Mathematics of computing→Graph theory, Theory of compu-
tation → Design and analysis of algorithms, Theory of computation → Computational geometry

Keywords and phrases polygon, kernel, beacon attraction

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.13

1 Introduction

In this paper, we consider some basic questions about movement by repulsion. Here a point
actuator repels particles, or put another way, particles move so as to locally maximize
their distance from the actuator. This problem models magnetic repulsion, movement of
floating objects due to waves, robot movement (if robots are programmed to move away
from certain stimuli), and crowd movement in an emergency or panic situation. It is, in one
sense, the opposite of movement by attraction, which has recently been an active topic of
research [2, 3, 11, 10, 14, 9, 1, 8].

1.1 Related work
We initiate the study of repulsion in polygonal settings. The closest comparable work is the
work on attraction. Although attraction and repulsion have a similar definition, each has a
distinct character. Attraction as it has been studied is mainly a two-point relation: a point p
attracts a point q if q, moving locally to minimize distance to p, eventually reaches p. In
replusion, p cannot repulse q to itself; p must always repulse q to some other point r. Thus
repulsion is a three-point relation.

In attraction, if a particle is attracted onto an edge by a beacon, it is pulled towards the
point p where there is a perpendicular from the beacon to the line through the edge. If p is
on the edge, this creates a stable minimum at p, and particles accumulate at such mimima.
As well, particles can accumulate on some convex vertices.

1 Research supported in part by NSERC.

© Prosenjit Bose and Thomas C. Shermer;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 13; pp. 13:1–13:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Gathering by Repulsion

In repulsion, if a particle is repelled onto an edge by a repulsion actuator, it is pushed
away from the point p with the perpendicular to the actuator. This implies that p is an
unstable maximum. We forbid particles from stopping at unstable maxima, so in repulsion
the only accumulation points will be convex vertices. We elaborate further on our model in
Subsection 1.2.

In this article, we highlight some of the similarities as well as distinctions between these
two concepts. For instance, Biro [2] designed an O(n2) time algorithm for computing the
attraction kernel of a simple n-vertex polygon P ; these are all points p ∈ P that attract all
points q ∈ P . The closest counterpart of this for repulsion which we call the repulsion kernel
of a polygon P , which is all points p ∈ P such that there exists a point r ∈ P such that
p repels all points in P to r. We give an O(n2) time algorithm to compute the repulsion
kernel of an n-vertex convex polygon, and an O(n) time algorithm to find a single-point in
the repulsion kernel or report that the kernel is empty.

Both the attraction kernel and the repulsion kernel are concerned with the problem of
gathering particles to a point. When the repulsion kernel is empty, it may be the case that
we can still gather all particles to a point using more than one repulsion actuator. In this
vein, we prove that this is impossible in a polygon with three acute angles. In a convex
polygon with at most two acute angles, two repulsion actuators are always sufficient and
sometimes necessary. We then provide an O(n) time algorithm to place the optimal number
of actuators.

1.2 The model
We start with an n-vertex convex polygon P , which includes its interior. Before the activation
of any repulsion actuator, there is a particle on every point of the polygon, including the
boundary. During and after activation, we allow many particles to be on the same point;
once two particles reach the same point, they travel identically, so we consider them to be
one particle.

We restrict the location of the repulsion actuator to points in P ; allowing the actuator
to reside outside P leads to a variation of the problem in which convex polygons are easily
dispensed.

See Figure 1 for an illustration of the following definitions. The activation of an actuator
will cause all particles to move to locally maximize their distance from the actuator. This
means that if a particle is in the interior of P , then it moves in a straight line away from the
actuator’s location. If a particle is on an edge of the polygon, then it proceeds along the
edge in the direction that will further its distance from the active actuator. Once moving,
a particle moves until it is stable and can no longer locally increase its distance from the
actuator. Stable maxima happen at vertices where neither of the two edges allows movement
away from the actuator. We call such vertices the accumulation points of the activation.

Unstable maxima happen when a particle is on an edge where one or both directions give
no differential change of distance from the actuator; this happens only at the perpendicular
projection of the actuator onto the edge (see Figure 1c). A particle at an unstable maximum
will move off of it in a direction of no improvement and then will be able to increase the
distance from the actuator by continuing in that direction. To maintain a deterministic
model, we will assume that particles move counterclockwise around the polygon at unstable
maxima if there is a choice of two directions of no improvement. However, the choice of
counterclockwise motion is arbitrary, and does not affect our results.

We may activate actuators sequentially from several places inside the polygon. We would
like for every activation of an actuator to be from a location without particles, but the
particle-on-every-point model forbids this on the first activation. So, when we choose a

P. Bose and T. C. Shermer 13:3

a

w

q’

q
 w

w

q’

q

a b c

Figure 1 (a) An activation at w drives the particle at q away from w. On reaching an edge at q′,
it will continue to move away from w, until it reaches a local maximum of distance from w at a. (b)
Accumulation points of an active actuator at w. (c) At an unstable maximum, such as q′, particles
will turn left.

location for the first actuator, we remove the particle at that location from the problem. For
subsequent activations, however, we do require that the actuator’s position be chosen from
the points of the polygon without particles.

The main question we consider is when can we place a sequence of points such that
repulsion from those points gathers all other points in the polygon to one point? When the
replusion kernel is non-empty, one point is sufficient. In general, our goal is to minimize the
number of sequential activations performed to gather all the particles to one point. If all the
particles in a polygon can be gathered to a point with k sequential activations of actuators,
we call the polygon k-gatherable. If this is not possible for any k, then we call the polygon
ungatherable.

2 Background, notation, and terminology

2.1 General notation
We will use the convention that the vertices of P are v0, v1, . . . , vn−1 in counterclockwise order
around the polygon. Vertex indices are taken modulo n, so v−1 = vn−1, v0 = vn, v1 = vn+1,
etc. Edges are denoted e0, e1, . . . en−1, with ei being the edge between vi and vi+1. The
boundary of the polygon P will be denoted ∂P , and by ∂P (p, q) we mean the part of ∂P
from p counterclockwise to q. In reference to curves, line segments, or intervals, we use the
usual parentheses to denote relatively open ends and square brackets to denote relatively
closed ends. Thus ∂P [p, q) is the boundary from p to q, including p but not q. Given three
distinct points a, b, c in the plane, by ∠abc we mean the counterclockwise angle between the
ray from b to a and the ray from b to c.

2.2 Slabs and the three regions of an edge
Consider a polygon edge with particles covering it. When an actuator is activated, depending
on its location relative to the edge, there are three possible effects on the particles: it drives
them counterclockwise over the entire edge, it drives them clockwise over the entire edge, or it
drives some of them clockwise and some of them counterclockwise (see Figure 2). In the latter
case, a perpendicular from the edge to the actuator exists, and the particles clockwise of the
perpendicular are driven clockwise, and the particles counterclockwise of the perpendicular
are driven counterclockwise. The point where the perpendicular hits the edge is called a split
point. We allow split points at the endpoint of an edge if a perpendicular from the endpoint
to the actuator exists.

SWAT 2018

13:4 Gathering by Repulsion

 w

w
w

s

Figure 2 We use arrows in the diagrams to show the direction that the particles are driven. (a)
The activation drives the particles (on the indicated edge) clockwise. (b) The activation drives the
particles counterclockwise. (c) The activation splits the particles at s, driving some clockwise and
some counterclockwise.

w

s3

s2

s1

a1

a2

a3

Figure 3 A flow diagram, showing the direction of particle movement, along with the accumulation
points and split points, given an actuator at w.

We divide the inner halfplane of an edge e into three regions depending on what effect
an activation in the region has on the particles on the edge. This is done by drawing
interior-facing perpendiculars to the edge at each of its vertices. The regions are Rcw(e),
where an activation drives the particles clockwise, Rccw(e), where an activation drives the
particles counterclockwise, and S(e), where an activation drives some particles clockwise and
some counterclockwise. We refer to S(e) as the slab of e. The slab is closed on its boundaries,
and Rcw(e) and Rccw(e) are open where they meet S(e).

2.3 Flow diagrams
Given a polygon P and a location w of an actuator, we may find the accumulation points
and the split points, and mark each edge (or portion of a split edge) with the direction of
particle movement along that edge, as in Figure 3. We call a diagram of this a flow diagram
for w with respect to P .

I Lemma 1. In a traversal of ∂P , accumulation and split points alternate.

Proof. Note that in a flow diagram the only points of the boundary with two opposing
directions of particle movement are the accumulation points, where the movement is towards
the point, and the split points, where the movement is away from the point. Thus, between
any two consecutive split points on the boundary, there must be an accumulation point, and
between any two consecutive accumulation points, there must be a split point. This implies
the lemma. J

P. Bose and T. C. Shermer 13:5

I Theorem 2. A convex polygon P is 1-gatherable from w iff w lies in the slab of exactly
one of the edges of P .

Proof. A polygon is 1-gatherable from w iff an actuator at w has one accumulation point.
Since accumulation and split points alternate, this holds iff the actuator has exactly one split
point. Since an actuator has a single split point in every slab that it is in (and no others),
the result follows. J

The boundary of the slab for edge e consists of e and two rays perpendicular to e. If we
produce these two rays for each edge of P , and intersect all these rays with P , we get a set
of at most 2n chords that define a decomposition that we call the slab decomposition of P .
An example slab decomposition is shown in Figure 5. The cells of this decomposition have
the property that if two points are in a cell, then these two points are in exactly the same
set of slabs of P .

Theorem 2 then immediately implies that the repulsion kernel of P is the union of zero or
more cells of the slab decomposition of P . This gives us the basis for an O(n2) time algorithm
for finding the repulsion kernel. We start by constructing the slab decomposition. We can
use topological sweep to compute a quad-edge data structure for the slab decomposition in
O(n2) time [5, 4, 6].

I Theorem 3. The repulsion kernel of a convex polygon can be computed in O(n2) time.

Proof. We construct the slab decomposition. As we construct the decomposition, we augment
each edge with information about which slab or slabs it borders and to which side of the
edge said slabs are on. (An edge may border two slabs if the two slabs each have a defining
ray that are collinear.). Choose an arbitrary cell c of the decomposition and determine how
many slabs it is in. From this cell, perform a graph search on the dual of the decomposition.
Each time we step over an edge, from one cell to another, during this search, we update in
constant time the number slabs we are in, according to the information on the edge. We
maintain a list of all cells where this value is one. At the end of the search, this list is the
repulsion kernel. J

If we allow actuators to be located outside a polygon P , then every convex polygon is
1-gatherable.

I Lemma 4. Every convex polygon is 1-gatherable from some point in the plane.

Proof. If you go far enough away, you can always find a point that is not covered by any
slab. For this point, there is only one accumulation point. Therefore, an activation of an
actuator from this point moves all the particles to the accumulation point. J

Given the above, one may be tempted to believe that every convex polygon is 1-gatherable
when the actuators are restricted to be inside the polygon. However, this is not always the
case.

I Lemma 5. For k ≥ 2, the regular (2k + 1)-gon P2k+1 is not 1-gatherable.

Proof. Assume that the edge length of P2k+1 is 2, and that e0 is oriented with direction 0
(horizontal on the bottom of the polygon). This is illustrated in Figure 4 for P5.

By Lemma 12, we need only show that P2k+1 is not 1-gatherable from its boundary. By
symmetry, we need consider only ek+1. The edge ek+1 starts at the top center of the polygon
and proceeds downward to the left. The slab S(e0) contains the upper half of ek+1, as the

SWAT 2018

13:6 Gathering by Repulsion

e3

e0

1

1

c α

e3

e1

S(e1)
S(e0)

Figure 4 (a) S(e0) covers the top half of e3. (b) S(e1) covers the bottom half.

distance c (see figure) is greater than 1. (It is 1/ sinα, to be precise, where α is half the
vertex angle, or (2k−1)π

4k+2 .) Similarly, the slab S(e1) contains the bottom half of ek+1.
Thus, each point of ek+1 is in S(ek+1) and either S(e0) or S(e1) or both. Thus, by

Theorem 2, the polygon is not 1-gatherable from any point of ek+1.
The vertices are sometimes special cases, but here the vertex vk+1 (the top vertex of

the polygon) is in S(e0), S(ek), and S(ek+1), and thus the polygon is not 1-gatherable from
there. By symmetry, it is not 1-gatherable from any vertex. J

In fact, some convex polygons may be ungatherable. It turns out that acute angles are a
major impediment to gathering.

I Lemma 6. A particle that is at an acute vertex v of P cannot be moved by an actuator
activated at any point in P \ v.

Proof. Given any point p ∈ P \ v, the acute vertex v is a local maximum with respect to
distance since any point in P that is infinitesimially close to v is closer to p than v. J

This immediately implies the following.

I Theorem 7. A convex polygon with three acute vertices is not k-gatherable for any k > 0.

For the remainder of the paper, we only consider convex polygons with at most two acute
vertices.

3 1-Gatherability

We have shown so far that not all convex polygons are 1-gatherable. We have also given
a complete characterization of when a convex polygon is 1-gatherable by computing the
repulsion kernel of a polygon in O(n2) time. This begs the question whether it is possible
to find a point from which the polygon is 1-gatherable more efficiently, without having to
compute the repulsion kernel. We answer this question in the affirmative by providing an
O(n) time algorithm. Before presenting the algorithm, we highlight some useful geometric
properties.

I Lemma 8. Let a be an accumulation point of an actuator activated at w in P . The line L
that goes through a and is perpendicular to wa is a line of support of the polygon.

Proof. Since a is an accumulation point, it is a local maximum of distance from w. Thus,
the circle C with center w and radius aw encloses the polygon in the neighborhood of a. The
line L is tangent to (outside of) C at a and thus locally supports the polygon at a. Since the
polygon is convex, L also globally supports the polygon. J

P. Bose and T. C. Shermer 13:7

We now show that we can restrict our attention to particles starting only on the boundary
of P .

I Lemma 9. An actuator in P that 1-gathers all the particles on ∂P also 1-gathers all
particles in P .

Proof. The activation of an actuator in P forces a particle p in the interior of P to move
directly away from the actuator until it hits the boundary at some point b. Since there was
a particle p′ whose initial position is b, the particle p will follow the path of p′ and stop at
the same place p′ stops. Thus, the location of p will always be accounted for by the position
of p′. In other words, p is redundant and can be removed from the problem. J

We can take this a step further and show that particles located on the interior of edges
are redundant.

I Lemma 10. An actuator in P that 1-gathers all the particles on the vertices P also
1-gathers all particles on ∂P .

Proof. The activation of an actuator in P forces a particle p in the interior of an edge of P
to move along along the edge until it reaches a vertex v. There was a particle p′ that started
at v, and we can follow the proof of Lemma 9. J

The above lemmas show that particle movement can be restricted to the boundary. In
fact, to solve the general problem, we only need to consider the problem where particles are
only on vertices. We show a relationship between self-approaching paths and the path on the
boundary followed by a particle under the influence of an actuator. Recall that a directed
path Π is self-approaching if for any three consecutive points x, y, z on the path, we have the
property that |xz| ≥ |yz| [7].

I Lemma 11. If ∂P (x, y) is self-approaching from x to y then activating an actuator at y
sends all the particles on ∂P (x, y) to x along the boundary.

Proof. Let z be an arbitrary point on ∂P (x, y). We observed that activating an actuator at
y will move z along the boundary. We need to establish in which direction the particle will
move. Since ∂P (x, y) is self-approaching from x to y, we have that |yz| ≤ |yx|. Therefore,
the particle z will move to x since particles move in a direction to increase their distance
from an actuator. J

Next, we show that if the repulsion kernel is not empty, then there is at least one point
on the boundary that is in the repulsion kernel.

I Lemma 12. Let P be a convex polygon that is 1-gatherable from a point w in the interior
of P , and let a be the accumulation point for w. Let R be the ray from a through w, not
including the point a. Then P is 1-gatherable from the point w′ = R ∩ ∂P , with a as its
accumulation point (see Figure 5).

Proof. By Theorem 2, the point of gatherability w is in one edge e’s perpendicular slab.
Without loss of generality, we assume that e is horizontal at or below w (by rotation), that a
is not to the right of w (by reflection), and that e is e0 = v0v1(by labelling). Let m be such
that a = vm. See Figure 6. Let p be the point on e which has a perpendicular through w.
Note that p is a split point for w.

To show that P is 1-gatherable from the point w′ on ∂P , by Lemma 10, it suffices to
show that the particles located on the vertices of P move to one accumulation point with

SWAT 2018

13:8 Gathering by Repulsion

a

w w'

Figure 5 P is 1-gatherable from w′. Each slab in P is shown, with areas darkness corresponding
to the number of slabs overlapping there.

p

w
a = vm

w’

v0 v1

vk

vk+1

Figure 6 Some relevant points on the polygon.

the activation of an actuator at w′. We will show that this accumulation point is a. We
assume without loss of generality that w′ is located on the edge ek = [vkvk+1). Recall that if
w′ happens to be on vk, then the placement of the actuator on w′ means the particle located
at w′ is removed from consideration.

We begin with the claim that an accumulation point for w′ is a. If this were not the
case, then there would be a way to increase the distance from w′ on the boundary in the
neighborhood of a. By Lemma 8, there is a line L perpendicular to wa that is a line of
support of P at a. By construction, L is perpendicular to w′a. Therefore, a is a local
maximum with respect to w′, and thus is an accumulation point for w′. We will now show
that particles located at all other vertices move to a when an actuator is activated at w′.

Since p is a split point for w, we have that upon activation of w, the particles on the
vertices on ∂P (a, p) move clockwise along the boundary to a. Similarly, the particles on the
vertices on ∂P (p, a) move counterclockwise along the boundary to a. By Theorem 2, this
means that w is in all of the regions Rccw(e1), Rccw(e1), . . . , Rccw(em−1) and w is in Rcw(em),
Rcw(em+1), . . . , Rcw(en−1). See Figure 8.

P. Bose and T. C. Shermer 13:9

v0 = vn v1

vj

vj+1

p

w’

w

ej

S(ej)

v2
e1

S(e1)

a = vm

S(em-1)

em-1

vk

vk+1

Figure 7 w is in the regions Rccw(e0) to Rccw(em−1).

v0 = vn v1

vj

vj+1

p

w’

w

en-1

S(en-1)

ej

S(ej)

a = vm

S(em)
em

Figure 8 w is in the regions Rcw(em) to Rcw(en).

Since all of the slabs S(em), S(em+1), . . . , S(en−1) cross the chord aw′ between a and w, we
have that w′ is also in Rcw(em), Rcw(em+1), . . . , Rcw(en−1). Thus, the vertices vm+1, . . . , vn
move in a clockwise direction to a.

Now, we must show that the particles on vertices v1, . . . , vm−1 also move to a. We first
consider the vertices vk+1, . . . , vm−1. Again, since these vertices move counterclockwise
when the actuator is activated at w, the slabs S(ej) for k ≤ j ≤ m − 1 cross the chord
aw′ between a and w. Therefore, none of them can contain w′. This implies that w′ is in
Rccw(ek+1), . . . , Rccw(em−1).

We now show that the vertices v1, . . . , vk move in a clockwise direction to a. Consider the
circle C centered at w and going through w′. This circle contains ∂P [v1, vk] since particles
on v1, v2, . . . , vk move in a counterclockwise direction to a when an actuator is activated at
w. It is strict containment as the particles always move away from w. Now consider the
circle C ′ that has the chord aw′ as diameter. Since a is the accumulation point for w, it is
the farthest point from w. This implies that the the center c of C ′ lies on the segment aw,
with radius |cw′|. C ′ contains C since |cw′| > |ww′|. (Figure 9).

Let q be an arbitrary point in ∂P (p, w′). Since q is in the interior of C, we have that
∠w′qa > π/2. By convexity, we have that ∠w′qp > ∠w′qa. Consider the cone formed by the
ray from q to w′ and the ray at q that is an extension of the line through a and q. Since
∠w′qp > π/2, we have that the angle formed at this ray is strictly less than π/2 and ∂P [q, w′)
is contained in the cone. Lemma 3 in [7] states that when ∂P [q, w′) is contained in a cone

SWAT 2018

13:10 Gathering by Repulsion

v0
p

a

w’

c

w

a

C

C’

q

Figure 9 The circle C′ contains the circle C and thus contains the boundary from p to w′.

at q with angle at most π/2 for every q ∈ ∂P (p, w′) then ∂P (p, w′) is self-approaching from
p to w′. By Lemma 11, we have that an activation of an actuator at w′ sends q clockwise
around the boundary to p since |pw′| ≥ |qw′|. Therefore, the vertices v1, . . . , vk move in a
clockwise direction to a.

We have now shown the polygon is 1-gatherable from w′. J

As a consequence of the previous lemma, in order to tell if a polygon is 1-gatherable, it
suffices to determine if it is 1-gatherable from the boundary. To do this in linear time, we
employ an approach that resembles the rotating calipers algorithm to compute the diameter
of a convex polygon [13]. In essence, for every point x on ∂P , we want to compute the first
clockwise and first counterclockwise accumulation point. We do this in two steps. We compute
all the counterclockwise accumulation points then compute the clockwise accumulation points.
The algorithm to compute the counterclockwise accumulation points proceeds as follows.
We start at the lowest point x of P and place the first horizontal caliper at x. We then
walk around the boundary in counterclockwise direction until we find the counterclockwise
accumulation point y for x. We place the second caliper at y such that it is perpendicular to
xy. As x moves counterclockwise around P , there are two types of events. Either x moves
to a new vertex or the caliper at y becomes coincident to an edge of P in which case y
moves from one vertex to the next. There are a linear number of events that occur and
by recording these events, when the calipers returns to its starting positions, we know the
counterclockwise accumulation point for every point on the boundary of P . By repeating
this in the clockwise direction, we find the clockwise accumulation points. For any point on
the boundary of P , if its clockwise accumulation point is the same as its counterclockwise
accumulation point, then the polygon is 1-gatherable from that point. We conclude this
section with the following:

I Theorem 13. We can determine if a convex n-vertex polygon is 1-gatherable in O(n) time.

Proof. Follows from Lemma 12 and the discussion above. J

P. Bose and T. C. Shermer 13:11

4 2-Gatherability

In this section we prove that a convex polygon with at most two acute vertices is 2-gatherable.
We then give an O(n) algorithm to determine the location of the two actuators and the
sequence of activation.

I Theorem 14. If a convex polygon has two or fewer acute vertices, then it is 2-gatherable.

Proof. Let D(P) be the smallest disk enclosing polygon P with centre c. Either there are two
vertices vi and vj of P that form a diameter of D(P) or there are three vertices vi, vj , and vk
on ∂D(P) such that c is in the interior of the triangle formed by the three vertices [12, 15].
We consider each case separately. Recall that by Lemma 9, we can assume that the particles
are only located on the boundary of P .

Case 1: Two vertices vi and vj of P form a diameter of D(P). In this case, we show that an
actuator activated at vertex vi results in all particles accumulating at vj . Assume, without
loss of generality, that vi and vj lie on a vertical line L with vi below vj . The two vertices
partition the polygon boundary into two chains, ∂P [vi, vj] which is to the right of L and
∂P [vj , vi] which is to the left. We also assume that each chain consists of at least two edges,
since otherwise, one of the chains is the edge vivj and trivially any particle on this edge
moves to vj when an actuator at vi is activated. To complete the proof in this case, by
Lemma 11, it suffices to show that both ∂P [vi, vj] and ∂P [vj , vi] are self-approaching curves
from vj to vi.

Consider any point x ∈ ∂P (vi, vj). Since x is in D(P) strictly to the right of L we have
that π > ∠vjxvi ≥ π/2. Consider the cone formed by the intersection of the half-space
bounded by the line through vj and x that contains vi and the half-space bounded by the
line through vi and x that does not contain vj . This cone has angle at most π/2 and contains
∂P [vi, x]. Since x is an arbitrary point on ∂P (vi, vj), by Lemma 3 in [7], we have that
∂P [vi, vj] is self-approaching from vj to vi. A similar argument shows that ∂P [vj , vi] is also
self-approaching from vj to vi.

Case 2: There are three vertices vi, vj , and vk appearing in counter-clockwise order on
∂D(P) such that c is in the interior of the triangle formed by the three vertices. Since there
are at most two acute vertices, without loss of generality, assume that vj is a polygon vertex
with interior angle at least π/2. Reorient the polygon such that vi is the lowest point. The
polygonal chains ∂P [vi, vj], ∂P [vj , vk] and ∂P [vk, vi] are self-approaching from vj to vi, vk
to vj and vk to vi, respectively, by the same argument as the one used in Case 1. In fact,
since c is strictly in the interior of the triangle formed by the three vertices, we have that
the cones used to prove that the chains are self-approaching have an angle that is strictly
less than π/2.

By placing a first active actuator on vi, we have that all the particles on ∂P (vi, vj] and all
the particles on ∂P [vk, vi) move onto ∂P [vj , vk]. Since ∂P [vj , vk] is self-approaching from vk
to vj , if we activated a second actuator at vj then all the particles on this chain move to vj ’s
accumulation point which would complete the proof. However, even though vj is not acute,
it may be the case that vj is the counterclockwise accumulation point for vi. This would
prevent us from placing an actuator on vj since after the activation of the first actuator on
vi, particles have accumulated on vj . Recall that all subsequent placements of actuators
must be on points in P that are free of particles. Since for every point x on ∂P (vj , vk),
∠vjxvk > π/2, there must exist a point y on the edge vjvj−1 infinitessimally close to vj such

SWAT 2018

13:12 Gathering by Repulsion

that the ∠yzvk is still strictly greather than π/2 for every z ∈ ∂P [vj , vk). This implies that
∂P [y, vk] is self-approaching from vk to y. Thus, by Lemma 11, activating a second actuator
at y, which is free of particles after the first activation, moves all the particles that have
accumulated on ∂P [vj , vk] to the counterclockwise accumulation point of y. J

References
1 Sang Won Bae, Chan-Su Shin, and Antoine Vigneron. Improved bounds for beacon-based

coverage and routing in simple rectilinear polygons. arXiv preprint arXiv:1505.05106, 2015.
2 Michael Biro. Beacon-based routing and guarding. PhD thesis, State University of New

York at Stony Brook, 2013.
3 Michael Biro, Justin Iwerks, Irina Kostitsyna, and Joseph SB Mitchell. Beacon-based

algorithms for geometric routing. In WADS, pages 158–169. 2013.
4 Herbert Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrangement. J.

Comput. Syst. Sci., 38(1):165–194, 1989.
5 Herbert Edelsbrunner and Leonidas J. Guibas. Corrigendum: Topologically sweeping an

arrangement. J. Comput. Syst. Sci., 42(2):249–251, 1991.
6 Leonidas J. Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions

and computation of voronoi diagrams. ACM Trans. Graph., 4(2):74–123, 1985.
7 Christian Icking, Rolf Klein, and Elmar Langetepe. Self-approaching curves. Math. Proc.

Camb. Phil. Soc., 123(3):441–453, 1999.
8 Irina Kostitsyna, Bahram Kouhestani, Stefan Langerman, and David Rappaport. An op-

timal algorithm to compute the inverse beacon attraction region. In SoCG, 2018.
9 Bahram Kouhestani, David Rappaport, and Kai Salomaa. On the inverse beacon attraction

region of a point. In CCCG, 2015.
10 Bahram Kouhestani, David Rappaport, and Kai Salomaa. The length of the beacon attrac-

tion trajectory. In CCCG, pages 69–74, 2016.
11 Bahram Kouhestani, David Rappaport, and Kai Salomaa. Routing in a polygonal terrain

with the shortest beacon watchtower. Comput. Geom., 68:34–47, 2018.
12 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-

lems. SIAM J. Comput., 12(4):759–776, 1983.
13 Michael Shamos. Computational Geometry. PhD thesis, Yale Univeristy, 1978.
14 Thomas C Shermer. A combinatorial bound for beacon-based routing in orthogonal poly-

gons. arXiv preprint arXiv:1507.03509, 2015.
15 Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends

in Computer Science, pages 359–370, 1991.

Improved Bounds for Guarding Plane Graphs with
Edges
Ahmad Biniaz1

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
ahmad.biniaz@gmail.com

Prosenjit Bose2

School of Computer Science, Carleton University
Ottawa, Canada
jit@scs.carleton.ca

Aurélien Ooms3

Département d’Informatique, Université libre de Bruxelles (ULB)
Brussels, Belgium
aureooms@ulb.ac.be

Sander Verdonschot4

School of Computer Science, Carleton University
Ottawa, Canada
sander@cg.scs.carleton.ca

Abstract
An edge guard set of a plane graph G is a subset Γ of edges of G such that each face of G is
incident to an endpoint of an edge in Γ. Such a set is said to guard G. We improve the known
upper bounds on the number of edges required to guard any n-vertex embedded planar graph G:
1. We present a simple inductive proof for a theorem of Everett and Rivera-Campo (1997) that

G can be guarded with at most 2n
5 edges, then extend this approach with a deeper analysis

to yield an improved bound of 3n
8 edges for any plane graph.

2. We prove that there exists an edge guard set of G with at most n
3 + α

9 edges, where α is
the number of quadrilateral faces in G. This improves the previous bound of n3 + α by Bose,
Kirkpatrick, and Li (2003). Moreover, if there is no short path between any two quadrilateral
faces in G, we show that n

3 edges suffice, removing the dependence on α.

2012 ACM Subject Classification Theory of computation → Computational geometry, Math-
ematics of computing → Graph theory

Keywords and phrases edge guards, graph coloring, four-color theorem

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.14

1 Introduction

The original Art Gallery Problem: "How many guards are necessary, and how many are
sufficient to patrol the paintings and works of art in an art gallery with n walls?" was
posed by Victor Klee in 1973. Chvatal [5] offered the first solution to the question by

1 Supported by NSERC and Fields postdoctoral fellowships.
2 Supported by NSERC.
3 Supported by the Fund for Research Training in Industry and Agriculture (FRIA).
4 Partially supported by NSERC and the Carleton-Fields Postdoctoral Award.

© Ahmad Biniaz, Prosenjit Bose, Aurélien Ooms, and Sander Verdonschot;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahmad.biniaz@gmail.com
mailto:jit@scs.carleton.ca
mailto:aureooms@ulb.ac.be
mailto:sander@cg.scs.carleton.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Improved Bounds for Guarding Plane Graphs with Edges

proving that n/3 guards are sufficient and sometimes necessary to guard an n-vertex polygon.
However, since then, an active area of research was spawned, where researchers studied many
different variants of the problem, by allowing different types of guards and guarding different
types of objects. The field is vast and many surveys on the topic have been written (see
[11, 13, 10, 12]). In this paper, the variant we study is when the guards are edges and the
object guarded is a plane graph.

A plane graph is a graph that is embedded in the plane without crossing edges. Throughout
this paper, G is a plane graph with n ≥ 3 vertices and at least one edge. The graph G

divides the plane into regions called the faces of G. A guard set for G is a subset Γ of edges
of G such that every face of G (including the outer face) contains at least one endpoint of
an edge in Γ on its boundary. In other words, when the endpoints of the edges of Γ guard
the faces of G, we say that Γ guards G. We focus on the problem of finding a guard set for
G with minimum size. To avoid some notational clutter, we omit floors and ceilings in the
statements of the bounds. However, since the size is necessarily integer, all fractional bounds
can be rounded down for upper bounds and rounded up for lower bounds, except in the case
when the upper bound is less than 1, in which case, we round up to 1.

For maximal outerplanar graphs, O’Rourke [9] showed that n
4 edge guards are always

sufficient and sometimes necessary. In his proof, both the upper bound and lower bound
require that every bounded face is a triangle and the outer face is a cycle. By removing this
restriction, both the upper and lower bounds jump to n

3 for arbitrary outerplanar graphs [4, 5].
For maximal plane graphs (triangulations), Everett and Rivera-Campo [6] showed that n

3
edge guards are always sufficient and Bose et al. [4] showed that 4n−4

13 edge guards are
sometimes necessary. The upper bound is derived using the four-color theorem. Note the
gap between the upper and lower bounds. The lower bound is derived by constructing a
triangulation where 4n−4

13 triangles are isolated. Two triangles are isolated if there is no edge
joining a vertex of one triangle with a vertex of the other triangle. Since it is impossible
to isolate n

3 triangles in a maximal plane graph, this would suggest that the upper bound
argument may not be exploiting all of the structure present in a maximal plane graph.

Indeed, when one studies plane graphs that are no longer restricted to be maximal,
the current best upper bound is no longer n

3 . Everett and Rivera-Campo [6] used the
four-color theorem to prove that 2n

5 edges suffice. By using a different coloring approach,
Bose, Kirkpatrick and Li [3] proved that n

3 + α edges are sufficient, where α is the number
of quadrilateral faces of G. Since outerplanar graphs are planar, n

3 edges are sometimes
necessary and no better lower bound is known. Although it seems that the number of
quadrilateral faces plays a key role in this problem, it is unclear which upper bound is better
in the worst case: 2n

5 or n
3 + α, since α can be as high as n− 2. Our main contribution is an

improvement on both upper bounds. We give a simpler proof for Everett and Rivera-Campo’s
upper bound of 2n

5 edges. In addition, by exploiting various properties of planar graphs, we
are able to strengthen the bound to 3n

8 edges. We then show that, for plane graphs with α
quadrilateral faces, n3 + α

9 edges suffice, reducing the dependency on α. Table 1 summarizes
the best known upper and lower bounds.

2 Iterative Guarding

We first introduce a proof strategy that iteratively builds a guard set while shrinking the
graph. We use this strategy to give a simple proof of Everett and Rivera-Campo’s [6] result
that 2n

5 edges suffice for any plane graph, before strengthening this bound to 3n
8 . Note that,

if the graph has a single face, it can be guarded by one edge and our bounds hold so long as
n ≥ 3. In the remainder of this section, we assume that the initial graph has at least two
faces.

A. Biniaz, P. Bose, A. Ooms, and S. Verdonschot 14:3

Table 1 The best known upper and lower bounds for various types of graphs, where n is the
number of vertices and α is the number of quadrilateral faces.

Graph Type Lower Bound Upper Bound
Maximal Outerplanar n

4 [9] n
4 [9]

Outerplanar n
3 [4] n

3 [5]
Maximal Planar 4n−4

13 [4] n
3 [6]

Planar n
3 [4] min{n3 + α

9 ,
3n
8 } [this paper]

v

u

w

Figure 1 Edge (u,w) guards both faces incident to a vertex v of degree 2, allowing us to remove
all three vertices.

The general strategy works as follows. Suppose we are aiming for a bound of cn edges,
for some constant c > 0. We start with an empty partial guard set Γ = ∅. Given a plane
graph G, we identify a set of vertices V ′ and edges E′ such that (i) the edges in E′ guard all
faces incident to vertices in V ′ and (ii) we have that |E′| ≤ c|V ′|. We then add all edges of
E′ to Γ, remove all vertices in V ′ from G, along with their incident edges, and repeat until
G has one face left; i.e. G is a forest. This face has already been guarded in the penultimate
step, so we return Γ as our guard set. Since we added at most c edges for every vertex we
removed, its size is at most cn.

As a warmp-up, we use this strategy to prove the following bound for 2-degenerate graphs
(an undirected graph is k-degenerate if every subgraph has a vertex of degree at most k).

I Theorem 1. Every 2-degenerate plane graph with n ≥ 3 vertices can be guarded by at most
n
3 edges.

Proof. Let G be a 2-degenerate plane graph with n ≥ 3 vertices. If G has one face, we guard
it with a single edge and the theorem holds, so assume that G has more than one face. We
use the iterative strategy described above to construct a guard set Γ for G with c = 1

3 . Thus,
all that is left to do is to describe how to find the sets E′ and V ′.

We consider two cases, depending on the minimum degree of G. If G contains any vertex
v of degree 0 or 1, we let E′ = ∅ and V ′ = {v}. While this does not technically satisfy our
definition above that the edges in E′ guard all faces incident to vertices in V ′, this operation
is still safe, since any guard set for G \ {v} is also a guard set for G.

If G does not contain any vertex of degree 0 or 1, the fact that it is 2-degenerate tells us
that it must have a vertex v of degree 2. Let u be a neighbor of v, and let w 6= v be another
neighbor of u (see Figure 1). Such a vertex w must exist, since G has minimum degree 2.
We now let E′ = {(u,w)} and V ′ = {v, u, w}. Since edge (u,w) guards both faces incident
to v, as well as all faces incident to u and w, this completes the proof. J

This gives an alternate proof for the bound on outerplanar graphs [5, 7], since they are
2-degenerate.

SWAT 2018

14:4 Improved Bounds for Guarding Plane Graphs with Edges

u

v1

v2

(a)

u

v1

v2
v′2

v′1

(b)

u

v1

v3

v2

v′3

(c)

Figure 2 Guarding a vertex (a) of degree 3 with two neighbors connected by an edge; (b) of
degree 3 with no neighbors connected by an edge; (c) of degree 4 or 5 and incident to a triangle.

I Corollary 2. Every embedded outerplanar graph with n ≥ 3 vertices can be guarded by at
most n

3 edges.

Since a set of n3 disjoint triangles comprises an outerplanar and 2-degenerate graph, the
bounds of Theorem 1 and Corollary 2 are best possible for these classes.

We use the same technique to prove the 2n
5 and 3n

8 bounds. Since 1
3 <

3
8 <

2
5 , we can use

the arguments from the proof of Theorem 1 to eliminate vertices of degree 2 or less, even if
we are shooting for c = 2

5 or c = 3
8 . Thus, we may assume for the remainder of the section

that the graph has minimum degree 3. Since planar graphs are 5-degenerate, we still need to
handle vertices of degree 3, 4, or 5. The following lemma gives us a little more to work with
in these cases. For brevity, we denote a vertex of degree d as a d-vertex, and one with degree
at most d as a d−-vertex. Likewise, we denote a face with k boundary edges as a k-face and
one with at most k edges as a k−-face.

I Lemma 3 (Lebesgue [8]). In each plane graph with minimum degree 3 there exists either a
3-vertex incident to a 5−-face, or a 4-vertex incident to a 3-face, or a 5-vertex incident to
four 3-faces.

I Theorem 4. Every plane graph with n ≥ 3 vertices can be guarded by at most 2n
5 edges.

Proof. We use the iterative method with c = 2
5 and, as argued above, can assume that our

graph G has minimum degree at least 3.
First consider the case where G has a vertex u of degree 3. Any two neighbors of u

together are incident to all faces incident to u. If any two neighbors v1 and v2 of u are
connected by an edge, we let E′ = {(v1, v2)} and V ′ = {u, v1, v2} (see Figure 2a). Otherwise,
let v1 and v2 be any two neighbors of u, and let v′1 6= u be a neighbor of v1 and v′2 /∈ {u, v′1}
a neighbor of v2 (see Figure 2b). We set E′ = {(v1, v

′
1), (v2, v

′
2)} and V ′ = {u, v1, v

′
1, v2, v

′
2}.

Now suppose that G has minimum degree at least 4. Then Lemma 3 tells us that there
must be a 5−-vertex u incident to a triangle. Let v1 and v2 be the other vertices of this
triangle. Edge (v1, v2) guards three of the four or five faces incident to u. Let v3 be a
neighbor of u incident to the faces not guarded by (v1, v2), and let v′3 /∈ {u, v1, v2} be a
neighbor of v3 (see Figure 2c). We set E′ = {(v1, v2), (v3, v

′
3)} and V ′ = {u, v1, v2, v3, v

′
3}

(see Figure 2b).
Thus, in each case we can find E′ and V ′ such that the edges of E′ guard all faces incident

to vertices in V ′ and |E′| ≤ 2
5 |V

′|. J

To improve this bound further to 3n
8 , we need an even stronger version of Lemma 3,

inspired by Borodin [2]. Following his terminology, an edge is incident on a face if one of its

A. Biniaz, P. Bose, A. Ooms, and S. Verdonschot 14:5

endpoints is on the face. An edge is weak if it is incident to two triangles, semiweak if it is
incident to exactly one triangle, and strong otherwise.

I Lemma 5. Every plane graph with minimum degree 3 contains one of the following:
(L1) a weak edge joining a 3-vertex to a 10−-vertex;
(L′

2) a weak edge joining a 4-vertex to a 6−-vertex;
(L′′

2) a weak edge joining a 4-vertex u to a 7-vertex v such that at least one edge adjacent to
(u, v)] around v is weak;

(L3) a weak edge joining a 5-vertex incident to at least four 3-faces to a 6−-vertex;
(L4) a semiweak edge joining a 3-vertex to an 8−-vertex;
(L5) a semiweak edge joining a 4-vertex to a 5−-vertex;
(L6) an edge incident to a 4-face and joining a 3-vertex to a 5−-vertex;
(L7) a 5-face incident to at least four 3-vertices.

Proof. Borodin [2] proved this lemma, except with configurations (L′2) and (L′′2) replaced by
(L2): a weak edge joining a 4-vertex to a 7−-vertex. We describe how to adapt Borodin’s
discharging argument to prove our stronger version. For full details, see the original paper [2].

Initially, we assign a charge of d− 4 to each d-vertex and each d-face. By Euler’s formula,
this results in a total charge of −8. Then, following Borodin, we redistribute the charge as
follows:

Every face with more than 4 sides transfers 1
3 to every 3-vertex on its boundary.

Every vertex transfers 1
3 to each incident triangle.

Each vertex u transfers the following to the other endpoint v of each incident edge:
2
3 if v has degree 3 and (u, v) is weak;
1
2 if v has degree 3 and (u, v) is semiweak;
1
3 if v has degree 3 and (u, v) is strong and u has degree at least 6;
1
3 if v has degree 4 and (u, v) is weak;
1
6 if v has degree 4 and (u, v) is semiweak;
1
6 if v has degree 5 and (u, v) is weak and v is incident to four triangles.

We now assume that G does not contain any of the configurations (L1) through (L7), and
show that this implies that every vertex and face has non-negative charge – a contradiction.
The only change from the original proof is that we cannot assume that weak edges between
4-vertices and 7-vertices do not exist. This only affects the part of the proof dealing with
7-vertices, so if we can show that 7-vertices still have non-negative charge, we are done.

Consider any 7-vertex u. Initially, u has charge +3. If there is no weak edge connecting u
to a 4-vertex, the original proof still applies, so suppose that v is a neighboring 4-vertex and
(u, v) is weak. Then u transfers 1

3 of its charge to v and each of the two triangles incident
to (u, v), leaving it with +2 charge. Let v− and v+ be the neighbors of u preceding and
following v in clockwise order around u, respectively. Since G does not contain configuration
(L′′2), neither (u, v−) nor (u, v+) is weak, so u does not transfer any charge to the other faces
incident to these edges. Furthermore, v− and v+ must have degree at least 6, otherwise their
edge to v would create configuration (L′2) or (L5). Therefore they receive no charge from u

either.
Even if the remaining faces all receive 1

3 charge and the remaining vertices 1
6 , this would

still leave u with positive charge. By (L1) and (L4), no neighbor of u can receive more than
1
3 charge. If u has another 4-vertex v′ as neighbor with (u, v′) weak, this results in even less
charge distribution, since the neighbors before and after v′ do not receive any charge and
they cannot overlap with v+ or v−, since (u, v−) and (u, v+) are not weak. Finally, a 3-vertex
connected to u by a strong edge would receive 1

3 charge, but would prevent the adjacent
faces from receiving charge. Thus, u will have non-negative charge after redistribution, which
completes the proof. J

SWAT 2018

14:6 Improved Bounds for Guarding Plane Graphs with Edges

(L1)

p

p′

u v

q

q′

v′ v′′

(L′
2)

p

p′

u v

q

v′ v′′

q′

(L′′
2)

p

p′

u v

q

v′ v′′

q′

(L3)

(L4)

p
p′

u v v′ v′′

u′

u′′

(L5)

u v

p q

u′

u′′

v′

v′′

(L6)

v
u

p

p′

f

(L7)

Figure 3 How to select E′ (thick shaded edges) and V ′ (large shaded vertices) in each configuration
of Lemma 5.

With Lemma 5 in hand, we can improve our bound to 3n
8 .

I Theorem 6. Every plane graph with n ≥ 3 vertices can be guarded by at most 3n
8 edges.

Proof. As before, we use the iterative method and assume that the minimum degree of our
plane graph G is 3. We describe how to find E′ and V ′ for each configuration of Lemma 5
(see Figure 3).

If G contains (L1) or (L4), we consider a triangle incident to the (semi) weak edge and
let E′ be the edge of the triangle that is not incident to the 3-vertex. Then V ′ consists of
the 3-vertex and both endpoints of the edge in E′. Thus, for the remainder of the proof, we
can assume that any vertex incident to a triangle has degree at least 4.

If G contains (L′2), let u be its 4-vertex, v be its 6−-vertex, and p and q be the other
vertices of the triangles incident to (u, v) (we leave these definitions implicit for the remaining
cases; refer to Figure 3). We consider a neighbor p′ of p. If p has an edge to q, we let
E′ = {(p, q)} and V ′ = {u, p, q}, so suppose that p′ 6= q. Since q has degree at least 4, it
has a neighbor q′ 6= p′. We add (p, p′) and (q, q′) to E′. If this guards all faces incident to
v, we simply set V ′ = {u, v, p, p′, q, q′}. Otherwise, let v′ be a neighbor of v incident to all
unguarded faces (there can be at most two, since v is a 6−-vertex). Let v′′ 6= v be the other
neighbor of v′ along the boundary of one of the unguarded faces incident to v. We know
that v′′ /∈ {p, p′, q, q′, u}, otherwise the face would already have been guarded. Thus, we can
add (v′, v′′) to E′ and set V ′ = {u, v, p, p′, q, q′, v′, v′′}.

If G contains (L′′2), we again set E′ = {(p, q)} with V ′ = {u, p, q} if edge (p, q) exists.
Otherwise, let q′ 6= u be the other neighbor of q adjacent around v. Since p′ has degree at
least 4, it has a neighbor p′ 6= q′. We add (p, p′) and (q, q′) to E′. If all faces incident to v
are guarded, we set V ′ = {u, v, p, p′, q, q′}. Otherwise, we use the same reasoning as in the
previous case to find an extra edge (v′, v′′) that guards the remaining faces around v.

If G contains (L3), let q′ 6= v be the other neighbor of q adjacent around u. Since p has
degree at least 4, it either has a neighbor p′ /∈ {q, q′}, or it is connected to both q and q′. In
the first case, we add (p, p′) and (q, q′) to E′ and again find a third edge (v′, v′′) to cover the
remaining faces around v. In the second case, v must have a neighbor v′ 6= q′ otherwise these

A. Biniaz, P. Bose, A. Ooms, and S. Verdonschot 14:7

five vertices would form a K5. Then we let E′ = {(q, q′), (v, v′)} and V ′ = {u, p, q, q′, v, v′},
since (q, q′) guards all faces incident to both u and p except for the triangle uvp.

If G contains (L5), let u′ 6= p be the other neighbor of u adjacent to v around u. If
p and u′ are connected by an edge, let E′ = {(p, u′)} and V ′ = {u, p, u′}. Otherwise, let
u′′ /∈ {u, v} be a neighbor of u′ and let p′ /∈ {u, v, u′′} be a neighbor of p. These neighbors
exist since u′ and p have minimum degree 3 and 4, respectively. We add (u′, u′′) and (p, p′)
to E′ and, if necessary, find a third edge (v′, v′′) to cover the remaining faces around v as
before. Thus, we get E′ = {(p, p′), (u′, u′′), (v′, v′′)} and V ′ = {u, u′, u′′, p, p′, v, v′, v′′}.

If G contains (L6), either u is connected to q or it has a neighbor u′ 6= q. In the first case,
we let E′ = {(p, q)} and V ′ = {u, p, q}. In the second case, if u′ is connected to any vertex
x ∈ {p, q, v} then that edge would cover all faces around u and give us E′ = {(u′, x)} and
V ′ = {u, u′, x}. Otherwise, let u′′ 6= u be another neighbor of u′. We add (p, q) and (u′, u′′)
to E′ and again find another edge to cover the remaining faces around v.

Finally, if G contains (L7), let f be the 5-face and let u be a vertex of maximum degree
on f . Let v be one of u’s neighbors around the face and let p be the vertex on f not adjacent
to u or v around f . If p has an edge to u or v, then that edge covers all faces around p,
u, and v and we are done. Otherwise, let p′ /∈ {u, v} be a neighbor of p not on f . We set
E′ = {(u, v), (p, p′)} and V ′ = V (f) ∪ {p′}.

Thus, in each case we can find a set E′ and V ′ such that |E′| ≤ 3
8 |V

′|. J

3 Guarding by Coloring

Historically, many questions about guard placement have been resolved by finding an
appropriate vertex or edge coloring. Bose et al. [3] defined a face-respecting k-coloring of a
plane graph G as a k-coloring of the vertices of G such that no face is monochromatic. They
were particularly interested in face-respecting 2-colorings with the additional property that
every face has a monochromatic edge. For brevity, we call such colorings guard colorings.
They proved the following result, which we include here as a good introduction to the general
technique.

I Lemma 7 (Bose et al. [3]). If a plane graph with n ≥ 3 vertices has a guard coloring, it
can be guarded by n

3 edges.

Proof. Consider two subgraphs G1 and G2 of G, induced by the two color classes of the
guard coloring. Let M1 be a maximal matching in G1 and M2 in G2. Now consider a face
f that has a boundary edge e with both endpoints in G1. Since M1 is maximal, if it does
not contain e, it must contain one of its endpoints. Otherwise, we would obtain a larger
matching by adding e. Thus, in each case, M1 guards f . Recall that one of the properties of
a guard coloring is that every face has a monochromatic edge. This implies that M1 ∪M2 is
a guard set for G.

We now have one guard set for G, but we do not have a good bound on the size of this
guard set. Indeed, there are examples where M1 ∪M2 contains many more than n

3 edges.
To prove the lemma, we find two more guard sets for G such that the total size of all three
guard sets is n. Then the smallest of these three sets must have size at most n

3 .
Our second guard set starts with all edges of M1, and then adds one edge incident to

each vertex of G1 that is not in M1. Since our guard coloring has no monochromatic faces,
each face has a vertex in G1. Thus, this set is also a guard set for G. We obtain our third
guard set by repeating this construction for M2.

SWAT 2018

14:8 Improved Bounds for Guarding Plane Graphs with Edges

a b

c

s

v1

v2

v3 v4

v5

v6

Figure 4 A plane graph without a guard coloring. The illustrated 2-coloring is forced under the
assumption that a and b have the same color, but leaves quadrilateral bv5v6c without a monochromatic
edge.

The size of the first guard set is |M1| + |M2|. The other guard sets have size |M1| +
|V (G1)| − 2|M1| = |V (G1)| − |M1|, and |V (G2)| − |M2|, respectively. Thus, in the total size
the size of the matchings cancels and we are left with |V (G1)|+ |V (G2)| = n. J

Bose et al. also showed that every plane graph without quadrilateral faces has a guard
coloring. Thus, a natural question is whether all plane graphs – even those with quadrilateral
faces – have a guard coloring? In the following theorem we show that this is not the case.

I Theorem 8. There are plane graphs that have no guard coloring.

Proof. Consider the graph in Figure 4. We need to color its vertices with two colors, say
white and blue, such that every face contains (i) vertices of both colors and (ii) an edge
whose endpoints have the same color. We show that such a coloring does not exist.

Suppose, for a contradiction, that it does. Since the outer face is a triangle, two of
its vertices must have the same color, say white. Suppose that the two vertices are a and
b; the other cases are symmetric. This forces c to be blue, since otherwise triangle abc
would be monochromatic. Now either v1 or v6 needs to be white, otherwise triangle cv1v6 is
monochromatic. Since the graph is symmetric, we suppose without loss of generality that
v1 is white. This forces v2 to be white as well, otherwise quadrilateral acv1v2 would not
have a monochromatic edge. This, in turn, forces s and v3 to be blue, since they are part of
triangles with two white vertices. Now a sequence of such triangles forces v4 to be white,
v5 blue, and v6 white. But this leaves quadrilateral bv5v6c without a monochromatic edge.
Since the entire coloring was forced, this graph has no guard coloring. J

Note that this counter-example does not require a large guard set: n
5 = 2 edges suffice.

Thus, it only shows that the technique of guard colorings does not extend to all plane graphs.
Everett and Rivera-Campo [6] used a different vertex coloring to find small guard sets.

We modify their approach here to give an upper bound that improves on the n
3 + α bound

by Bose et al. [3].

I Theorem 9. Every plane graph with n ≥ 3 vertices and α quadrilateral faces can be guarded
by at most n

3 + α
9 edges.

Proof. We first construct a triangulation G′ by inserting extra diagonals in every non-
triangular face of G, with two restrictions. First, we do not insert edges that are already
in G. Second, for every k-face with k ≥ 6 and boundary v1, v2, . . . , vk, v1, we first add the

A. Biniaz, P. Bose, A. Ooms, and S. Verdonschot 14:9

v4

v1

v2

v3

v5

vk

(a)

c2

v4 v1

v2v3

c1

c3, c4

(b)

Figure 5 A triangulation and coloring of the faces of G. The red dashed edges are added when
triangulating (a) a face with six or more sides and (b) a quadrilateral.

three edges v1v3, v3v5, and v5v1 (see Figure 5a). By the four-color theorem [1], we can find
a proper coloring of G′ with a set of four colors {c1, c2, c3, c4}. Consider one such coloring,
and note that it is also a proper coloring of G.

Since each face of G was triangulated in G′, its vertices have at least three distinct colors.
Thus, if we consider any two colors, say c1 and c2, each face has a vertex with at least one
of these two colors. In other words, each face of G contains a vertex of G12, the subgraph
of G induced by the vertices with color c1 or c2. This means we can create a guard set
for G by finding a set of edges whose endpoints include all vertices of G12. We do this
by finding a maximal matching M12 of G12, then adding one extra edge incident to each
vertex of G12 not in M12. We call the resulting guard set Γ12, and note that it contains
|Γ12| = |V (G12)| − |M12| edges, since each edge of M12 covers two vertices in G12. We can
do this for each combination of two colors, giving us six different guard sets.

Now consider the set Γ1234 = M12 ∪ M34. We show that this is a guard set for all
non-quadrilateral faces of G. First, suppose that some face has an edge e whose endpoints
have colors c1 and c2. If neither endpoint of e is in M12, we can add e to M12 to obtain
a larger matching. But M12 is maximal, so it must already contain some edge incident to
an endpoint of e. Thus, M12 guards all faces with a (c1, c2)-edge. We claim that every
non-quadrilateral face of G has either a (c1, c2)-edge, or a (c3, c4)-edge and is therefore
guarded by Γ1234. To show this, we group colors c1 and c2 into one color class cA and c3
and c4 into cB. Our claim is equivalent to saying that every non-quadrilateral face has a
monochromatic edge in this two-coloring. This is clear for faces of odd length, since they
cannot be properly two-colored.

Let f be a k-face with k ≥ 6 and with boundary v1, . . . , vk (see Figure 5a). To avoid a
monochromatic edge, the colors cA and cB must alternate along the boundary. This means
that v1, v3, and v5 get the same color. But these form a triangle in G′, since we started
triangulating this face by inserting the edges v1v3, v3v5, and v5v1. Thus, they must have
three distinct colors in the four-coloring, which means they cannot have the same color in
the two-coloring. Therefore Γ1234 guards all non-quadrilateral faces. An analogous argument
shows that the same holds for Γ1324 = M13 ∪M24 and Γ1423 = M14 ∪M23.

What about quadrilateral faces? Let q be a quadrilateral face with boundary v1, v2, v3, v4
and suppose that it was triangulated by adding v1v3 (see Figure 5b). We show that at least
two of Γ1234, Γ1324, and Γ1423 guard q. Suppose that q is not guarded by Γ1234, which means
that it does not have (c1, c2)-edges, or (c3, c4)-edges. Without loss of generality, assume that
v1 has color c1. Then the two-coloring argument and the presence of edge v1v3 force v3 to
have color c2, while v2 and v4 have color c3 or c4. Either way, there is both a (c1, c3)- or

SWAT 2018

14:10 Improved Bounds for Guarding Plane Graphs with Edges

wq

wf

u

v

q
f

Figure 6 Triangulating the face resulting from merging quadrilateral q with a neighboring face f .

(c2, c4)-edge and a (c1, c4)- or (c2, c3)-edge. By symmetry, this means that if one of the three
does not guard q, the other two do. We complete Γ1234 to a guard set by adding, for each
quadrilateral q not guarded by Γ1234, one edge incident to q, and likewise for Γ1324 and Γ1423.
The total size of these three guard sets is |M12|+ |M34|+ |M13|+ |M24|+ |M14|+ |M13|+ α.

We now have nine guard sets for G. The total number of edges in these sets is 3n+ α,
since each vertex occurs in three of the Gij , and the size of the matchings cancels. Thus, the
smallest of these sets has size at most 3n+α

9 = n
3 + α

9 . J

4 Distant Quadrilaterals

In this section, we combine both methods used previously to prove a better upper bound for
plane graphs in which every pair of quadrilaterals is far apart. To make this more precise,
we say that two faces f and g are h-hop apart if every path from a vertex on the boundary
of f to a vertex on the boundary of g contains at least h edges.

I Theorem 10. Every plane graph with n ≥ 3 vertices in which every two quadrilateral faces
are 3-hop apart can be guarded by at most n

3 edges.

Proof. We first use the iterative algorithm as described in the proof of Theorem 1 to remove
any vertices of degree less than 3. We have to be a little careful here, since removing
these vertices could introduce a new quadrilateral face that is not 3-hop apart from existing
quadrilaterals. To remedy this, we first mark all quadrilateral faces in the original graph.
Now, if removing a vertex v of degree 1 would introduce a new quadrilateral face, we instead
consider its neighbor u and another of u’s neighbors w 6= v (these vertices must exist if
removing v would introduce a new quadrilateral). We then add (u,w) to our partial guard
set Γ1 and remove all three vertices. This guarantees that all newly introduced quadrilaterals
are guarded by Γ1, since we already do the same for vertices of degree 2.

If the graph was 2-degenerate, we are now done. Otherwise, this results in a graph G
with minimum degree at least 3 and a partial guard set Γ1 of size at most n1

3 , where n1 is
the number of vertices removed. We proceed to find a guard set Γ2 for G of size at most n2

3 ,
where n2 is the number of vertices in G. The final guard set is Γ1 ∪ Γ2 and has size at most
n1
3 + n2

3 = n
3 . Since removing vertices cannot decrease the hop distance between two faces,

all marked quadrilaterals in G are still 3-hop apart.
We now turn to the coloring method from Theorem 9 to find a guard set for G. However,

we take greater care with quadrilateral faces in triangulating G and constructing the matchings
M12 and M34, to ensure that M12 ∪M34 actually guards every face of G instead of just the
non-quadrilateral faces. Together with Γ12 and Γ34, this then gives us three guard sets of
total size n2, which means the smallest of the three has size at most n2

3 .

A. Biniaz, P. Bose, A. Ooms, and S. Verdonschot 14:11

We construct a triangulation G′ from G as in the proof of Theorem 9, with one exception.
If a quadrilateral q does not share a boundary edge with a triangle, we merge it with one of
its neighboring faces f by removing the edge (u, v) separating them (see Figure 6). The result
is a face with at least 7 sides, since f was not a triangle and all quadrilaterals are further
apart. Let wf 6= v be the other neighbor of u along the boundary of f , and wq 6= v the other
neighbor of u along the boundary of q. We insert edges (v, wf), (v, wq), and (wf , wq), then
triangulate the rest of the face as usual.

Next, we four-color G′ and consider the resulting coloring of G. Note that the edges
we removed could be monochromatic, but this is not a problem. Let G12 and G34 be the
subgraphs of G induced by all vertices with colors in {c1, c2} and {c3, c4}, respectively. First,
suppose M12 is an arbitrary maximal matching in G12 and M34 in G34. Since each face of G
contained a triangle in G′, it has vertices of at least three different colors. Therefore we still
obtain guard sets Γ12 and Γ34 by taking the matchings and adding an edge incident to every
vertex of the right colors not in the corresponding matching. Similarly, as argued in the proof
of Theorem 9, M12 ∪M34 guards all non-quadrilateral faces of G. We now show how to pick
initial edges for M12 and M34 such that M12 ∪M34 also guards the marked quadrilateral
faces of G. Recall that the unmarked quadrilateral faces of G are already guarded by Γ1.

Initially, M12 and M34 are empty. If a marked quadrilateral q shares a boundary edge
with a triangle t, then the vertices of t have three distinct colors. Therefore one of the edges
of t must belong to G12 or G34, and we add this edge to the corresponding matching. If q
does not share an edge with a triangle, we merged it with a neighboring face by removing
edge (u, v). Suppose that u has a color in {c1, c2}. Since three of its neighbors in G – v, wf ,
and wq – formed a triangle in G′, one of them must also have a color in {c1, c2}, and we add
this edge to M12. If u has a color in {c3, c4}, we add the corresponding edge to M34.

Thus, we seed M12 and M34 with edges that together guard all marked quadrilateral
faces of G. We then complete these sets to maximal matchings by greedily adding edges of
G12 and G34, respectively. This makes M12 ∪M34 a third guard set. The only thing left to
argue is that none of the seed edges share an endpoint. This is guaranteed by the 3-hop
distance between marked quadrilaterals in G; since each seed edge is incident to a marked
quadrilateral, two seed edges sharing an endpoint would give a 2-hop path between two
marked quadrilateral faces. J

5 Conclusion

Our main contribution lies in the development of techniques that allowed us to improve the
upper bound on the number of edge guards that suffice to guard a plane graph. The role of
quadrilateral faces in the size of these guard sets is intriguing. Of our bounds, one depends
on the number of quadrilateral faces, while the other does not. The first bound (n3 + α

9)
almost matches the lower bound for graphs with few quadrilateral faces, while the second
bound (3n

8) is stronger for graphs with many quadrilaterals – the two bounds balance at
α = 3n

8 since n
3 + 3n

72 = 3n
8 . It is interesting that quadrilateral faces are the limiting factor in

all techniques based on graph colorings. In contrast, our iterative technique appears to be
limited by the local nature of the operation. Thus, the solution may lie in a more global
approach that does not stumble over quadrilateral faces.

We leave as an open question to close the gap between the upper and lower bounds, both
for maximal planar graphs and general planar graphs.

SWAT 2018

14:12 Improved Bounds for Guarding Plane Graphs with Edges

References
1 Kenneth Appel and Wolfgang Haken. Every planar map is four colorable, volume 98 of

Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989. With
the collaboration of J. Koch. doi:10.1090/conm/098.

2 Oleg V. Borodin. Structure of neighborhoods of an edge in planar graphs and the sim-
ultaneous coloring of vertices, edges, and faces. Matematicheskie Zametki, 53(5):35–47,
1993.

3 Prosenjit Bose, David G. Kirkpatrick, and Zaiqing Li. Worst-case-optimal algorithms for
guarding planar graphs and polyhedral surfaces. Computational Geometry: Theory and
Applications, 26(3):209–219, 2003.

4 Prosenjit Bose, Thomas C. Shermer, Godfried T. Toussaint, and Binhai Zhu. Guarding
polyhedral terrains. Computational Geometry: Theory and Applications, 7:173–185, 1997.

5 Václav Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B, 18:39–41, 1975.

6 Hazel Everett and Eduardo Rivera-Campo. Edge guarding polyhedral terrains. Computa-
tional Geometry: Theory and Applications, 7:201–203, 1997.

7 Steve Fisk. A short proof of Chvatal’s watchman theorem. Journal of Combinatorial
Theory, Series B, 24(3):374, 1978.

8 Henri Lebesgue. Quelques conséquences simple de la formula d’Euler. Journal de Math-
ématiques Pures et Appliquées, 19:27–43, 1940.

9 Joseph O’Rourke. Galleries need fewer mobile guards: a variation on chvatal’s theorem.
Geometriae Dedicata, 14:273–283, 1983.

10 Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
11 Jorg Sack and Jorge Urrutia, editors. Handbook of Computational Geometry. North-

Holland, 2000.
12 Thomas C. Shermer. Recent results in art galleries. Proceedings of IEEE, 80:1384–1399,

1992.
13 Csaba D. Toth, Joseph O’Rourke, and Jacob E. Goodman, editors. Handbook of Discrete

and Computational Geometry. CRC Press, 2017.

http://dx.doi.org/10.1090/conm/098

Sparse Weight Tolerant Subgraph for Single
Source Shortest Path

Diptarka Chakraborty
Computer Science Institute of Charles University, Prague, Czech Republic
diptarka@iuuk.mff.cuni.cz

Debarati Das
Computer Science Institute of Charles University, Prague, Czech Republic
debaratix710@gmail.com

Abstract
In this paper we address the problem of computing a sparse subgraph of any weighted directed
graph such that the exact distances from a designated source vertex to all other vertices are pre-
served under bounded weight increment. Finding a small sized subgraph that preserves distances
between any pair of vertices is a well studied problem. Since in the real world any network is
prone to failures, it is natural to study the fault tolerant version of the above problem. Unfor-
tunately, it turns out that there may not always exist such a sparse subgraph even under single
edge failure [Demetrescu et al. ’08]. However in real applications it is not always the case that
a link (edge) in a network becomes completely faulty. Instead, it can happen that some links
become more congested which can be captured by increasing weight on the corresponding edges.
Thus it makes sense to try to construct a sparse distance preserving subgraph under the above
weight increment model where total increase in weight in the whole network (graph) is bounded
by some parameter k. To the best of our knowledge this problem has not been studied so far.

In this paper we show that given any weighted directed graph with n vertices and a source
vertex, one can construct a subgraph of size at most e ·(k−1)!2kn such that it preserves distances
between the source and all other vertices as long as the total weight increment is bounded by k
and we are allowed to only have integer valued (can be negative) weight on edges and also weight
of an edge can only be increased by some positive integer. Next we show a lower bound of c ·2kn,
for some constant c ≥ 5/4, on the size of such a subgraph. We further argue that the restrictions
of integral weight and integral weight increment are actually essential by showing that if we
remove any one of these two we may need to store Ω(n2) edges to preserve the distances.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Shortest path, fault tolerant, distance preserver, graph algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.15

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC
Grant Agreement no. 616787.

Acknowledgements The first author would like to thank Pavan Aduri and Vinodchandran N.
Variyam for some helpful discussions during initial phase of this work and a special thank to Pavan
Aduri for suggesting to study this problem. Authors also thank Keerti Choudhary, Shahbaz Khan
and Michal Koucký for many valuable suggestions and comments.

© Diptarka Chakraborty and Debarati Das;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@iuuk.mff.cuni.cz
mailto:debaratix710@gmail.com
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

1 Introduction

In the real world, networks are prone to failures and most of the time such failures are
unpredictable as well as unavoidable in any physical system such as communication network
or road network. For this reason, in the recent past, researchers study many graph theoretic
questions like connectivity [29, 27, 4, 23], finding shortest distance [18], building data structure
that preserves approximate distances [25, 16, 14, 19, 7, 10, 3] etc. under the fault tolerant
model. Normally such failures are much smaller in number comparative to the size of the
graph. Thus we can associate a parameter to capture the number of edge or vertex failures
and try to build fault tolerant data structures of size depending on this failure parameter for
various graph theoretic problems.

Unfortunately, in case of single source shortest path problem, it is already known from [18]
that there are graphs with n vertices for which to preserve the distances under even single
edge failure, we need to store a subgraph of size at least Ω(n2). On the other hand, in case of
reachability problem we know a construction of connectivity preserving subgraph of size only
O(2kn) [4] where k is the number of edge failures. However, in the real world it is not always
the case that there are failures of edges or vertices. Instead, for weighted graphs, weight of
any edge or vertex can be increased. For simplicity, we consider weight to be only on the
edges. In general, weight of an edge captures aspect like congestion on a particular link in
a network. So it is quite natural to consider the scenario when some links (edges) become
more congested. Again the good thing is that most of the time such congestion is bounded,
i.e., over a network total increase in congestion is bounded because of many reasons like
bounded maximum number of consumers present in a network at any particular time. One
can easily capture the increase in congestion by a parameter k that bounds the amount of
increase in weight of edges over the whole graph. Occurrence of such bounded congestion
motivates us to study the single source shortest path problem under this model.

In this paper we initiate the study of single source shortest path problem for weighted
directed graphs in the bounded weight increment model. The main goal is to find a sparse
subgraph that preserves the (shortest) distance between a designated source and any other
vertex under weight increment. We formally define such a subgraph below.

I Definition 1 (k-WTSS). Given a graph G along with a weight function w, a source vertex
s ∈ V (G) and an integer k ≥ 1, a subgraph H = (V (G), E′) where E′ ⊆ E(G) is said to be
a k-Weight Tolerant single source Shortest-path Subgraph (k-WTSS) of G if for any weight
increment function I : E(G)→ N such that

∑
e∈E(G) I(e) ≤ k, the following holds: for the

weight function defined by w′(e) = w(e) + I(e) for all e ∈ E(G),

distG,w′(s, t) = distH,w′(s, t) for any t ∈ V (G).

Though in the above definition we restrict ourselves to an increment function whose range is
N, one can naturally extend the definition to any range of increment functions. However, if
we take the range to be rational numbers then there may not exist any sparse k-WTSS even
for k = 1 (see Section 6). This is the reason why we consider such restriction on increment
function in the above definition.

Single source shortest path is one of the most fundamental problems in Graph Theory
as well as in computer science. Thus construction of a sparse k-WTSS is interesting from
both the theoretical and practical point of view. One can also view the problem of finding
k-WTSS as a generalization of finding k-Fault Tolerant (single source) Reachability Subgraph
(k-FTRS) for which optimal solution is known due to [4]. If in the given graph one assigns
zero weight on the edges, then any k-WTSS of that graph will also be a k-FTRS. This

D. Chakraborty and D. Das 15:3

is because we can view each edge fault as incrementing weight by one and then it is easy
to see that for any vertex t there exists an s − t path iff the shortest distance between
s and t is zero under this reduction. This fact also motivates the study of constructing
k-WTSS because k-FTRS has several applications like fault tolerant strong-connectedness [4],
dominators [24, 4], double dominators [34] etc. We have already mentioned that it is possible
to represent congestion in any network by incrementing weight of the links. Unlike to the edge
faults, which can be thought of as an independent and equally likely process, congestion is
strongly time-variant (e.g. [33]). For example, if at any point of time some edge is congested
and it has small out-degree then at the next time step some or all of its out edges will also
be congested. However the good thing about k-WTSS subgraph is that no matter how
the congestion occurs or propagates, as long as the total weight increment is bounded by
k, a k-WTSS subgraph will preserve the distances. Hence for the practical purposes it is
always useful to construct (and store) a sparse k-WTSS (if exists). In spite of being an
appealing problem, to the best of our knowledge the problem of constructing sparse k-WTSS
has not yet been studied. Although, a lot of research has been done on different versions
of shortest path problem under dynamic weight changes [32, 30, 17, 12] which have found
several applications in network optimization, internet routing, databases and many more.

The main contribution of this paper is to provide an efficient construction of a sparse
k-WTSS for any k ≥ 1, where sparsity of k-WTSS depends on the parameter k.

I Theorem 2. There exists an O((k)km2n)-time algorithm that for any given integer k ≥ 1,
and a given directed graph G with n vertices and m edges along with a weight function
w : E(G)→ Z and a source vertex s, constructs a k-WTSS of G with at most Ok(n) edges
where Ok(·) notation denotes involvement of a constant that depends only on the value of k.
Moreover, in-degree of every vertex in this k-WTSS will be bounded by e · (k − 1)!2k.

Next, we prove a lower bound of c · 2kn for some constant c ≥ 5/4, on the size of k-WTSS.

I Theorem 3. For any positive integer k ≥ 2, there exists a positive integer nk so that for all
n > nk, there exists a directed graph G with n vertices and a weight function w : E(G)→ Z,
such that its k-WTSS must contain c · 2kn many edges for some constant c ≥ 5/4.

We provide the proof of Theorem 3 in the full version [13]. Note that as we have previously
argued that the construction of k-WTSS implies a construction of k-FTRS, so 2kn lower
bound on the size of a k-FTRS due to [4] also directly gives the same lower bound on size
of a k-WTSS. In the above theorem we slightly strengthen that lower bound by a constant
factor for our problem. We also show that considering rational valued weight function or
rational valued weight increment function (instead of integer valued as in the above two
theorems) makes the problem of finding sparse k-WTSS impossible. More specifically, we
show that in both the cases there are graphs with n vertices for which any k-WTSS must be
of size at least Ω(n2) even for k = 1 (see Section 6).

One can further relax our model by also allowing decrement operation on edge weight.
Weight decrement is also natural in real life applications because for any network it is possible
that some links become less congested. Unfortunately, one can easily show that there are
graphs for which there is no sub-quadratic sized subgraph that preserves the distances from
a single source under this relaxed model. Readers may refer to the full version [13] for the
details.

Related works

Single source shortest path is a well studied problem under the edge or vertex failure model.
Similar to our definition of k-WTSS, one can easily define k-Fault Tolerant Shortest-path

SWAT 2018

15:4 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

Subgraph (k-FTSS) that preserves the distance information from a specific source vertex
under at most k edge failures. Unfortunately, we know that there are weighted graphs for
which no sparse k-FTSS exists even for k = 1, i.e., there are weighted graphs with n vertices
for which any 1-FTSS must contain Ω(n2) many edges [18]. This lower bound on size of
1-FTSS is even true for undirected graphs. However, better bounds are known for unweighted
graphs for k ≤ 2. Parter and Peleg [28] provided a construction of O(n3/2) sized 1-FTSS
and showed that this bound is optimal. Later, Parter [27] extended the construction to the
case k = 2 for undirected graphs on the cost of weakening the bound and gave an algorithm
to compute 2-FTSS of size O(n5/3) along with a matching lower bound. This result has very
recently been extended to directed graphs [23]. For general k, a construction of sub-quadratic
sized FTSS is known for undirected unweighted graphs due to [10].

However, the situation is much better for single source reachability problem which is
closely related to single source shortest path problem. Baswana et al. [4] showed that we can
compute k-FTRS, which is a subgraph that preserves the reachability information from a
given source under at most k edge failures, containing 2kn many edges. They also provided
a matching lower bound. We have already argued that computing k-FTRS can be reduced
to computing k-WTSS and thus it is natural to ask whether a similar result also holds for
k-WTSS. Another interesting related problem is to compute fault tolerant reachability oracle.
It is trivial to see that using O(2kn) size k-FTRS [4] one can answer any reachability query
in O(n) time for any constant value of k. However for k ≤ 2, O(n) size data structure is
known that can answer any single source reachability query in O(1) time [24, 15].

Coming back to the shortest path problem, instead of preserving the exact distances
(between any pair of vertices), if we consider to preserve the distances only approximately,
then much better results are known. Such approximate distance preserving subgraphs are
called spanners. Construction of spanners with both additive and multiplicative stretch have
been studied extensively [5, 37, 1, 2]. Fault tolerant version of spanners were first introduced
in the geometric setting [25]. For k edge failures, construction of a (2l − 1) multiplicative
spanner of size Õ(kn1+1/l), for any k, l ≥ 1, was provided in [14] whereas for k vertex failures,
upper bound on size is known to be Õ(k2−1/ln1+1/l) [19]. In case of single edge failure, for
single source undirected graphs, construction of a 2n sized subgraph that preserves distances
within a multiplicative factor of 3 is known [8]. Braunschvig et al. [11] initiated the study of
additive spanners. For β-additive spanner, Parter and Peleg [29] provided a Ω(n1+ε(β)) size
lower bound where ε(β) ∈ (0, 1). For single source undirected graphs they also constructed a
4-additive spanner of size O(n4/3) that is resilient to single edge failure. For single vertex
failure, constructions of additive spanners were given in [26, 7]. Very recently, for any fixed
k ≥ 1, construction of a sub-quadratic size 2-additive spanner resilient to k edge or vertex
failures has been shown for unweighted undirected graphs [10]. In the same paper, authors
also show that to achieve O(n2−ε) upper bound, one must allow Ω(εk) additive error.

Designing distance oracle is another important problem and also has been studied in
edge failure model. The objective is to build a fault tolerant data structure that can answer
queries about the distances in a given graph. For single edge failure the problem was first
studied in [18]. Construction of Õ(n2)-space and O(1)-query time oracle is known for single
edge failure due to [6]. In case of dual edge failures, near optimal Õ(n2) size and Õ(1)-query
time oracle was given in [20]. The problem has also been studied under the restriction of
bounded edge weights [22, 35]. For general k edge failures, Bilò et al. [9] gave a construction
of O(kn log2 n) size data structure that can report distance from a single source within
multiplicative factor of (2k + 1) in time O(k2 log2 n).

D. Chakraborty and D. Das 15:5

Another closely related problem is the replacement path problem where given a source
and destination vertex and an edge, the objective is to find a path from source to destination
avoiding that particular given edge. Though the problem was initially defined for single edge
failure, later it was extended to multiple edge failures also. Readers may refer to [36, 31, 22, 35]
for recent progresses on this problem.

Our technique

Before exhibiting the technique behind our result, we first state a simple observation. If we
just store any shortest path tree rooted at s, then even after k weight increment that tree
will preserve the distance from s to t (for any t) within k additive error. It is also necessary
to include a shortest path tree inside a k-WTSS, otherwise we can never hope to get exact
distances even when k = 0. Now since weight of any path can be increased by at most k,
after including any shortest s − t path in a k-WTSS it is not required to include another
s− t path that has weight more than or equal to dist(s, t) + k.

We argue that for the construction of k-WTSS it suffices to concentrate on any single
vertex t and try to build a subgraph such that the distance between s and t is preserved
under weight increment and we call such a subgraph a k-WTSS(t). This is because of the
application of Locality Lemma (see Section 4), a variant of which also appears in [28, 29, 4].
Locality Lemma actually says slightly more, that if we can construct such a subgraph for
any vertex t with an additional property that in-degree of t in the subgraph is bounded by
some value c, then we can get a k-WTSS of size at most cn.

So from now on we can only talk about constructing k-WTSS(t). Let us take a toy
example which provides a motivation behind our technique. Let the input graph be G and
dist(s, t) = d. Suppose G is such that it can be decomposed into k + 1 disjoint subgraphs
G0, · · · , Gk where for 0 ≤ i ≤ k− 1, Gi contains all the s− t paths of weight d+ i present in
G and any s− t path in Gi has weight exactly d+ i. In general such a decomposition may not
exist. However, if it exists then it is not hard to get such a decomposition. Now given such a
decomposition, we compute a k-FTRS(t) of G0 and for i ∈ [k − 1], a (k − i − 1)-FTRS(t)
of Gi and then take the union of them. We claim that the obtained subgraph will be a
k-WTSS(t). Say after weight increment, the (shortest) distance between s and t is d + j

for 1 ≤ j < k. Our assumption on j is justified because j = 0, k cases are trivial as we
have included k-FTRS(t). For a similar reason we can also assume that all the original
shortest paths now have weight at least d + j + 1. Without loss of generality we further
assume that no weight increment happens on the edges of the current shortest path. The
justification of this assumption is provided in the full version [13]. Due to our assumption
on decomposition of G, we know that the total increase in weight on the edges of Gj is
bounded by k − (j + 1) which also implies that at most k − (j + 1) many edges of Gj are
affected by weight increment. This is because our increment function is integer valued. Note
that this is the place where integer valued increment plays a crucial role. However by our
construction, we have included (k − j − 1)-FTRS(t) of Gj in our subgraph. Thus even if
we remove those affected edges, since there is a path in Gj on which there is no weight
increment, by the definition of (k− j− 1)-FTRS(t) there will be a surviving path included in
our constructed subgraph. This proves the correctness. Also by the result of [4], in-degree of
t of each (k− i− 1)-FTRS(t) of Gi is bounded by 2k−i−1 and hence total in-degree of t in the
constructed k-WTSS(t) is bounded by 2k+1. Hence we get a k-WTSS of size at most 2k+1n.

We have already mentioned that there may not exist the above type of decomposition for
an arbitrary graph. In general, if we consider a subgraph by taking all the s− t paths upto
some specific weight, then that particular subgraph may also contain a s− t path with larger

SWAT 2018

15:6 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

weight. At this point the argument stated in the last paragraph fails completely. However,
the nice thing is that if we just consider all the shortest paths and build a subgraph then
it is true that there will not be any s − t path of larger weight in that subgraph. Now if
we use the construction of k-FTRS on this shortest path subgraph, then we can guarantee
the preservation of distances as long as the distances do not change even after the weight
increment. Though if the distance changes, we cannot say anything. This is the main
challenge that we overcome in our algorithm. For that purpose we use the properties of the
farthest min-cut of the shortest path subgraph.

Baswana et al. [4] used the concept of farthest min-cut to construct k-FTRS. In their
work, they first computed a series of k farthest min-cuts by taking source sets in some nested
fashion. Then they calculated a max-flow from the final source set and kept the incoming
edges of t having non-zero flow. We further exploit their technique in this paper to get our
algorithm. We consider the shortest path subgraph and then compute a series of farthest
min-cuts similar to [4]. However as mentioned in the last paragraph, in this way we just get
k-FTRS(t) of the shortest path subgraph. Now let us take the farthest min-cut considering
s as source. Since it is a (s, t)-cut of the shortest path subgraph, removal of it destroys all
the shortest s− t paths present in the original graph. Now if we again compute the shortest
path subgraph, we will get a subgraph containing only s− t paths of weight d+ i, for some
i > 0. Then we can process this new subgraph as before to compute a sequence of k farthest
min-cuts and remove the first one. We proceed in this way until we reach at a point that we
are left with s− t paths of weight at least d+ k.

Now let us compare the situation with our previously described toy example. Removal
of cut edges only helps us to generate some subgraph of each of Gi’s. However computing
k-FTRS(t) of just some subgraph of Gi’s may not be sufficient to get k-WTSS(t). Thus for
each Gi, we try to get a lot of subgraphs of it so that when we combine k-FTRS(t) of all
of them, we get the same advantage that we got from computing (k − i − 1)-FTRS(t) of
Gi in the toy example. One way of getting a lot of subgraphs of Gi is to try out removal
of different cuts (not just the farthest one). Obviously we cannot try for all possible cuts,
because there can be too many. Moreover, each time to reach at a subgraph of weight d+ i

we may have to remove a series of i− 1 cuts. As a result we may end up with exponentially
many choices on removal of cuts to get all possible subgraphs of Gi.

The good thing is that it suffices to use just a series of k farthest min-cuts computed
before for the purpose of removal. A stronger claim is formally stated in Lemma 15. This
will reduce the number of choices to only ki for any fixed Gi. In our algorithm we establish a
slightly better bound on the number of subgraphs of Gi needed to be considered to construct
a k-WTSS(t). In the proof we use k-tuples to efficiently enumerate all of these subgraphs.
Informally, a subgraph indexed by a specific k-tuple consists of only the s− t paths survived
after removal of a set of cut sets identified by the value of the coordinates of the k-tuple.
Now after getting those subgraphs we apply a construction similar to that of k-FTRS(t)
from [4] to get a bound on in-degree of t. We emphasize that actually we cannot directly
apply algorithm of [4] in a black box fashion on each of the subgraphs of Gi that we consider,
because in that case it will not give us the claimed bound.

In this paper we consider k-WTSS with respect to the weight increment on edges. Instead,
it is also possible to take weights on the vertices and perform increment over them. However,
one can directly apply our result by splitting each vertex v into two vertices vi and vo where
all the incoming and outgoing edges of v are respectively directed into vi and directed out of
vo, and then considering an edge (vi, vo) with the weight equal to that on v.

D. Chakraborty and D. Das 15:7

Organization of the paper

We discuss useful notations and some already known results about farthest min-cut in
Section 2. Then in Section 3 we provide an algorithm to compute farthest min-cut of the
shortest path subgraph and a few important properties about it. Next in Section 4, we
reduce the problem of finding k-WTSS to that of finding k-WTSS(t) for some specific vertex
t using Locality Lemma. Finally we prove Theorem 2 in Section 5. We also present several
lower bound results in Section 6.

2 Preliminaries

Notations:

For any positive integer r, we denote the set {1, 2, · · · , r} by [r]. Throughout this paper we
use N to indicate the set of natural numbers including zero. For any k-tuple σ and i ∈ [k],
we use the notation σ(i) to denote the value of the i-th coordinate of σ. Given a directed
graph G = (V,E) on a set of vertices of size |V | = n and a set of edges of size |E| = m with
a weight function w defined on the set of edges, a source vertex s ∈ V and a destination
vertex t ∈ V , we use the following notations throughout this paper.

V (G), E(G) : the set of vertices and edges of G respectively.
w(P) : weight of any path P .
distG,w(x, y) : the shortest distance between any two vertices x and y in G when weight
of each edge is defined by the weight function w.
G+ (u, v) : the graph obtained by adding an edge (u, v) to the graph G.
G \ F : the graph obtained by removing the set of edges F from the graph G.
Out(A) : the set of all vertices in V \A having an incoming edge from A ⊆ V .
In-Edge(A) : the set of edges incoming to A ⊆ V .
P [x, y] : the subpath of a path P from a vertex x to y.
P ◦ Q : the path formed by concatenating paths P and Q assuming the fact that last
vertex of P is same as first vertex of Q.
E(f) : support of the flow f , i.e., the set of edges e such that f(e) 6= 0.
MaxFlow(G,S, t) : any maximum valued flow in G from a source set S to t.
Gshort : the shortest path subgraph of G, i.e., union of all shortest s− t paths in G.
ShortMaxF low(G,S, t) : any maximum valued flow returned by MaxFlow(Gshort, S, t).

The following definition introduces the notion of k-WTSS with respect to a fixed vertex t.

I Definition 4 (k-WTSS(t)). Given a graph G with a weight function w, a source vertex
s ∈ V (G), another vertex t ∈ V (G) and an integer k ≥ 1, a subgraph Ht = (V (G), E′)
where E′ ⊆ E(G) is said to be a k-WTSS(t) of G if for any weight increment function
I : E(G) → N such that

∑
e∈E(G) I(e) ≤ k, the following holds: for the weight function

defined by w′(e) = w(e) + I(e) for all e ∈ E(G), distG,w′(s, t) = distHt,w′(s, t).

The restriction on the range of the increment function to N is justified because only
in that case we can hope for a sparse k-WTSS(t) (see Section 6). However one can easily
extend the above definition for increment function I : E(G)→ R. Following is an alternative
definition of k-WTSS in terms of k-WTSS(t).

I Definition 5. A subgraph H is a k-WTSS of G iff it is a k-WTSS(t) for all t ∈ V (G).

SWAT 2018

15:8 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

2.1 Max-flow and farthest min-cut
The algorithm described in this paper heavily exploits the connection between min-cut,
max-flow and the number of edge disjoint paths present in a graph. Let us start with the
following well known fact of Graph Theory.

I Theorem 6. In any graph with unit capacity on edges, there is a flow of value r from
a source set S to a destination vertex t if and only if there exist r edge disjoint paths that
originate from the set S and terminate at t.

For the sake of clarity, we emphasize that though we talk about weighted graphs, throughout
this paper we will use capacity functions on edges that take values only from {0, 1}.

I Definition 7 ((S, t)-min-cut). In any graph G an (S, t)-cut is a set of edges C ⊆ E(G) such
that every path from any vertex s ∈ S to t must pass through some edge in C. An (S, t)-cut
is called (S, t)-min-cut if it has the smallest size among all other (S, t)-cuts.

Any (S, t)-cut C partitions the vertex set V (G) into two subsets A(C) and B(C) where A(C)
is the set of all the vertices reachable from S in G \ C and B(C) = V (G) \A(C). Note that
S ⊆ A(C) and t ∈ B(C). From now on, we assume this pair of vertex sets (A(C), B(C))
to be output of a function Partition(G,C). For our purpose we do not just consider any
(S, t)-min-cut, instead we consider the farthest one.

I Definition 8 (Farthest Min Cut [21]). Let S be a source set and t be a destination vertex
in any graph G and suppose for any (S, t)-min-cut C, (A(C), B(C)) = Partition(G,C). Any
(S, t)-min-cut Cfar is called farthest min-cut, denoted by FMC(G,S, t), if for any other
(S, t)-min-cut C, it holds that A(C) (A(Cfar).

The following lemma given by Ford and Fulkerson [21] establishes the uniqueness of farthest
min-cut and also provides an algorithm to compute it.

I Lemma 9 ([21]). Suppose f be a max-flow in G from any source set S to t and Gf be the
corresponding residual graph. If B is the set of vertices from which there is a path to t in Gf
and A = V (G) \B, then the set C of edges that start at A and terminate at B is the unique
farthest (S, t)-min-cut.

3 Farthest Min-cut of Shortest Path Subgraph

3.1 Computing farthest min-cut of shortest path subgraph
In this section we give an algorithm to find the farthest min-cut of the shortest path subgraph
of a given graph. We are given a weighted directed graph G with two vertices s and t. The
weight of each edge of G is defined by a weight function w : E(G)→ R. Let distG,w(s, t) = d.
We denote the set of all s− t paths of weight d under the weight function w by Pd and the
corresponding underlying subgraph (just the union of all the paths in Pd) of G by Gshort.
More specifically, V (Gshort) = V (G) and E(Gshort) = {e | e ∈ P for some P ∈ Pd}. For any
graph G and two vertices s and t, for any source set S ⊆ V (Gshort), farthest min-cut of
shortest path subgraph, denoted as FSMC(G, s, S, t) is defined by FMC(Gshort, S, t).

For any (S, t)-cut C of Gshort we define the partition function by ShortPartition(G,C) =
Partition(Gshort, C). It is easy to design (see the full version [13]) a simple O(mn) time
procedure which given G, s and t, generates the subgraph Gshort. Then we can sim-
ply apply well known Ford-Fulkerson algorithm [21] on the subgraph Gshort to find the
ShortMaxF low(G,S, t) and FSMC(G, s, S, t). The correctness of FSMC(G, s, S, t) follows
from applying Lemma 9 on the subgraph Gshort.

D. Chakraborty and D. Das 15:9

3.2 Disjoint shortest path lemma
Let us choose any r ∈ N and then consider the following: Set S1 = {s} and for i ∈ [r], define
Ci = FSMC(G, s, Si, t), (Ai, Bi) = ShortPartition(G,Ci) and Si+1 = (Ai ∪Out(Ai)) \ {t}.
Let E′ ⊆ E(G) such that E′ = {(u1, v1), · · · , (ur, vr)}, where (ui, vi) ∈ Ci.

Now let us introduce an auxiliary graph G′ = G+ (s, v1) + · · ·+ (s, vr) and set w(s, vi) =
distG,w(s, vi) for i ∈ [r]. Suppose f is a max-flow from Sr+1 to t in the shortest path
subgraph of G and E(t) be the set of incoming edges of t having nonzero flow value assigned
by f . Now consider a new graph G∗ = (G′ \ In-Edge(t)) + E(t).

I Lemma 10. There will be at least r + 1 disjoint paths in G∗ each of weight equal to
distG,w(s, t).

Note that a similar claim was shown in [4]. However, our claim is slightly more general
because we consider an edge set E′ where the edges belong to E′ may not lie on a single
s − t path in G and also we comment on the weight of the disjoint paths. Both of these
requirements are crucial for the proof in Section 5. Fortunately, the proof in [4] does not rely
on the fact that the edges (ui, vi)’s are part of a single s− t path.

4 Construction of k-WTSS and Locality Lemma

Let us first recall the problem. We are given a graph G along with a weight function
w : E(G)→ Z and a source vertex s. Now suppose for every e ∈ E(G), w(e) is increased by
some arbitrary weight increment function I : E(G)→ N such that total increase in weight is
bounded by k, i.e.,

∑
e∈E(G) I(e) ≤ k and we denote the new weight function (after increase

in weight) by w′ where w′(e) = w(e) + I(e). The problem is to find a subgraph H such that
for any vertex t ∈ V (G) in H there always exists an s− t path of weight distG,w′(s, t). We
call this subgraph H a k-WTSS. Now if we just want the requirement of existence of a path
in H to be true for a fixed vertex t instead of all vertices, then we call such a subgraph
k-WTSS(t). In this section we reduce the problem of finding k-WTSS to the problem of
finding k-WTSS(t) for any fixed vertex t ∈ V (G). The following lemma, a variant of which
also appears in [4], serves our purpose.

I Lemma 11 (Locality Lemma). Let there be an algorithm A that given a graph G and a
vertex t ∈ V (G), generates a subgraph Ht of G such that:

Ht is a k-WTSS(t); and
in-degree of t in Ht is bounded by a constant ck.

Then one can generate a k-WTSS of G such that it has only ck · n edges.

5 Construction of k-WTSS(t)

In this section we provide an algorithm to compute a k-WTSS(t) for any fixed vertex t ∈ V (G)
where source vertex is s. Without loss of generality let us first assume the following.

I Assumption 12. The out degree of source vertex s is 1 and the out degree of all other
vertices is bounded by 2.

For any graph G if |Out(s)| > 1 then to satisfy our previous assumption, we can simply add
a new vertex s0 and add an edge (s0, s) and set w(s0, s) = 0. Then make this new vertex s0
as our new source. For the justification on the bound on out degree of other vertices, we refer
the readers to the full version [13]. Note that the reduction process blows up the number of

SWAT 2018

15:10 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

s

t

Figure 1 Region shaded with green color represents Gσ for σ = (1,−1, · · · ,−1) whereas yellow
colored region is the shortest path subgraph of G. The edges of C(−1,··· ,−1),1 and C(−1,··· ,−1),2 are
colored with blue and red respectively. Gσ is obtained by removing red colored edges.

vertices from n to O(m). However, since we bound the in-degree of t in k-WTSS(t) for any
t ∈ V (G), by a value independent of the number of vertices in the graph, our result remains
unaffected.

5.1 Description of the algorithm
Before describing the algorithm let us introduce some notations that we will use later heavily.
Consider any k-tuple σ ∈ {−1, 0, 1, · · · , k}k such that if σ(i) = −1 (where σ(i) denotes the
i-th coordinate of σ) then for all i′ > i, σ(i′) = −1 and if σ(i) 6= −1 then for all i′ < i,
σ(i′) 6= −1. We use these k-tuples to efficiently enumerate all the subgraphs of G for which
we want to calculate farthest min-cuts. Informally, a subgraph indexed by σ consists of
only the s− t paths survived after removal of a set of cut sets identified by σ(i)’s. For any
such σ ∈ {−1, 0, 1, · · · , k}k and r ∈ [k], we recursively define the subgraph Gσ, set of source
vertices Sσ,r and edge set Cσ,r as follows: if σ = (−1,−1, · · · ,−1), Gσ is the union of all s− t
paths in G, starting with Sσ,1 = {s}, for any r ∈ [k] define Cσ,r = FSMC(Gσ, s, Sσ,r, t),
Sσ,r+1 = (A∪Out(A))\{t} where (A,B) = ShortPartition(Gσ, Cσ,r). For σ 6= (−1, · · · ,−1),
Gσ is the union of all s− t paths in Gσ′ \ Cσ′,σ(i)+1, where i = min{i′ | σ(i′) = −1} and

σ′(i′) =
{
σ(i′) if i′ < i− 1
−1 otherwise

Now starting with Sσ,1 = {s}, if there exists a s− t path of weight d+ i− 1 then for any
r ∈ [k] define Cσ,r = FSMC(Gσ, s, Sσ,r, t), Sσ,r+1 = (A ∪ Out(A)) \ {t} where (A,B) =
ShortPartition(Gσ, Cσ,r); else set Cσ,r = φ. We refer the reader to Figure 1 for the better
understanding about the graph Gσ.

We are given a weighted directed graph G with a weight function w and a source vertex
s and a destination vertex t. The weight of each edge of G is defined by the weight function
w : E(G)→ Z. Overall our algorithm performs the following tasks: For different values of
σ ∈ {−1, 0, · · · , k}k it computes the sets Cσ,i and Sσ,i for i ∈ [k]. Then for each such σ, it

D. Chakraborty and D. Das 15:11

computes max-flow in the shortest path subgraph of Gσ by considering Sσ,k as source and
add the edges incident on t with non-zero flow to a set E(t). At the end, our algorithm
returns the subgraph Ht = (G \ In-Edge(t)) + E(t).

Our algorithm performs the above tasks in the recursive fashion. Starting with σ =
(−1, · · · ,−1), it first considers the shortest path subgraph of Gσ = G and performs k
iterations on it. At each iteration it computes the farthest min-cut Cσ,i by considering Sσ,i
as source and t as sink starting with Sσ,1 = {s}. Then it updates the graph by removing
the edges present in Cσ,i and passes this new graph in the next recursive call. Before the
recursive call it also updates the σ by incrementing the value of σ(j) by one and passes
the updated value of σ to the recursive call. Here j is a parameter which denotes that the
smallest coordinate of σ that has value −1. Initially j was set to 1 and before the next
recursive call we increment its value by one. At the end of each iteration our algorithm
updates the source set to Sσ,i+1 by including end points of all the edges present in the cut
Cσ,i in the set Sσ,i. At the end of k iterations, the algorithm computes max-flow in the
shortest path subgraph of Gσ by considering Sσ,k as source and add the edges incident on t
with non-zero flow to a set E(t).

5.2 Correctness proof
Let us start with the following simple observation.

I Observation 13. For any σ ∈ {−1, 0, · · · , k}k, any s− t path in Gσ must have weight at
least d+ i− 1 where i = min{i′ | σ(i′) = −1}.

Note that the above observation is true only because we consider the range of our weight
function w to be Z. Otherwise above observation will trivially be false.

Now let us consider any increment function I : E(G)→ N such that
∑
e∈E(G) I(e) ≤ k

and then denote the set of edges with non-zero value of the function I by F , i.e., F = {e ∈
E(G)|I(e) > 0}. So clearly |F | ≤ k. Now suppose distG,w′(s, t) = d′ = d + j for some
0 ≤ j ≤ k where w′(e) = w(e) + I(e). Thus we need to show that there also exists an s− t
path of weight d′ in the subgraph Ht under the new weight function w′.

Suppose P be an s − t path in G such that w′(P) = d′ = d + j. For simplicity let us
make the following assumption.

I Assumption 14. For all e ∈ P , I(e) = 0, i.e., w′(P) = w(P).

I Lemma 15. One of the following three cases must be satisfied.
1. There exists a σ such that P belongs to the subgraph Gσ where σ(j) = −1 and for some

r ∈ [k], the last edge of P belongs to the edge set Cσ,r.
2. There exists a σ such that P belongs to the subgraph Gσ where σ(j + 1) = −1, σ(j) 6= −1

and there is no i ∈ [j − 1] such that σ(i) ≥ k − j + i− 1.
3. There exists a σ such that P belongs to the subgraph Gσ where if i = min{i′ | σ(i′) = −1}

then i ≤ j and for all i′ < i, σ(i′) < k − j + i′ − 1 and P passes through all the cut sets
Cσ,1, · · · , Cσ,k−j+i−1.

Now let us call the path P is of type-1, type-2 and type-3 respectively depending on which
of the above three cases it satisfies.

Type-1. This case is the simplest among the three.

I Lemma 16. If P is a type-1 path then P is contained in the subgraph Ht.

SWAT 2018

15:12 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

Proof. Suppose (v, t) is the last edge of the path P . Now since (v, t) ∈ Cσ,r for some σ and
r, (v, t) ∈ E(t). Thus by the construction of the subgraph Ht, the edge (v, t) belongs to Ht.
Also by the construction of the subgraph Ht, for all the vertices u 6= t, In-Edge(u) belongs
to Ht. Hence P must lie completely inside Ht. J

Type-2. By Observation 13 any path that belongs to the subgraph Gσ where σ(j) 6= −1
and σ(j + 1) = −1, must have weight atleast d+ j under the weight function w. Now, since
by Assumption 14 w(P) = d+ j, P must pass through an edge (ur, vr) ∈ Cσ,r for all r ∈ [k].
Consider an auxiliary graph G′σ = Gσ + (s, v1) + · · ·+ (s, vk) and extend the weight function
w as w(s, vr) = w(P [s, vr]). Then define another graph G∗σ = (G′σ \ In-Edge(t)) + E(t). By
Lemma 10 we claim the following.

I Corollary 17. There will be k + 1 edge disjoint paths in G∗σ each of weight w(P) under
weight function w.

Now we use the above corollary to conclude the following.

I Lemma 18. If P is a type-2 path then there exists an s− t path of weight d′ in the subgraph
Ht under the new weight function w′.

Proof. By Corollary 17, we get k + 1 edge disjoint paths P1, · · · , Pk+1 each of weight
w(P) = d+ j. Since |F | ≤ k where F = {e ∈ E(G)|I(e) > 0}, at least one of the k + 1 edge
disjoint paths, say P1, must survive in G∗σ \ F . If P1 also belongs to the subgraph Ht then
we are done. Otherwise P1 must take some of the (s, vr)’s as the first edge and the remaining
portion P1[vr, t] lies inside Ht. Now consider the following path R = P [s, vr] ◦ P1[vr, t]. By
the construction of G′σ, w′(R) = w′(P1) = w(P) and this completes the proof. J

Type-3. Suppose P is a type-3 path and thus belongs to Gσ for some σ where if i =
min{i′ | σ(i′) = −1} then i ≤ j and for any i′ ≤ i, σ(i′) < k − j + i′ − 1 and P passes
through all the cut sets Cσ,1, · · · , Cσ,k−j+i−1. P passes through an edge (ur, vr) ∈ Cσ,r for
all r ∈ [k − j + i− 1]. For the ease of representation let us define v0 = s. Now if there exists
a positive integer r ∈ [k − j + i− 1] such that w(P [vr−1, ur]) > distGσ,w(vr−1, ur), replace
the portions of path P [vr−1, ur] by the vr−1 − ur path of weight distGσ,w(vr−1, ur). We do
this until there is no such r and after that we call this new path as P ′.

Now consider an auxiliary graph G′σ = Gσ + (s, v1) + · · ·+ (s, vk−j+i−1) and extend the
weight function w as w(s, vr) = w(P [s, vr]). Next define another graph G∗σ = (G′σ \ In-
Edge(t)) + E(t). Now we use a similar but slightly more intricate argument than that used
in case of Type-2 paths to conclude the following.

I Lemma 19. If P is a type-3 path then there exists an s− t path of weight w(P) = d′ in
the subgraph Ht under the new weight function w′.

5.3 Bound on the size of E(t)
Before establishing the upper bound on the size of the set of edges E(t), let us define
Cσ,k+1 = FSMC(Gσ, s, Sσ,k+1, t) for any σ ∈ {−1, 0, · · · , k}k.

Now since FSMC(Gσ, s, Sσ,i+1, t) = FMC(Gshortσ , Sσ,i+1, t) for any i ∈ [k] where Gshortσ

is the shortest path subgraph of Gσ, we can restate Lemma 6.6 from [4] as follows.

I Lemma 20. For any i ∈ [k], |Cσ,i+1| ≤ 2 · |Cσ,i|.

Reader may note that the proof of the above lemma in [4] crucially relies on Assumption 12.

D. Chakraborty and D. Das 15:13

I Lemma 21. |E(t)| ≤ e(k − 1)!2k.

Proof. In our algorithm for each σ ∈ {−1, 0, · · · , k}k we compute the cut sets Cσ,1, · · · , Cσ,k
and add |Cσ,k+1| many edges in the set E(t) only if for all i′ < i, σ(i′) < k − i+ i′ − 1 where
i = min{j | σ(j) = −1}; otherwise we do not compute anything. So the total number of σ
for which we add edges in E(t) is bounded by

1+(k−1)+(k−1)(k−2)+ · · ·+(k−1)! = (k−1)![1/0!+1/1!+ · · ·+1/(k−1)!] ≤ e ·(k−1)!.

Now by applying Lemma 20, we get that for each such σ, |Cσ,k+1| ≤ 2k (since |Cσ,1| = 1)
and this proves the claimed bound. J

Complexity analysis. Here we just mention that since by Lemma 11 finding k-WTSS
requires n rounds where in each round we find k-WTSS(v) for some v ∈ V (G), computing
k-WTSS takes total O(kkm2n) time.

6 Lower Bound Results for the Size of k-WTSS

Theorem 3 already provides a lower bound on the size of k-WTSS with the restriction same
as that considered in our k-WTSS construction. In this section we show that the size of
k-WTSS of a graph can be of size at least Ω(n2) even for k = 1 if we allow either the weight
function or the increment function to be rational valued. We formally state the lower bounds
in the following two theorems, proofs of which can be found in the full version [13].

I Theorem 22. If weight of an edge can be any rational value, then for every n ∈ N, there
exists a directed graph with n vertices whose 1-WTSS must contain c · n2 many edges for
some constant c > 0.

I Theorem 23. If it is allowed to increase the weight of the edges by any rational value, then
for every n ∈ N, there exists a directed graph with n vertices whose 1-WTSS must contain
c · n2 many edges for some constant c > 0.

I Remark. We emphasize that all the lower bound results in the above section hold for
undirected graphs also. Moreover, exactly the same graphs without any direction will serve
the purpose.

References

1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages
351–361, 2016.

2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear
additive spanners. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, pages 568–576, 2017.

3 Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approximate
single source fault tolerant shortest path. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1901–1915, 2018.

4 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for single
source reachability: generic and optimal. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, pages 509–518, 2016.

SWAT 2018

15:14 Sparse Weight Tolerant Subgraph for Single Source Shortest Path

5 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New constructions
of (alpha, beta)-spanners and purely additive spanners. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pages 672–681, 2005.

6 Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pages 101–110, 2009.

7 Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido Proietti. Im-
proved purely additive fault-tolerant spanners. In Algorithms - ESA 2015 - 23rd Annual
European Symposium, Proceedings, pages 167–178, 2015.

8 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-tolerant approxi-
mate shortest-path trees. In Algorithms - ESA 2014 - 22th Annual European Symposium,
Proceedings, pages 137–148, 2014.

9 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-
tolerant approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, pages 18:1–18:14, 2016.

10 Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Pre-
serving distances in very faulty graphs. In 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, pages 73:1–73:14, 2017.

11 Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive
and (µ, α)-spanners. Theor. Comput. Sci., 580:94–100, 2015.

12 Luciana S. Buriol, Mauricio G. C. Resende, and Mikkel Thorup. Speeding up dynamic
shortest-path algorithms. INFORMS Journal on Computing, 20(2):191–204, 2008.

13 Diptarka Chakraborty and Debarati Das. Near optimal sized weight tolerant subgraph for
single source shortest path. CoRR, abs/1707.04867, 2017.

14 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault-tolerant spanners
for general graphs. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, pages 435–444, 2009.

15 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, pages 130:1–130:13,
2016.

16 Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners. Discrete & Compu-
tational Geometry, 32(2):207–230, 2004.

17 Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest paths with
real edge weights. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, pages 260–267, 2001.

18 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,
2008.

19 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, pages 169–178, 2011.

20 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings
of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pages
506–515, 2009.

21 D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 2010.
22 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles

via fast single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, pages 748–757, 2012.

D. Chakraborty and D. Das 15:15

23 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, pages
127:1–127:15, 2017.

24 Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

25 Tamás Lukovszki. New results of fault tolerant geometric spanners. In Algorithms and Data
Structures, 6th International Workshop, WADS ’99, Proceedings, pages 193–204, 1999.

26 Merav Parter. Vertex fault tolerant additive spanners. In Distributed Computing - 28th
International Symposium, DISC 2014, Proceedings, pages 167–181, 2014.

27 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, pages 481–490, 2015.

28 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA 2013
- 21st Annual European Symposium, Proceedings, pages 779–790, 2013.

29 Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1073–1092, 2014.

30 G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest
path problem. Journal of Algorithms, 21:267–305, 1996.

31 Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. ACM Trans. Algorithms, 8(4):33:1–33:11, 2012.

32 Hans Rohnert. A dynamization of the all pairs least cost path problem. In STACS 85, 2nd
Symposium of Theoretical Aspects of Computer Science, Proceedings, pages 279–286, 1985.

33 Mohammadreza Saeedmanesh and Nikolas Geroliminis. Dynamic clustering and propa-
gation of congestion in heterogeneously congested urban traffic networks. Transportation
Research Part B: Methodological, 105(Supplement C):193–211, 2017.

34 Maxim Teslenko and Elena Dubrova. An efficient algorithm for finding double-vertex dom-
inators in circuit graphs. In 2005 Design, Automation and Test in Europe Conference and
Exposition (DATE 2005), pages 406–411, 2005.

35 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, 2013.

36 Virginia Vassilevska Williams. Faster replacement paths. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 1337–
1346, 2011.

37 David P. Woodruff. Additive spanners in nearly quadratic time. In Automata, Languages
and Programming, 37th International Colloquium, ICALP 2010, pages 463–474, 2010.

SWAT 2018

An Improved Algorithm for Incremental DFS Tree
in Undirected Graphs
Lijie Chen
Massachusetts Institute of Technology
lijieche@mit.edu

Ran Duan1

Tsinghua University
duanran@mail.tsinghua.edu.cn

Ruosong Wang
Carnegie Mellon University
ruosongw@andrew.cmu.edu

Hanrui Zhang
Duke University
hrzhang@cs.duke.edu

Tianyi Zhang
Tsinghua University
tianyi-z16@mails.tsinghua.edu.cn

Abstract
Depth first search (DFS) tree is one of the most well-known data structures for designing efficient
graph algorithms. Given an undirected graph G = (V, E) with n vertices and m edges, the
textbook algorithm takes O(n + m) time to construct a DFS tree. In this paper, we study the
problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally,
we show:

Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that
reports a DFS tree in O(n) worst case time per operation, and requires O

(
min{m log n, n2}

)
preprocessing time.

Our result improves the previous O(n log3 n) worst case update time algorithm by Baswana
et al. [1] and the O(n log n) time by Nakamura and Sadakane [15], and matches the trivial Ω(n)
lower bound when it is required to explicitly output a DFS tree.

Our result builds on the framework introduced in the breakthrough work by Baswana et al. [1],
together with a novel use of a tree-partition lemma by Duan and Zhang [9], and the celebrated
fractional cascading technique by Chazelle and Guibas [6, 7].

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases DFS tree, fractional cascading, fully dynamic algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.16

Acknowledgements The authors would like to thank Shahbaz Khan, Kasper Green Larsen and
Seth Pettie for many helpful discussions, and the anonymous reviewer for pointing out an issue
in an earlier version of this paper.

1 R. Duan is supported by a China Youth 1000-Talent grant.

© Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, and Tianyi Zhang;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 16; pp. 16:1–16:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijieche@mit.edu
mailto:duanran@mail.tsinghua.edu.cn
mailto:ruosongw@andrew.cmu.edu
mailto:hrzhang@cs.duke.edu
mailto:tianyi-z16@mails.tsinghua.edu.cn
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

1 Introduction

Depth First Search (DFS) is one of the most renowned graph traversal techniques. After
Tarjan’s seminal work [21], it demonstrates its power by leading to efficient algorithms
to many fundamental graph problems, e.g., biconnected components, strongly connected
components, topological sorting, bipartite matching, dominators in directed graph and
planarity testing.

Real world applications often deal with graphs that keep changing with time. Therefore it
is natural to study the dynamic version of graph problems, where there is an online sequence
of updates on the graph, and the algorithm aims to maintain the solution of the studied
graph problem efficiently after seeing each update. The last two decades have witnessed a
surge of research in this area, like connectivity [10, 12, 13, 14], reachability [18, 20], shortest
path [8, 19], bipartite matching [3, 16], and min-cut [22].

We consider the dynamic maintenance of DFS trees in undirected graphs. As observed
by Baswana et al. [1] and Nakamura and Sadakane [15], the incremental setting, where
edges/vertices are added but never deleted from the graph, is arguably easier than the fully
dynamic setting where both kinds of updates can happen – in fact, they provide algorithms
for incremental DFS with Õ(n) worst case update time, which is close to the trivial Ω(n)
lower bound when it is required to explicitly report a DFS tree after each update. So,
is there an algorithm that requires nearly linear preprocessing time and space,
and reports a DFS tree after each incremental update in O(n) time? In this paper,
we study the problem of maintaining a DFS tree in the incremental setting, and give an
affirmative answer to this question.

1.1 Previous works on dynamic DFS

Despite the significant role of DFS tree in static algorithms, there is limited progress on
maintaining a DFS tree in the dynamic setting.

Many previous works focus on the total time of the algorithm for any arbitrary updates.
Franciosa et al. [11] designed an incremental algorithm for maintaining a DFS tree in a DAG
from a given source, with O(mn) total time for an arbitrary sequence of edge insertions;
Baswana and Choudhary [2] designed a decremental algorithm for maintaining a DFS tree in
a DAG with expected O(mn log n) total time. For undirected graphs, Baswana and Khan [4]
designed an incremental algorithm for maintaining a DFS tree with O(n2) total time.

These algorithms used to be the only results known for the dynamic DFS tree problem.
However, none of these existing algorithms, despite that they are designed for only a partially
dynamic environment, achieves a worst case bound of o(m) on the update time.

That barrier is overcome in the recent breakthrough work of Baswana et al. [1], they
provide, for undirected graphs, a fully dynamic algorithm with worst case O(

√
mn log2.5 n)

update time, and an incremental algorithm with worst case O(n log3 n) update time. Due
to the rich information in a DFS tree, their results directly imply faster worst case fully
dynamic algorithms for subgraph connectivity, biconnectivity and 2-edge connectivity.

The results of Baswana et al. [1] suggest a promising way to further improve the worst
case update time or space consumption for those fully dynamic algorithms by designing
better dynamic algorithms for maintaining a DFS tree. In particular, based on the framework
by Baswana et al. [1], Nakamura and Sadakane [15] propose an algorithm which takes
O(
√

mn log1.75 n/
√

log log n) time per update in the fully dynamic setting and O(n log n)
time in the incremental setting, and O(m log n) bits of space.

L. Chen, R. Duan, R. Wang, H. Zhang, and T. Zhang 16:3

1.2 Our results

In this paper, following the approach of [1], we improve the update time for the incremental
setting, also studied in [1], by combining a better data structure, a novel tree-partition lemma
by Duan and Zhang [9] and the fractional-cascading technique by Chazelle and Guibas [6, 7].

For any set U of incremental updates (insertion of a vertex/an edge), we let G + U denote
the graph obtained by applying the updates in U to the graph G. Our results build on the
following main theorem.

I Theorem 1. There is a data structure with O(min{m log n, n2}) size, and can be built in
O(min{m log n, n2}) time, such that given a set U of k insertions, a DFS tree of G + U can
be reported in O(n + k) time.

By the above theorem combined with a de-amortization trick in [1], we establish the
following corollary for maintaining a DFS tree in an undirected graph with incremental
updates.

I Corollary 2 (Incremental DFS tree). Given a sequence of online edge/vertex insertions,
a DFS tree can be maintained in O(n) worst case time per insertion.

1.3 Organization of the Paper
In Section 2 we introduce frequently used notations and review two building blocks of our
algorithm – the tree partition structure [9] and the fractional cascading technique [6, 7]. In
Section 3 and Section 4, we study a batched version of the incremental setting, where all
incremental updates are given at once, after which a single DFS tree is to be reported. After
that, by a standard de-amortization technique, our algorithm for the batched setting directly
implies the efficient algorithm for the incremental setting stated in Corollary 2.

2 Preliminaries

Let G = (V, E) denote the original graph, T a corresponding DFS tree rooted at a special
vertex r ∈ V , and U a set of inserted vertices and edges. We first introduce necessary
notations.

T (x): The subtree of T rooted at x.
path(x, y): The path from x to y in T .
par(v): The parent of v in T .
N(x): The adjacency list of x in G.
L(x): The reduced adjacency list for vertex x, which is maintained during the algorithm.
T ∗: The newly generated DFS tree after the batch insertion U .
par∗(v): The parent of v in T ∗.

Our algorithm uses a tree partition lemma in [9] and the famous fractional cascading
structure in [6, 7], which are summarized as the following two lemmas.

I Lemma 3 (Tree partition structure [9]). Given a rooted tree T and any integer parameter k

such that 2 ≤ k ≤ n = |V (T)|, we can mark a subset of vertices of no more than 3n/k − 5,
such that after removing all marked vertices, the tree T is partitioned into sub-trees of size at
most k. Also, the marked vertex subset can be computed in O(n log n) time.

SWAT 2018

16:4 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Algorithm 1: BatchInsert
Data: a DFS tree T of G, set of insertions U

Result: a DFS tree T ∗ of G + U

1 Add each inserted vertex v into T , set par(v) = r;
2 Initialize L(v) to be ∅ for each v;
3 Add each inserted edge (u, v) to L(u) and L(v);
4 Call DFS(r);

Algorithm 2: DFS
Data: a DFS tree T of G, the entering vertex v

Result: a partial DFS tree
1 Let u = v;
2 while par(u) is not visited do
3 Let u = par(u);
4 Mark path(u, v) to be visited;
5 Let (w1, . . . , wt) = path(u, v);
6 for i ∈ [t] do
7 if i 6= t then
8 Let par∗(wi) = wi+1;
9 for child x of wi in T except wi+1 do

10 Let (y, z) = Q(T (x), u, v), where y ∈ path(u, v);
11 Add z into L(y);

12 for i ∈ [t] do
13 for x ∈ L(wi) do
14 if x is not visited then
15 Let par∗(x) = wi;
16 Call DFS(x);

I Lemma 4 (Fractional cascading [6, 7]). Given k sorted arrays {Ai}i∈[k] of integers with
total size

∑k
i=1 |Ai| = m. There exists a data structure which can be built in O(m) time and

using O(m) space, such that for any integer x, the successors of x in all Ai’s can be found in
O(k + log m) time.

3 Handling batch insertions

In this section, we study the dynamic DFS tree problem in the batch insertion setting.
The goal of this section is to prove Theorem 1. Our algorithm basically follows the same
framework for fully dynamic DFS proposed in [1]. Since we are only interested in the batch
insertion setting, we can moderately simplify their algorithms by directly pruning those
details unrelated to insertions, as described in pseudo-code BatchInsert (Algorithm 1) and
DFS (Algorithm 2).

In Algorithm BatchInsert, we first attach each inserted vertex to the super root r, and
pretend it has been there since the very beginning. Then only edge insertions are to be
considered. All inserted edges are added into the reduced adjacency lists of corresponding

L. Chen, R. Duan, R. Wang, H. Zhang, and T. Zhang 16:5

vertices. We then use DFS to traverse the graph starting from r based on T , L, and build the
new DFS tree while traversing the entire graph and updating the reduced adjacency lists.

In Algorithm DFS, the new DFS tree is built in a recursive fashion. Every time we enter
an untouched subtree, say T (u), from vertex v ∈ T (u), we change the root of T (u) to v and
go through path(v, u); i.e., we wish to reverse the order of path(u, v) in T ∗. One crucial step
behind this operation is that we need to find a new root for each subtree T (w) originally
hanging on path(u, v). The following lemma tells us where the T (w) should be rerooted on
path(u, v) in T ∗.

I Lemma 5 ([1]). Let T ∗ be a partially constructed DFS tree, v the current vertex being
visited, w an (not necessarily proper) ancestor of v in tree T ∗, and C a connected component
of the subgraph induced by unvisited vertices. If there are two edges e and e′ from C incident
on v and w, then it is sufficient to consider only e during the rest of the DFS traversal.

Let Q(T (w), u, v) be the edge between the highest vertex on path(u, v) incident to a
vertex in subtree T (w), and the corresponding vertex in T (w). Q(T (w), u, v) is defined to be
Null if such an edge does not exist. By Lemma 5, it suffices to ignore all other edges but
just keep the edge returned by Q(T (w), u, v); this is because we have reversed the order of
path(u, v) in T ∗ and thus Q(T (w), u, v) connects to the lowest possible position in T ∗. Hence
T (w) should be rerooted at Q(T (w), u, v).

Denote (x, y) to be the edge returned by Q(T (w), u, v) where x ∈ path(u, v), and then
we add y into L(x). After finding an appropriate entering edge for each hanging subtree, we
process each vertex v ∈ path(u, v) in ascending order of depth (with respect to tree T). For
every unvisited w ∈ L(v), we set par∗(w) = v, and recursively call DFS(w).

I Theorem 6. BatchInsert correctly reports a feasible DFS tree T ∗ of graph G + U .

Proof. We argue that in a single call DFS(v), where u is the highest unvisited ancestor of v,
every unvisited (at the moment of being enumerated) subtree T (w) hanging from path(u, v),
as well as every vertex on path(u, v) except v, will be assigned an appropriate parent such that
these parent-child relationships constitute a DFS tree of G at the termination of BatchInsert.
When the traversal reaches v, the entire T (u) is untouched, or else u would have been marked
by a previous visit to some vertex in T (u). We could therefore choose to go through path(v, u)
to reach u first. By Lemma 5, if a subtree T (w) is reached from some vertex on path(u, v), it
suffices to consider only the edge Q(T (w), u, v). After adding the query results of all hanging
subtrees into the adjacency lists of vertices on path(u, v), every hanging subtree visited from
some vertex x on path(u, v) should be visited in a correct way through edges in L(x) solely.
Since every vertex will eventually be assigned a parent, BatchInsert does report a feasible
DFS tree of graph G + U . J

For now we have not discussed how to implement Q(T (w), u, v) and the above algorithm
only assumes blackbox queries to Q(T (·), ·, ·). The remaining problem is to devise a data
structure D to answer all the queries demanded by Algorithm DFS in O(n) total time. We will
show in the next section that there exists a data structure D with the desired performance,
which is stated as the following lemma.

I Lemma 7. There exists a data structure D with preprocessing time O
(
min{m log n, n2}

)
time and space complexity O

(
min{m log n, n2}

)
that can answer all queries Q(T (w), x, y) in

a single run of BatchInsert in O(n) time.

Proof of Theorem 1. By Lemma 7, the total time required to answer queries is O(n). The
total size of reduced adjacency lists is bounded by O(n + |U |), composed by O(|U |) edges

SWAT 2018

16:6 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

added in BatchInsert and O(n) added during DFS. Thus, the total time complexity of
BatchInsert is O(n + |U |).

During preprocessing, we use depth first search on G to get the initial DFS tree T , and build
D in time O

(
min{m log n, n2}

)
. The total time for preprocessing is O

(
min{m log n, n2}

)
. J

4 Dealing with queries in BatchInsert

In this section we prove Lemma 7. Once this goal is achieved, the overall time complexity of
batch insertion taken by Algorithm BatchInsert would be O(n + |U |).

In the following part of this section, we will first devise a data structure in Section 4.1,
that answers any single query Q(T (w), u, v) in O(log n) time, which would be useful in other
parts of the algorithm. We will then present another simple data structure in Section 4.2,
which requires O(n2) preprocessing time and O(n2) space and answers each query in O(1)
time. Finally, we propose a more sophisticated data structure in Section 4.3, which requires
O(m log n) preprocessing time and O(m log n) space and answers all queries Q(T (w), x, y)
in a single run of BatchInsert in O(n) time. Hence, we can always have an algorithm that
handles a batch insertion U in O(n + |U |) time using O(min{m log n, n2}) preprocessing time
and O(min{m log n, n2}) space, thus proving Theorem 1. We can then prove Corollary 2
using the following standard de-amortization argument.

I Lemma 8. (Lemma 6.1 in [1]) Let D be a data structure that can be used to report
the solution of a graph problem after a set of U updates on an input graph G. If D can be
initialized in O(f) time and the solution for graph G+U can be reported in O(h+|U |×g) time,
then D can be modified to report the solution after every update in worst-case O

(√
fg + h

)
update time after spending O(f) time in initialization, given that

√
f/g ≤ n.

Proof of Corollary 2. Taking f = min{m log n, n2}, g = 1, h = n and directly applying the
above lemma will yield the desired result. J

4.1 Answering a single query in O(log n) time
We show in this subsection that the query Q(T (·), ·, ·) can be reduced efficiently to the range
successor query (see, e.g., [17], for the definition of range successor query), and show how
to answer the range successor query, and thus any individual query Q(T (·), ·, ·), in O(log n)
time.

To deal with a query Q(T (w), x, y), first note that since T is a DFS tree, all edges
not in T but in the original graph G must be ancestor-descendant edges. Querying edges
between T (w) and path(x, y) where x is an ancestor of y and T (w) is hanging from path(x, y) is
therefore equivalent to querying edges between T (w) and path(x, par(w)), i.e., Q(T (w), x, y) =
Q(T (w), x, par(w)). From now on, we will consider queries of the latter form only.

Consider the DFS sequence of T , where the i-th element is the i-th vertex reached during
the DFS on T . Note that every subtree T (w) corresponds to an interval in the DFS sequence.
Denote the index of vertex v in the DFS sequence by first(v), and the index of the last vertex
in T (v) by last(v). During the preprocessing, we build a 2D point set S. For each edge
(u, v) ∈ E, we add a point p = (first(u), first(v)) into S. Notice that for each point p ∈ S,
there exists exactly one edge (u, v) associated with p. Finally we build a 2D range tree [6, 7]
on point set S with O(m log n) space and O(m log n) preprocessing time.

To answer an arbitrary query Q(T (w), x, par(w)), we query the point with minimum
x-coordinate lying in the rectangle Ω = [first(x), first(w) − 1] × [first(w), last(w)]. If no

L. Chen, R. Duan, R. Wang, H. Zhang, and T. Zhang 16:7

such point exists, we return Null for Q(T (w), x, par(w)). Otherwise we return the edge
corresponding to the point with minimum x-coordinate.

Now we prove the correctness of our approach.
If our method returns Null, Q(T (w), x, par(w)) must equal Null. Otherwise, suppose
Q(T (w), x, par(w)) = (u, v). Noticing that (first(u), first(v)) is in Ω, it means our method
will not return Null in that case.
If our method does not return Null, denote (u′, v′) to be the edge returned by our
method. We can deduce from the query rectangle that u′ ∈ T (x)\T (w) and v′ ∈ T (w).
Thus, Q(T (w), x, par(w)) 6= Null. Suppose Q(T (w), x, par(w)) = (u, v). Notice that
(first(u), first(v)) is in Ω, which means first(u′) ≤ first(u). If u′ = u, then our method
returns a feasible solution. Otherwise, from the fact that first(u′) < first(u), we know
that u′ is an ancestor of u, which contradicts the definition of Q(T (w), x, par(w)).

4.2 An O(n2)-space data structure
In this subsection we propose a data structure with quadratic preprocessing time and space
complexity that answers any Q(T (·), ·, ·) in constant time.

Since we allow quadratic space, it suffices to precompute and store answers to all possible
queries Q(T (w), u, par(w)). For preprocessing, we enumerate each subtree T (w), and fix the
lower end of the path to be v = par(w) while we let the upper end u go upward from v by
one vertex at a time to calculate Q(T (w), u, par(w)) incrementally, in order to answer all
queries of the form Q(T (w), ·, par(w)) in O(n) total time.

As u goes upward on tree T , we need to find an edge, if existent, from u to T (w) in
O(1) time. To to this, we pre-compute, using dynamic programming, the answers for all
possible w’s as an independent task in O(n) total time, for each fixed u ∈ V . Prepare an
array Au[·] indexed by all descendants w of u which is initialised with all Null’s. Start listing
all descendants w incident to u. For each such w, we enumerate its ancestors v below u

in descending order in terms of depth and reset Au[v] = (u, w), and this enumeration gets
halted when we meet for the first time an ancestor v with Au[v] already 6= Null. It is clear
that u is connected to T (w) iff Au[w] 6= Null, since for each descendant w where u is incident
to some vertices in T (w), Au[w] is reset when the algorithm lists the first neighbour of u in
T (w). The total time of this procedure is clearly O(n) since every Au[v] is manipulated for
at most once.

I Lemma 9. The preprocessing time and query time of the above data structure are O(n2)
and O(1) respectively.

Proof. The array Au can be built for each vertex u in total time O(n2). For each subtree
T (w), we go up the path from w to the root r, and spend O(1) time for each vertex u

on path(r, w) to get the answer for Q(T (w), u, par(w)). There are at most n vertices on
path(r, w), so the time needed for a single subtree is O(n), and that needed for all subtrees
is n ·O(n) = O(n2) in total. On the other hand, for each query, we simply look it up and
answer in O(1) time. Hence we conclude that the preprocessing time and query time are
O(n2) and O(1) respectively. J

4.3 An O(m log n)-space data structure
Observe that in BatchInsert (and DFS), a bunch of queries {Q(T (wi), x, y)} are always made
simultaneously, where {T (wi)} is the set of subtrees hanging from path(x, y). We may

SWAT 2018

16:8 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

r

r0

a1 a2

……
an

2 �1 an
2

Figure 1 In this example, if we stick to the 2D-range-based data structure introduced before,
then computing all Q(T (ai), r, r′) would take as much as O(n log n) time.

therefore answer all queries for a path in one pass, instead of answering them one by one.
By doing so we confront two types of hard queries.

First consider an example where the original DFS tree T is a chain L where a1 is the root
of L and for 1 ≤ i ≤ n− 1, ai+1 is the unique child of ai. When we invoke DFS(a1) on L,
path(u, v) is the single node a1. Thus, we will call Q(T (a2), a1, a1) and add the returned edge
into L(a1). Supposing there are no back-edges in this graph, the answer of Q(T (a2), a1, a1)
will be the edge (a1, a2). Therefore, we will recursively call the DFS(a2) on the chain (a2, an).
Following further steps of DFS, we can see that we will call the query Q(T (w), x, y) for Ω(n)
times. For the rest of this subsection, we will show that we can deal with this example
in linear time. The idea is to answer queries involving short paths in constant time. For
instance, in the example shown above, path(u, v) always has constant length. We show that
when the length of path(u, v) is smaller than 2 log n, it is affordable to preprocess all the
answers to queries of this kind in O(m log n) time and O(n log n) space.

The second example we considered is given as Figure 1. In this tree, the original root is
r. Suppose the distance between r and r′ is n/2. When we invoke DFS(r′), path(u, v) the
path from r to r′. Thus, we will call T (a1, r, r′), T (a2, r, r′), . . ., T (an−2, r, r′), which means
we make Ω(n) queries. In order to deal with this example in linear time, the main idea is
using fractional cascading to answer all queries Q(T (w), x, y) with a fixed path(u, v), for all
subtrees T (w) with small size.

In the examples shown above, all subtrees cut off path(u, v) have constant size and thus
the total time complexity for this example is O(n). We will finally show that, by combining
the two techniques mentioned above, it is enough to answer all queries Q(T (w), x, y) in linear
time, thus proving Lemma 7.

Data structure
The data structure consists of the following parts.
(i) Build the 2D-range successor data structure that answers any Q(T (·), ·, ·) in O(log n)

time.
(ii) For each ancestor-descendent pair (u, v) such that u is at most 2 log n hops above v,

precompute and store the value of Q(T (v), u, par(v)).

L. Chen, R. Duan, R. Wang, H. Zhang, and T. Zhang 16:9

Mv1

v1

v2

Mv2
Mv4

Mv3

v4
v3

Figure 2 In this example, each blue node rep-
resents a vertex vi(1 ≤ i ≤ 4) from set M , and
Mvi ’s are drawn as yellow triangles. For each
triangle, a fractional cascading data structure is
built on adjacency lists of all vertices inside.

{� log n

{� log n

{� log n

{� log n

Figure 3 In this picture, sets M and X ∪
{r} are drawn as blue nodes and black nodes
respectively, and each yellow triangle is a subtree
rooted at a leaf of T [X], which has size ≥ log n.
Note that every ancestor-descendent tree path
between two black nodes contains a blue node.

(iii) Apply Lemma 3 with parameter k = log n and obtain a marked set of size O(n/ log n).
Let M be the set of all marked vertices x such that |T (x)| ≥ log n. For every v /∈M ,
let ancv ∈M be the nearest ancestor of v in set M .
Next we build a fractional cascading data structure for each u ∈ M in the following
way. Let Mu be the set of all vertices in T (u) whose tree paths to u do not intersect
any other vertices u′ 6= u from M , namely Mu = {v | ancv = u}; see Figure 2 for an
example. Then, apply Lemma 4 on all N(v), v ∈Mu where N(v) is treated as sorted
array in an ascending order with respect to depth of the edge endpoint opposite to v;
this would build a fractional cascading data structure that, for any query encoded as a
w ∈ V , answers for every v ∈ Mu its highest neighbour below vertex w in total time
O(|Mu|+ log n).

Here is a structural property of M that will be used when answering queries.

I Lemma 10. For any ancestor-descendent pair (u, v), if path(u, v)∩M = ∅, then path(u, v)
has ≤ 2 log n hops.

Proof. Suppose otherwise. By definition of marked vertices there exists a marked vertex
w ∈ path(u, v) that is ≤ log n hops below u. Then since path(u, v) has > 2 log n many hops,
it must be T (w) ≥ log n which leads to w ∈M , contradicting path(u, v) ∩M = ∅. J

Preprocessing time
First of all, for part (i), as discussed in a previous subsection, 2D-range successor data
structure takes time O(m log n) to initialize. Secondly, for part (iii), on the one hand by
Lemma 3 computing a tree partition takes time O(n log n); on the other hand, by Lemma
4, initializing the fractional cascading with respect to u ∈M costs O(

∑
v∈Mu

|N(v)|) time.

SWAT 2018

16:10 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Since, by definition of Mu, each v ∈ V is contained in at most one Mu, u ∈M , the overall
time induced by this part would be O(

∑
u∈M

∑
v∈Mu

|N(v)|) = O(m).
Preprocessing part (ii) requires a bit of cautions. The procedure consists of two steps.

(1) For every ancestor-descendent pair (u, v) such that u is at most 2 log n hops above v, we
mark (u, v) if u is incident to T (v).
Here goes the algorithm: for every edge (u, w) ∈ E (u being the ancestor), let z ∈
path(u, w) be the vertex which is 2 log n hops below u (if path(u, w) has less than 2 log n

hops, then simply let z = w); note that this z can be found in constant time using the
level-ancestor data structure [5] which can be initialized in O(n) time. Then, for every
vertex v ∈ path(u, z), we associate the pair (u, v) with edge (u, w); if a vertex pair is
associated with more than one edge, we only keep an arbitrary one. The total running
time of this procedure is O(m log n) since each edge (u, w) takes up O(log n) time.

(2) Next, for each v ∈ V , we compute all entries Q(T (v), u, par(v)) required by (ii) in an
incremental manner. Let u1, u2, · · · , u2 log n be the nearest 2 log n ancestors of v sorted
in descending order with respect to depth, and then we directly solve the recursion

Q(T (v), ui+1, par(v)) =
{

Q(T (v), ui, par(v)) (ui+1, v) is not associated with any edge
(ui+1, w) (ui+1, v) is associated with edge (ui+1, w)

for all 0 ≤ i < 2 log n in O(log n) time. Note that no Q(T (v), ui+1, par(v)) is an undefined
value since (u1, v) is always associated with an edge, say (u1, v) itself. The total running
time would thus be O(n log n).

Summing up (i)(ii)(iii), the preprocessing time is bounded by O(m log n).

Query algorithm and total running time
We show how to utilize the above data structures (i)(ii)(iii) to implement Q(T (·), ·, ·) on line
9-11 in Algorithm DFS such that the overall time complexity induced by this part throughout
a single execution of Algorithm BatchInsert is bounded by O(n).

Let us say we are given (w1, w2, · · · , wt) = path(u, v) and we need to compute Q(T (x), u, v)
for every subtree T (x) that is hanging on path(u, v). There are three cases to discuss.

(1) If path(u, v) ∩M = ∅, by Lemma 10 we claim path(u, v) has at most 2 log n hops, and
then we can directly retrieve the answer of Q(T (x), u, v) from precomputed entries of
(ii), each taking constant query time.

(2) Second, consider the case where path(u, v) ∩M 6= ∅. Let s1, s2, · · · , sl, l ≥ 1 be the con-
secutive sequence (in ascending order with respect to depth in tree T) of all vertices from
M that are on path(u, v). For those subtrees T (x) that are hanging on path(u, par(s1)),
we can directly retrieve the value of Q(T (x), u, par(x)) from (ii) in constant time, as by
Lemma 10 path(u, par(s1)) has at most 2 log n hops.

(3) Third, we turn to study the value of Q(T (x), u, par(x)) when par(x) belongs to a
path(si, par(si+1)), i < l or path(sl, v). The algorithm is two-fold.
(a) First, we make a query of u to the fractional cascading data structure built at vertex

si (1 ≤ i ≤ l), namely part (iii), which would give us, for every descendent y ∈Msi
,

the highest neighbour of y below u. Using this information we are able to derive the
result of Q(T (x), u, v) if |T (x)| < log n, since in this case T (x) ∩M = ∅ and thus
T (x) ⊆Msi .
By Lemma 4 the total time of this procedure is O(|Msi

|+ log n).

L. Chen, R. Duan, R. Wang, H. Zhang, and T. Zhang 16:11

(b) We are left to deal with cases where |T (x)| ≥ log n. In this case, we directly compute
Q(T (x), u, v) using the 2D-range successor built in (i) which takes O(log n) time.

Correctness of the query algorithm is self-evident. The total query time is analysed as
follows. Throughout an execution of Algorithm BatchInsert, (1) and (2) contribute at most
O(n) time since each T (x) is involved in at most one such query Q(T (x), u, v) which takes
constant time. As for (3)(a), since each marked vertex s ∈M lies in at most one such path
(w1, w2, · · · , wt) = path(u, v), the fractional cascading data structure associated with Ms

is queried for at most once. Hence the total time of (3)(a) is O(
∑

s∈M (|Ms| + log n)) =
O(n + |M | log n) = O(n); the last equality holds by |M | ≤ O(n/ log n) due to Lemma 3.

Finally we analyse the total time taken by (3)(b). It suffices to upper-bound by O(n/ log n)
the total number of such x with the property that |T (x)| ≥ log n and path(u, par(x))∩M 6= ∅.
Let X be the set of all such x’s.

I Lemma 11. Suppose x1, x2 ∈ X and x1 is an ancestor of x2 in tree T . Then path(x1, x2)∩
M 6= ∅.

Proof. Suppose otherwise path(x1, x2)∩M = ∅. Consider the time when query Q(T (x2), u, v)
is made and let path(u, v) be the path being visited by then. As x2 ∈ X, by definition it
must be path(u, par(x2))∩M 6= ∅. Therefore, path(u, x2) is a strict extension of path(x1, x2),
and thus x1, par(x1) ∈ path(u, x2), which means x1 and par(x1) become visited in the same
invocation of Algorithm DFS. This is a contradiction since for any query of form Q(T (x1), ·, ·)
to be made, by then par(x1) should be tagged “visited” while x1 is not. J

Now we prove |X| = O(n/ log n). Build a tree T [X] on vertices X ∪ {r} in the natural
way: for each x ∈ X, let its parent in T [X] be x’s nearest ancestor in X ∪ {r}. Because of

|X| < 2#leaves of T [X] + #vertices with a unique child in T [X]

it suffices to bound the two terms on the right-hand side: on the one hand, the number of
leaves of T [X] is at most n/ log n since for each leave x it has |T (x)| ≥ log n; on the other
hand, for each x ∈ T [X] with a unique child y ∈ T [X], by Lemma 11 path(x, y) ∩M 6= ∅,
and so we can charge this x to an arbitrary vertex in path(x, y) ∩M , which immediately
bounds the total number of such x’s by |M | = O(n/ log n); see Figure 3 for an illustration.
Overall, |X| ≤ O(n/ log n).

References
1 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dy-

namic dfs in undirected graphs: breaking the O(m) barrier. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 730–739.
SIAM, 2016.

2 Surender Baswana and Keerti Choudhary. On dynamic DFS tree in directed graphs. In In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS), pages
102–114. Springer, 2015.

3 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching
in O(log n) update time. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 383–392. IEEE, 2011.

4 Surender Baswana and Shahbaz Khan. Incremental algorithm for maintaining DFS tree for
undirected graphs. In International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 138–149. Springer, 2014.

SWAT 2018

16:12 An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

5 Michael A Bender and Martin Farach-Colton. The lca problem revisited. In Latin American
Symposium on Theoretical Informatics, pages 88–94. Springer, 2000.

6 Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. a data structuring
technique. Algorithmica, 1(1-4):133–162, 1986.

7 Bernard Chazelle and Leonidas J Guibas. Fractional cascading: II. applications. Algorith-
mica, 1(1-4):163–191, 1986.

8 Camil Demetrescu and Giuseppe F Italiano. A new approach to dynamic all pairs shortest
paths. Journal of the ACM (JACM), 51(6):968–992, 2004.

9 Ran Duan and Tianyi Zhang. Improved distance sensitivity oracles via tree partitioning.
arXiv preprint arXiv:1605.04491, 2016.

10 David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. Sparsifica-
tion—a technique for speeding up dynamic graph algorithms. Journal of the ACM (JACM),
44(5):669–696, 1997.

11 Paolo G Franciosa, Giorgio Gambosi, and Umberto Nanni. The incremental maintenance
of a depth-first-search tree in directed acyclic graphs. Information processing letters,
61(2):113–120, 1997.

12 Monika R Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM (JACM), 46(4):502–516, 1999.

13 Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. Journal of the ACM (JACM), 48(4):723–760, 2001.

14 Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1131–1142. Society for Industrial and
Applied Mathematics, 2013.

15 Kengo Nakamura and Kunihiko Sadakane. A space-efficient algorithm for the dynamic dfs
problem in undirected graphs. In International Workshop on Algorithms and Computation,
pages 295–307. Springer, 2017.

16 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.

17 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Scandinavian Workshop
on Algorithm Theory (SWAT), pages 271–282. Springer, 2012.

18 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM Journal on Computing, 37(5):1455–1471, 2008.

19 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM Journal on Computing, 41(3):670–683, 2012.

20 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse. In Foundations
of Computer Science (FOCS), 2004. Proceedings. 45th Annual IEEE Symposium on, pages
509–517. IEEE, 2004.

21 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

22 Mikkel Thorup. Fully-dynamic min-cut. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing (STOC), pages 224–230. ACM, 2001.

Succinct Dynamic One-Dimensional Point
Reporting
Hicham El-Zein
Cheriton School of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1
helzein@uwaterloo.ca

J. Ian Munro1

Cheriton School of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1
ynekrich@uwaterloo.ca

Abstract
In this paper we present a succinct data structure for the dynamic one-dimensional range report-
ing problem. Given an interval [a, b] for some a, b ∈ [m], the range reporting query on an integer
set S ⊆ [m] asks for all points in S ∩ [a, b]. We describe a data structure that answers reporting
queries in optimal O(k + 1) time, where k is the number of points in the answer, and supports
updates in O(lgε m) expected time. Our data structure uses B(n,m) + o(B(n,m)) bits where
B(n,m) is the minimum number of bits required to represent a set of size n from a universe of
m elements. This is the first dynamic data structure for this problem that uses succinct space
and achieves optimal query time.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases Succinct Data Structures, Range Searching, Computational Geometry

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.17

1 Introduction and Motivation

This paper studies the dynamic one-dimensional range reporting problem where the goal
is to maintain (under insertion and deletion) a set of integers S from a universe of size m
to answer range reporting queries efficiently: Given an interval [a, b] for some a, b ∈ [m],
report all points in S ∩ [a, b]. We note that the reporting query is equivalent to the query
FindAny(a, b) which asks for an arbitrary point c in S ∩ [a, b]: if the interval [a, b] is not
empty, we can recurse on [a, c− 1] and [c+ 1, b] after obtaining any c ∈ S ∩ [a, b].

We study this problem in the succinct scenario. In the succinct setting the emphasis is on
the space efficiency of the data structure. The goal is to design data structures that occupy
optimal or almost-optimal space and at the same time achieve an efficient query cost. This
area of research is of interest in theory and practice and is motivated by the need to store
a large amount of data using the smallest space possible. In recent years there has been a
surge of interest in succinct data structures for computational geometry [4, 2, 5, 10]. We
refer the reader to the survey by Munro and Rao [11] and the book of Navarro [17] for a
more in-depth coverage of succinct data structures.

1 This work was sponsored by the NSERC of Canada and the Canada Research Chairs Program.

© Hicham El-Zein, J. Ian Munro, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 17; pp. 17:1–17:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helzein@uwaterloo.ca
mailto:imunro@uwaterloo.ca
mailto:ynekrich@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Succinct Dynamic One-Dimensional Point Reporting

Related Work. One-dimensional range reporting is a well studied problem. Miltersen et
al. [13] presented a data structure for the static version of this problem that uses O(n lgm)
words and answers queries in constant time per reported element. Alstrup et al. [1] later
presented an improved data structure with the same query time that uses O(n) words,
i.e., O(n lgm) bits. Goswami et al. [7] presented a succinct data structure that further
improved the space usage to B(n,m) + o(B(n,m)) bits while preserving the query time where
B(n,m) ≈ n lg (m/n) is the minimum number of bits required to represent a set of size n
from a universe of m elements.

For the dynamic version of this problem Mortensen et al. [14] presented a data structure
that uses a linear number of words and answers queries in O(tq) time and updates in expected
O(tu) time where:
tq ≥ lg lg lgm, lg lgm/ lg lg lgm ≤ tu ≤ lg lgm : tu = O(lgtq

lgm) + tpred,
or tq ≤ lg lg lgm, tu ≥ lg lgm : 2tq = O(lgtu

lgm).
The most appealing point of this trade-off in the context of succinct data structures is when
the query time is constant and the update time is O(lgε m) time for a fixed ε > 0.

Our Results. We start with some preliminaries in Section 2. In Section 3 we present a
semi-dynamic succinct range reporting data structure that supports deletions in expected
O(lgε m) time and queries in constant time. In Section 4 we present a fully-dynamic succinct
range reporting data structure that supports updates in expected O(lgε m) time and queries
in constant time. Our results depend on the ability to construct a static succinct one
dimensional point reporting structure in O(n lgε m) time using o(n) workspace. We defer
the details of this construction to the end in Section 5 due to its technical nature.

2 Preliminaries

In this section we review some previous results that will be used in the rest of this paper.

2.1 One-Dimensional Point Reporting
First we review the data structure of Alstrup et al. [1] for static one-dimensional range
reporting. We start by defining some notations. Let x⊕ y denote the binary exclusive-or of
x and y. Given a w-bit integer x let x ↓ i = x/2i denote the rightmost w bits of the result of
shifting x i bits to the right. Similarly let x ↑ i = x · 2i mod 2w denote the rightmost w bits
of the result of shifting x i bits to the left. Finally, denote by msb (x) the position of the
most significant bit (or leftmost one bit) of x.

Given a set of integers S the goal is to store S while supporting the query FindAny(a, b)
which returns an element in S ∩ [a, b]. Denote by T the classic binary tree with 2w leaves
where all leaves have depth w. The leaves are numbered 0, . . . , 2w − 1 from left to right while
the internal nodes are labeled in a manner similar to an implicit binary heap. The root is the
first node, and the children of a node v are 2v and 2v+ 1. As noted in [1] the dth ancestor of
v is v ↓ d and the lowest common ancestor of two leaves a and b is the (1 + msb (a⊕ b))th

ancestor of a or b. Thus the lowest common ancestor of two leaves can be computed in
constant time.

Given a node v ∈ T let left (v) and right (v) denote the left and right children of v, and
let Sv denote the subset of S that is in the subtree rooted at v. A node v is branching if
both Sleft (v) and Sright (v) are not empty. To answer a query FindAny(a, b) it is sufficient to
compute the lowest common ancestor v of a and b; when v is computed, either maxSleft (v)
or minSright (v) is in [a, b], or [a, b] is empty. Thus by storing the values maxSleft (v) and

H. El-Zein, J. I. Munro, and Y. Nekrich 17:3

minSright (v) for all nodes v with non-empty Sv in O(nw) words, range reporting queries can
be answered in constant time.

To improve the space Alstrup et al. [1] observe the following. Let v be the nearest
branching ancestor of the lowest common ancestor of a and b, and let vl(vr) be the nearest
branching node in v’s left(right) subtree if one exists, otherwise vl = v(vr = v) if there
is no branching node in v’s left(right) subtree. Then either maxSleft (vl), minSright (vl),
maxSleft (vr), or minSright (vr) is in [a, b], or [a, b] is empty. Thus they store a O(n) word
data structure that consists of:
B, D: vectors of size O(n

√
w lgw) bits that return the nearest branching ancestor of the

nodes in T with non empty-subtrees.
V : a vector storing for each branching node v the values maxSv and minSv, in addition to

two pointers to the nearest branching nodes in the left and right subtrees of v.
For the full details we refer the reader to [1].

2.2 Tree Representation
In their paper Geary and Raman [6] present a succinct ordinal tree representation that
answers level ancestor queries. In their tree representation the tree is partitioned into
mini-trees of size O(lg4 n), and then the mini-trees are partitioned into micro-trees of size
O(lgn). Internally a node x is referred to by τ(x) = (τ1(x), τ2(x), τ3(x)) where τ1(x) is the
id of x’s mini-tree, τ2(x) is the id of x’s micro tree, and τ3(x) is the id of x in its micro tree.
If two nodes x and y are in the same micro tree µ then τ1(x) = τ1(y) = p(µ) where p(µ) is
the id of the micro tree µ. Note that micro trees can intersect only at their roots, and if a
node is in different micro trees (i.e. it is the root of several micro trees) it can have different
τ names. That is, if a node x is a root of two different micro-trees µ1 and µ2, it will have
two different τ names where in the first one τ2(x) = p(µ1) and in the second τ2(x) = p(µ2).
Both names are valid and we can select any one of them.

Geary and Raman show how to compute the preorder number of x given τ(x) in constant
time using an index of size o(n) bits. This index can be constructed in O(n) time using a
workspace of O(n) words. Given a tree T partitioned using the above scheme and a node
x ∈ T we denote by root (x) the root of the mini-tree that x belongs to.

2.3 Sparse Arrays
We will use the following Theorem from [12]:

I Theorem 1 ([12]). There is an (m,n,O(n))-family of perfect hash functions H such that
any hash function h ∈ H can be represented in Θ(n lg lgn) bits and evaluated in constant
time for m ≤ 2w. The perfect hash function can be constructed in expected O(n) time.

As noted in [1] a corollary of the previous theorem is the following.

I Corollary 2. A sparse array of size m ≥ n with n initialized entries that contain b =
Ω(lg lgn) bits each can be stored using O(nb) bits, so that any initialized entry can be accessed
in O(1) time. The expected preprocessing time of this data structure is O(n).

3 Semi-Dynamic Succinct One-Dimensional Point Reporting

Although Goswami et al. [7] presented a succinct data structure for one-dimensional range
reporting, it is not clear what is the construction time of their data structure. In Section 5
we utilize succinct data structure techniques to improve the data structure in [1] so that it

SWAT 2018

17:4 Succinct Dynamic One-Dimensional Point Reporting

uses B(n,m) + o(B(n,m)) bits and can be constructed in O(n lgε m) time using o(n) extra
bits of space. The details are deferred to Section 5 due to their technical nature.

I Theorem 3. There exists a succinct B(n,m) + o(B(n,m))-bit data structure that supports
one-dimensional range reporting queries in O(k + 1) time where k is the number of points
within the query. Additionally given the point set in sorted order, this data structure can be
constructed in expected O(n lgε m) time using o(n)-bits workspace.

The data structure for one-dimensional range reporting can be dynamized so that queries
are supported in deterministic O(k) time and updates in expected O(lgε m) time while the
space usage is O(n) words [14]. Our aim is to reduce the space to the information theoretic
lower bound plus a lower order term. In this section we present a semi-dynamic succinct
one-dimensional range reporting data structure that supports queries and deletions but does
not support insertions.

Data Structure. We store the data structure from Theorem 3 and call it P . We divide the
points into blocks of size lg2 m and we store predecessor and successor data structures that
can answer queries in each block independently using o(B(n,m)) bits as described in [4]. We
also store a dynamic data structure [14] D on the endpoints of each block. Furthermore,
each block is divided into subblocks of size lgn/2 and stores a dynamic data structure [14]
Di (1 ≤ i ≤ n/ lg2 m) on the ranks (within the block) of the endpoints of each subblock. We
also store a compressed bit vector([8], Theorem 2) B of size n that indicates which points
were deleted. Finally, we store a lookup table T that can report for any range the 0 bits in a
bit vector of size lgn/2.

Query. To report the points within an interval [a, b] we query D on the interval. Then for
each point reported with rank k we query the (bk/2c)th and (bk/2c+ 1)st blocks.

To query the kth block we first reduce the problem to the rank space by finding the rank
of the successor of a and the predecessor of b within the block. Next, we query Dk for the
non-empty subblocks within the block and use T to report the points in the subblock.

If the query to D does not return any point then either [a, b] is empty or [a, b] is contained
fully within a block. To determine which block contains [a, b] we query P to get the rank of
a random point in [a, b] from that we determine which block contains [a, b]. Afterwards we
proceed within the block as described above.

Deletions. To delete a point p we first query to check that the interval [p, p] is not empty.
We obtain the rank k of p by querying P , and then we set the kth bit in T to 1. Now we
know that the point p is in the s = (2(k mod lg2 m)/ lgn)th subblock of the b = (k/ lg2 m)th

block. We check if the sth subblock is empty. If that is so we remove its endpoints from
D(k/ lg2 m). Then we check if the bth block is empty. In that case we remove its endpoints
from D. The expected running time is O(lgε m).

Space Analysis. P uses B(n,m) + o(B(n,m)) bits and D contains O(n/ lg2 m) points
thus uses O(n/ lgm) bits. Each Di (1 ≤ i ≤ n/ lg2 m) contains O(lg2 m/ lgn) points
from a universe if size lg2 m thus uses O(lg2 m lg lgm/ lgn) bits. The Di structures use
O(n lg lgm/ lgn) bits in total. If lg lgm /∈ o(lgn) then n < lgc m for some constant c. In
that case we use a slightly different approach. We reduce the problem to the rank space from
the beginning to make the universe size n, so D uses O(n/ lgn) bits and the Di structures
use O(n lg lgn/ lgn) bits in total. The table T uses O(

√
n lg3 n lg lgn) bits and finally the

compressed bit vector uses o(n) as long as the number of deletions is o(n). In total the space
remains B(n,m) + o(B(n,m)) bits.

H. El-Zein, J. I. Munro, and Y. Nekrich 17:5

Construction Time and Workspace. P can be constructed in expected O(n lgε m) time
using o(n) extra bits of space. D can be constructed in expected O(n/ lg2−ε m) time using
O(1) extra words of space. Each Di can be constructed in expected O((lg2 m/ lgn) lgε lgm)
time using O(1) extra words of space, so all the Di’s can be constructed in expected
O((n/ lgn) lgε lgm) time using O(1) extra words of space. T can be constructed in o(n) time
using o(n) extra bits of space. In total the construction time and workspace are dominated
by the cost of constructing P and remain the same as in Theorem 3.

I Theorem 4. There exists a semi-dynamic succinct B(n,m) + o(B(n,m))-bit data structure
that supports one-dimensional range reporting queries in O(k+ 1) time where k is the number
of points within the query, and point deletions in expected O(lgε m) time as long as the number
of deletions is o(n). Additionally given the point set in sorted order, this data structure can
be constructed in expected O(n lgε m) time using o(n)-bits workspace.

4 Fully-Dynamic Succinct One-Dimensional Point Reporting

4.1 Fully-Dynamic Structure with Amortized Updates
We first present a fully dynamic solution that uses B(n,m) + o(B(n,m)) bits of space and
supports queries in O(k) time and updates in amortized expected O(lgε m) time.

We divide the universe of size m into n/ lg2 m chunks of equal size and maintain a fully
dynamic [14] data structure B to keep track of the nonempty chunks. B is maintained
throughout the data structure updates. Whenever a point is inserted we insert both endpoints
of its chunk into B. Moreover whenever a chunk becomes empty we remove its endpoints
from B. For each chunk bi (1 ≤ i ≤ n/ lg2 m) we maintain two data structures: Si and Di.
Si is the compressed semi-dynamic range reporting structure described in Theorem 4 and
Di is the fully dynamic data structure described in [14]. We maintain the invariant that
size (Di) < size (Si)/ lgε n for all i where n =

∑
i size (Si). Once size (Di) = size (Si)/ lgε n

we rebuild Si and merge Di with it. The time needed to rebuild Si will be O(size (Si) lgε m

which we can charge to the elements inserted into Di at a cost of O(lg2ε m) per element.
Moreover if the total number of elements increase by a constant factor or if n/ lgε n elements
were deleted from the collections Si we rebuild the whole data structure. The time needed to
rebuild the whole structure is O(n lgε m) and will be charged to the new elements inserted if
the size doubles at a cost of O(lgε m) per element, or to the elements deleted at a cost of
O(lg2ε m) per element.

To report all the points within an interval [a, b] we query B to get the non-empty chunks.
Whenever a non-empty chunk i is reported we query both Si and Di. If [a, b] is completely
within one chunk we get its index i = bb lg2 m/nc, and then we query Si and Di.

The space used by B is at most O(n/ lgm) bits. and the space used by all the Di

structures is:

O(n lg (m lg2 m/n)/ lgε n) = O((n lg (m/n)/ lgε n) + (n lg lgn/ lgε n))
= o(B(n,m)).

The space used by all the structures Si is B(n,m) + o(B(n,m)) bits. In total the space used
is B(n,m) + o(B(n,m)) bits.

I Theorem 5. There exist a dynamic succinct B(n,m) + o(B(n,m))-bit data structure that
supports one-dimensional range reporting queries in O(k + 1) time where k is the number of
points within the query, and updates in amortized expected O(lgε m) time.

SWAT 2018

17:6 Succinct Dynamic One-Dimensional Point Reporting

4.2 Fully-Dynamic Structure with Worst Case Updates
Next, we present a fully-dynamic succinct one-Dimensional range reporting structure that
supports queries in O(k) time and insertions and deletions in expected O(lgε m) time. Our
data structure uses techniques similar to the ones presented in [9, 15, 16].

Data Structure. We define a parameter nf = Θ(n); the value of nf changes as n becomes
too large or too small. We divide m into (nf/ lg2 nf) chunks each of size ((m lg2 nf)/nf)
and we store a dynamic range reporting structure B with a universe of size 2(nf/ lg2 nf) on
the endpoints of the non-empty chunks. For each chunk b where 1 ≤ b ≤ (nf/ lg2 nf) we
store the following:
kb

f an estimate of k the number of points in the chunk. kb
f = Θ(k), the value of kb

f changes
as k becomes too large or too small.

Data Structures Cb
1, . . . , Cb

lgε nf
. These structures are the succinct semi-dynamic structures

described in the previous section. They partition the chunk into sub-chunks of possibly
different sizes, each containing Θ(kb

f/ lgε nf) points.
Data Structures Db

1, . . . ,Db
lgε nf

. These structures are the fully dynamic structures described
in [14].

Fb a fusion tree on the endpoints of the Cb
i data structures.

Queries are answered in a manner similar to the previous subsection. To report all
the points within an interval [a, b] we query B to get the non-empty chunks. Whenever a
non-empty chunk (say the bth chunk) is reported we query Fb to get the sub-chunks it spans.
For each sub-chunk (say the sth sub-chunk) we query both Cb

s and Db
s.

Insertions. To insert the new point p we compute the chunk b = b(p lg2 nf)/nfc that p
belongs to. If the bth chunk is empty we insert its endpoints into B. Next, we check if
any structure in the Cb collection is being rebuilt. In that case we spend Θ(lg3ε nf) time
rebuilding it. Then we determine the sth sub-chunk that p belongs to using Fb. Finally, we
insert p into Db

s.
In each chunk we run the following background process. After each series of δ =

kb
f/(lg

2ε nf lg lgnf) insertions we identify the sth sub-chunk with the largest number of
inserted points and rebuild Cb

s during the next δ updates in that chunk. The re-building
works as follows. We construct a semi-dynamic data structure Cb

s = Cb
s ∪ Db

s. If a point is
inserted into this sub-chunk, we store it in the additional data structure Db. When Cb

s is
completed we set Cb

s := Cb

s and Db
s := Db. Thus at any time only one sub-chunk of a chunk

is re-built. This method guarantees that the number of inserted elements into Db does not
exceed kb

f/ lgε n as follows from a Theorem of Dietz and Sleator:

I Lemma 6 ([3], Theorem 5). Suppose that x1, . . . , xg are variables that are initially zero.
Suppose that the following two steps are iterated:
(i) we add a non-negative real value ai to each xi such that

∑
ai = 1

(ii) set the largest xi to 0.
Then at any time xi ≤ 1 + hg−1 for all i, 1 ≤ i ≤ g, where hi denotes the i-th harmonic
number.

Let ms be the number of inserted elements into Db
s and xs = ms/δ. Every iteration of

the background process sets the largest xs to 0 and during each iteration
∑
xs increases by

1. Hence the value of xs can be bounded from above by: xs ≤ 1 +hlgε nf
for all s at all times.

H. El-Zein, J. I. Munro, and Y. Nekrich 17:7

Thus ms = O((kb
f/ lg2ε nf lg lgnf) lg lgnf) = O(kb

f/ lg2ε nf) for all i because hi = O(lg i),
and the total size of the Db collection is O((kb

f/ lg2ε nf) lgε nf) = O(kb
f/ lgε nf).

Once the value of kb
f becomes too big or too small we rebuild the whole chunk during

the next kb
f/ lg3ε nf updates (spending O(lg4ε nf) time per update). The old chunk is locked

such that only deletions are allowed. We rebuild the chunk with an updated value of kb
f and

as points are inserted into the new chunk we delete them from the old one to preserve space.
If the size of the sub-chunk becomes too big we split it into two and update Fb accordingly.

Deletions. Deletions are similar to insertions. To delete a point p we compute the chunk
b = b(p lg2 nf)/nfc that p belongs to. Then we check if any structure in the Cb collection is
being rebuilt. In that case we spend Θ(lg3ε nf) time rebuilding it. Next, we determine the
sub-chunk s that p belongs to using Fb. Finally, we delete p from Cb

s and Db
s.

In each chunk we run a background process similar to the process run for insertions.
After each series of δ deletions, we identify the sth sub-chunk with the largest number of
deletions and rebuild Cb

s during the next δ updates in that chunk. This method guarantees
that the number of deleted elements in the Cb collection does not exceed kb

f/ lgε n. If the size
of a sub-chunk becomes too small we merge it with the neighboring sub-chunk and update
Fb accordingly. Moreover if a chunk becomes empty we delete its endpoints from B.

Space Analysis. The space used by B is O(n/ lgn). The space used by all the Ci structures
in all chunks is B(n,m)+o(B(n,m)) bits. The total size of all the D structures is O(nf/ lgε nf)
so they use at most:

O(n lg (m lg2 n/n)/ lgε n) = O((n lg (m/n)/ lgε n) + (n lg lgn/ lgε n))
= o(B(n,m)).

The space used by the fusion trees in all chunks is:

O(n lgε n lg (m lg2 n/n)/ lg2 n) = O((n lg (m/n)/ lg2−ε n) + (n lg lgn/ lg2−ε n))
= o(B(n,m)).

Thus the total space is B(n,m) + o(B(n,m)) bits.
Once the value of nf becomes too big or too small, we rebuild the whole data structure in

the background during the next nf/ lg3ε nf updates (spending O(lg4ε nf) time per update).
We replace the chunks from left to right. The chunk being replaced is locked such that
only deletions are allowed. We rebuild that chunk with an updated value and as points are
inserted into the new chunk we delete them from the old one to preserve space.

I Theorem 7. There exist a dynamic succinct B(n,m) + o(B(n,m))-bit data structure that
supports one-dimensional range reporting queries in O(k + 1) time where k is the number of
points within the query, and updates in expected O(lgε m) time.

5 Succinct Static One-Dimensional Point Reporting With Fast
Construction Time

In this section we prove Theorem 3. Denote by T the classic binary tree with 2w leaves
where all leaves have depth w as described in subsection 2.1. Let P be the set of nodes in T
with non-empty subtrees and V the set of branching nodes in T union the leaves of T and
its root. Let TV be the tree formed from T by deleting all vertices in T −P then contracting

SWAT 2018

17:8 Succinct Dynamic One-Dimensional Point Reporting

all vertices in P − V . Given a node x ∈ TV denote by T (x) its corresponding node in T ,
conversely, given a node x ∈ V denote by TV (x) its corresponding node in TV . We fix a
constant ε = 1/k, and let Hi = lg(k−i)/k m where 1 ≤ i < k. Finally, given a node u in T we
define πi(u) to be the nearest ancestor of u whose depth is a multiple of Hi.

Data Structure. We store the coordinates of the points in B(n,m) + o(B(n,m)) bits. Also
we store TV using 4n+ o(n) bits using the tree representation of Navarro and Sadakane [18]
which allows the following operations in constant time:
lmost-leaf(i) / rmost-leaf(i): given the preorder number of a node return the preorder

number of the leftmost(rightmost) leaf of node i.
leaf-rank(i): given the preorder number of a leaf i returns the number of leafs to the left of i.
In addition we store in o(n) bits the index described in [6] that enables conversion between
τ -names of the nodes in TV and their preorder numbers.

To maintain the mapping between the labels of the branching nodes in T with their
preorder numbers in TV we store the following tables using Corollary 2:
M1: for each node x ∈ V with root (TV (x)) = TV (x) we store the value τ1(TV (x)) in a table

M1. Since TV is a binary tree, it is possible that TV (x) belongs to two different micro
trees µ0 and µ1. In that case we store both p(M0) and p(M1).

M2: for each node x ∈ V we store in a table M2 the values τ2(TV (x)), τ3(TV (x)), and a bit
that indicates to which micro tree does TV (x) belongs to if root (TV (x)) belongs to two
different micro trees.

M3: for each node x ∈ V we store the distance from x to T (root (TV (x))) in a table M3.

Finally, given a node in P we need to compute its nearest branching ancestor. To achieve
this we use the same technique as in [1] but with bootstrapping. We store k − 1 tables
D1, . . . , D(k−1) using Corollary 2. D1 contains the distances to the nearest branching ancestor
for all nodes u in P satisfying π1(u) = u. Di (2 ≤ i < k − 1) contains the distances to the
nearest branching ancestor for all nodes u in P satisfying the conditions π(i−1)(u) is closer
to u than the nearest branching ancestor of u and πi(u) = u. Finally, D(k−1) contains the
distances to the nearest branching ancestor for all nodes u in P satisfying the conditions:
π(k−2)(u) is closer to u than the nearest branching ancestor of u and π(k−1)(u) = u, or
π(k−1)(u) and π(k−2)(u) are closer to u than the nearest branching ancestor of u. More
formally we define:
B1: B1(z) = 1 if π1(z) = z and ∃u ∈ V such that π1(u) = z, otherwise B1(z) = 0.
Bi(1 < i < k): Bi(z) = 1 if B(i−1)(π(i−1)(z)) = 1, πi(z) = z, and ∃u ∈ V such that

πi(u) = z, otherwise Bi(z) = 0
and store the following tables using Corollary 2:
D1: which contain the distance to the nearest branching ancestor for all nodes u in P

satisfying π1(u) = u.
Di (2 ≤ i < k − 1): which contain the distance to the nearest branching ancestor for all

nodes u in P satisfying: B(i−1)(π(i−1)(u)) = 1 and πi(u) = u.
D(k−1): which contain the distance to the nearest branching ancestor for all nodes u in P

satisfying: B(k−2)(π(k−2)(u)) = 1 and (π(k−1)(u) = u or B(k−1)(π(k−1)(u)) = 1).

Query. Given a query FindAny(a, b) we first find the nearest common ancestor p of a
and b. Then we get k − 1 candidate nearest branching ancestor v1, . . . , v(k−1) of p using
D1, . . . , D(k−1). Afterwards for each vi we need to compute the preorder number of vi in TV .
To achieve this goal we get τ2(TV (vi)), τ3(TV (vi)), and the bit b indicating which micro tree
vi belongs to from M2. Next, we compute ui = T (root (TV (v))) after obtaining its distance

H. El-Zein, J. I. Munro, and Y. Nekrich 17:9

from vi using M3. Afterwards we query M1 for τ1(TV (ui)) = p(µb). After obtaining the
τ -name of TV (vi) we get its preorder number, and then we check the ranks of the leftmost
and rightmost leaves of vi’s left and right child. If one of them is within [a, b] we return its
value. If for all vi no element was found within [a, b] we return that S ∩ [a, b] is empty.

Space Analysis. Storing the points coordinates uses B(n,m) bits. The tree TV uses
4n + o(n) bits. The tables M2,M3 contain O(n) entries each of size O(lg lgm) so they
use O(n lg lgm) bits. The table M1 contains O(n/ lgn) entries each of size O(lgn) so it
uses O(n) bits. The table D1 contains O(n lgm/ lg(k−1)/k m) = O(n lgε m) entries of size
O(lg lgm) bits each so it uses O(n lgε m lg lgm) bits. Moreover each table Di (1 < i < k− 1)
contains O(n(H(i−1)/Hi)) = O(n lgε m) entries each of size O(lg lgm) bits so they use a
total of O(n lgε m lg lgm) bits. Finally, we need to bound the size of Dk−1. The number of
entries due to πk−1(u) = u is O(n(H(k−1)/Hk)) = O(n lgε m). To bound the entries due to
Bk−1(πk−1(u)) = 1 notice that the subtree Tz of height H(k−1) rooted at z = π(k−1)(u) will
contain s > 1 entries, and will have at most s+ 1 < 2s leaves that are nodes in P . Thus it
will contribute at most (2H(k−1)s) entries. Since there are at most n− 1 branching nodes
the total number of entries due to B(k−1)(π(k−1)(u)) = 1 is 2H(k−1)n = O(n lgε m). Dk−1
uses O(n lgε m lg lgm) bits because each entry in D(k−1) is of size O(lg lgm) bits. In total
the space used is B(n,m) +O(n) +O(n lgε m lg lgm) bits.

Construction Time. In a manner similar to [1] we can identify V in O(n) time, and then
construct TV also in O(n) time. The tables M1,M2,and M3 can be constructed in expected
O(n(lg lgm)) time. Finally, the tables Bi where 1 ≤ i < k can be constructed in expected
O(n lgε m) time by identifying the O(n lgε m) entries and building the tables. The workspace
is O(n) words.

Reducing Space. To further reduce the space we use a well known trick and split the
universe [m] into n ranges r1, . . . , rn each of size m/n. We construct a bit vector B of size 2n
bits with rank and select queries. B stores a zero for each range ri followed by ni ones where
ni is the number of points in the range ri. To count the number of points before a range ri we
use a select query to get the position of the ith zero in B, and then use a rank query to count
the number of ones before that position. We store a separate data structure for each range.
To locate the data structures for any range ri within A we count the number of points in the
ranges rj for j < i, and then scale that number. Given a query FindAny(a, b) we check if [a, b]
spans a non-empty range as follows. We use a rank query to get the number of ones k before
the b(an/m)c zero. Then we check if the (k+1)th element is within [a, b] and return it in that
case. Otherwise we query the data structure corresponding to the (d(an/m)e)th range. The
total space used is B(n,m)+O(n)+O(n(lg (m/n))ε lg lg (m/n)) = B(n,m)+o(B(n,m))+O(n)
bits.

If O(n) is not a lower order term then n > m/c for some constant c. In that case we adopt
a different approach and store the points in a compressed bit vector of size m. To answer a
query FindAny(a, b) we use a rank query to get the number of ones k before position a, and
then we use a select query to get the position of the (k + 1)th one. If that position is within
[a, b] we return it otherwise S ∩ [a, b] is empty. The space used is now B(n,m) + o(B(n,m))
bits.

Reducing Construction Workspace. To further improve the construction workspace we
divide n into lg2 m ranges each containing n/ lg2 m points and build a separate data structure
for each of them. We note that the universe size in each range may vary. Additionally we

SWAT 2018

17:10 Succinct Dynamic One-Dimensional Point Reporting

store a fusion tree F on the endpoints of each range. Given a query FindAny(a, b), we check
if the successor of a in F is within [a, b] and return it in that case. Otherwise we query the
range containing the successor of a.

References
1 Stephen Alstrup, Gerth Brodal, and Theis Rauhe. Optimal static range reporting in one

dimension. In Proceedings of the thirty-third annual ACM symposium on Theory of com-
puting, pages 476–482. ACM, 2001.

2 Prosenjit Bose, Eric Y. Chen, Meng He, Anil Maheshwari, and Pat Morin. Succinct geomet-
ric indexes supporting point location queries. In Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, pages 635–644, 2009.

3 Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pages 365–372. ACM,
1987.

4 Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct color searching in one di-
mension. In 28th International Symposium on Algorithms and Computation, ISAAC 2017,
December 9-12, 2017, Phuket, Thailand, pages 30:1–30:11, 2017.

5 Arash Farzan, J. Ian Munro, and Rajeev Raman. Succinct indices for range queries with ap-
plications to orthogonal range maxima. In Proceedings of the 39th International Colloquium
on Automata, Languages, and Programming, Part I, pages 327–338, 2012.

6 Richard F Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with level-
ancestor queries. ACM Transactions on Algorithms (TALG), 2(4):510–534, 2006.

7 Mayank Goswami, Allan Grønlund Jørgensen, Kasper Green Larsen, and Rasmus Pagh.
Approximate range emptiness in constant time and optimal space. In Proceedings of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 769–775, 2015.

8 Roberto Grossi, Rajeev Raman, Satti Srinivasa Rao, and Rossano Venturini. Dynamic com-
pressed strings with random access. In International Colloquium on Automata, Languages,
and Programming, pages 504–515. Springer, 2013.

9 Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. A framework for
dynamizing succinct data structures. In International Colloquium on Automata, Languages,
and Programming, pages 521–532. Springer, 2007.

10 Meng He. Succinct and implicit data structures for computational geometry. In Space-
Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on
the Occasion of His 66th Birthday, pages 216–235, 2013.

11 J Ian Munro and S Srinivasa Rao. Succinct representation of data structures. In Handbook
of Data Structures and Applications, chapter 37. Chapman and Hall/CRC, 2004.

12 Christiaan TM Jacobs and Peter Van Emde Boas. Two results on tables. Information
Processing Letters, 22(1):43–48, 1986.

13 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures
and asymmetric communication complexity. In Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, pages 103–111. ACM, 1995.

14 Christian Worm Mortensen, Rasmus Pagh, and Mihai Patrascu. On dynamic range re-
porting in one dimension. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 104–111. ACM, 2005.

15 Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Dynamic data structures for docu-
ment collections and graphs. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 277–289. ACM, 2015.

16 J Ian Munro and Yakov Nekrich. Compressed data structures for dynamic sequences. In
Algorithms-ESA 2015, pages 891–902. Springer, 2015.

H. El-Zein, J. I. Munro, and Y. Nekrich 17:11

17 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University
Press, 2016.

18 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Transactions on Algorithms (TALG), 10(3):16, 2014.

SWAT 2018

Enumerating Vertices of 0/1-Polyhedra associated
with 0/1-Totally Unimodular Matrices
Khaled Elbassioni
Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi 54224, UAE
khaled.elbassioni@ku.ac.ae

Kazuhisa Makino
Research Institute for Mathematical Sciences (RIMS) Kyoto University, Kyoto 606-8502, Japan
makino@kurims.kyoto-u.ac.jp

Abstract
We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron
P = P (A, 1

¯
) = {x ∈ Rn | Ax ≥ 1

¯
, x ≥ 0

¯
}, when A is a totally unimodular matrix. Our algorithm

is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using
Seymour’s decomposition of totally unimodular matrices, and may be of independent interest.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms,
Mathematics of computing → Hypergraphs

Keywords and phrases Totally unimodular matrices, Vertices of polyhedra, Vertex enumeration,
Hypergraph transversals, Hypergraph decomposition, Output polynomial-time algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.18

Acknowledgements We thank Endre Boros and Vladimir Gurvich for helpful discussions.

1 Introduction

1.1 The vertex enumeration problem
The well-known Minkowski-Weyl theorem states that any convex polyhedron P ⊆ Rn can be
represented as the Minkowski sum of the convex hull of the set V(P) of its extreme points and
the conic hull of the set D(P) of its extreme directions (see e.g. [29]). Given a polyhedron
P by its linear description as the intersection of finitely many halfspaces, obtaining the set
V(P) ∪ D(P), required by the other representation, is a well-known problem, called Vertex
Enumeration (VE) (see,. e.g.,[14, 10]), which have been extensively studied in the literature
in different (but polynomially equivalent) forms, e.g., , the facet enumeration problem [10] or
the polytope-polyhedron problem [25]. Clearly, the size of the extreme set V(P) ∪ D(P) can
be (and typically is) exponential in the dimension n and the number of linear inequalities m,
and thus when considering the computational complexity of the vertex enumeration problem,
one is usually interested in output-sensitive algorithms [30], i.e., those whose running time
depends not only on n and m, but also on |V(P) ∪ D(P)|. Alternatively, we may consider
the following, polynomially equivalent, decision variant of the problem:

Dec(L;X ⊆ C(P)): Given a polyhedron P, represented by a system of linear inequalities
L, and a subset X ⊆ C(P), is X = C(P)?

In this description, C(P) could be either V(P), D(P), or V(P) ∪ D(P). The problem of
enumerating the elements of C(P) is said to be solvable in incremental polynomial time if
problem Dec(L;X ⊆ C(P)) can be solved in time polynomial in the size of the description of

© Khaled Elbassioni and Kazuhisa Makino;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:khaled.elbassioni@ku.ac.ae
mailto:makino@kurims.kyoto-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Enumerating Vertices of 0/1-Polyhedra

L and X .1 It is well-known that if the decision problem is NP-hard, then no output (or total)
polynomial-time algorithm can generate the elements of C(P) unless P=NP (see e.g. [8]).

Vertex enumeration is an outstanding open problem in computational geometry and
polyhedral combinatorics (see, e.g., [15, 25, 27]), and has numerous applications. For example,
understanding the structure of the vertices helps in designing approximation algorithms for
combinatorial optimization problems [33]; finding all vertices can be used for computing Nash
equilibria for bimatrix games [5]. Numerous algorithmic ideas for vertex or facet enumeration
have been introduced in the literature, see, e.g., [1, 2, 3, 10, 11, 15, 12, 14, 30, 28, 4].

The main result in [21] established that problem Dec(L;X ⊆ V(P)) is NP-hard for
unbounded polyhedra, more precisely, when |D(P)| is exponentially large in the input
size. This negative result holds, even when restricted to 0/1-polyhedra [9], that is, when
V(P) ⊆ {0, 1}n, and comes in contrast with the fact that the VE problem for 0/1-polytopes
(i.e., bounded polyhedra) is known to be solvable with polynomial delay (that is, the vertices
are generated such that the delay between any successive outputs is polynomial only in the
input size) and polynomial space (that is, the total space used for enumerating all the vertices
is polynomial in the input size).

1.2 VE for 0/1-Polyhedra Associated with 0/1-Totally Unimodular
Matrices

Let A ∈ {0, 1}m×n be an m× n 0/1-matrix such that the polyhedron

P(A, 1
¯
) = {x ∈ Rn | Ax ≥ 1

¯
, x ≥ 0

¯
} (1)

has only integral vertices, where 1
¯
(resp., 0

¯
) denotes the vector of all ones (resp., zeros) of

appropriate dimension. Then P(A, 1
¯
) has only n extreme directions (namely the n unit vectors

in Rn), while the vertices of P are in one-to-one correspondence with the minimal transversals
of the hypergraph H[A] ⊆ 2[n], whose characteristic vectors of hyperedges are the rows of A.
One of the most important examples is when the matrix A is totally unimodular : in this case,
the polyhedron P(A, 1

¯
) has integral vertices, and VE is equivalent to finding all minimal

transversals2 of a unimodular hypergraph H[A]. Consequently, it follows from the well-known
result in [19] that all vetrices of such polyhedra can be enumerated in quasi-polynomial time,
and hence the VE problem in this case is unlikely to be NP-hard. Polynomial time algorithms
for special cases of this problem are known; for example, enumerating minimal vertex/edge
covers for a bipartite graphs [16, 26], enumerating minimal hitting sets/set covers of interval
hypergraphs [8], and enumerating minimal path covers/cut conjunctions in directed trees
[8]. However, the complexity of the VE problem for (1) remains open, even for the totally
unimodular matrices A. In this paper, we settle the complexity of the VE problem in the
latter case.

I Theorem 1. Let A ∈ {0, 1}m×n be a totally unimodular matrix. Then the vertices of
P(A, 1

¯
) can be enumerated in incremental polynomial time.

1 Note that if the answer to the decision problem is “NO” then a new element in C(P) \ X can be found
by a polynomial number of calls to the decision problem.

2 Note that, it is not possible to reduce the problem of enumerating the vertices of P(A, 1
¯
) to that of

enumerating the vertices of the 0/1 polytope P ′ = {x ∈ Rn | Ax ≥ 1
¯
, 0
¯
≤ x ≤ 1

¯
}, as P ′ can have

exponentially more vertcies than those of P (namely, the vertices of P ′ are the (not necessarily minimal)
transversals of H[A]).

K. Elbassioni and K. Makino 18:3

A celebrated result of Seymour [31] shows that any totally unimodular matrix (with
0, ±1-entries) arises from (essentially) the so-called network matrices, by a small set of
simple operations. Similar results for 0/1-totally unimodular matrices are derived in [32,
Chapter 11], with the main building blocks replaced by 0/1-network matrices. On the other
hand, it has been shown in [8] that for any polyhedron P(A, 1

¯
), with a 0/1-network matrix

A, the VE problem can be solved in incremental polynomial time. To prove Theorem 1,
we show that the above mentioned decomposition of totally unimodular matrices yields a
corresponding decomposition for the hypergraph transversal problem, that can be leveraged
into a polynomial time algorithm for the problem. One of the natural ways to use such
decomposition is to recursively partition the input polyhedron into two smaller polyhedra
and then combine the outputs from the two subproblems. While such approach works for the
simple cases of the decomposition (so-called 1- and 2-sum decompositions), it does not work
for the more complicated case (so-called 3-sum decomposition). The main reason is that the
number of vertices in either of the two subproblems may be exponentially larger than that in
the original problem. To overcome this difficulty, we need to use the decomposition in a more
sophisticated way, utilizing structural properties of the unimodular hypergraph H[A]. On
technical hurdle which arises is that the total input/output size of the resulting subproblems
might exceed the input/output size of the original problem, which may eventually lead to an
exponential blow-up in the overall running time of the algorithm in terms of the input and
output sizes. To deal with this issue, we introduce a volume measure as the product of the
input and output sizes, and show in each case of our decomposition that the total measure
of the subproblems is smaller than the measure of the original problem.

2 Notation and Preliminaries

2.1 Hypergraphs and Transversals
Let V be a finite set. A hypergraph H ⊆ 2V is a family of subsets of V . A hypergraph is
called Sperner (simple or a clutter), if it has the property that no hyperedge contains another.
For a hypergraph H ⊆ 2V , we denote by Tr(H) the family of minimal transversals of H,
i.e., (inclusion-wise) minimal subsets of V which have a nonempty intersection with each
hyperedge of H; Tr(H) is also called the dual of H. Note that for the purpose of enumerating
all minimal transversals of a hypergraph H, it is enough to consider the Sperner hypergraph
consisting of the minimal hyperedges of H. We say that the hypergraph H is trivial if H = ∅
or H = {∅}, and is irredundant if every v ∈ V belongs to some H ∈ H. As usual, we assume
Tr({∅}) = ∅ and Tr(∅) = {∅}.

Given two hypergraphs H1 and H2 with vertex set V , denote by

H1 ∧H2 = Min{H1 ∪H2 | H1 ∈ H1 and H2 ∈ H2},
H1 ∨H2 = Min(H1 ∪H2),

the conjunction and disjunction of H1 and H2 respectively, where for hypergraph H, Min(H)
denotes the family of (inclusion-wise) minimal sets in H. We denote by H1∪̇H2 the disjoint
union of H1 and H2. For two hypergraphs H1 ⊆ 2V1 and H2 ⊆ 2V2 , we denote by H1∧̇H2 the
conjunction of H1 and H2 when V1 and V2 are disjoint. By definition, |H1∪̇H2| = |H1|+ |H2|
and |H1∧̇H2| = |H1| · |H2|.

For a hypergraph H ⊆ 2V and a set S ⊆ V , we denote by HS = {H ∈ H | H ⊆ S} and
HS = Min{H ∩ S | H ∈ H} the subhypergraph of H induced by S, and the projection of
H on S, respectively. For W,S ⊆ V , we write H(W,S) = {H ∈ H | H ∩W = S}. Two

SWAT 2018

18:4 Enumerating Vertices of 0/1-Polyhedra

vertices of H are said to be identical if they belong to exactly the same hyperedges, i.e., the
corresponding columns in the hyperedge-vertex incidence matrix are identical.

The following propositions are straightforward (see e.g. [6, 17, 23]).

I Proposition 2. Given a hypergraph H ⊆ 2V and a set S ⊆ V , the following statements
hold:
(i) Tr(Tr(H)) = Min(H),
(ii) Tr(HS) = Tr(H)S (and hence, Tr(HS) = Tr(H)S) and
(iii) |Tr(HS)| ≤ |Tr(H)|.

I Proposition 3. Given hypergraphs H1, . . . ,Hk ⊆ 2V , Tr (
∨r
i=1Hi) =

∧r
i=1 Tr(Hi).

As a corollary of Proposition 3 we have the following.

I Proposition 4. Let H ⊆ 2V be a hypergraph and S1, . . . , Sr ⊆ V be subsets such that
for every hyperhedge H ∈ H there exists an i ∈ {1, . . . , r} with H ⊆ Si. Then Tr(H) =∧r
i=1 Tr(HSi).

Throughout the paper, we use the notation: n = n(H) = |V |, m = m(H) = |H| and
k = k(H) = |Tr(H)|.

2.2 Polyhedra

A convex polyhedron P ⊆ Rn is the intersection of finitely many halfspaces, determined by
the facets of the polyhedron. A vertex or an extreme point of P is a point v ∈ Rn which
cannot be represented as a convex combination of two other points of P , i.e., there exists
no λ ∈ (0, 1) and v1, v2 ∈ P such that v = λv1 + (1− λ)v2. A (recession) direction of P is
a vector d ∈ Rn such that x0 + µd ∈ P whenever x0 ∈ P and µ ≥ 0. An extreme direction
of P is a direction d that cannot be written as a conic combination of two other directions,
i.e., there exist no positive real numbers µ1, µ2 ∈ R+ and directions d1, d2 of P such that
d = µ1d1 + µ2d2. Denote respectively by V(P) and D(P) the sets of extreme points and
extreme directions of polyhedron P . A bounded polyhedron, i.e., one for which D(P) = ∅ is
called a polytope.

2.3 Totally Unimodular Matrices

A matrix A ∈ {0, 1}m×n is totally unimodular if every square subdeterminant of it has value
in {−1, 0, 1}. We denote by Um×n the set of m× n 0/1-totally unimodular matrices. For a
matrix A ∈ {0, 1}m×n we denote by H[A] ⊆ 2[n] the hypergraph whose characteristic vectors
of hyperedges are the rows of A. A hypergraph H is said to be unimodular [6] if H = H[A]
for a totally unimodular matrix A. Note by definition that if H ⊆ 2V is unimodular then
for any set S ⊆ V and any subhypergraph H′ ⊆ H, the hypergraph (H′)S is unimodular.
A 0/1 matrix is said to be ideal (see, e.g., [13]) if the polyhedron P = P (A, 1

¯
) has only

integral vertices. It is well-known that every totally unimodular matrix A ∈ {0, 1}m×n is
ideal. Furthermore, the following correspondence holds.

I Proposition 5 ([24]). Let A be an m× n ideal matrix. Then the vertices of the polyhedron
P(A, 1

¯
) are in one-to-one correspondence with the minimal transversals of the hypergraph

H[A].

K. Elbassioni and K. Makino 18:5

2.4 0/1-Network matrices
A matrix A ∈ {0, 1}m×n is said to be a network matrix if there exists a directed tree3 T
such that the rows of A one-to-one correspond to the arcs in T , and each column of A is the
characteristic vector of a directed path in T . Checking if a given matrix A is a network matrix
and finding the corresponding tree representation can be done in polynomial time (see e.g.,
[29]). We call a hypergraph H a network hypergraph if H = H[A] for some network matrix
A or its transpose. It is known that network hypergraphs can be dualized in incremental
polynomial time and polynomial space:

I Theorem 6 ([8]). Let A ∈ {0, 1}m×n be a network matrix. Then
(i) all the vertices of P (A, 1

¯
) can be enumerated in incremental polynomial time using

polynomial space;
(ii) all the vertices of P (AT , 1

¯
) can be enumerated in incremental polynomial time using

polynomial space.

2.5 Decomposition of 0/1-totally unimodular matrices
Seymour [31] gave a decomposition theorem that allows one to decompose (in polynomial
time) any 0/1-totally unimodular matrix by repeatedly applying certain operations (called
i-sums, for i = 1, 2, 3) until simple building blocks are obtained; the building blocks consist
of 0/1-network matrices, their transposes and a specific 5× 5 0/1-matrix. For our purposes
this theorem can be stated as follows.

I Theorem 7 (Decomposition of unimodular hyeprgraphs). Let H ⊆ 2V be a unimodular
(nontrivial) irredundant Sperner hypergraph. Then H is a network hypergraph, (isomorphic
to) the hypergraph H0 = {{1, 4, 5}, {1, 2, 5}, {2, 3, 5}, {3, 4, 5}}, has two identical vertices, a
hyperedge consisting of a singleton, or a vertex with degree 1, or there exists a nontrivial
partition V1∪̇V2 = V such that H can be decomposed as follows:

1-sum decomposition:
(i) HV1 6= ∅, HV2 6= ∅;
(ii) for all H ∈ H: either H ⊆ V1 or H ⊆ V2;

2-sum decomposition: there exists a nonempty set S ⊆ V1 such that
(i) HV1 6= ∅, H(V1, S) 6= ∅, H(V1, S)V2 6= {∅};
(ii) for all H ∈ H with H ∩ V1 6= ∅ and H ∩ V2 6= ∅: H ∩ V1 = S;

3-sum decomposition – case 1: there exist two nonempty sets S1 ⊆ V1 and S2 ⊆ V2, such
that

(i) H(V1, S1) 6= ∅, H(V1, S1)V2 6= {∅}, H(V2, S2) 6= ∅, H(V2, S2)V1 6= {∅};
(ii) |V1|+ |HV1 ∪H(V2, S2)| ≥ 4, |V2|+ |HV2 ∪H(V1, S1)| ≥ 4;
(iii) for all H ∈ H with H ∩ V1 6= ∅ and H ∩ V2 6= ∅: either H ∩ V1 = S1 or H ∩ V2 = S2;

3-sum decomposition – case 2: there exist three nonempty disjoint sets S0, S1, S2 ⊆ V1,
such that

(i) HV1 6= ∅, H(V1, S0 ∪ S1) 6= ∅, H(V1, S0 ∪ S1)V2 6= {∅}, H(V1, S0 ∪ S2) 6= ∅, H(V1, S0 ∪
S2)V2 6= {∅};

(ii) for all H ∈ H with H ∩ V1 6= ∅ and H ∩ V2 6= ∅: either H ∩ V1 = S0 ∪ S1, or
H ∩ V1 = S0 ∪ S2;

3 We say that a directed graph G is a directed tree if the underlying graph of G (i.e., the undirected graph
obtained from G by ignoring orientation of arcs) is a tree.

SWAT 2018

18:6 Enumerating Vertices of 0/1-Polyhedra

Figure 1 Decomposing a unimodular hypergraph: 1 and 2-sums.

Figure 2 Decomposing a unimodular hypergraph: 3-sum.

3-sum decomposition – case 3: there exist two nonempty disjoint sets S1, S2 ⊆ V1, such
that

(i) HV1 6= ∅ and at least two of the following three conditions hold: (1) H(V1, S1) 6= ∅
and H(V1, S1)V2 6= {∅}, (2) H(V1, S2) 6= ∅, H(V1, S2)V2 6= {∅}, (3) H(V1, S1 ∪ S2) 6= ∅,
H(V1, S1 ∪ S2)V2 6= {∅};

(ii) |V1|+ |HV1 | ≥ 4, |V2|+ |HV2 ∪H(V1, S1) ∪H(V1, S2) ∪H(V1, S1 ∪ S2)| ≥ 4;
(iii) for all H ∈ H with H ∩ V1 6= ∅ and H ∩ V2 6= ∅: either H ∩ V1 = S1, H ∩ V1 = S2, or

H ∩ V1 = S1 ∪ S2.
Discovering if H is a network hypergraph, or isomorphic to H0, and if not finding a decom-
position as above can be done in polynomial time.

A schematic illustration of these decomposition rules is given in Figures 1 and 2.
I Remark. We note that the boundary condition (ii) in the 3-sum–case 1 is essential, since
without insisting on this condition, any hypergraph can be decomposed according to the
3-sum–case 1 rule (take any v ∈ V and H ∈ H such that v ∈ H and let V1 = S1 = {v},
V2 = V \ {v} and S2 = H \ {v}). Similarly, our analysis in the 3-sum–case 3 uses condition
(ii). However, a similar condition is not needed for all other cases.

3 Decomposition of the hypergraph transversal problem

In the following, we show how to decompose the hypergraph transversal problem for a
unimodular hypergraph H, given the decomposition of H in Theorem 7. Such a decomposition
yields naturally a recursive algorithm: each non-leaf node of the recursion tree is responsible
for computing the dual of a unimodular hypergraph, while leaves involve the computation of
the dual of a network hypergraph or the hypergraph H0. To ensure that the overall running
time is polynomial, we need to bound the number of nodes of the recursion tree and the
local computation time at each node, which consists of the time required for computing the
decomposition and the time for combining the outputs from the recursive calls into the final
output at the node. We will measure the “volume” of each subproblem to compute Tr(H)

K. Elbassioni and K. Makino 18:7

by µ(H) = nmk = n(H)m(H)k(H). We let T (µ) be the number of nodes of the recursion
subtree rooted at a node of volume µ, and let L1(µ) and L2(µ) be respectively the local
computation time for the decomposition and combining the outputs at a node of volume
µ. We stop the recursion when either m = m(H), n = n(H) or k = k(H) drops below some
constant C, in which case the hypergraph transversal problem can be solved in poly(n,m)
time using a simple procedures, such as Berge Multiplication [6, Chapter 2] for n(H) ≤ C

or m(H) ≤ C, and the methods in [7, 20] for k(H) ≤ C which also show that the condition
k(H) ≤ C can be checked in poly(n,m) time.

We will show by induction (on µ ≥ 1) that T (µ) ≤ µ. We also show that L2(µ) = O(µc)
for some constant c ≥ 1. Since L1(µ) = poly(n,m) [29, Chapter 20], it would follow then
that the total time to compute Tr(H) is at most O(µ1+c) + poly(µ), which is polynomial in
n, m, and k. This would give a total polynomial-time algorithm for computing Tr(H) which
can be converted into an incremental polynomial-time algorithm by standard methods [22, 8].
Thus, we shall assume in the sequel that n,m, k are larger than any desired constant C.

Without loss of generality we assume that the input hypergraph is Sperner and irredundant,
and this assumption is maintained for all hypergraphs arising as inputs to the recursive
subproblems. We may also assume that H has neither singleton hyperedge nor vertex
of degree 1 (i.e., contained in exactly one hyperedge). Indeed, if H contains a singleton
hyperedge H = {v}, then by the Sperner property, no other hyperedge of H contains v. In
this case, and also in the case when H has a vertex v contained exactly in one hyperedge
H ∈ H, Tr(H) can be computed as follows:

Tr(H) = Tr((H \ {H}) ∪̇ {H}) = Tr((H \ {H})∧Tr({H}), (2)

where Tr({H} = {{w} | w ∈ H}. By Proposition 2 (iii), |Tr((H \ {H})| ≤ k(H) and thus,
µ(H′) ≤ (n− 1)(m− 1)k ≤ µ(H)− 1, where H′ := H\{H} is the the subhypergraph induced
by V \ {v}. Thus, we get by induction that T (µ(H)) ≤ 1 + T (µ(H′)) ≤ µ(H). Moreover, by
(2), Tr(H) can be computed from Tr((H \ {H}) in poly(n,m, k) time.

Finally, we may also assume that H does not have two identical vertices. Indeed, if it
has two such vertices v, v′ then we can reduce the problem by calling the algorithm on the
hypergraph H′ = {H \ {v′} | H ∈ H} instead of H. Then the dual of H can be obtained as
follows:

Tr(H) = Tr(H′)∪̇{(T \ {v} ∪ {v′}) | T ∈ Tr(H′), v ∈ T}. (3)

Note that (3) implies that k(H′) ≤ k(H) and hence µ(H′) ≤ (n− 1)mk ≤ µ(H)− 1. Thus,
in this case, we get the recurrence T (µ) ≤ 1 + T (µ− 1), which gives by induction on µ ≥ 1
that T (µ) ≤ 1 + (µ − 1) ≤ µ. Moreover, by (3), Tr(H) can be computed from Tr(H′) in
poly(n,m, k) time.

The 1-sum decomposition case is straightforward and is omitted. As a warm-up, we
present the 2-sum case in Section 3.1, and then move to the more complicated 3-sum
decomposition. In fact, by Theorem 7 the latter can be divided into 3 subcases: we present
3-sum-case 1 in Section 3.2. Then for each of the 3-sum cases 2 and 3, we can identify 4
subcases. Due to space limitations, we present only the simplest cases (3-sum case 2-I and
3-sum case 2-II) in Section 3.3 and refer the reader to [18] for the remaining cases.

We will use the following simple facts in our analysis of the running time of the algorithm.

SWAT 2018

18:8 Enumerating Vertices of 0/1-Polyhedra

I Fact 8. Let α, β,N,M be positive integers such that α ≤ N/2 and β ≤ M/2. Consider
the maximization problem:

z∗ = max x1y1 + x2y2

s.t. x1 + x2 ≤ N,
y1 + y2 ≤M,

x1, x2 ≥ α,
y1, y2 ≥ β,
x1, x2, y1, y2 ∈ Z.

Then z∗ = αβ + (N − α)(M − β).

Proof. Let (x∗1, x∗2, y∗1 , y∗2) be an optimal solution. Clearly, x∗2 = N − x∗1 and y∗2 = M − y∗1 .
Without loss of generality assume that x∗1 ≥ N

2 . If y∗1 < M −β, then (x∗1, N −x∗1, y∗1 + 1,M −
y∗1 − 1) is also an optimal solution since

x∗1(y∗1 + 1) + (N − x∗1)(M − (y∗1 + 1)) = x∗1y
∗
1 + (N − x∗1)(M − y∗1) + 2x∗1 −N

≥ x∗1y
∗
1 + (N − x∗1)(M − y∗1).

Thus we conclude in this case that (x∗1, N − x∗1,M − β, β) is also an optimal solution. A
symmetric argument shows that (N−α, α,M−β, β) is an optimal solution of the maximization
problem. J

I Fact 9. Let xi, yi, for i = 1, . . . , h, and M be positive integers such that
∑h
i=1 xiyi ≤M .

Then
∑h
i=1(xi + yi) ≤M + h.

Proof. For i = 1, . . . , h, let αi = xiyi. Note that the function f(xi) = xi + α
xi

is convex
in xi > 0, and hence max{xi + yi | xiyi = αi, xi ≥ 1, yi ≥ 1} is achieved at the boundary
(xi, yi) = (1, αi) or (xi, yi) = (αi, 1). The claim follows by summing the inequality xi + yi ≤
αi + 1 over i = 1, . . . , h. J

3.1 2-sum decomposition
Given a nontrivial partition V1∪̇V2 = V and a nonempty set S ⊆ V1 such that for all H ∈ H
with H ∩ V1 6= ∅ and H ∩ V2 6= ∅: H ∩ V1 = S, we have the following decomposition of the
dual hypergraph by Proposition 3:

Tr(H) = Tr(HV1 ∪̇HV2∪S) = Tr(HV1) ∧ Tr(HV2∪S), (4)

as H = HV1 ∪̇HV2∪S (note that HV1 ∩HV2∪S = ∅ since H is Sperner and that both HV1 and
HV2∪S are unimodular). Thus in this case we get the recurrence:

T (µ) ≤ 1 + T (µ1) + T (µ2), (5)

where µ = µ(H), µ1 = µ(HV1), and µ2 = µ(HV2∪S). Let n1 = n(HV1) = |V1|, m1 = |HV1 |,
k1 = |Tr(HV1)|, n2 = n(HV2∪S) = |V2| + |S|, m2 = |HV2∪S |, and k2 = |Tr(HV2∪S)|. Note
that n1, n2,m1,m2 ≥ 1 by the assumptions of the 2-sum case (Theorem 7) and hence
µ1, µ2 ≥ 1. Then

µ1 + µ2 = n1m1k1 + n2m2k2 ≤ (n− 1)(m1 +m2)k = (n− 1)mk ≤ µ− 1, (6)

K. Elbassioni and K. Makino 18:9

where k1 ≤ k and k2 ≤ k by Proposition 2 (iii). It follows by induction from (5) that

T (µ) ≤ 1 + µ1 + µ2 ≤ 1 + (µ− 1) = µ. (7)

Note that Tr(H) can be computed from Tr(HV1) and Tr(HV2∪S) using (4) in time L2(µ) =
poly(n,m, k).

3.2 3-sum decomposition - case 1
Assume we are given a nontrivial partition V1∪̇V2 = V and two nonempty sets S1 ⊆ V1 and
S2 ⊆ V2, such that for all H ∈ H with H ∩ V1 6= ∅ and H ∩ V2 6= ∅: either H ∩ V1 = S1 or
H∩V2 = S2. Let n1 = |V1|, n2 = |V2|, m1 = |HV1∪H(V2, S2)| andm2 = |HV2∪H(V1, S1)|. It
is also assumed in this case that n1, n2,m1,m2 ≥ 1, n1 +n2 = n, m1 +m2 = m, n1 +m1 ≥ 4
and n2 +m2 ≥ 4.

We consider two cases:

Case I: there is no hyperedge H ∈ H such that H ⊆ S1 ∪ S2. Note that this, together with
assumption (i) of the 3-sum–case 1 in Theorem 7, implies that S1 ⊂ V1 and S2 ⊂ V2. In this
case, we have the following decomposition of the dual hypergraph:

Tr(H) = Tr(HV1∪S2∪̇HV2∪S1) = Tr(HV1∪S2) ∧ Tr(HV2∪S1), (8)

(Note by assumption that HV1∪S2 ∩HV2∪S1 = ∅.) Thus in this case we get the recurrence:

T (µ) ≤ 1 + T (µ1) + T (µ2), (9)

where µ = µ(H), µ1 = µ(HV1∪S2), and µ2 = µ(HV2∪S1). Let n′1 = n(HV1∪S2) = |V1|+ |S2|,
m1 = |HV1∪S2 |, k1 = |Tr(HV1∪S2)|, n′2 = n(HV2∪S1) = |V2| + |S1|, m2 = |HV2∪S1 |, and
k2 = |Tr(HV2∪S1)|. Then

µ1 + µ2 = n′1m1k1 + n′2m2k2 ≤ (n− 1)(m1 +m2)k ≤ µ− 1, (10)

where k1 ≤ k and k2 ≤ k by Proposition 2 (iii). It follows by induction from (9) that

T (µ) ≤ 1 + µ1 + µ2 ≤ µ. (11)

Note that Tr(H) can be computed from Tr(HV1∪S2) and Tr(HV2∪S1) using (8) in time
L2(µ) = poly(n,m, k).

Case II: there is a hyperedge H0 ∈ H such that H0 ⊆ S1 ∪ S2. Note that H0 ∩ S1 6= ∅
and H0 ∩ S2 6= ∅ since otherwise by the simplicity of H we are in the 2-sum case. Without
loss of generality, assume that H0 ∩ V1 = S1 and H0 ∩ V2 ⊆ S2. We assume that H(V1, S1)
and H(V2, S2) are not empty; otherwise, we are in the 1-sum or 2-sum case. Given these
assumptions, we use the following decomposition of the dual hypergraph:

Tr(H) = Tr(H1∪H2) = Tr(H1) ∧ Tr(H2), (12)

where H1 = HV1 ∪H(V2, S2)∪{H0} and H2 = HV2 ∪̇H(V1, S1). Note that H0 is the the only
hyperedge that belongs to both H1 and H2. Note also that neither H1 nor H2 may be an
induced subhypergraph of H (i.e., the form HS for some S ⊆ V) since there are hyperedges
H ⊆ S1 ∪ S2 that may not be included in H1 and H2. Hence, Proposition 2 cannot be used
to bound the sizes of Tr(H1) and Tr(H2). Nevertheless, due to the special structure of the

SWAT 2018

18:10 Enumerating Vertices of 0/1-Polyhedra

decomposition in this case, we can use the bounds given in Lemma 11 below instead. Let
H̄1 ⊆ 2V1∪{v2} (resp., H̄2 ⊆ 2V2∪{v1}) be the hypergraph obtained from H1 (resp., H2) by
replacing S2 (resp., S1) by a new single vertex v2 (resp., v1), that is,

H̄1 = HV1 ∪ H̄(V2, S2) ∪ {H̄0}, H̄2 = HV2 ∪ H̄(V1, S1),

where H̄(V2, S2) = {(H \S2)∪{v2} | H ∈ H(V2, S2)}, H̄0 = (H0\S2)∪{v2}, and H̄(V1, S1) =
{(H \ S1) ∪ {v1} | H ∈ H(V1, S1)}.

I Lemma 10. If H is unimodular, then both H̄1 and H̄2 are unimodular.

Proof. Let v be an arbitrary vertex in H0 ∩ S2. Then the (hyperedge-vertex) incidence
matrix of the hypergraph H̄1 is a submatrix of that of H, with rows restricted to HV1 ∪
H(V2, S2) ∪ {H0}, and columns restricted to V1 ∪ {v}. This shows that this submatrix is
totally unimodular. A similar argument shows that H̄2 is also unimodular. J

I Lemma 11. |Tr(H̄1)| ≤ |Tr(H)| and |Tr(H̄2)| ≤ |Tr(H)|.

Proof. We prove the claim that |Tr(H̄1)| ≤ |Tr(H)|; the other claim can be proved similarly.
It is enough to show that for every minimal transversal T ∈ Tr(H̄1), there is a minimal

transversal T ′ ∈ Tr(H) such that for any distinct T1, T2 ∈ Tr(H̄1), T ′1 and T ′2 are distinct.
Let T1 = {T ∈ Tr(H̄1) : v2 6∈ T} and T2 = Tr(H̄1) \ T1. Consider first T ∈ T1. By

assumption T ∩ S1 6= ∅ since T has a nonempty intersection with H̄0. It follows that the
only hyperedges of H having empty intersection with T are those in HV2 . Note that none of
these hyperedges are contained in S2 since H is Sperner. This implies that HV2\S2

V2
6= {∅}

and therefore Tr(HV2\S2
V2

) 6= ∅. Let T ′′ be an arbitrary minimal transversal in Tr(HV2\S2
V2

).
Then it is easy to see that T ′ = T ∪ T ′′ is in Tr(H).

Consider now T ∈ T2. By the minimality of T , there is a hyperedge H ∈ H̄(V2, S2)∪{H̄0}
such that H ∩ T = {v2}. Furthermore, for every v ∈ T \ {v2}, there is an H ∈ HV1 such that
T ∩H = {v}. Let H(T) = {H ∈ H | H ∩ T \ {v2} = ∅} and note that H(T)V2 is nontrivial.
Pick T ′′ ∈ Tr(H(T)V2) arbitrarily. Then it is easy to see that T ′ = (T \ {v2}) ∪ T ′′ is in
Tr(H).

Finally, note that for any distinct T1, T2 ∈ T1 (resp., T1, T2 ∈ T2), the constructed minimal
transversals T ′1, T ′2 ∈ T (H) are distinct. Moreover, for T1 ∈ T1 and T2 ∈ T2, T ′1 and T ′2 are
distinct because T ′1 ∩ S2 = ∅ while T ′2 ∩ S2 6= ∅. J

To compute (12), we find Tr(H̄1) and Tr(H̄2) recursively. Then Tr(H1) and Tr(H2) are
given by the following claim.

I Lemma 12. Let T1 = {T ∈ Tr(H̄1) | v2 6∈ T}, T2 = {T ∈ Tr(H̄1) | v2 ∈ T, S1 ∩ T = ∅},
T3 = Tr(H̄1) \ (T1 ∪ T2), T ′1 = {T ∈ Tr(H̄2) | v1 6∈ T} and T ′2 = Tr(H̄2) \ T ′1 . Then

Tr(H1) = T1 ∪̇ {(T \ {v2}) ∪ {v} | v ∈ H0 ∩ S2 and T ∈ T2}
∪̇ {(T \ {v2}) ∪ {v} | v ∈ S2 and T ∈ T3}, (13)

Tr(H2) = T ′1 ∪̇ {(T \ {v1}) ∪ {v} | v ∈ S1 and T ∈ T ′2}. (14)

Proof. Let us prove (13), since the proof of (14) is similar. Suppose T ∈ Tr(H1). If
T ∩ S2 = ∅ then (it is easy to see that) T ∈ T1. If T ∩ S2 6= ∅ then by minimality of T ,
|T ∩ S2| = 1; let T ∩ S2 = {v}. If T ∩ S1 = ∅ then necessarily v ∈ H0, in which case
(T \ {v})∪{v2} ∈ T2; otherwise v can be any element in S2, and hence, (T \ {v})∪{v2} ∈ T3.
On the other direction, if T ∈ T1 then clearly T ∈ Tr(H1); if T ∈ T2 then T ∩ H̄0 = {v2}

K. Elbassioni and K. Makino 18:11

which implies that (T \ {v2}) ∪ {v} ∈ Tr(H1) for every v ∈ H0 ∩ S2; finally, if T ∈ T3 then
there is a hyperedge H ∈ H̄(V2, S2) such that H ∩ T = {v2}, which implies in turn that
(T \ {v2}) ∪ {v} ∈ Tr(H1). J

Note that Tr(H) can be computed from Tr(H̄1) and Tr(H̄2) using (12) and Lemma 12
in time L2(µ) = poly(n,m, k). Now, we bound T (µ).

Let n′1 = n(H̄1) = n1 +1, m′1 = |H̄1| ∈ {m1,m1 +1}, k1 = |Tr(H̄1)|, n′2 = n(H̄2) = n2 +1,
m2 = |H̄2|, and k2 = |Tr(H̄2)|. By the decomposition, n′1 +n′2 = n+2 and m′1 +m2 = m+1,
and by Lemma 11, k1 ≤ k and k2 ≤ k. Note that n′1, n′2 ≥ 2, m′1,m2 ≥ 1, n1 +m1 ≥ 4, and
n′2m2 ≥ 4, by the assumptions of the 3-sum case in Theorem 7.

We consider 3 subcases.

Case II-I: 2 ≤ n′1 ≤ 3. Then a simple procedure will be used to compute Tr(H̄1), and
hence we need only to recurse on H̄2, giving the simpler recurrence: T (µ) ≤ 2 + T (µ2). Note
that m2 ≤ m − 2 since n1 ≤ 2 implies m1 ≥ 2 and hence m2 = m −m1 ≤ m − 2. Since
µ2 = n′2m2k2 ≤ n(m− 2)k ≤ µ− 2, we get by induction that

T (µ) ≤ 2 + µ2 ≤ µ. (15)

Case II-II: n′2 = 2. Then a simple procedure will be used to compute Tr(H̄2), and hence
we need only to recurse on H̄1, giving the simpler recurrence: T (µ) ≤ 2 + T (µ1). As above,
m1 ≤ m− 3 implying that µ1 = n′1m

′
1k2 ≤ n(m− 2)k ≤ µ− 2, and giving by induction again

that T (µ) ≤ µ.

Case II-III: n′1 ≥ 4 and n′2 ≥ 3. We first note that m′1,m2 ≥ 2. Indeed, if m′1 = 1 (resp.,
m2 = 1), then HV1 = ∅ and H(V2, S2) = {H0} (resp., HV2 = ∅ and H(V1, S1) = {H0}). Since
we assume that H does not have identical vertices, we must have n1 = 1 (resp., n2 = 1). In
either case we get a contradiction to the boundary assumtpions (ii) of the 3-sum–case 1 in
Theorem 7. Lemmas 10 and 12 imply that, in this case, we get the recurrence:

T (µ) ≤ 1 + T (µ1) + T (µ2), (16)

where µ = µ(H), µ1 = µ(H̄1), and µ2 = µ(H̄2).
Then by Fact 8, applied with x1 = n′1, y1 = m′1, x2 = n′2, y2 = m2, N = n+2,M = m+1,

α = 3 and β = 2, we get (as n ≥ 5 and m ≥ 3)

µ1 + µ2 = n′1m
′
1k1 + n′2m2k2 ≤ (n′1m′1 + n′2m2)k ≤ ((n− 1)(m− 1) + 6)k

= nmk − (n+m− 7)k ≤ µ− 1. (17)

It follows by induction from (16) that

T (µ) ≤ 1 + µ1 + µ2 ≤ µ. (18)

3.3 3-sum decomposition - case 2
Let H1 = HV1 and H2 = HV2 . By Theorem 7, we have three nonempty disjoint sets S0, S1, S2
in V2, and the following two families are nonempty:

F1 = {H ∈ H | H ∩ V1 = S0 ∪ S2, H ∩ V2 6= ∅}, (19)
F2 = {H ∈ H | H ∩ V1 = S0 ∪ S1, H ∩ V2 6= ∅}. (20)

SWAT 2018

18:12 Enumerating Vertices of 0/1-Polyhedra

Note that V1, V2 6= ∅, H1 6= ∅, and H can be partitioned in the following way.

H = H1∪̇H2∪̇F1∪̇F2, (21)

where ∪̇ denotes the disjoint union. For i = 0, 1, 2, let

Ti = {T ∈ Tr(H1) | T ∩ Si 6= ∅, T ∩ Sj = ∅ (j 6= i)}, (22)

and let

T = Tr(H1) \ (T0 ∪ T1 ∪ T2). (23)

By definition, we have

Tr(H1) = T ∪̇T0∪̇T1∪̇T2. (24)

Let

P = HS0∪S1∪S2 (= {H ∈ H | H ⊆ S0 ∪ S1 ∪ S2}). (25)

We separatly consider the following 4 cases.

Case I: P = ∅.
Case II: P = {S0 ∪ S1 ∪ S2}.
Case III: P 6= ∅, {S0 ∪ S1 ∪ S2} and T 6= ∅.
Case IV: P 6= ∅, {S0 ∪ S1 ∪ S2} and T = ∅.

Case I
H can be partitioned into H1 and HS0∪S1∪S2∪V2 , i.e., H = H1∪̇HS0∪S1∪S2∪V2 and H1,

HS0∪S1∪S2∪V2 6= ∅. Since Tr(H) = Tr(H1) ∧ Tr(HS0∪S1∪S2∪V2), we obtain Tr(H) by
computing Tr(H1) and Tr(HS0∪S1∪S2∪V2). Let n1 = |V1|, m1 = |H1|, k1 = |Tr(H1)|,
n′2 = |S0 ∪ S1 ∪ S2 ∪ V2|, m′2 = |HS0∪S1∪S2∪V2 |, k2 = |Tr(HS0∪S1∪S2∪V2)|. Similar to the
2-sum decomposition case, we can show that T (µ) ≤ µ and the computation of Tr(H) can
be done in time L2(µ) = poly(n,m, k).

Case II
We consider two cases: (1) |H1| ≥ 2 and (2) |H1| = 1.

(1) |H1| ≥ 2. Let G be a hypergraph obtained from HS0∪S1∪S2∪V2 by replacing S0, S1,
and S2 by new vertices v0, v1 and v2, respectively. For any hyperedge H ∈ HS0∪S1∪S2∪V2 ,
H ∩ Si 6= ∅ implies that Si ⊆ H. Thus G is well-defined. Note that Tr(HS0∪S1∪S2∪V2)
can be obtained from Tr(G) in polynomial time by replacing vi with any element in Si.
Since H = H1 ∪ HS0∪S1∪S2∪V2 , we have Tr(H) = Tr(H1) ∧ Tr(HS0∪S1∪S2∪V2). We thus
decompose H into H1 and G. Namely we compute Tr(H) from Tr(H1) and Tr(G). Since
|Tr(H1)|, |Tr(G)| ≤ |Tr(H)| (= k), this can be done in time L2(µ) = poly(n,m, k).

Let us next show that T (µ) ≤ µ. Let n1 = |V1|, m1 = |H1|, k1 = |Tr(H1)|, n′2 = |V2|+3,
m′2 = |G|, and k2 = |Tr(G)|. Note that H = H1 ∪ HS0∪S1∪S2∪V2 , H1 ∩ HS0∪S1∪S2∪V2 =
{S0 ∪ S1 ∪ S2}. This, together with definition and the discussion above, implies that

1 ≤ n1, n
′
2 ≤ n, n1 +n′2 = n+ 3, 2 ≤ m1,m

′
2 ≤ m−1, m1 +m′2 = m+ 1, k1, k2 ≤ k. (26)

K. Elbassioni and K. Makino 18:13

Thus we have

n1m1k1 + n′2m
′
2k2 ≤ (n1m1 + n′2m

′
2)k ≤ (n(m− 1) + 6)k ≤ nmk − 1 (27)

where Fact 8 is used for the second inequality, and the third ineuqality is obtained by
assuming that n is at least 7. It follows from (27) that T (µ) ≤ µ. We recall that Tr(H) is
directly computed from H if at least one of n, m, and k is bounded by some constant C.
Thus in this case we have T (µ) = 1, which also satisfies T (µ) ≤ µ.

(2) |H1| = 1. In this case, we have H1 = {S0 ∪ S1 ∪ S2}. Therefore, the following lemma is
satisfied.

I Lemma 13. Let H be a hypergraph that satisfies (21) and H1 = {S0 ∪ S1 ∪ S2}. Then we
have Tr(H) = {{v} | v ∈ S0}∧̇Tr(H2) ∪̇ Tr(HV \S0).

Proof. From the definition, it is not difficult to see that Tr(H) ⊇ {{v} | v ∈ S0}∧̇
Tr(H2) ∪̇ Tr(HV \S0).

For the converse inclusion, let T ∈ Tr(H). If T ∩S0 = ∅, then T is contained in Tr(HV \S0).
Assume next that T ∩ S0 6= ∅. For any i = 0, 1, 2 and any hyperedge H ∈ H, H ∩ Si 6= ∅
inplies that S0 ⊆ H. This means that |T ∩ S0| = 1 and T ∩ Si = ∅ for i = 1, 2. Moreover, we
have T ∩ V2 ∈ Tr(H2), which completes the converse inclusion. J

Note that H2,HV \S0 6= {∅}, and hence Tr(H2),Tr(HV \S0) 6= ∅. Based on Lemma 13, we
decompose H into H2 and HV \S0 . Namely, we compute Tr(H) from Tr(H2) and Tr(HV \S0)
in time L2(µ) = poly(n,m, k).

Let n′1 = |V2|, m′1 = |H2|, k′1 = |Tr(H2)|, n′2 = n − |S0|, m′2 = |HV \S0 |, and k′2 =
|Tr(HV \S0)|. Then we have n′1, n′2 ≤ n− 1, m′1,m′2 ≤ m, and k′1, k′2 ≤ k− 1 and k′1 + k′2 ≤ k.
Thus we have n′1m′1k′1 + n′2m

′
2k
′
2 ≤ (n− 1)(m− 1)k ≤ nmk − 1, where the last inequality is

obtained from n ≥ 3. This implies that T (µ) ≤ µ.

References
1 S. D. Abdullahi. Vertex Enumeration and Counting for Certain Classes of Polyhedra. PhD

thesis, Computing (Computer Algorithms) Leeds University U.K., 2003.
2 D. Avis, B. Bremner, and R. Seidel. How good are convex hull algorithms. Computational

Geometry: Theory and Applications, 7:265–302, 1997.
3 D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of

arrangements and polyhedra. Discrete and Computational Geometry, 8(3):295–313, 1992.
4 D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,

65(1-3):21–46, 1996.
5 D. Avis, G. D. Rosenberg, R. Savani, and B. von Stengel. Enumeration of Nash equilibria

for two-player games. Economic Theory, 42(1):9–37, 2010.
6 C. Berge. Hypergraphs. Elsevier-North Holand, Amsterdam, 1989.
7 J. C. Bioch and T. Ibaraki. Complexity of identification and dualization of positive boolean

functions. Information and Computation, 123(1):50–63, 1995.
8 E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. Generating vertices of polyhedra and

related problems of monotone generation. In D. Avis, D. Bremner, and A. Deza, editors,
Proceedings of the Centre de Recherches Mathématiques at the Université de Montréal,
special issue on Polyhedral Computation, volume 49, 2009.

9 E. Boros, K. Elbassioni, V. Gurvich, and H. R. Tiwary. The negative cycles polyhedron
and hardness of checking some polyhedral properties. Annals OR, 188(1):63–76, 2011.

SWAT 2018

18:14 Enumerating Vertices of 0/1-Polyhedra

10 D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet
enumeration. Discrete and Computational Geometry, 20:333–357, 1998.

11 M. R. Bussieck and M. E. Lübbecke. The vertex set of a 0/1 polytope is strongly P-
enumerable. Computational Geometry: Theory and Applications, 11(2):103–109, 1998.

12 V. Chvátal. Linear Programming. Freeman, San Francisco, CA, 1983.
13 G. Cornuéjols. Combinatorial Optimization: Packing and Covering. CBMS-NSF Regional

Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics,
2001.

14 M. E. Dyer. The complexity of vertex enumeration methods. Mathematics of Operations
Research, 8:381–402, 1983.

15 M. E. Dyer and L. G. Proll. An algorithms for determining all extreme points of a convex
polytope. Mathematical Programming, 12:81–96, 1977.

16 T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and related
problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

17 T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and generating
hypergraph transversals. SIAM Journal on Computing, 32(2):514–537, 2003.

18 K. Elbassioni and K. Makino. Enumerating vertices of 0/1-polyhedra associated with 0/1-
totally unimodular matrices. CoRR, abs/1707.03914, 2017. arXiv:1707.03914.

19 M. L. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive
normal forms. Journal of Algorithms, 21:618–628, 1996.

20 V. Gurvich and L. Khachiyan. On generating the irredundant conjunctive and disjunctive
normal forms of monotone Boolean functions. Discrete Applied Mathematics, 96-97(1):363–
373, 1999.

21 L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices
of a polyhedron is hard. Discrete & Computational Geometry, 39(1-3):174–190, 2008.

22 L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On the complex-
ity of some enumeration problems for matroids. SIAM Journal on Discrete Mathematics,
19(4):966–984, 2005.

23 E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal independent
sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing, 9:558–
565, 1980.

24 A. Lehman. On the width-length inequality, mimeographic notes. Mathematical Program-
ming, 17:403–417, 1979.

25 L. Lovász. Combinatorial optimization: some problems and trends. DIMACS Technical
Report 92-53, Rutgers University, 1992.

26 N. Mishra and L. Pitt. Generating all maximal independent sets of bounded-degree hy-
pergraphs. In COLT ’97: Proceedings of the 10th annual conference on Computational
learning theory, pages 211–217, 1997.

27 M. E. Pfetsch. The Maximum Feasible Subsystem Problem and Vertex-Facet Incidences of
Polyhedra. Dissertation, TU Berlin, 2002.

28 J.S. Provan. Efficient enumeration of the vertices of polyhedra associated with network
LP’s. Mathematical Programming, 63(1):47–64, 1994.

29 A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.
30 R. Seidel. Output-size sensitive algorithms for constructive problems in computational geo-

metry. Computer science, Cornell University, Ithaka, NY, 1986.
31 P. D. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory,

Series B, 28(3):305–359, 1980.
32 K. Truemper. Matroid Decomposition. Academic Press, 1992.
33 V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York,

NY, USA, 2001.

http://arxiv.org/abs/1707.03914

The Parameterized Hardness of the k-Center
Problem in Transportation Networks
Andreas Emil Feldmann1

Department of Applied Mathematics, Charles University, Prague, Czechia
feldmann.a.e@gmail.com

Dániel Marx2

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary
dmarx@cs.bme.hu

Abstract
In this paper we study the hardness of the k-Center problem on inputs that model transporta-
tion networks. For the problem, an edge-weighted graph G = (V,E) and an integer k are given
and a center set C ⊆ V needs to be chosen such that |C| ≤ k. The aim is to minimize the
maximum distance of any vertex in the graph to the closest center. This problem arises in many
applications of logistics, and thus it is natural to consider inputs that model transportation net-
works. Such inputs are often assumed to be planar graphs, low doubling metrics, or bounded
highway dimension graphs. For each of these models, parameterized approximation algorithms
have been shown to exist. We complement these results by proving that the k-Center problem is
W[1]-hard on planar graphs of constant doubling dimension, where the parameter is the combin-
ation of the number of centers k, the highway dimension h, and even the treewidth t. Moreover,
under the Exponential Time Hypothesis there is no f(k, t, h) · no(t+

√
k+h) time algorithm for

any computable function f . Thus it is unlikely that the optimum solution to k-Center can be
found efficiently, even when assuming that the input graph abides to all of the above models for
transportation networks at once!

Additionally we give a simple parameterized (1 + ε)-approximation algorithm for inputs of
doubling dimension d with runtime (kk/εO(kd)) · nO(1). This generalizes a previous result, which
considered inputs in D-dimensional Lq metrics.

2012 ACM Subject Classification Theory of computation→ Fixed parameter tractability, The-
ory of computation → Facility location and clustering, Theory of computation → Problems,
reductions and completeness

Keywords and phrases k-center, parameterized complexity, planar graphs, doubling dimension,
highway dimension, treewidth

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.19

Related Version https://arxiv.org/abs/1802.08563

1 Introduction

Given a graph G = (V,E) with positive edge lengths ` : E → Q+, the k-Center problem
asks to find k center vertices such that every vertex of the graph is as close as possible to
one of centers. More precisely, if dist(u, v) denotes the length of the shortest path between u

1 Supported by project CE-ITI (GAČR no. P202/12/G061) of the Czech Science Foundation.
2 Supported by ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978)

© Andreas E. Feldmann and Daniel Marx;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:feldmann.a.e@gmail.com
mailto:dmarx@cs.bme.hu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.19
https://arxiv.org/abs/1802.08563
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Parameterized Hardness of k-Center in Transportation Networks

and v according to the edge lengths `, let Bv(ρ) = {u ∈ V | dist(u, v) ≤ ρ} be the ball of
radius ρ around v. A solution to k-Center is a set C ⊆ V of centers such that |C| ≤ k,
and the objective is to minimize the cost of the solution, which is the smallest value ρ for
which

⋃
v∈C Bv(ρ) = V . This problem has numerous applications in logistics where easily

accessible locations need to be chosen on a map under a budget constraint. For instance, a
budget may be available to build k hospitals, shopping malls, or warehouses. These should
be placed so that the distance from each point on the map to the closest facility is minimized.

The k-Center problem is NP-hard [28], and so approximation algorithms [28, 29] as well
as parameterized algorithms [8, 11] have been developed for this problem. The former are
algorithms that use polynomial time to compute an α-approximation, i.e., a solution that is
at most α times worse than the optimum. For the latter, a parameter p is given as part of
the input, and an optimum solution is computed in f(p) · nO(1) time for some computable
function f independent of the input size n. The rationale behind such an algorithm is that
it solves the problem efficiently in applications where the parameter is small. If such an
algorithm exists for a problem it is called fixed-parameter tractable (FPT) for p. Another
option is to consider parameterized approximation algorithms [21, 22], which compute an
α-approximation in f(p) · nO(1) time for some parameter p.

By a result of Hochbaum and Shmoys [18], on general input graphs, a polynomial
time 2-approximation algorithm exists, and this approximation factor is also best possible,
unless P=NP. A natural parameter for k-Center is the number of centers k, for which
however the problem is W[2]-hard [9]. In fact it is even W[2]-hard [16] to compute a
(2− ε)-approximation for any ε > 0, and thus parametrizing by k does not help to overcome
the polynomial-time inapproximability. For structural parameters such as the vertex-cover
number or the feedback-vertex-set number the problem remains W[1]-hard [19], even when
combining with the parameter k. For each of the more general structural parameters treewidth
and cliquewidth, an efficient parameterized approximation scheme (EPAS) was shown to
exist [19], i.e., a (1 + ε)-approximation can be computed in f(ε, w) · nO(1) time for any ε > 0,
if w is either the treewidth or the cliquewidth, and n is the number of vertices.

Arguably however, graphs with low treewidth or cliquewidth do not model transportation
networks well, since grid-like structures with large treewidth and cliquewidth can occur in
road maps of big cities. As we focus on applications for k-Center in logistics, here we
consider more natural models for transportation networks. These include planar graphs, low
doubling metrics such as the Euclidean or Manhattan plane, or the more recently studied
low highway dimension graphs. Our main result is that k-Center is W[1]-hard on all of
these graph classes combined, even if adding k and the treewidth as parameters. Before
introducing these graph classes, let us formally state our theorem.

I Theorem 1. Even on weighted planar graphs of doubling dimension O(1), the k-Center
problem is W[1]-hard for the combined parameter (k, t, h), where t is the treewidth and h the
highway dimension of the input graph. Moreover, under ETH there is no f(k, t, h) ·no(t+

√
k+h)

time algorithm3 for the same restriction on the input graphs, for any computable function f .

A planar graph can be drawn in the plane without crossing edges. Such graphs constitute
a realistic model for road networks, since overpasses and tunnels are relatively rare. It
is known [25] that also for planar graphs no (2 − ε)-approximation can be computed in
polynomial time, unless P=NP. On the positive side, k-Center is FPT [9] on unweighted
planar graphs for the combined parameter k and ρ. However, typically if k is small then ρ is

3 Here o(t +
√

k + h) means any function g(t +
√

k + h) such that g(x) ∈ o(x).

A. E. Feldmann and D. Marx 19:3

large and vice versa, and thus the applications for this combined parameter are rather limited.
If the parameter is only k, then an nO(

√
k) XP-algorithm exists for planar graphs [24]. By a

very recent result [20] the k-Center problem on weighted planar graphs admits an efficient
polynomial-time bicriteria approximation scheme, which for any ε > 0 in f(ε) · nO(1) time
computes a solution that uses at most (1 + ε)k centers and approximates the optimum with
at most k centers within a factor of 1 + ε. This algorithm implies an EPAS for parameter k
on weighted planar graphs, since setting ε = min{ε′, 1

2k} forces the algorithm to compute a
(1 + ε′)-approximation in time f(k, ε′) · nO(1) using at most (1 + ε)k ≤ k + 1

2 centers, i.e., at
most k centers as k is an integer. This observation is complemented by our hardness result
by showing that it is necessary to approximate the solution when parametrizing by k in
weighted planar graphs.

I Definition 2. The doubling dimension of a metric (X,dist) is the smallest d ∈ R such that
for any r > 0, every ball of radius 2r is contained in the union of at most 2d balls of radius r.
The doubling dimension of a graph is the doubling dimension of its shortest-path metric.

Since a transportation network is embedded on a large sphere (namely the earth), a
reasonable model is to assume that the shortest-path metric abides to the Euclidean L2-norm.
In cities, where blocks of buildings form a grid of streets, it is reasonable to assume that the
distances are given by the Manhattan L1-norm. Every metric for which the distance function
is given by the Lq-norm in D-dimensional space RD has doubling dimension O(D). Thus a
road map, which is embedded into R2 can reasonably be assumed to have constant doubling
dimension. It is known [23] that k-Center is W[1]-hard for parameter k in two-dimensional
Manhattan metrics. Also, no polynomial time (2 − ε)-approximation algorithm exists for
k-Center in two-dimensional Manhattan metrics [13], and no (1.822− ε)-approximation for
two-dimensional Euclidean metrics [13]. On the positive side, Agarwal and Procopiuc [4]
showed that for any Lq metric in D dimensions, the k-Center problem can be solved
optimally in time nO(k1−1/D), and an EPAS exists for the combined parameter (ε, k,D). We
generalize the latter to any metric of doubling dimension d, as formalized by the following
theorem.

I Theorem 3. Given a metric of doubling dimension d, a (1+ε)-approximation for k-Center
can be computed in (kk/εO(kd)) · nO(1) time.

Theorem 1 complements this result by showing that it is necessary to approximate the
cost of the solution if parametrizing by k and d.

I Definition 4. The highway dimension of a graph G is the smallest h ∈ N such that, for
some universal constant c ≥ 4, for every r ∈ R+ and every ball Bcr(v) of radius cr, there is
a set H ⊆ Bcr(v) of hubs such that |H| ≤ h and every shortest path of length more than r
lying in Bcr(v) contains a hub of H.

The highway dimension was introduced by Abraham et al. [3] as a formalization of the
empirical observation by Bast et al. [5, 6] that in a road network, starting from any point
A and travelling to a sufficiently far point B along the quickest route, one is bound to
pass through some member of a sparse set of “access points”, i.e., the hubs. In contrast to
planar and low doubling graphs, the highway dimension has the potential to model not only
road networks, but more general transportation networks such as those given by air-traffic
or public transportation. This is because in such networks longer connections tend to be
serviced through larger and sparser stations, which act as hubs. Abraham et al. [3] were able
to prove that certain shortest-path heuristics are provably faster in low highway dimension

SWAT 2018

19:4 Parameterized Hardness of k-Center in Transportation Networks

graphs than in general graphs. They specifically chose the constant c = 4 in their original
definition, but later work by Feldmann et al. [14] showed that when choosing any constant
c > 4 in the definition, the structure of the resulting graphs can be exploited to obtain
quasi-polynomial time approximation schemes for problems such as Travelling Salesman
or Facility Location. Note that increasing the constant c in Definition 4 restricts the
class of graphs further. Other definitions of the highway dimension exist as well [1, 2, 3, 14]
(see [15, Section 9] for a detailed discussion).

Later, Becker et al. [7] used the framework introduced by Feldmann et al. [14] to show
that whenever c > 4 there is an EPAS for k-Center parameterized by ε, k, and h. Note that
the highway dimension is always upper bounded by the vertex-cover number, as every edge of
any non-trivial path is incident to a vertex cover. Hence the aforementioned W[1]-hardness
result by Katsikarelis et al. [19] for the combined parameter k and the vertex-cover number
proves that it is necessary to approximate the optimum when using k and h as the combined
parameter. When parametrizing only by the highway dimension but not k, it is not even
known if a parameterized approximation scheme (PAS) exists, i.e., an f(ε, h) · ng(ε) time
(1 + ε)-approximation algorithm for some functions f, g. However, under the Exponential
Time Hypothesis (ETH) [8], by [16] there is no algorithm with doubly exponential 22o(

√
h) ·nO(1)

runtime to compute a (2− ε)-approximation for any ε > 0. The same paper [16] also presents
a 3/2-approximation for k-Center with runtime 2O(kh logh) · nO(1) for a more general
definition of the highway dimension than the one given in Definition 4. In contrast to
the result of Becker et al. [7], it is not known whether a PAS exists when combining this
more general definition of h with k as a parameter. Theorem 1 complements these results
by showing that even of planar graphs of constant doubling dimension, for the combined
parameter (k, h) no FPT algorithm exists, unless FPT=W[1]. Therefore approximating
the optimum is necessary, regardless of whether h is according to Definition 4 or the more
general one from [16], and regardless of how restrictive Definition 4 is made by increasing
the constant c.

I Definition 5. A tree decomposition of a graph G = (V,E) is a tree T each of whose nodes v
is labelled by a bag Xv ⊆ V of vertices of G, and has the following properties:
(a)

⋃
v∈V (T) Xv = V ,

(b) for every edge {u,w} ∈ E there is a node v ∈ V (T) such that Xv contains both u and w,
(c) for every v ∈ V the set {u ∈ V (T) | v ∈ Xu} induces a connected subtree of T .
The width of the tree decomposition is max{|Xv| − 1 | v ∈ V (T)}. The treewidth t of a
graph G is the minimum width among all tree decompositions for G.

As mentioned above, arguably, bounded treewidth graphs are not a good model for
transportation networks. Also it is already known that k-Center is W[1]-hard for this
parameter, even when combining it with k [19]. We include this well-studied parameter here
nonetheless, since the reduction of our hardness result in Theorem 1 implies that k-Center
is W[1]-hard even for weighted planar graphs when combining any of the parameters k, h, d,
and t. As noted in [15], these parameters are not bounded in terms of each other, i.e., they
are incomparable. Furthermore, the doubling dimension is in fact bounded by a constant in
Theorem 1. Hence, even if one were to combine all the models presented above and assume
that a transportation network is planar, embeddable into some constant dimensional Lq
metric, has bounded highway dimension, and even has bounded treewidth, it is unlikely that
the k-Center problem can be solved efficiently. Thus it seems unavoidable to approximate
the problem in transportation networks, when developing fast algorithms.

A. E. Feldmann and D. Marx 19:5

1.1 Related work
The k-Center problem is a fairly general clustering problem and therefore finds further
applications in, for instance, image processing and data-compression. The above mentioned
very recent efficient bicriteria approximation scheme [20] improves on a previous (non-efficient)
bicriteria approximation scheme [12], which for any ε > 0 and weighted planar input graph
computes a (1 + ε)-approximation with at most (1 + ε)k centers in time nf(ε) for some
function f (note that in contrast to above, such an algorithm does not imply a PAS for
parameter k). The paper by Demaine et al. [9] on the k-Center problem in unweighted
planar graphs also considers the so-called class of map graphs, which is a superclass of planar
graphs that is not minor-closed. They show that the problem is FPT on unweighted map
graphs for the combined parameter (k, ρ). Also for the tree-depth, k-Center is FPT [19].
A closely related problem to k-Center is the ρ-Dominating Set problem, in which ρ is
given and the number k of centers covering a given graph with k balls of radius ρ needs to be
minimized. As this generalizes the Dominating Set problem, no (ln(n)− ε)-approximation
is possible in polynomial time [10], unless P=NP, and computing an f(k)-approximation is
W[1]-hard [27] when parametrizing by k, for any computable function f .

2 The reduction

In this section we give a reduction from the Grid Tiling with Inequality (GT≤) problem,
which is defined as follows. Given κ2 non-empty sets Si,j ⊆ [n]2 of pairs of integers, where
i, j ∈ [κ], the task is to select one pair si,j ∈ Si,j for each set such that

if si,j = (a, b) and si+1,j = (a′, b′) then a ≤ a′, whenever i ≤ κ− 1, and
if si,j = (a, b) and si,j+1 = (a′, b′) then b ≤ b′, whenever j ≤ κ− 1.

The GT≤ problem is W[1]-hard [8] for parameter κ, and moreover, under ETH has no
f(κ) · no(κ) time algorithm for any computable function f .

Construction

Given an instance I of GT≤ with κ2 sets, we construct the following graph GI . First,
for each set Si,j , where 1 ≤ i, j ≤ κ, we fix an arbitrary order on its elements, so that
Si,j = {s1, . . . , sσ}, where σ ≤ n2. We then construct a gadget Gi,j for Si,j , which contains a
cycle Oi,j of length 16n2 + 4 for which each edge has length 1 (see Figure 1(a)). Additionally
we introduce five vertices x1

i,j , x2
i,j , x3

i,j , x4
i,j , and yi,j . If Oi,j = (v1, v2, . . . , v16n2+4, v1) then

we connect these five vertices to the cycle as follows. The vertex yi,j is adjacent to the four
vertices v1, v4n2+2, v8n2+3, and v12n2+4, with edges of length 2n2 + 1 each. For every τ ∈ [σ]
and sτ ∈ Si,j , if sτ = (a, b) we add the four edges

x1
i,jvτ of length `′a = 2n2 − a

n+1 ,
x2
i,jvτ+4n2+1 of length `b = 2n2 + b

n+1 − 1,
x3
i,jvτ+8n2+2 of length `a = 2n2 + a

n+1 − 1, and
x4
i,jvτ+12n2+3 of length `′b = 2n2 − b

n+1 .
We say that the element sτ corresponds to the four vertices vτ , vτ+4n2+1, vτ+8n2+2,
and vτ+12n2+3. Note that s1 (which always exists) corresponds to the four vertices ad-
jacent to yi,j . Note also that 2n2 − 1 < `a, `

′
a, `b, `

′
b < 2n2, since a, b ∈ [n].

The gadgets Gi,j are now connected to each other in a grid-like fashion (see Figure 1(b)).
That is, for i ≤ κ− 1 we introduce a path between x3

i,j and x1
i+1,j that has n+ 2 edges, each

of length 1
n+2 . Analogously, for j ≤ κ− 1 we add a path between x2

i,j and x4
i,j+1 with n+ 2

edges of length 1
n+2 each. Note that these paths all have length 1.

SWAT 2018

19:6 Parameterized Hardness of k-Center in Transportation Networks

yi,j

x1
i,j

x3
i,j

x2
i,jx4

i,j

v1 v4n2+1

v8n2+3v12n2+3

v8n2+2

v4n2+2v16n2+4

v12n2+4

(a) The gadget Gi,j in the reduction.

G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

G3,1 G3,2 G3,3

x1
2,1

x3
1,1

x2
1,1

x4
1,2

(b) Connecting the gadgets in a grid-like fashion.

Figure 1 The reduction.

The resulting graph GI forms an instance of k-Center with k = 5κ2. We claim that
the instance I of GT≤ has a solution if and only if the optimum solution to k-Center on
GI has cost at most 2n2. We note at this point that the reduction would still work when
removing the vertices yi,j and decreasing k to 4κ2. However their existence will greatly
simplify analysing the doubling dimension of GI in Section 3.

A solution to a GT≤ instance implies cost at most 2n2 for the k-Center instance

Recall that we fixed an order of each set Si,j , so that each element sτ ∈ Si,j corresponds
to four equidistant vertices on cycle Oi,j with distance 4n2 + 1 between consecutive such
vertices on the cycle. If sτ ∈ Si,j is in the solution to the GT≤ instance I, let Ci,j =
{vτ , vτ+4n2+1, vτ+8n2+2, vτ+12n2+3, yi,j} contain the vertices of Oi,j corresponding to sτ in
addition to yi,j . The solution to the k-Center instance GI is given by the union

⋃
i,j∈[κ] Ci,j ,

which are exactly 5κ2 centers in total.
Let us denote the set containing the four vertices of Ci,j ∩ V (Oi,j) by COi,j , and note that

each of these four vertices covers 4n2 + 1 vertices of Oi,j with balls of radius 2n2, as each
edge of Oi,j has length 1. Since the distance between any pair of centers in COi,j is at least
4n2 + 1, these four sets of covered vertices are pairwise disjoint. Thus the total number of
vertices covered by COi,j on Oi,j is 16n2 + 4, i.e. all vertices of the cycle Oi,j are covered.
Recall that for the lengths of the edges between the vertices x1

i,j , x2
i,j , x3

i,j , and x4
i,j and the

cycle Oi,j we have `a, `′a, `b, `′b < 2n2. Hence the centers in COi,j also cover x1
i,j , x2

i,j , x3
i,j , and

x4
i,j by balls of radius 2n2.
Now consider a path connecting two neighbouring gadgets, e.g., let P be the path

connecting x2
i,j and x4

i,j+1. The center sets COi,j and COi,j+1 contain vertices corresponding to
the respective elements s ∈ Si,j and s′ ∈ Si,j+1 of the solution to the GT≤ instance. This
means that if s = (a, b) and s′ = (a′, b′) then b ≤ b′. Thus the closest centers of COi,j and

A. E. Feldmann and D. Marx 19:7

COi,j+1 are at distance `b + 1 + `′b′ from each other, as P has length 1. From b ≤ b′ we get

`b + 1 + `′b′ = 2n2 + b

n+ 1 − 1 + 1 + 2n2 − b′

n+ 1 ≤ 4n2.

Therefore all vertices of P are covered by the balls of radius 2n2 around the two closest
centers of COi,j and COi,j+1. Analogously, we can also conclude that any path connecting some
vertices x1

i,j and x3
i+1,j are covered, using the fact that if (a, b) ∈ Si,j and (a′, b′) ∈ Si+1,j

are in the solution to the GT≤ instance then a ≤ a′.
Finally, the remaining center vertices in

⋃
i,j∈[κ] Ci,j \COi,j cover the additional vertex yi,j

in each gadget Gi,j .

A k-Center instance with cost at most 2n2 implies a solution to the GT≤ instance

We first prove that in any solution to the k-Center instance GI of cost at most 2n2, each
cycle Oi,j must contain exactly four centers. Recall that `a, `′a, `b, `′b > 2n2 − 1, that yi,j is
incident to four edges of length 2n2 + 1 each, and that each edge of Oi,j has length 1. Now
consider the vertices v4n2+1, v8n2+2, v12n2+3, and v16n2+4, each of which is not connected by
an edge to any vertex xhi,j , where h ∈ [4], nor to yi,j . Thus each of these four vertices must
be covered by centers on the cycle Oi,j if the radius of each ball is at most 2n2. Furthermore,
the distance between each pair of these four vertices is at least 4n2 + 1, which means that any
solution of cost at most 2n2 needs at least four centers on Oi,j to cover these four vertices.

Each vertex yi,j must be contained in any solution of cost at most 2n2, since the distance
from yi,j to any other vertex is more than 2n2. This already uses κ2 of the available 5κ2

centers. Since there are κ2 cycles and only 4κ2 remaining available centers, we proved that
each cycle Oi,j contains exactly four centers, and no other centers exist in the graph GI . Let
COi,j be the set of four centers contained in Oi,j . As each center of COi,j covers at most 4n2 + 1
vertices of Oi,j by balls of radius at most 2n2, to cover all 16n2 + 4 vertices of Oi,j these four
centers must be equidistant with distance exactly 4n2 +1 between consecutive centers on Oi,j .
Furthermore, since `a, `′a, `b, `′b > 2n2 − 1 and each edge of Oi,j has length 1, to cover xhi,j for
any h ∈ [4] some center of COi,j must lie on a vertex of Oi,j adjacent to xhi,j . This means that
the four centers of COi,j are exactly those vertices vτ+(h−1)(4n2+1) corresponding to element
sτ of Si,j .

It remains to show that the elements corresponding to the centers in
⋃
i,j∈[κ] C

O
i,j form

a solution to the GT≤ instance I. For this, consider two neighbouring gadgets Gi,j and
Gi,j+1, and let (a, b) ∈ Si,j and (a′, b′) ∈ Si,j+1 be the respective elements corresponding to
the center sets COi,j and COi,j+1. Note that for any b̂ ∈ [n] we have `b ≤ `b̂ + 1 and `′b′ ≤ `′b̂ + 1.
Since every edge of the cycles Oi,j and Oi,j+1 has length 1, this means that the distance from
the closest centers v ∈ COi,j and v′ ∈ COi,j+1 to x2

i,j and x4
i,j+1, respectively, is determined by

the edges of length `b and `′b′ incident to v and v′, respectively. In particular, the distance
between v and v′ is `b+1+`′b′ , as the path P connecting x2

i,j and x4
i,j+1 has length 1. Assume

now that b > b′, which means that b ≥ b′+ 1 since b and b′ are integer. Hence this distance is

`b + 1 + `′b′ = 2n2 + b

n+ 1 − 1 + 1 + 2n2 − b′

n+ 1 ≥ 4n2 + 1
n+ 1 .

As the centers v and v′ only cover vertices at distance at most 2n2 each, while the edges of
the path P have length 1

n+2 <
1

n+1 , there must be some vertex of P that is not covered by
the center set. However this contradicts the fact that the centers form a feasible solution
with cost at most 2n2, and so b ≤ b′.

SWAT 2018

19:8 Parameterized Hardness of k-Center in Transportation Networks

An analogous argument can be made for neighbouring gadgets Gi,j and Gi+1,j , so that
a ≤ a′ for the elements (a, b) ∈ Si,j and (a′, b′) ∈ Si+1,j corresponding to the centers in COi,j
and COi+1,j , respectively. Thus a solution to GI of cost at most 2n2 implies a solution to I.

3 Properties of the constructed graph

The reduction of Section 2 proves that the k-Center problem is W[1]-hard for parameter k,
since the reduction can be done in polynomial time and k is function of κ. Since this function
is quadratic, we can also conclude that, under ETH, there is no f(k) · no(

√
k) algorithm for

k-Center. We will now show that the reduction has various additional properties from
which we will be able to conclude Theorem 1. First of all we prove that any constructed
graph GI for an instance I of GT≤ is planar and has bounded doubling dimension.

I Lemma 6. The graph GI is planar and has doubling dimension at most log2(36) ≈ 5.17
for n ≥ 3.

Proof. It is obvious from the construction of the graph GI that it is planar. To bound
its doubling dimension, consider the shortest-path metric on the vertex set Y = {yi,j ∈
V (GI) | i, j ∈ [κ]} given by the distances between these vertices in GI . As these vertices are
arranged in a grid-like fashion, this shortest-path metric on Y approximates the L1-metric.
We consider a set of index pairs, for which the corresponding vertices in Y roughly resemble
a ball in the shortest-path metric on Y . That is, consider the set of index pairs Ai,j(a) =
{(i′, j′) ∈ [κ]2 | |i− i′|+ |j − j′| ≤ a}, and let Vi,j(a) ⊆ V (GI) contain all vertices of gadgets
Gi′,j′ such that (i′, j′) ∈ Ai,j(a) in addition to the vertices of paths of length 1 connecting
these gadgets. We would like to bound the diameter of the graph induced by Vi,j(a) in GI ,
for which we need the following claim, which we will reuse later.

I Claim 7. For any gadget Gi,j and h, h′ ∈ [4] with h 6= h′, the distance between xhi,j and
xh
′

i,j lies between 7n2 − 1 and 8n2 + 2.

Proof. The distance between xhi,j and xh
′

i,j is less than 2(2n2 + 2n2 + 1) = 8n2 + 2, via the
path passing through yi,j and the two vertices of Oi,j adjacent to yi,j , xhi,j , and xh

′

i,j . Note
that the shortest path between xhi,j and xh′i,j inside the gadget Gi,j does not necessarily pass
through yi,j , but may pass along the cycle Oi,j instead. This is because the set Si,j of the
GT≤ instance may contain up to n2 elements, which would imply a direct edge from xhi,j to
vn2+(h−1)(4n2+1) on Oi,j . Thus we can give a lower bound of 2(2n2 − 1) + 3n2 + 1 = 7n2 − 1
for the distance between xhi,j and xh

′

i,j inside of Gi,j . This is also the shortest path between
these vertices in GI , since any other path needs to pass through at least three gadgets. J

By Claim 7, the diameter of Vi,j(a) is at most (8n2 + 3)(2a+ 1) as one needs to traverse
at most 2a + 1 gadgets Gi′,j′ with (i′, j′) ∈ Ai,j(a) and the paths of length 1 connecting
them, in order to reach any vertex of Vi,j(a) from any other. Assuming |Ai,j(a)| = (2a+ 1)2,
i.e., the set contains the maximum number of index pairs, the diameter of Vi,j(a) is at least
7n2(2a+ 1)− 1, since any path between two points of Vi,j(a) at maximum distance must
pass through at least 2a+ 1 gadgets Gi′,j′ with (i′, j′) ∈ Ai,j(a) and the 2a paths of length 1
connecting them.

Consider a ball Bv(2r) around a vertex v of radius 2r in GI , and let yi,j be the closest
vertex of Y to v. The distance between yi,j and v is at most 2(2n2 + 1) = 4n2 + 2, whether
v lies on Oi,j or on one of the paths of length 1 connecting Gi,j with an adjacent gadget.
Hence the ball Bv(2r) is contained in a ball of radius 4n2 + 2 + 2r around yi,j . The latter ball

A. E. Feldmann and D. Marx 19:9

is in turn contained in the Vi,j(a) set centered at yi,j if its diameter is at most the diameter
of Vi,j(a), i.e., 2(4n2 + 2 + 2r) ≤ 7n2(2a+ 1)− 1. This for instance is true if 2a + 1 = r

n2 ,
r ≥ 4n2 + 2, and n ≥ 1. From the upper bound on the diameter of a set Vi′,j′(a′), we also
know that Vi′,j′(a′) is contained in a ball of radius r around yi′,j′ if (8n2 + 3)(2a′ + 1) ≤ 2r,
which is true if 2a′ + 1 = 2r

8n2+3 . However we also want Vi′,j′(a′) to be non-empty, i.e.,
a′ ≥ 0, which by the latter equality means that r ≥ 4n2 + 3/2. We may cover all vertices
of Ai,j(a) with d 2a+1

2a′+1e
2 sets Ai′,j′(a′), since in Y these sets correspond to “squares rotated

by 45 degrees of diameter 2a+ 1 and 2a′ + 1, respectively”. Thus we can cover Vi,j(a) with
d 2a+1

2a′+1e
2 sets Vi′,j′(a′), i.e., if r ≥ 4n2 + 2 and n ≥ 2 we can cover a ball of radius 2r in GI

with d 2a+1
2a′+1e

2 = d4 + 3
2n2 e2 ≤ 25 balls of radius r.

Gi,j gadgets yi,j . is r < 4 + 1)2 = 81 cover a
If r < 4n2 + 2, a ball Bv(2r) has radius less than 8n2 + 4. Consider the case when v lies in

a gadget Gi,j of GI . The distance from Gi,j to any cycle Oi′,j′ for which |i− i′|+ |j− j′| ≥ 2
is at least 7n2 − 1 + 2n2 − 1 ≥ 8n2 + 4, as n ≥ 3: to reach Oi′,j′ a path from Gi,j first needs
to traverse a neighbouring gadget of Gi,j , which we know has diameter at least 7n2 − 1
by Claim 7, and the vertex xhi′,j′ has distance more than 2n2 − 1 from Oi′,j′ . Thus Bv(2r)
contains at most the four neighbouring gadgets of Gi,j and the paths of length 1 connected
to these. On each of the five cycles Oi′,j′ that intersect Bv(2r), at most 3 balls of radius r
are needed to cover all vertices in the intersection of Oi′,j′ and Bv(2r): as the edges of Oi′,j′
all have length 1 we may choose 3 vertices equidistantly at every b2rc-th vertex on the part
of Oi′,j′ in Bv(2r). As long as r ≥ 1, any path of length 1 that intersects Bv(2r) can be
covered by one ball of radius r. Any vertex yi′,j′ that lies in Bv(2r) can also be covered
by one ball of radius r. As Bv(2r) intersects at most 5 cycles Oi′,j′ , as well as at most 5
vertices yi′,j′ , and at most 16 paths of length 1, these amount to at most 36 balls of radius r.

If v does not lie in any gadget Gi,j , then it lies on some path of length 1 connecting two
gadgets. Given that r < 4n2 + 2, in this case the ball Bv(2r) intersects at most 2 cycles Oi,j
and vertices yi,j , and at most 7 paths of length 1, since by Claim 7 the diameter of a gadget
is at least 7n2 − 1 ≥ r if n ≥ 1. Thus in this case at most 17 balls of radius r suffice.

Finally, if r < 1, then a ball Bv(2r) contains only a subpath of some cycle Oi,j , a subpath
of a path of length 1 connecting two gadgets, or a single vertex yi,j , since any edge connecting
a cycle Oi,j to yi,j or some xhi,j has length more than 2n2 ≥ 1 if n ≥ 1. In this case at most 3
balls of radius r suffice to cover all vertices of Bv(2r). J

We next show that we can bound the parameters t and h, i.e. the treewidth and highway
dimension of GI , as a function of the parameter k = Θ(κ2). Note that the following lemma
bounds the highway dimension in terms of k, no matter how restrictive we make Definition 4
by increasing the constant c.

I Lemma 8. For any constant c of Definition 4, the graph GI has highway dimension at
most O(κ2).

Proof. For any scale r ∈ R+ and universal constant c ≥ 4 we will define a hub set Hr ⊆ V
hitting all shortest paths of length more than r in GI , such that |Hr ∩Bcr(v)| = O(κ2) for
any ball Bcr(v) of radius cr in GI . This bounds the highway dimension to O(κ2) according
to Definition 4.

Let X = {yi,j , xhi,j | h ∈ {1, 2, 3, 4} ∧ i, j ∈ [κ]}, i.e. it contains all vertices connecting
gadgets Gi,j to each other in addition to the vertices yi,j . If r > 8n2 + 2 then Hr = X. Any
shortest path containing only vertices of a cycle Oi,j has length at most 8n2 + 2, since the
cycle has length 16n2 + 4. Any (shortest) path that is a subpath of a path connecting two
gadgets has length at most 1. Hence any shortest path of length more than 8n2 + 2 must

SWAT 2018

19:10 Parameterized Hardness of k-Center in Transportation Networks

contain some vertex of X. The total size of X is 5κ2, and so any ball, no matter its radius,
also contains at most this many hubs of Hr.

If 1 ≤ r ≤ 8n2 + 2 then any path of length more than r but not containing any
vertex of X must lie on some cycle Oi,j = (v1, v2, . . . , v16n2+4, v1). We define the set
Wi,j = {v1+λbrc ∈ V (Oi,j) | λ ∈ N0}, i.e. it contains every r-th vertex on the cycle after
rounding down. This means that every path on Oi,j of length more than r contains a vertex
ofWi,j . Thus for these values of r we set Hr = X∪

⋃
i,j∈[κ] Wi,j . Any ball Bcr(v) of radius cr

contains O(c) hubs of any Wi,j . By Claim 7, the distance between any pair of the four
vertices xhi,j , where h ∈ {1, 2, 3, 4}, that connect a gadget Gi,j to other gadgets, is more
than 7n2− 1. This means that Bcr(v) can only intersect O(c2) gadgets, since cr ≤ c(8n2 + 2)
and the gadgets are connected in a grid-like fashion. Hence the ball Bcr(v) only contains O(c)
hubs for each of the O(c2) sets Wi,j for which Bcr(v) intersect the respective gadget Gi,j .
At the same time each gadget contains only 5 vertices of X. Thus if c is a constant, then the
number of hubs of Hr in Bcr(v) is constant.

If r < 1, a path of length more than r may be a subpath of a path connecting two gadgets.
Let Pi,j be the path connecting x2

i,j and x4
i,j+1 for j ≤ κ−1, and let P ′i,j be the path connecting

x3
i,j and x1

i+1,j for i ≤ κ−1. Recall that each of these paths consists of n+2 edges of length 1
n+2

each. If Pi,j = (u0, u1, . . . , un+2), we define the set Ui,j = {uλbrc(n+2) ∈ V (Pi,j) | λ ∈ N0},
and if P ′i,j = (u0, u1, . . . , un+2), we define the set U ′i,j = {uλbrc(n+2) ∈ V (P ′i,j) | λ ∈ N0}, i.e.
these sets contain vertices of consecutive distance r on the respective paths, after rounding
down. Now let Hr =

⋃
i,j∈[κ] V (Gi,j) ∪ Ui,j ∪ U ′i,j , so that every path of length more than r

contains a hub of Hr. Any ball Bcr(v) of radius cr < c intersects only O(c2) gadgets Gi,j , as
observed above. As the edges of a cycle Oi,j have length 1, the ball B contains only O(c)
vertices of Oi,j . Thus Bcr(v) contains O(c) hubs of V (Gi,j)∪Ui,j ∪U ′i,j for each of the O(c2)
gadgets Gi,j it intersects. For constant c, this proves the claim. J

To bound the treewidth of GI we use so-called cops and robber games. Given a graph
G and τ ∈ N, a state of the τ cops and robber game on G is a pair (K, p) where K ⊆ V

with |K| ≤ τ , and p ∈ V \K. The set K encodes the positions of the τ cops, while p is the
position of the robber. The game proceeds in rounds, where each round z ∈ N0 is associated
with a state (Kz, pz). Initially, in round 0 the cops first choose positions K0 and then the
robber chooses a position p0 ∈ V \K0. In each round z ≥ 1, first the cops choose a new
position Kz, after which the robber can choose a position pz ∈ V \Kz, such that pz and pz−1
lie in the same connected component of G− (Kz ∩Kz−1). The cops win the game if after
a finite number of rounds, the robber has no position to choose, i.e., the robber is caught.
By [26], a graph G has treewidth t if and only if t+ 1 cops can win in G.

I Lemma 9. The graph GI has treewidth at most κ+O(1).

Proof. We prove that κ + O(1) cops can win the cops and robber game on GI . For each
i, j ∈ [κ] we define the sets X2

i,j = {x2
i′,j | i′ ∈ [i]} and X4

i,j = {x4
i′,j | i′ ∈ [κ] \ [i − 1]} and

let Ki,j = {yi,j , x1
i,j , x

3
i,j} ∪X2

i,j ∪X4
i,j be a position for the cops. The initial position of the

cops is K1,1, and they will sweep the graph GI “from left to right” with increasing index j.
More precisely we will describe a strategy, which uses a finite number of intermediate rounds
to go from position Ki,j to position Ki+1,j for each i ≤ κ − 1, and from position Kκ,j to
position K1,j+1 for each j ≤ κ− 1. After reaching position Kκ,κ the robber will be caught.

Consider a position Ki,j and note that the three connected components left after removing
all vertices of Ki,j from GI are (a) the cycle Oi,j , (b) the subgraph Li,j “left of” GI induced
by all gadgets Gi′,j′ and paths Pi′,j′ , P ′i′,j′ for which j′ ≤ j − 1 and i′ ≤ κ, but also the
gadgets Gi′,j′ and paths P ′i′,j′ for which j′ = j and i′ ≤ i− 1, and finally (c) the subgraph

A. E. Feldmann and D. Marx 19:11

Ri,j “right of” GI induced by all gadgets Gi′,j′ and paths Pi′,j′ , P ′i′,j′ for which either j′ = j

and i′ ≥ i+ 1, or j′ ≥ j+ 1 and i′ ≤ κ, but also the paths Pi′,j where i′ ≤ i and the path P ′i,j .
The robber’s position p has to be in one of these subgraphs, and we will describe a strategy
of the cops, which guarantees that p is a vertex of Ri,j if the robber has not been caught yet.
As Rκ,κ is empty, this means that the cops are able to catch the robber eventually.

In the initial position K1,1 the position p cannot be in L1,1 as this graph is empty. We
now show how in any position Ki,j the cycle Oi,j can be traversed by the cops using only
three additional cops to those in Ki,j , to catch the robber in case his position p is on Oi,j . If
Oi,j = (v1, v2, . . . , v16n2+4, v1) we define a sequence of positions Kh = Ki,j ∪ {v1, vh, vh+1}
where h ∈ [16n2 + 3]. Note that v1, vh+1 ∈ Kh ∩Kh+1 so that Oi,j − (Kh ∩Kh+1) consists
of the two paths Qh1 = (v2, v3, . . . , vh) and Qh2 = (vh+2, vh+3, v16n2+4). The former path Qh1
is empty for h = 1 and thus the robber cannot move to a position on Qh1 throughout the
whole sequence in any step h. In the last step h = 16n2 + 3 however, Q16n2+3

2 is empty,
and so the robber would not have any position to choose in this step if p was on Qh2 on any
previous step h. Thus we may assume that the robber’s position lies in Ri,j by induction.

If the cops are in position Ki,j for some i ≤ κ− 1, then they can move to position Ki+1,j
as follows. The cops first move to position Ki,j ∪Ki+1,j , which contains κ+ 6 vertices. By
induction, the position p of the robber is now in Ri,j−Ki+1,j , i.e., p lies either in Ri+1,j , Oi+1,j ,
or P ′i,j . As described above, the cops can catch the robber if p is on the cycle Oi,j . A similar
strategy can be used to traverse the path P ′i,j : if P ′i,j = (u0, u1, . . . , un+2) then we define a
sequence of positionsKh = Ki,j∪Ki+1,j∪{uh−1, uh} for h ∈ [n+1], so that P ′i,j−(Kh∩Kh+1)
consists of the two paths Qh1 = (u1, u2, . . . , uh−1) and Qh2 = (uh+1, uh+2, . . . , un+1), since
u0 = x3

i,j ∈ Ki,j and un+2 = x1
i+1,j ∈ Ki+1,j . As Q1

1 is empty and uh ∈ Kh ∩Kh+1, the
robber’s position cannot be on Qh1 in any subsequent step h, and as Qn+1

2 is empty, the
robber is caught if p lies on path P ′i,j . Thus the only possibility left for the robber not to be
caught is to be in Ri+1,j . In this case the cops can switch to position Ki+1,j and continue
their chase.

Finally the cops also need a strategy to move from position Kκ,j to position K1,j+1 for
each j ≤ κ−1. For this we define the intermediate positions K ′i,j = X2

i,j ∪X4
i,j , which contain

κ+ 1 cops each. Note that Rκ,j is a connected component of GI − (Kκ,j ∩K ′κ,j). Thus the
cops can safely switch from position Kκ,j to K ′κ,j , as the robber is in Rκ,j by induction. For
any i ∈ [κ], removing the vertices of K ′i,j from GI leaves three connected components of
which one is Pi,j without the endpoints, and one is a component R′i,j , which is Ri,j without
the paths Pi′,j where i′ ≥ i. By induction the robber’s position p is in one of these two
components. If p is on Pi,j , the above strategy for paths shows how to catch the robber.
Thus the only possibility left is that p lies in R′i,j . If i ≥ 2, the cops can switch to position
K ′i−1,j , after which p again lies either on Pi−1,j or in R′i−1,j . For i = 1, note that L1,j+1 is
a connected component of GI − (K1,j+1 ∩K ′1,j), which by induction does not contain the
robber. Thus when switching from position K ′1,j to K1,j+1 the robber must either be on
O1,j+1 or R1,j+1. We know how to catch the robber if he happens to be on O1,j+1 using
only three additional cops, and so the only case left is that p is in R1,j+1.

Each of the used positions for the cops has at most κ + O(1) vertices, and thus the
treewidth of GI is bounded by the same term. J

The reduction given in Section 2 together with Lemmas 6, 8 and 9 imply Theorem 1, since
the GT≤ problem is W[1]-hard [8] for parameter κ, and we may assume w.l.o.g. that n ≥ 3.
Moreover κ = Θ(k) and, under ETH, GT≤ has no f(κ) · no(κ) time algorithm [8] for any
computable function f .

SWAT 2018

19:12 Parameterized Hardness of k-Center in Transportation Networks

4 An algorithm for low doubling metrics

In this section we give a simple algorithm that generalizes one from [4], which for D-
dimensional Lq metrics compute a (1 + ε)-approximation in time f(ε, k,D) · nO(1). In
particular, any such metric has doubling dimension O(D). Here we assume that the input
metric has doubling dimension d. A fundamental observation about metrics of bounded
doubling dimension is the following, which can be proved by a simple recursive application
of Definition 2. Here the aspect ratio is the diameter of X divided by the minimum distance
of the metric.

I Lemma 10 ([17]). Let (X,dist) be a metric with doubling dimension d and Y ⊆ X be a
subset with aspect ratio α. Then |Y | ≤ 2ddlog2 αe.

To compute a (1 + ε)-approximation to k-Center given a graph G with vertex set V ,
we first compute its shortest-path metric (V,dist). We then compute a net of this metric,
which is defined as follows.

I Definition 11. For a metric (X,dist), a subset Y ⊆ X is called a δ-cover if for every
u ∈ X there is a v ∈ Y such that dist(u, v) ≤ δ. A δ-net is a δ-cover with the additional
property that dist(u, v) > δ for all vertices u, v ∈ Y .

Note that a δ-net can be computed greedily in polynomial time. The first step of our
algorithm is to guess the optimum cost ρ by trying each of the

(
n
2
)
possible values. For each

guess we compute an ερ
2 -net Y ⊆ X. We know that the metric (V,dist) can be covered by k

balls of diameter 2ρ each, which means that the aspect ratio of Y inside of each ball is at
most 4/ε. Thus by Lemma 10, each ball contains 1/εO(d) vertices of Y , and so |Y | ≤ k/εO(d).

An optimum k-Center solution C ⊆ Y for (Y,dist) can be computed by brute force in(|Y |
k

)
= kk/εO(kd) steps. Since every center of the optimum solution C∗ ⊆ V of the input

graph has a net point of Y at distance at most ερ
2 , there exists a k-Center solution in Y

of cost at most (1 + ε/2)ρ. The computed center set C ⊆ Y thus also has cost at most ερ
2 .

Therefore C covers all of V with balls of radius (1 + ε)ρ, since every vertex of V is at distance
ερ
2 from some vertex of Y . Thus C is a (1+ε)-approximation of the input graph. Considering
the guessed values of ρ in increasing order, outputting the first computed solution with at
most k centers gives the algorithm of Theorem 3.

References
1 I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension

and provably efficient shortest path algorithms. Journal of the ACM, 63(5):41, 2016.
2 I. Abraham, D. Delling, A. Fiat, A.V. Goldberg, and R.F. Werneck. VC-dimension and

shortest path algorithms. In ICALP, pages 690–699, 2011.
3 I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension, shortest

paths, and provably efficient algorithms. In SODA, pages 782–793, 2010.
4 P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering.

Algorithmica, 33(2):201–226, 2002.
5 H. Bast, S. Funke, and D. Matijevic. Ultrafast shortest-path queries via transit nodes. 9th

DIMACS Implementation Challenge, 74:175–192, 2009.
6 H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time

shortest-path queries in road networks. In ALENEX, pages 46–59, 2007.
7 A. Becker, P. N. Klein, and D. Saulpic. Polynomial-time approximation schemes for k-

center and bounded-capacity vehicle routing in metrics with bounded highway dimension.
ArXiv e-prints, arXiv:1707.08270 [cs.DS], 2017.

A. E. Feldmann and D. Marx 19:13

8 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

9 E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter al-
gorithms for (k, r)-center in planar graphs and map graphs. Transactions on Algorithms,
1(1):33–47, 2005.

10 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC. ACM
Press, 2014.

11 R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Springer,
2013.

12 David Eisenstat, Philip N Klein, and Claire Mathieu. Approximating k-center in planar
graphs. In SODA, pages 617–627, 2014.

13 T. Feder and D. Greene. Optimal algorithms for approximate clustering. In STOC, pages
434–444, 1988.

14 A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1+ε)-embedding of low highway
dimension graphs into bounded treewidth graphs. In ICALP, pages 469–480, 2015.

15 A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1+ε)-embedding of low highway
dimension graphs into bounded treewidth graphs. ArXiv preprint arXiv:1502.04588, 2015.

16 Andreas Emil Feldmann. Fixed parameter approximations for k-center problems in low
highway dimension graphs. In ICALP, pages 588–600. Springer Berlin Heidelberg, 2015.

17 A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In FOCS, pages 534–543, 2003.

18 D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

19 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters,
tight bounds, and approximation for (k, r)-center. In ISAAC, pages 50:1–50:13, 2017.

20 P. Klein. Personal communication, 2017.
21 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kerneliz-

ation. In STOC, pages 224–237. ACM Press, 2017.
22 D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal,

51(1):60–78, 2008.
23 Dániel Marx. Efficient approximation schemes for geometric problems? In European

Symposium on Algorithms, pages 448–459. Springer, 2005.
24 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility

location problems using Voronoi diagrams. In ESA, pages 865–877. Springer, 2015.
25 J. Plesník. On the computational complexity of centers locating in a graph. Aplikace

matematiky, 25(6):445–452, 1980.
26 Paul D Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-

width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.
27 Karthik Srikanta, Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized

complexity of approximating dominating set. arXiv preprint, abs/1711.11029, 2017.
28 V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., 2001.
29 David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-

bridge university press, 2011.

SWAT 2018

Algorithms for the Discrete Fréchet Distance
Under Translation
Omrit Filtser1

Department of Computer Science, Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel
omritna@cs.bgu.ac.il

Matthew J. Katz2

Department of Computer Science, Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel
matya@cs.bgu.ac.il

Abstract
The (discrete) Fréchet distance (DFD) is a popular similarity measure for curves. Often the

input curves are not aligned, so one of them must undergo some transformation for the distance
computation to be meaningful. Ben Avraham et al. [5] presented anO(m3n2(1+log(n/m)) log(m+
n))-time algorithm for DFD between two sequences of points of sizes m and n in the plane under
translation. In this paper we consider two variants of DFD, both under translation.

For DFD with shortcuts in the plane, we present an O(m2n2 log2(m+n))-time algorithm, by
presenting a dynamic data structure for reachability queries in the underlying directed graph. In
1D, we show how to avoid the use of parametric search and remove a logarithmic factor from the
running time of (the 1D versions of) these algorithms and of an algorithm for the weak discrete
Fréchet distance; the resulting running times are thus O(m2n(1 + log(n/m))), for the discrete
Fréchet distance, and O(mn log(m+ n)), for its two variants.

Our 1D algorithms follow a general scheme introduced by Martello et al. [21] for the Balanced
Optimization Problem (BOP), which is especially useful when an efficient dynamic version of the
feasibility decider is available. We present an alternative scheme for BOP, whose advantage is that
it yields efficient algorithms quite easily, without having to devise a specially tailored dynamic
version of the feasibility decider. We demonstrate our scheme on the most uniform path problem
(significantly improving the known bound), and observe that the weak DFD under translation in
1D is a special case of it.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases curve similarity, discrete Fréchet distance, translation, algorithms, BOP

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.20

1 Introduction

Polygonal curves play an important role in many applied domains, and it is a challenging
task to compare them in a way that will reflect our intuitive notion of resemblance. The
Fréchet distance is a useful and well studied similarity measure that has been applied in
many diverse settings. Consider a man and a dog connected by a leash, each walking along
a curve. They can control their speed but they are not allowed to backtrack. The Fréchet

1 O. Filtser was supported by the Ministry of Science, Technology & Space, Israel, and by the Lynn and
William Frankel Center.

2 M. Katz was supported by grant 1884/16 from the Israel Science Foundation and grant 2014/170 from
the US-Israel Binational Science Foundation.

© Omrit Filtser and Matthew J. Katz;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:omritna@cs.bgu.ac.il
mailto:matya@cs.bgu.ac.il
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Algorithms for the Discrete Fréchet Distance Under Translation

distance between the two curves is the minimum length of a leash that is sufficient for such a
dog-walk from the starting points to the end points of the curves.

Intuitively, the discrete Fréchet distance (DFD) replaces the curves by two sequences of
points A = (a1, . . . , an) and B = (b1, . . . , bm), and replaces the man and dog by two frogs
(connected by a leash), the A-frog and the B-frog, initially placed at a1 and b1, respectively.
At each move, the A-frog or the B-frog (or both) jumps from its current point to the next one.
We are interested in the minimum length of a leash that allows the A-frog and the B-frog
to reach an and bm, respectively. The discrete distance is considered a good approximation
of the continuous one, and is somewhat easier to compute. Both versions of the Fréchet
distance (continuous and discrete) can be computed in roughly O(n2)-time [1, 2, 7, 8, 14].

When the curves or the sampled sequences of points are generated by physical sensors,
such as GPS devices, inaccurate measurements may occur. Since the Fréchet distance is a
bottleneck measure and is thus very sensitive to outliers, several variants for handling outliers
have been proposed, among these are: average and summed Fréchet distance [6, 10, 13],
partial Fréchet similarity [9], and Fréchet distance with shortcuts [4, 11,12].

In the (one-sided) discrete Fréchet distance with shortcuts (DFDS), we allow the A-frog
to jump to any point that comes later in its sequence, rather than to only the next point.
The B-frog has to visit all the B points in order, as in the standard discrete Fréchet distance.
Driemel and Har-Peled [12] introduced the (continuous) Fréchet distance with shortcuts.
They considered the vertex-restricted version where the dog is allowed to take shortcuts only
by walking from a vertex v to any succeeding vertex w along the line segment connecting v
and w, and presented an O(n5 logn)-time algorithm for this version. Later, Buchin et al. [11]
showed that in the general case, where the dog is allowed to take shortcuts between any
two points on its (continuous) curve, the problem becomes NP-hard. In the discrete case,
however, the situation is much better. Ben Avraham et al. [4] presented an O((m+ n)6/5+ε)
expected-time randomized algorithm for the problem. Moreover, they showed that the
decision version in this case can be solved in linear time.

Another well-known variant of the Fréchet distance is the weak discrete Fréchet distance
(WDFD), in which the frogs are allowed to jump also backwards to the previous point in
their sequence. Alt and Godau [2] showed that the continuous weak Fréchet distance can be
computed in O(mn log(mn)) time.

In many applications, the input curves are not necessarily aligned, and one of them
needs to be adjusted (i.e., undergo some transformation) for the distance computation to be
meaningful. In the discrete Fréchet distance under translation, we are given two sequences of
points A = (a1, . . . , an) and B = (b1, . . . , bm), and wish to find a translation t that minimizes
the discrete Fréchet distance between A and B + t.

For points in the plane, Alt et al. [3] gave an O(m3n3(m+n)2 log(m+n))-time algorithm
for computing the continuous Fréchet distance under translation, and an algorithm computing
a (1 + ε)-approximation in O(ε−2mn) time. In 3D, Wenk [24] showed that the minimum
continuous Fréchet distance under any reasonable family of transformations, can be computed
in O((m+ n)3f+2 log(m+ n)) time, where f is the number of degrees of freedom for moving
one sequence w.r.t. the other. For translations only (f = 3), the minimum continuous Fréchet
distance in R3 can be computed in O((m+ n)11 log(m+ n)) time.

In the discrete case, the situation is a little better. For points in the plane, Jiang et
al. [20] gave an O(m3n3 log(m + n))-time algorithm for DFD under translation, and an
O(m4n4 log(m+n))-time algorithm when both rotations and translations are allowed. Mosig
et al. [22] presented an approximation algorithm for DFD under translation, rotation and
scaling in the plane, with approximation factor close to 2 and running time O(m2n2). Finally,
Ben Avraham et al. [5] presented an O(m3n2(1 + log(n/m)) log(m+ n))-time algorithm for
DFD under translation.

O. Filtser and M. J. Katz 20:3

1.1 Preliminaries
Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points. We define a directed
graph G = G(V = A×B,E = EA ∪EB ∪EAB), whose vertices are the possible positions of
the frogs and whose edges are the possible moves between positions:
EA = {〈(ai, bj), (ai+1, bj)〉} , EB = {〈(ai, bj), (ai, bj+1)〉} , EAB = {〈(ai, bj), (ai+1, bj+1)〉} .

The set EA corresponds to moves where only the A-frog jumps forward, the set EB
corresponds to moves where only the B-frog jumps forward, and the set EAB corresponds
to moves where both frogs jump forward. Notice that any valid sequence of moves (with
unlimited leash length) corresponds to a path in G from (a1, b1) to (an, bm), and vice versa.

It is likely that not all positions in A × B are valid; for example, when the leash is
short. We thus assume that we are given an indicator function σ : A×B → {0, 1}, which
determines for each position whether it is valid or not. Now, we say that a position (ai, bj)
is a reachable position (w.r.t. σ), if there exists a path P in G from (a1, b1) to (ai, bj),
consisting of only valid positions, i.e., for each position (ak, bl) ∈ P , we have σ(ak, bl) = 1.

Let d(ai, bj) denote the Euclidean distance between ai and bj . For any distance δ ≥ 0,

the function σδ is defined as follows: σδ(ai, bj) =
{

1, d(ai, bj) ≤ δ
0, otherwise

.

The discrete Fréchet distance ddF (A,B) is the smallest δ ≥ 0 for which (an, bm) is a
reachable position w.r.t. σδ.

One-sided shortcuts. Let σ be an indicator function. We say that a position (ai, bj) is an
s-reachable position (w.r.t. σ), if there exists a path P in G from (a1, b1) to (ai, bj), such
that σ(a1, b1) = 1, σ(ai, bj) = 1, and for each bl, 1 < l < j, there exists a position (ak, bl) ∈ P
that is valid (i.e., σ(ak, bl) = 1). We call such a path an s-path. In general, an s-path
consists of both valid and non-valid positions. Consider the sequence S of positions that is
obtained from P by deleting the non-valid positions. Then S corresponds to a sequence of
moves, where the A-frog is allowed to skip points, and the leash satisfies σ. Since in any path
in G the two indices (of the A-points and of the B-points) are monotonically non-decreasing,
it follows that in S the B-frog visits each of the points b1, . . . , bj , in order, while the A-frog
visits only a subset of the points a1, . . . , ai (including a1 and ai), in order.

The discrete Fréchet distance with shortcuts dsdF (A,B) is the smallest δ ≥ 0 for
which (an, bm) is an s-reachable position w.r.t. σδ.

Weak Fréchet distance. Let Gw = G(V = A × B,Ew), where Ew = {(u, v)|〈u, v〉 ∈
EA ∪ EB ∪ EAB}. That is, Gw is an undirected graph obtained from the graph G of the
‘strong’ version, which contains directed edges, by removing the directions from the edges.
Let σ be an indicator function. We say that a position (ai, bj) is a w-reachable position
(w.r.t. σ), if there exists a path P in Gw from (a1, b1) to (ai, bj) consisting of only valid
positions. Such a path corresponds to a sequence of moves of the frogs, with a leash satisfying
σ, where backtracking is allowed.

The weak discrete Fréchet distance dwdF (A,B) is the smallest δ ≥ 0 for which (an, bm)
is a w-reachable position w.r.t. σδ.

The translation problem. Given two sequences of points A = (a1, . . . , an) and B =
(b1, . . . , bm), we wish to find a translation t∗ that minimizes ddF (A,B+t) (similarly, dsdF (A,B+
t) and dwdF (A,B + t)), over all translations t. Denote d̂dF (A,B) = mint{ddF (A,B + t)},
d̂sdF (A,B) = mint{dsdF (A,B + t)} and d̂wdF (A,B) = mint{dwdF (A,B + t)}.

SWAT 2018

20:4 Algorithms for the Discrete Fréchet Distance Under Translation

1.2 Our results
As mentioned earlier, Ben Avraham et al. [5] presented an algorithm that computes DFD
under translation in O(m3n2(1 + log(n/m)) log(m+ n)) time. Given sequences A and B and
an indicator function σ, they construct a dynamic data structure in O(mn) time (which also
stores the information whether (an, bm) is reachable or not). Following a single change (i.e.,
some valid position becomes non-valid or vice versa), the data structure can be updated in
O(m(1 + log(n/m))) time.

Our first major result is an efficient algorithm for DFDS under translation. We provide a
dynamic data structure which supports updates in O(log(m+ n)) time per update, where in
an update the value of σ for some position (ai, bj) changes from valid to non-valid or vice
versa. Following an update, one can determine whether the final position (an, bm) is reachable
from the starting position (a1, b1), with shortcuts, in O(log(m+n)) time. The data structure
is based on Sleator and Tarjan’s Link-Cut Trees structure [23], and, by plugging it into the
optimization algorithm of Ben Avraham et al. [5], we obtain an O(m2n2 log2(m+ n))-time
algorithm for DFDS under translation; an order of magnitude faster than the the algorithm
for DFD under translation.

In 1D, the optimization algorithm of [5] yields an O(m2n(1 + log(n/m)) log(m+n))-time
algorithm for DFD, using their reachability structure, an O(mn log2(m+ n))-time algorithm
for DFDS, using our reachability with shortcuts structure, and an O(mn log2(m+ n))-time
algorithm for WDFD, using a reachability structure of Eppstein et al. [15] for undirected
planar graphs. We describe a simpler optimization algorithm for 1D, which avoids the need
for parametric search and yields an O(m2n(1 + log(n/m)))-time algorithm for DFD and
O(mn log(m + n))-time algorithms for DFDS and WDFD; i.e., we remove a logarithmic
factor from the bounds obtained with the algorithm of Ben Avraham et al.

Our optimization algorithm for 1D follows a general scheme introduced by Martello et
al. [21] for the Balanced Optimization Problem (BOP). BOP is defined as follows. Let
E = {e1, . . . , el} be a set of l elements (where here l = O(mn)), c : E → R a cost function,
and F a set of feasible subsets of E. Find a feasible subset S∗ ∈ F that minimizes
max{c(ei) : ei ∈ S} −min{c(ei) : ei ∈ S}, over all S ∈ F . Given a feasibility decider that
decides whether a subset is feasible or not in f(l) time, the algorithm of [21] finds an optimal
range in O(lf(l) + l log l)-time.

The scheme of [21] is especially useful when an efficient dynamic version of the feasibility
decider is available, as in the case of DFD (where f(l) = O(m(1 + log(n/m)))), DFDS (where
f(l) = O(log(m+ n))), and WDFD (where f(l) = O(log(m+ n))).

Our second major result is an alternative scheme for BOP. Our optimization scheme
does not require a specially tailored dynamic version of the feasibility decider in order
to obtain faster algorithms (than the naive O(lf(l) + l log l) one), rather, whenever the
underlying problem has some desirable properties, it produces algorithms with running time
O(f(l) log2 l+ l log l). Thus, the advantage of our scheme is that it yields efficient algorithms
quite easily, without having to devise an efficient dynamic version of the feasibility decider, a
task which is often difficult if at all possible.

We demonstrate our scheme on the most uniform path problem (MUPP). Given a weighted
graph G = (V,E,w) with n vertices and m edges and two vertices s, t ∈ V , the goal is to
find a path P ∗ in G between s and t that minimizes max{w(e) : e ∈ P}−min{w(e) : e ∈ P},
over all paths P from s to t. This problem was introduced by Hansen et al. [18], who gave
an O(m2)-time algorithm for it. By using a dynamic connectivity data structure of Holm et
al. [19], one can reduce the running time to O(m log2 n). We apply our scheme to MUPP
to obtain a much simpler algorithm with the same (O(m log2 n)) running time. Finally, we

O. Filtser and M. J. Katz 20:5

observe that WDFD under translation in 1D can be viewed as a special case of MUPP, so
we immediately obtain a much simpler algorithm than the one based on Eppstein et al.’s
dynamic data structure (see above), at the cost of an additional logarithmic factor.

2 DFDS under translation

The discrete Fréchet distance (and its shortcuts variant) between A and B is determined by
two points, one from A and one from B. Consider the decision version of the translation
problem: given a distance δ, decide whether d̂dF (A,B) ≤ δ (or d̂sdF (A,B) ≤ δ).

Ben Avaraham et al. [5] described a subdivision of the plane of translations: given two
points a ∈ A and b ∈ B, consider the disk Dδ(a− b) of radius δ centered at a− b, and notice
that t ∈ Dδ(a − b) if and only if d(a − b, t) ≤ δ (or d(a, b + t) ≤ δ). That is, Dδ(a − b) is
precisely the set of translations t for which b + t is at distance at most δ from a. They
construct the arrangement Aδ of the disks in {Dδ(a− b) | (a, b) ∈ A× B}, which consists
of O(m2n2) cells. Then, they initialize their dynamic data structure for (discrete Fréchet)
reachability queries, and traverse the cells of Aδ such that, when moving from one cell to its
neighbor, the dynamic data structure is updated and queried a constant number of times in
O(m(1 + log(n/m)) time. Finally, they use parametric search in order to find an optimal
translation, which adds only a O(log(m+ n)) factor to the running time.

In this section we present a dynamic data structure for s-reachability queries, which
allows updates and queries in O(log(m+ n)) time. We observe that the same parametric
search can be used in the shortcuts variant, since the critical values are the same. Thus,
by combining our dynamic data structure with the parametric search of [5], we obtain an
O(m2n2 log2(m+ n))-time algorithm for DFDS under translation.

We now describe the dynamic data structure for DFDS. Consider the decision version
of the problem: given a distance δ, we would like to determine whether dsdF (A,B) ≤ δ, i.e.,
whether (an, bm) is an s-reachable position w.r.t. σδ. In [4], Ben Avraham et al. presented a
linear time algorithm for this decision problem. Informally, the decision algorithm on the
graph G is as follows: starting at (a1, b1), the B-frog jumps forward (one point at a time) as
long as possible, while the A-frog stays in place, then the A-frog makes the smallest forward
jump needed to allow the B-frog to continue. They continue advancing in this way, until
they either reach (an, bm) or get stuck.

Consider the (directed) graph Gδ = G(V = A×B,E = E′A ∪ E′B), where
E′A = {〈(ai, bj), (ai+1, bj)〉 | σδ(ai, bj) = 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}, and
E′B = {〈(ai, bj), (ai, bj+1)〉 | σδ(ai, bj) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}.

In Gδ, if the current position of the frogs is valid, only the B-frog may jump forward
and the A-frog stays in place. And, if the current position is non-valid, the B-frog stays
in place and only the A-frog may jump forward. Let Mδ be an n ×m matrix such that
Mi,j = σδ(ai, bj). Each vertex in Gδ corresponds to a cell of the matrix. The directed edges
of Gδ correspond to right-moves (the B-frog jumps forward) and upward-moves (the A-frog
jumps forward) in the matrix. Any right-move is an edge originating at a valid vertex, and
any upward-move is an edge originating at a non-valid vertex (see Figure 1).

I Observation 1. Gδ is a set of rooted binary trees, where a root is a vertex of out-degree 0.

Proof. Clearly, G is a directed acyclic graph, and Gδ is a subgraph of G. In Gδ, each vertex
has at most one outgoing edge. It is easy to see (by induction on the number of vertices)
that such a graph is a set of rooted trees. J

SWAT 2018

20:6 Algorithms for the Discrete Fréchet Distance Under Translation

a1

a2

a3

an

...

b1 b2 b3 bn· · ·

Figure 1 The graph Gδ on the matrix Mδ. The black vertices are valid and the white ones are
non-valid.

We call a path P in G from (ai, bj) to (ai′ , bj′), i ≤ i′, j ≤ j′, a partial s-path, if for
each bl, j ≤ l < j′, there exists a position (ak, bl) ∈ P that is valid (i.e., σδ(ak, bl) = 1).

I Observation 2. All the paths in Gδ are partial s-paths.

Proof. Let P be a path from (ai, bj) to (ai′ , bj′) in Gδ. Each right-move in P advances the
B-frog by one step forward. If j = j′ then the claim is vacuously true. Else, P must contain
a right-move for each bl, j ≤ l < j′. Any right-move is an edge originating at a valid vertex,
thus for any j ≤ l < j′ there exists a position (ak, bl) ∈ P such that σδ(ak, bl) = 1. J

Denote by r(ai, bj) the root of (ai, bj) in Gδ.

I Lemma 3. (an, bm) is an s-reachable position in G w.r.t. σδ, if and only if σδ(a1, b1) = 1,
σδ(an, bm) = 1, and r(a1, b1) = (ai, bm) for some 1 ≤ i ≤ n.

Proof. Assume that σδ(a1, b1) = 1, σδ(an, bm) = 1, and r(a1, b1) = (ai, bm) for some
1 ≤ i ≤ n. Then by Observation 2 there is a partial s-path from (a1, b1) to (ai, bm) in Gδ,
and since σδ(a1, b1) = 1 and σδ(an, bm) = 1 we have an s-path from (a1, b1) to (an, bm).

Now assume that (an, bm) is an s-reachable position in G w.r.t. σδ. Then, in particular,
σδ(a1, b1) = 1 and σδ(an, bm) = 1, and there exists an s-path P in G from (a1, b1) to (an, bm).
Let P ′ be the path in Gδ from (a1, b1) to r(a1, b1). Informally, we claim that P ′ is always
not above P . More precisely, we prove that if a position (ai, bj) is an s-reachable position in
G, then there exists a position (ai′ , bj) ∈ P ′, i′ ≤ i, such that σδ(ai′ , bj) = 1. In particular,
since (an, bm) is an s-reachable position in G, there exists a position (ai′ , bm) ∈ P ′, i′ ≤ n,
such that σδ(ai′ , bm) = 1, and thus r(a1, b1) = (ai′′ , bm) for some i′ ≤ i′′ ≤ n.

We prove this claim by induction on j. The base case where j = 1 is trivial, since (a1, b1) ∈
P ∩P ′ and σδ(a1, b1) = 1. Let P be an s-path from (a1, b1) to (ai, bj+1), then σδ(ai, bj+1) = 1.
Let (ak, bj), k ≤ i, be a position in P such that σδ(ak, bj) = 1. (ak, bj) is an s-reachable
position in G, so by the induction hypothesis there exists a vertex (ak′ , bj) ∈ P ′, k′ ≤ k, such
that σδ(ak′ , bj) = 1. By the construction of Gδ, there is an edge 〈(ak′ , bj), (ak′ , bj+1)〉, and we
have (ak′ , bj+1) ∈ P ′. Now, let k′ ≤ i′ ≤ i be the smallest index such that σδ(ai′ , bj+1) = 1.
Since there are no right-moves in P ′ before reaching (ai′ , bj+1), we have (ai′ , bj+1) ∈ P ′. J

We represent Gδ using the Link-Cut tree data structure, which was developed by Sleator
and Tarjan [23]. The data structure stores a set of rooted trees and supports the following
operations in O(logn) amortized time:

O. Filtser and M. J. Katz 20:7

Link(v, u) – connect a root node v to another node u as its child.
Cut(v) – disconnect the subtree rooted at v from the tree to which it belong.
FindRoot(v) – find the root of the tree to which v belongs.

Now, in order to maintain the representation of Gδ following a single change in σδ (i.e.,
when switching one position (ai, bj) from valid to non-valid or vice versa), one edge should
be removed and one edge should be added to the structure. We update our structure as
follows: Let T be the tree containing (ai, bj).

When switching (ai, bj) from valid to non-valid, we first need to remove the edge
〈(ai, bj), (ai, bj+1)〉, if j < m, by disconnecting (ai, bj) (and its subtree) from
T (Cut(ai, bj)). Then, if i < n, we add the edge 〈(ai, bj), (ai+1, bj)〉 by connecting (ai, bj)
(which is now the root of its tree) to (ai+1, bj) as its child (Link((ai, bj), (ai+1, bj))).
When switching a position from non-valid to valid, we need to remove the edge 〈(ai, bj),
(ai+1, bj)〉, if i < n, by disconnecting (ai, bj) (and its subtree) from T (Cut(ai, bj)). Then,
if j < m, we add the edge 〈(ai, bj), (ai, bj+1)〉 by connecting (ai, bj) (which is now the
root of its tree) to (ai, bj+1) as its child (Link((ai, bj), (ai, bj+1))).

Assume σδ(a1, b1) = σδ(an, bm) = 1. By Lemma 3, in the Link-Cut tree data structure
representing Gδ, FindRoot(a1, b1) is (ai, bm) for some 1 ≤ i ≤ n if and only if (an, bm) is an
s-reachable position in G w.r.t. σδ. We thus obtain the following theorem.

I Theorem 4. Given sequences A and B and an indicator function σδ, one can construct a
dynamic data structure in O(mn log(m+ n)) time, which supports the following operations
in O(log(m+ n)) time: (i) change a single value of σδ, and (ii) check whether (an, bm) is an
s-reachable position in G w.r.t. σδ.

I Theorem 5. Given sequences A and B with n and m points respectively in the plane,
d̂sdF (A,B) can be computed in O(m2n2 log2(m+ n))-time.

3 Translation in 1D

The algorithm of [5] can be generalized to any constant dimension d ≥ 1; only the size of the
arrangement of balls, Aδ, changes to O(mdnd). The running time of the algorithm for two
sequences of points in Rd is therefore O(md+1nd(1 + log(n/m)) log(m+ n)), for DFD, and
O(mdnd log2(m+ n)), for DFDS and WDFD; see relevant paragraph in Section 1.2.

When considering the translation problem in 1D, we can improve the bounds above
by a logarithmic factor, by avoiding the use of parametric search and applying a direct
approach instead. We thus obtain an O(m2n(1 + log(n/m)))-time algorithm, for DFD, and
an O(mn log(m+ n))-time algorithm, for DFDS and WDFD.

Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in Rd. Consider
the set D = {ai − bj | ai ∈ A, bj ∈ B}. Then, each vertex v = (ai, bj) of the graph G has
a corresponding point v = (ai − bj) in D. Given a path P in G from (a1, b1) to (an, bm),
denote by V (P) the set of points of D corresponding to the vertices V (P) of P . Denote
by S(o, r) the sphere with center o and radius r. We define a new indicator function:

σS(o,r)(ai, bj) =
{

1, d(ai − bj , o) ≤ r
0, otherwise

.

I Lemma 6. Let S = S(t∗, δ) be a smallest sphere for which (an, bm) is a reachable position
w.r.t. σS. Then, t∗ is a translation that minimizes ddF (A,B + t), over all translations t,
and ddF (A,B + t∗) = δ.

SWAT 2018

20:8 Algorithms for the Discrete Fréchet Distance Under Translation

s (a1 − b1) (an − bm) t

Figure 2 The points of V (P).

Proof. Let t be a translation such that ddF (A,B + t) = δ′, and denote S′ = S(t, δ′). Thus,
there exist a path P from (a1, b1) to (an, bm) in G such that for each vertex (a, b) of P ,
d(a, b+ t) ≤ δ′. But d(a, b+ t) = d(a− b, t), so for each vertex (a, b) of P , d(a− b, t) ≤ δ′,
and thus (an, bm) is a reachable position w.r.t. σS′ . Since S is the smallest sphere for which
(an, bm) is a reachable position w.r.t. σS , we get that δ′ ≥ δ.

Now, since (an, bm) is a reachable position w.r.t. σS , there exists a path P from
(a1, b1) to (an, bm), such that for each vertex (a, b) of P , d(a − b, t∗) ≤ δ. But again
d(a− b, t∗) = d(a, b+ t∗), and thus ddF (A,B + t∗) ≤ δ. J

Notice that the above lemma is true for the shortcuts and the weak variants as well, by
letting (an, bm) be an s-reachable or a w-reachable position, respectively.

Thus, our goal is to find the smallest sphere S for which (an, bm) is a reachable position
w.r.t. σS . We can perform an exhaustive search: check for each sphere S defined by d+ 1
points of D whether (an, bm) is a reachable position w.r.t. σS . There are O(md+1nd+1) such
spheres, and checking whether (an, bm) is a reachable position in G takes O(mn) time. This
yields an O(md+2nd+2)-time algorithm.

When considering the problem on the line, the goal is to find a path P from (a1, b1) to
(an, bm), such that the one-dimensional distance between the leftmost point in V (P) and the
rightmost point in V (P) is minimum (see Figure 2). In other words, our indicator function

is now defined for a given range [s, t]: σ[s,t](ai, bj) =
{

1, s ≤ ai − bj ≤ t
0, otherwise

.

We say that a range [s, t] is a feasible range if (an, bm) is a reachable position in G

w.r.t σ[s,t]. Now, we need to find the smallest feasible range delimited by two points of D.
Consider the following search procedure: Sort the values in D = {d1, . . . , dl} such that

d1 < d2 < · · · < dl, where l = mn. Set p← 1, q ← 1. While q ≤ l, if (an, bm) is a reachable
position in G w.r.t. σ[dp,dq], set p ← p + 1, else set q ← q + 1. Return the translation
corresponding to the smallest feasible range [dp, dq] that was found during the while loop.

We use the data structure of [5] for the decision queries, and update it in O(m(1+log(n/m))
time in each step of the algorithm. For DFDS we use our data structure, and for WDFD we
use the data structure of [15], where in both the cost of a decision query or an update is
O(log(m+ n)).

I Theorem 7. Let A and B be two sequences of n and m points (m ≤ n), respectively, on
the line. Then, d̂dF (A,B) can be computed in O(m2n(1 + log(n/m))) time, and d̂sdF (A,B)
and d̂wdF (A,B) can be computed in O(mn log(m+ n)) time.

4 A general scheme for BOP

In the previous section we showed that DFD, DFDS, and WDFD, all under translation and
in 1D, can be viewed as BOP. In this section, we present a general scheme for BOP, which
yields efficient algorithms quite easily, without having to devise an efficient dynamic version
of the feasibility decider.

O. Filtser and M. J. Katz 20:9

(a)

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

M1 M2

M3 M4

(b)

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

(c)

w1 w2 wm. . .

...

wm
2

wm
2
. . .

...

wm

w1

w2

. . .wj

Figure 3 The matrix of possible ranges. (a) The shaded cells are invalid ranges. (b) The cell
M m

2 ,j
induces a partition of M into 4 submatrices: M1, M2, M3, M4. (c) The four submatrices at

the end of the second level of the recursion tree.

BOP’s definition (see Section 1.2) is especially suited for graphs, where, naturally, E is
the set of weighted edges of the graph, and F is a family of well-defined structures, such as
matchings, paths, spanning trees, cut-sets, edge covers, etc.

Let G = (V,E,w) be a weighted graph, where V is a set of n vertices, E is a set of
m edges, and w : E → R is a weight function. Let F be a set of feasible subsets of E.
For a subset S ⊆ E, let Smax = max{w(e) : e ∈ S} and Smin = min{w(e) : e ∈ S}. The
Balanced Optimization Problem on Graphs (BOPG) is to find a feasible subset S∗ ∈ F
which minimizes Smax − Smin over all S ∈ F . A range [l, u] is a feasible range if there
exists a feasible subset S ∈ F such that w(e) ∈ [l, u] for each e ∈ S. A feasibility decider
is an algorithm that decides whether a given range is feasible.

We assume for simplicity that each edge has a unique weight. Our goal is to find the
smallest feasible range. First, we sort the m edges by their weights, and let e1, e2, . . . , em be
the resulting sequence. Let w1 = w(e1) < w2 = w(e2) < · · · < wm = w(em).

Let M be the matrix whose rows correspond to w1, w2, . . . , wm and whose columns
correspond to w1, w2, . . . , wm (see Figure 3(a)). A cell Mi,j of the matrix corresponds to the
range [wi, wj]. Notice that some of the cells of M correspond to invalid ranges: when i > j,
we have wi > wj and thus [wi, wj] is not a valid range.

M is sorted in the sense that range Mi,j contains all the ranges Mi′,j′ with i ≤ i′ ≤ j′ ≤ j.
Thus, we can perform a binary search in the middle row to find the smallest feasible range
Mm

2 ,j
= [wm

2
, wj] among the ranges in this row. Mm

2 ,j
induces a partition of M into 4

submatrices: M1,M2,M3,M4 (see Figure 3(b)). Each of the ranges in M1 is contained in
a range of the middle row which is not a feasible range, hence none of the ranges in M1 is
a feasible range. Each of the ranges in M4 contains Mm

2 ,j
and hence is at least as large as

Mm
2 ,j

. Thus, we may ignore M1 and M4 and focus only on the ranges in the submatrices
M2 and M3.

Sketch of the algorithm. We perform a recursive search in the matrix M . The input to
a recursive call is a submatrix M ′ of M and a corresponding graph G′. Let [wi, wj] be a
range in M ′. The feasibility decider can decide whether [wi, wj] is a feasible range or not by
consulting the graph G′. In each recursive call, we perform a binary search in the middle
row of M ′ to find the smallest feasible range in this row, using the corresponding graph G′.
Then, we construct two new graphs for the two submatrices of M ′ in which we still need to
search in the next level of the recursion.

SWAT 2018

20:10 Algorithms for the Discrete Fréchet Distance Under Translation

Algorithm 1 Balance(G([l, l′]× [u′, u]))
1. Set i = l+l′

2
2. Perform a binary search on the ranges [i, j], u′ ≤ j ≤ u, to find the smallest feasible

range, using the feasibility decider with the graph G([l, l′]× [u′, u]) as input.
3. If there is no feasible range, then:

a. If l = l′, return ∞.
b. Else, construct G1 = G([l, i− 1]× [u′, u]) and return Balance(G1).

4. Else, let [wi, wj] be the smallest feasible range found in the binary search.
a. If l = l′, return (wj − wi).
b. Else, construct two new graphs, G1 = G([i+1, l′]×[j, u]) andG2 = G([l, i−1]×[u′, j−1]),

and return min{(wj − wi),Balance(G1),Balance(G2)}.

The number of potential feasible ranges is equal to the number of cells in M , which is
O(m2). But, since we are looking for the smallest feasible range, we do not need to generate all
of them. We only useM to illustrate the search algorithm, its cells correspond to the potential
feasible ranges, but do not contain any values. We thus represent M and its submatrices
by the indices of the sorted list of weights that correspond to the rows and columns of M .
For example, we represent M by M([1,m]× [1,m]), M2 by M([m2 + 1,m]× [j,m]), and M3
by M([1, m2 − 1] × [1, j − 1]). We define the size of a submatrix of M by the sum of its
number of rows and number of columns, for example, M is of size 2m, |M2| = 3m

2 − j + 1,
and |M3| = m

2 + j − 2.
Each recursive call is associated with a range of rows [l, l′] and a range of columns [u′, u]

(the submatrix M([l, l′]× [u′, u])), and a corresponding input graph G′ = G([l, l′]× [u′, u]).
The scheme does not state which edges should be in G′ or how to construct it, but it does
require the followings properties:
1. The number of edges in G′ should be O(|M ′|).
2. Given G′, the feasibility decider can answer a feasibility query for any range in M ′, in

O(f(|G′|)) time.
3. The construction of the graphs for the next level should take O(|G′|) time.

The optimization scheme is given in Algorithm 1; its initial input is G = G([1,m]× [1,m]).

Correctness. Let g be a bivariate real function with the property that for any four values of
the weight function c ≤ a ≤ b ≤ d, it holds that g(a, b) ≤ g(c, d). In our case, g(a, b) = b− a.
We prove a somewhat more general theorem – that our scheme applies to any such monotone
function g; for example, g(a, b) = b/a (assuming the edge weights are positive numbers).

I Theorem 8. Algorithm 1 returns the minimum value g(Smin, Smax) over all feasible subsets
S ∈ F .

Proof. We claim that given a graph G′ = G([l, l′] × [u′, u]) as input, Algorithm 1 returns
the minimal g(Smin, Smax) over all feasible subsets S ∈ F , such that Smin ∈ [l, l′] and
Smax ∈ [u′, u]. Let M ′ = M([l, l′] × [u′, u]) be the corresponding matrix. The proof is by
induction on the number of rows in M ′.

First, notice that the algorithm runs the feasibility decider only on ranges from M ′. The
base case is when M ′ contains a single row, i.e. l = l′. In this case the algorithm returns the
minimal feasible range [wl, wj] such that j ∈ [u′, u], or returns ∞ if there is no such range.
Else, M ′ has more than one row. Assume that there is no feasible range in the middle row

O. Filtser and M. J. Katz 20:11

of M ′. In other words, there is no j ∈ [u′, u] such that [wi, wj] is a feasible range. Trivially,
for any i′ > i we have wi′ > wi, and therefore for any j ∈ [u′, u], [wi′ , wj] is not a feasible
range, and the algorithm continues recursively with G1 = G([l, i− 1]× [u′, u]). Now assume
that [wi, wj] is the minimal feasible range in the middle row. We can partition the ranges in
M ′ to four types (submatrices):
1. All the ranges [wi′ , wj′] where i′ ∈ [i+ 1, l′] and j′ ∈ [j, u].
2. All the ranges [wi′ , wj′] where i′ ∈ [l, i− 1] and j′ ∈ [u′, j − 1].
3. All the ranges [wi′ , wj′] where i′ ∈ [i, l′] and j′ ∈ [u′, j − 1]. For any such valid range

(j′ > i′), we have [wi′ , wj′] ⊆ [wi, wj], so it is not a feasible range (otherwise, the result
of the binary search would be [wi, wj′]).

4. All the ranges [wi′ , wj′] where i′ ∈ [l, i] and j′ ∈ [j, u]. Since j ≥ i, all these ranges are
valid. For any such range, we have wi′ ≤ wi ≤ wj ≤ wj′ , therefore, all these ranges are
feasible, but since g(wi, wj) ≤ g(wi′ , wj′), there is no need to check them.

Indeed, the algorithm continues recursively with G1 and G2 (corresponding to ranges of
type 1 and 2, respectively), which may contain smaller feasible ranges. By the induction
hypothesis, the recursive calls return the minimal g(Smin, Smax) over all feasible subsets
S ∈ F , such that Smin ∈ [i+ 1, l′] and Smax ∈ [j, u] or Smin ∈ [l, i− 1] and Smax ∈ [u′, j− 1].
Finally, the algorithm returns the minimum over all the feasible ranges in M ′. J

I Lemma 9. The total size of the matrices in each level of the recursion tree is at most 2m.

Proof. By induction on the level. The only matrix in level 0 is M , and |M | = 2m. Let
M ′ = M([l, l′]× [u′, u]) be a matrix in level i− 1. The size of M ′ is l′ − l+ u− u′ + 2 (it has
l′ − l + 1 rows and u− u′ + 1 columns). In level i we perform a binary search in the middle
row of M ′ to find the smallest feasible range [w l+l′

2
, wj] in this row. It is easy to see that the

resulting two submatrices are of sizes l′ − l+l′
2 + u− j + 1 and l+l′

2 − l + j − u′, respectively,
which sums to l′ − l + u− u′ + 1. J

Running time. Consider the recursion tree. It consists of O(logm) levels, where the i’th
level is associated with 2i disjoint submatrices of M . Level 0 is associated with the matrix
M0 = M , level 1 is associated with the submatrices M2 and M3 of M (see Figure 3), etc.

In the i’th level we apply Algorithm 1 to each of the 2i submatrices associated with this
level. Let {M i

k}2i

k=1 be the submatrices associated with the i’th level. Let Gik be the graph
corresponding to M i

k. The size of Gik is linear in the size of M i
k. The feasibility decider runs

in O(f(|M i
k|)) time, and thus the binary search in M i

k runs in O(f(|M i
k|) log |M i

k|) time. Con-
structing the graphs for the next level takes O(|M i

k|) time. By lemma 9, the total time spent on
the i’th level is O(

∑2i

k=1(|M i
k|+f(|M i

k|) log |M i
k|)) ≤ O(

∑2i

k=1 |M i
k|+

∑2i

k=1 f(|M i
k|) logm) =

O(m+ logm
∑2i

k=1 f(|M i
k|)). Finally, the running time of the entire algorithm is O(m logm+∑logm

i=1 (m+ logm
∑2i

k=1 f(|M i
k|))) = O(m logm+ logm

∑logm
i=1

∑2i

k=1 f(|M i
k|)).

Notice that the number of potential ranges is O(m2), while the number of weights is only
O(m). Nevertheless, whenever f(|M ′|) is a linear function, our optimization scheme runs in
O(m log2 m) time. More generally, whenever f(|M ′|) is a function for which f(x1) + · · ·+
f(xk) = O(f(x1+· · ·+xk)), for any x1, . . . , xk, our scheme runs in O(m logm+f(2m) log2 m)
time.

5 MUPP and WDFD under translation in 1D

In Section 3 we described an algorithm for WDFD under translation in 1D, which uses a
dynamic data structure due to Eppstein et al. [15]. In this section we present a much simpler
algorithm for the problem, which avoids heavy tools and has roughly the same running time.

SWAT 2018

20:12 Algorithms for the Discrete Fréchet Distance Under Translation

As shown in Section 3, WDFD under translation in 1D can be viewed as BOP. More
precisely, we say that a range [s, t] is a feasible range if (an, bm) is a w-reachable position in
Gw w.r.t. σ[s,t]. Now, our goal is to find a feasible range of minimum size.

Consider the following weighted graph G̃w = (Ṽw, Ẽw, ω), where Ṽw = (A×B)∪{ve | e ∈
Ew}, Ẽw = {(u, ve), (ve, v) | e = (u, v) ∈ Ew}, and ω(((ai, bj), ve)) = ai − bj . In other words,
G̃w is obtained from Gw by adding, for each edge e = (u, v) of Gw, a new vertex ve, which
splits the edge into two new edges, (u, ve), (ve, v), whose weight is the distance associated
with their original vertex.

Now (an, bm) is a w-reachable position in Gw w.r.t. σ[s,t], if and only if there exists a
path P between (a1, b1) and (an, bm) in Gw such that V (P) ∈ [s, t], if and only if there exists
a path P̃ between (a1, b1) and (an, bm) in G̃w such that for each edge e ∈ P̃ , ω(e) ∈ [s, t].

We have reduced our problem to a special case of the most uniform path problem (MUPP).
We show below how to apply our scheme to MUPP, with a linear-time feasibility decider,
and thus obtain the following theorem as a by-product:

I Theorem 10. Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two sequences of points in 1D.
Then, the weak discrete Fréchet distance under translation, d̂wdF (A,B), can be computed in
O(mn log2(m+ n)) time.

Most uniform path. Given a weighted graph G = (V,E,w) with n vertices and m edges,
and two vertices s, t ∈ V , the goal is to find a path P ∗ in G between s and t, which minimizes
max{w(e) : e ∈ P} −min{w(e) : e ∈ P}, over all paths P between s and t.

Here F is the set of paths in G between s and t. The matrix for the initial call is M and
G is its associated graph. Consider a recursive call, and let M ′ be the submatrix and G′
the graph associated with it. Throughout the execution of the algorithm, we maintain the
following properties: (i) The number of edges and vertices in G′ is at most O(|M ′|), and (ii)
Given a range [wp, wq] in M ′, there exists a path between s and t in G′ with edges in the
range [wp, wq] if and only if such a path exists in G.

Construction of the graphs for the next level. Given the input graph G′ and a submatrix
M ′′ = M([p, p′]× [q′, q]) of M ′, we construct the corresponding graph G′′ as follows: First,
we remove from G′ all the edges e such that w(e) /∈ [wp, wq]. Then, we contract edges with
weights in the range (wp′ , wq′), and finally we remove all the isolated vertices. Notice that
G′′ is a graph minor of G′, and, clearly, all the properties hold.

The feasibility decider. Let [wp, wq] be a range from M ′. Run a BFS in G′, beginning from
s, while ignoring edges with weights outside the range [wp, wq]. If the BFS finds t, return
“yes”, otherwise return “no”. The algorithm returns “yes” if and only if there exists a path
between s and t in G′ with edges in the range [wp, wq], i.e., if and only if such a path exists
in G. The running time of the decider is O(|G′|) = O(|M ′|).

I Theorem 11. The most uniform path problem in G can be solved in O(m log2 n) time.

I Remark. We have introduced an alternative optimization scheme for BOP and demonstrated
its power. It would be interesting to find additional applications of this scheme. For example,
using it we easily obtain an O(m log2 n)-time algorithm for the Most Uniform Spanning Tree
problem; slower than the specialized algorithm of Galil and Schieber [17] by only a log-factor.

O. Filtser and M. J. Katz 20:13

6 Discussion

In an unpublished manuscript [16], we suggested a new variant of DFD – the discrete Fréchet
gap. Given two sequences of points A = (a1, . . . , an) and B = (b1, . . . , bn), the discrete
Fréchet gap between them is the smallest range [s, t], s ≥ t ≥ 0, for which (an, bm) is a
reachable position w.r.t. σ[s,t], where σ[s,t](ai, bj) = 1 if and only if d(ai, bj) ∈ [s, t]. We used
a less general version of our scheme for BOP to solve two variants of the gap problem: the
discrete Fréchet gap with shortcuts (where (an, bm) is an s-reachable position), and the weak
discrete Fréchet gap (where (an, bm) is a w-reachable position).

It is interesting to note that DFDS and WDFD, both in 1D under translation, are in
some sense analogous to their respective gap variants (in d dimensions and no translation):
We can use similar algorithms to compute them, but with different indicator functions. This
connection supports the intuition that there is some connection between the discrete Fréchet
gap and DFD under translation.

References

1 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing
the discrete fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.
doi:10.1137/130920526.

2 Helmut Alt and Michael Godau. Computing the fréchet distance between two polygonal
curves. Int. J. Comput. Geometry Appl., 5:75–91, 1995. doi:10.1142/S0218195995000064.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Matching polygonal curves with respect
to the fréchet distance. In Afonso Ferreira and Horst Reichel, editors, STACS 2001, 18th
Annual Symposium on Theoretical Aspects of Computer Science, Dresden, Germany, Feb-
ruary 15-17, 2001, Proceedings, volume 2010 of Lecture Notes in Computer Science, pages
63–74. Springer, 2001. doi:10.1007/3-540-44693-1_6.

4 Rinat Ben Avraham, Omrit Filtser, Haim Kaplan, Matthew J. Katz, and Micha Sharir. The
discrete fréchet distance with shortcuts via approximate distance counting and selection. In
Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational
Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014, page 377. ACM, 2014. doi:
10.1145/2582112.2582155.

5 Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. A faster algorithm for the discrete
fréchet distance under translation. CoRR, abs/1501.03724, 2015. arXiv:1501.03724.

6 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L.
Kersten, Per-Åke Larson, and Beng Chin Ooi, editors, Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2,
2005, pages 853–864. ACM, 2005. URL: http://www.vldb.org/archives/website/2005/
program/paper/fri/p853-brakatsoulas.pdf.

7 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
661–670. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.76.

8 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog - with an application to alt’s conjecture. In Chandra Chekuri, editor, Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1399–1413. SIAM, 2014. doi:10.1137/
1.9781611973402.103.

SWAT 2018

http://dx.doi.org/10.1137/130920526
http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1007/3-540-44693-1_6
http://dx.doi.org/10.1145/2582112.2582155
http://dx.doi.org/10.1145/2582112.2582155
http://arxiv.org/abs/1501.03724
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1137/1.9781611973402.103
http://dx.doi.org/10.1137/1.9781611973402.103

20:14 Algorithms for the Discrete Fréchet Distance Under Translation

9 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the fréchet distance. In Claire Mathieu, editor, Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, Janu-
ary 4-6, 2009, pages 645–654. SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=
1496770.1496841.

10 Maike Buchin. On the computability of the Fréchet distance between triangulated surfaces.
PhD thesis, FU Berlin, 2007.

11 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the fréchet distance
with shortcuts is np-hard. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual
Symposium on Computational Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014,
page 367. ACM, 2014. doi:10.1145/2582112.2582144.

12 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the fréchet distance
with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.

13 Alon Efrat, Quanfu Fan, and Suresh Venkatasubramanian. Curve matching, time warping,
and light fields: New algorithms for computing similarity between curves. Journal of Math-
ematical Imaging and Vision, 27(3):203–216, 2007. doi:10.1007/s10851-006-0647-0.

14 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Information Systems Dept., Technical University of Vienna, 1994.

15 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992. doi:10.1016/0196-6774(92)90004-V.

16 Omrit Filtser and Matthew J. Katz. The discrete fréchet gap. CoRR, abs/1506.04861, 2015.
arXiv:1506.04861.

17 Zvi Galil and Baruch Schieber. On finding most uniform spanning trees. Discrete Applied
Mathematics, 20(2):173–175, 1988. doi:10.1016/0166-218X(88)90062-5.

18 Pierre Hansen, Giovanni Storchi, and Tsevi Vovor. Paths with minimum range and ra-
tio of arc lengths. Discrete Applied Mathematics, 78(1-3):89–102, 1997. doi:10.1016/
S0166-218X(97)00008-5.

19 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity. J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

20 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure alignment with
discrete fréchet distance. J. Bioinformatics and Computational Biology, 6(1):51–64, 2008.
doi:10.1142/S0219720008003278.

21 Silvano Martello, WR Pulleyblank, Paolo Toth, and Dominique De Werra. Balanced op-
timization problems. Operations Research Letters, 3(5):275–278, 1984.

22 Axel Mosig and Michael Clausen. Approximately matching polygonal curves with respect
to the fre’chet distance. Comput. Geom., 30(2):113–127, 2005. doi:10.1016/j.comgeo.
2004.05.004.

23 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

24 Carola Wenk. Shape matching in higher dimensions. PhD thesis, Free University of Berlin,
Dahlem, Germany, 2003. URL: http://www.diss.fu-berlin.de/2003/151/index.html.

http://dl.acm.org/citation.cfm?id=1496770.1496841
http://dl.acm.org/citation.cfm?id=1496770.1496841
http://dx.doi.org/10.1145/2582112.2582144
http://dx.doi.org/10.1137/120865112
http://dx.doi.org/10.1007/s10851-006-0647-0
http://dx.doi.org/10.1016/0196-6774(92)90004-V
http://arxiv.org/abs/1506.04861
http://dx.doi.org/10.1016/0166-218X(88)90062-5
http://dx.doi.org/10.1016/S0166-218X(97)00008-5
http://dx.doi.org/10.1016/S0166-218X(97)00008-5
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1142/S0219720008003278
http://dx.doi.org/10.1016/j.comgeo.2004.05.004
http://dx.doi.org/10.1016/j.comgeo.2004.05.004
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://www.diss.fu-berlin.de/2003/151/index.html

Partial Complementation of Graphs
Fedor V. Fomin1

Department of Informatics, University of Bergen, Norway
fedor.fomin@ii.uib.no

https://orcid.org/0000-0003-1955-4612

Petr A. Golovach2

Department of Informatics, University of Bergen, Norway
petr.golovach@ii.uib.no

https://orcid.org/0000-0002-2619-2990

Torstein J. F. Strømme3

Department of Informatics, University of Bergen, Norway
torstein.stromme@ii.uib.no

https://orcid.org/0000-0002-3896-3166

Dimitrios M. Thilikos4

AlGCo project-team, LIRMM, Université de Montpellier, CNRS, France.
Department of Mathematics National and Kapodistrian University of Athens, Greece
sedthilk@thilikos.info

https://orcid.org/0000-0003-0470-1800

Abstract
A partial complement of the graph G is a graph obtained from G by complementing all the
edges in one of its induced subgraphs. We study the following algorithmic question: for a given
graph G and graph class G, is there a partial complement of G which is in G? We show that
this problem can be solved in polynomial time for various choices of the graphs class G, such as
bipartite, degenerate, or cographs. We complement these results by proving that the problem is
NP-complete when G is the class of r-regular graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Graph algorithms analysis

Keywords and phrases Partial complementation, graph editing, graph classes

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.21

Related Version A full version of the paper is available at http://arxiv.org/abs/1804.10920

Acknowledgements We thank Saket Saurabh for helpful discussions, and also a great thanks to
the anonymous reviewers who provided valuable feedback.

1 Introduction

One of the most important questions in graph theory concerns the efficiency of recognition of
a graph class G. For example, how fast we can decide whether a graph is chordal, 2-connected,

1 Supported by the Research Council of Norway via the projects “CLASSIS” and “MULTIVAL”.
2 Supported by the Research Council of Norway via the project “CLASSIS”.
3 Supported by the Research Council of Norway via the project “MULTIVAL”.
4 Supported by project “DEMOGRAPH" (ANR-16-CE40-0028).

© Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Strømme, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fedor.fomin@ii.uib.no
https://orcid.org/0000-0003-1955-4612
mailto:petr.golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:torstein.stromme@ii.uib.no
 https://orcid.org/0000-0002-3896-3166
mailto:sedthilk@thilikos.info
https://orcid.org/0000-0003-0470-1800
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.21
http://arxiv.org/abs/1804.10920
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Partial Complementation of Graphs

triangle-free, of bounded treewidth, bipartite, 3-colorable, or excludes some fixed graph as a
minor? In particular, the recent developments in parameterized algorithms are driven by the
problems of recognizing of graph classes which do not differ up to a “small disturbance” from
graph classes recognizable in polynomial time. The amount of disturbance is quantified in
“atomic” operations required for modifying an input graph into the “well-behaving” graph class
G. The standard operations could be edge/vertex deletions, additions or edge contractions.
Many problems in graph algorithms fall into this graph modification category: is it possible
to add at most k edges to make a graph 2-edge connected or to make it chordal? Or is it
possible to delete at most k vertices such that the resulting graph has no edges or contains
no cycles?

A rich subclass of modification problems concerns edge editing problems. Here the
“atomic” operation is the change of adjacency, i. e. for a pair of vertices u, v, we can either
add an edge uv or delete the edge uv. For example, the Cluster Editing problem asks to
transform an input graph into a cluster graph, that is a disjoint union of cliques, by flipping
at most k adjacency relations.

Besides the basic edge editing, it is natural to consider problems where the set of removed
and added edges should satisfy some structural constraints. In particular, such problems
were considered for complementation problems. Recall that the complement of a graph G
is a graph H on the same vertices such that two distinct vertices of H are adjacent if and
only if they are not adjacent in G. Seidel (see [19, 20, 21]) introduced the operation that is
now known as the Seidel switch. For a vertex v of a graph G, this operation complements
the adjacencies of v, that is, it removes the edges incident to v and makes v adjacent to the
non-neighbors of v in G. Respectively, for a set of vertices U , the Seidel switching, that is, the
consecutive switching for the vertices of U , complements the adjacencies between U and its
complement V (G) \U . The study of the algorithmic question whether it is possible to obtain
a graph from a given graph class by the Seidel switch was initiated by Ehrenfeucht et al. [7].
Further results were established in [11, 12, 13, 16, 15]. Another important operation of this
type is the local complementation. For a vertex v of a graph G, the local complementation
of G at v is the graph obtained from G by replacing G[N(v)] by its complement. This
operation plays crucial role in the definition of vertex-minors [17] and was investigated in
this contest (see, e.g. [6, 18]). See also [2, 14] for some algorithmic results concerning local
complementations.

In this paper we study the partial complement of a graph, which was introduced by
Kamiński, Lozin, and Milanič in [14] in their study of the clique-width of a graph. A partial
complement of a graph G is a graph obtained from G by complementing all the edges of one
of its induced subgraphs. More formally, for a graph G and S ⊆ V (G), we define G⊕ S as
the graph with the vertex set V (G) whose edge set is defined as follows: a pair of distinct
vertices u, v is an edge of G⊕ S if and only if one of the following holds:

uv ∈ E(G) ∧ (u /∈ S ∨ v /∈ S), or
uv /∈ E(G) ∧ u ∈ S ∧ v ∈ S.

Thus when the set S consists only of two vertices {u, v}, then the operation changes the
adjacency between u and v, and for a larger set S, G⊕ S changes the adjacency relations for
all pairs of vertices of S.

We say that a graph H is a partial complement of the graph G if H is isomorphic to
G⊕ S for some S ⊆ V (G). For a graph class G and a graph G, we say that there is a partial
complement of G to G if for some S ⊆ V (G), we have G ⊕ S ∈ G. We denote by G(1) the
class of graphs such that its members can be partially complemented to G.

Let G be a graph class. We consider the following generic algorithmic problem.

F. V. Fomin, P. A. Golovach, T. J. F. Strømme, and D.M. Thilikos 21:3

Partial Complement to G (PCG)
Input: A simple undirected graph G.
Question: Is there a partial complement of G to G?

In other words, how difficult is it to recognize the class G(1)? In this paper we show that
there are many well-known graph classes G such that G(1) is recognizable in polynomial time.
We show that

Partial Complement to G is solvable in time O(f(n) ·n4 +n6) when G is a triangle-free
graph class recognizable in time f(n). For example, this implies that when G is the class
of bipartite graphs, the class G(1) is recognizable in polynomial time.
Partial Complement to G is solvable in time f(n) · nO(1) when G is a d-degenerate
graph class recognizable in time f(n). Thus when G is the class of planar graphs, class of
cubic graphs, class of graph of bounded treewidth, or class of H-minor free graphs, then
the class G(1) is recognizable in polynomial time.
Partial Complement to G is solvable in polynomial time when G is a class of bounded
clique-width expressible in monadic second-order logic (with no edge set quantification).
In particular, if G is the class of P4-free graphs (cographs), then G(1) is recognizable in
polynomial time.
Partial Complement to G is solvable in polynomial time when G can be described by
a 2× 2 M -partition matrix. Therefore G(1) is recognizable in polynomial time when G is
the class of split graphs, as they can be described by such a matrix.

Nevertheless, there are cases when the problem is NP-hard. In particular, we prove that
this holds when G is the class of r-regular graphs.

2 Partial complementation to triangle-free graph classes

A triangle is a complete graph on three vertices. Many graph classes does not allow the
triangle as a subgraph, for instance trees, forests, or graphs with large girth. In this paper
we show that partial complementation to triangle-free graphs can be decided in polynomial
time.

More precisely, we show that if a graph class G can be recognized in polynomial time and
it is triangle-free, then we can also solve Partial Complement to G in polynomial time.

Our algorithm is constructive, and returns a solution S ⊆ V (G), that is a set S such that
G⊕ S is in G. We say that a solution hits an edge uv (or a non-edge uv), if both u and v
are contained in S.

Our algorithm considers each of the following cases.
(i) There is a solution S of size at most two.
(ii) There is a solution S containing two vertices that are non-adjacent in G.
(iii) There is a solution S such that it form a clique of size at least 3 in G.
(iv) G is a no-instance.

Case (i) can be resolved in polynomial time by brute-force, and thus we start from
analyzing the structure of a solution in Case (ii). We need the following observation.

I Observation 1. Let G be a class of triangle-free graphs and let G be an instance of Partial
Complement to G, where S ⊆ V (G) is a valid solution. Then
a) G[S] does not contain an independent set of size 3, and
b) for every triangle {u, v, w} ⊆ V (G), at least two vertices are in S.

SWAT 2018

21:4 Partial Complementation of Graphs

Because all non-edges between vertices in G[S] become edges in G⊕S and vice versa, whereas
all (non-) edges with an endpoint outside S remain untouched, we see that the observation
holds.

Let us recall that a graph G is a split graph if its vertex set can be partitioned into
V (G) = C∪I, where C is a clique and I is an independent set. Let us note that the vertex set
of a split graph can have several split partitions, i.e. partitions into a clique and independent
set. However, the number of split partitions of an n-vertex split graphs is at most n. The
analysis of Case (ii) is based on the following lemma.

I Lemma 2. Let G be a class of triangle-free graphs and let G be an instance of Partial
Complement to G. Let S ⊆ V (G) be a valid solution which is not a clique, and let u, v ∈ S
be distinct vertices such that uv /∈ E(G). Then
a) the entire solution S is a subset of the union of the closed neighborhoods of u and v, that

is S ⊆ NG[u] ∪NG[v];
b) every common neighbor of u and v must be contained in the solution S, that is NG(u) ∩

NG(v) ⊆ S;
c) the graph G[N(u) \N(v)] is a split graph. Moreover, (N(u) \N(v)) ∩ S is a clique and

(N(u) \N(v)) \ S is an independent set.

Proof. We will prove each point separately, and in order.
a) Assume for the sake of contradiction that the solution S contains a vertex w /∈ NG[u] ∪

NG[v]. But then {u, v, w} is an independent set in G, which contradicts item a) of
Observation 1.

b) Assume for the sake of contradiction that the solution S does not contain a vertex
w ∈ NG(u)∩NG(v). Then the edges uw and vw will both be present in G⊕ S, as well as
the edge uv. Together, these forms a triangle.

c) We first claim that the solution S is a vertex cover for G[N(u) \N(v)]. If it was not, then
there would exist an edge u1u2 of G[N(u) \N(v)] such that both endpoints u1, u2 6∈ S,
yet u1, u2 would form a triangle with u in G⊕ S, which would be a contradiction. Hence
(N(u) \N(v)) \S is an independent set. Secondly, we claim that (N(u) \N(v))∩S forms
a clique. If not, then there would exist u1, u2 ∈ (N(u) \N(v)) ∩ S which are nonadjacent.
In this case {u1, u2, v} is an independent set, which contradicts item a) of Observation 1.
Taken together, these claims imply the last item of the lemma. J

We now move on to examine the structure of a solution for the third case, when there exists
a solution which is a clique of size at least three.

I Lemma 3. Let G be a class of triangle-free graphs and let G be an instance of Partial
Complement to G. Let S ⊆ V (G) be a solution such that |S| ≥ 3 and G[S] is a clique. Let
u, v ∈ S be distinct. Then
a) the solution S is contained in their common neighborhood, that is S ⊆ NG[u]∩NG[v], and
b) the graph G[NG[u] ∩NG[v]] is a split graph where (NG[u] ∩NG[v]) \ S is an independent

set.

Proof. We prove each point separately, and in order.
a) Assume for the sake of contradiction that the solution S contains a vertex w which is not

in the neighborhood of both u and v. This contradicts that S is a clique.
b) We claim that S is a vertex cover of G[NG[u] ∩ NG[v]]. Because S is also a clique,

the statement of the lemma will then follow immediately. Assume for the sake of
contradiction that S is not a vertex cover. Then there exist an uncovered edge w1w2,
where w1, w2 ∈ NG[u] ∩ NG[v], and also w1, w2 /∈ S. Since {u,w1, w2} form a triangle,

F. V. Fomin, P. A. Golovach, T. J. F. Strømme, and D.M. Thilikos 21:5

we have by b) of Observation 1 that at least two of these vertices are in S. That is a
contradiction, so our claim holds. J

We now have everything in place to present the algorithm.

I Algorithm 4 (Partial Complement to G where G is triangle-free).
Input: An instance G of PCG where G is a triangle-free graph class recognizable in time
f(n) for some function f .
Output: A set S ⊆ V (G) such that G⊕ S is in G, or a correct report that no such set exists.
1. By brute force, check if there is a solution of size at most 2. If yes, return this solution.
2. For every non-edge uv of G:

a. If either G[N(u) \NG(v)] or G[NG(u) \NG(v)] is not a split graph, skip this iteration
and try the next non-edge.

b. Let (Iu, Cu) and (Iv, Cv) denote a split partition of G[NG(u) \NG(v)] and G[NG(v) \
NG(u)] respectively. For each pair of split partitions (Iu, Cu), (Iv, Cv):
i. Construct solution candidate S′ := {u, v} ∪ (NG(u) ∩NG(v)) ∪ Cu ∪ Cv
ii. If G⊕ S′ is a member of G, return S′

3. Find a triangle {x, y, z} of G
4. For each edge in the triangle uv ∈ {xy, xz, yz}:

a. If G[NG(u) ∩NG(v)] is not a split graph, skip this iteration and try the next edge.
b. For each possible split partition (I, C) of G[NG(u) ∩NG(v)]:

i. Construct solution candidate S′ := {u, v} ∪ C
ii. If G⊕ S′ is a member of G, return S′

5. Return ‘None’

I Theorem 5. Let G be a class of triangle-free graphs such that deciding whether an n-vertex
graph is in G is solvable in time f(n) for some function f . Then Partial Complement
to G is solvable in time O(n6 + n4 · f(n)).

Proof. We will prove that Algorithm 4 is correct, and that its running time is O(n4 · (n2 +
f(n))). We begin by proving correctness. Step 1 is trivially correct. After Step 1 we can
assume that any valid solution has size at least three, and we have handled Case (i) when
there exists a solution of size at most two. We have the three cases left to consider: (ii)
There exists a solution which hits a non-edge, (iii) there is a solution S such that in G⊕ S
vertices of S form a clique of size at least 3, and (iv) no solution exists.

In the case that there exists a solution S hitting a non-edge uv, we will at some point guess
this non-edge in Step 2 of the algorithm. By Lemma 2, we have that both G[NG(u) \NG(v)]
and G[NG(u) \NG(v)] are split graphs, so we do not miss the solution S in Step 2a. Since
we try every possible combinations of split partitions in Step 2b, we will by Lemma 2 at
some point construct S′ correctly such that S′ = S.

In the case that there exist only solutions which hits exactly a clique, we first find some
triangle {x, y, z} of G. It must exist, since a solution S is a clique of size at least three. By
Observation 1b, at least two vertices of the triangle must be in the S. At some point in step
4 we guess these vertices correctly. By Lemma 3b we know that G[NG(u) ∩NG(v)] is a split
graph, so we will not miss S in Step 4a. Since we try every split partition in Step 4b, we will
by Lemma 3 at some point construct S′ correctly such that S′ = S.

Lastly, in the case that there is no solution, we know that there neither exists a solution
of size at most two, nor a solution which hits a non-edge, nor a solution which hits a clique of
size at least three. Since these three cases exhaust the possibilities, we can correctly report
that there is no solution when none was found in the previous steps.

SWAT 2018

21:6 Partial Complementation of Graphs

For the runtime, we start by observing that Step 1 takes time O(n2 · f(n)). The sub-
procedure of Step 2 is performed O(n2) times, where step 2a takes time O(n logn). The
sub-procedure of Step 2b takes time at most O(n2 + f(n)), and it is performed at most
O(n2) times. In total, Step 2 will use no longer than O(n4 · (n2 + f(n))) time. Step 3 is
trivially done in time O(n3). The sub-procedure of Step 4 is performed at most three times.
Step 4a is done in O(n logn) time, and step 4b is done in O(n · (n2 + f(n)) time, which also
becomes the asymptotic runtime of the entire step 4. The worst running time among these
steps is Step 2, and as such the runtime of Algorithm 4 is O(n4 · (n2 + f(n))). J

3 Complement to degenerate graphs

For d > 0, we say that a graph G is d-degenerate, if every induced (not necessarily proper)
subgraph of G has a vertex of degree at most d. For example, trees are 1-degenerate, while
planar graphs are 5-degenerate.

I Theorem 6. Let G be a class of d-degenerate graphs such that deciding whether an n-vertex
graph is in G is solvable in time f(n) for some function f . Then Partial Complement
to G is solvable in time f(n) · n2O(d) .

Proof. Let G be an n-vertex graph. We are looking for a vertex subset S of G such that
G⊕ S ∈ G.

We start from trying all vertex subsets of G of size at most 2d as a candidate for S. Thus,
in time O(n2d · f(n)) we either find a solution or conclude that a solution, if it exists, should
be of size more than 2d.

Now we assume that |S| > 2d. We try all subsets of V (G) of size 2d + 1. Then if G
can be complemented to G, at least one of these sets, say X, is a subset of S. In total, we
enumerate

(
n

2d+1
)
sets.

First we consider the set Y of all vertices in V (G) \X with at least d+ 1 neighbors in X.
The observation here is that most vertices from Y are in S. More precisely, if more than

α =
(
|X|
d+ 1

)
· d+ 1 =

(
2d+ 1
d+ 1

)
· d+ 1

vertices of Y are not in S, then G ⊕ S contains a complete bipartite graph Gd+1,d+1 as a
subgraph, and hence G⊕S is not d-degenerate. Thus, we make at most

(
n
α

)
guesses on which

subset of Y is in S.
Similarly, when we consider the set Z of all vertices from V (G) \ X with at most d

neighbors in X, we have that at most α of vertices from Z could belong to S. Since
V (G) = X ∪ Y ∪ Z, if there is a solution S, it will be found in at least one from(

n

2d+ 1

)
· α2 = n2O(d)

of the guesses. Since for each set S we can check in time f(n) whether G ⊕ S ∈ G, this
concludes the proof. J

4 Complement to M-partition

Many graph classes can be defined by whether it is possible to partition the vertices of graphs
in the class such that certain internal and external edge requirements of the parts are met.
For instance, a complete bipartite graph is one which can be partitioned into two sets such

F. V. Fomin, P. A. Golovach, T. J. F. Strømme, and D.M. Thilikos 21:7

that every edge between the two sets is present (external requirement), and no edge exists
within any of the partitions (internal requirements). Other examples are split graphs and
k-colorable graphs. Feder et al. [8] formalized such partition properties of graph classes by
making use of a symmetric matrix over {0, 1, ?}, called an M -partition.

I Definition 7 (M -partition). For a k × k matrix M , we say that a graph G belongs to the
graph class GM if its vertices can be partitioned into k (possibly empty) sets X1, X2, . . . , Xk

such that, for every i ∈ [k], if

M [i, i] = 1, then Xi is a clique and if M [i, i] = 0, then Xi is an independent set, and
for every i, j ∈ [k], i 6= j,

if M [i, j] = 1, then every vertex of Xi is adjacent to all vertices of Xj ,
if M [i, j] = 0, then there is no edges between Xi and Xj .

Note that if M [i, j] = ?, then there is no restriction on the edges between vertices from Xi

and Xj .
For example, for matrix

M =
(

0 ?

? 0

)
the corresponding class of graphs is the class of bipartite graphs, while matrix

M =
(

0 ?

? 1

)
identifies the class of split graphs.

In this section we prove the following theorem.

I Theorem 8. Let G = GM be a graph class described by an M -partition matrix of size 2× 2.
Then Partial Complement to G is solvable in polynomial time.

In particular, Theorem 8 yields polynomial algorithms for Partial Complement to G
when G is the class of split graphs or (complete) bipartite graphs. The proof of our theorem
is based on the following beautiful dichotomy result of Feder et al. [8] on the recognition of
classes GM described by 4× 4 matrices.

I Proposition 9 ([8, Corollary 6.3]). Suppose M is a symmetric matrix over {0, 1, ?} of size
k = 4. Then the recognition problem for GM is

NP-complete when M contains the matrix for 3-coloring or its complement, and no
diagonal entry is ?.
Polynomial time solvable otherwise.

I Lemma 10. Let M be a symmetric k × k matrix giving rise to the graph class GM = G.
Then there exists a 2k× 2k matrix M ′ such that for any input G to Partial Complement
to G, it is a yes-instance if and only if G belongs to GM ′ .

Proof. Given M , we construct a matrix M ′ in linear time. We let M ′ be a matrix of
dimension 2k× 2k, where entry M ′[i, j] is defined as M [d i2e, d

j
2e] if at least one of i, j is even,

and ¬M [i+1
2 , j+1

2] if i, j are both odd. Here, ¬1 = 0, ¬0 = 1, and ¬? = ?. For example, for
matrix

M =
(

0 ?

? 1

)

SWAT 2018

21:8 Partial Complementation of Graphs

the above construction results in

M ′ =


1 0 ? ?

0 0 ? ?

? ? 0 1
? ? 1 1

 .

We prove the two directions separately.
(=⇒) Assume there is a partial complementation G⊕ S into GM . Let X1, X2, . . . , Xk

be an M -partition of G⊕ S. We define partition X ′1, X ′2, . . . , X ′2k of G as follows. For every
vertex v ∈ Xi, 1 ≤ i ≤ k, we assign v to X ′2i−1 if v ∈ S and to X ′2i otherwise.

We now show that every edge of G respects the requirements of M ′. Let uv ∈ E(G) be
an edge, and let u ∈ Xi and v ∈ Xj . If at least one vertex from {u, v}, say v is not in S,
then uv is also an edge in G⊕ S, thus M [i, j] 6= 0. Since v 6∈ S, it belongs to set v ∈ X ′2j .
Vertex u is assigned to set X ′`, where ` is either 2i or 2i− 1, depending whether u belongs to
S or not. But because 2j is even irrespectively of `, M ′[`, 2j] = M [i, j] 6= 0.

Now consider the case when both u, v ∈ S. Then the edge does not persist after the
partial complementation by S, and thus M [i, j] 6= 1. We further know that u is assigned to
X ′2i−1 and v to X ′2j−1. Both 2i− 1 and 2j − 1 are odd, and by the construction of M ′, we
have that M ′[2i− 1, 2j − 1] 6= 0, and again the edge uv respects M ′. An analogous argument
shows that also all non-edges respect M ′.

(⇐=) Assume that there is a partition X ′1, X ′2, . . . , X ′2k of G according to M ′. Let the
set S consist of all vertices in odd-indexed parts of the partition. We now show that G⊕ S
can be partitioned according to M . We define partition X1, X2, . . . , Xk by assigning each
vertex u ∈ X ′i to Xd i

2 e
. It remains to show that X1, X2, . . . , Xk is an M -partition of G⊕ S.

Let u ∈ Xi, v ∈ Xj . Suppose first that uv ∈ E(G⊕ S). If at least one of u, v is not in
S, we assume without loss of generality that v /∈ S. Then uv ∈ E(G) and v ∈ X ′2j . For
vertex u ∈ X ′`, irrespectively, whether ` is 2i or 2i− 1, we have that M ′[`, 2j] = M [i, j] 6= 0.
But then M [i, j] 6= 0. Otherwise we have u, v ∈ S. Then uv is a non-edge in G, and thus
M ′[2i− 1, 2j − 1] 6= 1. But by the construction of M ′, we have that M [i, j] 6= 0, and there is
no violation of M . An analogous argument shows that if u and v are not adjacent in G⊕ S,
it holds that M [i, j] 6= 1. Thus X1, X2, . . . , Xk is an M -partition of G⊕ S, which concludes
the proof. J

Now we are ready to prove Theorem 8.

Proof of Theorem 8. For a given matrix M , we use Lemma 10 to construct a matrix M ′.
Let us note that by the construction of matrix M ′, for every 2× 2 matrix M we have that
matrixM ′ has at most two 1’s and at most two 0’s along the diagonal. Then by Proposition 9,
the recognition of whether G admits M ′-partition is in P. Thus by Lemma 10, Partial
Complement to G is solvable in polynomial time J

5 Partial complementation to graph classes of bounded clique-width

We show that Partial Complement to G can be solved in polynomial time when G has
bounded clique-width and can be expressed by an MSO1 property. We refer to the book [3]
for the basic definitions. We will use the following result of Hliněný and Oum [10].

I Proposition 11 ([10]). There is an algorithm that for every integer k and graph G in time
O(|V (G)|3) either computes a (2k+1− 1) expression for a graph G or correctly concludes that
the clique-width of G is more than k.

F. V. Fomin, P. A. Golovach, T. J. F. Strømme, and D.M. Thilikos 21:9

Note that the algorithm of Hliněný and Oum only approximates the clique-width but
does not provide an algorithm to construct an optimal k-expression tree for a graph G of
clique-width at most k. But this approximation is usually sufficient for algorithmic purposes.

Courcelle, Makowsky and Rotics [4] proved that every graph property that can be
expressed in MSO1 can be recognized in linear time for graphs of bounded clique-width
when given a k-expression.

I Proposition 12 ([4, Theorem 4]). Let G be some class of graphs of clique-width at most k
such that for each graph G ∈ G, a corresponding k-expression can be found in O(f(n,m))
time. Then every MSO1 property on G can be recognized in time O(f(n,m) + n).

The nice property of graphs with bounded clique-width is that their partial complemen-
tation is also bounded. In particular, Kamiński, Lozin, and Milanič in [14] observed that if
G is a graph of clique-width k, then any partial complementation of G is of clique-width at
most g(k) for some computable function g. For completeness, we provide a more accurate
upper bound whose proof is omitted in this extended abstract.

I Lemma 13. Let G be a graph, S ⊆ V (G). Then cwd(G⊕ S) ≤ 3cwd(G).

I Lemma 14. Let ϕ be an MSO1 property describing the graph class G. Then there exists
an MSO1 property φ describing the graph class G(1) of size |φ| ∈ O(|ϕ|).

Proof. We will construct φ from ϕ in the following way: We start by prepending ∃S ⊆ V (G).
Then for each assessment of the existence of an edge in ϕ, say uv ∈ E(G), replace that
term with ((u /∈ S ∨ v /∈ S) ∧ uv ∈ E(G)) ∨ (u ∈ S ∧ v ∈ S ∧ uv /∈ E(G)). Symmetrically,
for each assessment of the non-existence of an edge uv /∈ E(G), replace that term with
((u /∈ S ∨ v /∈ S) ∧ uv /∈ E(G)) ∨ (u ∈ S ∧ v ∈ S ∧ uv ∈ E(G)).

We observe that if ϕ is satisfiable for some graph G, then for every S ⊆ V (G), the partial
complementation G⊕ S will yield a satisfying assignment to φ. Conversely, if φ is satisfiable
for a graph G, then there exist some S such that ϕ is satisfied for G⊕ S. For the size, we
note that each existence check for edges blows up by a constant factor. J

We are ready to prove the main result of this section.

I Theorem 15. Let G be a graph class expressible in MSO1 which has bounded clique-width.
Then Partial Complement to G is solvable in polynomial time.

Proof. Let ϕ be the MSO1 formula which describes G, and let G be an n-vertex input graph.
We apply Proposition 11 for G and in time O(n3) either obtain a (23k+1 − 1) expression for
G or conclude that the clique-width of G is more than 3k. In the latter case, by Lemma 13,
G cannot be partially complemented to G.

We then obtain an MSO1 formula φ from Lemma 14, and apply Proposition 12, which
works in time f(k, φ) · n for some function f . In total, the runtime of the algorithm is
f(k, φ) · n+ n3. J

We remark that if clique-width expression is provided along with the input graphs, and G
can be expressed in MSO1, then there is a linear time algorithm for Partial Complement
to G. This follows directly from Lemma 14 and Proposition 12.

Theorem 15 implies that for every class of graphs G of bounded clique-width characterized
by a finite set of finite forbidden induced subgraphs, e. g. P4-free graphs (also known as
cographs) or classes of graphs discussed in [1], the Partial Complement to G problem
is solvable in polynomial time. However, Theorem 15 does not imply that Partial Com-
plement to G is solvable in polynomial time for G being of the class of graphs having

SWAT 2018

21:10 Partial Complementation of Graphs

Figure 1 The graph gdgk,r is built of k parts, namely a clique Kk−1, and k−1 complete bipartite
graphs K1

r,r, . . . , Kk−1
r,r with some rewiring.

clique-width at most k. This is because such a class G cannot be described by MSO1. Inter-
estingly, for the related class G of graphs of bounded rank-width (see [5] for the definition)
at most k, the result of Oum and Courcelle [6] combined with Theorem 15 implies that
Partial Complement to G is solvable in polynomial time.

6 Hardness of partial complementation to r-regular graphs

Let us remind that a graph G is r-regular if all its vertices are of degree r. We consider the
following restricted version of Partial Complement to G.

Partial Complement to r-Regular (PCrR)
Input: A simple undirected graph G, a positive integer r.
Question: Does there exist a vertex set S ⊆ V (G) such that G⊕ S is r-regular?

In this section, we show that Partial Complement to r-Regular is NP-complete by a
reduction from Clique in r-regular Graph.

Clique in r-regular Graph (KrR)
Input: A simple undirected graph G which is r-regular, a positive integer k.
Question: Does G contain a clique on k vertices?

We will need the following well-known proposition.

I Proposition 16 ([9]). Clique in r-regular Graph is NP-complete.

I Theorem 17. Partial Complement to r-Regular is NP-complete.

Proof. We begin by defining a gadget which we will use in the reduction. For integers r > k

such that r− k is even, we build the graph gdgk,r as follows. Initially, we let gdgk,r consist
of one clique on k − 1 vertices, as well as k − 1 distinct copies of Kr,r. These are all the
vertices of the gadget, which is a total of (k − 1) + 2r · (k − 1) vertices. We denote the
vertices of the clique c1, c2, . . . , ck−1, and we let the complete bipartite graphs be denoted by
K1
r,r,K

2
r,r, . . . ,K

k−1
r,r . For a bipartite graph Ki

r,r, let the vertices of the two parts be denoted
by ai1, ai2, . . . , air and bi1, bi2, . . . , bir respectively.

We will now do some rewiring of the edges to complete the construction of gdgk,r. Recall
that r− k is even and positive. For each vertex ci of the clique, add one edge from ci to each
of ai1, ai2, . . . , air−k

2
. Similarly, add an edge from ci to each of bi1, bi2, . . . , bir−k

2
. Now remove

F. V. Fomin, P. A. Golovach, T. J. F. Strømme, and D.M. Thilikos 21:11

the edges ai1bi1, ai2bi2, . . . , air−k
2
bir−k

2
. Once this is done for every i ∈ [k − 1], the construction

is complete. See Figure 1.
We observe the following property of vertices aij , bij , and ci of gdgk,r.

I Observation 18. For every i ∈ [k− 1] and j ∈ [r], it holds that the degrees of aij and bij in
gdgk,r are both exactly r, whereas the degree of ci is r − 1.

We are now ready to prove that Clique in r-regular Graph is many-one reducible to
Partial Complement to r-Regular.

I Algorithm 19 (Reduction KrR to PCrR).
Input: An instance (G, k) of KrR.
Output: An instance (G′, r) of PCrR such that it is a yes-instance if and only if (G, k) is a
yes-instance of KrR.
1. If k < 7 or k ≥ r, solve the instance of KrR by brute force. If it is a yes-instance, return a

trivial yes-instance to PCrR, if it is a no-instance, return a trivial no-instance to PCrR.
2. If r−k is odd, modify G by taking two copies of G which are joined by a perfect matching

between corresponding vertices. Then r increase by one, whereas k remains the same.
3. Construct the graph G′ by taking the disjoint union of G and the gadget gdgk,r. Here, r

denotes the regularity of G after step 2 is performed. Return (G′, r).

Let n = |V (G)|. We observe that the number of vertices in the returned instance is at most
2n+ (k − 1) + 2r · (k − 1), which is O(n2). The running time of the algorithm is O(n7) and
thus is polynomial.

The correction of the reduction follows from the following two lemmata.

I Lemma 20. Let (G, k) be the input of Algorithm 19, and let (G′, r) be the returned result.
If (G, k) is a yes-instance to Clique in r-regular Graph, then (G′, r) is a yes-instance
of Partial Complement to r-Regular.

Proof. Let C ⊆ V (G) be a clique of size k in G. If the clique is found in step 1, then (G′, r)
is a trivial yes-instance, so the claim holds. Thus, we can assume that the graph G′ was
constructed in step 3. If G was altered in step 2, we let C be the clique in one of the two
copies that was created. Let S ⊆ V (G′) consist of the vertices of C as well as the vertices of
the clique Kk−1 of the gadget gdgk,r. We claim that S is a valid solution to (G′, r).

We show that G′ ⊕ S is r-regular. Any vertex not in S will have the same number of
neighbors as it had in G′. Since the only vertices that weren’t originally of degree r were
those in the clique Kk−1, all vertices outside S also have degree r in G′ ⊕ S. What remains
is to examine the degrees of vertices of C and of Kk−1.

Let ci be a vertex of Kk−1 in G′. Then ci lost its k − 2 neighbors from Kk−1, gained k
neighbors from C, and kept r − k neighbors in Ki

r,r. We see that its new neighborhood has
size k + r − k = r.

Let u ∈ C be a vertex of the clique from G. Then u lost k − 1 neighbors from C, gained
k− 1 neighbors from Kk−1, and kept r− (k− 1) neighbors from G−C. In total, u will have
r− (k− 1) + (k− 1) = r neighbors in G′ ⊕ S. Since every vertex of G′ ⊕ S has degree r, it is
r-regular, and thus (G′, r) is a yes-instance. J

I Lemma 21. Let (G, k) be the input of Algorithm 19, and let (G′, r) be the returned result.
If (G′, r) is a yes-instance to Partial Complement to r-Regular, then (G, k) is a
yes-instance of Clique in r-regular Graph.

SWAT 2018

21:12 Partial Complementation of Graphs

Proof of Lemma 21 is omitted due to space constraints. Lemmata 20 and 21 together
with Proposition 16 conclude the proof of NP-hardness. Membership in NP is trivial, so
NP-completeness holds. J

We remark that if r is a constant not given with the input, the problem becomes polynomial
time solvable by Theorem 6.

7 Conclusion and open problems

In this paper we initiated the study of Partial Complement to G. Many interesting
questions remain open. In particular, what is the complexity of the problem when G is

the class of chordal graphs,
the class of interval graphs,
the class of graph excluding a path P5 as an induced subgraph,
the class graphs with max degree ≤ r, or
the class of graphs with min degree ≥ r

More broadly, it is also interesting to see what happens as we allow more than one partial
complementation; how quickly can we recognize the class G(k) for some class G? It will also
be interesting to investigate what happens if we combine partial complementation with other
graph modifications, such as the Seidel switch.

References
1 Alexandre Blanché, Konrad K. Dabrowski, Matthew Johnson, Vadim V. Lozin, Daniël

Paulusma, and Viktor Zamaraev. Clique-width for graph classes closed under complemen-
tation. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd
International Symposium on Mathematical Foundations of Computer Science, MFCS 2017,
August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 73:1–73:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.73.

2 André Bouchet. Recognizing locally equivalent graphs. Discrete Mathematics, 114(1-3):75–
86, 1993. doi:10.1016/0012-365X(93)90357-Y.

3 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic
- A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its ap-
plications. Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/
knowledge/isbn/item5758776/?site_locale=fr_FR.

4 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

5 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

6 Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a con-
jecture by seese. J. Comb. Theory, Ser. B, 97(1):91–126, 2007. doi:10.1016/j.jctb.2006.
04.003.

7 Andrzej Ehrenfeucht, Jurriaan Hage, Tero Harju, and Grzegorz Rozenberg. Complexity
issues in switching of graphs. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Theory and Application of Graph Transformations, 6th
International Workshop, TAGT’98, Paderborn, Germany, November 16-20, 1998, Selected
Papers, volume 1764 of Lecture Notes in Computer Science, pages 59–70. Springer, 1998.
doi:10.1007/978-3-540-46464-8_5.

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.73
http://dx.doi.org/10.1016/0012-365X(93)90357-Y
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://dx.doi.org/10.1007/s002249910009
http://dx.doi.org/10.1016/S0166-218X(99)00184-5
http://dx.doi.org/10.1016/j.jctb.2006.04.003
http://dx.doi.org/10.1016/j.jctb.2006.04.003
http://dx.doi.org/10.1007/978-3-540-46464-8_5

F. V. Fomin, P. A. Golovach, T. J. F. Strømme, and D.M. Thilikos 21:13

8 Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List partitions. SIAM
J. Discrete Math., 16(3):449–478, 2003. URL: http://epubs.siam.org/sam-bin/dbq/
article/38405.

9 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

10 Petr Hlinený and Sang-il Oum. Finding branch-decompositions and rank-decompositions.
SIAM J. Comput., 38(3):1012–1032, 2008. doi:10.1137/070685920.

11 Vít Jelínek, Eva Jelínková, and Jan Kratochvíl. On the hardness of switching to a small
number of edges. In Thang N. Dinh and My T. Thai, editors, Computing and Combinatorics
- 22nd International Conference, COCOON 2016, Ho Chi Minh City, Vietnam, August 2-
4, 2016, Proceedings, volume 9797 of Lecture Notes in Computer Science, pages 159–170.
Springer, 2016. doi:10.1007/978-3-319-42634-1_13.

12 Eva Jelínková and Jan Kratochvíl. On switching to H -free graphs. Journal of Graph
Theory, 75(4):387–405, 2014. doi:10.1002/jgt.21745.

13 Eva Jelínková, Ondrej Suchý, Petr Hlinený, and Jan Kratochvíl. Parameterized prob-
lems related to seidel’s switching. Discrete Mathematics & Theoretical Computer Science,
13(2):19–44, 2011. URL: http://dmtcs.episciences.org/542.

14 Marcin Kaminski, Vadim V. Lozin, and Martin Milanic. Recent developments on graphs
of bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009. doi:
10.1016/j.dam.2008.08.022.

15 Jan Kratochvíl. Complexity of hypergraph coloring and seidel’s switching. In Hans L.
Bodlaender, editor, Graph-Theoretic Concepts in Computer Science, 29th International
Workshop, WG 2003, Elspeet, The Netherlands, June 19-21, 2003, Revised Papers, volume
2880 of Lecture Notes in Computer Science, pages 297–308. Springer, 2003. doi:10.1007/
978-3-540-39890-5_26.

16 Jan Kratochvíl, Jaroslav Nešetřil, and Ondřej Zýka. On the computational complexity of
Seidel’s switching. In Fourth Czechoslovakian Symposium on Combinatorics, Graphs and
Complexity (Prachatice, 1990), volume 51 of Ann. Discrete Math., pages 161–166. North-
Holland, Amsterdam, 1992. doi:10.1016/S0167-5060(08)70622-8.

17 Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100, 2005.
doi:10.1016/j.jctb.2005.03.003.

18 Sang-il Oum. Rank-width: Algorithmic and structural results. Discrete Applied Mathemat-
ics, 231:15–24, 2017. doi:10.1016/j.dam.2016.08.006.

19 J. J. Seidel. Graphs and two-graphs. In Proceedings of the Fifth Southeastern Conference on
Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla.,
1974), volume X of Congressus Numerantium, pages 125–143. Utilitas Math., Winnipeg,
Man., 1974.

20 J. J. Seidel. A survey of two-graphs. In Colloquio Internazionale sulle Teorie Combinatorie
(Rome, 1973), Tomo I, volume 17 of Atti dei Convegni Lincei, pages 481–511. Accad. Naz.
Lincei, Rome, 1976.

21 J. J. Seidel and D. E. Taylor. Two-graphs, a second survey. In Algebraic methods in graph
theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, pages
689–711. North-Holland, Amsterdam-New York, 1981.

SWAT 2018

http://epubs.siam.org/sam-bin/dbq/article/38405
http://epubs.siam.org/sam-bin/dbq/article/38405
http://dx.doi.org/10.1137/070685920
http://dx.doi.org/10.1007/978-3-319-42634-1_13
http://dx.doi.org/10.1002/jgt.21745
http://dmtcs.episciences.org/542
http://dx.doi.org/10.1016/j.dam.2008.08.022
http://dx.doi.org/10.1016/j.dam.2008.08.022
http://dx.doi.org/10.1007/978-3-540-39890-5_26
http://dx.doi.org/10.1007/978-3-540-39890-5_26
http://dx.doi.org/10.1016/S0167-5060(08)70622-8
http://dx.doi.org/10.1016/j.jctb.2005.03.003
http://dx.doi.org/10.1016/j.dam.2016.08.006

New Algorithms for Distributed Sliding Windows
Sutanu Gayen1

University of Nebraska-Lincoln
Lincoln NE, USA
sutanugayen@gmail.com

N. V. Vinodchandran2

University of Nebraska-Lincoln
Lincoln NE, USA
vinod@cse.unl.edu

Abstract
Computing functions over a distributed stream of data is a significant problem with practical
applications. The distributed streaming model is a natural computational model to deal with such
scenarios. The goal in this model is to maintain an approximate value of a function of interest
over a data stream distributed across several computational nodes. These computational nodes
have a two-way communication channel with a coordinator node that maintains an approximation
of the function over the entire data stream seen so far. The resources of interest, which need
to be minimized, are communication (primary), space, and update time. A practical variant of
this model is that of distributed sliding window (dsw), where the computation is limited to the
last W items, where W is the window size. Important problems such as sampling and counting
have been investigated in this model. However, certain problems including computing frequency
moments and metric clustering, that are well studied in other streaming models, have not been
considered in the distributed sliding window model.

We give the first algorithms for computing the frequency moments and metric clustering
problems in the distributed sliding window model. Our algorithms for these problems are a
result of a general transfer theorem we establish that transforms any algorithm in the distributed
infinite window model to an algorithm in the distributed sliding window model, for a large class
of functions. In particular, we show an efficient adaptation of the smooth histogram technique of
Braverman and Ostrovsky, to the distributed streaming model. Our construction allows trade-
offs between communication and space. If we optimize for communication, we get algorithms
that are as communication efficient as their infinite window counter parts (upto polylogarithmic
factors).

2012 ACM Subject Classification Theory of computation→ Streaming models, Theory of com-
putation → Sketching and sampling, Theory of computation → Distributed algorithms

Keywords and phrases distributed streaming, distributed functional monitoring, distributed
sliding window, frequency moments, k-median clustering, k-center clustering

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.22

1 Introduction

Modern data often arrive fast and are distributed over several nodes. In such situations
it is not practical to store and process all the data at a central location. The distributed
streaming model is a natural architecture for such computing scenario. In this model, a set

1 Research Funded in part by NSF grant CCF-1422668 and UNL Layman Grant
2 Research Funded in part by NSF grant CCF-1422668 and UNL Layman Grant

© Sutanu Gayen and N. V. Vinodchandran;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sutanugayen@gmail.com
mailto:vinod@cse.unl.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 New Algorithms for Distributed Sliding Windows

of distributed computational nodes get a stream of data items. Each distributed node has a
two-way communication channel to a coordinator node. The goal of the coordinator node is
to continuously keep track of an approximate value of a function of interest over the union of
all streams distributed over the nodes. As in the case of traditional streaming situation, it is
assumed that a data item cannot be revisited unless stored on local memory. The primary
resource of interest is the total number of bits of communication between the coordinator
node and distributed nodes. Other important resources are total space used over all nodes
and the update time per data item.

The focus of this paper is the sliding window variation of this distributed streaming
model: distributed sliding window (dsw) model. In this model, the goal of the coordinator
node is to continuously compute an approximation of a desired function over only the last W
data items in the union of all data items arriving at each of the distributed nodes. Example
of practical situations where such computing scenario arise include geographically distributed
e-commerce servers or LAN devices or sensor nodes trying to compute some statistics about
the transactions made or the traffic passed or the interesting events happened respectively,
for the last million items or during last 24 hours. In general the sliding window variations
are more difficult for algorithm design than their infinite window counter parts because of
‘implicit deletion’: the last element of the current window gets deleted at the arrival of the
next element. In the distributed model there are additional challenges since the coordinator
node is not directly aware of the arrival of a new item.

1.1 Our Results
We design efficient (communication, space, time) algorithms in the distributed sliding window
model for functions including frequency moments and metric clustering. Our algorithms for
these problems are results of a general transfer theorem we establish that transforms any
algorithm in the distributed (infinite window) streaming model (diw) to an algorithm in
the distributed sliding window model, for a large class of functions. Specifically, we adapt
the smooth histogram technique of Braverman and Ostrovsky [5] that applies to the class
of smooth functions in the single stream model, to the distributed setting. In particular,
we prove the following transfer theorem (please refer to the next section for definitions and
notations).

I Theorem. Let f be an (α, β)-smooth function f for some 0 < β < α < 1. Let 0 < ε < 1
be such that b = (1+ε)2

(1−ε)2 (1− β) < 1. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. Suppose there is a diw
algorithm B computes f over stream size at most m, upto approximation ratio (1± ε), using
cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then there is another algorithm that computes f over a dsw
of size W upto approximation ratio (1± (α+ ε)) using cost 〈L ·W x · (1 + logW)cB(W, ε), (4L ·
sB(W, ε) + W y), L(4 + logW)tB(W, ε)〉, where L = ((log fmax

fmin(1−ε)/ log 1
b) + 2), fmax = the

maximum value of f over any window of size W , and fmin = smallest non-zero value of f .
We assume storing each data element takes unit space.

The construction allows trade-offs between communication and space. In particular
setting x = y = 1/2, we get that for any function f with fmax/fmin = poly(W), a diw
algorithm for f with cost 〈c, s, t〉 can be transformed to get a dsw algorithm with cost
〈Õ(
√
Wc), Õ(

√
W + s), Õ(t)〉, where Õ hides polylog factors.

We apply this general algorithm for computing frequency moments and metric clustering
problems to get new algorithms that are as communication efficient as their infinite window
counter parts (upto polylog factors). Although the cost functions associated with clustering
problems are not exactly smooth, we still give dsw algorithms for them based on the single
stream clustering algorithms given in [4].

S. Gayen and N.V. Vinodchandran 22:3

1.2 Previous work

Initial research in the distributed streaming model appeared in papers including [2, 10, 15,
18, 19]. These papers designed distributed streaming algorithms for several natural problems
including approximately tracking the functions: sum, top-k frequencies, set-expression
cardinality, approximate quantiles and thresholded counts. We refer the reader to the above
papers for practical motivations behind this model. A formal algorithmic approach towards
distributed streaming was first given by Cormode, Muthukrishanan and Yi [11]. They called
their model distributed functional monitoring model where the task is to continuously monitor
whether the function value is ≥ τ or ≤ (1− ε)τ for a threshold τ and an error parameter3 ε.
They designed the first algorithm for Fp, the pth frequency moment and also proved lower
bound results on the communication cost of monitoring Fp for p ≤ 2. Efficient randomized
algorithms for monitoring count, frequencies and ranks were given in [17]. Woodruff and
Zhang [22] designed better algorithms for Fp and provided matching lower bound for the
communication cost. Sampling algorithms over distributed streams were given in [12, 21].
Recently Chen and Zhang [7] gave an algorithm for distributed monitoring of entropy. We
refer the reader to [9] for a survey by Cormode on this topic.

While the “infinite-window” distributed streaming has received considerable attention, its
sliding (or finite) window counterpart has received only limited attention. The first paper to
deal with distributed stream processing over a finite sliding window is [12] where the authors
present algorithms for sampling that is efficient in communication, space and time. Later,
in [6, 14], efficient algorithms for distributed sliding window were designed for the problems
of counting the number of bits, quantiles, and heavy hitters. In [20], the authors extend the
count-min sketch algorithm to the dsw model. In [16], the present authors give an algorithm
for Euclidean k-median clustering problem. To the best of our knowledge computations of Fp
for a general p and metric clustering are not yet considered in this model (which we consider
in this paper). We would like to note that Fp computation and clustering problems have
received considerable attention in the single stream sliding window models [1, 3, 4, 5, 8].

2 Background and definitions

2.1 The models

The distributed streaming model. In the distributed streaming model there are (K + 1)
computational nodes: {N1, N2, . . . , NK , C} where Nis are called distributed nodes and C is
called the coordinator node. These nodes have to collectively compute a function f over a
global stream of data items: {d1, d2, . . . , dt, . . . , dN} which are distributed over Nis in an
arbitrary manner. More precisely, at time t, the item dt will be sent to the node Nj for some
1 ≤ j ≤ m. At all times t, the coordinator should maintain an approximation of f over the
set of items {d1, d2, . . . , dt} seen so far from the global stream. In order to achieve this, each
Nj can communicate with C through a bi-directional channel. An algorithm in this model
must work for any ordering of the global input stream. The resources of interest are the
total communication, total space usage over all nodes, and time to process each data item.
The term local stream will be used to refer to the sub-stream seen only at a particular node
Nj . In this paper we call this model is the distributed infinite window model.

3 This does not loose generality as the authors observed that any monotonic function f can be computed
continuously using Õ(1

ε) copies of a monitoring algorithm for f .

SWAT 2018

22:4 New Algorithms for Distributed Sliding Windows

The distributed sliding window model. In the sliding window variation of the distributed
infinite window model, there are the global stream and the set of (K + 1) nodes as before.
But at any time t, the coordinator needs to maintain an approximation of the function f
over the set of most recent W data items: {dt−W+1, . . . , dt}. This set of items is known as
the active window and W is known as the window size. As in most of the prior literature, we
assume each data item comes with a unique (modulo W) time-stamp4.

2.2 Smooth functions and smooth histograms
The notion of smooth functions was introduced by Braverman and Ostrovsky in [5]. The
main property that a smooth function f should satisfy is the following continuity property:
Consider f computed on a stream starting at two time points (or indices) i and j (j > i). If
f computed starting at i and f computed starting at j are within a constant factor of each
other at a given point in time, then it will remain within a constant factor in the future.

I Definition 1 ((α, β)-smooth function [5]). A function f defined on a set χ of elements is
called (α, β)-smooth, for some 0 < β < α < 1 if (1) f is non-decreasing and non-negative, (2)
f(A) is at most poly(|A|), (3) (1−β)f(A∪B) ≤ f(B) =⇒ (1−α)f(A∪B ∪C) ≤ f(B ∪C)
for any set A,B,C ⊆ χ.

Braverman and Ostrovsky show that for such smooth functions, it suffices to run an online
algorithm to compute the function starting at logarithmic number of carefully chosen indices
to get constant approximation at any given window. These indices correspond to a constant
factor decrease in the value of the function. The corresponding data structure is referred as
smooth histogram. This resulted in a construction that translates any single stream infinite
window algorithm to a single stream sliding window algorithm for smooth functions with
comparable space complexity (up to log factors) as that of the infinite window algorithm.

I Definition 2 (Approximate smooth histogram [5]). Let f be an (α, β) smooth function.
A smooth histogram for f is a data structure that consists of an increasing set of indices
[I1, I2, . . . , IL] over a sliding window of size W with the following properties.
1. For each i = 1 to L, there is an instance of a (1± ε)-approximating algorithm A, running

for approximating f(Ii, N), the value of f for ε ≤ β/4 over the set {dIi
, dIi+1, . . . , dN},

where dj is the data element at location j and dN is the most recently arrived element.
2. I1 is expired and I2 is active or I1 = 0.
3. For i = 1 to t−2, either 1) (1−α)f(Ii, N) ≤ f(Ii+1, N) and (1−β/2)f(Ii, N) > f(Ii+2, N)

or 2) (1− β/2)f(Ii, N) > f(Ii+1, N) and Ii+1 = Ii + 1.

For a smooth function, the third point above ensures that consecutive indices are farthest
apart but staying within at least (1 − α) factor (or immediate in stream and drops by
> (1− β/2) factor). Note that f(Ii, N) where Ii is the least index from the histogram that
is contained in the current window, approximates the value of the function on the current
window.

2.3 Notation
In this paper we use the abbreviations diw and dsw to mean distributed infinite window and
distributed sliding window respectively. We denote by (t1, t2] the subset of the stream from

4 This model is also known as time-based dsw model. There is another variation called sequence-based
dsw, where no time-stamps are available. This model is harder to design algorithms on.

S. Gayen and N.V. Vinodchandran 22:5

(t1 + 1)-st through t2-th element. We also use: K to denote the number of distributed nodes,
m the length of stream, W the length of window and k the number of medians/centers for
clustering. 〈c, s, t〉 denotes the costs of our diw/dsw algorithm, where c is the communication
complexity over any window of size W or over the length of the stream m as appropriate,
s is the space complexity and t is the update time (possibly amortized). For a function f ,
by a c-factor approximation we mean f

c ≤ f̃ ≤ c · f and by (1± ε) approximation we mean
(1− ε)f ≤ f̃ ≤ (1 + ε)f .

3 A transfer theorem for smooth functions

In this section we give a general construction that transforms a distributed infinite window
(diw) algorithm for smooth function to a distributed sliding window (dsw) algorithm. We
assume that the infinite window algorithm B has a cost-tuple 〈cB(m, ε), sB(m, ε), tB(m, ε)〉,
over a stream of length m and with error parameter ε. In particular we prove the following
theorem (same as the theorem stated in the introduction).

I Theorem 3. Let f be an (α, β)-smooth function f for some 0 < β < α < 1. Let 0 < ε < 1
be such that b = (1+ε)2

(1−ε)2 (1− β) < 1. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. Suppose there is a diw
algorithm B computes f over stream size at most m, upto approximation ratio (1± ε), using
cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then there is another algorithm that computes f over a dsw
of size W upto approximation ratio (1± (α+ ε)) using cost 〈L ·W x · (1 + logW)cB(W, ε), (4L ·
sB(W, ε) + W y), L(4 + logW)tB(W, ε)〉, where L = ((log fmax

fmin(1−ε)/ log 1
b) + 2), fmax = the

maximum value of f over any window of size W , and fmin = smallest non-zero value of f .
We assume storing each data element takes unit space.

Note that the construction allows trade-offs between communication and space. In
particular setting x = y = 1/2, we get that for any function f with fmax/fmin = poly(W), a
diw algorithm for f with cost 〈c, s, t〉 can be transformed to get a dsw algorithm with cost
〈Õ(
√
Wc), Õ(

√
W + s), Õ(t)〉, where Õ hides polylog factors.

We first give the algorithm and its proof for the case when x = 0 and y = 1, and then
point out how to modify this algorithm to get the general algorithm. This algorithm has
communication and time costs almost same as (upto polylog(W)) that of the diw algorithm,
but uses Θ(W) space.

I Theorem 4. Let f be an (α, β) smooth function for some 0 < β < α < 1. Let 0 < ε < 1 be
any number such that b = (1+ε)2

(1−ε)2 (1−β) < 1. Further assume f has a (1± ε)-approximate diw
algorithm B over stream size at most m, with cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then, there
is a dsw algorithm for computing f upto approximation ratio (1±(α+ε)) with cost 〈L(logW +
1)cB(W, ε), L·sB(W, ε)+W,L(logW+1)tB(W, ε)〉, where L ≤ (log fmax

fmin(1−ε)/ log 1
b)+2, fmax =

the maximum value of f over any window of size W , and fmin = smallest non-zero value of
f . We assume storing each data element takes unit space.

High level idea of the algorithm: Our general approach is to adapt the smooth histogram
technique for sliding windows due to Braverman and Ostrovsky [5] to the distributed setting.
Braverman and Ostrovsky showed that for smooth functions, if streaming algorithms are
maintained from a small set of carefully chosen indices of the active window, one of these
algorithms would approximate the value of the function over all active windows in near
future. These indices correspond to a drop of the value of the function by some constant
factor. Their algorithm has three main steps: when a new data item d arrives (1) start a new
instance of the streaming algorithm A from this new item (2) update all running instances of

SWAT 2018

22:6 New Algorithms for Distributed Sliding Windows

I1 I2 I3 I4

• • •

buffered
window future

window

Figure 1 Online algorithms run from each index Ij (position indicated by ‘(’). The one from
I3 can be used to approximate f over the future window. Thus, indices from the buffered window
serves for next W elements.

A with d and (3) remove redundant indices and the corresponding instances of A. There are
technical challenges to translate the smooth histogram technique to the distributed setting.
The main obstacle is the following: In the single stream case, for each newly arrived element,
an instance of A is started from its index. Most of them are removed at some later point in
the future so that at all times only a logarithmic number of indices are kept. In distributed
setting, if one has to start instances of A each time a new element arrives, it will cost Ω(W)
bits of communication (from the distributed node where the item arrives to the coordinator).

In order to reduce the communication cost we use the following approach. Instead of
continuously building the histogram, we observe that it is enough to create it once per
W items. Once built, this histogram will continue to work till the arrival of next W th

item due to smoothness of the function. In other words, steps (1) and (3) in the previous
discussion could be dropped except once per W items. This keeps the asymptotic time
and communication cost small. We split the entire stream into static windows of size W :
(0,W], (W, 2W], . . . , (aW, aW +W], . . . and we build the smooth histogram only when the
current window coincides with one of the static windows. This is done by buffering the
entire expiring window using O(W) space (see Figure 1 for illustration). The indices, which
correspond to a drop of some constant factor for f , are obtained by performing binary
searches on the buffered static window. This will introduce further communication cost and
time for about O(log2 W) many instances of the online algorithm.

Proof. (Of Theorem 4). A high-level pseudocode of the algorithms is given in Algorithm 1. We
split the entire stream into static windows of size W : (0,W], (W, 2W], . . . , (aW, aW +W], . . .
and maintain a smooth histogram over exactly one of them. If the current time t satisfies
aW −W < t < aW , the smooth histogram from the static window (aW − 2W,aW −W] can
be used to approximate f([t−W + 1, t]). We recall, the smooth histogram maintains online
algorithms from a set of appropriately chosen indices guarantees that any two consecutive
indices are either consecutive or are (1−α)-factor close in f . If I1 ≤ (t−W + 1) < I2 are the
two unique consecutive pair of indices enclosing (t−W + 1), the value of the online algorithm
from the index I1 can be used to approximate f([t−W + 1, t]) upto (1± (α+ ε))-factor. We
buffer the next static window (aW, aW +W] locally (at the distributed nodes as they arrive)
and build the smooth histogram from it at time (aW +W). We describe how to build this
in detail in the following claim.

I Claim 5. Suppose we have stored a static window [λ, ρ] = (aW, aW +W] locally. A smooth
histogram H for [λ, ρ] can be built using cost 〈L logW · cB(W, ε), (sB(W, ε) + W), L logW ·
tB(W, ε)〉, where the number of indices in H is L ≤ (log fmax

fmin(1−ε)/ log 1
b) + 2.

S. Gayen and N.V. Vinodchandran 22:7

Algorithm 1: High level dsw algorithm for smooth functions
Input: A stream of data: 〈d1, d2, . . . , dN 〉
Output: Approximate value of f((N −W,N])

1 while Not the end of stream do
2 Let dN be the newly arrived item;
3 if N = aW +W then
4 Delete the current smooth histogram H((aW −W,aW]);
5 H((aW, aW +W])← Build a new smooth histogram for (aW, aW +W];
6 Output the value of online algorithm over (aW, aW +W];
7 else
8 if aW < N < aW +W then
9 Update the online algorithm from each index of H((aW −W,aW]) with

dN ;
10 Buffer dN at the node where it arrived;
11 Ij , Ij+1 be the immediate indices such that Ij ≤ N −W + 1 < Ij+1;
12 Output the value of the online algorithm started from index Ij ;
13 end
14 end
15 end

Proof. We find the indices from the buffered window [λ, ρ] by binary search and by running
the online algorithm B on the buffered set of items5. The first index is always λ. The last
index is always the index ρ. We denote by f̃ , a (1± ε) factor approximation for f , found
using B. Then, the second index is created at a time-stamp t, such that,

f̃([t, ρ]) ≥ (1− β) (1 + ε)
(1− ε) f̃([λ, ρ]). (1)

This ensures, f([t, ρ]) ≥ (1− β)f([λ, ρ]), as desired for smooth histogram. In fact, we try to
find such a t as far as possible in the window to minimize the number of indices. We tag a
time-stamp ‘yes’ if it satisfies Equation (1) and ‘no’ otherwise. We set two variables l = λ

and r = ρ and maintain the invariant that l has ‘yes’ tag and r has ‘no’ tag. We next check
whether mid = (l+ r)/2 has ‘yes’ tag or ‘no’ tag and update l or r appropriately to maintain
the invariant. Then, in logW steps, we will be able to get hold of a t, such that, t has ‘yes’
tag but (t+ 1) has ‘no’ tag. This is our next index. We find subsequent indices in similar
manner.

Notice that, at the (t+ 1)-st item, the value of f̃ drops at least by factor (1− β) (1+ε)
(1−ε)

(Recall, if the indices are consecutive, drop could be larger). This implies, f drops at least
by factor b = (1− β) (1+ε)2

(1−ε)2 < 1. Suppose there are L indices in total. Then, After crossing
the (L − 1)-st index, the value of f̃ is at most fmaxb

(L−2), where fmax is the maximum

5 There are some details for running B on the buffered items. For a general function, assume, all the
nodes have some global knowledge of time. Then, a fixed time interval of sufficient length can be allotted
for processing each data item. Thus, for example, it may be agreed upon that the kth data item d in
the current window will be processed during time interval (t, t + ∆ · k) where ∆ is at least as large as
the update time of the algorithm and t is the time of arrival of the oldest element of the current window.
During this interval, whichever node has received d, will process it. For a permutation-invariant function
such as Fp and clustering, the nodes can take turns and run the online algorithm over the desired
sub-window of the local stream, to compute the function over any sub-window of the global stream.

SWAT 2018

22:8 New Algorithms for Distributed Sliding Windows

value of f over any window. Moreover, assuming the least non-zero value of f is fmin,
fmaxb

(L−2) ≥ fmin(1− ε). Hence L ≤ (log fmax
fmin(1−ε)/ log 1

b) + 2. We denote by I this set of
indices. This concludes the updating of the smooth histogram. While finding the indices, at
most L logW instance of B are run for at most W units of time. This can be achieved using
L logW · cB(W, ε) total communication and LW logW · tB(W, ε) total time (i.e. amortized
update time L logW · tB(W, ε) per item). During the binary search, we need space for
running at most a single instance of B at any point in time, and the space is reused. We
also need space for buffering the current window. So, the space complexity for this part is
(sB(W, ε) +W). J

Afterwards, we maintain B from each of the indices and update them with newly arrived
items. For any time till the arrival of next (W − 1) items, let f1 > f2 be the value of f at the
two enclosing indices of the current window. Let fcurrent be the value of f over the current
window. From the properties of smooth histogram, either fcurrent = f1, or (1− α)f1 < f2 ≤
fcurrent ≤ f1. Moreover, the value of online algorithm at the former index holds a value f̃1,
such that, (1− ε)f1 ≤ f̃1 ≤ (1 + ε)f1. Hence, (1− ε)fcurrent ≤ f̃1 ≤ (1+ε)

(1−α)fcurrent. This is
close to (1± (α+ ε))-approximation for small α and ε. We also need to continue running
B from each index for W units of time. This costs at most L · cB(W, ε) communication,
L · tB(W, ε) update time per item and L · sB(W, ε) space in total. J

Proof of Theorem 3. The proof follows closely from that of Theorem 4. In this case, we
break the current window of sizeW intoW x blocks, each of sizeW y, such thatW = W x ·W y,
for some 0 < x, y < 1, x+y = 1. We rebuild the smooth histogram per arrival ofW x elements
in the combined stream. Then, the nodes need to store at most W x items. As before, total
number of indices within each block, L1 ≤ L = ((log fmax

fmin(1−ε)/ log 1
b)+2). As in the algorithm

of Theorem 4, finding these indices is done by binary search, using at most L1 logW calls
to B. In total, this can be done with L1 logWcB(W, ε) total communication per block (i.e
L1 ·W x · logWcB(W, ε) in total), (sB(W, ε) +W y) space (since space is reused during binary-
search) and L1 logWW ytB(W, ε) total time per block (i.e. amortized L1 logWtB(W, ε) time
per item).

Subsequently, we need to maintain L1 ·W x online algorithms from each of the indices
within the current window of size W . But we can do better by removing unnecessary ones
while introducing indices from a new block. We arrange the combined indices in decreasing
order of arrival. Then, for each index i, we look for the subsequent index j where the current
value of the online algorithm drops by factor b for the first time. We remove all indices
strictly between i and (j − 1) if there are any. We repeat this removal procedure until no
more indices can be removed in such a manner. Then, starting from each index, at the next
to next index, value of online algorithm drops at least by factor b. After merging, there
are L2 ≤ (2(log fmax

fmin(1−ε)/ log 1
b) + 2) ≤ 2L such indices at any point in time. Moreover, by

previous discussion, every next index is either the subsequent item, or within a factor b from
the previous index. This entire removal takes time linear in the set of the indices to be merged,
i.e. at most 10(log fmax

fmin(1−ε)/ log 1
b) time per block. So, we ignore this while computing the

update time per item. Note that, during this removal, no further communication or space
is required. This concludes the indices removal procedure. Then, online algorithms from
each of the indices run for ≥ W y and ≤ W time. So the total communication cost is
at most L1 ·W xcB(W, ε). The space complexity for running the online algorithms is at
most 2L2 · sB(W, ε). Using the indices removal procedure, we improve the update time to
2L2 · tB(W, ε) per arrival, for updating each of the current instances of B. J

S. Gayen and N.V. Vinodchandran 22:9

3.1 Better and simpler algorithm for symmetric smooth functions
For symmetric smooth functions we get simpler algorithm with slightly better cost. In
particular, the cost of the algorithm will be 〈(L+ 1) · cB(W, ε) ·W x, 4L · sB(W, ε) +W y, 4(L+
1)tB(W, ε)〉.

We call a function symmetric if its value is invariant to the permutation of its arguments.
For symmetric functions, we create the indices of the smooth histogram by making a single
backward pass (i.e. from the most recent to the least recent item in the window) of the
distributed online algorithm on the buffered window [aW+1, aW+W]. Let f̃(A) be the value
of this algorithm, which is within (1±ε)-factor of f(A). We create the last index of the smooth
histogram at (aW +W). Recursively assume, the previous index we created was at t1. During
the backward pass, suppose at the time-stamp (t2− 1) ≤ t1, the value f̃([t2− 1, aW +W]) is
at least 1

b · f̃([t1, aW +W]) = 1
(1−β)

(1−ε)
(1+ε) · f̃([t1, aW +W]) for the first time. If this happens

at t2 − 1 = t1 − 1, we create an index at (t1 − 1). Otherwise, we create at t2, which satisfies
f̃([t2, aW+W]) < 1

b f̃([t1, aW+W]). This implies, f([t1, aW+W]) ≥ (1−β)f([t2, aW+W]),
ensuring the smoothness condition between the consecutive indices t1 and t2. We find all the
L indices in similar manner, where L = ((log fmax

fmin(1−ε)/ log 1
b) + 2), fmax = the maximum

value of f over any window of sizeW , and fmin = smallest non-zero value of f . This improves
the cost of Theorem 4 to 〈(L+ 1)cB(W, ε), (L+ 1) · sB(W, ε) +W, (L+ 1)tB(W, ε)〉. We can
shave off a logW factor from the costs of Theorem 3 using a similar simpler algorithm.
Note that, we crucially use the symmetric nature of the function in the use of the backward
online algorithm. The Fp and clustering costs are symmetric functions, whereas, the function
‘length of longest increasing subsequence’ is asymmetric smooth [5].

4 Applications: Computing Fp and Clustering

In this section we apply the transfer theorem to get new dsw algorithms for approximating
Fp and metric clustering problems.

4.1 Computing Fp

I Definition 6 (pth Frequency moment). Given a set of items {1, 2, . . . , n} such that their
frequencies are {f1, f2, . . . , fn} respectively, their pth frequency moment is defined as Fp =∑n
i=1 f

p
i .

We first recall a result that shows Fp is smooth.

I Theorem 7 (Lemma 5 of [5]). Fix any 0 < ε < 1. For p < 1, Fp is (ε, ε)-smooth function.
For p ≥ 1, Fp is (ε, ε

p

pp)-smooth function.

The first distributed functional monitoring algorithm for Fp was given in [11]. In the
monitoring model, in a distributed stream of items, one has to decide whether F2 ≥ τ or
F2 ≤ (1− ε)τ at all times, for some ε and a threshold τ specified. The same paper ([11]) also
observed that any monotonic function f can be computed continuously using Õ(1

ε) copies of
a monitoring algorithm for f . Later on Woodruff and Zhang provided the following online
algorithm for Fp, for any p ≥ 1. They also showed this algorithm has optimal dependence on
K.

I Theorem 8 (Follows from Theorem 8 of [22]). For any 0 < ε < 1, there is an algorithm
that continuously computes Fp for any constant p ≥ 1, over universe [n] over a distributed
stream of length at most W upto approximation (1 ± ε) with high probability using cost
〈Õ(K

p−1

εΘ(p)), Õ(nKε), Õ(1
ε2)〉.

SWAT 2018

22:10 New Algorithms for Distributed Sliding Windows

From Theorem 3, we get the following algorithm for computing Fp, which is (ε, εp/pp)-smooth.

I Corollary 9. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. For any constant p, there is an algorithm
that continuously computes Fp over a time based dsw of width W upto approximation ratio
(1± ε) with high probability using cost 〈Õ(W x Kp−1

εΘ(p2)), Õ(W y + nK
εΘ(p)), Õ(1

εΘ(p))〉.

In particular for F2, we chose to work with the following result of [11] since its communication
cost has much smaller dependence on ε.

I Theorem 10 (Follows from Theorem 6.1 of [11]). For any 0 < ε < 1, there is an algorithm
that continuously computes F2 over universe n over a distributed stream of length at most W
upto approximation (1± ε) with high probability using cost 〈Õ((K

2

ε2 + K1.5

ε4)), Õ(Kε3), Õ(1
ε3)〉.

From Theorem 3, we get the following algorithm for computing F2, which is (ε, ε2/4)-smooth.

I Corollary 11. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. There is an algorithm that continuously
computes f over a time based dsw of width W upto approximation ratio (1 ± ε) with high
probability using cost 〈Õ(W x(K

2

ε4 + K1.5

ε8)), Õ(W y + K
ε6), Õ(1

ε6)〉

4.2 Metric clustering
In this section we apply the generic algorithm from Section 3 for the functions: k-median
and k-center clustering.

I Definition 12 (Metric k-median clustering problem). Given a set of points P from a metric
space χ, output C∗ = arg minC⊆χ,|C|≤k

∑
p∈P minc∈C d(p, c) and OPTk =

∑
p∈P minc∈C∗

d(p, c) where d is the distance function of χ.

I Definition 13 (Metric k-center clustering problem). Given a set of points P from a met-
ric space χ, output C∗ = arg minC⊆χ,|C|≤k maxp∈P minc∈C d(p, c) and OPTk = maxp∈P
minc∈C∗ d(p, c) where d is the distance function of χ.

In this section, approximation ratio of r > 1 will mean the clustering cost of the algorithm is
in the range [OPT, r.OPT]. We assume each point takes O(1) space. These two clustering
problems have approximation ratio Θ(1). So a straightforward combination of the local
clusterings results in an overall approximation ratio of O(m). The cost functions OPTk are
neither smooth [4].

4.2.1 Metric k-median clustering
We use the following diw algorithm for k-median clustering.

I Theorem 14 (Theorem 2 of [16] restated). There is a distributed online algorithm for
O(1)-approximate metric k-median with success probability (1 − 1

poly(W)), and with cost
〈O(kK log3 W), O(kK logW)), O(k logW)〉 assuming OPTk = poly(W).

We cannot directly apply Theorem 3 since the k-median clustering cost is not smooth. We
use an additional property of k-median cost observed in [4] and use ideas from Theorem 4 to
get the following theorem, whose proof is in Section 5.

I Theorem 15. There is a dsw algorithm for O(1)-approximate metric k-median with
success probability (1− 1

poly(W)) per W items, and with cost 〈O(k2K log5 W), O(k2K log3 W +
W), O(k2 log3 W)〉 assuming OPTk = poly(W).

S. Gayen and N.V. Vinodchandran 22:11

4.2.2 Metric k-center clustering
We use the following diw algorithm for k-center clustering.

I Theorem 16 (Theorem 6 of [13] restated). For any ε > 0, there is a deterministic
distributed online algorithm for (2 + ε)-approximate metric k-center with cost 〈O(kKε logW),
O(kKε log OPT), O(k)〉 assuming OPTk = poly(W).

The k-center clustering cost is not smooth. We prove an additional property of k-median
cost and use ideas from Theorem 4 to get the following theorem, whose proof is in Section 5.

I Theorem 17. There is a deterministic dsw algorithm for O(1)-approximate metric k-center
with cost 〈O(k2K log4 W), O(k2K log2 W +W), O(k2 log2 W)〉 assuming OPTk = poly(W).

5 Proofs of clustering results

It was shown in [4], the k-median cost behaves like a smooth function if the following
additional property is satisfied. For convenience, we abuse the notation of Definition 1 for a
smooth function in this subsection, by replacing (1−α) by 1

α and (1−β) by 1
β for appropriate

α > β > 1. We denote by Cost(P,O) the k-median clustering cost for a set of points P ,
when O is the set of k medians. For convenience, we drop the k in OPTk when there is no
ambiguity.

I Lemma (Lemma 3.1 of [4] restated). For any distinct sets of points A,B,C ⊆ χ from some
metric space χ, OPT(A∪B) ≤ γOPT(B) =⇒ OPT(A∪B ∪C) ≤ (2 + rγ)OPT(B ∪C) for
any r, γ ≥ 1, provided the following property holds for the sets A,B: There exists a k-median
clustering t : (A ∪B)→ F upto approximation ratio r such that |t−1(f) ∩A| ≤ |t−1(f) ∩B|
for each median f ∈ F .

I Theorem. There is a dsw algorithm for O(1)-approximate metric k-median with suc-
cess probability (1− 1

poly(W)) per W items, and with cost 〈O(k2m log5 W), O(k2m log3 W +
W), O(k2 log3 W)〉 assuming OPT = poly(W).

Proof. We split the stream into static windows of the form: [aW + 1, aW +W] and store
this window locally. At time (aW + W), we need to rebuild a smooth histogram. For
this, we use the slightly better and simpler algorithm from the remark in Section 3.1.
We run A from Theorem 14 backwards (i.e. from item (aW + W) to item (aW + 1)).
Let the approximation factor of A be λ. The last index of the smooth histogram is at
time-stamp (aW + W). Suppose, the last time we created an index at time-stamp tl
and the value of A at tl was vl ∈ [OPT, λOPT]. Fix any γ > λ. Let (tl−1 − 1) be the
time when value of A is at least γ

λvl for the first time. If tl−1 − 1 = tl − 1, we create
the next index at (tl − 1). Otherwise at tl−1, A([tl−1, aW + W]) < γ

λvl. This implies,
OPT([tl−1, aW + W]) ≤ γ · OPT([tl, aW + W]). This tl−1 is our next index. In total, at
most L such indices will be created, where L = ((log λfmax

fmin
)/ log γ

λ) + 2) = O(logW), fmax =
the maximum value of k-median cost over any window of size W , and fmin = smallest
non-zero value of k-median cost. We refer to these set of indices as ‘outer’ indices. For
each outer index, we also record the set of k medians produces by A. Let the indices be
I = {I1 < I2 < · · · < IL} and the corresponding sets of k medians be C = {C1, C2, . . . , CL},
where each Ci = {ci1, ci2, . . . , cik}. We communicate I and C to each node. We claim
that for any Ii ≤ t < Ii+1, Ci is a γλ-approximate set of k-medians for [t, aW +W]. This
is because, Cost([t, aW + W], Ci) ≤ Cost([Ii, aW + W], Ci) ≤ λ · OPT ([Ii, aW + W]) ≤
γλ · OPT ([Ii+1, aW + W]) ≤ γλ · OPT ([t, aW + W]) (Using monotonicity of OPT and
smoothness).

SWAT 2018

22:12 New Algorithms for Distributed Sliding Windows

We also need to ensure the additional property from Lemma 5. We ensure this by keeping
a set of ‘inner’ indices between each pair of outer indices. We describe below how to find the
inner indices between I1 and I2. Other inner indices can be found accordingly. For any i = 1
to L, and for any set S = [t, aW +W] ⊆ [Ii, aW +W], let nSij denote the number of points
from S which map to the median cij , in the clustering [Ii, aW +W]→ Ci. Let ñSij denote
a (1± 1

10) approximation of nSij . We first assume the coordinator can compute ñSij for any
S = [t, aW +W] ⊆ [Ii, aW +W]. We defer the description of how to compute this in the
following paragraph. Let J1 be the first (earliest in window) inner index between I1 and I2.
We will create the index J1 at the farthest time-stamp I1 < t ≤ I2, such that

∀j = 1 : k, ñ[I1,aW+W]
1j ≤ (18/11) · ñ[t,aW+W]

1j (2)

The later condition ensures, for each median c1j ∈ C1, n[I1,aW+W]
1j ≤ 2·n[t,aW+W]

1j , equivalently
n

[I1,t−1]
1j ≤ n

[t,aW+W]
1j , as demanded in the additional property from Lemma 5. Such a

farthest t satisfying Equation 2 is found by using binary search. Notice that t = l := I1
is always satisfied. We first guess t = r := I2. If this t satisfies Equation 2, we already
have an index at I2 and we don’t need to keep any inner index. If not, we next guess
t = d l+r2 e and if this t satisfies, we change l = d l+r2 e, otherwise, we change r = d l+r2 e.
In this way, we preserve the invariant that l satisfies Equation 2 but r does not. In
O(logW) steps, we will get a t∗, such that t∗ satisfies but (t∗ + 1) does not. We set
J1 = t∗. We find the next inner index J2 similarly using the same clustering C1 and at
the farthest time-stamp t, such that, ∀j = 1 : k, ñ[J1,aW+W]

1j ≤ 18
11 ñ

[t,aW+W]
1j holds. Note

that, the set C1 is a γλ approximate median for any I1 ≤ t < I2, from previous discussion.
So, the additional property from Lemma 5 holds at indices J1 and J2, with respect to
the clustering C1 and r = γλ. Let C ′1 and C ′2 be the λ-approximate clusterings for J1
and J2 respectively. Hence from Lemma 5 at any later time (t′ + W − 1), such that
J1 ≤ t′ < J2, Cost([t, t+W −1], C ′1) ≤ Cost([J1, t+W −1], C ′1) ≤ λ ·OPT ([J1, t+W −1]) ≤
λ(2 + γ2λ) ·OPT ([Ii+1, t+W − 1]) ≤ λ(2 + γ2λ) ·OPT ([t, t+W − 1]) (Using monotonicity
of OPT and smoothness). So, the final approximation is (2 + γ2λ). We find subsequent inner
indices in similar manner. Note that, after crossing each inner index, ñij for some j reduces
by a factor 18

11 . Since there are at most k medians and W items, the total number of inner
indices between I1 and I2 is at most O(k logW). Also note that, for checking Equation 2,
the coordinator needs ñ[t,aW+W]

ij values, for various values of t, and j, which we obtain as
follows.

Each node makes a backward pass over its local data. During this pass, for each i, it maps
each point p ∈ [Ii, aW +W] to cij∗ , where j∗ = arg minj d(p, cij), i.e. cij∗ is the closest of the
medians from Ci. It also keeps a counter nij for each cij , which increments for each new point
mapping to cij . We then record the time-points where nij increases by (1 + 1

20)-factor, i.e
crosses { 21

20 ,
21
20

2
, . . . ,W} for the first time. We call this set of time-points as Hij . Each node

z sends such Hz
ij , for each i, j to the coordinator. Note that, n[t,aW+W]

ij =
∑
z n

[t,aW+W]z

ij ,
where [t, aW + W]z denotes items from [t, aW + W] that appear at node z. Using Hz

ij ,
coordinator can approximate n[t,aW+W]z

ij upto (1± 1
10) factor, for any z. Taking sum over

all z, it can approximate n[t,aW+W]
ij for any t, upto (1± 1

10) factor, as required.
The total number of indices are O(kL logW). The backward online algorithm costs

〈O(km log3 W), O(km logW)), O(k logW)〉. Communicating the Hz
ij values cost O(kmL

log3 W) in total. The set of inner indices require O(kL log2 W) computations for nSij per W
items by the coordinator, and we ignore the costs for these. Later, online algorithms are run
for each index for at most W arrivals. We also have to include O(W) space complexity for

S. Gayen and N.V. Vinodchandran 22:13

storing the static windows. The final cost is 〈O(k2mL log4 W), O(k2mL log2 W +W), O(k2

L log2 W)〉. Since we run at most O(kL logW) online algorithms, success probability per W
items is still (1− 1

poly(W)). J

Next we present a Lemma analogous to Lemma 5 for smoothness of k-center clustering. The
additional property is more relaxed than that of k-median. To the best of our knowledge,
this result was not known before. We denote by Cost(P,O) the k-center clustering cost for a
set of points P , when O is the set of k centers. For convenience, we drop the k in OPTk
when there is no ambiguity.

I Lemma. For any distinct sets of points A,B,C ⊆ χ from some metric space χ, OPT(A∪
B) ≤ γOPT(B) =⇒ OPT(A∪B∪C) ≤ (1+2rγ)OPT(B∪C) for any r, γ ≥ 1, provided the
following property holds for the sets A,B: There is a k-center clustering t : (A∪B)→ F , upto
approximation ratio r, such that, for each center f ∈ F, |t−1(f)∩A| > 0 =⇒ |t−1(f)∩B| > 0.

Proof. Let O be the optimal set of centers for B∪C. We will map each element a ∈ A to some
point in O. Let O′ be the r-approximate set of centers for A ∪B, which satisfies the above
property. Let o′ ∈ O′ be the center to which a ∈ A maps to. By assumption some b ∈ B also
gets mapped to o′. Finally, let o ∈ O be the center to which b maps to. We will map a to o.
Then by definition, max(d(a, o′), d(b, o′)) ≤ r ·OPT(A∪B) and d(b, o) ≤ OPT(B∪C). Then,
by triangle inequality, d(a, o) ≤ (d(a, o′)+d(b, o′)+d(b, o)) ≤ (2r ·OPT(A∪B)+OPT(B∪C))

OPT (A ∪B ∪ C) ≤ Cost(A ∪B ∪ C,O)
≤ max{OPT(B ∪ C), Cost(A,O)}
≤ max{OPT(B ∪ C), (2r ·OPT(A ∪B) + OPT(B ∪ C))}
≤ (2r ·OPT(A ∪B) + OPT(B ∪ C))
≤ (2rγ ·OPT(B) + OPT(B ∪ C)) (Given)
≤ (1 + 2rγ)OPT(B ∪ C) (Using monotonicity of OPT)

J

Our dsw algorithm for k-center clustering closely follows that for k-median clustering given
earlier in this section. We create a set of ‘outer’ indices corresponding to a constant factor
drop of the cost of the diw algorithm. We also introduce a set of ‘inner’ indices between each
pair of outer indices to satisfy the additional property of Lemma 5. These inner indices are
created at a point t, such that there exists a center to which no item from part (t, aW +W]
maps. Since, there are at most k centers, at most k inner indices are possible between each
pair of outer indices. Hence the total number of indices is O(k logW). We skip more details
of the proof since it closely follows that of Theorem 15.

References
1 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining

variance and k-medians over data stream windows. In Proceedings of the Twenty-Second
Symposium on Principles of Database Systems PODS, pages 234–243, 2003.

2 Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 28–39, 2003.

3 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on
sliding windows in polylogarithmic space. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS, pages 350–364, 2015.

SWAT 2018

22:14 New Algorithms for Distributed Sliding Windows

4 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
problems on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 1374–1390, 2016.

5 Vladimir Braverman and Rafail Ostrovsky. Effective computations on sliding windows.
SIAM J. Comput., 39(6):2113–2131, 2010.

6 Ho-Leung Chan, Tak Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. Continuous monitor-
ing of distributed data streams over a time-based sliding window. In 27th International
Symposium on Theoretical Aspects of Computer Science, STACS, pages 179–190, 2010.

7 Jiecao Chen and Qin Zhang. Improved algorithms for distributed entropy monitoring.
Algorithmica, 78(3):1041–1066, Jul 2017.

8 Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler. Diameter and k-center
in sliding windows. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP, pages 19:1–19:12, 2016.

9 Graham Cormode. Algorithms for continuous distributing monitoring: A survey. In First
International Workshop on Algorithms and Models for Distributed Event Processing, pages
1–10, 2011.

10 Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Rastogi. Holistic
aggregates in a networked world: Distributed tracking of approximate quantiles. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, pages
25–36, 2005.

11 Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1076–1085, 2008.

12 Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling from
distributed streams. In Proceedings of the Twenty-Ninth ACM Symposium on Principles
of Database Systems, PODS, pages 77–86, 2010.

13 Graham Cormode, S. Muthukrishnan, and Wei Zhuang. Conquering the divide: Continuous
clustering of distributed data streams. In Proceedings of the 23rd International Conference
on Data Engineering, ICDE, pages 1036–1045, 2007.

14 Graham Cormode and Ke Yi. Tracking distributed aggregates over time-based sliding win-
dows. In Scientific and Statistical Database Management - 24th International Conference,
SSDBM, pages 416–430, 2012.

15 Abhinandan Das, Sumit Ganguly, Minos N. Garofalakis, and Rajeev Rastogi. Distributed
set expression cardinality estimation. In Proceedings of the Thirtieth International Confer-
ence on Very Large Data Bases, pages 312–323, 2004.

16 Sutanu Gayen and N. V. Vinodchandran. Algorithms for k-median clustering over dis-
tributed streams. In Computing and Combinatorics - 22nd International Conference, CO-
COON, pages 535–546, 2016.

17 Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking distributed
count, frequencies, and ranks. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 295–306, 2012.

18 Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. Communication-
efficient distributed monitoring of thresholded counts. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 289–300, 2006.

19 Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over
distributed data streams. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 563–574, 2003.

20 Nicolo Rivetti, Yann Busnel, and Achour Mostéfaoui. Efficiently summarizing data streams
over sliding windows. In 14th IEEE International Symposium on Network Computing and
Applications, NCA, pages 151–158, 2015.

S. Gayen and N.V. Vinodchandran 22:15

21 Srikanta Tirthapura and David P. Woodruff. Optimal random sampling from distributed
streams revisited. In Distributed Computing - 25th International Symposium, DISC, pages
283–297, 2011.

22 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring.
In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pages
941–960, 2012.

SWAT 2018

Parameterized Aspects of Strong Subgraph
Closure

Petr A. Golovach
Department of Informatics, University of Bergen, Norway.
petr.golovach@uib.no

Pinar Heggernes
Department of Informatics, University of Bergen, Norway.
pinar.heggernes@uib.no

Athanasios L. Konstantinidis
Department of Mathematics, University of Ioannina, Greece.
skonstan@cc.uoi.gr

Paloma T. Lima
Department of Informatics, University of Bergen, Norway.
paloma.lima@uib.no

Charis Papadopoulos
Department of Mathematics, University of Ioannina, Greece.
charis@cs.uoi.gr

Abstract
Motivated by the role of triadic closures in social networks, and the importance of finding a
maximum subgraph avoiding a fixed pattern, we introduce and initiate the parameterized study
of the Strong F -closure problem, where F is a fixed graph. This is a generalization of
Strong Triadic Closure, whereas it is a relaxation of F -free Edge Deletion. In Strong
F -closure, we want to select a maximum number of edges of the input graph G, and mark them
as strong edges, in the following way: whenever a subset of the strong edges forms a subgraph
isomorphic to F , then the corresponding induced subgraph of G is not isomorphic to F . Hence
the subgraph of G defined by the strong edges is not necessarily F -free, but whenever it contains
a copy of F , there are additional edges in G to destroy that strong copy of F in G.

We study Strong F -closure from a parameterized perspective with various natural para-
meterizations. Our main focus is on the number k of strong edges as the parameter. We show
that the problem is FPT with this parameterization for every fixed graph F , whereas it does
not admit a polynomial kernel even when F = P3. In fact, this latter case is equivalent to
the Strong Triadic Closure problem, which motivates us to study this problem on input
graphs belonging to well known graph classes. We show that Strong Triadic Closure does
not admit a polynomial kernel even when the input graph is a split graph, whereas it admits
a polynomial kernel when the input graph is planar, and even d-degenerate. Furthermore, on
graphs of maximum degree at most 4, we show that Strong Triadic Closure is FPT with
the above guarantee parameterization k−µ(G), where µ(G) is the maximum matching size of G.
We conclude with some results on the parameterization of Strong F -closure by the number
of edges of G that are not selected as strong.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Strong triadic closure, Parameterized complexity, Forbidden subgraphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.23

© Petr A. Golovach, Pinar Heggernes, Athanasios L. Konstantinidis, Paloma T. Lima, and Charis
Papadopoulos;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petr.golovach@uib.no
mailto:pinar.heggernes@uib.no
mailto:skonstan@cc.uoi.gr
mailto:paloma.lima@uib.no
mailto:charis@cs.uoi.gr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Parameterized Aspects of Strong Subgraph Closure

Related Version A full version of the paper is available at [14], http://arxiv.org/abs/1802.
10386.

Funding This work is supported by Research Council of Norway via project CLASSIS.

1 Introduction

Graph modification problems are at the heart of parameterized algorithms. In particular,
the problem of deleting as few edges as possible from a graph so that the remaining graph
satisfies a given property has been studied extensively from the viewpoint of both classical
and parameterized complexity for the last four decades [23, 11, 8]. For a fixed graph F , a
graph G is said to be F-free if G has no induced subgraph isomorphic to F . The F -Free
Edge Deletion problem asks for the removal of a minimum number of edges from an input
graph G so that the remaining graph is F -free. In this paper, we introduce a relaxation of
this problem, which we call Strong F -closure. Our problem is also a generalization of
the Strong Triadic Closure problem, which asks to select as many edges as possible of
a graph as strong, so that whenever two strong edges uv and vw share a common endpoint
v, the edge uw is also present in the input graph (not necessarily strong). This problem is
well studied in the area of social networks [12, 2], and its classical computational complexity
has been studied recently both on general graphs and on particular graph classes [22, 18].

In the Strong F -closure problem, we have a fixed graph F , and we are given an
input graph G, together with an integer k. The task is to decide whether we can select at
least k edges of G and mark them as strong, in the following way: whenever the subgraph
of G spanned by the strong edges contains an induced subgraph isomorphic to F , then the
corresponding induced subgraph of G on the same vertex subset is not isomorphic to F . The
remaining edges of G that are not selected as strong, will be called weak. Consequently,
whenever a subset S of the strong edges form a copy of F , there must be an additional strong
or weak edge in G with endpoints among the endpoints of edges in S. A formal definition of
the problem is easier to give via spanning subgraphs. If two graphs H and F are isomorphic
then we write H ' F , and if they are not isomorphic then we write H 6' F . Given a graph
G and a fixed graph F , we say that a (not necessarily induced) subgraph H of G satisfies
the F -closure if, for every S ⊆ V (H) with H[S] ' F , we have that G[S] 6' F . In this case,
the edges of H form exactly the set of strong edges of G.

Strong F -closure
Input: A graph G and a nonnegative integer k.
Task: Decide whether G has a spanning subgraph H that satisfies the F -closure, such that

|E(H)| ≥ k.

Based on this definition and the above explanation, the terms “marking an edge as weak
(in G)” and “removing an edge (of G to obtain H)” are equivalent, and we will use them
interchangeably. An induced path on three vertices is denoted by P3. Relating Strong
F -closure to the already mentioned problems, observe that Strong P3-closure is exactly
Strong Triadic Closure. Observe also that a solution for F -free Edge Deletion is a
solution for Strong F -closure, since the removed edges in the first problem can simply
be taken as the weak edges in the second problem. However it is important to note that
the reverse is not always true. All of the mentioned problems are known to be NP-hard.
The parameterized complexity of F -free Edge Deletion has been studied extensively
when parameterized by `, the number of removed edges. With this parameter, the problem
is FPT if F is of constant size [4], whereas it becomes W[1]-hard when parameterized by the

http://arxiv.org/abs/1802.10386
http://arxiv.org/abs/1802.10386

P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:3

size of F even for ` = 0 [15]. Moreover, there exists a small graph F on seven vertices for
which F -free Edge Deletion does not admit a polynomial kernel [19] when the problem
is parameterized by `. To our knowledge, Strong Triadic Closure has not been studied
with respect to parameterized complexity before our work.

In this paper, we study the parameterized complexity of Strong F -closure with three
different natural parameters: the number of strong edges, the number of strong edges above
guarantee (maximum matching size), and the number of weak edges.

In Section 3, we show that Strong F -closure is FPT when parameterized by k = |E(H)|
for a fixed F . Moreover, we prove that the problem is FPT even when we allow the
size of F to be a parameter, that is, if we parameterize the problem by k + |V (F)|,
except if F has at most one edge. In the latter case Strong F -closure is W[1]-hard
when parameterized by |V (F)| even if k ≤ 1. We also observe that Strong F -closure
parameterized by k + |V (F)| admits a polynomial kernel if F has a component with at
least three vertices and the input graph is restricted to be d-degenerate. This result is
tight in the sense that it cannot be generalized to nowhere dense graphs.
In Section 4, we focus on the case F = P3, that is, we investigate the parameterized
complexity of Strong Triadic Closure. We complement the FPT results of the
previous section by proving that Strong Triadic Closure does not admit a polynomial
kernel even on split graphs. It is straightforward to see that if F has a connected component
on at least three vertices, then a matching in G gives a feasible solution for Strong
F -closure. Thus the maximum matching size µ(G) provides a lower bound for the
maximum number of edges of H. Consequently, parameterization above this lower bound
becomes interesting. Motivated by this, we study Strong F -closure parameterized by
|E(H)|−µ(G). It is known that Strong Triadic Closure can be solved in polynomial
time on subcubic graphs, but it is NP-complete on graphs of maximum degree at most d
for every d ≥ 4 [17]. As a first step in the investigation of the parameterization above
lower bound, we show that Strong Triadic Closure is FPT on graphs of maximum
degree at most 4, parameterized by |E(H)| − µ(G).
Finally, in Section 5, we consider Strong F -closure parameterized by ` = |E(G)| −
|E(H)|, that is, by the number of weak edges. We show that the problem is FPT and
admits a polynomial (bi-)kernel if F is a fixed graph. Notice that, contrary to the
parameterization by k + |V (F)|, we cannot hope for FPT results when the problem
is parameterized by ` + |V (F)|. This is because, when ` = 0, Strong F -closure
is equivalent to asking whether G is F -free, which is equivalent to solving Induced
Subgraph Isomorphism that is well known to be W[1]-hard [11, 15]. We also state
some additional results and open problems. Our findings are summarized in Table 1 1.

2 Preliminaries

All graphs considered here are simple and undirected. We refer to Diestel’s classical book
[9] for standard graph terminology that is undefined here. Given an input graph G, we use
the convention that n = |V | and m = |E|. Two vertices u and v are false twins if uv /∈ E
and N(u) = N(v), where N(u) is the neighborhood of u. For a graph F , it is said that
G is F -free if G has no induced subgraph isomorphic to F . For a positive integer d, G is

1 Due to space constraints in this extended abstract, some proofs marked with an asterisk (*) were
removed, whereas other proofs marked with a plus (+) contain only a sketch of the basic idea; full
proofs are given in [14].

SWAT 2018

23:4 Parameterized Aspects of Strong Subgraph Closure

Table 1 Summary of our results: parameterized complexity analysis of Strong F -closure.

Parameter Restriction Parameterized Complexity Theorem

|E(H)|+ |V (F)|

|E(F)| ≤ 1 W[1]-hard 3, 4

|E(F)| ≥ 2 FPT 9

F has a component with ≥ 3 polynomial kernel 11
vertices, G is d-degenerate

|E(H)| F has no isolated vertices FPT 10

F = P3, G is split no polynomial kernel 12

|E(H)| − µ(G) F = P3, ∆(G) ≤ 4 FPT 13

|E(G)| − |E(H)| None FPT 14

polynomial (bi-)kernel 15

d-degenerate if every subgraph of G has a vertex of degree at most d. The maximum degree
of G is denoted by ∆(G). We denote by G+H the disjoint union of two graphs G and H.
For a positive integer p, pG denotes the disjoint union of p copies of G. A matching in G is
a set of edges having no common endpoint. The maximum matching number, denoted by
µ(G), is the maximum number of edges in any matching of G. We say that a vertex v is
covered by a matching M if v is incident to an edge of M . An induced matching, denoted by
qK2, is a matching M of q edges such that G[V (M)] is isomorphic to qK2.

Let us give a couple of observations on the nature of our problem. An F -graph of a
subgraph H of G is an induced subgraph H[S] ' F such that G[S] ' F . Clearly, if H is
a solution for Strong F -closure on G, then there is no F -graph in H, even though H
might have induced subgraphs isomorphic to F . For F -free Edge Deletion, note that
the removal of an edge that belongs to a forbidden subgraph might generate a new forbidden
subgraph. However, for Strong F -closure problem, it is not difficult to see that the
removal of an edge that belongs to an F -graph cannot create a new critical subgraph.

I Observation 1. Let G be a graph, and let H and H ′ be spanning subgraphs of G such that
E(H ′) ⊆ E(H). If H satisfies the F -closure for some F , then H ′ satisfies the F -closure.

In particular, Observation 1 immediately implies that if an instance of Strong F -
closure has a solution, it has a solution with exactly k edges.

We conclude this section with some definitions from parameterized complexity and
kernelization. A problem with input size n and parameter k is fixed parameter tractable (FPT),
if it can be solved in time f(k) · nO(1) for some computable function f . A bi-kernelization [1]
(or generalized kernelization [3]) for a parameterized problem P is a polynomial algorithm
that maps each instance (x, k) of P with the input x and the parameter k into to an instance
(x′, k′) of some parameterized problem Q such that i) (x, k) is a yes-instance of P if and
only if (x′, k′) is a yes-instance of Q, ii) the size of x′ is bounded by f(k) for a computable
function f , and iii) k′ is bounded by g(k) for a computable function g. The output (x′, k′) is
called a bi-kernel (or generalized kernel) of the considered problem. The function f defines
the size of a bi-kernel and the bi-kernel has polynomial size if the function f is polynomial.
If Q = P , then bi-kernel is called kernel. Note that if Q is in NP and P is NP-complete,
then the existence of a polynomial bi-kernel implies that P has a polynomial kernel because
there exists a polynomial reduction of Q to P . A polynomial compression of a parameterized
problem P into a (nonparameterized) problem Q is a polynomial algorithm that takes as

P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:5

an input an instance (x, k) of P and returns an instance x′ of Q such that i) (x, k) is a
yes-instance of P if and only if x′ is a yes-instance of Q, ii) the size of x′ is bounded by p(k)
for a polynomial p. For further details on parameterized complexity we refer to [8, 11].

3 Parameterized complexity of Strong F-closure

In this section we give a series of lemmata, which together lead to the conclusion that
Strong F -closure is FPT when parameterized by k. Observe that in our definition of the
problem, F is a fixed graph of constant size. However, the results of this section allow us to
also take the size of F as a parameter, making the results more general. We start by making
some observations that will rule out some simple types of graphs as F .

I Observation 2. Let p be a positive integer. A graph G has a spanning subgraph H

satisfying the pK1-closure if and only if G is pK1-free, and if G is pK1-free, then every
spanning subgraph H of G satisfies the pK1-closure.

By combining Observation 2 and the well known result that Independent Set is W[1]-
hard when parameterized by the size of the independent set [11], we obtain the following:

I Proposition 3. For a positive integer p, Strong pK1-closure can be solved in time
nO(p), and it is co-W[1]-hard for k ≥ 0 when parameterized by p.

Using Proposition 3, we assume throughout the remaining parts of the paper that every
considered graph F has at least one edge. We have another special case F = pK1 +K2.

I Proposition 4 (*). For a nonnegative integer p, Strong (pK1 + K2)-closure can be
solved in time nO(p), and it is co-W[1]-hard for k ≥ 1 when parameterized by p.

From now on we assume that F 6= pK1 and F 6= pK1 + K2. We show that Strong
F -closure is FPT when parameterized by k and |V (F)| in this case. We will consider
separately the case when F has a connected component with at least 3 vertices and the case
F = pK1 + qK2 for p ≥ 0 and q ≥ 2.

I Lemma 5. Let F be a graph that has a connected component with at least 3 vertices. Then
Strong F -closure can be solved in time 2O(k2)(|V (F)|+ k)O(k) + nO(1).

Proof. We show the claim by proving that the problem has a kernel with at most
22k−2(|V (F)| + k) + 2k − 2 vertices. Let (G, k) be an instance of Strong F -closure.
We recursively apply the following reduction rule in G:

I Rule 5.1. If there are at least |V (F)|+ k + 1 false twins in G, then remove one of them.

To show that the rule is sound, let v1, . . . , vp be false twins of G for p = |V (F)|+ k + 1
and assume that G′ is obtained from G by deleting vp. We claim that (G, k) is a yes-instance
of Strong F -closure if and only if (G′, k) is a yes-instance.

Let (G, k) be a yes-instance. By Observation 1, there is a solution H for (G, k) such
that |E(H)| = k. Since |E(H)| = k, there is i ∈ {1, . . . , p} such that vi is an isolated
vertex of H. Since v1, . . . , vp are false twins we can assume without loss of generality that
i = p. Then H ′ = H − vp is a solution for (G′, k), that is, this is a yes-instance. Assume
that (G′, k) is a yes-instance of Strong F -closure. Let H ′ be a solution for the instance
with k edges. Denote by H the spanning subgraph of G with E(H) = E(H ′). We show
that H satisfies the F -closure with respect to G. To obtain a contradiction, assume that
there is a set of vertices S of G such that H[S] ' F and G[S] ' F . Since H ′ satisfies the

SWAT 2018

23:6 Parameterized Aspects of Strong Subgraph Closure

F -closure with respect to G, vp ∈ S. Note that vp is an isolated vertex of H. Because
p = |V (F)|+ k + 1, there is i ∈ {1, . . . , p − 1} such that vi is an isolated vertex of H and
vi /∈ S. Let S′ = (S \ {vp}) ∪ {vi}. Since vi and vp are false twins, H[S′] = H ′[S′] ' F

and G[S′] ' F ; a contradiction. Therefore, we conclude that H satisfies the F -closure with
respect to G, that is, H is a solution for (G, k).

It is straightforward to see that the rule can be applied in polynomial time. To simplify
notations, assume that (G, k) is the instance of Strong F -closure obtained by the
exhaustive application of Rule 5.1. We greedily find an inclusion maximal matching M in G.
Notice that the spanning subgraph H of G with E(H) = M satisfies the F -closure because
every component of H has at most two vertices and by the assumption of the lemma F has
a component with at least 3 vertices. Therefore, if |M | ≥ k, we have that H is a solution for
the instance. Respectively, we return H and stop.

Assume that |M | ≤ k − 1. Let X be the set of end-vertices of the edges of M . Clearly,
|X| ≤ 2k − 2 and X is a vertex cover of G. Let Y = V (G) \ X. We have that Y is an
independent set. Every vertex in Y has its neighbors in X. Hence, there are at most
2|X| vertices of Y with pairwise distinct neighborhoods. Hence, the vertices of Y can be
partitioned into at most 2|X| classes of false twins. After applying Rule 5.1, each class of
false twins has at most |V (F)|+ k vertices. It follows that |Y | ≤ 2|X|(|V (F)|+ k) and

|V (G)| = |X|+ |Y | ≤ |X|+ 2|X|(|V (F)|+ k) ≤ (2k − 2) + 22k−2(|V (F)|+ k).

Now we can find a solution for (G, k) by brute force checking all subsets of edges of size
k by Observation 1. This can be done it time |V (G)|O(k). Hence, the total running time is
2O(k2)(|V (F)|+ k)O(k) + nO(1). J

Now we consider the case F = pK1 + qK2 for p ≥ 0 and q ≥ 2. First, we explain how to
solve Strong qK2-closure for q ≥ 2. We use the random separation technique proposed
by Cai, Chen and Chan [6] (see also [8]). To avoid dealing with randomized algorithms and
subsequent standard derandomization we use the following lemma stated in [7].

I Lemma 6 ([7]). Given a set U of size n and integers 0 ≤ a, b ≤ n, one can construct in
time 2O(min{a,b} log(a+b)) · n logn a family S of at most 2O(min{a,b} log(a+b)) · logn subsets of
U such that the following holds: for any sets A,B ⊆ U , A ∩B = ∅, |A| ≤ a, |B| ≤ b, there
exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

I Lemma 7. For q ≥ 2, Strong qK2-closure can be solved in time 2O(k log k) · nO(1).

Proof. Let (G, k) be an instance of Strong qK2-closure. If k < q, then every spanning
subgraph H of G with k edges satisfies the F -closure, that is, (G, k) is a yes-instance of
Strong F -closure if k ≤ |E(G)|. Assume from now that q ≤ k.

Suppose that G has a vertex v of degree at least k. Let X be the set of edges of G
incident to v and consider the spanning subgraph H of G with E(H) = X. Since F = qK2
and q ≥ 2, H satisfies the F -closure. Hence, H is a solution for (G, k). We assume that this
is not the case and ∆(G) ≤ k − 1.

Suppose that (G, k) is a yes-instance. Then by Observation 1, there is a solution H with
exactly k edges. Let A = E(H) and denote by X the set of end-vertices of the edges of
A. Denote by B the set of edges of E(G) \ A that have at least one end-vertex in N [X].
Clearly, A ∩ B = ∅. We have that |A| = k and because the maximum degree of G is at
most k − 1, |B| ≤ 2k(k − 1)(k − 2). Applying Lemma 6 for the universe U = E(G), a = k

and b = 2k(k − 1)(k − 2) , we construct in time 2O(k log k) · nO(1) a family S of at most
2O(k log k) · logn subsets of E(G) such that there exists a set S ∈ S with A ⊆ S and B∩S = ∅.

P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:7

For every S ∈ S, we find (if it exists) a spanning subgraph H of G with k edges such that (i)
E(H) ⊆ S and (ii) for every e1, e2 ∈ S that are adjacent or have adjacent end-vertices, it
holds that either e1, e2 ∈ E(H) or e1, e2 /∈ E(H). By Lemma 6, we have that if (G, k) is a
yes-instance of Strong F -closure, then it has a solution satisfying (i) and (ii). Hence,
if we find a solution for some S ∈ S, we return it and stop and, otherwise, if there is no
solution satisfying (i) and (ii) for some S ∈ S, we conclude that (G, k) is a no-instance.

Assume that S ∈ S is given. We describe the algorithm for finding a solution H with k
edges satisfying (i) and (ii). Let R be the set of end-vertices of the edges of S. Consider the
graph G[R] and denote by C1, . . . , Cr its components. Let Ai = E(Ci) ∩ S for i ∈ {1, . . . , r}.

Observe that if H is a solution with k edges satisfying (i) and (ii), then for each
i ∈ {1, . . . , r}, either Ai ⊆ E(H) or Ai ∩ E(H) = ∅. It means that we are looking for a
solutionH such that E(H) is union of some sets Ai, that is, E(H) = ∪i∈IAi for I ⊆ {1, . . . , r}.
Let ci = |Ai| for i ∈ {1, . . . , r}. Clearly, we should have that

∑
i∈I ci = k. In particular, it

means that if |Ai| > k, then the edges of Ai are not in any solution. Therefore, we discard
such sets and assume from now that |Ai| ≤ k for i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, denote
by wi the maximum number of edges in Ai that form an induced matching in Ci. Since
each |Ai| ≤ k, the values of wi can be computed in time 2k · nO(1) by brute force. Observe
that for distinct i, j ∈ {1, . . . , r}, the vertices of Ci and Cj are at distance at least two in G
and, therefore, the end-vertices of edges of Ai and Aj are not adjacent. It follows, that the
problem of finding a solution H is equivalent to the following problem: find I ⊆ {1, . . . , r}
such that

∑
i∈I ci = k and

∑
i∈I wi ≤ q. It is easy to see that we obtain an instance of a

variant of the well known Knapsack problem (see, e.g., [16]); the only difference is that we
demand

∑
i∈I ci = k instead of

∑
i∈I ci ≥ k as in the standard version. This problem can be

solved by the standard dynamic programming algorithm (again see, e.g., [16]) in time O(kn).
Since the family S is constructed in time 2O(k log k) ·nO(1) and we consider 2O(k log k) · logn

sets S, we obtain that the total running time is 2O(k log k) · nO(1). J

We use Lemma 7 to solve Strong (pK1 + qK2)-closure.

I Lemma 8 (*). For p ≥ 0 and q ≥ 2, Strong (pK1 + qK2)-closure can be solved in time
2O((k+p) log(k+p)) · nO(1).

Combining Lemmata 5, 7, and 8, we obtain the following theorem.

I Theorem 9. If F 6= pK1 for p ≥ 1 and F 6= pK1 +K2 for p ≥ 0, then Strong F -closure
is FPT when parameterized by |V (F)|+ k.

Notice that if |E(F)| > k, then (G, k) is a yes-instance of Strong F -closure. This
immediately implies the following corollary.

I Corollary 10. If F has no isolated vertices, then Strong F -closure is FPT when
parameterized by k, even when F is given as a part of the input.

We conclude this section with a kernel result. Observe that if the input graph G is
restricted to be a graph from a sparse graph class C, namely if C is nowhere dense (see [21])
and is closed under taking subgraphs, then the kernel constructed in Lemma 5 becomes
polynomial. This observation is based on the results Eickmeyer et al. [13] that allow to
bound the number of distinct neighborhoods of vertices in V (G) \X in the construction of
the kernel in the proof of Lemma 5. For simplicity, we demonstrate it here on d-degenerate
graphs 2.

2 NP-completeness result for F = P3 restricted to planar graphs (and, thus, 5-degenerate graphs) is given
in Section 5.

SWAT 2018

23:8 Parameterized Aspects of Strong Subgraph Closure

I Proposition 11 (*). If F has a connected component with at least 3 vertices, then Strong
F -closure has a kernel with kO(d)d(|V (F)|+ k) vertices on d-degenerate graphs.

In particular, we have a polynomial kernel when F = P3. Similar results can be obtained
for some classes of dense graphs. For example, if G is dK1-free, then V (G) \X has at most
d− 1 vertices and we obtain a kernel with 2k + d− 3 vertices.

4 Parameterized complexity of Strong Triadic Closure

In this section we study the parameterized complexity of Strong P3-closure, which is
more famously known as Strong Triadic Closure.

Note that Strong Triadic Closure is FPT and admits an algorithm with running time
2O(k2) · nO(1) by Lemma 5. We complement this result by showing that Strong Triadic
Closure does not admit a polynomial kernel, even when the input graph is a split graph. A
graph is a split graph if its vertex set can be partitioned into an independent set and a clique.
Strong Triadic Closure is known to be NP-hard on split graphs [18].

I Theorem 12 (+). Strong Triadic Closure has no polynomial compression unless
NP ⊆ coNP/ poly, even when the input graph is a split graph.

Proof. We give a reduction from the Set Packing problem: given a universe U of t elements
and subsets B1, . . . , Bp of U decide whether there are at least k subsets which are pairwise
disjoint. Set Packing (also known as Rank Disjoint Set problem), parameterized by
|U|, does not admit a polynomial compression [10]. Given an instance (U , B1, . . . , Bp, k) for
the Set Packing, we construct a split graph G with a clique U ∪ Y and an independent set
W ∪X as follows:

The vertices of U correspond to the elements of U .
For every Bi there is a vertex wi ∈W that is adjacent to all the vertices of (U ∪ Y) \Bi.
X and Y contain additional 2t vertices with X = {x1, . . . , xt} and Y = {y1, . . . , yt} such
that yi is adjacent to all the vertices of (W ∪ X) \ {xi} and xi is adjacent to all the
vertices of (U ∪ Y) \ {yi}.

Notice that the clique of G contains 2t vertices. We will show that there are at least k pairwise
disjoint sets in {B1, . . . , Bp} if and only if there is a solution for Strong P3-closure on G
with at least k′ = |E(U ∪ Y)|+ (k + t)/2 edges.

Assume that B′ is a family of k pairwise disjoint sets of B1, . . . , Bp. For every B′i ∈ B′ we
choose three vertices wi, yi, xi from W , Y , and X, respectively, such that xi is non-adjacent
to yi with the following strong edges: wi is strongly adjacent to yi and xi is strongly adjacent
to the vertices of B′i in U . We also make weak the edges inside the clique between the vertices
of B′i and yi. All other edges incident to wi and xi are weak. Let W ′, Y ′, X ′ be the set of
vertices that are chosen from the family B′ according to the previous description. Every
vertex of W \W ′ is not incident to a strong edge. For the t− k vertices of Y \ Y ′ we choose
a matching and for each matched pair yj , yj′ we make the following edges strong: xjyj′ and
xj′yj where xj and xj′ are non-adjacent to yj and yj′ , respectively. Moreover each edge
yjyj′ of the clique is weak and all other edges incident to xj and xj′ are weak. The rest of
the edges inside the clique U ∪ Y are strong. It is not difficult to verify that the described
labeling satisfies the P3-closure with the claimed number of strong edges.

For the opposite direction, assume that H is a subgraph of G that satisfies the P3-closure
with at least k′ edges. For a vertex v ∈W ∪X, let S(v) be the strong neighbors of v in H
and let B(v) be the non-neighbors of v in U ∪Y . Our task is to show that for any two vertices
u, v of W ∪X with non-empty sets S(u), S(v), we have B(u) ∩ B(v) = ∅. We accomplish

P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:9

that, by showing the following arguments: (i) for any weak edge e inside the clique there
must be strong edges between the endpoints of e and special vertices of the independent set,
(ii) in order to achieve the bound k′, there are strong edges incident to the vertices of W , (iii)
any component of the clique spanned by weak edges induces a tree of height one, and (iv)
for any two vertices u, v of W ∪X with non-empty sets S(u), S(v), their non-neighborhoods
B(u), B(v) do not have the containment property. Then by the last two arguments we know
that all vertices of W that are incident to at least one strong edge in H must have disjoint
non-neighborhood. Since B(wi) = Bi, there are k pairwise disjoint sets in {B1, . . . , Bp} for
the k vertices of W that are incident to at least one strong edge in H. Therefore there is a
solution for the Set Packing problem for (U , B1, . . . , Bp, k). J

Let F be a graph that has at least one component with at least three vertices. If M
is a matching in a graph G, then the spanning subgraph H of G with E(H) = M satisfies
the F -closure. It implies that an instance (G, k) of Strong F -Closure is a yes-instance
of the problem if the maximum matching size µ(G) ≥ k. Since a maximum matching can
be found in polynomial time [20], we can solve Strong F -Closure in polynomial time
for such instances. This gives rise to the question about the parameterized complexity of
Strong F -Closure with the parameter r = k − µ(G). We show that Strong Triadic
Closure is FPT with this parameter for the instances where ∆(G) ≤ 4. Note that Strong
Triadic Closure is NP-complete on graphs G with ∆(G) ≤ d for every d ≥ 4 [17].

I Theorem 13 (+). Strong Triadic Closure can be solved in time 2O(r) · nO(1) on
graphs of maximum degree at most 4, where r = k − µ(G).

Proof. Let (G, k) be an instance of Strong Triadic Closure such that ∆(G) ≤ 4. We
construct the set of vertices X and the set of edges A as follows. Initially, X = ∅ and A = ∅.
Then we exhaustively perform the following steps in a greedy way:
1. If there exists a copy of K4 in G−X, we add the vertices of this K4 to X and the edges

between these vertices to A.
2. If there exists a triangle T in G−X such that µ(G−X) < 3 + µ(G−X − T), we add

the vertices of T to X and and the edges of T to A.
Let M be a maximum matching of G−X for the obtained set X. Note that the spanning
subgraph H of G with the set of edges A ∪M satisfies the P3-closure. Assume that Step 1
was applied p times and we used Step 2 q times. Clearly, |A| = 6p + 3q. Notice that the
vertices of a copy of K4 can be incident to at most 4 edges of a matching and the complete
graph with 4 vertices has 6 edges. Observe also that by Step 2, we increase the size of A by 3
and µ(G−X)− µ(G−X − T) ≤ 2. This implies that |E(H)| = |A|+ |M | ≥ µ(G) + 2p+ q.
Therefore, if 2p+ q ≥ r, (G, k) is a yes-instance. Assume from now that this is not the case.
In particular |X| ≤ 4r and G′ = G−X is a K4-free graph.

We need some structural properties of G′ and (possible) solutions for the considered
instance. By Step 2, we know that for every triangle T in G′: (i) T contains no edge of
M and (ii) every vertex of T is incident to an edge of M . We say that a solution H for
(G, k) is regular if H −X is a disjoint union of triangles, edges and isolated vertices. We
also say that a solution H is triangle-maximal if (i) it contains the maximum number of
edges and, subject to (i), (ii) contain the maximum number of pairwise distinct triangles.
By the fact that ∆(G) ≤ 4, it can be proved that if (G, k) is a yes-instance, then it has a
triangle-maximal regular solution. Next we derive the following properties for triangles in G′
that are at distance one or more from X.

For any triangle T at distance one from X, if T is included in H then H contains no
other edge incident to T .

SWAT 2018

23:10 Parameterized Aspects of Strong Subgraph Closure

For any triangle T at distance at least two from X that does not intersect any other
triangle, T is included in every triangle-maximal regular solution for (G, k).
If T1 and T2 are two intersecting triangles in G′, then (i) T1 and T2 have one edge in
common and (ii) no other triangle intersects T1 or T2.
If T1 and T2 are two intersecting triangles such that T1 is at distance at least two from
X, then either T1 or T2 is included in every regular triangle-maximal solution for (G, k).

Now we are ready to solve the problem by finding a triangle-maximal regular solution if
it exists. The crucial step is to sort out triangles in G′. Since |X| ≤ 4r and since every
vertex of X has at least two neighbors inside X, we have |NG(X)| ≤ 8r. By the triangle
properties, at most 2 triangles of G′ contain the same vertex. Thus, the number of pairwise
distinct triangles in G′ that are at distance at most one from X is at most 16r. We list all
these triangles, and branch on all at most 216r choices of the triangles that are included in a
triangle-maximal regular solution. Then, for each choice of these triangles, we try to extend
the partial solution. If we obtain a solution for one of the choices we return it; otherwise,
the algorithm returns NO.

Assume that we are given a set T1 of triangles at distance one from X that should be in
a solution. We apply the following reduction rule.

I Rule 13.1. Set G = G− ∪T∈T1T and set k = k − 3|T1|.

Now we deal with triangles that are at distance at least 2. Consider the set T2 of triangles
in G′ that are at distance at least 2 from X and have no common vertices with other triangles
in G′. Such triangles are in every triangle-maximal regular solution which gives us the
following:

I Rule 13.2. Set G = G− ∪T∈T2T and set k = k − 3|T2|.

To consider the remaining triangles for every such a triangle T , T is intersecting with
a unique triangle T ′ of G′ and T, T ′ are sharing an edge. Let T3 be the set of triangles in
G′ that are at distance at least 2 from X in G and have a common edge with a triangle at
distance one from X.

I Rule 13.3. Set G = G− ∪T∈T3T and set k = k − 3|T3|.

Let G′ = G−X. The remaining triangles in G′ at distance at least 2 from X in G form
pairs {T1, T2} such that T1 and T2 have a common edge and are not intersecting any other
triangle. Let P be the set of all such pairs. We apply the property that a triangle-maximal
regular solution contains either T1 or T2 to construct the following rule.

I Rule 13.4. For every pair {T1, T2} ∈ P, delete the vertices of T1 and T2 from G, construct
a new vertex u and make it adjacent to the vertices of NG((T1 \ T2) ∪ (T2 \ T1)). Set
k = k − 3|P|.

Denote by (Ĝ, k̂) the instance obtained from (G, k) by the application of Rule 13.4. We
can show the following important claim.

I Claim 13.1. The instance (G, k) has a regular solution H that has no triangles in G−X
at distance one from X if and only if there is a solution Ĥ for (Ĝ, k̂) such that Ĥ −X is a
disjoint union of edges and isolated vertices.

Thus we have to find a solution for the instance (Ĝ, k̂) such that Ĥ − X is a disjoint
union of edges and isolated vertices. We do it by branching on all possible choices of edges in
a solution that are incident to the vertices of X. Since |X| ≤ 4r and ∆(G) ≤ 4, there are at
most 16r edges that are incident to the vertices of X and, therefore, we branch on at most

P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:11

216r choices of a set of edges S. Then for each choice of S, we are trying to extend it to a
solution. If we can do it for one of the choices, we return the corresponding solution, and the
algorithm returns NO otherwise. First, we verify whether the spanning subgraph of G with
the set of edges S satisfies the P3-closure. If it is not so, we discard the current choice of S
since, trivially, S cannot be extended to a solution. Assume that this is not the case. Let
R = Ĝ−X. We modify R by the exhaustive application of the following rule.

I Rule 13.5. If there is xy ∈ E(R) such that there is z ∈ X with xz ∈ S and yz /∈ E(Ĝ),
then delete xy from R.

Let R′ be the graph obtained from R by the rule. Observe that the edges deleted by
Rule 13.5 cannot belong to a solution. Hence, to extend S, we have to complement it by
some edges of R′ that form a matching. Every matching of R′ could be used to complement
S. Respectively, we find a maximum matching M in R′ in polynomial time. Then the
spanning subgraph Ĥ of Ĝ with E(Ĥ) = S ∪M satisfies the P3-closure. We verify whether
|S|+ |M | ≥ k̂. If it holds, we return Ĥ. Otherwise, we discard the current choice of S. J

5 Concluding remarks

To complement our results so far, we give here the parameterized complexity results when
our problem is parameterized by the number of weak edges. The following result is not
difficult to deduce using similar ideas to those used in proving that F -free Edge Deletion
is FPT by the number of deleted edges [4].

I Theorem 14 (*). For every fixed graph F , Strong F -closure can be solved in time
2O(`) · nO(1), where ` = |E(G)| − k.

Next we show that Strong F -closure has a polynomial bi-kernel with this parameter-
ization whenever F is a fixed graph. We obtain this result by constructing bi-kernelization
that reduces Strong F -closure to the d-Hitting Set problem that is the variant of
Hitting Set with all the sets in C having d elements. Notice that this result comes in
contrast to the F -free Edge Deletion problem, as it is known that there are fixed graphs
F for which there is no polynomial compression [5] unless NP ⊆ coNP/ poly.

I Theorem 15 (*). For every fixed graph F , Strong F -closure has a polynomial bi-kernel,
when parameterized by ` = |E(G)| − k.

We would like to underline that Theorems 14 and 15 are fulfilled for the case when F is
a fixed graph of constant size, as the degree of the polynomial in the running time of our
algorithm depends on the size of F and, similarly, the size of F is in the exponent of the
function defining the size of our bi-kernel. We can hardly avoid this dependence as it can
be observed that for ` = 0, Strong F -closure is equivalent to asking whether the input
graph G is F -free, that is, we have to solve the Induced Subgraph Isomorphism problem.
It is well known that Induced Subgraph Isomorphism parameterized by the size of F
is W[1]-hard when F is a complete graph or graph without edges [11], and the problem is
W[1]-hard when F belongs to other restricted families of graphs [15].

We conclude with a few open problems. An interesting question is whether Strong
Triadic Closure is FPT when parameterized by r = k − µ(G). We proved that this holds
on graphs of maximum degree at most 4, and we believe that this question is interesting not
only on general graphs but also on various other graph classes. In particular, what can be
said about planar graphs? To set the background, we show that Strong Triadic Closure
is NP-hard on this class.

SWAT 2018

23:12 Parameterized Aspects of Strong Subgraph Closure

I Theorem 16 (*). Strong Triadic Closure is NP-hard on planar graphs.

The same question can be asked for the case when F 6= P3 has a connected component with
at least three vertices. As a first step, we give an FPT result when F is a star.

I Theorem 17 (*). For every t ≥ 3, Strong K1,t-closure can be solved in time 2O(r2) ·
nO(1), where r = k − µ(G) .

Another direction of research is to extend Strong F -closure by replacing F with a
list of forbidden subgraphs F and settle the complexity differences compared to F = {F}.

References
1 N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving max-r-sat above a tight

lower bound. Algorithmica, 61(3):638–655, 2011.
2 L. Backstrom and J. Kleinberg. Romantic partnerships and the dispersion of social ties: a

network analysis of relationship status on facebook. In CSCW 2014, pages 831–841, 2014.
3 H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without

polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
4 L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-

ties. Information Processing Letters, 58:171–176, 1996.
5 L. Cai and Y. Cai. Incompressibility of H-free edge modification problems. Algorithmica,

71:731–757, 2015.
6 L. Cai, S.M. Chan, and S.O. Chan. Random separation: a new method for solving fixed-

cardinality optimization problems. In IWPEC 2006, pages 239–250, 2006.
7 R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk. Designing FPT

algorithms for cut problems using randomized contractions. SIAM J. Comput., 45(4):1171–
1229, 2016.

8 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

9 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2012.

10 M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization lower bounds through colors and
ids. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014.

11 R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science, Springer, 1997.

12 D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, 2010.

13 K. Eickmeyer, A. C. Giannopoulou, S. Kreutzer, O. Kwon, M. Pilipczuk, R. Rabinovich,
and S. Siebertz. Neighborhood complexity and kernelization for nowhere dense classes of
graphs. In ICALP 2017, pages 63:1–63:14, 2017.

14 P.A. Golovach, P. Heggernes, A.L. Konstantinidis, P.T. Lima, and C. Papadopoulos. Para-
meterized aspects of strong subgraph closure. Available on arxiv.org/abs/1802.10386, 2018.

15 S. Khot and V. Raman. Parameterized complexity of finding subgraphs with hereditary
properties. Theor. Comput. Sci., 289(2):997–1008, 2002.

16 J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006.
17 A. L. Konstantinidis, S. D. Nikolopoulos, and C. Papadopoulos. Strong triadic closure in

cographs and graphs of low maximum degree. In COCOON 2017, pages 346–358, 2017.
18 A. L. Konstantinidis and C. Papadopoulos. Maximizing the strong triadic closure in split

graphs and proper interval graphs. In ISAAC 2017, pages 53:1–53:12, 2017.
19 S. Kratsch and M. Wahlstrom. Two edge modification problems without polynomial kernels.

Discrete Optimization, 10:193–199, 2013.

P.A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos 23:13

20 S. Micali and V. V. Vazirani. An O(sqrt(|v|) |e|) algorithm for finding maximum matching
in general graphs. In FOCS 1980, pages 17–27, 1980.

21 J. Nesetril and P. Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics. Springer, 2012.

22 S. Sintos and P. Tsaparas. Using strong triadic closure to characterize ties in social networks.
In KDD 2014, pages 1466–1475, 2014.

23 M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309,
1981.

SWAT 2018

Parameterized Orientable Deletion
Tesshu Hanaka
Department of Information and System Engineering, Chuo University, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

Ioannis Katsikarelis
Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France
ioannis.katsikarelis@dauphine.fr

Michael Lampis
Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France
michail.lampis@dauphine.fr

Yota Otachi
Kumamoto University, Kumamoto, 860-8555, Japan
otachi@cs.kumamoto-u.ac.jp

Florian Sikora
Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France
florian.sikora@dauphine.fr

Abstract
A graph is d-orientable if its edges can be oriented so that the maximum in-degree of the resulting
digraph is at most d. d-orientability is a well-studied concept with close connections to funda-
mental graph-theoretic notions and applications as a load balancing problem. In this paper we
consider the d-Orientable Deletion problem: given a graph G = (V,E), delete the minimum
number of vertices to make G d-orientable. We contribute a number of results that improve the
state of the art on this problem. Specifically:

We show that the problem is W[2]-hard and logn-inapproximable with respect to k, the
number of deleted vertices. This closes the gap in the problem’s approximability.
We completely characterize the parameterized complexity of the problem on chordal graphs:
it is FPT parameterized by d+ k, but W-hard for each of the parameters d, k separately.
We show that, under the SETH, for all d, ε, the problem does not admit a (d + 2 − ε)tw,
algorithm where tw is the graph’s treewidth, resolving as a special case an open problem on
the complexity of PseudoForest Deletion.
We show that the problem is W-hard parameterized by the input graph’s clique-width. Com-
plementing this, we provide an algorithm running in time dO(d·cw), showing that the problem
is FPT by d+ cw, and improving the previously best know algorithm for this case.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Graph orientations, FPT algorithms, Treewidth, SETH

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.24

Funding This work was financially supported by the “PHC Sakura” program (project GRAPA,
number: 38593YJ), implemented by the French Ministry of Foreign Affairs, the French Ministry
of Higher Education and Research and the Japan Society for Promotion of Science.

© Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Yota Otachi, and Florian Sikora;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanaka.91t@g.chuo-u.ac.jp
mailto:ioannis.katsikarelis@dauphine.fr
mailto:michail.lampis@dauphine.fr
mailto:otachi@cs.kumamoto-u.ac.jp
mailto:florian.sikora@dauphine.fr
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Parameterized Orientable Deletion

1 Introduction

In this paper we study the following natural optimization problem: we are given a graph
G = (V,E) and an integer d, and are asked to give directions to the edges of E so that in
the resulting digraph as many vertices as possible have in-degree at most d. Equivalently,
we are looking for an orientation of E such that the set of vertices K whose in-degree is
strictly more than d is minimized. Such an orientation is called a d-orientation of G[V \K],
and we say that K is a set whose deletion makes the graph d-orientable. The problem of
orienting the edges of an undirected graph so that the in-degree of all, or most, vertices
stays below a given threshold has been extensively studied in the literature, in part because
of its numerous applications. In particular, one way to view this problem is as a form of
scheduling, or load balancing, where edges represent jobs and vertices represent machines. In
this case the in-degree represents the load of a machine in a given assignment, and minimizing
it is a natural objective (see e.g. [6, 10, 14, 20]). Finding an orientation where all in- or
out-degrees are small is also of interest for the design of efficient data structures [11]. For
more applications we refer the reader to [2, 3, 4, 5, 9] and the references therein.

State of the art. d-orientability has been well-studied in the literature, both because of
its practical motivations explained above, but also because it is a basic graph property that
generalizes and is closely related to fundamental concepts such as d-degeneracy (as a graph
is d-degenerate if and only if it admits an acyclic d-orientation), and bounded degree. This
places d-Orientable Deletion in a general context of graph editing problems that measure
the distance of a given graph from having one of these properties [7, 17].

Deciding if an unweighted graph is d-orientable is solvable in polynomial time [5], though
the problem becomes APX-hard [14] and even W-hard parameterized by treewidth [19] if
one allows edge weights. In this paper we focus on unweighted graphs, for which computing
the minimum number of vertices that need to be deleted to make a graph d-orientable
is easily seen to be NP-hard, as the case d = 0 corresponds to Vertex Cover. This
hardness has motivated the study of both polynomial-time approximation and parameterized
algorithms, as well as algorithms for specific graph classes. For approximation, if the objective
function is to maximize the number of non-deleted vertices, the problem is known to be
n1−ε-inapproximable; if one seeks to minimize the number of deleted vertices, the problem
admits an O(log d)-approximation, but it is not known if this can be improved to a constant
[2]. From the parameterized point of view, the problem is W[1]-hard for any fixed d if the
parameter is the number of non-deleted vertices [9]. To the best of our knowledge, the
complexity of this problem parameterized by the number of deleted vertices is open.

We remark that sometimes in the literature a d-orientation is an orientation where all
out-degrees are at most d, but this can be seen to be equivalent to our formulation by reversing
the direction of all edges. d-Orientable Deletion has sometimes been called Min-(d+ 1)-
Heavy/Max-d-Light [2], depending on whether one seeks to minimize the number of
deleted vertices, or maximize the number of non-deleted vertices (the two are equivalent
in the context of exact algorithms). The problem of finding an orientation minimizing the
maximum out-degree has also been called Minimum Maximum Out-degree [5].

An important special case that has recently attracted attention from the FPT algorithms
point of view is that of d = 1. 1-orientable graphs are called pseudo-forests, as they are exactly
the graphs where each component contains at most one cycle. 1-Orientable Deletion,
also known as PseudoForest Deletion, has been shown to admit a 3k algorithm, where
k is the number of vertices to be deleted [8, 18].

T. Hanaka, I. Katsikarelis, M. Lampis, Y. Otachi, and F. Sikora 24:3

Our contribution. We study the complexity of d-Orientable Deletion mostly from the
point of view of exact FPT algorithms. We contribute a number of new results that improve
the state of the art and, in some cases, resolve open problems from the literature.

We first consider the parameterized complexity of the problem with respect to the natural
parameter k, the number of vertices to be deleted to make the graph d-orientable. We show
that for any fixed d > 2, d-Orientable Deletion is W[2]-hard parameterized by k. This
result is tight in two respects: it shows that, under the ETH, the trivial nk algorithm that
tries all possible solutions is essentially optimal; and it cannot be extended to the case d = 1,
as in this case the problem is FPT [8]. Because our proof is a reduction from Dominating
Set that preserves the optimal, we also show that the problem cannot be approximated
with a factor better than lnn. This matches the performance of the algorithm given in [2],
and closes a gap in the status of this problem, as the previously best known hardness of
approximation bound was 1.36 [2].

Second, we consider the complexity of d-Orientable Deletion when restricted to
chordal graphs, motivated by the work of [9], who study the problem on classes of graphs
with polynomially many minimal separators. We are able to completely characterize the
complexity of the problem for this class of graphs with respect to the two main natural
parameters d and k: the problem is W[1]-hard parameterized by d, W[2]-hard parameterized
by k, but solvable in time roughly dO(d+k), and hence FPT when parameterized by d+ k.
We recall that the problem is poly-time solvable on chordal graphs when d is a constant [9],
and trivially in P in general graphs when k is a constant, so these results are in a sense tight.

Third, we consider the complexity of d-Orientable Deletion parameterized by the
input graph’s treewidth, perhaps the most widely studied graph parameter. Our main
contribution here is a lower bound which, assuming the Strong ETH, states that the problem
cannot be solved in time less than (d + 2)tw, for any constant d > 1. As a consequence,
this shows that the 3tw algorithm given for PseudoForest Deletion in [8] is optimal
under the SETH. We recall that Bodlaender et al. [8] had explicitly posed the existence of a
better treewidth-based algorithm as an open problem; our results settle this question in the
negative, assuming the SETH. Our result also extends the lower bound of [16] which showed
that Vertex Cover (which corresponds to d = 0) cannot be solved in (2− ε)tw.

Finally, we consider the complexity of the problem parameterized by clique-width. We
recall that clique-width is probably the second most widely studied graph parameter in
FPT algorithms (after treewidth), so after having settled the complexity of d-Orientable
Deletion with respect to treewidth, investigating clique-width is a natural question. On
the positive side, we present a dynamic programming algorithm whose complexity is roughly
dO(d·cw), and is therefore FPT when parameterized by d+ cw. This significantly improves
upon the dynamic programming algorithm for this case given in [9], which runs in time
roughly nO(d·cw). The main new idea of this algorithm, leading to its improved performance,
is the observation that sufficiently large entries of the DP table can be merged using a more
careful characterization of feasible solutions that involve large bi-cliques. On the negative
side, we present a reduction showing that d-Orientable Deletion is W[1]-hard if cw is
the only parameter. This presents an interesting contrast with the case of treewidth: for
both parameters we can obtain algorithms whose running time is a function of d and the
width; however, because graphs of treewidth w always admit a w-orientation (since they are
w-degenerate), this immediately also shows that the problem is FPT for treewidth, while our
results imply that obtaining a similar result for clique-width is impossible (under standard
assumptions). Due to space constraints, some proofs (marked with a F) are omitted.

SWAT 2018

24:4 Parameterized Orientable Deletion

2 Definitions and Preliminaries

Complexity background. We assume that the reader is familiar with the basic definitions
of parameterized complexity, such as the classes FPT and W[1] [13]. We will also make use
of the Exponential Time Hypothesis (ETH), a conjecture by Impagliazzo et al. asserting that
there is no 2o(n)-time algorithm for 3-SAT on instances with n variables [15]. We also use a
corollary (a slightly weaker statement) of the Strong Exponential Time Hypothesis (SETH),
stating that SAT cannot be solved in time O∗((2− ε)n) for any ε > 0 [15].

Graph widths. We also make use of standard graph width measures, such as pathwidth,
treewidth, and clique-width, denoted as pw, tw, cw respectively. For the definitions we refer
the reader to standard textbooks [13, 12]. We recall the following standard relations:

I Lemma 1. For all graphs G = (V,E) we have tw(G) 6 pw(G) and cw(G) 6 pw(G) + 2.

Graphs and Orientability. We use standard graph-theoretic notation. If G = (V,E) is a
graph and S ⊆ V , G[S] denotes the subgraph of G induced by S. For v ∈ V , the set of
neighbors of v in G is denoted by NG(v), or simply N(v), and NG(S) := (

⋃
v∈S N(v))\S will

often be written just N(S). We define N [v] := N(v)∪{v} and N [S] := N(S)∪S. Depending
on the context, we use (u, v), where u, v ∈ V to denote either an undirected edge connecting
two vertices u, v, or an arc (that is, a directed edge) with tail u and head v. An orientation
of an undirected graph G = (V,E) is a directed graph on the same set of vertices obtained
by replacing each undirected edge (u, v) ∈ E with either the arc (u, v) or the arc (v, u). In a
directed graph we define the in-degree δ−(v) of a vertex u as the number of arcs whose head
is u. A d-orientation of a graph G = (V,E) is an orientation of G such that all vertices have
in-degree at most d. If such an orientation exists, we say that G is d-orientable. Deciding if
a given graph is d-orientable is solvable in polynomial time, even if d is part of the input [5].
Let us first make some easy observations on the d-orientability of some basic graphs.

I Lemma 2 (F). K2d+1, the clique on 2d+ 1 vertices, is d-orientable. Furthermore, in any
d-orientation of K2d+1 all vertices have in-degree d.

I Lemma 3 (F). The complete bipartite graph K2d+1,2d is not d-orientable.

I Definition 4. In d-Orientable Deletion we are given as input a graph G = (V,E) and
an integer d. We are asked to determine the smallest set of vertices K ⊆ V (the deletion set)
such that G[V \K] admits a d-orientation.

I Definition 5. In Capacitated-d-Orientable Deletion we are given as input a graph
G = (V,E), an integer d > 1, and a capacity function c : V → {0, . . . , d}. We are asked to
determine the smallest set of vertices K ⊆ V such that G[V \K] admits an orientation with
the property that for all u ∈ V \K, the in-degree of u is at most c(u).

It is clear that Capacitated-d-Orientable Deletion generalizes d-Orientable Dele-
tion, which corresponds to the case where we have c(u) = d for all vertices. It is, however,
not hard to see that the two problems are in fact equivalent, as shown in the following lemma.
Furthermore, the following lemma shows that increasing d can only make the problem harder.

I Lemma 6. There exists a polynomial-time algorithm which, given an instance [G =
(V,E), d, c] of Capacitated-d-Orientable Deletion, and an integer d′ > d, produces an
equivalent instance [G′ = (V ′, E′), d′] of d-Orientable Deletion, with the same optimal
value and the following properties: pw(G′) 6 pw(G) + 2d′ + 1, cw(G′) 6 cw(G) + 4, and if G
is chordal then G′ is chordal.

T. Hanaka, I. Katsikarelis, M. Lampis, Y. Otachi, and F. Sikora 24:5

0

1 2

3 4

u

Figure 1 A 2-orientation of a clique
K5. Observe that any edge connecting a
vertex u to the clique must be oriented
towards u (setting its capacity) to main-
tain a 2-orientation.

v1

v2 v3

v4 v5

v1 v2 v3 v4 v5

v1 v3 v4v2 v5V1

V2

c = 0

c = 1

c = 2

Figure 2 Left: A graph with its dominating
set in black. Right: The corresponding instance
and 2-orientation, where deleted vertices are in
gray. Original edges with a deleted vertex as an
endpoint are dotted.

Proof (Sketch). The idea of the reduction is to construct for every u ∈ V for which c(u) < d′

a clique of K2d′+1 vertices and connect d′ − c(u) vertices of the clique to u (see Figure 1).
Lemma 2 ensures that the edges connecting the clique to u will be oriented towards u,
simulating its decreased capacity. We can then argue that in the new instance there always
exists an optimal solution that does not delete any of the new vertices, therefore optimal
solutions are preserved. J

3 Hardness of Approximation and W-hardness

In this section we present a reduction from Dominating Set to d-Orientable Deletion
for d > 2 that exactly preserves the size of the solution. As a result, this establishes that, for
any fixed d > 2, d-Orientable Deletion is W[2]-hard, and the minimum solution cannot
be approximated with a better than logarithmic factor. We observe that it is natural that
our reduction only works for d > 2, as the problem is known to be FPT for d = 1, which is
known as PseudoForest Deletion, and d = 0, which is equivalent to Vertex Cover.

I Theorem 7. For any d > 2, d-Orientable Deletion is W[2]-hard parameterized by the
solution size k. Furthermore, for any d > 2, d-Orientable Deletion cannot be solved in
time f(k) · no(k), unless the ETH is false.

Proof. We will describe a reduction from Dominating Set, which is well-known to be W[2]-
hard and not solvable in f(k) · no(k) under the ETH, to Capacitated-d-Orientable
Deletion for d = 2. We will then invoke Lemma 6 to obtain the claimed result for d-
Orientable Deletion. Let [G(V,E), k] be an instance of Dominating Set. We begin by
constructing a bipartite graph H by taking two copies of V , call them V1, V2. For each v ∈ V2
we construct a binary tree with |NG[v]| leaves. We identify the root of this binary tree with
v ∈ V2 and its leaves with the corresponding vertices in V1. We now define the capacities of
our vertices: each vertex of V1 has capacity 0; each internal vertex of the binary trees has
capacity 2; and each vertex of V2 has capacity 1.

We will now claim that G has a dominating set of size k if and only if H can be oriented
in a way that respects the capacities by deleting at most k vertices.

For the forward direction, suppose that there is a dominating set in G of size k. In H we
delete the corresponding vertices of V1. We argue that the remaining graph is orientable in a
way that respects the capacities. We compute an orientation as follows:
1. We orient the remaining incident edges away from every vertex of V1 that is not deleted.
2. For each non-leaf vertex u of the binary tree rooted at v ∈ V2 we define the orientation of

the edge connecting u to its parent as follows: u is an ancestor of a set Su ⊆ NG[v] of
vertices of V1. If Su contains a deleted vertex, then we orient the edge connecting u to
its parent towards u, otherwise we orient it towards u’s parent.

SWAT 2018

24:6 Parameterized Orientable Deletion

The above description completely defines the orientation of the remaining graph (see also
Figure 2). Let us argue why the orientation respects all capacities. This should be clear for
vertices of V1. For any non-leaf vertex u of a binary tree, if we orient the edge connecting it
to its parent away from u, then the in-degree of u is at most 2, which is its capacity. On the
other hand, if we orient this edge towards u, there is a deleted vertex in Su. However, this
implies either that one of u’s children has been deleted, or that one of the edges connecting u
to one of its children is oriented away from u. In both cases, the in-degree of u is at most 2,
equal to its capacity. Finally, for each u ∈ V2, if we started with a dominating set, then one
of the children of u in the binary tree is either deleted or its edge to u is oriented towards it.

For the converse direction, suppose that there is a set of k vertices in H whose deletion
makes the graph orientable in a way that respects the capacities. Suppose now that we have
a solution that deletes some vertex v ∈ V2 or some internal vertex of a binary tree. We
re-introduce v in the graph, orient all its incident edges towards v, and then delete one of the
children of v. This preserves the size and validity of the solution. Repeating this argument
ends with a solution that only deletes vertices of V1. We now claim that these k vertices
are a dominating set. To see this, observe that any undeleted vertex of V1 has all its edges
connecting it to binary trees oriented away from it. Hence, if there is a binary tree with
root v ∈ V2 such that none of its leaves are undeleted, all its internal edges must be oriented
towards v, which would make the in-degree of v greater than its capacity. J

I Corollary 8 (F). For any d > 2, if there exists a polynomial-time o(logn)-approximation
for d-Orientable Deletion, then P=NP.

4 Chordal Graphs

In this section we consider the complexity of d-Orientable Deletion on chordal graphs
parameterized by either d or k (the number of deleted vertices). Our main results state
that the problem is W-hard for each of these parameters individually (Theorems 9 and 10);
however, the problem is FPT parameterized by d+ k (Theorem 11).

I Theorem 9 (F). d-Orientable Deletion is W[1]-hard on chordal graphs parameterized
by d. Furthermore, it cannot be solved in no(d) under the ETH.

I Theorem 10. d-Orientable Deletion is W[2]-hard on chordal graphs parameterized by
the solution size k. Furthermore, under the ETH it cannot be solved in time no(k).

Proof. We start from an instance of Dominating Set: we are given a graph G = (V,E) and
an integer k and are asked if there exists a dominating set of size k. We will retain the same
value of k and construct a chordal instance of Capacitated-d-Orientable Deletion, for
which we later invoke Lemma 6. Let |V | = n and we assume without loss of generality that
n − k is odd (otherwise we can add an isolated vertex to G). We construct G′ as follows.
Take two copies of V , call them V1, V2 and add all possible edges between vertices of V2. For
each u ∈ V , we connect u ∈ V1 with all vertices v ∈ V2 such that v ∈ NG[u], i.e. all vertices
v that are neighbors of u in G. Let us also define the capacities: each u ∈ V1 has capacity
dG(u); each u ∈ V2 has capacity n−k−1

2 . This completes the construction. G′ is chordal
because it is a split graph.

Suppose that G has a dominating set of size k. We delete the same vertices of V2 and
claim that G′ becomes orientable. We observe that all vertices of V1 have at least a deleted
neighbor, since we deleted a dominating set of G, hence for each such vertex the number of
remaining incident edges is at most its capacity. We therefore orient all edges incident on V1
towards V1. Finally, for the remaining vertices of V2 which induce a clique of size n− k we
orient their edges using Lemma 2 so that they all have in-degree exactly n−k−1

2 .

T. Hanaka, I. Katsikarelis, M. Lampis, Y. Otachi, and F. Sikora 24:7

v u

2d+ 2

c = 1

v u

W Z

W ′ Z ′

U

B̂

B̂′

Figure 3 Left: An example OR gadget. In the following, OR gadgets are shown as dotted edges.
Right: Example connections between a set U and the p sets W, Z in the gadgets B̂ of its group.

For the converse direction, suppose we can delete at most k vertices of the new graph to
make it orientable respecting the capacities. Again, as in Theorem 9 we assume we have a
solution of size exactly k, otherwise we add some vertices. Furthermore, any used vertex
of V1 can be exchanged with one of its neighbors in V2, since all vertices of V1 have degree
one more than their capacities, hence we assume that the solution deletes k vertices of V2.
We show that these vertices are a dominating set of G. Suppose for contradiction that they
are not, so u ∈ V1 does not have any deleted neighbors in V2. Since there are d(u) + 1
edges connecting u ∈ V1 to V2, at least one of them is oriented towards V2. But now the
n − k non-deleted vertices of V2, because of Lemma 2 all have in-degree exactly equal to
the capacities inside the clique they induce. Hence, the additional edge from V1 will force a
vertex to violate its capacity. J

I Theorem 11 (F). d-Orientable Deletion can be solved in time dO(d+k)nO(1) on
chordal graphs, where k is the size of the solution.

5 SETH Lower Bound for Treewidth

Overview. We follow the approach for proving SETH lower bounds for treewidth algorithms
introduced in [16] (see also Chapter 14 in [13]), that is, we present a reduction from SAT to
d-Orientable Deletion showing that if there exists a better than (d+ 2)tw algorithm for
d-Orientable Deletion, we obtain a better than 2n algorithm for SAT.

Similarly to these proofs, our reduction is based on the construction of “long paths” of Block
gadgets, that are serially connected in a path-like manner. Each such “path” corresponds to
a group of variables of the given formula, while each column of this construction is associated
with one of its clauses. Intuitively, our aim is to embed the 2n possible variable assignments
into the (d+ 2)tw states of some optimal dynamic program that would solve the problem on
our constructed instance. The hard part of the reduction is to take the natural d+ 2 options
available for each vertex, corresponding to its in-degree (d + 1) or the choice to delete it
(+1), and use them to compress n boolean variables into roughly n

log(d+2) units of treewidth.
Below, we present a sequence of gadgets used in our reduction. The aforementioned block

gadgets, which allow a solution to choose among d + 2 reasonable choices, are the main
ingredient. We connect these gadgets in a path-like manner that ensures that choices remain
consistent throughout the construction, and connect clause gadgets in different “columns”
of the constructed grid in a way that allows us to verify if the choice made represents a
satisfying assignment, without increasing the graph’s treewidth.

OR gadget. We use an OR gadget with two endpoints v, u whose purpose is to ensure that
in any optimal solution, either v or u will have to be deleted. This gadget is simply a set of
2d+ 2 vertices of capacity 1, connected to both v and u, as shown in Figure 3.

SWAT 2018

24:8 Parameterized Orientable Deletion

Clause gadget Ĉ(N). This gadget is identical to the one used for Independent Set in
[16] (where all vertices are of capacity 0), as finding a maximum independent set can be
seen as equivalent to finding a minimum-sized deletion set for 0-orientability. Due to space
restrictions, its construction and proof of correctness are omitted here. The gadget has
N input vertices and its purpose is to offer an 1-in-N choice, while its pathwidth remains
constant. The non-deleted input will correspond to a true literal within the clause.

Block gadget B̂. This gadget is the basic building block of our construction:
1. Make three vertices a, a′, b. Note that in the final construction, our block gadgets will be

connected serially, with vertex a′ being identified with the following gadget’s vertex a.
2. Make three independent sets X := {x1, . . . , xd}, Y := {y1, . . . , yd}, Q := {q1, . . . , q2d+1}.
3. Make two sets W := {w0, . . . , wd+1} and Z := {z0, . . . , zd+1}.
4. Connect all vertices of X with vertex a and with all vertices of Q.
5. Connect all vertices of Y with vertex a′ and with all vertices of Q.
6. Connect all vertices from W except wd+1 to b and all vertices of X.
7. Connect all vertices from Z except zd+1 to b and all vertices of Y .
8. Attach OR gadgets between the pairs: a and b, b and a′, a and wd+1, a′ and zd+1.
9. Attach OR gadgets between any pair of vertices in W ∪ Z, except for the pairs (wi, zi)

for i ∈ {0, . . . , d+ 1}. In other words, W ∪ Z is an OR-clique, minus a perfect matching.

We set the capacities as follows (see also Figure 4).
c(a) = c(a′) = d, c(b) = 0.
∀i ∈ [1, 2d+ 1], c(qi) = d, and ∀i, j ∈ [1, d], c(xi) = c(yj) = 0.
∀i ∈ [0, d], c(wi) = i, c(zi) = d− i, and c(wd+1) = c(zd+1) = 0.

Intuitively, there are d+ 2 options in each gadget, linked to the circumstances of vertices
a, a′ and b:1 there will have to be d vertices deleted in total from X ∪Y and the numbers will
be complementary: if i vertices remain in X then, due to Q being of size 2d+ 1 (it is never
useful to delete any of them), there must be d− i vertices remaining in Y . Thus, the d+ 1
options can be seen as represented by the number of vertices remaining in X, while for each
one, vertex b must also be deleted due to the OR gadgets connecting it to a, a′. The extra
option is to ignore the actual number of deletions within X and remove both a, a′ instead.

The setsW,Z are connected in such a way that any reasonable feasible solution will delete
all of their vertices, except for a pair wi, zi for some i ∈ {0, . . . , d+ 1}. The non-deleted pair
is meant to encode a choice for this block gadget.

Global construction. Fix some integer d, and suppose that for some ε > 0 there exists a
(d+2−ε)tw algorithm for d-Orientable Deletion. We give a reduction which, starting from
any SAT instance with n variables and m clauses, produces an instance of d-Orientable
Deletion, such that applying this supposed algorithm on the new instance would give a
better than 2n algorithm for SAT.

We are faced with the problem that d + 2 is not a power of 2, hence we will need to
create a correspondence between groups of variables of the SAT instance and groups of block
gadgets. We first choose an integer p = d 1

(1−λ) log2(d+2)e, for λ = logd+2(d+ 2− ε) < 1. We

1 Each such option can be seen to correspond with one of the states that some optimal dynamic
programming algorithm for the problem would assign to vertex a: it is either deleted, or has a number
i ∈ [0, d] of incoming edges within the gadget.

T. Hanaka, I. Katsikarelis, M. Lampis, Y. Otachi, and F. Sikora 24:9

a

b

a′

X Q Y

W Z

c = d

c = d

c = 0 c = 0

c = 0

c(wi) = i c(zi) = d− i

c(wd+1) = 0 c(zd+1) = 0

c = d

Figure 4 Our block gadget B̂. Capacities are shown next to vertices/sets, the OR-connections
within W, Z are shown as paths, while the OR-connections between W, Z are only shown for w0.

then group the variables of φ into t = dnγ e groups F1, . . . , Ft, where γ = blog2(d+ 2)pc is the
maximum size of each group. Our construction then proceeds as follows (see Figure 5):
1. Make a group of p block gadgets B̂1,π

τ for π ∈ [1, p], for each group Fτ of variables of φ
with τ ∈ [1, t].

2. Make a clique U1
τ := {u1,1

τ , . . . , u
1,(d+2)p

τ } on (d+ 2)p vertices, whose capacities are all set
to 0, for each group Fτ of variables of φ with τ ∈ [1, t].

3. Associate each of these (d+ 2)p vertices from U1
τ with one of the d+ 2 options for each

gadget B̂1,π
τ , i.e. over all π ∈ [1, p].

4. Connect each u1,i
τ for i ∈ [1, (d+ 2)p] to each vertex from each W and Z within each of

the p gadgets B̂ that do not match the option associated with u1,i
τ via OR gadgets (see

Figure 3 for an example).
5. Make m(tpd+ 2) copies of this first “column” of gadgets.
6. Identify each vertex a′ in B̂l,πτ with the vertex a of its following gadget B̂l+1,π

τ , i.e. for
fixed τ ∈ [1, t] and π ∈ [1, p], all block gadgets are connected in a path-like manner.

7. For every clause Cµ, with µ ∈ [1,m], make a clause gadget Ĉoµ with N = qµ inputs, where
qµ is the number of literals2 in clause Cµ and o ∈ [0, tpd+ 1].

8. For every τ ∈ [1, t], associate one of the (d+ 2)p vertices of U lτ (that is in turn associated
with one of d+ 2 options for each of the p gadgets of group Fτ), with an assignment to
the variables in group Fτ . Note that as there are at most 2γ = 2blog2(d+2)pc assignments
to the variables in Fτ and (d+ 2)p > 2γ such vertices, the association can be unique for
each τ (and the same for all l ∈ [1,m(tpd+ 2)]).

9. Each of the clause gadget’s qµ inputs will correspond to a literal appearing in clause Cµ.
10. Connect via OR gadgets each input from each Ĉoµ, corresponding to a literal whose

variable appears in group Fτ , to the all vertices from the set Umo+µ
τ (in its appropriate

column) whose associated assignments do not satisfy the input’s literal.

I Theorem 12 (F). For any fixed d > 1, if d-Orientable Deletion can be solved in
O∗((d+ 2− ε)tw(G)) time for some ε > 0, then there exists some δ > 0, such that SAT can
be solved in O∗((2− δ)n) time.

2 We assume that qµ is always even, by duplicating some literals if necessary.

SWAT 2018

24:10 Parameterized Orientable Deletion

B̂1,1
1

B̂1,p
1

U1
1

B̂1,1
t

B̂1,p
t

U1
t

B̂2,1
1

B̂2,p
1

U2
1

B̂2,1
t

B̂2,p
t

U2
t

B̂
m(tpd+2),1
1

U
m(tpd+2)
1

B̂
m(tpd+2),p
1

B̂
m(tpd+2),1
t

U
m(tpd+2)
t

B̂
m(tpd+2),p
t

. . .

...

Ĉ1
1 Ĉ1

2
. . . Ĉ1

m Ĉ2
1

. . . Ĉtpd+2
m

p

t

m(tpd+ 2)

Figure 5 A simplified picture of the complete construction.

I Corollary 13. If Pseudoforest Deletion can be solved in O∗((3 − ε)tw(G)) time for
some ε > 0, then there exists some δ > 0, such that SAT can be solved in O∗((2− δ)n) time.

6 Algorithm for Clique-Width

In this section we present a dynamic programming algorithm for d-Orientable Deletion
parameterized by the clique-width of the input graph, of running time dO(d·cw). The algorithm
is based on the dynamic programming of [9] for Max W -Light, the problem of assigning a
direction to each edge of an undirected graph so that the number of vertices of out-degree at
most W is maximized. As noted in [9] (and our Section 1), that problem is supplementary
to Min (W + 1)-Heavy, the problem of minimizing the number of vertices of out-degree at
least W + 1 in terms of exact computation (though their approximability properties may
vary), that in turn can be seen as the optimization version of d-Orientable Deletion
for d = W , if we simply consider the in-degree of every vertex instead of the out-degree (by
reversing the direction of every edge in any given orientation).

The dynamic programming algorithm of [9] runs in XP-time nO(d·cw), by considering the
full number of possible states for each label of a clique-width expression T for the input
graph G:3 for each node t of T , it computes an in-degree-signature of Gt, being a table
At = (Ai,jt),∀i ∈ [1, cw], j ∈ [0, d], if there is an orientation Λt (of every edge of Gt) such
that for each label i ∈ [1, cw] and in-degree-class j ∈ [0, d], the entry Ai,jt is the number
of vertices labelled i with in-degree j in Gt under Λt, and also a deletion set Kt, where
Kt :=

⋃
i∈[1,cw] K

i
t for each i ∈ [1, cw], where Ki

t is the set of vertices labelled i that are
deleted from Gt. Based on this scheme, the updating process of the tables is straightforward
for Leaf, Relabel and Union nodes, while for Join nodes, the computation of the degree
signatures is based on a result by [1], stating that an orientation satisfying any given lower
and upper in-degree bounds for each vertex can be computed in O(m3/2 logn) time, where
m is the number of edges to be oriented. We refer to [9] for details.

3 Slightly paraphrased here for d-Orientable Deletion, keeping the same notation.

T. Hanaka, I. Katsikarelis, M. Lampis, Y. Otachi, and F. Sikora 24:11

ael bel
aeh beh

Wi

Ai Bi

Wj

Aj Bj

c = n

c = 0

c = n

c = 0

c = n− l − 1

c = l − 1

c = n− h− 1

c = h− 1

Figure 6 A partial view of the construction, depicting the gadgets encoding the selection for
Vi, Vj , as well the representation of an edge e = (vli, vhj). Note dotted edges signifying OR gadgets.

The aim of this section is to improve the running time of the above algorithm to dO(d·cw),
that is FPT-time parameterized by d and cw, by showing that not all of the natural states
utilized therein are in fact required. The main idea behind this improvement is based on
the redundancy of exactly keeping track of the size of an in-degree-class above a certain
threshold (i.e. d4), since the valid d-orientations of a biclique created after joining such an
in-degree-class with some other label are greatly constrained, as any optimal solution will
always orient all new edges towards the vertices of this “large” class in order to maintain
d-orientability (and update in-degree-class sizes accordingly), while respecting the given
deletion set and orientation of previously introduced edges.

I Theorem 14 (F). Given a graph G along with a cw-expression T of G, the d-Orientable
Deletion problem can be solved in time O∗(dO(d·cw)).

7 W-hardness for Clique-Width

In this section we present a reduction establishing that the algorithm of Section 6 is essentially
optimal. More precisely, we show that, under the ETH, no algorithm can solve d-Orientable
Deletion in time no(cw). As a result, the parameter dependence of dO(cw) of the algorithm
in Section 6 cannot be improved to a function that only depends on cw. We prove this result
through a reduction from k-Multicolored Independent Set. As before, we employ
capacities and implicitly utilize Capacitated-d-Orientable Deletion.

Construction. Recall that an instance [G = (V,E), k] of k-Multicolored Independent
Set consists of a graph G whose vertex set is given to us partitioned into k sets V1, . . . Vk,
with |Vi| = n for all i ∈ [1, k], and with each Vi inducing a clique. Given such an instance,
we will construct an instance G′ = (V ′, E′) of d-Orientable Deletion, where d = n. Let
Vi := {v1

i , . . . , v
n
i },∀i ∈ [1, k]. To simplify notation, we use E to denote the set of non-clique

edges, i.e. those connecting vertices in parts Vi, Vj for i 6= j. Our construction is given as
follows, while Figure 6 provides an illustration:
1. Create two sets Ai, Bi ⊂ V ′,∀i ∈ [1, k] of n vertices each, of capacities 0.
2. Make a set of guard vertices Wi,∀i ∈ [1, k], of size kn+ 3|E|+ 1, of capacities n.
3. Connect each vertex of Wi to all vertices of Ai, Bi for all i ∈ [1, k].

SWAT 2018

24:12 Parameterized Orientable Deletion

4. For each edge e = (vli, vhj) ∈ E with endpoints vli ∈ Vi, vhj ∈ Vj (i.e. the l-th vertex of Vi
and the h-th vertex of Vj), make four new vertices ael , bel , aeh, beh.

5. Connect ael , bel , aeh, beh to each other via OR gadgets.
6. Connect ael to all vertices of Ai and bel to all vertices of Bi, while aeh is connected to all

vertices of Aj and beh to all vertices of Bj .
7. Set the capacities c(ael) = n− l − 1, c(bel) = l − 1, c(aeh) = n− h− 1 and c(beh) = h− 1.

I Theorem 15 (F). d-Orientable Deletion is W[1]-hard parameterized by the clique-
width of the input graph. Furthermore, if there exists an algorithm solving d-Orientable
Deletion in time no(cw) then the ETH is false.

References

1 Yuichi Asahiro, Jesper Jansson, Eiji Miyano, and Hirotaka Ono. Upper and lower degree
bounded graph orientation with minimum penalty. In CATS’12, volume 128, pages 139–145,
2012.

2 Yuichi Asahiro, Jesper Jansson, Eiji Miyano, and Hirotaka Ono. Degree-constrained
graph orientation: Maximum satisfaction and minimum violation. Theory Comput. Syst.,
58(1):60–93, 2016. doi:10.1007/s00224-014-9565-5.

3 Yuichi Asahiro, Jesper Jansson, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Approx-
imation algorithms for the graph orientation minimizing the maximum weighted outdegree.
J. Comb. Optim., 22(1):78–96, 2011.

4 Yuichi Asahiro, Eiji Miyano, and Hirotaka Ono. Graph classes and the complexity of the
graph orientation minimizing the maximum weighted outdegree. D.A.M., 159(7):498–508,
2011.

5 Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph orientation al-
gorithms to minimize the maximum outdegree. Int. J. Found. Comput. Sci., 18(2):197–215,
2007. doi:10.1142/S0129054107004644.

6 MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. Maxmin alloca-
tion via degree lower-bounded arborescences. In STOC, pages 543–552. ACM, 2009.

7 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-
2):53–60, 2012.

8 Hans L. Bodlaender, Hirotaka Ono, and Yota Otachi. A faster parameterized algorithm
for pseudoforest deletion. In IPEC, volume 63, pages 7:1–7:12, 2016.

9 Hans L. Bodlaender, Hirotaka Ono, and Yota Otachi. Degree-constrained orientation
of maximum satisfaction: Graph classes and parameterized complexity. Algorithmica,
80(7):2160–2180, 2018. doi:10.1007/s00453-017-0399-9.

10 Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to
maximize fairness. In FOCS, pages 107–116. IEEE Computer Society, 2009.

11 Marek Chrobak and David Eppstein. Planar orientations with low out-degree and compac-
tion of adjacency matrices. Theor. Comput. Sci., 86(2):243–266, 1991.

12 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Lo-
gic - A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/
knowledge/isbn/item5758776/?site_locale=fr_FR.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

http://dx.doi.org/10.1007/s00224-014-9565-5
http://dx.doi.org/10.1142/S0129054107004644
http://dx.doi.org/10.1007/s00453-017-0399-9
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://dx.doi.org/10.1007/978-3-319-21275-3

T. Hanaka, I. Katsikarelis, M. Lampis, Y. Otachi, and F. Sikora 24:13

14 Tomás Ebenlendr, Marek Krcál, and Jirí Sgall. Graph balancing: A special case of
scheduling unrelated parallel machines. Algorithmica, 68(1):62–80, 2014. doi:10.1007/
s00453-012-9668-9.

15 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

16 D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs on bounded
treewidth are probably optimal. In SODA, pages 777–789, 2011.

17 Luke Mathieson. The parameterized complexity of editing graphs for bounded degeneracy.
Theor. Comput. Sci., 411(34-36):3181–3187, 2010.

18 Geevarghese Philip, Ashutosh Rai, and Saket Saurabh. Generalized pseudoforest deletion:
Algorithms and uniform kernel. In MFCS (2), volume 9235 of LNCS, pages 517–528, 2015.

19 Stefan Szeider. Not so easy problems for tree decomposable graphs. CoRR,abs/1107.1177,
2011.

20 José Verschae and Andreas Wiese. On the configuration-lp for scheduling on unrelated
machines. J. Scheduling, 17(4):371–383, 2014. doi:10.1007/s10951-013-0359-4.

SWAT 2018

http://dx.doi.org/10.1007/s00453-012-9668-9
http://dx.doi.org/10.1007/s00453-012-9668-9
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/s10951-013-0359-4

SVM via Saddle Point Optimization:
New Bounds and Distributed Algorithms

Lingxiao Huang
École polytechnique fédérale de Lausanne
CH-1015, Lausanne, Switzerland
lingxiao.huang@epfl.ch

Yifei Jin
Tsinghua University
Beijing 100084, China
jin-yf13@mails.tsinghua.edu.cn

Jian Li
Tsinghua University
Beijing 100084, China
Corresponding author: lijian83@mail.tsinghua.edu.cn

Abstract
We study two important SVM variants: hard-margin SVM (for linearly separable cases) and
ν-SVM (for linearly non-separable cases). We propose new algorithms from the perspective of
saddle point optimization. Our algorithms achieve (1 − ε)-approximations with running time
Õ(nd + n

√
d/ε) for both variants, where n is the number of points and d is the dimensionality.

To the best of our knowledge, the current best algorithm for ν-SVM is based on quadratic
programming approach which requires Ω(n2d) time in worst case [Joachims, 1998; Platt, 1999]. In
the paper, we provide the first nearly linear time algorithm for ν-SVM. The current best algorithm
for hard margin SVM achieved by Gilbert algorithm [Gärtner and Jaggi, 2009] requires O(nd/ε)
time. Our algorithm improves the running time by a factor of

√
d/
√
ε. Moreover, our algorithms

can be implemented in the distributed settings naturally. We prove that our algorithms require
Õ(k(d+

√
d/ε)) communication cost, where k is the number of clients, which almost matches the

theoretical lower bound. Numerical experiments support our theory and show that our algorithms
converge faster on high dimensional, large and dense data sets, as compared to previous methods.

2012 ACM Subject Classification Mathematics of computing→ Continuous optimization, Com-
puting methodologies → Support vector machines

Keywords and phrases ν-SVM, hard-margin SVM, saddle point optimization, distributed al-
gorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.25

Related Version A full version of the paper is available at https://arxiv.org/abs/1705.
07252.

Acknowledgements This research is supported in part by the National Basic Research Pro-
gram of China Grant 2015CB358700, the National Natural Science Foundation of China Grant
61772297, 61632016, 61761146003, and a grant from Microsoft Research Asia.

© Lingxiao Huang, Yifei Jin and Jian Li;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lingxiao.huang@epfl.ch
mailto:jin-yf13@mails.tsinghua.edu.cn
mailto:Corresponding author: lijian83@mail.tsinghua.edu.cn
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.25
https://arxiv.org/abs/1705.07252
https://arxiv.org/abs/1705.07252
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 SVM via Saddle Point Optimization

1 Introduction

Support Vector Machine (SVM) is widely used for classification in numerous applications
such as text categorization, image classification, and hand-written characters recognition.

In this paper, we focus on binary classification. If two classes of points which are linearly
separable, one can use the hard-margin SVM [7, 9], which is to find a hyperplane that
separate two classes of points and the margin is maximized. If the data is not linearly
separable, several popular SVM variants have been proposed, such as l2-SVM, C-SVM and
ν-SVM (see e.g., the summary in [15]). The main difference among these variants is that they
use different penalty loss functions for the misclassified points. l2-SVM, as the name implied,
uses the l2 penalty loss. C-SVM and ν-SVM are two well-known SVM variants using l1-loss.
C-SVM uses the l1-loss with penalty coefficient C ∈ [0,∞) [43]. On the other hand, ν-SVM
reformulates C-SVM through taking a new regularization parameter ν ∈ (0, 1] [35]. However,
given a C-SVM formulation, it is not easy to compute the regularization parameter ν and
obtain an equivalent ν-SVM. Because the equivalence is based on some hard-to-compute
constant. Compared to C-SVM, the parameter ν in ν-SVM has a more clear geometric
interpretation: the objective is to minimize the distance between two reduced polytopes
defined based on ν [10]. However, the best known algorithm for ν-SVM is much worse than
that for C-SVM in practice (see below).

In general, SVMs can be formulated as convex quadratic programs and solved by quadratic
programs in O(n2d) time [21, 34]. However, better algorithms exists for some SVM variants,
which we briefly discuss below.

For hard-margin SVM, [15] showed that Gilbert algorithm [16] achieves a (1 − ε)-
approximation with O(nd/εβ2) running time where β is the ratio of the minimum distance to
the maximum one among the points. l2-SVM and C-SVM have been studied extensively and
current best algorithms runs in time linear in the number n of data points [2, 6, 11, 13, 36].
Moreover, if the parameter C is sufficiently small, e.g., C = Θ(1/n), then C-SVM can be
solved in Õ(d/ε) time [36], which is independent of n. However, these techniques cannot be
extended to ν-SVM directly, mainly because ν-SVM cannot be transformed to single-objective
unconstrained optimization problems. Except the traditional quadratic programming ap-
proach, there is no better algorithm known with provable guarantee for ν-SVM. Whether
ν-SVM can be solved in nearly linear time is still open.

Distributed SVM has also attracted significant attention in recent years. A number of
distributed algorithms for SVM have been obtained in the past [12, 17, 28, 30, 41]. Typically,
the communication complexity is one of the key performance measurements for distributed
algorithms, and has been studied extensively (see [25, 32, 40]). For hard-margin SVM, Liu
et al. [26] proposed a distributed algorithm with O(kd/ε) communication cost, where k is
the number of the clients. Hence, it is a natural question to ask whether the communication
cost of their algorithm can be improved.

1.1 Our Contributions
We summarize our main contributions as follows.
1. Hard-Margin SVM: We provide a new (1− ε)-approximation algorithm with running

time Õ(nd+n
√
d/
√
εβ), where β is the ratio of the minimum distance to the maximum one

among the points (see Theorem 9).1 Compared to Gilbert algorithm [15], our algorithm

1 Õ notation hides logarithm factors such as log(n), log(β) and log(1/ε).

L. Huang, Y. Jin and J. Li 25:3

improves the running time by a factor of
√
d/
√
ε. First, we regard hard-margin SVM as

computing the polytope distance between two classes of points. Then we translate the
problem to a saddle point optimization problem using the properties of the geometric
structures (Lemma 2), and provide an algorithm to solve the saddle point optimization.

2. ν-SVM: Then, we extend our algorithm to ν-SVM and design an Õ(nd+n
√
d/
√
εβ) time

algorithm, which is the most important technical contribution of this paper. To the best
of our knowledge, it is the first nearly linear time algorithm for ν-SVM. It is known that
ν-SVM is equivalent to computing the distance between two reduced polytopes [10, 5].
The obstacle for providing an efficient algorithm based on the reduced polytopes is that
the number of vertices in the reduced polytopes may be exponentially large. However, in
our framework, we only need to implicitly represent the reduced polytopes. We show that
using the similar saddle point optimization framework, together with a new nontrivial
projection method, ν-SVM can be solved efficiently in the same time complexity as in the
hard-margin case. Compared with the QP-based algorithms in previous work [21, 34],
our algorithm significantly improves the running time, by a factor of n.

3. Distributed SVM: Finally, we extend our algorithms for both hard-margin SVM and
ν-SVM to the distributed setting. We prove that the communication cost of our algorithm
is Õ(k(d+

√
d/ε)), which is almost optimal according to the lower bound provided in [26].

For the hard-margin SVM, compared with the current best algorithm [26] with O(kd/ε)
communication cost, our algorithm is more suitable when ε is small and d is large. For
ν-SVM, our algorithm is the first practical distributed algorithm.

Besides, the numerical experiments support our theoretical bounds. We compare our
algorithms with Gilbert Algorithm [15] and NuSVC in scikit-learn [33]. The experiments
show that our algorithms converge faster on high dimensional, large and dense data sets. See
the full version for the details.

1.2 Other Related Work
For the hard-margin SVM, there is an alternative to Gilbert’s method, called the MDM
algorithm, originally proposed by [29]. Recently, López and Dorronsoro proved that the rate
of convergence of MDM algorithm is O(n2d log(1/ε)) [27] which is a linear convergence w.r.t.
ε, but worse than Gilbert Algorithm w.r.t. n.

Both C-SVM and l2-SVM have been studied extensively in the literature. Basically, there
are three main algorithmic approaches: the primal gradient-based methods [24, 36, 13, 11, 2],
dual quadratic programming methods [22, 37, 20] and dual geometry methods [39, 38].
Recently, [2] provided the current best algorithms which achieve O(nd/

√
ε) time for l2-SVM

and O(nd/ε) time for C-SVM.
Sublinear time algorithms for hard-margin SVM and l2-SVM have been proposed [8, 19].

These algorithms are sublinear w.r.t. nd, (i.e., the size of the input), but have worse
dependency on 1/ε.

The algorithmic framework for saddle point optimization was first developed by Nesterov
for structured nonsmooth optimization problem [31]. He only considered the full gradient in
the algorithm. Recently, some studies have extended it to the stochastic gradient setting [42, 3].
The most related work is [3], in which the author obtained an Õ(nd+ n

√
d/
√
ε) algorithm

for the minimum enclosing ball problem (MinEB) in Euclidean space, using the saddle point
optimization. This result also implies an algorithm for l2-SVM, by the connection between
MinEB and l2-SVM (see [39, 38, 18]). However, the implied algorithm is not as efficient.
Based on [39, 38], the dual of l2-SVM is equivalent to MinEB by a specific feature mapping.

SWAT 2018

25:4 SVM via Saddle Point Optimization

It maps a d-dimensional point to the (d+ n)-dimensional space. Thus, after the mapping, it
takes quadratic time to solve l2-SVM. To avoid this mapping, they designed an algorithm
called Core Vector Machine (CVM), in which they can solve l2-SVM by solving O(1/ε)
MinEB problems sequentially.

2 Formulate SVM as Saddle Point Optimization

In this section, we formulate both hard-margin SVM and ν-SVM, and show that they can be
reduced to saddle point optimizations. All vectors in the paper are all column vectors by
default.

I Definition 1 (Hard-margin SVM). Given n points xi ∈ Rd for 1 ≤ i ≤ n, each xi has
a label yi ∈ {±1}. The hard-margin SVM can be formalized as the following quadratic
programming [9].

min
w,b

1
2‖w‖

2

s.t. yi(wTxi − b) ≥ 1, ∀i
(1)

The dual problem of (1) is defined as follows, which is equivalent to finding the minimum
distance between the two convex hulls of two classes of points when they are linearly
separable [5]. We call the problem the C-Hull problem.

min
η,ξ

1
2‖Aη −Bξ‖

2

s.t. ‖η‖1 = 1, ‖ξ‖1 = 1. η ≥ 0, ξ ≥ 0.
(2)

where A and B are the matrices in which each column represents a vector of a point with
label +1 or −1 respectively.

Denote the set of points with label +1 by P and the set with label −1 by Q. Let n1 = |P|
and n2 = |Q|. Since

∑
i ηi = 1, we can regard it as a probability distribution among points

in P (similarly for Q). We denote ∆n1 to be the set of n1-dimensional probability vectors
over P and ∆n2 to be that over Q. Then, we prove that the C-Hull problem (2) is equivalent
to the following saddle point optimization in Lemma 2.

I Lemma 2. Problem C-Hull (2) is equivalent to the saddle point optimization (3).

OPT = max
w

min
η∈∆n1 ,ξ∈∆n2

wTAη − wTBξ − 1
2‖w‖

2 (3)

Proof. Consider the saddle point optimization (3). First, note that

wTAη − wTBξ − 1
2‖w‖

2 = wT(Aη −Bξ)− 1
2‖w‖

2

The range of the term (Aη−Bξ) for η ∈ ∆n1 , ξ ∈ ∆n2 is a convex set, denoted by S. Since the
convex hulls of P and Q are linearly separable, we have 0 /∈ S. Denote φ(w, z) = wTz− 1

2‖w‖
2

for any w ∈ Rd, z ∈ S. Then (3) is equivalent to maxw minz∈S φ(w, z). Note that

max
w

min
z∈S

φ(w, z) ≥ min
z∈S

φ(0d, z) = 0.

Thus, we only need to consider those directions w ∈ Rd such that there exists a point z ∈ S
with wT z ≥ 0. We use W to denote the collection of such directions.

L. Huang, Y. Jin and J. Li 25:5

Figure 1 The equivalence between C-Hull and saddle point optimization (3).

Let u be a unit vector in W. Denote

zu := arg min
z∈S

φ(u, z) = arg min
z∈S

uT z.

By this definition, zu is the point with smallest projection distance to u among S (see Figure 1).
Observe that if a direction w = c ·u (c > 0), then we have arg minz φ(w, z) = arg minz φ(u, z).
Also note that

max
w=c·u:c>0

wTzu −
1
2‖w‖

2 = max
w=c·u:c>0

1
2(−‖w − zu‖2 + ‖zu‖2).

Let wu := arg maxw=c·u:c>0 φ(w, zu) = arg minw=c·u:c>0 ‖w − zu‖2 be the projection point
of zu to the line ou, where o is the origin. See Figure 1 for an example. Overall, we have

max
w

min
η∈∆n1 ,ξ∈∆n2

wT(Aη −Bξ)− 1
2‖w‖

2 = max
u∈W:‖u‖=1

1
2(−‖wu − zu‖2 + ‖zu‖2)

= max
u∈W:‖u‖=1

1
2‖wu‖

2.

The last equality is by the Pythagorean theorem. Let z∗ be the closest point in S to the
origin point. Next, we show that maxu∈W:‖u‖=1 ‖wu‖2 = ‖z∗‖2. Given a unit vector u ∈ W ,
define w′ to be the projection point of z∗ to the line ou. By the definition of zu and wu, we
have that maxu ‖wu‖2 ≤ ‖w′‖2 ≤ ‖z∗‖2. Moreover, let u = z∗/‖z∗‖. In this case, we have
‖wu‖2 = ‖z∗‖2. Thus, we conclude that maxu ‖wu‖2 = ‖z∗‖2.

Overall, we prove that

max
u∈W:‖u‖=1

1
2‖wu‖

2 = 1
2‖z

∗‖2 min
z∈S

1
2‖z‖

2 = min
η∈∆n1 ,ξ∈∆n2

1
2‖Aη −Bξ‖

2.

Thus, C-Hull (2) is equivalent to the saddle point optimization (3). J

Let φ(w, η, ξ) = wTAη − wTBξ − ‖w‖2/2. Note that φ(w, η, ξ) is only linear w.r.t. η and ξ.
However, in order to obtain an algorithm which converges faster, we hope that the objective
function is strongly convex with respect to η and ξ. For this purpose, we can add a small

SWAT 2018

25:6 SVM via Saddle Point Optimization

regularization term which ensures that the objective function is strongly convex. This is a
commonly used approach in optimization (see [3] for an example). Here, we use the entropy
function H(u) :=

∑
i ui log ui as the regularization term. The new saddle point optimization

problem is as follows.

max
w

min
η∈∆n1 ,ξ∈∆n2

wTAη − wTBξ + γH(η) + γH(ξ)− 1
2‖w‖

2, (4)

where γ = εβ/2 logn. The following lemma describes the efficiency of the above saddle point
optimization (4). We defer the proof to the full version.

I Lemma 3. Let (w∗, η∗, ξ∗) and (w◦, η◦, ξ◦) be the optimal solution of saddle point optim-
izations (3) and (4) respectively. Define OPT as in (3). Define

g(w) := min
η∈∆n1 ,ξ∈∆n2

wTAη − wTBξ − 1
2‖w‖

2.

Then g(w∗)− g(w◦) ≤ εOPT (note that g(w∗) = OPT).

We call the saddle point optimization (4) the Hard-Margin Saddle problem, abbreviated as
HM-Saddle. Next, we discuss ν-SVM (see [35, 10]) and again provide an equivalent saddle
point optimization formulation.

I Definition 4 (ν-SVM). Given n points xi ∈ Rd for 1 ≤ i ≤ n, each xi has a label
yi ∈ {+1,−1}. ν-SVM is the quadratic programming as follows.

min
w,b,ρ,δ

1
2‖w‖

2 − ρ+ ν
2
∑
i δi

s.t. yi(wTxi − b) ≥ ρ− δi, δi ≥ 0, ∀i
(5)

Crisp and Burges [10] presented a geometry interpretation for ν-SVM. They proved ν-SVM
is equivalent to the following problem of finding the closest distance between two reduced
convex hulls.

min
η,ξ

1
2‖Aη −Bξ‖

2

s.t. ‖η‖1 = 1, ‖ξ‖1 = 1, 0 ≤ ηi ≤ ν, 0 ≤ ξj ≤ ν, ∀i, j
(6)

We call the above problem the Reduced Convex Hull problem, abbreviated as RC-Hull. The
difference between C-Hull (2) and RC-Hull (6) is that in the latter one, each entry of η and
ξ has an upper bound ν. Geometrically, it means to compress the convex hull of P and
Q such that the two reduced convex hulls are linearly separable. We define Dn1 to be the
domain of η in RC-Hull, i.e., {η | ‖η‖1 = 1, 0 ≤ ηi ≤ ν,∀i} and Dn2 to be the domain of ξ,
i.e., {ξ | ‖ξ‖1 = 1, 0 ≤ ξj ≤ ν, ∀j}. Similar to Lemma 2, we have the following lemma.

I Lemma 5. RC-Hull (6) is equivalent to the following saddle point optimization.

OPT = max
w

min
η∈Dn1 , ξ∈Dn2

wTAη − wTBξ − 1
2‖w‖

2. (7)

Proof. The proof is almost the same to the proof of Lemma 2. The only difference is that
the range of the term (Aη −Bξ) is another convex set defined by η ∈ Dn1 , ξ ∈ Dn2 . J

Again, we add two entropy terms to make the objective function strongly convex with
respective to η and ξ.

max
w

min
η∈Dn1 ,ξ∈Dn2

wTAη − wTBξ + γH(η) + γH(ξ)− 1
2‖w‖

2. (8)

L. Huang, Y. Jin and J. Li 25:7

where γ = εβ/(2 logn). We call this problem a ν-Saddle problem. Similar to Lemma 3, we
have the following lemma which states that ν-Saddle (8) is a (1− ε)-approximation of the
saddle point optimization (7). The proof can be found in the full version.

I Lemma 6. Let (w∗, η∗, ξ∗) and (w◦, η◦, ξ◦) be the optimal solution of saddle point optim-
izations (7) and (8) respectively. Define OPT as in (7). Define

g(w) := min
η∈Dn1 ,ξ∈Dn2

wTAη − wTBξ − 1
2‖w‖

2.

Then g(w∗)− g(w◦) ≤ εOPT.

Overall, we formulate hard-margin SVM and ν-SVM as saddle point problems and prove
that through solving HM-Saddle and ν-Saddle, we can solve hard-margin SVM and ν-SVM.2

3 Saddle Point Optimization Algorithms for SVM

In this section, we propose efficient algorithms to solve the two saddle point optimizations:
HM-Saddle (4) and ν-Saddle (8). The framework is inspired by the prior work by [3].
However, their algorithm does not imply an effective SVM algorithm directly as discussed in
Section 1.2. We modify the update rules and introduce new projection methods to adjust
the framework to the HM-Saddle and ν-Saddle problems. We highlight that both the new
update rules and projection methods are non-trivial.

First, we introduce a preprocess step to make the data vectors more homogeneous in each
coordinate. Then, we explain the update rules and projection methods of our algorithm:
Saddle-SVC.

For convenience, we assume that in the hard margin case ‖xi‖2 ≤ 1 for 1 ≤ i ≤ n. 3 Let
W be the d× d Walsh-Hadamard matrix and D be a d× d diagonal matrix whose entries
are i.i.d. chosen from ±1 with equal probability. We transform the data by left-producting
the matrix WD. Then with high probability, for any point xi satisfied that [1]

∀j ∈ [d], |(WDxi)j | ≤ O(
√

logn/d).

Let X+ = WDA and X− = WDB. It means that after transformation, with high probability,
the value of each entry in X+ or X− is at most O(

√
logn/d). This transformation can

be completed in O(nd log d) time by FFT. Note that WD is an invertible matrix which
represents a rotation and mirroring operation. Hence, it does not affect the optima of the
problem. In fact, the “Hadamard transform trick" has been used in the numerical analysis
literature explicitly or implicitly (see e.g., [14, 23, 3]). Roughly speaking, the main purpose of
the transform is to make all coordinates of X more uniform, such that the uniform sampling
(line 1 in Algorithm 2) is more efficient (otherwise, the large coordinates would have a
disproportionate effect on uniform sampling).

After the data transformation, we define some necessary parameters. See line 4 of
Algorithm 1 for details.4 We use “α[t]” to represent the value of variable “α” at iteration t.

2 Some readers may wonder why the formulations of HM-Saddle and ν-Saddle only depends on (w, η, ξ)
but not the offset b. In fact, according to the fact that the hyperplane bisects the closest points in the
(reduced) convex hulls, it is not difficult to show that b∗ = w∗T(Aη∗ +Bξ∗)/2.

3 It can be achieved by scaling all data by factor 1/max ‖xi‖2 in O(nd) time.
4 Careful readers may notice that γ = εβ/(2 logn). But β is an unknown parameter, which is the ratio

of the minimum distance to the maximum one among the points. The same issue also appears in the
previous work [3]. The role of β is similar to the step size in the stochastic gradient descent algorithm.
In practice, we could try several β = 10−k for k ∈ Z and choose the best one.

SWAT 2018

25:8 SVM via Saddle Point Optimization

Algorithm 1 Pre-processing
Input: P: n1 points x+

i with label +1 and Q: n2 points x−i with label −1
1: W ← d-dimensional Walsh-Hadamard Matrix
2: D ← d× d diagonal matrix whose entries are i.i.d. chosen from ±1
3: X+ ←WD · [x+

1 , x
+
2 , . . . , x

+
n1

], X− ←WD · [x−1 , x
−
2 , . . . , x

−
n2

]
4: γ ← εβ

2 logn , q ← O(
√

logn), τ ← 1
2q

√
d
γ , σ ←

1
2q
√
dγ, θ ← 1− 1

d+q
√
d/
√
γ

5: w[0] = 0T, η[−1] = η[0] = 1T/n1, ξ[−1] = ξ[0] = 1T/n2

Algorithm 2 Update Rules of Saddle-SVC
1: Pick an index i∗ in [d] uniformly at random
2: δ+

i∗ ← 〈X
+
i∗ , η[t] + θ(η[t]− η[t− 1])〉, δ−i∗ ← 〈X

−
i∗ , ξ[t] + θ(ξ[t]− ξ[t− 1])〉

3: ∀i ∈ [d], wi[t+ 1] ←
{

(wi[t] + σ(δ+
i − δ

−
i))/(σ + 1), if i = i∗

wi[t], if i 6= i∗

4: η[t+ 1]← arg min
η∈S1
{ 1
d (w[t] + d(w[t+ 1]− w[t]))TX+η +γ

dH(η) + 1
τ Vη[t](η)}

5: ξ[t+ 1]← arg min
ξ∈S2
{− 1

d (w[t] + d(w[t+ 1]− w[t]))TX−ξ +γ
dH(ξ) + 1

τ Vξ[t](ξ)}

For example, w[0], η[0], ξ[0] are the initial value of w, η, ξ and are defined in line 5 of
Algorithm 1.

Update Rules: In order to unify HM-Saddle and ν-Saddle in the same framework, we use
(S1,S2) to represent the domains (∆n1 ,∆n2) in HM-Saddle (see formula (3)) or (Dn1 ,Dn2)
in ν-Saddle (see formula (7)).

Generally speaking, the update rules alternatively maximize the objective with respect to
w and minimize with respect to η and ξ. See the details in Algorithm 2.

Firstly, we update w according to line 3 in Algorithm 2. It is equivalent to a variant of
the proximal coordinate gradient method with l2-norm regularization as follows.

wi∗ [t+ 1] = arg max
wi∗
−
{
− (δ+

i∗ − δ
−
i∗)wi∗ + w2

i∗/2 + (wi∗ − wi∗ [t])2/2σ
}

(9)

We briefly explain the intuition of (9). Note that the term (δ+
i∗ − δ

−
i∗) in (9) can be considered

as the term 〈X+
i∗ , η[t]〉−〈X−i∗ , ξ[t]〉 adding extra momentum terms 〈X+

i∗ , θ(η[t]−η[t−1])〉 and
−〈X−i∗ , θ(ξ[t]− ξ[t− 1])〉 for dual variable η[t] and ξ[t] respectively (see line 2 in Algorithm 2).
Further, (〈X+

i∗ , η[t]〉 − 〈X−i∗ , ξ[t]〉)wi∗ − w2
i∗/2 is the term in the objective function (4) and

(8) which are related to w. The (wi∗ − wi∗ [t])2/2) is the l2-norm regularization term.
Moreover, rather than update the whole w vector, randomly selecting one dimension

i∗ ∈ [d] and updating the corresponding wi∗ in each iteration can reduce the runtime per
round.

The update rules for η and ξ are listed in line 4 and 5 in Algorithm 2, which are the proximal
gradient method with a Bergman divergence regularization Vx(y) = H(y) − 〈∇H(x), y −
x〉 −H(x). Similar to (δ+

i∗ − δ
−
i∗) in (9), we also add a momentum term d(w[t+ 1]−w[t]) for

primal variable w when updating η and ξ.

Projection Methods: However, the update rules for η and ξ are implicit update rules. We
need to show that we can solve the corresponding optimization problems in line 4 and 5 of
Algorithm 2 efficiently. In fact, for both HM-Saddle and ν-Saddle, we can obtain explicit
expressions of these two optimization problems using the method of Lagrange multipliers.

L. Huang, Y. Jin and J. Li 25:9

First, we can solve the optimization problem for HM-Saddle (line 4 and 5 of Algorithm 2)
directly, and the explicit expressions for η and ξ are as follows. The proof can be found in
the full version.

I Lemma 7 (Update Rules of HM-Saddle). For linearly separable cases, the update rules in
line 4 and 5 of Algorithms 2 is equivalent to

ηi[t+ 1] ← Φ(ηi[t], X+)/Z+, ∀i ∈ [n1],
ξj [t+ 1] ← Φ(ξj [t], X−)/Z−, ∀j ∈ [n2], (10)

where Z+ and Z− are normalizers that ensures
∑
i ηi[t+ 1] = 1 and

∑
j ξj [t+ 1] = 1, and

Φ(λi, X) = exp
{

(γ + dτ−1)−1(dτ−1 log λi − yi · 〈w[t] + d(w[t+ 1]− w[t], X·i)〉)
}

(11)

Note that the factors Z+ and Z− are used to project the value Φ(ηi[t], X+) and
Φ(ξj [t], X−) to the domains ∆n1 and ∆n2 . The above update rules of η and ξ can be
also considered as the multiplicative weight update method (see [4]).

Next, we consider ν-Saddle. Compared to HM-Saddle, ν-Saddle has extra constraints
that ηi, ξj ≤ ν. Thus, we need another projection process to ensure that η[t+ 1] and ξ[t+ 1]
locate in domain Dn1 and Dn2 respectively. For convenience, we only present the projection
for η by the following Lemma 8. The projection for ξ is similar. Due to the space limit, we
defer the proof of Lemma 8 to the full version.

I Lemma 8 (Update Rules of ν-Saddle). The following three update rules are equivalent.

Rule 1:

η[t+ 1] := arg min
η∈Dn1

{1
d

(w[t] + d(w[t+ 1]− w[t]))TXη + γ

d
H(η) + 1

τ
Vη[t](η)

}
Rule 2:

Step 1:

ηi := Z−1 exp
{

(γ + dτ−1)−1(dτ−1 log ηi[t]− 〈w[t] + d(w[t+ 1]− w[t]), X·i〉)
}

for each i ∈ [n1], where Z ensures
∑
i ηi = 1.

Step 2:

while ς :=
∑
ηi>ν

(ηi − ν) 6= 0 :
Ω =

∑
ηi<ν

ηi
∀i, if ηi ≥ ν, then ηi[t+ 1] = ν

∀i, if ηi < ν, then ηi[t+ 1] = ηi(1 + ς/Ω)

(12)

Rule 3:
Step 1:

ηi = Z−1 exp
{

(γ + dτ−1)−1(dτ−1 log ηi[t]− 〈w[t] + d(w[t+ 1]− w[t]), X·i〉)
}

for each i ∈ [n1], where Z ensures
∑
i ηi = 1.

Step 2: Sort ηi by the increasing order. W.l.o.g., assume that η1, . . . , ηn1 is in increasing
order. Define ςi =

∑
j≥i(ηj − ν) and Ωi =

∑
j<i ηj. Find the largest index i∗ ∈ [n] such

that ςi∗ ≥ 0 and ηi∗−1(1 + ςi∗/Ωi∗) < ν by binary search.

SWAT 2018

25:10 SVM via Saddle Point Optimization

Step 3:

∀i, ηi[t+ 1] =
{
ηi(1 + ςi∗/Ωi∗), if i < i∗

ν, if i ≥ i∗

We use Rule 2 when 1/ν is constant. Note that there are at most 1/ν (a constant) entries ηi
of value ν during the whole projection process. In each iteration, there must be at least 1
more entry ηi = ν since we make all entries ηj > ν equal to ν after the iteration. Thus, the
number of iterations in (12) is at most 1/ν. By (12), we project η and ξ to the domains Dn1

and Dn2 respectively. Thus, we need O(n/ν) time to compute η[t+ 1]. Since we assume ν is
a constant, it only costs linear time.

When ν is extremely small, we use Rule 3 to project η and ξ to the domains Dn1 and Dn2

respectively. It takes O(n logn) time because of sorting. Finally, we give our main theorem
for our algorithm as follows. See the proof in the full version.

I Theorem 9. Algorithm 2 computes (1 − ε)-approximate solutions for HM-Saddle and
ν-Saddle by Õ(d+

√
d/εβ) iterations. Moreover, it takes O(n) time for each iteration.

Combining with Lemmas 2, 3 and 5, we obtain (1− ε)-approximate solutions for C-Hull and
RC-Hull problems. Hence by strong duality, we obtain (1−ε)-approximations for hard-margin
SVM and ν-SVM in Õ(n(d+

√
d/εβ)) time.

I Theorem 10. A (1 − ε)-approximation for either hard-margin SVM or ν-SVM can be
computed in Õ(n(d+

√
d/εβ)) time.

4 Distributed SVM

Server and Clients Model: We extend Saddle-SVC to the distributed setting and call it
Saddle-DSVC. We consider the popular distributed setting: the server and clients model.
Denote the server by S. Let C be the set of clients and |C| = k. We use the notation C.α to
represent any variable α saved in client C and use S.α to represent a variable α saved in the
server.

First, we initialize some parameters in each client as the pre-processing step in Section 3.
Each client maintains the same random diagonal matrix Dd×d and the total number of points
in each type (i.e, |P| = n1 and |Q| = n2).5 Moreover, each client C applies a Hadamard
transformation to its own data and initialize the partial probability vectors C.η and C.ξ for
its own points.

Formally speaking, assume there are m1 points x+
1 , x

+
2 , . . . , x

+
m1

and m2 points x−1 , x
−
2 ,

. . . , x−m2
maintained in C. We use 1m to denote a vector with all components being 1. The

initialization is as follows.

C.X+ = WD · [x+
1 , x

+
2 , . . . , x

+
m1

], C.η[−1] = C.η[0] = n−1
1 1m1

C.X− = WD · [x−1 , x
−
2 , . . . , x

−
m2

], C.ξ[−1] = C.ξ[0] = n−1
2 1m2

We first consider HM-Saddle. The interaction between clients and the server can be
divided into three rounds in each iteration.
1. In the first round, the server randomly chooses a number i∗ ∈ [d] and broadcasts i∗ to all

clients. Each client computes C.δ+
i∗ and C.δ−i∗ and sends them back to the server.

5 It can be realized using O(k) communication bits.

L. Huang, Y. Jin and J. Li 25:11

2. In the second round, the server sums up all C.δ+
i∗ and C.δ−i∗ and computes S.δ+

i∗ and
S.δ−i∗ . We can see that S.δ+

i∗ (resp. S.δ−i∗) is exactly δ
+
i∗ (resp. δ−i∗) in Algorithm 2. The

server broadcasts S.δ+
i∗ and S.δ−i∗ to all clients. By S.δ+

i∗ and S.δ−i∗ , each client updates
w individually. Moreover, each client C ∈ C updates its own C.η and C.ξ according to
the new directional vector w. In order to normalize the probability vectors η and ξ, each
client sends the summation C.Z+ and C.Z− to the server.

3. In the third round, the server computes (S.Z+, S.Z−)←
∑
C∈C(C.Z+, C.Z−) and broad-

casts to all clients the normalization factors S.Z+ and S.Z−. Finally, each client updates
its partial probability vector C.η and C.ξ based on the normalization factors.

As we discuss in Section 3, for ν-Saddle, we need another O(1/ν) rounds to project η and ξ
to the domains Dn1 and Dn2 .

4. Each client computes C.ς+, C.ς− and C.Ω+, C.Ω− according to (12) and sends them
to the server. The server sums up all C.ς+, C.ς−, C.Ω+, C.Ω− respectively and gets
S.ς+, S.ς−, S.Ω+, S.Ω−. If both S.ς+ and S.ς− are zeros, the server stops this iteration.
Otherwise, the server broadcasts to all clients the factors S.ς+, S.ς−, S.Ω+, S.Ω−. All
clients update their C.η and C.ξ according to (12) and repeat Step 4 again.

We give the pseudocode in the full version. Note that all clients in Saddle-DSVC get the
same w[t] in each iteration as the w[t] in Saddle-SVC. Hence Saddle-DSVC has the same rate
of convergence as Saddle-SVC. Finally, after T = Õ(d+

√
d/ε) iterations (see Theorem 9) ,

all clients compute the same (1− ε)-approximate solution w = w[T] for SVM. W.l.o.g, let the
first client send w to the server. Based on the w (at most O(n) more communication cost),
the server can compute the offset b, the margin for hard-margin SVM and the objective value
for the ν-SVM.

Communication Complexity of Saddle-DSVC: Note that in each iteration, the server and
clients interact three times for hard-margin SVM and O(1/ν) times for ν-SVM. Thus, the
communication cost of each iteration is O(k). By Theorem 9, it takes Õ(d+

√
d/ε) iterations.

Thus, we summarize the following theorem.

I Theorem 11. The communication cost of Saddle-DSVC is Õ(k(d+
√
d/ε)).

Liu et al. [26] prove that the lower bound of the communication cost for distributed SVM is
Ω(kmin{d, 1/ε}).

I Theorem 12 (Theorem 6 in [26]). Consider a set of d-dimension points distributed at k
clients. The communication cost to achieve a (1− ε)-approximation of the distributed SVM
problem is at least Ω(kmin{d, 1/ε}) for any ε > 0.

If d = Θ(1/ε), the communication lower bound is Ω(k(d +
√
d/ε)) which matches the

communication cost of Saddle-DSVC.

References
1 Nir Ailon and Bernard Chazelle. Faster dimension reduction. Communications of the ACM,

53(2):97–104, 2010.
2 Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.

STOC 16, 2016.
3 Zeyuan Allen-Zhu, Zhenyu Liao, and Yang Yuan. Optimization algorithms for faster com-

putational geometry. In LIPIcs, volume 55, 2016.

SWAT 2018

25:12 SVM via Saddle Point Optimization

4 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

5 Kristin P Bennett and Erin J Bredensteiner. Duality and geometry in svm classifiers. In
ICML, pages 57–64, 2000.

6 Marshall W. Bern and David Eppstein. Optimization over zonotopes and training support
vector machines. In WADS, pages 111–121, 2001.

7 Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152. ACM, 1992.

8 Kenneth L Clarkson, Elad Hazan, and David P Woodruff. Sublinear optimization for
machine learning. Journal of the ACM (JACM), 59(5):23, 2012.

9 Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

10 DJ Crisp and CJC Burges. A geometry interpretation of µ-svm classifiers. NIPS, pages
244–251, 2000.

11 John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. JMLR, 10(Dec):2899–2934, 2009.

12 Pedro A Forero, Alfonso Cano, and Georgios B Giannakis. Consensus-based distributed
support vector machines. JMLR, 11(May):1663–1707, 2010.

13 Vojtěch Franc and Soeren Sonnenburg. Optimized cutting plane algorithm for support
vector machines. In ICML 08, pages 320–327. ACM, 2008.

14 Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004.

15 Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In SOCG 09, pages 33–42.
ACM, 2009.

16 Elmer G Gilbert. An iterative procedure for computing the minimum of a quadratic form
on a convex set. SIAM Journal on Control, 4(1):61–80, 1966.

17 Hans Peter Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic, and Vladimir Vapnik. Par-
allel support vector machines: The cascade svm. In NIPS, volume 17, 2004.

18 Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum margin coresets for active and
noise tolerant learning. In IJCAI, pages 836–841, 2007.

19 Elad Hazan, Tomer Koren, and Nati Srebro. Beating sgd: Learning svms in sublinear time.
In Advances in Neural Information Processing Systems, pages 1233–1241, 2011.

20 Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam
Sundararajan. A dual coordinate descent method for large-scale linear svm. In ICML
08, pages 408–415. ACM, 2008.

21 Thorsten Joachims. Making large-scale svm learning practical. Technical report, Technical
Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität
Dortmund, 1998.

22 Thorsten Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 217–226.
ACM, 2006.

23 Anatoli Juditsky, Fatma Kılınç Karzan, and Arkadi Nemirovski. Randomized first order
algorithms with applications to `1-minimization. Mathematical Programming, 142(1-2):269–
310, 2013.

24 Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels.
IEEE transactions on signal processing, 52(8):2165–2176, 2004.

25 Eyal Kushilevitz. Communication complexity. Advances in Computers, 44:331–360, 1997.
26 Yangwei Liu, Hu Ding, Ziyun Huang, and Jinhui Xu. Distributed and robust support vector

machine. In LIPIcs, volume 64, 2016.

L. Huang, Y. Jin and J. Li 25:13

27 Jorge López and José R Dorronsoro. Linear convergence rate for the mdm algorithm for
the nearest point problem. Pattern Recognition, 48(4):1510–1522, 2015.

28 Yumao Lu, Vwani Roychowdhury, and Lieven Vandenberghe. Distributed parallel support
vector machines in strongly connected networks. IEEE Transactions on Neural Networks,
19(7):1167–1178, 2008.

29 BF Mitchell, Vladimir Fedorovich Dem’yanov, and VN Malozemov. Finding the point of a
polyhedron closest to the origin. SIAM Journal on Control, 12(1):19–26, 1974.

30 A Navia-Vazquez, D Gutierrez-Gonzalez, Emilio Parrado-Hernández, and JJ Navarro-
Abellan. Distributed support vector machines. IEEE Trans. Neural Networks, 17(4):1091–
1097, 2006.

31 Yu Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal
on Optimization, 16(1):235–249, 2005.

32 Alon Orlitsky and Abbas El Gamal. Average and randomized communication complexity.
IEEE Transactions on Information Theory, 36(1):3–16, 1990.

33 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. JMLR, 12(Oct):2825–2830, 2011.

34 John C Platt. 12 fast training of support vector machines using sequential minimal optim-
ization. Advances in kernel methods, pages 185–208, 1999.

35 Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett. New
support vector algorithms. Neural computation, 12(5):1207–1245, 2000.

36 Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: primal
estimated sub-gradient solver for SVM. Math. Program., 127(1):3–30, 2011.

37 Alexander J Smola, SVN Vishwanathan, Quoc V Le, et al. Bundle methods for machine
learning. In NIPS, volume 20, pages 1377–1384, 2007.

38 Ivor W Tsang, Andras Kocsor, and James T Kwok. Simpler core vector machines with
enclosing balls. In ICML 07, pages 911–918. ACM, 2007.

39 Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector machines: Fast svm
training on very large data sets. JMLR, 6(Apr):363–392, 2005.

40 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In STOC 79, pages 209–213. ACM, 1979.

41 Caoxie Zhang, Honglak Lee, and Kang G Shin. Efficient distributed linear classification
algorithms via the alternating direction method of multipliers. In Artificial Intelligence and
Statistics, pages 1398–1406, 2012.

42 Yuchen Zhang and Xiao Lin. Stochastic primal-dual coordinate method for regularized
empirical risk minimization. In ICML, pages 353–361, 2015.

43 Ji Zhu, Saharon Rosset, Robert Tibshirani, and Trevor J Hastie. 1-norm support vector
machines. In NIPS, pages 49–56, 2004.

SWAT 2018

Lower Bounds on Sparse Spanners, Emulators,
and Diameter-reducing shortcuts∗

Shang-En Huang
University of Michigan, USA
sehuang@umich.edu

Seth Pettie
University of Michigan, USA
pettie@umich.edu

Abstract
We prove better lower bounds on additive spanners and emulators, which are lossy compression
schemes for undirected graphs, as well as lower bounds on shortcut sets, which reduce the dia-
meter of directed graphs. We show that any O(n)-size shortcut set cannot bring the diameter
below Ω(n1/6), and that any O(m)-size shortcut set cannot bring it below Ω(n1/11). These im-
prove Hesse’s [16] lower bound of Ω(n1/17). By combining these constructions with Abboud
and Bodwin’s [1] edge-splitting technique, we get additive stretch lower bounds of +Ω(n1/13) for
O(n)-size spanners and +Ω(n1/18) for O(n)-size emulators. These improve Abboud and Bodwin’s
+Ω(n1/22) lower bounds.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases additive spanners, emulators, shortcutting directed graphs

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.26

Acknowledgements Thanks to the reviewers who point out the detailed comparison between
spanners and emulators. We also thank the reviewers who carefully and explicitly verified our
constructions, and give us some insightful comments.

1 Introduction

A spanner of an undirected unweighted graph G = (V,E) is a subgraph H that approximates
the distance function of G up to some stretch. An emulator for G is defined similarly, except
that H need not be a subgraph, and may contain weighted edges. In this paper we consider
only additive stretch functions:

distG(u, v) ≤ distH(u, v) ≤ distG(u, v) + β,

where β may depend on n.
Graph compression schemes (like spanners and emulators) are related to the problem

of shortcutting digraphs to reduce diameter, inasmuch as lower bounds for both objects
are constructed using the same suite of techniques. These lower bounds begin from the
construction of graphs in which numerous pairs of vertices have shortest paths that are
unique, edge-disjoint, and relatively long. Such graphs were independently discovered by
Alon [4], Hesse [16], and Coppersmith and Elkin [12]; see also [1, 2]. Given such a “base
graph,” derived graphs can be obtained through a variety of graph products such as the

∗ This work was supported by NSF grants CCF-1514383 and CCF-1637546.

© Shang-En Huang and Seth Pettie;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 26; pp. 26:1–26:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sehuang@umich.edu
mailto:pettie@umich.edu
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Lower Bounds on Sparse Spanners

Table 1 Upper and Lower bounds on shortcutting sets. The lower bounds are existential, and
independent of computation time.

Citation Shortcut Set Size Diameter Computation Time

Folklore/trivial
O(n) Õ(

√
n) O(m

√
n)

O(m) Õ(n/
√
m) O(m3/2)

Fineman [15] Õ(n) Õ(n2/3) Õ(m)

Hesse [16] O(mn1/17) Ω(n1/17) —

new
O(n) Ω(n1/6) —
O(m) Ω(n1/11) —

alternation product discovered independently by Hesse [16] and Abboud and Bodwin [1] and
the substitution product used by Abboud and Bodwin [1] and developed further by Abboud,
Bodwin, and Pettie [2].

In this paper we apply the techniques developed in [4, 16, 12, 1, 2] to obtain better lower
bounds on shortcutting sets, additive spanners, and additive emulators.

Shortcutting Sets

Let G = (V,E) be a directed graph and G∗ = (V,E∗) its transitive closure. The diameter of a
digraph G is the maximum of distG(u, v) over all pairs (u, v) ∈ E∗. Thorup [20] conjectured
that it is possible to reduce the diameter of any digraph to poly(logn) by adding a set
E′ ⊆ E∗ of at most m = |E| shortcuts, i.e., G′ = (V,E∪E′) would have diameter poly(logn).
This conjecture was confirmed for a couple special graph classes [20, 21], but refuted in general
by Hesse [16], who exhibited a graph with m = Θ(n19/17) edges and diameter Θ(n1/17) such
that any diameter-reducing shortcutting requires Ω(mn1/17) shortcuts. More generally, there
exist graphs with m = n1+ε edges and diameter nδ, δ = δ(ε), that require Ω(n2−ε) shortcuts
to make the diameter o(nδ); see Abboud, Bodwin, and Pettie [2, §6] for an alternative proof
of this result.

On the upper bound side, it is trivial to reduce the diameter to Õ(
√
n) with O(n) shortcuts

or diameter Õ(n/
√
m) with O(m) shortcuts.1 Unfortunately, the trivial shortcutting schemes

are not efficiently constructible in near-linear time. In some applications of shortcuttings,
efficiency of the construction is just as important as reducing the diameter. For example,
a longstanding problem in parallel computing is to simultaneously achieve time and work
efficiency in computing reachability.2 Very recently, Fineman [15] proved that an Õ(n)-size
shortcut set can be computed in near-optimal work Õ(m) (and Õ(n2/3) parallel time) that
reduces the diameter to Õ(n2/3).

In this paper we prove that O(n)-size shortcut sets cannot reduce the diameter below
Ω(n1/6), and that O(m)-size shortcut sets cannot reduce it below Ω(n1/11). See Table 1.

Additive Spanners

Additive spanners with constant stretches were discovered by Aingworth, Checkuri, Indyk,
and Motwani [3] (see also [13, 14, 5, 18]), Chechik [11], and Baswana, Kavitha, Mehlhorn,
and Pettie [5] (see also [23, 18]). The sparsest of these [5] has size O(n4/3) and stretch

1 Pick a set S of
√
n or

√
m vertices uniformly at random, and include S2 ∩ E∗ as shortcuts.

2 This is the notorious transitive closure bottleneck.

S.-E. Huang and S. Pettie 26:3

Table 2 Upper and lower bounds on additive spanners.

Citation Spanner Size Additive Stretch Remarks

Aingworth, Chekuri,
O(n3/2) 2 See also [13, 14, 5, 18]Indyk, and Mowani [3]

Chechik [11] Õ(n7/5) 4
Baswana, Kavitha,

O(n4/3) 6 See also [23, 18]Mehlhorn, and Pettie [5]
Pettie [19] O(n1+ε) O(n9/16−7ε/8) 0 ≤ ε
Chechik [11] O(n20/17+ε) O(n4/17−3ε/2) 0 ≤ ε

Bodwin and Williams [9] O(n1+ε)
O(n1/2−ε/2)

0 ≤ ε
O(n2/3−5ε/3)
O(n3/7−ε) 0 ≤ ε ≤ 6/49

Bodwin and Williams [8] O(n1+o(1)+ε) O(n3/5−12ε/5) 6/49 ≤ ε ≤ 2/13
O(n3/7−9ε/7) 2/13 ≤ ε < 1/3

Abboud and Bodwin [1]
O(n4/3−ε) Ω(nδ) δ = δ(ε)
O(n) Ω(n1/22)

new O(n) Ω(n1/13)

+6. Abboud and Bodwin [1] showed that the 4/3 exponent could not be improved, in the
sense that any +no(1) spanner has size Ω(n4/3−o(1)), and that any Ω(n4/3−ε)-size spanner
has additive stretch +Ω(nδ), δ = δ(ε). On the upper bound side, Pettie [19] showed that
O(n)-size spanners could have additive stretch +Õ(n9/16), and Bodwin and Williams [8]
improved this to O(

√
n) for O(n)-size spanners and O(n3/7) for O(n1+o(1))-size spanners.

Abboud and Bodwin [1] extended their lower bound to O(n)-size spanners, showing that they
require stretch +Ω(n1/22). Using our lower bound for shortcuttings as a starting place, we
improve [1] by giving an +Ω(n1/13) stretch lower bound for O(n)-size spanners. See Table 2.

Additive Emulators

Dor, Halperin, and Zwick [13] were the first to explicitly define the notion of an emulator,
and gave a +4 emulator with size O(n4/3). Abboud and Bodwin’s [1] lower bound applies
to emulators, i.e., we cannot go below the 4/3 threshold without incurring polynomial
additive stretch. Bodwin and Williams [9, 8] pointed out that some spanner construtions [5]
imply emulator bounds, and gave new constructions of emulators with size O(n) and stretch
+O(n1/3), and with size O(n1+o(1)) and stretch +O(n3/11).3 Here we observe that Pettie’s [19]
+Õ(n9/16) spanner, when turned into an O(n)-size emulator, has stretch +Õ(n1/4), which
is slightly better than the linear size emulators found in [5, 9, 8]. We improve Abboud
and Bodwin’s [1] lower bound and show that any O(n)-size emulator has additive stretch
+Ω(n1/18). See Table 3.

Our emulator lower bounds are polynomially weaker than the spanner lower bounds.
Although neither bound is likely sharp, this difference reflects the rule that emulators are
probably more powerful than spanners. For example, at sparsity O(n4/3), the best known
emulators [13] are slightly better than spanners [5]. Below the 4/3 threshold the best sublinear

3 This last result is a consequence of [8, Thm. 5] and the fact that any pair set P ⊂ V 2 has a pair-wise
emulator with size |P |.

SWAT 2018

26:4 Lower Bounds on Sparse Spanners

Table 3 Upper and lower bounds on additive emulators. Emulators with sublinear additive
stretch [22, 17, 2] are not shown.

Citation Emulator Size Additive Stretch Remarks

Aingworth, Chekuri,
O(n3/2) 2 See also [13, 14, 5, 18]Indyk, and Mowani [3]

Dor, Halperin, and Zwick [13] O(n4/3) 4
Baswana, Kavitha,

O(n1+ε) O(n1/2−3ε/2) (not claimed in [5])Mehlhorn and Pettie [5]
Bodwin and Williams [9] O(n1+ε) O(n1/3−2ε/3)
Bodwin and Williams [8] O(n1+o(1)+ε) O(n3/11−9ε/11) (conseq. of [8, Thm. 5])
Pettie [19] O(n1+ε) Õ(n1/4−3ε/4) (not claimed in [19])

Abboud and Bodwin [1] O(n) Ω(n1/22)
new O(n) Ω(n1/18)

additive emulators [22, 17] have size O(n1+ 1
2k+1−1) and stretch function d + O(d1−1/k).4

Abboud, Bodwin, and Pettie [2] showed that this tradeoff is optimal for emulators, but the
best sublinear additive spanners [19, 11] are polynomially worse.

There are a certain range of parameters where the emulators are polynomially better
than the spanners. On pairwise distance preservers, Bodwin [7] showed that whenever
ω(n1/2) = |P | = o(n2−o(1)), any pairwise distance preserver has an ω(n+ |P |) lower bound,
creating a gap comparing to an Θ(|P |) emulator.

There is also another situation where emulators are provable superior: a source-wise
distance preserver for S ⊂ V maintains distances between S-vertices without stretch. A
trivial source-wise emulator has size |S|2, e.g., O(n) for |S| =

√
n, but in [12, 7] source-wise

spanners with size O(n) only exist for |S| = O(n1/4).

Outline

In Section 2 we present diameter lower bounds for shortcut sets of size O(n) and O(m).
Section 3 modifies the construction to give lower bounds on additive spanners and additive
emulators. We conclude with some remarks in Section 4.

2 Lower Bounds on Shortcutting Digraphs

2.1 Using O(n) Shortcuts
I Theorem 1. There exists a directed graph G with n vertices, such that for any shortcut
set E′ with size O(n), the graph (V,E ∪ E′) has diameter Ω(n1/6).

The remainder of Section 2.1 constitutes a proof of Theorem 1. We begin by defining the
vertex set and edge set of G, and its critical pairs.

Vertices

The vertex set of G is partitioned into D + 1 layers numbered 0 through D. Define Bd(ρ) to
be the set of all lattice points in Zd within Euclidean distance ρ of the origin. Here we treat

4 I.e., vertices initially at distance d are stretched to d+O(d1−1/k).

S.-E. Huang and S. Pettie 26:5

d as a constant. For each k ∈ {0, . . . , D}, layer-k vertices are identified with lattice points in
Bd(R+ kr), where r,R are parameters of the construction. A vertex can be represented by
a pair (a, k), where a ∈ Bd(R+ rk). We want the size of all layers to be the same, up to a
constant factor. To that end we fix R = drD, so the total number of vertices is

n ≈ ηdRd
(

1d +
(

1 + r

R

)d
+ · · ·+

(
1 + rD

R

)d)

= ηdR
d

(
1d +

(
1 + 1

dD

)d
+ · · ·+

(
1 + 1

d

)d)
= Θ

(
RdD

)
(By definition of R)

where ηd = 1√
2πd

(2πe
d

)d/2 is the ratio of volume between a d-dimentional ball and a d-
dimentional cube.

Edges

Define Vd(r) to be the set of all lattice points at the corners of the convex hull of Bd(r). We
treat elements of Vd(r) as vectors. For each layer-k vertex (a, k), k ∈ {0, . . . , D − 1}, and
each vector v ∈ Vd(r), we include a directed edge ((a, k), (a+ v, k + 1)). All edges in G are
of this form.

Critical Pairs

The critical pair set is defined to be

P = {((a, 0), (a+Dv,D)) | a ∈ Bd(R) and v ∈ Vd(r)}

Each such pair has a corresponding path of length D, namely (a, 0)→ (a+ v, 1)→ · · · →
(a+Dv,D). Lemma 2 shows that this path is unique. It was first proved by Hesse [16] and
independently by Coppersmith and Elkin [12]. (Both proofs are inspired by Behrend’s [6]
construction of arithmetic progression-free sets, which uses `2 balls rather than convex hulls.)

I Lemma 2. (cf. [16, 12]) The set of critical pairs P have the following properties:
For all (x, y) ∈ P , there is a unique path from x to y in G.
For any two distinct pairs (x1, y1) and (x2, y2) ∈ P , their unique paths share no edge and
at most one vertex.
|P | = Θ(Rdrd

d−1
d+1).

Proof. Let x = (a, 0) and v ∈ Vd(r) be the vector for which y = (a+Dv,D). One path
from x to y exists by construction. Let Vd(r) = {v1, v2, . . . , vs}. Suppose there exists
another path from x to y. It must have length D because all edges join consecutive
layers. Every edge on this path corresponds to a vector vi, which implies that Dv can be
represented as a linear combination k1v1 + k2v2 + · · ·+ ksvs, where k1 + · · ·+ ks = D and
ki ≥ 0. This implies that v is a non-trivial convex combination of the vectors in Vd(r),
which contradicts the fact that Vd(r) is a strictly convex set.
Observe that any edge in the unique (x1, y1) path uniquely identifies both x1 and y1.
|P | = |Bd(R)| · |Vd(r)|. From Bárány and Larman [10], for any constant dimension d, we
have |Vd(r)| = Θ(rd

d−1
d+1). J

I Lemma 3. Let E′ be a shortcut set for G = (V,E). If the diameter of G′ = (V,E ∪E′) is
strictly less than D, then |E′| ≥ |P |.

SWAT 2018

26:6 Lower Bounds on Sparse Spanners

Proof. Every path in G′ corresponds to some path in G. However, for pairs in P , there is
only one path in G, hence, any shortcut in E′ useful for a pair (x, y) ∈ P must have both
endpoints on the unique x-y path in G. By Lemma 2, two such paths for pairs in P share
no common edges, hence each shortcut can only be useful for at most one pair in P . If
|E′| < |P | then some pair (x, y) ∈ P must still be at distance D in G′. J

Proof of Theorem 1. By Lemma 3, if |P | = Ω(n), then any shortcut set that makes the
diameter < D has size Ω(n). In order to have |P | = Ω(n), it suffices to let rd

d−1
d+1 ≥ D. This

implies r ≥ D
d+1

d(d−1) . From the construction, by fixing d as a constant, we have

n = Θ(RdD) = Θ((rD)dD) = Ω(D1+d+ d+1
d−1).

Therefore, the diameter is D = O
(
n1/(1+d+ d+1

d−1)
)
. We can maximize D = Θ(n1/6) in one

of two ways, by setting d = 2, r = Θ(n1/4), and R = Θ(n5/12), or d = 3, r = Θ(n1/9), and
R = Θ(n5/18). In either case, the construction leads to a graph with very similar structure:
the number of vertices in each layer is Θ(n5/6), and the out degrees of each vertex are
Θ(n1/6). J

I Corollary 4. Fix an ε ∈ [0, 1) and let d be such that ε ∈ [0, d−1
d+1]. There exists a directed

graph G with n vertices, such that for any shortcut set E′ with O(n1+ε) shortcuts, the graph
(V,E∪E′) has diameter Ω(n(1− d+1

d−1 ε)/(1+d+ d+1
d−1)). In particular, by setting d = 3 the diameter

lower bound becomes Ω(n 1
6−

1
3 ε).

Proof. In order to have |P | > n1+ε, it suffices to let rd
d−1
d+1 ≥ Dnε. Hence, we have

n1− d+1
d−1 ε = Θ(RdDn−

d+1
d−1 ε)

= Ω(rdD1+dn−
d+1
d−1 ε) (R = Θ(rD))

= Ω(D1+d+ d+1
d−1) (rd ≥ (Dnε)

d+1
d−1)

J

2.2 Using O(m) Shortcuts

Let G(d,r,D) denote the layered graph constructed in Section 2.1 with parameters d,D, r, and
R = drD, and let PG be its critical pair set. The total number of edges m = Θ(n|Vd(r)|)
is always larger than |PG| = Θ(nD |Vd(r)|) by a factor of D. In order to get a lower bound
for O(m) shortcuts, we use a Cartesian product combining two such graphs layer by layer,
forming a sparser graph. This transformation was discovered by Hesse [16] and rediscovered
by Abboud and Bodwin [1].

Let G1 = G(d1,r1,D) and G2 = G(d2,r2,D) be two graphs with the same number of vertex
layers (D + 1). The product graph G1 ⊗G2 is defined below.

Vertices

The product graph has 2D + 1 vertex layers numbered 0, . . . , 2D. The vertex set of layer i is
{(x, y, i) | x ∈ Bd1(R1 +

⌈
i
2
⌉
r1), y ∈ Bd2(R2 +

⌊
i
2
⌋
r2)}. Since we set Rj = djrjD, the total

number of vertices is Θ
(
Rd1

1 Rd2
2 D

)
.

S.-E. Huang and S. Pettie 26:7

Edges

Let (x, y, i) be a vertex in layer i. If i is even, then for every vector v ∈ Vd1(r1) we include
an edge ((x, y, i), (x+ v, y, i+ 1)). If i is odd, then for every vector w ∈ Vd2(r2), we include
an edge ((x, y, i), (x, y + w, i+ 1)). The total number of edges in the product graph is then

Θ
(
Rd1

1 Rd2
2 D

(
r
d1

d1−1
d1+1

1 + r
d2

d2−1
d2+1

2

))
.

Critical Pairs

By combining two graphs, we are able to construct a larger set of critical pairs, as follows.

P = {((a, b, 0), (a+Dv, b+Dw, 2D)) | a ∈ Bd1(R1), b ∈ Bd2(R2), v ∈ Vd1(r1), w ∈ Vd2(r2)}

In other words, a pair in P can be viewed as the product of two pairs ((a, 0), (a+Dv,D)) ∈ PG1

and ((b, 0), (b+Dw,D)) ∈ PG2 .

I Lemma 5. For any a ∈ Bd1(R1), b ∈ Bd2(R2), v ∈ Vd1(r1) and w ∈ Vd2(r2), there is a
unique path from (a, b, 0) to (a+Dv, b+Dw, 2D).

Proof. Every path in G1⊗G2 from layer 0 to layer 2D corresponds to two paths from layers
0 to D in G1 and G2, respectively. It follows from Lemma 2 that

(a, b, 0)→ (a+ v, b, 1)→ (a+ v, b+ w, 2)→ · · · → (a+Dv, b+Dw, 2D)

is a unique path in G1 ⊗G2. J

In G1 ⊗ G2 it is no longer true that pairs in P have edge-disjoint paths. They may
intersect at just one edge.

I Lemma 6. Consider two pairs (x1, y1) and (x2, y2) ∈ P . Let P1 and P2 be the unique
shortest paths in the combined graph from x1 to y1 and from x2 to y2. Then, P1∩P2 contains
at most one edge.

Proof. Any two non-adjacent vertices on the unique x1-y1 path uniquely identify x1 and
y1. Thus, two such paths can intersect in at most 2 (consecutive) vertices, and hence one
edge. J

I Lemma 7. Let E′ be a shortcut set on G = (V,E). If the diameter of (V,E∪E′) is strictly
less than 2D, then |E′| ≥ |P |.

Proof. Assume the diameter of (V,E ∪ E′) is strictly less than 2D. Every useful shortcut
connects vertices that are at distance at least 2. By Lemma 6, such a shortcut can only be
useful for one pair in P . Thus, if the diameter of (V,E ∪E′) is less than 2D, |E′| ≥ |P |. J

By construction, the size of |P | is

|P | = Θ
(
Rd1

1 Rd2
2 |Vd1(r1)||Vd2(r2)|

)
= Θ

(
Rd1

1 Rd2
2 r

d1
d1−1
d1+1

1 r
d2

d2−1
d2+1

2

)
.

I Theorem 8. There exists a directed graph G with n vertices and m edges such that for
any shortcut set E′ with size O(m), the graph (V,E ∪ E′) has diameter Ω(n1/11).

SWAT 2018

26:8 Lower Bounds on Sparse Spanners

Proof. If we set |P | = Ω(m), by Lemma 7, any shortcut set E′ with O(m) shortcuts has

diameter Ω(D). In order to ensure |P | = Ω(m), it suffices to set r
d1

d1−1
d1+1

1 ≥ r
d2

d2−1
d2+1

2 ≥ D.
Hence,

n = Θ(Rd1
1 Rd2

2 D)

= Θ
(
rd1

1 rd2
2 Dd1+d2+1

)
(Rj = djrjD)

= Ω
(
D

d1+1
d1−1D

d2+1
d2−1Dd1+d2+1

)
(plugging in relation between rj and dj , D)

= Ω
(
D

d1+1
d1−1 + d2+1

d2−1 +d1+d2+1
)

The exponent is minimized when d1 and d2 are either 2 or 3. By setting d1 = d2 = 2,
we get n = Ω(D11) and hence D = O(n1/11). In this construction we have d1 = d2 = 2,
D = Θ(n1/11), r1 = r2 = Θ(n3/22) and R1 = R2 = Θ(n5/22). J

3 Lower Bounds on Additive Spanners and Emulators

3.1 O(n)-sized Spanners

I Definition 9. Let G = (V,E) be an (unweighted) undirected graph. A subgraph H =
(V,E′ ⊆ E) is said to be an spanner with additive stretch β if for any two vertices x, y ∈ V ,
distG(x, y) ≤ distH(x, y) ≤ distG(x, y) + β.

By combining the technique of Abboud and Bodwin [1] with the graphs constructed in
Section 2.2, we obtain a substantially better lower bound on O(n)-size additive spanners.

I Theorem 10. There exists an undirected graph G with n vertices, such that any spanner
with O(n) edges has +Ω(n1/13) additive stretch.

In this section we regard G(d,r,D) to be an undirected graph. We begin with the undirected
graph G0 = G(d1,r1,D) ⊗G(d2,r2,D), then modify it in the edge expansion step and the clique
replacement step to obtain G.

The Edge Expansion Step

Every edge in G0 is subdivided into D edges, yielding GE . This step makes the graph very
sparse since most of the vertices in GE have degree 2.

The Clique Replacement Step

Consider a vertex u in GE that comes from one of the interior layers of G0, i.e., layers

1, . . . , 2D − 1, not 0 or 2D. Note that u has degree δ1 + δ2, with δ1 = Θ
(
r
d1

d1−1
d1+1

1

)
edges

leading to the preceding layer and δ2 = Θ
(
r
d2

d2−1
d2+1

2

)
edges leading to the following layer

(or vice versa). We replace each such u with a complete bipartite clique Kδ1,δ2 , where each
clique vertex becomes attached to one non-clique edge formerly attached to u. The final
graph is denoted by G.

S.-E. Huang and S. Pettie 26:9

Critical Pairs

The set P of critical pairs for G is identical to the set of critical pairs for G0. For each
(x, y) ∈ P , the unique x-y path in G is called a critical path.

From the construction, the number of vertices in G is then

n = Θ
(
Rd1

1 Rd2
2 D2(δ1 + δ2)

)
. (1)

The number of edges in G is now

m = Θ
(
Rd1

1 Rd2
2 D(Dδ1 +Dδ2 + δ1δ2)

)
. (2)

The size of P is

|P | = Θ
(
Rd1

1 Rd2
2 δ1δ2

)
. (3)

Lemma 11 is key to relating the size of the spanner with the pair set P .

I Lemma 11. Every clique edge belongs to at most one critical path.

Proof. Every clique has δ1 vertices on one side and δ2 vertices on the other side. Each vertex
on the δ1 side corresponds to a vector v ∈ Vd1(r1) and each vertex on the δ2 side corresponds
to a vector w ∈ Vd2(r2). Each clique edge uniquely determines a pair of vectors (v, w), and
hence exactly one critical pair in P . J

I Lemma 12. Every spanner of G with additive stretch +(2D − 1) must contain at least
D|P | clique edges.

Proof. For the sake of contradiction suppose there exists a spanner H containing at most
D|P | − 1 clique edges. By the pigeonhole principle there exists a pair (x, y) ∈ P such that at
least D clique edges are missing in H.

Let P(x,y) be the unique shortest path from x to y in G, and let P ′(x,y) be a shortest
path from x to y in H. Since G0 is formed from G by contracting all bipartite cliques and
replacing subdivided edges with single edges, we can apply the same operations on P ′(x,y) to
get a path P ′′(x,y) in G0. We now consider two cases:

If P ′′(x,y) is the unique shortest path from x to y in G0, then P ′(x,y) suffers at least a +2
stretch on each of the D missing clique edges, so |P ′(x,y)| ≥ |P(x,y)|+ 2D.
If P ′′(x,y) is not the unique shortest path from x to y in G0, then it must traverse at least
two more edges than the shortest x-y path in G0 (because G0 is bipartite), each of which
is subdivided D times in the formation of G. Thus |P ′(x,y)| ≥ |P(x,y)|+ 2D.

In either case, P ′(x,y) has at least +2D additive stretch and H cannot be a +(2D − 1)
spanner. J

Proof of Theorem 10. The goal is to have parameters set up so that D|P | = Ω(n), so that
we can apply Lemma 12. Without loss of generality δ1 ≥ δ2. By comparing (1) with (3), it
suffices to set δ1 ≥ δ2 ≥ D. We can express the number of vertices in terms of D as follows:

n = Θ
(
Rd1

1 Rd2
2 D2δ1

)
= Ω

(
(r1D)d1(r2D)d2D3) (δ1 ≥ δ2 ≥ D)

= Ω
((

δ
d1+1

d1(d1−1)
1 D

)d1 (
δ

d2+1
d2(d2−1)
2 D

)d2

D3

)
(by definition of δ1 and δ2)

= Ω
(
D

d1+1
d1−1 +d1+ d2+1

d2−1 +d2+3
)

(δ1 ≥ δ2 ≥ D)

SWAT 2018

26:10 Lower Bounds on Sparse Spanners

The exponent is minimized when d1 and d2 are either 2 or 3. By plugging in d1 = d2 = 2,
we get n = Ω(D13) and hence the additive stretch D = O(n1/13). This admits a construction
with parameters d1 = d2 = 2, D = Θ(n1/13), r = Θ(n3/26) and R = Θ(n5/26). J

I Corollary 13. Fix an ε ∈ [0, 1/3) and let d be such that ε ∈
[
0, d−1

3d+1

]
. There exists a graph

G with n vertices such that any spanner H ⊆ G with O(n1+ε) edges has additive stretch
+Ω

(
n(1− 3d+1

d−1 ε)/(3+2d+2 d+1
d−1)

)
. In particular, by setting d = 3 the additive stretch becomes

Ω(n 1
13−

5
13 ε).

3.2 O(n)-sized Emulators
I Definition 14. Let G = (V,E) be an (unweighted) undirected graph. A weighted graph
H = (V,E′, w) is said to be an emulator with additive stretch β if for any two vertices
x, y ∈ V , distG(x, y) ≤ distH(x, y) ≤ distG(x, y) + β.

The difference between emulators and spanners is that emulators can use weighted edges
not present in G. The lower bound graph we use is constructed exactly as in Section 3.1, but
with different numerical parameters.

I Theorem 15. There exists an undirected graph G with n vertices such that any emulator
with O(n) edges has +Ω(n1/18) additive stretch.

I Lemma 16. Every emulator with additive stretch +(2D − 1) on G, requires at least |P |/2
edges.

Proof. Let H be an emulator with additive stretch +(2D − 1). Without loss of generality,
we may assume that any (u, v) ∈ E(H) has weight precisely distG(u, v). (It is not allowed to
be smaller, and it is unwise to make it larger.) We proceed to convert H into a spanner H ′
that has the same stretch +(2D − 1) on all pairs in P , then apply Lemma 12.

Initially H ′ is empty. Consider each (x, y) ∈ P one at a time. Let P(x,y) be the shortest
path in H and P ′(x,y) be the corresponding path in G. Include the entire path P ′(x,y) in H ′.
After this process is complete, for any (x, y) ∈ P , distH′(x, y) = distH(x, y), and H ′ is a
spanner with at most n+ 2D|H| edges. In particular, it has at most 2D|H| clique edges since
each weighted edge in some P(x,y) contributes at most 2D clique edges to H ′. By Lemma 12,
the number of clique edges in H ′ is at least D|P |, hence |H| ≥ |P |/2. J

Proof of Theorem 15. In order to get |P | = Ω(n), it suffices to set δ1 ≥ δ2 ≥ D2.
Now, we have

n = Θ
(
Rd1

1 Rd2
2 D2δ1

)
= Ω

(
(r1D)d1(r2D)d2D4) (δ1 ≥ δ2 ≥ D2)

= Ω
((

δ
d1+1

d1(d1−1)
1 D

)d1 (
δ

d2+1
d2(d2−1)
2 D

)d2

D4

)
(by definition of δ1 and δ2)

= Ω
(
D2 d1+1

d1−1 +d1+2 d2+1
d2−1 +d2+4

)
(δ1 ≥ δ2 ≥ D2)

The exponent is minimized when d1 = d2 = 3. This implies n = Ω(D18). Thus, we have
the additive stretch D = O(n1/18). J

S.-E. Huang and S. Pettie 26:11

I Corollary 17. Fix an ε ∈ [0, 1/3) and let d be such that ε ∈
[
0, d−1

3d+1

]
. There exists a

graph G with n vertices such that any emulator H with O(n1+ε) edges has additive stretch
+Ω

(
n(1− 3d+1

d−1 ε)/(4+2d+2 d+1
d−1)

)
. In particular, by setting d = 3 the additive stretch lowerbound

becomes Ω(n 1
18−

5
18 ε).

Using the same proof technique as in [1, 2], it is possible to extend our emulator lower
bound to any compressed representation of graphs using Õ(n) bits.

I Theorem 18. Consider any mapping from n-vertex graphs to Õ(n)-length bitstrings. Any
algorithm for reconstructing an approximation of distG, given the bitstring encoding of G,
must have additive error +Ω̃(n1/18).

Proof. For each subset T ⊆ P construct the graph GT by removing all clique edges from
G that are on the critical paths of pairs in T . Because all clique edges are missing, for
all (x, y) ∈ T we have dGT

(x, y) ≥ dG(x, y) + 2D. On the other hand, for all (x, y) /∈ T ,
dGT

(x, y) = dG(x, y).
There are 2|P | such graphs. If we represent all such graphs with bitstrings of length

|P | − 1 then by the pigeonhole principle two such graphs GT and GT ′ are mapped to the
same bitstring. Let (x, y) be any pair in T\T ′. Since distGT

(x, y) ≥ distGT ′ (x, y) + 2D, the
additive stretch of any such scheme must be at least 2D. Alternatively, any scheme with
stretch 2D − 1 must use bitstrings of length at least length |P |.

Now, by setting d = 3 with D = Θ̃(n1/18), r1 = r2 = Θ̃(n2/27) and R1 = R2 = Θ̃(n7/54),
we have |P | = Θ̃(n). Thus any Õ(n)-length encoding must recover approximate distances
with stretch +Ω̃(n1/18). J

4 Conclusion

Our constructions, like [1, 12, 2, 16], are based on looking at the convex hulls of integer
lattice points in Zd lying in a ball of some radius. Whereas Theorems 15 and 18 hold for
d = 3, Theorems 1, 8, and 10 are indifferent between dimensions d = 2 and d = 3, but that
is only because d must be an integer.

Suppose we engage in a little magical thinking, and imagine that there are integer lattices
in any fractional dimension, and moreover, that some analogue of Bárány and Larman’s [10]
bound holds in these lattices. If such objects existed then we could obtain slightly better
lower bounds. For example, setting d = 1 +

√
2 in the proof of Theorem 1, we would conclude

that any O(n)-size shortcut set cannot reduce the diameter below Ω(n1/(3+2
√

2)), which is
an improvement over Ω(n1/6) as 3 + 2

√
2 < 5.83.

For near-linear size spanners and emulators there are still large gaps between the best lower
and upper bounds on additive stretch: [n1/13, n3/7] in the case of spanners and [n1/18, n1/4]
in the case of emulators. None of the existing lower or upper bound techniques seem up to
the task of closing these gaps entirely.

References
1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. J. ACM,

pages 28:1–28:20, 2017.
2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear

additive spanners. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2017.

SWAT 2018

26:12 Lower Bounds on Sparse Spanners

3 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28(4):1167–1181, 1999.

4 Noga Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21(3-
4):359–370, 2002.

5 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (α, β)-spanners. ACM Transactions on Algorithms, 7(1):5, 2010.

6 Felix Behrend. On sets of integers which contain no three terms in arithmetic progression.
Proc. Nat. Acad. Sci., 32:331–332, 1946.

7 Greg Bodwin. Linear size distance preservers. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 600–615, 2017.

8 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2016.

9 Gregory Bodwin and Virginia Vassilevska Williams. Very sparse additive spanners and
emulators. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science (ITCS), pages 377–382, 2015.

10 Imre Bárány and David G. Larman. The convex hull of the integer points in a large ball.
Mathematische Annalen, 312(1):167–181, 1998.

11 Shiri Chechik. New additive spanners. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 498–512, 2013.

12 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM Journal on Discrete Mathematics, pages 463–501, 2006.

13 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal
on Computing, 29(5):1740–1759, 2000.

14 Michael Elkin and David Peleg. (1 + ε,β)-spanner constructions for general graphs. SIAM
Journal on Computing, 33(3):608–631, 2004.

15 Jeremy T. Fineman. Nearly work-efficient parallel algorithm for digraph reachability. In
Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC), 2018.

16 William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003.

17 Shang-En Huang and Seth Pettie. Thorup-Zwick emulators are universally optimal hopsets.
CoRR, abs/1705.00327, 2017. arXiv:1705.00327.

18 Mathias Bæk Tejs Knudsen. Additive spanners: A simple construction. In Scandinavian
Workshop on Algorithm Theory (SWAT), pages 277–281, 2014.

19 Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms, 6(1):7, 2009.
20 Mikkel Thorup. On shortcutting digraphs. In International Workshop on Graph-Theoretic

Concepts in Computer Science, pages 205–211. Springer, 1992.
21 Mikkel Thorup. Shortcutting planar digraphs. Combinatorics, Probability and Computing,

4(3):287–315, 1995.
22 Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors. In

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2006.

23 David P. Woodruff. Lower bounds for additive spanners, emulators, and more. In Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2006.

http://arxiv.org/abs/1705.00327

Reconfiguration of Colorable Sets in Classes of
Perfect Graphs

Takehiro Ito
Graduate School of Information Sciences, Tohoku University.
Aoba-yama 6-6-05, Sendai, 980-8579, Japan
takehiro@ecei.tohoku.ac.jp

https://orcid.org/0000-0002-9912-6898

Yota Otachi
Faculty of Advanced Science and Technology, Kumamoto University.
2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
otachi@cs.kumamoto-u.ac.jp

https://orcid.org/0000-0002-0087-853X

Abstract

A set of vertices in a graph is c-colorable if the subgraph induced by the set has a proper c-coloring.
In this paper, we study the problem of finding a step-by-step transformation (reconfiguration)
between two c-colorable sets in the same graph. This problem generalizes the well-studied Inde-
pendent Set Reconfiguration problem. As the first step toward a systematic understanding
of the complexity of this general problem, we study the problem on classes of perfect graphs. We
first focus on interval graphs and give a combinatorial characterization of the distance between two
c-colorable sets. This gives a linear-time algorithm for finding an actual shortest reconfiguration
sequence for interval graphs. Since interval graphs are exactly the graphs that are simultaneously
chordal and co-comparability, we then complement the positive result by showing that even de-
ciding reachability is PSPACE-complete for chordal graphs and for co-comparability graphs. The
hardness for chordal graphs holds even for split graphs. We also consider the case where c is a
fixed constant and show that in such a case the reachability problem is polynomial-time solvable
for split graphs but still PSPACE-complete for co-comparability graphs. The complexity of this
case for chordal graphs remains unsettled. As by-products, our positive results give the first
polynomial-time solvable cases (split graphs and interval graphs) for Feedback Vertex Set
Reconfiguration.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases reconfiguration, colorable set, perfect graph

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.27

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
06511.

Funding T.I. was partially supported by JST CREST Grant Number JPMJCR1402, and JSPS
KAKENHI Grant Number JP16K00004, Japan. Y.O. was partially supported by MEXT KAK-
ENHI Grant Number JP24106004, JSPS KAKENHI Grant Number JP25730003, and by FY
2015 Researcher Exchange Program between JSPS and NSERC.

© Takehiro Ito and Yota Otachi;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 27; pp. 27:1–27:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takehiro@ecei.tohoku.ac.jp
https://orcid.org/0000-0002-9912-6898
mailto:otachi@cs.kumamoto-u.ac.jp
https://orcid.org/0000-0002-0087-853X
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.27
https://arxiv.org/abs/1802.06511
https://arxiv.org/abs/1802.06511
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Reconfiguration of Colorable Sets in Classes of Perfect Graphs

perfect

chordal co-comparability

split interval = chordal ∩ co-comparability

Figure 1 The graph classes studied in this paper.

1 Introduction

Recently, the reconfiguration framework has been applied to several search problems. In a
reconfiguration problem, we are given two feasible solutions of a search problem and are asked
to determine whether we can modify one to the other by repeatedly applying prescribed
reconfiguration rules while keeping the feasibility (see [14, 22, 19]). Studying such a problem
is important for understanding the structure of the solution space of the underlying problem.
Computational complexity of reconfiguration problems has been studied intensively. For
example, the Independent Set Reconfiguration problem under the reconfiguration
rules TS [13], TAR [14], and TJ [15] has been studied for several graph classes such as
planar graphs [13], perfect graphs [15], claw-free graphs [5], trees [6], interval graphs [4], and
bipartite graphs [17].

In this paper, we initiate the study on the problem of reconfiguring colorable sets, which
generalizes Independent Set Reconfiguration. For a graph G = (V, E) and an integer
c ≥ 1, a vertex set S ⊆ V is c-colorable if the subgraph G[S] induced by S admits a proper
c-coloring. For example, the 1-colorable sets in a graph are exactly the independent sets of
the graph. Recently, c-colorable sets have been studied from the viewpoint of wireless network
optimization (see [2, 3] and the references therein). The Colorable Set Reconfiguration
problem asks given two c-colorable sets S and S′ in a graph G, whether we can reach from S

to S′ by repeatedly applying allowed local changes. We consider the following three local
change operations (see Section 2 for formal definitions):

TAR(k): either adding or removing one vertex while keeping the size of the set at least a
given threshold k.
TJ: swap one member for one nonmember.
TS: swap one member for one nonmember adjacent to the member.

In perfect graphs, being c-colorable is equivalent to having no clique of size more than c.
This property often makes problems related to coloring tractable. Thus, to understand this
very general problem, we start the study of Colorable Set Reconfiguration on classes
of perfect graphs. Figure 1 shows the graph classes studied in this paper and the inclusion
relationships (see Section 2.2 for definitions).

Our contribution

Before we start our investigation on the reconfiguration problem, we first fill a gap in the
complexity landscape of the search problem Colorable Set that asks for finding a large
c-colorable set. When c = 1, Colorable Set is equivalent to the classical problem of
finding a large independent set that can be solved in polynomial time for perfect graphs. For
larger c, it was only known that the case c = 2 is NP-complete for perfect graphs [1]. To

T. Ito and Y. Otachi 27:3

Table 1 Summary of the results. PSPACE-completeness results here apply to TS also, while
polynomial-time algorithms do not. The case of c = 1 is equivalent to Independent Set Recon-
figuration.

Colorable Set Reconfiguration under TAR/TJ
c = 1 fixed c ≥ 2 arbitrary c

perfect PSPACE-c
co-comparability PSPACE-c [15]2 PSPACE-c (omitted)

chordal P [15] ? PSPACE-c
split P P (Thm 4.4) PSPACE-c (Thm 4.5)

interval P P (Thm 3.11)
bipartite NP-c [17] Trivial if c ≥ 2

make the complexity status of Colorable Set for perfect graphs complete, we show that
it is NP-complete for any fixed c ≥ 2.1

We then show complexity divergences among the classes of perfect graphs in Figure 1,
in particular under TAR and TJ. See Table 1 for a summary of our results. Our results
basically say that the problem under TAR and TJ is tractable on interval graphs but further
generalization is not quite possible.

More specifically, we first study the problem on interval graphs and show that a shortest
reconfiguration sequence under TAR can be found in linear time (Theorem 3.11). This implies
the same result under TJ. Next we study the problem on split graphs. We show that the
complexity depends on c. When c is a fixed constant, the problem is polynomial-time solvable
under TAR and TJ (Theorem 4.4). If c is a part of input, then we can show that the problem
is PSPACE-complete under all rules, including TS (Theorem 4.5). While the hardness result
applies also to chordal graphs, it is unclear whether a similar positive result for chordal
graphs can be obtained when c is a fixed constant. We only know that the case of c = 1
under TAR and TJ is polynomial-time solvable as chordal graphs are even-hole-free [15]. We
also show that for every fixed c ≥ 1 the problem is PSPACE-complete for co-comparability
graphs under all rules.3 Thus, our results are in some sense tight since the interval graphs
are exactly the chordal co-comparability graphs and split graphs are chordal graphs (see
Figure 1).

As a byproduct of Theorems 3.11 and 4.4, the Feedback Vertex Set Reconfigu-
ration problem [18] turns out to be polynomial-time solvable for split graphs and interval
graphs under TAR and TJ. These are the first polynomial-time solvable cases for Feed-
back Vertex Set Reconfiguration. To see the polynomial-time solvability, observe
that the complements V (G) \ S of 2-colorable sets S in a chordal graph G are exactly the
feedback vertex sets in the graph4 and reconfigurations of the complements are equivalent to
reconfigurations of the original vertex sets under TAR and TJ.

1 This result is omitted in this version.
2 The reduction in [15] outputs co-comparability graphs.
3 This result is omitted in this version.
4 Each induced cycle in a chordal graph is a triangle, and thus 2-colorable (or equivalently, odd cycle free)

chordal graphs are forests.

SWAT 2018

27:4 Reconfiguration of Colorable Sets in Classes of Perfect Graphs

2 Preliminaries

We say, as usual, that an algorithm for a graph G = (V, E) runs in linear time if the running
time of the algorithm is O(|V |+ |E|).

A proper c-coloring of a graph assigns a color from {1, . . . , c} to each vertex in such a
way that adjacent vertices have different colors. Given a graph G and an integer c, Graph
Coloring asks whether G admits a proper c-coloring. This problem is NP-complete even
if c is fixed to 3 [9]. The minimum c such that a graph admits a proper c-coloring is its
chromatic number.

The Colorable Set problem is a generalization of Graph Coloring where we find a
large induced subgraph of the input graph that admits a proper c-coloring. Let G = (V, E)
be a graph. For a set of vertices S ⊆ V , we denote by G[S] the subgraph induced by S. A
vertex set S ⊆ V is c-colorable in G if G[S] has a proper c-coloring. Now the problem is
defined as follows:

Problem: Colorable Set
Input: A graph G and integers c and k.
Question: Does G have a c-colorable set of size at least k?

The problem of finding a large c-colorable set is studied for a few important classes of
perfect graphs (see Figure 1 and Table 1). For the class of perfect graphs, it is known that a
maximum 1-colorable set (that is, a maximum independent set) can be found in polynomial
time [12]. Parameterized complexity [16] and approximation [7] of Colorable Set on
perfect graphs are also studied.

2.1 Reconfiguration of colorable sets
Let S and S′ be c-colorable sets in a graph G. Then, S ↔ S′ under TAR(k) for a nonnegative
integer k if |S|, |S′| ≥ k and |S M S′| = 1, where S M S′ denotes the symmetric difference
(S \ S′) ∪ (S′ \ S). Here S ↔ S′ means that S and S′ can be reconfigured to each other
in one step and TAR stands for “token addition & removal.” A sequence 〈S0, S1, . . . , S`〉
of c-colorable sets in G is a reconfiguration sequence of length ` between S0 and S` under
TAR(k) if Si−1 ↔ Si holds under TAR(k) for all i ∈ {1, 2, . . . , `}. A reconfiguration sequence
under TAR(k) is simply called a TAR(k)-sequence. We write S0 ! S` under TAR(k) if there
exists a TAR(k)-sequence between S0 and S`. Note that every reconfiguration sequence is
reversible, that is, S0 ! S` if and only if S` ! S0. Now the problem we are going to
consider is formalized as follows:

Problem: Colorable Set Reconfiguration under TAR (CSRTAR for short)
Input: A graph G, integers c and k, and c-colorable sets S and S′ of G.
Question: Does S ! S′ under TAR(k) hold?

We denote by (G, c, S, S′, k) an instance of CSRTAR. We assume that both |S| ≥ k and
|S′| ≥ k hold; otherwise it is trivially a no-instance. Note that the lower bound k guarantees
that none of the sets in the reconfiguration sequence is too small. Without the lower bound,
the reachability problem becomes trivial as S can always reach S′ via ∅.

For a CSRTAR-instance (G, c, S, S′, k), we denote by distTAR(k)(S, S′) the length of a
shortest TAR(k)-sequence in G between S and S′; if there is no such a sequence, then we set
distTAR(k)(S, S′) =∞.

We note that CSRTAR is a decision problem and hence does not require the specification
of an actual TAR(k)-sequence. Similarly, the shortest variant of CSRTAR simply requires to
output the value of distTAR(k)(S, S′).

T. Ito and Y. Otachi 27:5

Other reconfiguration rules
Although the TAR rule is our main target, we also study two other well-known rules TJ
(token jumping) and TS (token sliding). Let S and S′ be c-colorable sets in a graph G. For
TJ and TS, we additionally assume that |S| = |S′| because these rules do not change the size
of a set. Now the rules are defined as follows:

S ↔ S′ under TJ if |S \ S′| = |S′ \ S| = 1;
S ↔ S′ under TS if |S \ S′| = |S′ \ S| = 1 and the two vertices in S M S′ are adjacent in
G.

Reconfiguration sequences under TJ and TS as well as the reconfiguration problems
CSRTJ and CSRTS are defined analogously. An instance of CSRTJ or CSRTS is represented
as (G, c, S, S′), and distTJ(S, S′) and distTS(S, S′) are defined in the same way.

The following relation can be shown in almost the same way as Theorem 1 in [15] and
means that CSRTJ is not harder than CSRTAR in the sense of Karp reductions.

I Lemma 2.1. Let S and S′ be c-colorable sets of size k + 1 in a graph G. Then, S ! S′

under TAR(k) if and only if S ! S′ under TJ. Furthermore, it holds that distTAR(k)(S, S′) =
2 · distTJ(S, S′).

To make the presentation easier, we often use the shorthands S + v for S ∪ {v} and S − v

for S \ {v}. For a vertex v of a graph G, we denote the neighborhood of v in G by NG(v).

2.2 Graph classes
A clique in a graph is a set of pairwise adjacent vertices. A graph is perfect if the chromatic
number equals the maximum clique size for every induced subgraph [11]. The following fact
follows directly from the definition of perfect graphs and will be used throughout this paper.

I Observation 2.2. A vertex set S ⊆ V (G) of a perfect graph G is c-colorable if and only if
G[S] has no clique of size more than c.

There are many subclasses of perfect graphs. Chordal graphs form one of the most
well-known subclasses of perfect graphs, where a graph is chordal if it contains no induced
cycle of length greater than 3.

Co-comparability graphs form another large class of perfect graphs. A graph G = (V, E)
is a co-comparability graph if there is a linear ordering ≺ on V such that u ≺ v ≺ w and
{u, w} ∈ E imply {u, v} ∈ E or {v, w} ∈ E. Although they are less known than chordal
graphs, co-comparability graphs generalize several important graph classes such as interval
graphs, permutation graphs, trapezoid graphs, and co-bipartite graphs (see [11, 20]).

The classes of chordal graphs and co-comparability graphs are incomparable.5 It is known
that the class of interval graphs characterizes their intersection; namely, a graph is an interval
graph if and only if it is a co-comparability graph and chordal [10]. Recall that a graph is an
interval graph if it is the intersection graph of closed intervals on the real line.

Another well-studied subclass of chordal graphs (and hence of perfect graphs) is the class
of split graphs. A graph G = (V, E) is a split graph if V can be partitioned into a clique K

and an independent set I. To emphasize that G is a split graph, we write G = (K, I; E).
The classes of interval graphs and split graphs are incomparable.6

5 A cycle of four vertices is a co-comparability graph but not chordal. The net graph obtained by attaching
a pendant vertex to each vertex of a triangle is chordal but not a co-comparability graph.

6 A path with five or more vertices is an interval graph but not a split graph. The net graph is a split
graph but not an interval graph.

SWAT 2018

27:6 Reconfiguration of Colorable Sets in Classes of Perfect Graphs

3 Shortest reconfiguration in interval graphs

In this section, we show that CSRTAR for interval graphs can be solved in linear time. Our
result is actually stronger and says that an actual shortest TAR(k)-sequence can be found
in linear time, if one exists. By Lemma 2.1, the same result is obtained for TJ. We first
give a characterization of the distance between two c-colorable sets in an interval graph
(Section 3.1). This characterization says that a shortest TAR(k)-sequence has length linear
in the number of vertices of the graph. We then show that the distance can be computed in
linear time (Section 3.2). We finally present a linear-time algorithm for finding a shortest
TAR(k)-sequence (Section 3.3).

It is known that a graph is an interval graph if and only if its maximal cliques can be
ordered so that each vertex appears consecutively in that ordering [10, 8]. We call a list of
the maximal cliques ordered in such a way a clique path. Let G = (V, E) be an interval graph
and (M1, . . . , Mt) be a clique path of G; that is, for each vertex v ∈ V , there are indices lv
and rv such that v ∈Mi if and only if lv ≤ i ≤ rv. Given an interval graph, a clique path
and the indices lv and rv for all vertices can be computed in linear time [21]. Hence we can
assume that we are additionally given such information. Note that I = {[lv, rv] : v ∈ V } is
an interval representation of G. Namely, {u, v} ∈ E if and only [lu, ru] ∩ [lv, rv] 6= ∅.

Let K be a clique in an interval graph G. By the Helly property of intervals, the
intersection of all intervals in K is nonempty; that is,

⋂
v∈K [lv, rv] 6= ∅ (see [20]). A point in

the intersection
⋂

v∈K [lv, rv] is a clique point of K.

3.1 The distance between c-colorable sets
Let (G, c, S, S′, k) be an instance of CSRTAR. The set S is locked in G if S is a maximal
c-colorable set in G and |S| = k. The following lemma follows immediately from the definition.

I Lemma 3.1. Let G be a graph, and let S and S′ be distinct c-colorable sets of size at least
k in G. If S or S′ is locked in G, then S !/ S′.

Proof. Assume without loss of generality that S is locked in G. If there is a c-colorable set
S1 in G such that S ↔ S1, then S (S1 as |S| = k. This contradicts the maximality of S.
Since S 6= S′, we can conclude that S !/ S′. J

The rest of this subsection is dedicated to a proof of the following theorem, which implies
that the converse of the lemma above also holds for interval graphs.

I Theorem 3.2. Let G be an interval graph, and let S and S′ be distinct c-colorable sets of
size at least k in G. If S and S′ are not locked in G, then the distance d := distTAR(k)(S, S′)
is determined as follows.
1. If S and S′ are not locked in G[S ∪ S′], then d = |S M S′|.
2. If exactly one of S and S′ is locked in G[S ∪ S′], then d = |S M S′|+ 2.
3. If S and S′ are locked in G[S ∪ S′], then we have the following two cases.

a. If there is v ∈ V (G) \ (S ∪ S′) such that both S + v and S′ + v are c-colorable in G,
then d = |S M S′|+ 2.

b. Otherwise, d = |S M S′|+ 4.

I Corollary 3.3. For S 6= S′, S ! S′ if and only if none of S and S′ is locked in G.

Observe that distTAR(k)(S, S′) ≥ |S M S′| for any pair of c-colorable sets S and S′ in G.
We use this fact implicitly in the following arguments.

T. Ito and Y. Otachi 27:7

I Lemma 3.4 (Theorem 3.2 (1)). Let G be an interval graph, and let S and S′ be c-colorable
sets of size at least k in G. If S and S′ are not locked in G[S ∪ S′], then distTAR(k)(S, S′) =
|S M S′|.

Proof. We proceed by induction on |S M S′|. The base case of |S M S′| = 0 is trivial. Assume
that |S M S′| > 0 and that the statement is true if the symmetric difference is smaller.

We first consider the case where |S| = k. Since S is not locked in G[S ∪ S′], S is
not maximal in G[S ∪ S′]. Thus there is a vertex v ∈ S′ \ S such that T := S + v is
c-colorable. The set T is not locked in G[T ∪ S′], S ↔ T , and |T M S′| = |S M S′| − 1.
By the induction hypothesis, distTAR(k)(T, S′) = |T M S′| = |S M S′| − 1. Hence, we have
distTAR(k)(S, S′) ≤ distTAR(k)(T, S′) + 1 = |S M S′|. If |S′| = k, we can apply the same
argument.

In the following, we assume that |S| > k and |S′| > k. If S ⊆ S′, then we can add the
elements of S′ \ S one-by-one in an arbitrary order to get a shortest reconfiguration sequence
of length |S′ \ S| = |S M S′|. The case where S′ ⊆ S is the same.

We now consider the case where S 6⊆ S′ and S′ 6⊆ S. Let v ∈ S \ S′ and w ∈ S′ \ S be
vertices with the smallest right-end in each set. That is, rv = min{rx : x ∈ S \ S′} and
rw = min{rx : x ∈ S′ \ S}. By symmetry, assume that rw ≤ rv. Let u ∈ S \ S′ be a vertex
that minimizes lu. (Note that u and v may be the same.) Now we have rw ≤ rv ≤ ru. We
set T = S − u and T ′ = S − u + w. Clearly, S ↔ T . To apply the induction hypothesis,
it suffices to show that T is not locked in G[T ∪ S′]. To this end, we prove that T ↔ T ′.
Suppose to the contrary that T ′ is not c-colorable; that is, T ′ contains a clique K of size
c + 1. Since T does not contain such a large clique, K must include w. Let p be a clique
point of K. If p < lu, then K includes no vertex in S \ S′ as u has the minimum lu in
S \ S′. This contradicts the c-colorability of S′ and thus lu ≤ p ≤ rw ≤ ru. This implies that
K − w + u ⊆ S is a clique of size c + 1, a contradiction. Therefore, we can conclude that T ′

is c-colorable. Now, by the induction hypothesis, distTAR(k)(T, S′) = |T M S′| = |S M S′| − 1,
and thus distTAR(k)(S, S′) ≤ distTAR(k)(T, S′) + 1 = |S M S′|. J

I Lemma 3.5 (Theorem 3.2 (2)). Let G be an interval graph, and let S and S′ be distinct
c-colorable sets of size at least k in G. If S and S′ are not locked in G, and exactly one of S

and S′ is locked in G[S ∪ S′], then distTAR(k)(S, S′) = |S M S′|+ 2.

Proof. Without loss of generality, assume that S is locked in G[S ∪ S′]. This implies
that |S| = k. Since S is not locked in G, S is not maximal in G. Hence, there is a
vertex v ∈ V (G) \ (S ∪ S′) such that T := S + v is a c-colorable set of G. Observe
that T and S′ are not locked in G[T ∪ S′]. Thus, by Theorem 3.2 (1), it holds that
distTAR(k)(S, S′) ≤ distTAR(k)(T, S′) + 1 = |T M S′|+ 1 = |S M S′|+ 2.

On the other hand, since S is locked in G[S ∪ S′], every c-colorable set T of G with
S ↔ T contains a vertex in V (G)\ (S ∪S′). Thus |T M S′| = |S M S′|+ 1 holds. This implies
that distTAR(k)(S, S′) ≥ minT : S↔T |T M S′|+ 1 = |S M S′|+ 2. J

I Lemma 3.6 (Theorem 3.2 (3a)). Let G be an interval graph, and let S and S′ be distinct
c-colorable sets of size at least k in G. Assume S and S′ are locked in G[S ∪ S′] but not in
G. If there is a vertex v ∈ V (G) \ (S ∪ S′) such that both S + v and S′ + v are c-colorable in
G, then distTAR(k)(S, S′) = |S M S′|+ 2.

Proof. Let v ∈ V (G) \ (S ∪ S′) be a vertex such that both S + v and S′ + v are c-colorable
in G. We have S ↔ S + v and S′ ↔ S′ + v. Since S + v and S′ + v are not locked in
G[S ∪S′ + v], Theorem 3.2 (1) implies that distTAR(k)(S, S′) ≤ distTAR(k)(S + v, S′ + v) + 2 =
|(S + v) M (S′ + v)|+ 2 = |S M S′|+ 2.

SWAT 2018

27:8 Reconfiguration of Colorable Sets in Classes of Perfect Graphs

The lower bound distTAR(k)(S, S′) ≥ |S M S′|+ 2 can be shown in exactly the same way
as in the proof of Lemma 3.5. J

I Lemma 3.7 (Theorem 3.2 (3b)). Let G be an interval graph, and let S and S′ be distinct
c-colorable sets of size at least k in G. Assume S and S′ are locked in G[S ∪ S′] but not in
G. If there is no vertex v ∈ V (G) \ (S ∪ S′) such that both S + v and S′ + v are c-colorable
in G, then distTAR(k)(S, S′) = |S M S′|+ 4.

Proof. Let u, v ∈ V (G)\(S∪S′) be distinct vertices such that S +u and S′+v are c-colorable
in G. Since S + u and S′ + v are not locked in G[(S + u)∪ (S′ + v)], Theorem 3.2 (1) implies
that distTAR(k)(S, S′) ≤ distTAR(k)(S + u, S′ + v) + 2 = |(S + u) M (S′ + v)|+ 2 = |S M S′|+ 4.

Since S and S′ are locked in G[S ∪ S′] and there is no vertex v ∈ V (G) \ (S ∪ S′) such
that both S + v and S′ + v are c-colorable in G, we have minT : S↔T, T ′ : S′↔T ′ |T M T ′| =
|S M S′|+ 2. This implies that distTAR(k)(S, S′) ≥ |S M S′|+ 4. J

3.2 Computing the distance in linear time

We here explain how to check which case of Theorem 3.2 applies to a given instance in linear
time.

I Lemma 3.8. Given an interval graph G and c-colorable sets S and S′ in G, one can either
find a vertex v /∈ S ∪ S′ such that S + v and S′ + v are c-colorable or decide that no such
vertex exists in linear time.

Proof. Let (M1, . . . , Mt) be a clique path of G. Recall that M1, . . . , Mt are the maximal
cliques of G. Thus, for every T ⊆ V (G), the maximum clique size of G[T] is equal to
max1≤i≤t |T ∩Mi|.

We compute aS
i = |S ∩Mi| for 1 ≤ i ≤ t as follows. Initialize all aS

i to 0; for each u ∈ S,
add 1 to all aS

i with lu ≤ i ≤ ru. In the same way, we compute aS′

i = |S′ ∩Mi| for 1 ≤ i ≤ t.
From the observation above, we can conclude that for each vertex v /∈ S ∪ S′, S + v and
S′ + v are c-colorable if and only if aS

i , aS′

i < c for lv ≤ i ≤ rv.
The initialization and the test for all nonmembers of S can be done in time O(

∑t
i=1 |Mi|).

It suffices to show that
∑t

i=1 |Mi| ≤
∑

v∈V (G)(deg(v) + 1) = 2|E(G)| + |V (G)|. Since
M1 6⊆ M2, there is a vertex v with lv = rv = 1. Thus |M1| = deg(v) + 1. By induction on
the number of vertices, our claim holds. J

By setting S = S′ in the lemma above, we have the following lemma.

I Lemma 3.9. Given an interval graph G and a c-colorable set S in G, one can either find
a vertex v /∈ S such that S + v is c-colorable or decide that S is maximal in linear time.

I Corollary 3.10. Given an interval graph G and c-colorable sets S and S′ in G, the distance
distTAR(k)(S, S′) can be computed in linear time.

Proof. We first check whether S or S′ is locked in G. If so, the distance is ∞. Otherwise, we
check whether S and S′ are locked in G[S ∪ S′]. If not both of them are locked in G[S ∪ S′],
then we can apply Theorem 3.2 (1) or (2) and determine the distance. If both S and S′

are locked in G[S ∪ S′], we find a vertex v /∈ S ∪ S′ such that both S + v and S′ + v are
c-colorable in G. Everything can be done in linear time by Lemmas 3.8 and 3.9. J

T. Ito and Y. Otachi 27:9

3.3 Finding a shortest reconfiguration sequence in linear time

Here we describe how we find an actual shortest reconfiguration sequence in linear time. To
this end, we need to be careful about the representation of a reconfiguration sequence. If we
always output the whole set, the total running time cannot be smaller than k ·distTAR(k)(S, S′).
However, this product can be quadratic. To avoid this blow up, we output only the difference
from the previous set. That is, if the current set is S and the next set is S + v (S − v),
we output +v (−v, resp.). We also fully use the reversible property of reconfiguration
sequences and output them sometimes from left to right and sometimes from right to left.
For example, we may output a reconfiguration sequence 〈S0, . . . , S5〉 as first S0 ↔ S1 ↔ S2,
next S5 ↔ S4 ↔ S3, then S2 ↔ S3. It is straightforward to output the sequence from left to
right by using a linear-size buffer.

I Theorem 3.11. Given an interval graph G and c-colorable sets S and S′ in G, a TAR(k)-
sequence of length distTAR(k)(S, S′) can be computed in linear time.

Proof. We first test which case of Theorem 3.2 applies to the given instance. This can be
done in linear time as shown in the proof of Corollary 3.10. We reduce Cases (2) and (3) to
Case (1). The reductions below can be done in linear time by using Lemmas 3.8 and 3.9.

Assume first that Case (2) applies; that is, S is locked but S′ is not in G[S ∪ S′]. We
find a vertex v ∈ V (G) \ (S ∪ S′) such that S + v is a c-colorable set of G. We then add v to
S. As we saw in the proof of Lemma 3.5, this is a valid step in a shortest reconfiguration
sequence. Furthermore, after this step, S and S′ are not locked in G[S ∪ S′].

Next assume that Case (3) applies; that is, both S and S′ are locked in G[S ∪ S′]. We
find vertices u, v /∈ S ∪ S′ such that S + u and S′ + v are c-colorable in G. In Case (3a), we
further ask that u = v. We then add u to S and v to S′. The proofs of Lemmas 3.6 and 3.7
imply that these are valid steps in a shortest reconfiguration sequence, and that S and S′

are no longer locked in G[S ∪ S′] after these steps.
We now handle Case (1), where S and S′ are not locked in G[S∪S′]. Assume that S 6⊆ S′

and S′ 6⊆ S since otherwise finding a shortest sequence is trivial. We first compute two
orderings of the vertices in S∪S′: nondecreasing orderings of left-ends lv and of right-ends rv.
Such orderings can be constructed in linear time from a clique path. We maintain information
for each vertex v whether v ∈ S \ S′, v ∈ S′ \ S, or v /∈ S M S′. Using this information, we
can also maintain vertices of the smallest left-end and of the smallest right-end in each of
S \ S′ and S′ \ S.

Let v ∈ S \ S′ and w ∈ S′ \ S be vertices with the smallest right-end in each set. By
symmetry, assume that rw ≤ rv. Let u ∈ S \ S′ be a vertex that minimizes lu. As shown
in the proof of Lemma 3.4, S ↔ (S − u) ↔ (S − u + w) under TAR(k) and |S M S′| =
|(S − u + w) M S′|+ 2. We output the two steps S − u and S − u + w.

We then set S := S − u + w and update the information as u, w /∈ S M S′ anymore. We
also have to maintain the vertices of the smallest left- and right-ends in each S \ S′ and
S′ \ S. Let w′ ∈ S′ \ S be a vertex with the smallest right-end. The vertex w can be found
by sweeping the nondecreasing ordering of the right-ends from the position of w to the right.
The vertex u′ ∈ S \S′ with the smallest left-end can be found in an analogous way. Although
a single update can take super constant steps, it sums up to a linear number of steps in total
since it can be seen as a single left-to-right scan of each nondecreasing ordering. Therefore,
the total running time is linear. J

SWAT 2018

27:10 Reconfiguration of Colorable Sets in Classes of Perfect Graphs

4 Split graphs

For split graphs, we consider two cases. In the first case, we assume that c is a fixed constant,
and show that the problem under TAR (and TJ) can be solved in O(nc+1) time. The second
case is the general problem having c as a part of input. We show that in this case the problem
is PSPACE-complete under all reconfiguration rules.

4.1 Polynomial-time algorithm for fixed c

Let G = (K, I; E) be a split graph, where K is a clique and I is an independent set. For
C ⊆ K with |C| ≤ c, we define TC as follows:

TC =
{

C ∪ I if |C| < c,

C ∪ I \ {u ∈ I : C ⊆ NG(u)} if |C| = c.

We can see that TC is c-colorable for every C ⊆ K with |C| ≤ c as follows. Every clique
K ′ ⊆ TC includes at most |C| ≤ c vertices in C and at most one vertex in I. Since a vertex
in TC ∩ I has fewer than c neighbors in C, the maximum clique size of G[TC] is at most c.

I Lemma 4.1. If S is a c-colorable set of G with |S| ≥ k, then S ! TS∩K under TAR(k).

Proof. Note that TS∩K is c-colorable since S is c-colorable and thus |S ∩K| ≤ c. We now
show that S ⊆ TS∩K , which implies S ! TS∩K .

If |S ∩ K| < c, then TS∩K = (S ∩ K) ∪ I, and thus S ⊆ TS∩K . If |S ∩ K| = c,
then S ∩ {u ∈ I : (S ∩ K) ⊆ N(u)} = ∅ since S is c-colorable. Thus it holds that
S ⊆ (S ∩K) ∪ (I \ {u ∈ I : (S ∩K) ⊆ N(u)}) = TS∩K . J

By the reversibility of reconfiguration sequences, we can reduce the problem as follows.

I Corollary 4.2. If S and S′ are c-colorable sets of G with |S| ≥ k and |S′| ≥ k, then
S ! S′ under TAR(k) if and only if TS∩K ! TS′∩K under TAR(k).

Now we state the crucial lemma for solving the reduced problem.

I Lemma 4.3. Let C ⊆ K and v ∈ K \ C. If TC and TC+v are c-colorable sets of size at
least k, then TC ! TC+v under TAR(k) if and only if |TC+v| ≥ k + 1.

Proof. To prove the if part, assume that |TC+v| ≥ k + 1. Then, TC+v ↔ TC+v − v. Since
(TC+v−v)∩K = C, it holds that TC+v−v ! TC by Lemma 4.1. Thus we have TC+v ! TC .

To prove the only-if part, assume that |TC+v| = k. If |C + v| = c, then TC+v is a maximal
c-colorable set and no other c-colorable set of size at least k can be reached from TC+v.
Assume that |C + v| < c, and hence |C| < c. Then, TC+v = (C + v) ∪ I and TC = C ∪ I.
Therefore, we have |TC | = |TC+v − v| = k − 1, a contradiction. J

Combining the arguments in this subsection, we are now ready to present a polynomial-
time algorithm.

I Theorem 4.4. Given an n-vertex split graph G = (K, I; E) and c-colorable sets S and S′

of size at least k in G, it can be decided whether S ! S′ under TAR(k) in time O(nc+1).

Proof. We construct a graph H = (K, E) from G = (K, I; E) as follows:

K = {C ⊆ K : |C| ≤ c and |TC | ≥ k},
E = {{C, C + v} : C, C + v ∈ K and |TC+v| ≥ k + 1}.

T. Ito and Y. Otachi 27:11

For each C ⊆ K with |C| < c, the size |TC | = |C|+ |I| can be computed in constant time
(assuming that we know the size |I| in advance). If |C| = c, then we need to compute the
size of {u ∈ I : C ⊆ N(u)}. This can be done in time O(n) for each C. In H, each C ∈ K
is adjacent to at most |C| subsets of C: if |TC | > k, then C is adjacent to all C − v with
v ∈ C; otherwise, C has no edge to its subsets. This can be computed in time O(n) for each
C. In total, the graph H with O(nc) vertices and O(nc) edges can be constructed in time
O(nc+1). For C, C ′ ∈ K, one can decide whether H has a C–C ′ path in time O(nc).

Let C := S ∩ K and C ′ := S′ ∩ K. Now, by Corollary 4.2, it suffices to show that
TC ! TC′ if and only if there is a path between C and C ′ in H.

Assume that TC ! TC′ . Let 〈S1 = TC , S2, . . . , Sp = TC′〉 be a reconfiguration sequence
from TC to TC′ , and let Ci = Si ∩K for 1 ≤ i ≤ p. Observe that |Ci M Ci+1| ≤ 1 for each
1 ≤ i < p. If Ci 6= Ci+1, Corollary 4.2 and Lemma 4.3 imply that {Ci, Ci+1} ∈ E . Since
C1 = C and Cp = C ′, we can conclude that H has a C–C ′ path.

Next assume that there is a path between C and C ′ in H. Let (C1 = C, C2, . . . , Cq = C ′)
be such a path. Lemma 4.3 and the definition of H together imply that TCi ! TCi+1 for
each 1 ≤ i < q. Since C1 = C and Cq = C ′, we have TC ! TC′ . J

4.2 PSPACE-completeness when c is a part of input
Here we show the PSPACE-completeness when c is a part of input. (The proof if omitted in
this version.)

I Theorem 4.5. Given a split graph and c-colorable sets S and S′ of size k in the graph, it
is PSPACE-complete to decide whether S ! S′ under any of TS, TJ, and TAR(k − 1).

5 Concluding remarks

We show that Colorable Set Reconfiguration under TAR/TJ is linear-time solvable
on interval graphs. Our results give a sharp contrast of the computational complexity with
respect to graph classes, while some cases are left unanswered. One of the main unsettled
cases is CSRTAR with fixed c > 1 for chordal graphs (see Table 1). In particular, what is
the complexity of CSRTAR with c = 2 for chordal graphs? This problem is equivalent to
the reconfiguration of feedback vertex sets under TAR on chordal graphs. It would be also
interesting to study the shortest variant on split graphs with a constant c.

Our positive results for CSRTAR on interval graphs and split graphs (Theorems 3.11 and
4.4) do not imply analogous results for CSRTS. The complexity of CSRTS is not settled for
these graph classes even with a fixed constant c. It was only recently shown that if c = 1,
then CSRTS can be solved in polynomial time for interval graphs [4]. For c ≥ 2, CSRTS
on interval graphs is left unsettled. For split graphs, although co-NP-hardness of a related
problem is known [4], CSRTS is not solved for all c ≥ 1.

References
1 Louigi Addario-Berry, W. Sean Kennedy, Andrew D. King, Zhentao Li, and Bruce A. Reed.

Finding a maximum-weight induced k-partite subgraph of an i-triangulated graph. Discrete
Applied Mathematics, 158(7):765–770, 2010. doi:10.1016/j.dam.2008.08.020.

2 Eyjólfur Ingi Ásgeirsson, Magnús M. Halldórsson, and Tigran Tonoyan. Universal frame-
work for wireless scheduling problems. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80

SWAT 2018

http://dx.doi.org/10.1016/j.dam.2008.08.020

27:12 Reconfiguration of Colorable Sets in Classes of Perfect Graphs

of LIPIcs, pages 129:1–129:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.129.

3 Matthias Bentert, René van Bevern, and Rolf Niedermeier. (Wireless) Scheduling, graph
classes, and c-colorable subgraphs. CoRR, abs/1712.06481, 2017. arXiv:1712.06481.

4 Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. In Hans L.
Bodlaender and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts in Computer
Science - 43rd International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-
23, 2017, Revised Selected Papers, volume 10520 of Lecture Notes in Computer Science,
pages 127–139. Springer, 2017. doi:10.1007/978-3-319-68705-6_10.

5 Paul S. Bonsma, Marcin Kaminski, and Marcin Wrochna. Reconfiguring independent sets
in claw-free graphs. In R. Ravi and Inge Li Gørtz, editors, Algorithm Theory - SWAT 2014
- 14th Scandinavian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014.
Proceedings, volume 8503 of Lecture Notes in Computer Science, pages 86–97. Springer,
2014. doi:10.1007/978-3-319-08404-6_8.

6 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hi-
rotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Linear-time algorithm
for sliding tokens on trees. Theor. Comput. Sci., 600:132–142, 2015. doi:10.1016/j.tcs.
2015.07.037.

7 Samuel Fiorini, R. Krithika, N. S. Narayanaswamy, and Venkatesh Raman. LP approaches
to improved approximation for clique transversal in perfect graphs. In Andreas S. Schulz
and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in
Computer Science, pages 430–442. Springer, 2014. doi:10.1007/978-3-662-44777-2_36.

8 Delbert R. Fulkerson and Oliver A. Gross. Incidence matrices and interval graphs. Pac. J.
Math., 15(3):835–855, 1965. doi:10.2140/pjm.1965.15.835.

9 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-complete
graph problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

10 Paul C. Gilmore and Alan J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canad. J. Math., 16:539–548, 1964. doi:10.4153/CJM-1964-055-5.

11 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of
Annals of Discrete Mathematics. North Holland, second edition, 2004.

12 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1988.

13 Robert A. Hearn and Erik D. Demaine. Pspace-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theor.
Comput. Sci., 343(1-2):72–96, 2005. doi:10.1016/j.tcs.2005.05.008.

14 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theor. Comput. Sci., 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

15 Marcin Kaminski, Paul Medvedev, and Martin Milanic. Complexity of independent set
reconfigurability problems. Theor. Comput. Sci., 439:9–15, 2012. doi:10.1016/j.tcs.
2012.03.004.

16 R. Krithika and N. S. Narayanaswamy. Parameterized algorithms for (r, l)-partization. J.
Graph Algorithms Appl., 17(2):129–146, 2013. doi:10.7155/jgaa.00288.

17 Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set reconfigura-
tion on bipartite graphs. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, Jan-
uary 7-10, 2018, pages 185–195. SIAM, 2018. doi:10.1137/1.9781611975031.13.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.129
http://arxiv.org/abs/1712.06481
http://dx.doi.org/10.1007/978-3-319-68705-6_10
http://dx.doi.org/10.1007/978-3-319-08404-6_8
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.1007/978-3-662-44777-2_36
http://dx.doi.org/10.2140/pjm.1965.15.835
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.4153/CJM-1964-055-5
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.7155/jgaa.00288
http://dx.doi.org/10.1137/1.9781611975031.13

T. Ito and Y. Otachi 27:13

18 Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira
Suzuki. On the parameterized complexity of reconfiguration problems. Algorithmica,
78(1):274–297, 2017. doi:10.1007/s00453-016-0159-2.

19 Naomi Nishimura. Introduction to reconfiguration. Preprints, 2017. 2017090055. doi:
10.20944/preprints201709.0055.v1.

20 Jeremy P. Spinrad. Efficient Graph Representations. Fields Institute monographs. Ameri-
can Mathematical Society, 2003.

21 Ryuhei Uehara and Yushi Uno. On computing longest paths in small graph classes. Int. J.
Found. Comput. Sci., 18(5):911–930, 2007. doi:10.1142/S0129054107005054.

22 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and
Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.
1017/CBO9781139506748.005.

SWAT 2018

http://dx.doi.org/10.1007/s00453-016-0159-2
http://dx.doi.org/10.20944/preprints201709.0055.v1
http://dx.doi.org/10.20944/preprints201709.0055.v1
http://dx.doi.org/10.1142/S0129054107005054
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1017/CBO9781139506748.005

Tight Lower Bounds for List Edge Coloring
Łukasz Kowalik1

Institute of Informatics, University of Warsaw, Poland
kowalik@mimuw.edu.pl

https://orcid.org/0000-0002-7546-2969

Arkadiusz Socała2

Institute of Informatics, University of Warsaw, Poland
arkadiusz.socala@mimuw.edu.pl

Abstract
The fastest algorithms for edge coloring run in time 2mnO(1), where m and n are the number of
edges and vertices of the input graph, respectively. For dense graphs, this bound becomes 2Θ(n2).
This is a somewhat unique situation, since most of the studied graph problems admit algorithms
running in time 2O(n log n). It is a notorious open problem to either show an algorithm for edge
coloring running in time 2o(n2) or to refute it, assuming the Exponential Time Hypothesis (ETH)
or other well established assumptions.

We notice that the same question can be asked for list edge coloring, a well-studied general-
ization of edge coloring where every edge comes with a set (often called a list) of allowed colors.
Our main result states that list edge coloring for simple graphs does not admit an algorithm
running in time 2o(n2), unless ETH fails. Interestingly, the algorithm for edge coloring running in
time 2mnO(1) generalizes to the list version without any asymptotic slow-down. Thus, our lower
bound is essentially tight. This also means that in order to design an algorithm running in time
2o(n2) for edge coloring, one has to exploit its special features compared to the list version.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and complete-
ness, Theory of computation → Design and analysis of algorithms, Mathematics of computing
→ Graph coloring

Keywords and phrases list edge coloring, complexity, ETH lower bound

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.28

Acknowledgements We thank an anonymous reviewer for numerous useful remarks.

1 Introduction

An edge coloring of a graph G = (V, E) is a function c : E → N which has different values
(called colors) on incident edges. This is one of the most basic graph concepts with plethora of
results, including classical theorems of Vizing, Shannon and Kőnig. In the decision problem
Edge Coloring we are given a simple graph G and an integer k. The question is if G can
be edge colored using only k colors. This is an NP-complete problem, as shown by Holyer [9],
similarly to many other natural graph decision problems like Clique, Vertex Coloring,
Hamiltonicity or Subgraph Isomorphism. However, there is an intriguing difference
between our understanding of Edge Coloring and most of the studied graph problems,

1 The work of Ł. Kowalik is a part of the project TOTAL that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 677651).

2 Supported by the National Science Centre of Poland, grant number 2015/17/N/ST6/01224.

© Łukasz Kowalik and Arkadiusz Socała;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 28; pp. 28:1–28:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kowalik@mimuw.edu.pl
https://orcid.org/0000-0002-7546-2969
mailto:arkadiusz.socala@mimuw.edu.pl
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Tight Lower Bounds for List Edge Coloring

including the four mentioned above. Namely, the latter ones admit algorithms running in
time 2O(n log n), and often even 2O(n) for an n-vertex input graph, while it is not known
whether Edge Coloring can be solved in time 2o(n2). Indeed, the fastest known algorithm
for edge coloring is obtained by applying the vertex coloring algorithm of Björklund, Husfeldt
and Koivisto [2] to the line graph of the input graph. As a result, we get an edge coloring
algorithm which, for any graph with m edges and n vertices, runs in time 2mnO(1) and
exponential space, which is 2Θ(n2) for dense graphs. The only progress towards a tailor-made
approach for edge coloring is the more recent algorithm of Björklund, Husfeldt, Kaski and
Koivisto [1] which still runs in time 2mnO(1) but uses only polynomial space. In this context
it is natural to ask for a lower bound. Clearly, any superpolynomial lower bound would
imply P 6=NP. However, a more feasible goal is to prove a meaningful lower bound under the
assumption of a well established conjecture, like Exponential Time Hypothesis (ETH, see
Section 2 for a precise formulation). The reduction of Holyer, combined with standard tools
(see Section 2) proves that Edge Coloring does not admit an algorithm running in time
2o(m) or 2o(n), unless ETH fails. At the open problem session of Dagstuhl Seminar 08431
in 2008 [7] it was asked to exclude 2O(n) algorithms, assuming ETH. Despite considerable
progress in ETH-based lower bounds in recent years [4, 6, 13] this problem stays unsolved
(see the report from Dagstuhl Seminar 16451 in 2017 [12]).

List edge coloring is a generalization of edge coloring. An edge list assignment L : E(G)→
2N is a function that assigns to each edge e of G a set (often called a list) L(e) of allowed
colors. A function c : E(G) → N is a list edge coloring of (G, L) if c(e) ∈ L(e) for every
e ∈ E(G), and c(e) 6= c(f) for every pair of incident edges e, f ∈ E(G). The notion of list
edge coloring is also a frequent topic of research. For example, it is conjectured that if G

can be edge colored in k colors for some k, then it can be list edge colored for any edge list
assignment with all lists of size at least k. This conjecture has been proved in some classes
of graphs like bipartite graphs [8] or planar graphs of maximum degree at least 12 [3].

In this work, we study the computational complexity of list edge coloring. The basic
decision problem, List Edge Coloring in Simple Graphs, asks if for a given simple
graph G with edge list assignment L there is a list edge coloring of (G, L). Its more general
variant, called List Edge Coloring in Multigraphs asks the same question but the input
graph does not need to be simple, i.e., it can contain parallel edges. Although the problem
seems much more general than Edge Coloring, the two best known algorithms [2, 1] that
decide if a given graph admits an edge coloring in k colors solve List Edge Coloring in
Multigraphs (and hence also List Edge Coloring in Simple Graphs) within the same
time bound, i.e., 2mmO(1) + O(L), where L is the total length of all lists, after only minor
modifications (see Proposition 3 in [2]). Multigraphs do not admit any upper bound on
the number of edges, hence this time complexity does not translate to a function on n. We
show that this is not an accident, because satisfiability of any sufficiently sparse 3-CNF-SAT
formula can be efficiently encoded as a list edge coloring instance with a bounded number of
vertices. This gives the following result.

I Theorem 1. If there is a function f : N → N such that List Edge Coloring in
Multigraphs can be solved in time f(n) ·mO(1) for any input graph on n vertices and m

edges, then P = NP .

For simple graphs m = O(n2) and hence List Edge Coloring in Simple Graphs
admits an algorithm running in time 2O(n2). Our main result states that this bound is
essentially optimal, assuming ETH.

Ł. Kowalik and A. Socała 28:3

I Theorem 2. If there is an algorithm for List Edge Coloring in Simple Graphs that
runs in time 2o(n2), then Exponential Time Hypothesis fails.

Our results have twofold consequences for the Edge Coloring problem. First, one
may hope that our reductions can inspire a reduction for Edge Coloring. However, it is
possible that such a reduction does not exist and researchers may still try to get an algorithm
for Edge Coloring running in time 2o(n2). Then we offer a simple way of verifying if a
new idea works: if it applies to the list version as well, there is no hope for it.

2 Preliminaries

For an integer k, we denote [k] = {0, . . . , k−1}. If I and J are instances of decision problems
P and R, respectively, then we say that I and J are equivalent if either both I and J

are YES-instances of the respective problems, or both are NO-instances. A clause in a
CNF-formula is represented by the set of its literals. For two subsets of vertices A, B of a
graph G = (V, E) by E(A, B) we denote the set of edges with one endpoint in A and the
other in B.

Exponential-Time Hypothesis.

The Exponential Time Hypothesis (ETH) of Impagliazzo et al. [10] states that there exists
a constant c > 0, such that there is no algorithm solving 3-SAT in time O(2cn). During
the recent years, ETH became the central conjecture used for proving tight bounds on the
complexity of various problems. One of the most important results connected to ETH is the
Sparsification Lemma [11], which essentially gives a (many-one) reduction from an arbitrary
instance of k-SAT to an instance where the number of clauses is linear in the number of
variables. The following well-known corollary can be derived by combining ETH with the
Sparsification Lemma.

I Theorem 3 (see e.g. Theorem 14.4 in [5]). Unless ETH fails, there is no algorithm for
3-SAT that runs in time 2o(n+m), where n, m denote the numbers of variables and clauses,
respectively.

We need the following regularization result of Tovey [14]. Following Tovey, by (3,4)-SAT
we call the variant of 3-SAT where each clause of the input formula contains exactly 3
different variables, and each variable occurs in at most 4 clauses.

I Lemma 4 ([14]). Given a 3-SAT formula ϕ with n variables and m clauses one can
transform it in polynomial time into an equivalent (3,4)-SAT instance ϕ′ with O(n + m)
variables and clauses.

Theorem 3 and Lemma 4 give the following corollary.

I Corollary 5. Unless ETH fails, there is no algorithm for (3,4)-SAT that runs in time
2o(n), where n denotes the number of variables of the input formula.

3 Hardness of List Edge Coloring in Multigraphs

In order to prove Theorems 1 and 2 we show reductions from (3,4)-SAT to List Edge
Coloring with strong bounds on the number of vertices in the output instance. The basic
idea of both our reductions is to use two colors, denoted by xi and ¬xi for every variable xi

so that in every coloring of the output graph the edges colored in xi or ¬xi form a single
path with alternating colors. Then colors at the edges of this path of fixed parity can encode

SWAT 2018

28:4 Tight Lower Bounds for List Edge Coloring

v0 v1 v2 v3

x1, x2,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x1,¬x1, x2,¬x2, x3,¬x3

x4,¬x4

x5,¬x5

x1,¬x1

x2,¬x2

x3,¬x3

x4,¬x4

x5,¬x5

¬x2,¬x4,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x2,¬x2, x4,¬x4, x5,¬x5

x1,¬x1

x3,¬x3

Figure 1 Edges related to clauses (x1 ∨ x2 ∨ ¬x3) and (¬x2 ∨ ¬x4 ∨ ¬x5) assuming that the first
of these clauses has color 0 and the second has color 1.

the value of xi in a satisfying boolean assignment. Moreover, testing a clause C = `1 ∨ `2 ∨ `3
can be done very easily: it suffices to add an edge with the list {`1, `2, `3}. However this
edge can belong to the alternating path of at most one of the three variables in C, and
we add two more parallel edges which become elements of the two other alternating paths.
Unfortunately, in order to get similar phenomenon in simple graphs, we need to introduce a
complicated gadget.

I Lemma 6. For any instance ϕ of (3,4)-SAT with n variables there is an equivalent
instance (G, L) of List Edge Coloring in Multigraphs with 21 vertices and O(n) edges.
Moreover, the instance (G, L) can be constructed in polynomial time.

Proof. Let vrb(ϕ) and cls(ϕ) be the sets of variables and clauses of ϕ, respectively. W.l.o.g.
assume vrb(ϕ) = {x0, . . . , xn−1}.

We construct an auxiliary graph Gϕ with V (Gϕ) = cls(ϕ) and such that two clauses
C1, C2 ∈ cls(ϕ) are adjacent in Gϕ iff C1 ∩ C2 6= ∅. Since every clause has three variables
and each variable can belong to at most three other clauses, it follows that the maximum
degree of Gϕ is at most 9. Let g : cls(ϕ)→ [10] be the greedy vertex coloring of Gϕ in 10
colors, which can be found in linear time in a standard way. For i ∈ [10], let Ci = g−1(i).

Let us describe the output instance (G, L). We put V (G) = {v0, . . . , v20}. The edges
of G join only vertices of consecutive indices. For every r ∈ [10], for every clause C ∈ Cr

we add three new edges with endpoints v2r and v2r+1. The first of these edges, denoted
by e1

C , gets list C, i.e., the three literals of clause C. Let xi, xj and xk be the three
variables that appear in C. Then, the two remaining edges, e2

C and e3
C , get identical lists of

{xi,¬xi, xj ,¬xj , xk,¬xk}. Moreover, for every r ∈ [10] and for every variable xi that does
not appear in any of the clauses of Cr, we add a new edge v2rv2r+1 with list {xi,¬xi}. Finally,
for every r ∈ [10] and for every variable xi ∈ vrb(ϕ) we add a single new edge v2r+1v2r+2
with list {xi,¬xi}. This finishes the description of the output instance. See Fig. 1 for an
example.

In what follows, edges of the form v2rv2r+1 are called positive and edges of the form
v2r+1v2r+2 are called negative.

I Claim 1. For every list edge coloring c of (G, L), for every i ∈ [n], the edges in
c−1({xi,¬xi}) form a path v0, v1, . . . , v20.

Proof. For every r ∈ [10], there is exactly one edge v2r+1v2r+2 with list containing xi or ¬xi,
namely with list {xi,¬xi}. It follows that these 10 edges belong to c−1({xi,¬xi}). It suffices
to prove that for every r ∈ [10] there is also exactly one edge v2rv2r+1 in c−1({xi,¬xi}). This

Ł. Kowalik and A. Socała 28:5

is clear when xi does not appear in any of the clauses of Cr, because then there is exactly
one edge v2r+1v2r+2 with list containing xi or ¬xi, namely with list {xi,¬xi}. Otherwise, let
C = {`i, `j , `k} be the clause of Cr where `i ∈ {xi,¬xi}. Let `j ∈ {xj ,¬xj}, `k ∈ {xk,¬xk}.
Then there are exactly three edges e1

C , e2
C , e3

C incident to v2r and v2r+1 and with list
containing one of literals in the set {xi,¬xi, xj ,¬xj , xk,¬xk}. Indeed, L(e1

C) = {`i, `j , `k},
and L(e2

C) = L(e3
C) = {xi,¬xi, xj ,¬xj , xk,¬xk}. However, we have already proved that for

every q ∈ {i, j, k}, one of the edges with endpoints v2r+1 and v2r+2 is colored with xq or
¬xq. Hence, since every color class is a matching, for every q ∈ {i, j, k}, at most one of the
edges in {e1

C , e2
C , e3

C} is colored with xq or ¬xq. However, the lists of e1
C , e2

C , e3
C contain only

colors of the form xq or ¬xq for q ∈ {i, j, k}. It follows that for every q ∈ {i, j, k} exactly
one of the edges in {e1

C , e2
C , e3

C} is colored with xq or ¬xq. In particular there is exactly one
edge v2rv2r+1 in c−1({xi,¬xi}). J

Since c is an edge coloring, the path from the claim above is colored in one of two ways,
either by xi,¬xi, xi,¬xi, . . ., or by ¬xi, xi,¬xi, xi, This implies the following claim.

I Claim 2. For every list edge coloring c of (G, L), for every i ∈ [n], we have |c−1(xi)| =
|c−1(¬xi)| = 10 and either all edges in c−1(xi) are positive and all edges in c−1(¬xi) are
negative or all edges in c−1(xi) are negative and all edges in c−1(¬xi) are positive.

Now we are ready to prove that ϕ and (G, L) are equivalent.
Assume c is a list edge coloring of (G, L). Define a boolean assignment f : vrb(ϕ)→ {T, F}

by setting xi to T iff all edges in c−1(xi) are positive. Now consider an arbitrary clause C.
By construction, there is a positive edge e with L(e) = C. If c(e) = xq for some variable xq

then by Claim 2 all edges in c−1(xq) are positive, and hence f(xq) = T . Since c(e) ∈ L(e) we
have xq ∈ C, so C is satisfied. If c(e) = ¬xq for some variable xq then by Claim 2 all edges
in c−1(xq) are negative and hence f(xq) = F . Again, since c(e) ∈ L(e) we have ¬xq ∈ C, so
C is satisfied.

Assume ϕ is satisfiable and let f : vrb(ϕ) → {T, F} be a satisfying assignment. We
define a list edge coloring c of (G, L) as follows. Recall that for every r ∈ [10], and
for every clause C ∈ Cr there is an edge e1

C with L(e1
C) = C and edges e2

C , e3
C with

L(e2
C) = L(e3

C) = {xi,¬xi, xj ,¬xj , xk,¬xk}, where xi, xj and xk are the three variables that
appear in C. We color e1

C with any of the satisfied literals of C. Without loss of generality,
assume c(e1

C) ∈ {xi,¬xi}. Then we color e2
C with xj if f(xj) = T and with ¬xj otherwise.

Similarly, we color e3
C with xk if f(xk) = T and with ¬xk otherwise. Each of the remaining

positive edges e of G has its list equal {xi,¬xi} for some xi ∈ vrb(ϕ). We color e with xi

if f(xi) = T and with ¬xi otherwise. It follows that every positive edge is colored with a
satisfied literal. Every negative edge ẽ has its list equal to {xi,¬xi} for some xi ∈ vrb(ϕ).
We color ẽ with xi when f(xi) = F and with ¬xi when f(xi) = T . It follows that every
negative edge is colored with an unsatisfied literal. Let us show that c does not color incident
edges with the same color. Since the lists of parallel negative edges are disjoint, in our
coloring there are no parallel negative edges of the same color. Assume there are two parallel
positive edges of the form v2rv2r+1 of the same color `, for some r ∈ [10]. Then the variable
of ` belongs to a clause in Cr, for otherwise there is exactly one edge with endpoints v2rv2r+1
and with list containing `. However, since Cr is independent in Gϕ, there is exactly one such
clause C in Cr. It follows that the two parallel edges are among the three edges e1

C , e2
C , e3

C .
However, these three edges got different colors, a contradiction. If two edges are incident
but not parallel, one of them is positive and the other negative. The former is colored with
a satisfied literal and the latter with an unsatisfied literal, so they are colored differently.
Hence c is a proper list edge coloring, as required. This ends the proof of Lemma 6. J

Theorem 1 follows immediately from Lemmas 4 and 6 and the NP-hardness of 3-SAT.

SWAT 2018

28:6 Tight Lower Bounds for List Edge Coloring

4 Hardness of List Edge Coloring in Simple Graphs

This section is devoted to the proof of the following lemma.

I Lemma 7. For any instance ϕ of (3,4)-SAT with n variables there is an equivalent instance
(G, L) of List Edge Coloring in Simple Graphs with O(

√
n) vertices. Moreover, the

instance (G, L) can be constructed in polynomial time.

4.1 Intuition
The general idea is to follow the approach of Lemma 6 and replace the edges with multiplicity
O(n) with bipartite graphs with O(

√
n) vertices and O(n) edges. In our construction, for

every r ∈ [10], we replace every two consecutive bundles of parallel edges between v2r, v2r+1,
and v2r+2 from the construction in Lemma 6 by seven layers Li, i = 6r + 1, . . . , 6r + 7, each
of O(

√
n) vertices, with edges joining both consecutive and non-consecutive layers. The

subgraph induced by
⋃6r+7

i=6r+1 Li is called the r-th clause verifying gadget Gr. (Note that
the layers Li for i ≡ 1 (mod 6) are shared between consecutive gadgets.) Analogously as in
Lemma 6, the role of Gr is to check whether all clauses in Cr are satisfied. We add also two
additional layers L0 and L62 which make some of our arguments simpler.

4.2 Construction
It will be convenient to assume that

√
n ∈ N. We do not lose on generality because otherwise

we just add n+ = (d
√

ne+ 1)2 − n variables y1, y2, . . . , yn+ and clauses

{y1, y2, y3}, {y2, y3, y4}, . . . , {yn+−2, yn+−1, yn+}.

Note that n+ ≥ 3, n+ ≤ (
√

n + 2)2 − n = 4
√

n + 4 and
√

n + n+ = d
√

ne+ 1 ∈ N. Hence
we added only O(

√
n) variables and clauses, and the resulting formula is still a (3,4)-SAT

instance.
We begin as in Lemma 6, by building the graph Gϕ, and finding its greedy coloring g

which partitions the clause set into 10 color classes Cr, r ∈ [10]. Let us build the instance
(G, L) step by step.

Add two sets of vertices (called layers) Li = {vi
j | j ∈ [

√
n]}, i = 0, 1. Then add all

possible n edges between L0 and L1 forming a complete bipartite graph. Map the n variables
to the n edges in a 1 − 1 way. For every i ∈ [n], set the list of the edge assigned to xi to
{xi,¬xi}.

The vertex set V (G) contains 60 more layers of vertices Li, i = {2, . . . , 61}, where
Li = {vi

j | j ∈ [6
√

n + 3]}. Finally, L62 = {v62
j | j ∈ [

√
n + 1]}. Also denote L−1 = L63 = ∅.

In what follows we add the remaining edges of G. Whenever we add edges between Li and
Li−1, for every j < i all the edges of the output graph between Lj and Lj−1 are already
added. We will make sure to keep the following invariants satisfied during the process of
construction (note that they hold for the part constructed so far).

I Invariant 1 (Uniqueness). For every i ∈ [62], for every variable xj ∈ vrb(ϕ) there is at
most one edge uv ∈ E(Li, Li+1) such that {xj ,¬xj} ∩ L(uv) 6= ∅. Moreover, after finishing
adding edges between Li and Li+1, there is exactly one such edge.

Using the notation from Invariant 1, if the edge uv exists, we can denote v+
i,j = u and

v−i+1,j = v.

Ł. Kowalik and A. Socała 28:7

I Invariant 2 (Flow). For every i ∈ {1, . . . , 62}, for every variable xj ∈ vrb(ϕ) we have that
v−i,j = v+

i,j , unless v−i,j or v+
i,j is undefined. Moreover, the equality holds after finishing adding

edges between Li and Li+1.

Thanks to Invariant 2, after finishing adding edges between Li and Li+1, we can just
define vi,j := v−i,j = v+

i,j for i ∈ {1, . . . , 61}. We also put v0,j = v+
0,j and v62,j = v−62,j . In

our construction we will use some additional colors apart from the literals. The following
invariant holds.

I Invariant 3 (Lists). For every edge e of G, the list L(e) contains at least one literal.

For every i ∈ [62], for every vertex v ∈ Li, let deg−(v) = |E(Li−1, {v})| and deg+(v) =
|E(Li+1, {v})|.

I Invariant 4 (Indegrees). For every i ∈ [62] for vertex v ∈ Li we have deg−(v) ≤
√

n.

I Invariant 5 (Jumping edges). For every i ∈ [62], for vertex v ∈ Li there are at most
√

n

edges from v to layers Lj for j > i + 1.

By Invariant 2 and Invariant 3, for every vertex v ∈ V (G) it holds that deg+(v) ≤ deg−(v).
Hence Invariant 4 gives the claim below.

I Claim 3 (Outdegrees). For every i ∈ [62], for every vertex v ∈ Li, we have deg+(v) ≤
√

n.

Invariants 1 and 3 immediately imply the following.

I Claim 4. For every i ∈ [62], we have |E(Li, Li+1)| ≤ n.

Let us fix r ∈ [10]. We add the edges of the r-th clause verifying gadget Gr. Although G

is undirected, we will say that an edge uv between Li and Lj for i < j is from u to v and
from Li to Lj . Below we describe the edges in Gr in the order which is convenient for the
exposition. However, the algorithm adds the edges between layers in the left-to-right order,
i.e., for i < j, edges to Li are added before edges to Lj .

1. Edges to L` for ` = 6r + 2, 6r + 4, 6r + 6.
For every clause C ∈ Cr we do the following. Let xi1 , xi2 , xi3 be the three different
variables that appear in the literals of C. Let vj = v−`−1,ij

for j = 1, 2, 3. Note that
vertices v1, v2, v3 need not be distinct. By Claim 3, |N(vj) ∩ L`| ≤

√
n for j = 1, 2, 3.

Let S = {v ∈ L` | deg−(v) =
√

n}. By Claim 4, |S| ≤
√

n. Hence, for j = 1, 2, 3 we
have |L` \ (N({vj}) ∪ S)| ≥ 4

√
n + 3 and we can pick a vertex wj ∈ L` that has at most√

n− 1 edges from L`−1, is not adjacent to vj , and is different than wj′ for each j′ < j. If
` = 6k + 6 we additionally require that for every j = 1, 2, 3, the vertex wj is not adjacent
to v−6r+2,ij

or v−6r+4,ij
. By Invariant 5 this eliminates at most 2

√
n more candidates, so

it is still possible to choose all the wj ’s. For each j = 1, 2, 3, we add an edge vjwj with
L(vjwj) = {xij

,¬xij
}. Moreover, if ` = 6k + 6, for every j = 1, 2, 3 we add an edge

v−6r+2,ij
wj with list {xij ,¬xij , ai,j} and an edge v−6r+4,ij

wj with list {xij ,¬xij , bi,j}. The
conditions used to choose w1, w2 and w3 guarantee that we do not introduce parallel
edges.
For every variable xi that is not present in any of the clauses of Cr we find a vertex
w ∈ L` that has at most

√
n− 1 edges from L`−1 and is not adjacent to v−`−1,i. Again,

this is possible because there are at most 2
√

n vertices in L` that violate any of these
constraints. We add an edge v−`−1,iw with L(v−`−1,iw) = {xi,¬xi}.
Note that all invariants are satisfied: for Invariant 1 it follows from the fact that Cr is
independent in Gϕ, while invariants 2, 3, 4 follow immediately from the construction.

SWAT 2018

28:8 Tight Lower Bounds for List Edge Coloring

Invariant 5 stays satisfied after adding v−6r+2,ij
wj because for every variable xk such that

v−6r+2,k = v−6r+2,ij
we add at most one edge from v−6r+2,ij

to L6r+6, and the number of
such variables is equal to deg−(v−6r+2,ij

), which is at most
√

n by Invariant 4 (analogous
argument applies to adding the edge v−6r+4,ij

wj).
2. Edges to L` for ` = 6r + 3, 6r + 5, 6r + 7.

For every clause C ∈ Cr we do the following. Let C = {`1, `2, `3} and let xij
be the

variable from the literal of `j , for j = 1, 2, 3. Let wj = v−`−1,ij
for j = 1, 2, 3. By

Claim 3, |N({w1, w2, w3} ∩ L`)| ≤ 3
√

n. Also, there are at most
√

n + 2 vertices in L`

with at least
√

n − 2 edges from L`−1. Indeed, otherwise |E(L`−1, L`)| ≥ n +
√

n − 6
and either n ≤ 36 (and the lemma is trivial) or there is a contradiction with Claim 4.
Hence, we can find a vertex z`,C ∈ L` that has at most

√
n− 3 edges to L`−1 and is not

adjacent to {w1, w2, w3}. If ` = 6k + 7 we additionally require that the vertex z6k+7,C

is not adjacent to z6k+3,C or z6k+5,C . By Invariant 5 this eliminates at most 2
√

n more
candidates, so it is still possible to choose vertex z6k+7,C . For each j = 1, 2, 3, we add
an edge wjz`,C . We put L(wjz6r+3,C) = {xij

,¬xij
, aij
}, L(wjz6r+5,C) = {xij

,¬xij
, bij
},

and L(wjz6r+7,C) = {`j , cC , dC}. (The colors aij , bij , cC , dC are not literals — these are
new auxiliary colors; each variable xi has its own distinct auxiliary colors ai, bi, and
each clause C has its own auxiliary colors cC , dC .) We add edges z6r+3,Cz6r+7,C and
z6r+5,Cz6r+7,C , both with lists {xi1 ,¬xi1 , xi2 ,¬xi2 , xi3 ,¬xi3}.
For every variable xi that is not present in any of the clauses of Cr we proceed analogously
as in Step 1.
The invariants hold for the similar reasons as before. In particular, Invariant 5 stays
satisfied after adding z6r+3,Cz6r+7,C because for every clause C ′ such that z6r+3,C′ =
z6r+3,C we add exactly one edge from z6r+3,C to L6r+7, and the number of such clauses is
bounded by deg−(z6r+3,C)/3, which is at most

√
n/3 by Invariant 4 (analogous argument

applies to adding the edge z6r+5,Cz6r+7,C).

Finally, we add edges between L61 and L62. For every variable xi we find a vertex w ∈ L62
that is not adjacent to v−61,i, which is possible because deg+(v−61,i) ≤

√
n. We add an edge

v−61,iw with L(v−61,iw) = {xi,¬xi}.
The following claims follow directly from the construction.

I Claim 5. For every r ∈ [10], for every clause C ∈ Cr with variables xi1 , xi2 , xi3 , and
for each ` = 6r + 3, 6r + 5, 6r + 7 we have v`,i1 = v`,i2 = v`,i3 = z`,C . Moreover, for each
` = 6r + 3, 6r + 5, 6r + 7 and j = 1, 2, 3 we have L(z`,Cv`+1,ij) = {xij ,¬xij}.

I Claim 6. For every edge uv ∈ E(G), where u ∈ Lj , v ∈ Lk, if {xi,¬xi} ∩ L(uv) 6= ∅, then
u = vj,i and u = vk,i.

This finishes the description of the output instance. Since G contains O(1) layers, each
with O(

√
n) vertices, it follows that |V (G)| = O(

√
n), as required. See Fig 2 for an illustration

of edges representing a single clause within a clause verifying gadget.

4.3 Structure of coloring
Similarly to multigraphs the crux of the equivalence between instances is the following claim.

I Claim 7. For every list edge coloring c of (G, L), for every i ∈ [n], the edges in
c−1({xi,¬xi}) form a path Pi from L0 to L62. Moreover, if Pi contains an edge v6r+6,iv6r+7,i

for some r ∈ [10], then this edge is preceded by an even number of edges on Pi.

Ł. Kowalik and A. Socała 28:9

v6r+1,i

v6r+1,j

v6r+1,k

v6r+2,i

v6r+2,j

v6r+2,k

v6r+3,i

v6r+4,i

v6r+4,j

v6r+4,k

v6r+5,i

v6r+6,i

v6r+6,j

v6r+6,k

v6r+7,i

xi,¬xi

xj ,¬xj

xk,¬xk

x
i ,¬x

i , a
i

xj ,¬xj , aj

xk
,¬x

k
, ak

x i,
¬x i

xj ,¬xj

x
k ,¬x

k

x
i ,¬x

i , b
i

xj ,¬xj , bj

xk
,¬x

k
, bk

x i,
¬x i

xj ,¬xj

x
k ,¬x

k

x
i , c

C , d
C

¬xj , cC , dC

xk
, cC

, dC

xi,¬xi, xj ,¬xj , xk,¬xk

xi,¬xi, xj ,¬xj , xk,¬xk

xi,¬xi, ai

xi,¬xi, bi

xj ,¬xj , aj

xj ,¬xj , bj

xj ,¬xj , ak

xj ,¬xj , bk

Figure 2 Edges in the gadget Gr related to a clause (xi ∨ ¬xj ∨ xk) from Cr.

Proof. Fix i ∈ [n]. For convenience, denote Ei = c−1({xi,¬xi}). By Invariant 1 there is
exactly one edge between L0 and L1 that has xi or ¬xi on its list, namely v0,iv1,i. Similarly,
there is exactly one edge between L61 and L62 that has xi or ¬xi on its list, namely v61,iv62,i.
Since L(v0,iv1,i) = L(v61,iv62,i) = {xi,¬xi}, we know that v0,iv1,i, v61,iv62,i ∈ Ei, and these
are the only edges of Ei in E(L0, L1) ∪ E(L61, L62). Observe that edges between non-
consecutive layers never leave the clause verifying gadgets. Hence, for the first part of the
claim, it suffices to show that for every r ∈ [10], the edges in Ei∩E(Gr) form a path between
v6r+1,i and v6r+7,i. In fact, by Claim 6 it suffices to show that Ei ∩ E(Gr) contains a path
between v6r+1,i and v6r+7,i that visits all the vertices {v6r+j,i | j = 1, . . . , 7}. To this end,
fix r ∈ [10].

First assume that xi does not appear in any clause of Cr. Then Gr contains the path
v6r+1,i, v6r+2,i, . . . , v6r+7,i, where each edge has the list {xi,¬xi}. It immediately implies
that all edges of this path are in Ei ∩ E(Gr), as required.

Now let us assume that xi appears in a clause C ∈ Cr. Let C = {`i, `j , `k} and assume
that the literal `i contains xi, the literal `j contains a variable xj , and the literal `k contains
a variable xk. Observe that for j = 1, 3, 5 we have v6r+j,iv6r+j+1,i ∈ Ei because these edges
have their lists equal to {xi,¬xi}. Note also that ∆(Ei) ≤ 2 because Ei is a union of two
matchings (colors). We consider three subcases.
1. Assume v6r+3,iv6r+7,i ∈ Ei. Since ∆(Ei) ≤ 2 and v6r+3,iv6r+4,i ∈ Ei we know that

v6r+2,iv6r+3,i 6∈ Ei, and as a consequence, c(v6r+2,iv6r+3,i) = ai. Hence c(v6r+2,iv6r+6,i) 6=
ai, which implies that v6r+2,iv6r+6,i ∈ Ei. Then, since ∆(Ei) ≤ 2 and v6r+5,iv6r+6,i ∈ Ei

we know that v6r+4,iv6r+6,i 6∈ Ei, and as a consequence, c(v6r+4,iv6r+6,i) = bi. Hence
c(v6r+4,iv6r+5,i) 6= bi, which implies that v6r+4,iv6r+5,i ∈ Ei. Thus, we have shown that
Ei contains the path v6r+1,i, v6r+2,i, v6r+6,i, v6r+5,i, v6r+4,i, v6r+3,i, v6r+7,i, as required.

2. Assume v6r+5,iv6r+7,i ∈ Ei. Since ∆(Ei) ≤ 2 and v6r+5,iv6r+6,i ∈ Ei we know that
v6r+4,iv6r+5,i 6∈ Ei, and as a consequence, c(v6r+4,iv6r+5,i) = bi. Hence c(v6r+4,iv6r+6,i) 6=
bi, which implies that v6r+4,iv6r+6,i ∈ Ei. Then, since ∆(Ei) ≤ 2 and v6r+5,iv6r+6,i ∈ Ei

SWAT 2018

28:10 Tight Lower Bounds for List Edge Coloring

we know that v6r+2,iv6r+6,i 6∈ Ei, and as a consequence, c(v6r+2,iv6r+6,i) = ai. Hence
c(v6r+2,iv6r+3,i) 6= ai, which implies that v6r+2,iv6r+3,i ∈ Ei. Thus, we have shown that
Ei contains the path v6r+1,i, v6r+2,i, v6r+3,i, v6r+4,i, v6r+6,i, v6r+5,i, v6r+7,i, as required.

3. Assume v6r+3,iv6r+7,i, v6r+5,iv6r+7,i 6∈ Ei. Since L(v6r+3,iv6r+7,i) = L(v6r+5,iv6r+7,i) =
{xi,¬xi, xj ,¬xj , xk,¬xk} we infer that v6r+3,iv6r+7,i, v6r+5,iv6r+7,i ∈ Ej ∪ Ek. By
Claim 5 we know that v6r+7,i = v6r+7,j = v6r+7,k, v6r+7,iv6r+8,j ∈ Ej and v6r+7,iv6r+8,k ∈
Ek. Since ∆(Ej) ≤ 2 and ∆(Ek) ≤ 2, we get that v6r+3,iv6r+7,i ∈ Ej and v6r+5,iv6r+7,i ∈
Ek or vice versa. In any case, v6k+6,j , v6k+7,i 6∈ Ej , and v6k+6,k, v6k+7,i 6∈ Ek. Recall that
L(v6k+6,j , v6k+7,i) = {`j , cC , dC} and L(v6k+6,k, v6k+7,i) = {`k, cC , dC}. It follows that
c({v6k+6,jv6k+7,i, v6k+6,kv6k+7,i}) = {cC , dC}. Then c(v6k+6,i, v6k+7,i) 6∈ {cC , dC}. Since
L(v6k+6,i, v6k+7,i) = {`i, cC , dC}, we get that v6k+6,i, v6k+7,i ∈ Ei. Then, since ∆(Ei) ≤ 2
and v6r+5,iv6r+6,i ∈ Ei we know that v6r+2,iv6r+6,i, v6r+4,iv6r+6,i 6∈ Ei, and as a con-
sequence, c(v6r+2,iv6r+6,i) = ai and c(v6r+4,iv6r+6,i) = bi. Hence c(v6r+2,iv6r+3,i) 6= ai,
and c(v6r+4,iv6r+5,i) 6= bi which implies that v6r+2,iv6r+3,i, v6r+4,iv6r+5,i ∈ Ei. Thus, Ei

contains the path v6r+1,i, v6r+2,i, v6r+3,i, v6r+4,i, v6r+5,i, v6r+6,i, v6r+7,i, as required.
For the second part of the claim recall that Pi decomposes into an edge from L0 to L1, 10
paths of length 6 inside the gadgets and an edge from L61 to L62. Moreover, if Pi contains
an edge v6r+6,iv6r+7,i for some r ∈ [10], then this edge is the last edge of one of the 10 paths
of length 6. It follows that it is preceded by 1 + 6r + 5 edges, which is an even number. J

4.4 Equivalence
Assume c is a list edge coloring of (G, L). Define a boolean assignment f : vrb(ϕ)→ {T, F}
by setting xi to T iff the first edge of the path Pi from Claim 7 is colored by xi. Note
that Pi is colored alternately with xi and ¬xi and every odd edge on Pi (i.e., preceded
by an even number of edges) is colored with a satisfied literal. Now consider an arbitrary
clause C. Let r = g(C). Let C = {`1, `2, `3} and let xij be the variable from the literal
of `j , for j = 1, 2, 3. By construction, there are three edges v6r+6,ij

z6r+7,C , for j = 1, 2, 3
with L(v6r+6,ij z6r+7,C) = {`j , cC , dC}. At most two of these edges are colored with cC or
dC , so there is j = 1, 2, 3 such that c(v6r+6,ij

z6r+7,C) = `j . In particular, v6r+6,ij
z6r+7,C ∈

c−1({xij ,¬xij}) and hence, by Claim 7 we know that v6r+6,ij z6r+7,C ∈ Pij . However, by the
second part of Claim 7 this edge is preceded by an even number of edges on Pij

. It follows
that `j is satisfied.

Assume ϕ is satisfiable and let f : vrb(ϕ) → {T, F} be a satisfying assignment. We
define a list edge coloring c of (G, L) as follows. Consider any edge e ∈ E(L0, L1). Then
L(e) = {xi,¬xi}. We color e with xi when f(xi) = T and with ¬xi otherwise. Now consider
any edge e ∈ E(L61, L62). Again L(e) = {xi,¬xi}. We color e with xi when f(xi) = F

and with ¬xi otherwise. By Invariant 1 incident edges get different colors in the partial
coloring described so far. In what follows we describe c|E(Gr) for every r ∈ [10] separately.
Fix r ∈ [10].

Consider an arbitrary clause C ∈ Cr. Let C = {`1, `2, `3} and let xij
be the variable from

the literal of `j , for j = 1, 2, 3. Since ϕ is satisfied by f , at least one literal of C is satisfied
by f , by symmetry we can assume it is `1. Consider the three edge disjoint paths

R1 = v6r+1,i1 , v6r+2,i1 , v6r+3,i1 , v6r+4,i1 , v6r+5,i1 , v6r+6,i1 , v6r+7,i1 ,

R2 = v6r+1,i2 , v6r+2,i2 , v6r+6,i2 , v6r+5,i2 , v6r+4,i2 , v6r+3,i2 , v6r+7,i2 ,

R3 = v6r+1,i3 , v6r+2,i3 , v6r+3,i3 , v6r+4,i3 , v6r+6,i3 , v6r+5,i3 , v6r+7,i3 .

For each j = 1, 2, 3 the path Rj is colored by xij and ¬xij alternately, beginning with ¬xij

if f(xij
) = T and with xij

if f(xij
) = F . Note that edges of R1, R2 and R3 are colored by

Ł. Kowalik and A. Socała 28:11

colors from their lists. Indeed, this is obvious for every edge apart from v6r+6,i1 , v6r+7,i1 ,
because their lists contain {xij

,¬xij
}. Edge v6r+6,i1 , v6r+7,i1 is colored with xij

if f(xij
) = T

and with ¬xij
if f(xij

) = F . It follows that v6r+6,i1 , v6r+7,i1 is colored with the literal from
{xi1 ,¬xi1} which is satisfied by f , hence it is colored by `1, and `1 ∈ L(v6r+6,i1 , v6r+7,i1), as
required. Finally, we put

c(v6r+2,i1v6r+6,i1) = ai1 ,

c(v6r+4,i1v6r+6,i1) = bi1 ,

c(v6r+2,i2v6r+3,i2) = ai2 ,

c(v6r+4,i2v6r+6,i2) = bi2 ,

c(v6r+2,i3v6r+6,i3) = ai3 ,

c(v6r+4,i3v6r+5,i3) = bi3 ,

c(v6r+6,i2v6r+7,i2) = cC ,

c(v6r+6,i3v6r+7,i3) = dC .

Thus we have colored all edges of Gr which have lists containing a variable from C.
Now consider any variable xi that does not appear in any clause of Cr. Consider the

path v6r+1,i, v6r+2,i, . . . , v6r+7,i. If f(xi) = T , color the path with the sequence of colors
¬xi, xi,¬xi, . . . , xi, and otherwise with the sequence of colors xi,¬xi, xi, . . . ,¬xi.

Thus we have colored all the edges of Gr. It is straightforward to check that for every
r ∈ [10] the subgraph Gr is colored properly. It remains to show that vertices in the layers
Li for i ≡ 1 (mod 6) are not incident to two edges of the same color. Clearly, this cannot
happen for colors aj or bj for any j ∈ [n], because they are not present on lists of edges
incident to Li for i ≡ 1 (mod 6). Also, it cannot happen for colors cC or dC for any clause
C, because edges with these colors on their list only join Li−1 with Li for i ≡ 1 (mod 6),
so two incident edges colored with cC or dC cannot belong to different gadgets. Finally,
consider colors {xi,¬xi} for a fixed i ∈ [n]. The edges with these colors form a path of
length 62, starting with v0,iv1,i, and continued as follows. The edge v0,iv1,i is followed by 10
paths of length 6. For every r ∈ [10], the r-th path of length 10 begins in v6r+1,i and ends
in v6r+7,i = v6(r+1)+1,i. Finally, the 62-path ends with edge v61,iv62,i. Note that v0,iv1,i is
colored with the satisfied literal. Next, for every r ∈ [10], the first edge of the r-th 10-path
is colored with the non-satisfied literal and its last edge is colored by the satisfied literal.
Finally, v61,iv62,i is colored with the non-satisfied literal. It follows that the 62-path of all
edges with colors from {xi,¬xi} is colored alternately in xi and ¬xi, as required. This
finishes the proof that c is a list edge coloring of (G, L), and the proof of Lemma 7.

4.5 Proof of Theorem 2
Theorem 2 follows immediately from Lemma 7 and Corollary 5. Indeed, if there is an
algorithm A which solves List Edge Coloring in Simple Graphs in time 2o(|V (G)|2),
then by Lemma 7 an n-variable instance of (3,4)-SAT can be transformed to a O(

√
n)-vertex

instance of List Edge Coloring in Simple Graphs in polynomial time and next solved
in time 2o(n) using A, which contradicts ETH by Corollary 5.

5 Conclusions and further research

In this work we have shown that List Edge Coloring in Simple Graphs does not admit
an algorithm that runs in time 2o(n2), unless ETH fails. This has consequences for designing
algorithms for Edge Coloring: in order to break the barrier 2O(n2) one has to use methods

SWAT 2018

28:12 Tight Lower Bounds for List Edge Coloring

that exploit symmetries between colors, and in particular do not apply to the list version.
On the other hand, one may hope that our reductions can inspire a reduction to Edge
Coloring which would exclude at least a 2O(n)-time algorithm. However it seems that
Edge Coloring requires a significantly different approach. In our reductions we were able
to encode information (namely, the boolean value of a variable in a satisfying assignment)
in a color of an edge. In the case of Edge Coloring this is not possible, because one can
recolor any edge e by choosing an arbitrary different color c′ and swapping c′ and the color c

of e on the maximal path/cycle that contains e and has edges colored with c and c′ only.

References
1 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves

for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. doi:
10.1016/j.jcss.2017.03.003.

2 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009.

3 O. V. Borodin, A. V. Kostochka, and D. R. Woodall. List edge and list total colourings of
multigraphs. J. of Comb. Theory, Ser. B, 71:184–204, 1997.

4 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems.
J. ACM, 64(3):18:1–18:22, 2017. doi:10.1145/3051094.

5 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge
clique cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016. doi:10.1137/
130947076.

7 Fedor V. Fomin, Kazuo Iwama, Dieter Kratsch, Petteri Kaski, Mikko Koivisto, Lukasz
Kowalik, Yoshio Okamoto, Johan van Rooij, and Ryan Williams. 08431 open problems
– moderately exponential time algorithms. In Fedor V. Fomin, Kazuo Iwama, and Di-
eter Kratsch, editors, Moderately Exponential Time Algorithms, number 08431 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany. URL: http://drops.dagstuhl.de/opus/volltexte/2008/1798.

8 Fred Galvin. The list chromatic index of a bipartite multigraph. J. Comb. Theory, Ser. B,
63(1):153–158, 1995. doi:10.1006/jctb.1995.1011.

9 Ian Holyer. The np-completeness of some edge-partition problems. SIAM J. Comput.,
10(4):713–717, 1981. doi:10.1137/0210054.

10 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

11 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

12 Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams. Structure and hardness
in P (dagstuhl seminar 16451). Dagstuhl Reports, 6(11):1–34, 2016. doi:10.4230/DagRep.
6.11.1.

13 Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

14 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Appl. Math.,
8(1):85–89, 1984.

http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1145/3051094
http://dx.doi.org/10.1137/130947076
http://dx.doi.org/10.1137/130947076
http://drops.dagstuhl.de/opus/volltexte/2008/1798
http://dx.doi.org/10.1006/jctb.1995.1011
http://dx.doi.org/10.1137/0210054
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.4230/DagRep.6.11.1
http://dx.doi.org/10.4230/DagRep.6.11.1
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4086/toc.2010.v006a005

Load Thresholds for Cuckoo Hashing
with Double Hashing

Michael Mitzenmacher1

Harvard University, School of Engineering and Applied Sciences, Cambridge, USA
michaelm@eecs.harvard.edu

https://orcid.org/0000-0001-5430-5457

Konstantinos Panagiotou2

University of Munich, Institute for Mathematics, Germany
kpanagio@math.lmu.de

Stefan Walzer
Technische Universität Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

https://orcid.org/0000-0002-6477-0106

Abstract
In k-ary cuckoo hashing, each of cn objects is associated with k random buckets in a hash table of
size n. An `-orientation is an assignment of objects to associated buckets such that each bucket
receives at most ` objects. Several works have determined load thresholds c∗ = c∗(k, `) for k-ary
cuckoo hashing; that is, for c < c∗ an `-orientation exists with high probability, and for c > c∗

no `-orientation exists with high probability.
A natural variant of k-ary cuckoo hashing utilizes double hashing, where, when the buckets

are numbered 0, 1, . . . , n − 1, the k choices of random buckets form an arithmetic progression
modulo n. Double hashing simplifies implementation and requires less randomness, and it has
been shown that double hashing has the same behavior as fully random hashing in several other
data structures that similarly use multiple hashes for each object. Interestingly, previous work
has come close to but has not fully shown that the load threshold for k-ary cuckoo hashing is
the same when using double hashing as when using fully random hashing. Specifically, previous
work has shown that the thresholds for both settings coincide, except that for double hashing it
was possible that o(n) objects would have been left unplaced. Here we close this open question
by showing the thresholds are indeed the same, by providing a combinatorial argument that
reconciles this stubborn difference.

2012 ACM Subject Classification Theory of computation → Bloom filters and hashing

Keywords and phrases Cuckoo Hashing, Double Hashing, Load Thresholds, Hypergraph Ori-
entability

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.29

Acknowledgements Part of this work was developed in the Dagstuhl Seminar on Theory and
Applications of Hashing in May 2017.

1 The author was supported in part by NSF grants CCF-1563710, CCF-1535795, CCF-1320231, and
CNS-1228598. Part of this work was done while visiting Microsoft Research.

2 This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programm (grant agreement n° 772606).

© Michael Mitzenmacher, Konstantinos Panagiotou, and Stefan Walzer;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 29; pp. 29:1–29:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michaelm@eecs.harvard.edu
https://orcid.org/0000-0001-5430-5457
mailto:kpanagio@math.lmu.de
mailto:stefan.walzer@tu-ilmenau.de
https://orcid.org/0000-0002-6477-0106
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Cuckoo Thresholds for Double Hashing

1 Introduction

1.1 The Threshold Question
Cuckoo hashing, introduced by Pagh and Rodler [13] and generalized in many subsequent
works (see e.g. [1, 2], and [9] for additional background and references), has proven useful
both as a theoretical building block and in practical systems. In k-ary cuckoo hashing, each
of cn objects is associated with k random buckets in a hash table of size n. An `-orientation
is an assignment of objects to associated buckets such that each bucket receives at most `
objects. Several works have determined load thresholds c∗ = c∗(k, `) for k-ary cuckoo hashing;
that is, for c < c∗ an `-orientation exists with high probability, and for c > c∗ no `-orientation
exists with high probability. Beyond their theoretical interest, these load thresholds are
important for designing systems that use cuckoo hashing, as they provide an accurate guide
to what loads can be achieved in practical settings.

A natural variant of k-ary cuckoo hashing utilizes double hashing. Double hashing
originally appeared in the context of open-address hash tables, where an object j would
be placed by successively trying to find an open bucket at locations h(i, j) = (h1(j) +
ih2(j)) mod |T | for i = 0, 1, . . ., where here |T | represents the table size and h1 and h2
are two independently selected hash functions. In the context of cuckoo hashing when
the buckets are numbered 0, 1, . . . , n− 1, the k choices of random buckets are of the form
h(i, j) = (h1(j) + ih2(j)) mod n for i = 0, . . . , k − 1, so that the choices form an arithmetic
progression modulo n.

Double hashing both simplifies implementation and requires less randomness. Moreover,
a classical result in the theory of open-address hash tables is that double hashing yields
asymptotically the same cost for an unsuccessful search as using full randomness [8], showing
that there is negligible performance cost in using double hashing. This type of result, that
using double hashing does not change the performance, has since been shown for other
hashing-based data structures using several choices, such as Bloom filters [4] and balanced
allocation hash tables [10, 11]. We therefore expect that the load thresholds for cuckoo
hashing would be the same using double hashing as when using full randomness. Indeed, as
we describe in more detail below, previous work has almost shown that the thresholds are
the same, but completing the argument has proven stubbornly elusive. Here we complete
the proof through a suitable combinatorial argument.

1.2 Terminology
In the rest of the paper, we make use of the following terminology.

Fully random graph. Let Hk
n,cn be a k-uniform random hypergraph with vertex set Zn

and cn edges or something “morally equivalent”. Specifically, for our purposes it is often
convenient to have perfect independence of edges, each edge e being picked as e = {x1, . . . , xk}
where x1, . . . , xk are chosen independently and uniformly from Zn. Note that this may result
in some edges of size less than k, as well as duplicate edges. These deviations do not change
the threshold, as is known via standard arguments.

Double-Hashing graph. Similarly, Dk
n,cn is also a random hypergraph with vertex set Zn,

but the cn edges must be k-term arithmetic progressions. More precisely, each edge e is
independently sampled as e = {a+ ib mod n | 0 ≤ i < k} for a ∈ Zn and 1 ≤ b < n/2 chosen
independently and uniformly at random. If n is prime then each edge has size k and, for
convenience, we assume this to be the case.

M. Mitzenmacher, K. Panagiotou, and S. Walzer 29:3

Threshold for (perfect) `-orientability of (Hk
n,cn)n∈N

Threshold for o(n)-almost `-orientability of (Hk
n,cn)n∈N

Threshold for o(n)-almost `-orientability of (Dk
n,cn)n∈N

Threshold for (perfect) `-orientability of (Dk
n,cn)n∈N

easily seen to be equal with
combinatorial methods, see [7]

equality shown by Leconte [6] the
random weak limit coincides

equality shown in this paper,
using combinatorial methods

obtained with tailored combina-
torial counting arguments in [3]

Lelarge [7]: Such Thresholds
are functions of the random
weak limit of the family.

previously unknown

Figure 1 Two out of three steps for Theorem 1 are already known.

Orientability. A hypergraph H = (V,E) is (perfectly) `-orientable if there is function
f : E → V mapping each edge e ∈ E to an incident vertex f(e) ∈ e such that each vertex
v is the image of at most ` edges. For d ∈ N we say H = (V,E) is d-almost `-orientable if
there is E′ ⊆ E of size |E′| = |E| − d such that H ′ = (V,E′) is `-orientable.

Orientability threshold. A family (Hn)n∈N of random hypergraphs depending on a param-
eter c has an `-orientability threshold c∗ ≥ 0 if for c < c∗, Hn is `-orientable whp (“with high
probability”, i.e. with probability 1− on→∞(1)) and for c > c∗, Hn is not `-orientable whp.
Similarly we can define d-almost `-orientability thresholds; we may even allow for d to be a
function of n.

2 Outline of the Argument

Our goal is to prove the following theorem.

I Theorem 1. For any fixed constants k ≥ 3, ` ≥ 1, the `-orientability threshold for
(Hk

n,cn)n∈N and the `-orientability threshold for (Dk
n,cn)n∈N coincide.

We review what is known about double hashing in the context of cuckoo hashing, to explain
what remains left to show (see Figure 1). Leconte [6] showed that the families (Hk

n,cn)n∈N
and (Dk

n,cn)n∈N have the same Galton-Watson Tree as random weak limit. Lelarge [7] showed
that the threshold for o(n)-almost `-orientability of a graph family only depends on the
random weak limit of the family. It is fairly easy to reconcile the `-orientability and the
o(n)-almost `-orientability for (Hk

n,cn)n∈N (see [7]), showing that the thresholds are the same
for that family. In order to establish Theorem 1 all we need to prove is an analogous result for
Dk
n,cn, which is done in the following proposition. Note that `-orientability trivially implies

o(n)-almost `-orientability, so only the non-trivial direction is given.

I Proposition 1. Let k ≥ 3 and ` ≥ 1 be fixed constants. Let c∗ be the o(n)-almost
`-orientability threshold for (Dk

n,cn)n∈N. Then for any c < c∗, Dk
n,cn is `-orientable whp.

The proof uses two lemmas that are proved in Sections 3 and 4. To understand them, we need
another concept. In the context of discussing `-orientability of a hypergraph H = (V,E), we
call V ′ ⊆ V a Hall-witness if the set E(V ′) of edges induced by V ′ has size |E(V ′)| > ` · |V ′|.
By Hall’s Theorem (restated in Section 4), H is `-orientable if and only if no Hall-witness
exists.

SWAT 2018

29:4 Cuckoo Thresholds for Double Hashing

The lemmas we utilize are as follows:

I Lemma 2. Let k ≥ 3, ` ≥ 1 and c > 0 be fixed constants. Then there exists a constant
δ > 0 such that, whp, no Hall-witness of size less than δn exists for Dk

n,cn.

I Lemma 3. If H = (V,E) is d-almost `-orientable and e ∈ E is contained in some minimal
Hall-witness, then H(e) = (V,E − {e}) is (d−1)-almost `-orientable.

Given these lemmas, we prove Proposition 1, following [7].

Proof of Proposition 1. Let c = c∗ − ε for some ε > 0. We may sample Dk
n,cn by first

sampling Dk
n,c′n for c′ = c∗ − ε/2 and then removing εn/2 edges. More precisely, we set

D(0) := Dk
n,c′n and obtain D(i+1) from D(i) by removing an edge uniformly at random for

0 ≤ i < εn/2. Then D(εn/2) is distributed as Dk
n,cn.

For 0 ≤ i ≤ εn/2, let di be the smallest d such that D(i) is d-almost `-orientable. By
choice of c∗ we have d0 = o(n) whp. We take δ from Lemma 2 and condition on the high
probability event that any Hall-witness of D(0) has size at least δn. Of course, the same
bound applies to Hall-witnesses of the subgraphs D(i) with i > 1.

Let i be an index with di > 0. Then D(i) is not `-orientable and a minimal Hall-witness
exists. Its size is at least δn, and it induces at least δ`n + 1 edges. In particular, the
probability that a random edge of D(i) is contained in this minimal Hall-witness is at least
δ`n+1
c′n ≥ δ`/c′ = Θ(1). If such an edge is chosen for removal, then by Lemma 3 we have

di+1 = di − 1. Until we reach D(εn/2), there are εn/2 = Θ(n) opportunities to reduce the d-
value by 1, and each opportunity is realized with probability Θ(1). Since the initial gap is o(n),
the probability that we have dεn/2 > 0 is Pr[X < o(n)] where X ∼ Bin(Θ(n),Θ(1)). Simple
concentration bounds on binomial random variables prove that this is an o(1)-probability
event, so we have dεn/2 = 0 whp. Thus D(εn/2) = Dk

n,cn is (perfectly) `-orientable whp as
desired. J

3 No small Hall-witness exists

In this section, we prove Lemma 2. We argue first that it is enough to prove the statement
in the case k = 3 and ` = 1. Indeed, if Dk

n,cn contains no V ′ ⊆ V inducing more than
|V ′| edges, then certainly no such V ′ induces more than `|V ′| edges. Moreover, let us write
e = {ae + ibe : 0 ≤ i < k} for an edge e of Dk

n,cn. We project each edge e in Dk
n,cn to

e′ = {ae + ibe : 0 ≤ i < 3}; then the resulting 3-uniform hypergraph is distributed like D3
n,cn,

and each V ′ ⊆ V induces at least as many edges as in Dk
n,cn. It therefore suffices to show

the unlikeliness of certain Hall witnesses in the case of k = 3, ` = 1, and fixed c ∈ R+.
We introduce the notion of an (s, t)-set, a set of size s that contains precisely t arithmetic

triples for some 3 ≤ s ≤ n and 1 ≤ t ≤
(
s
2
)
. More specifically, a subset S of [0, n− 1] contains

some number of arithmetic triples modulo n, which unfortunately does not depend solely
on the size of the subset S, and we therefore parametrize the number of triples with an
additional variable t. Our plan is to use first moment methods and bound the sum:∑

(s,t)

Qs,tps,t

where Qs,t is the number of (s, t)-sets that could be minimal Hall-witnesses, and ps,t is an
upper bound on the probability that an (s, t)-set actually is a minimal Hall-witness in D3

n,cn.
We separately deal with the following ranges of the parameters s and t.

M. Mitzenmacher, K. Panagiotou, and S. Walzer 29:5

Case 1: Small s. If s = o(n1/2) we exploit that
∑
tQs,t is sufficiently small by direct

counting.
Case 2: Medium s, small-ish t. For s = ω(n2/5) and t ≤ s2

4ce2 , the probability t/
(
n
2
)
≈ 2t

n2

that random edges are contained in such an (s, t)-set is small enough to find a good
bound on ps,t.

Case 3: Medium s, large t. For δn ≥ s = ω(n2/5) (for a small δ chosen later) and t > s2

4ce2

it turns out that t far exceeds the number of arithmetic triples that would be expected
from a random set of size s. A concentration bound by Warnke [14] then gives a useful
bound on Qs,t.

We deal with these three cases below. We use the following simple bounds on ps,t. As we are
working in the setting where ` = 1, for a set of size s to be a minimal Hall-witness, there
must be at least s+ 1 edges whose elements are in the set. We therefore find:

ps,t ≤
(

t(
n
2
))s+1(

cn

s+ 1

)
≤
(

2t
n2

)s+1(
cne

s

)s+1
=
(

2cet
sn

)s+1
(1)

≤
(
ces

n

)s+1
. (2)

The bound is derived by taking the probability that for a set of s+ 1 edges, each edge turns
out to be one of the t arithmetic triples contained in S. This is multiplied with the number
of ways to choose s+ 1 out of the cn edges of D3

n,cn. For the second line we used the trivial
bound t ≤

(
s
2
)
≤ s2

2 .

Case 1: s = o(
√
n). Assume S ⊆ Zn is a minimal Hall-witness for D3

n,cn inducing a set P
of edges (with |P | > 3|S|). As a hypergraph, (S, P) is spanning, i.e. each vertex is contained
in an edge, otherwise the isolated vertex can be removed for a smaller Hall-witness. Also,
(S, P) is connected, i.e. for any x, y ∈ S there is a sequence e1, . . . , ej ∈ P with x ∈ e1, y ∈ ej
and ei ∩ ei+1 6= ∅ for 1 ≤ i < j). Otherwise, at least one connected component forms a
smaller Hall-witness.

So for fixed s, we can count all (s, t)-sets (with arbitrary t) that might be minimal
Hall-witnesses by counting vertex sets that can support connected spanning hypergraphs.
We do this by counting annotated depth-first-search-runs (dfs-runs), associated with such
(s, t)-sets, in the following way. A dfs-run through S starts at a root vertex r ∈ S and puts
it on the stack, whose topmost element is referred to as top. Then a sequence of steps follow,
each of which either removes top from the stack (backtrack) or finds new vertices in S that
are then put on the stack. More precisely, new vertices are found by specifying an arithmetic
triple that is contained in S and involves top. The two vertices other than top may either
both be new (find2) or only one vertex is new, and a third vertex v was already found in
a previous step (find1). The following data about the dfs-run is needed to reconstruct S
from it:

The root vertex r. There are n possibilities.
The type of each step, which can be backtrack, find1 or find2. Since there are at most 2s
steps, there are at most 32s possibilities in total.
For each step of type find1, the vertex v that was previously found and that together with
top and the new vertex forms an arithmetic triple. There are less than s possibilities.
In addition we need the position of top and v in the arithmetic triple (essentially four
possibilities). The newly discovered vertex can then be computed from top and v.

SWAT 2018

29:6 Cuckoo Thresholds for Double Hashing

For each step of type find2, the difference between adjacent elements of the arithmetic
triple – there are n/2 possibilities. Also, the position of top in that triple – there are 3
possibilities.

If f1 and f2 count the number of times the steps find1 and find2 are used in the dfs-run
through S of size s, then we have f1 + 2f2 = s− 1. For s = o(

√
n), the find2-steps yield a

significantly higher number of possibilities per found vertex compared to find1-steps, so we
compute:∑

t

Qs,t ≤ n · 32s · (4s)f1(3n/2)f2 ≤ n · 32s · (3n/2)(s−1)/2 ≤ cs1n(s+1)/2

where c1 is a constant. Using Equation (2) we get:

o(
√
n)∑

s=3

∑
t

Qs,tps,t ≤
o(
√
n)∑

s=3
(
∑
t

Qs,t)(max
t
ps,t)

≤
o(
√
n)∑

s=3
cs1n

(s+1)/2
(
ces

n

)s+1
≤

o(
√
n)∑

s=3

(
c2s√
n

)s+1

for a new constant c2. Since each term in the sum is O(n−2) and since there are o(n1/2)
terms, the sum is clearly o(n−3/2) = o(1), closing this case.

Case 2: s = ω(n2/5) and t ≤ s2

4ce2 . Combining the trivial bound of Qs,t ≤
(
n
s

)
, Equa-

tion (1), and our assumption on t we obtain:

Qs,t · ps,t ≤
(
n

s

)
·
(

2cet
sn

)s+1
≤
(
ne

s

)s
·
(

s

2ne

)s+1
≤
(

1
2

)s
.

This is clearly o(1), even after summing over all O(n) admissible choices for s and all O(n2)
choices for t.

Case 3: ω(n2/5) ≤ s ≤ δn and t > s2

4ce2 . A random set S ⊆ Zn of size s in this range
behaves very much like a random set T that is obtained by picking each element of Zn
independently with probability p = s

n . Let X be the number of arithmetic triples in T . We
have µ := E[X] =

(
n
2
)
p3 ≤ s3

2n . In particular, the case X > s2

4ce2 is very rare if s < δn for
sufficiently small δ. We can therefore expect the number Qs,t to be significantly less than(
n
s

)
. Formally we write:

Qs,t ≤
(
n

s

)
Pr[S contains t a.p.] =

(
n

s

)
Pr[X = t | |T | = s] ≤

(
n

s

)
Pr[X = t]O(

√
n)

where O(
√
n) is the inverse of the probability of the event |T | = s. Using Theorem 1 from

[14] with k = 3, p = s/n, we get positive constants b, B > 0 such that for sufficiently large n

Pr[X = t] ≤ Pr[X ≥ (1 + t−µ
µ)µ]

[14]
≤ e−b

√
t−µ
µ

√
µ log(1/p)

Using our bound on t and assuming δ ≤ 1
4ce2 we can bound the negated exponent by:

b
√
t− µ log(1

p
) ≥ b

√
s2

4ce2 − s3

2n log(1
δ
) ≥ bs

√
1

4ce2 − δ
2 log(1

δ
) ≥ bs

√
1

8ce2 log(1
δ
) = sc3 log(1

δ
)

M. Mitzenmacher, K. Panagiotou, and S. Walzer 29:7

for some constant c3 > 0 which yields Pr[X = t] ≤ (δc3)s. Combining this with Equation (2),
this time assuming δc3 ≤ 1

2ce2 , we can write

Qs,t · ps,t ≤
(
n

s

)
Pr[X = t]O(

√
n) · ps,t ≤

(
ne

s

)s
(δc3)sO(

√
n)
(
ces

n

)s+1

≤ O(
√
n)
(
ce2δc3

)s
≤ O(

√
n) · 2−s

which is o(1), even when summing over all Θ(n) admissible values s and all Θ(n2) admissible
values for t.

4 The significance of Hall-witnesses

To understand how Hall’s Theorem relates to our situation, we view a hypergraph H = (V,E)
as a bipartite graph with E on the “left”, V on the “right” and a connection between e ∈ E
and v ∈ V iff v ∈ e. We care about generalized (1, `)-matchings in this incidence graph of
H, i.e. sets M ⊆ E × V such that any e ∈ E has degree at most 1 in M and any v ∈ V has
degree at most ` in M . An `-orientation f of H, viewed as a set of pairs f ⊆ E × V , is then
precisely an edge-perfect (1, `)-matching (each e ∈ E has degree precisely 1). We call the
corresponding notion of a vertex-perfect (1, `)-matching (each v ∈ V has degree ` in M) an
`-saturation.

In this setting, Hall’s Theorem is easily generalized to the following, where we use N(X)
to denote the direct neighbors of X in the incidence graph (note that X ⊆ V and X ⊆ E

are both allowed) and E(V ′) to denote the set of edges contained in V ′ ⊆ V .

I Theorem 4 (Hall’s Theorem).
(i) H has an `-orientation ⇔ @E′ ⊆ E with `|N(E′)| < |E′|
⇔ @V ′ ⊆ V with `|V ′| < |E(V ′)| ⇔: No Hall-witness exists.

(ii) H has an `-saturation ⇔ @V ′ ⊆ V with |N(V ′)| < `|V ′|.
We are now ready to prove Lemma 3.

Proof of Lemma 3. Let H = (V,E) be a non-`-orientable hypergraph and S ⊆ V be a
minimal Hall-witness to this fact. Consider HS = (S,E(S)), the sub-hypergraph of H
induced by S. Within HS we have |NHS (S′)| > `|S′| for any ∅ 6= S′ ⊆ S, as otherwise, i.e.
assuming |NHS (S′)| ≤ `|S′|, we have

|E(S − S′)| = |E(S)−NHS (S′)| = |E(S)| − |NHS (S′)| > `|S| − `|S′| = `|S − S′|

which would make S − S′ a smaller Hall-witness than S, contradicting minimality.
This means for H(e)

S := (S,E(S)− {e}) we have (replacing “>” with “≥”) |N
H

(e)
S

(S′)| ≥

`|S′| for any S′ ⊆ S (the claim is trivial for S′ = ∅). By Theorem 4(ii), H(e)
S has an

`-saturation M (e)
S .

Now if H is d-almost `-orientable and M ⊆ E × V is a corresponding (1, `)-matching of
size |E|−d, our task is to obtain a (1, `)-matchingM ′ with |M | = |M ′| in H(e) = (V,E−{e})
where an edge e ∈ E(S) was removed. This will imply that H(e) is (d−1)-almost `-orientable
as desired.

Constructing M ′ is easy, as we just remove all edges from E(S) from M (this certainly
gets rid of e if it was used) and re-saturate the vertices from S by adding an appropriate
subset Y ⊆M (e)

S . Then M ′ := (M \ E(S)) ∪ Y has the same size as M . J

SWAT 2018

29:8 Cuckoo Thresholds for Double Hashing

5 Conclusion

We have shown that for `-orientations in k-ary cuckoo hashing (for constant k and `), double
hashing yields the same load thresholds as fully random hashing. This provides yet another
example of a hashing structure with the same behavior when using only double hashing in
place of random hashing. It seems somewhat unfortunate and perhaps a little mysterious
that there does not yet appear to be a unifying argument for multiple such hashing structures;
each structure, thus far, has required its own specialized argument. We optimistically suggest
that a more unified approach may exist, that would shed more light on this phenomenon.

A problem closely related to the cuckoo hashing problem we have studied here is the
question of the `-core threshold of a k-uniform random hypergraph. The `-core of a hypergraph
is obtained by repeatedly removing any vertex of degree less than `, and all adjacent edges.
One can think of the `-core as what is left after a “greedy” first stage in an offline algorithm
for finding an (` − 1)-orientation; each bucket with at most ` − 1 objects simply accepts
those objects, and the remaining objects would then have to be more carefully placed to
obtain an an (`− 1)-orientation, if possible. For random hypergraphs on n vertices with cn
edges, there are similar thresholds c∗ = c∗(k, `) for the existence of a non-empty `-core; that
is for c < c∗ the `-core is empty with high probability, and for c > c∗ the `-core consists of
Ω(n) edges with high probability. Empirically, the double-hashing graph appears to have
the same thresholds as random hypergraphs for the `-core, and it is known the thresholds
are the same when ` > k [12]. It might seem our approach would be useful for settling this
question as well, but thus far we cannot currently rule out small o(n)-sized `-cores under
double hashing using these ideas. This question remains tantalizingly open.

References
1 Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries with

tightly packed constant size bins. Theoretical Computer Science, 380(1-2):47–68, 2007.
2 Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. Space efficient hash

tables with worst case constant access time. Theory of Computing Systems, 38(2):229–248,
2005.

3 Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The Multiple-
Orientability Thresholds for Random Hypergraphs. In Proc. 22nd SODA, pages
1222–1236, 2011. URL: http://www.siam.org/proceedings/soda/2011/SODA11_092_
fountoulakisn.pdf.

4 Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building a
better bloom filter. Random Structures & Algorithms, 33(2):187–218, 2008.

5 M. Leconte, M. Lelarge, and L. Massoulié. Convergence of multivariate belief propagation,
with applications to cuckoo hashing and load balancing. In Proc. 24th SODA, pages 35–46,
2013. URL: http://dl.acm.org/citation.cfm?id=2627817.2627820.

6 Mathieu Leconte. Double hashing thresholds via local weak convergence. In 51st Annual
Allerton Conference on Communication, Control, and Computing, Allerton 2013, Allerton
Park & Retreat Center, Monticello, IL, USA, October 2-4, 2013, pages 131–137. IEEE,
2013. doi:10.1109/Allerton.2013.6736515.

7 Marc Lelarge. A New Approach to the Orientation of Random Hypergraphs. In Proc. 23rd
SODA, pages 251–264, 2012. URL: http://dl.acm.org/citation.cfm?id=2095139.

8 George S Lueker and Mariko Molodowitch. More analysis of double hashing. Combinatorica,
13(1):83–96, 1993.

9 Michael Mitzenmacher. Some open questions related to cuckoo hashing. In ESA, pages
1–10. Springer, 2009.

http://www.siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
http://dl.acm.org/citation.cfm?id=2627817.2627820
http://dx.doi.org/10.1109/Allerton.2013.6736515
http://dl.acm.org/citation.cfm?id=2095139

M. Mitzenmacher, K. Panagiotou, and S. Walzer 29:9

10 Michael Mitzenmacher. Balanced allocations and double hashing. In Proceedings of the
26th ACM symposium on Parallelism in algorithms and architectures, pages 331–342. ACM,
2014.

11 Michael Mitzenmacher. More analysis of double hashing for balanced allocations. CoRR,
abs/1503.00658, 2015. arXiv:1503.00658.

12 Michael Mitzenmacher and Justin Thaler. Peeling arguments and double hashing. In 50th
Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012,
Allerton Park & Retreat Center, Monticello, IL, USA, October 1-5, 2012, pages 1118–1125.
IEEE, 2012. doi:10.1109/Allerton.2012.6483344.

13 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144,
2004. doi:10.1016/j.jalgor.2003.12.002.

14 Lutz Warnke. Upper tails for arithmetic progressions in random subsets. Israel Journal of
Mathematics, pages 1–49, 7 2017. doi:10.1007/s11856-017-1546-3.

SWAT 2018

http://arxiv.org/abs/1503.00658
http://dx.doi.org/10.1109/Allerton.2012.6483344
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1007/s11856-017-1546-3

A Greedy Algorithm for Subspace Approximation
Problem
Nguyen Kim Thang
IBISC, Univ Evry, University Paris Saclay
Evry, France
thang@ibisc.fr

https://orcid.org/0000-0002-6085-9453

Abstract
In the subspace approximation problem, given m points in Rn and an integer k ≤ n, the goal
is to find a k-dimension subspace of Rn that minimizes the `p-norm of the Euclidean distances
to the given points. This problem generalizes several subspace approximation problems and has
applications from statistics, machine learning, signal processing to biology. Deshpande et al. [4]
gave a randomized O(√p)-approximation and this bound is proved to be tight assuming NP 6= P
by Guruswami et al. [7]. It is an intriguing question of determining the performance guarantee
of deterministic algorithms for the problem. In this paper, we present a simple deterministic
O(√p)-approximation algorithm with also a simple analysis. That definitely settles the status
of the problem in term of approximation up to a constant factor. Besides, the simplicity of the
algorithm makes it practically appealing.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Subspace Approximation

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.30

Funding Research supported by the ANR project OATA no ANR-15-CE40-0015-01.

1 Introduction

Massive data in high dimension emerge naturally in many domains from machine learning to
biology. It has been observed that although data lie in high-dimensional spaces, in practice
they have low intrinsic dimension. Dimension-reduction algorithms are essential in many
domains such as image processing, personalized medicine, etc. In this paper, we consider
the following subspace approximation problem in the context of capturing the underlying
low-dimensional structures of given data.

Subspace Problem. Given points a1, . . . ,am ∈ Rn and integers p ≥ 1 and 0 ≤ k ≤ n. Find
a k-dimensional linear subspace W that minimizes the `p-norms of Euclidean distances of
these points to W , i.e.,

min
W :dim(W)=k

(m∑
i=1

d(ai,W)p

)1/p

The Subspace Problem, which is introduced by Deshpande et al. [4], is a generalization of
several sub-space approximation problems which have been widely studied. For example,
the well-known Least Square Fit Problem is a particular case. In the latter, given a matrix
A ∈ Rm×n and 0 ≤ k ≤ n, find a matrix B ∈ Rm×n of rank at most k that minimizes the
Frobenius norm of the difference ‖A−B‖F :=

(∑
i,j(Aij −Bij)2)1/2. Taking the rows of A

© Nguyen Kim Thang;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 30; pp. 30:1–30:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thang@ibisc.fr
https://orcid.org/0000-0002-6085-9453
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 A Greedy Algorithm for Subspace Approximation

to be a1, . . . ,am and p = 2, Subspace Problem reduces to Least Square Fit Problem. Another
special case of Subspace Problem is Radii Problem. In the latter, given points a1, . . . ,am ∈ Rn,
their outer (n− k) radius is the minimum, over all k-dimensional linear subspaces, of the
maximum Euclidean distances of these points to the subspace. This problem is equivalent
to Subspace Problem with p =∞. Moreover, Subspace Problem is related to other problems
such as the Lp-Grothendieck Problem [8] and `p-Regression Problem [1, 5, 3]. We refer the
reader to [4] for more details about the connection between these problems.

Deshpande et al. [4] introduced the Subspace Problem and gave a randomized O(√p)-
approximation algorithm. In their approach, they consider a convex relaxation that optimizes
over positive semidefinite matrices and the rank constraint is replaced by a trace constraint.
Subsequently, the solution X of the convex relaxation is rounded to a matrix of suitable
rank. Intuitively, the authors divide singular vectors of the solution X into several bins and
constructs one vector for each bin by taking a Bernoulli random linear combination of vectors
within each bin. The analysis is carried out by powerful techniques coupled with properties
of the pth-moment of sums of Bernoulli random variables. Besides, Deshpande et al. [4]
proved that the Subspace Problem is hard to approximate within a factor Ω(√p) assuming
the Unique Games Conjecture (UGC). Later on, bypassing the need for UGC, Guruswami et
al. [7] showed that the problem is indeed NP-hard to approximate within a factor Ω(√p).

Our Contribution. In this paper, we present a deterministic greedy algorithm with the same
O(√p)-approximation guarantee. Informally, at any step, the algorithm greedily extends the
subspace in order to minimizes the marginal cost of the objective functions. The algorithm
(and also the analysis) is extremely simple, which makes it practically appealing. Besides,
our algorithm is deterministic whereas the one in [4] is randomized. The analysis is based on
a smooth inequality (Lemma 2), which has been originally used in the context of algorithmic
game theory in order to bound the quality of equilibrium (price of anarchy) in scheduling
games [2]. This allows us to give a deterministic algorithm instead of the randomized one [4]
which crucially relies on concentration inequalities in functional analysis in order to bound
the moments of sums of Bernoulli random variables. Our result definitely settles the status
of the problem in term of approximation up to a constant factor.

Related works. The most closely related to our paper is [4] where the results have been
summarized earlier. For the Least Square Fit Problem, the optimal subspace is spanned by the
top k right singular vector of A and that can be computed in time O(min{n2m,nm2}) [6]. For
the Radii Problem, O(

√
logm)-approximation with k = n−1 can be implied from the works of

Nesterov [10] and Nemirovski et al. [9]. Later on, Varadarajan et al. [11] gave an O(
√

logm)-
approximation algorithm for arbitrary k. Note that it is well-known that `∞-norm can be
approximated by `log m-norm up to a constant factor. Hence, O(

√
logm)-approximation can

be deduced from [4] (so our work) by choosing p = logm.

2 Greedy Algorithm

As in [4], we use a formulation of the Subspace Problem in terms of the orthogonal complement
of the subspace W . Specifically, let z1, . . . ,zn−k be an orthonormal basis for the orthogonal
complement. Let Z ∈ Rn×(n−k) be the matrix with the jth column vector zj . Then
d(ai,W) = ‖aT

i Z‖2. Hence, the problem is to find an orthonormal basis z1, . . . ,zn−k of a

Nguyen Kim Thang 30:3

(n− k)-dim vector space V so that the corresponding matrix Z minimizes

m∑
i=1
‖aT

i Z‖p
2 =

m∑
i=1

(n−k∑
`=1

(
aT

i z`

)2
)p/2

=
m∑

i=1

n−k∑
j=1

[(j∑
`=1

(
aT

i z`

)2
)p/2

−
(j−1∑

`=1

(
aT

i z`

)2
)p/2

]
,

where conventionally the sum with no term equals 0.

Algorithm. Initially, the subspace U0 = ∅. For 1 ≤ j ≤ n − k, choose a vector uj 6= 0
orthonormal to the subspace Uj−1 spanned by u1, . . . ,uj−1 such that it minimizes the
marginal increase of the objective, i.e.,

uj ∈ arg min
z⊥Uj−1

m∑
i=1

[(
(aT

i z)2 +
j−1∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2

]

In fact, vector uj can be computed by solving a convex program. Specifically, let {e1, . . . ,

en−j+1} be an arbitrary orthogonal basis of the vector space U⊥j−1 (which is orthogonal
to Uj−1). Computing uj is equivalent to computing the coefficients b1, . . . , bn−j+1 in the
decomposition of uj in the basis {e1, . . . , en−j+1}. The convex program is

min
b1,...,bn−j+1

m∑
i=1

[((
aT

i ·
n−j+1∑

h=1
bheh

)2 +
j−1∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2]

n−j+1∑
h=1

b2
h = 1

b1, . . . , bn−j+1 ∈ R

Note that in the convex program, variables are b1, . . . , bn−j+1 (the vectors u`’s, eh’s have
been already determined).

Analysis. Let V be an optimal n× (n− k) matrix and V be the corresponding vector space
spanned by column vectors of V . In the remaining, we will show that(m∑

i=1
‖aT

i U‖p
2

)1/p

≤ O(γp) ·
(m∑

i=1
‖aT

i V ‖p
2

)1/p

First, we recall the following standard lemma.

I Lemma 1. For any (n−k)-dim subspace V , there exists an orthonormal basis {v1, . . . ,vn−k}
of V such that vj is orthogonal to Uj−1 for 1 ≤ j ≤ n− k.

Proof. We construct an orthogonal basis {v1, . . . ,vn−k} of V by induction. The orthonormal
basis is obtained by standard normalizing procedure. For j = 1, any arbitrary vector v1 ∈ V
is perpendicular to U0. Assume that vectors v1, . . . ,vj for j < (n− k) have been constructed
so that they satisfy the lemma. Since the subspace V has dimension (n− k) which is strictly
larger than j, there exits a vector wj+1 ∈ V which is independent to v1, . . . ,vj . Define
vector vj+1 := wj+1 − Pruj (wj+1) where Pruj (wj+1) is the projection of vector wj+1 onto
the subspace Uj . So vj+1 is orthogonal to uj and is independent to v1, . . . ,vj . J

SWAT 2018

30:4 A Greedy Algorithm for Subspace Approximation

I Lemma 2. For any given vector a, for arbitrary vectors u` and v` with 1 ≤ ` ≤ n− k, it
holds that

n−k∑
j=1

[(
(aT vj)2 +

j−1∑
`=1

(
aT u`

)2
)p/2

−
(j−1∑

`=1

(
aT u`

)2
)p/2

]

≤ µ
(n−k∑

`=1

(
aT u`

)2
)p/2

+ λ

(n−k∑
`=1

(
aT v`

)2
)p/2

where λ = O
(
(α · p

2)
p
2−1) for some constant α and µ = p/2−1

p/2 .

Proof. Denote bj = (aT vj)2 and cj = (aT uj)2 for 1 ≤ j ≤ n − k. The lemma inequality
reads

n−k∑
j=1

[(
bj +

j−1∑
`=1

c`

)p/2
−
(j−1∑

`=1
c`

)p/2
]
≤ µ

(n−k∑
`=1

c`

)p/2
+ λ

(n−k∑
`=1

b`

)p/2

The inequality holds for λ = O
(
(α · p

2)
p
2−1) for some constant α and µ = p/2−1

p/2 , which has
been proved in [2] in the context of algorithmic game theory. For completeness, we put the
proof of the above inequality in the appendix (Lemma 5). J

I Theorem 3. The greedy algorithm is O(√p)-approximation.

Proof. Recall that U be the solution of the algorithm where the jth column vector is uj for
1 ≤ j ≤ n− k. Let v1, . . . ,vn−k be an orthonormal basis of V that satisfies Lemma 1. We
have

m∑
i=1
‖aT

i U‖p
2 =

m∑
i=1

n−k∑
j=1

[(j∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2

]

≤
m∑

i=1

n−k∑
j=1

[(
(aT

i vj)2 +
j−1∑
`=1

(
aT

i u`

)2
)p/2

−
(j−1∑

`=1

(
aT

i u`

)2
)p/2

]

≤
m∑

i=1

[
µ

(n−k∑
`=1

(
aT

i u`

)2
)p/2

+ λ

(n−k∑
`=1

(
aT

i v`

)2
)p/2

]

= µ

m∑
i=1
‖aT

i U‖p
2 + λ

m∑
i=1
‖aT

i V ‖p
2

The first inequality is due to the choice of the algorithm at any step j (note that vj⊥Uj−1 so
vj is a candidate at step j). The second inequality holds by Lemma 2 where λ = O

(
(α· p2)

p
2−1)

for some constant α and µ = p/2−1
p/2 . Rearranging the terms and taking the pth-root, we get

(
m∑

i=1
‖aT

i U‖p
2

)1/p

≤ O(√p) ·
(

m∑
i=1
‖aT

i V ‖p
2

)1/p

J

Nguyen Kim Thang 30:5

References
1 Kenneth L Clarkson. Subgradient and sampling algorithms for `1 regression. In Proc. 16th

Symposium on Discrete algorithms, pages 257–266, 2005.
2 Johanne Cohen, Christoph Dürr, and Nguyen Kim Thang. Smooth inequalities and equilib-

rium inefficiency in scheduling games. In Internet and Network Economics, pages 350–363,
2012.

3 Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Ma-
honey. Sampling algorithms and coresets for `p regression. SIAM Journal on Computing,
38(5):2060–2078, 2009.

4 Amit Deshpande, Madhur Tulsiani, and Nisheeth K Vishnoi. Algorithms and hardness for
subspace approximation. In Proc. 22nd Symposium on Discrete Algorithms, pages 482–496,
2011.

5 Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Sampling algorithms for `2
regression and applications. In Proc. 17th Symposium on Discrete algorithm, pages 1127–
1136, 2006.

6 Gene H Golub and Charles F Van Loan. Matrix computations. Johns Hopkins University
Press, 2012.

7 Venkatesan Guruswami, Prasad Raghavendra, Rishi Saket, and Yi Wu. Bypassing UGC
from some optimal geometric inapproximability results. ACM Transactions on Algorithms,
12(1):6, 2016.

8 Guy Kindler, Assaf Naor, and Gideon Schechtman. The UGC hardness threshold of the
Lp grothendieck problem. Mathematics of Operations Research, 35(2):267–283, 2010.

9 Arkadi Nemirovski, Cornelis Roos, and Tamás Terlaky. On maximization of quadratic form
over intersection of ellipsoids with common center. Mathematical Programming, 86(3):463–
473, 1999.

10 Yuri Nesterov. Global quadratic optimization via conic relaxation. Université Catholique
de Louvain. Center for Operations Research and Econometrics [CORE], 1998.

11 Kasturi Varadarajan, Srinivasan Venkatesh, Yinyu Ye, and Jiawei Zhang. Approximating
the radii of point sets. SIAM Journal on Computing, 36(6):1764–1776, 2007.

Appendix: Technical Lemmas

In this section, we show technical lemmas. The following lemma has been proved in [2]. We
give it here for completeness.

I Lemma 4 ([2]). Let k be a positive integer. Let 0 < a(k) ≤ 1 be a function on k. Then,
for any x, y > 0, it holds that

y(x+ y)k ≤ k

k + 1a(k)xk+1 + b(k)yk+1

where α is some constant and

b(k) =



Θ
(
αk ·

(
k

log ka(k)

)k−1
)

if limk→∞(k − 1)a(k) =∞, (1a)

Θ
(
αk · kk−1) if (k − 1)a(k) are bounded ∀k, (1b)

Θ
(
αk · 1

ka(k)k

)
if limk→∞(k − 1)a(k) = 0. (1c)

Proof. Let f(z) := k
k+1a(k)zk+1 − (1 + z)k + b(k). To show the claim, it is equivalent to

prove that f(z) ≥ 0 for all z > 0.

SWAT 2018

30:6 A Greedy Algorithm for Subspace Approximation

We have f ′(z) = ka(k)zk − k(1 + z)k−1. We claim that the equation f ′(z) = 0 has an
unique positive root z0. Consider the equation f ′(z) = 0 for z > 0. It is equivalent to(

1
z

+ 1
)k

· 1
z

= a(k)

The left-hand side is a strictly decreasing function and the limits when z tends to 0 and ∞
are ∞ and 0, respectively. As a(k) is a positive constant, there exists an unique root z0 > 0.

Observe that function f is decreasing in (0, z0) and increasing in (z0,+∞), so f(z) ≥ f(z0)
for all z > 0. Hence, by choosing

b(k) =
∣∣∣ k

k + 1a(k)zk+1
0 − (1 + z0)k

∣∣∣ = (1 + z0)k−1
(

1 + z0
k + 1

)
(2)

it follows that f(z) ≥ 0 ∀z > 0.
We study the positive root z0 of equation

a(k)zk − (1 + z)k−1 = 0 (3)

Note that f ′(1) = k(a(k) − 2k−1) < 0 since 0 < a(k) ≤ 1. Thus, z0 > 1. For the sake
of simplicity, we define the function g(k) such that z0 = k−1

g(k) where 0 < g(k) < k − 1.
Equation (3) is equivalent to(

1 + g(k)
k − 1

)k−1
g(k) = (k − 1)a(k)

Note that ew/2 < 1 + w < ew for w ∈ (0, 1). For w := g(k)
k−1 , we obtain the following upper

and lower bounds for the term (k − 1)a(k):

eg(k)/2g(k) < (k − 1)a(k) < eg(k)g(k) (4)

Recall the definition of Lambert W function. For each y ∈ R+, W (y) is defined to be
solution of the equation xex = y. Note that, xex is increasing with respect to x, hence W (·)
is increasing.

By definition of the Lambert W function and Equation (4), we get that

W ((k − 1)a(k)) < g(k) < 2W
(

(k − 1)a(k)
2

)
(5)

First, consider the case where limk→∞(k − 1)a(k) = ∞. The asymptotic sequence for
W (x) as x → +∞ is the following: W (x) = ln x − ln ln x + ln ln x

ln x + O
((ln ln x

ln x

)2). So, for
large enough k, W ((k − 1)a(k)) = Θ(log((k − 1)a(k))). Since z0 = k−1

g(k) , from Equation (5),

we get z0 = Θ
(

k
log(ka(k))

)
. Therefore, by (2) we have b(k) = Θ

(
αk ·

(
k

log ka(k)

)k−1
)

for
some constant α.

Second, consider the case where (k− 1)a(k) is bounded by some constants. So by (5), we
have g(k) = Θ(1). Therefore z0 = Θ(k) which again implies b(k) = Θ

(
αk · kk−1) for some

constant α.
Third, we consider the case where limk→∞(k − 1)a(k) = 0. We focus on the Taylor series

W0 of W around 0. It can be found using the Lagrange inversion and is given by

W0(x) =
∞∑

i=1

(−i)i−1

i! xi = x− x2 +O(1)x3.

Nguyen Kim Thang 30:7

Thus, for k large enough g(k) = Θ((k − 1)a(k)). Hence, z0 = Θ(1/a(k)). Once again that
implies b(k) = Θ

(
αk · 1

ka(k)k

)
for some constant α. J

I Lemma 5. For any sequences of non-negative real numbers {a1, a2, . . . , an} and {b1, b2, . . . ,

bn} and for any polynomial g of degree k with non-negative coefficients, it holds that

n∑
i=1

g(bi +
i−1∑
j=1

aj

)
− g
(i−1∑

j=1
aj

) ≤ λ(k) · g
(n∑

i=1
bi

)
+ µ(k) · g

(n∑
i=1

ai

)

where µ(k) = k−1
k and λ(k) = Θ

(
kk−1). The same inequality holds for µ(k) = k−1

k ln k and
λ(k) = Θ

(
(α · k ln k)k−1) for some constant α.

Proof. Let g(z) = g0z
k + g1z

k−1 + ·+ gk with gt ≥ 0 ∀t. The lemma holds since it holds for
every zt for 0 ≤ t ≤ k. Specifically,

n∑
i=1

g(bi +
i−1∑
j=1

aj

)
− g
(i−1∑

j=1
aj

) =
k∑

t=1
gk−t ·

n∑
i=1

(bi +
i−1∑
j=1

aj

)t

−
(i−1∑

j=1
aj

)t


≤
k∑

t=1
gk−t ·

t · bi ·
(
bi +

i−1∑
j=1

aj

)t−1
 ≤ k∑

t=1
gk−t ·

[
λ(t)

(n∑
i=1

bi

)t

+ µ(t)
(n∑

i=1
ai

)t
]

≤ λ(k) · g
(n∑

i=1
bi

)
+ µ(k) · g

(n∑
i=1

ai

)
The first inequality follows the convex inequality (x+ y)k+1 − xk+1 ≤ (k + 1)y(x+ y)k. The
second inequality follows Lemma 4 (Case (1b) and a(k) = 1/(k + 1)). The last inequality
holds since µ(t) ≤ µ(k) and λ(t) ≤ λ(k) for t ≤ k. J

SWAT 2018

Planar 3-SAT with a Clause/Variable Cycle
Alexander Pilz1

Department of Computer Science, ETH Zürich. Zürich, Switzerland
alexander.pilz@inf.ethz.ch

https://orcid.org/0000-0002-6059-1821

Abstract
In the Planar 3-SAT problem, we are given a 3-SAT formula together with its incidence graph,
which is planar, and are asked whether this formula is satisfiable. Since Lichtenstein’s proof that
this problem is NP-complete, it has been used as a starting point for a large number of reductions.
In the course of this research, different restrictions on the incidence graph of the formula have
been devised, for which the problem also remains hard.

In this paper, we investigate the restriction in which we require that the incidence graph is
augmented by the edges of a Hamiltonian cycle that first passes through all variables and then
through all clauses, in a way that the resulting graph is still planar. We show that the problem
of deciding satisfiability of a 3-SAT formula remains NP-complete even if the incidence graph is
restricted in that way and the Hamiltonian cycle is given. This complements previous results
demanding cycles only through either the variables or clauses.

The problem remains hard for monotone formulas and instances with exactly three distinct
variables per clause. In the course of this investigation, we show that monotone instances of
Planar 3-SAT with three distinct variables per clause are always satisfiable, thus settling the
question by Darmann, Döcker, and Dorn on the complexity of this problem variant in a surprising
way.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases 3-SAT, 1-in-3-SAT, planar graph

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.31

Related Version https://arxiv.org/abs/1710.07476

Acknowledgements The Linked Planar 3-SAT problem has been brought to our attention by
Lena Schlipf. We thank Erik Demaine for pointing out the motivation in platform games, Patrick
Schnider and Michael Hoffmann for valuable discussions, as well as an anonymous reviewer for
the indicated simplification.

1 Introduction

Let φ be a Boolean formula in conjunctive normal form (CNF) and let Gφ be a graph whose
vertices are the variables and the clauses of φ such that (1) every edge of Gφ is between a
variable and a clause and (2) there is an edge between a variable v and a clause c if and
only if v occurs in c (negated or unnegated). We call φ a CNF formula and Gφ is called
the incidence graph of φ. A CNF formula is a 3-SAT formula if every clause contains at
most three variables. (We will also discuss the case where every clause contains exactly three
distinct variables.) The Planar 3-SAT problem asks whether a given 3-SAT formula φ is

1 Supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.

© Alexander Pilz;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 31; pp. 31:1–31:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.pilz@inf.ethz.ch
https://orcid.org/0000-0002-6059-1821
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.31
https://arxiv.org/abs/1710.07476
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Planar 3-SAT with a Clause/Variable Cycle

v1

v2

v3

v4

(v1 ∨ v3 ∨ ¬v4)

(¬v1∨¬v2∨¬v3)

(¬v3 ∨ v4)

(v2 ∨ v3 ∨ v4)

v1

v2

v3

v4

(v1 ∨ v3 ∨ ¬v4)

(¬v1 ∨ ¬v2 ∨ ¬v3)

(¬v3 ∨ v4)

(v2 ∨ v3 ∨ v4)

Figure 1 Left: An incidence graph for a 3-SAT formula that is planar. Clauses are black vertices
and variables are white vertices. The graph is augmented by a spanning cycle (dotted) on the
variable vertices. Right: A Linked Planar 3-SAT instance, with a Hamiltonian cycle κ (dotted)
passing through the variables and the clauses. (At most two edges of κ may already be present in
the incidence graph.)

satisfiable, given that Gφ is a planar graph. This problem has been shown to be NP-complete
by Lichtenstein [21]. (In contrast to the general version, a PTAS is known for maximizing the
number of satisfied clauses for the planar version of the 3-SAT problem [16].) See Figure 1
for drawings of an incidence graph.

Reducing from Planar 3-SAT is a standard technique to show NP-hardness of problems
in computational geometry. In these reductions, the vertices and edges of Gφ are replaced
by gadgets (consisting of geometric objects) that influence each other. However, it is often
useful to have further restrictions on Gφ or on how Gφ can be embedded.

Lichtenstein’s reduction already contains such a restriction: the problem remains NP-
complete even if the graph remains planar after adding a cycle whose vertices are exactly the
variables of the formula [21], and this cycle is part of the input. We call it a variable cycle.
This fact allows for placing the variable vertices along a line, connected to “three-legged”
clauses above and below that line (stated more explicitly in [18]; see Figure 2). De Berg and
Khosravi [7] showed that it is also possible to have all literals in the clauses above the line to
be positive, and all literals in clauses below the line negative. In Lichtenstein’s reduction,
one may as well add a clause cycle whose vertices are exactly the clauses of the formula while
keeping the graph planar [20]. We call the Planar 3-SAT variants in which we require a
variable cycle and a clause cycle Var-Linked Planar 3-SAT and Clause-Linked Planar
3-SAT, respectively.2 Even though the incidence graphs constructed by Lichtenstein can be
augmented with both a clause cycle [20] and a variable cycle, one cannot adapt Lichtenstein’s
construction to always obtain both cycles without any crossings.3

Our research is motivated by the following problem that attempts to combine these
restrictions. See Figure 1 (right) for an accompanying illustration.

I Definition 1 (Linked Planar 3-SAT). Let Gφ = (C ∪ V,E) be the incidence graph of
a 3-SAT formula φ, where C is the set of clauses and V is the set of variables of φ. Further,

2 While Lichtenstein’s definition of planar 3-SAT [21] already requires the cycle through the variables,
this property is often considered an explicit restriction. We thus follow the terminology of Fellows et
al. [11] to emphasize when the variable cycle is needed.

3 If not stated otherwise, we will implicitly require the incidence graphs augmented by the additional
edges to be planar throughout this paper.

Alexander Pilz 31:3

v1 v2 v3 v4

(v1 ∨ v3 ∨ ¬v4)

(¬v1 ∨ ¬v2 ∨ ¬v3) (¬v3 ∨ ¬v3 ∨ v4)

(v2 ∨ v3 ∨ v4)

Figure 2 A “three-legged” Planar 3-SAT instance with variables on a line similar to [18, p. 425].
(There, two-variable clauses are transformed to three-variable clauses that contain one literal twice,
a construction that is not necessary but possible for the initial graph in our reduction.)

let κ be a Hamiltonian cycle of C ∪ V that first visits all elements of C and then all elements
of V . Suppose that the union of Gφ and κ is a planar graph. The Linked Planar 3-SAT
problem asks, given φ, Gφ, and κ, whether φ is satisfiable.

Related problems in which all variables or all clauses can be drawn incident to the
unbounded face are known to be in P, due to results by Knuth [17], and Kratochv́il and
Křivánek [19], respectively. In particular, this is the case when there is a variable cycle
and a path connecting all clauses or vice versa. One way of tackling the Linked Planar
3-SAT problem could be to show that Gφ has bounded treewidth. For such instances,
the satisfiability of φ can be decided in polynomial time [12]. (This generalizes the above-
mentioned results, as every k-outerplanar graph has treewidth at most 3k − 1 [4]; see also
Demaine’s lecture notes [10].) However, with the right perspective on the Linked Planar
3-SAT problem, it will be easy to observe that there are formulas whose incidence graph
has a grid minor with a linear number of vertices (and thus such graphs have unbounded
treewidth). It is the same perspective through which we will show NP-completeness of the
problem in Section 2, using a reduction from Planar 3-SAT. We note that requiring an
arbitrary Hamiltonian cycle is not a restriction: As the incidence graph is bipartite, it is
known that its page number is two [8]; hence, we can always add a Hamiltonian cycle through
the variables and clauses in a planar way (possibly re-using edges of the incidence graph).

1.1 Motivation
Restrictions on the problem to reduce from can make NP-hardness reductions simpler.
For reductions from Planar 3-SAT, it is common to actually reduce from Var-Linked
Planar 3-SAT, using the variable cycle, in particular the “three-legged” embedding of [18].
Also, the clause cycle has been used [20, 11]. For an exhaustive survey on the numerous
variants of Planar 3-SAT, see the thesis of Tippenhauer [27].

One motivation for considering Linked Planar 3-SAT is the framework for showing
NP-hardness of platform games by Aloupis et al. [2]. In this class of reductions from 3-SAT
to such games, a player’s character starts at a specified position and traverses all variable
gadgets, making a decision on their truth value. Clauses connected to the satisfied literal
can be “unlocked” by visiting these clauses. Finally the player’s character has to traverse all
clause gadgets to reach the finish (called the “check path”). The framework then requires a
game-specific implementation of the gadgets for start, finish, variables, clauses, and crossovers.
Reducing from Linked Planar 3-SAT removes this dependency on crossover gadgets. (In
particular, Theorem 9 can be used to show that the traversal through the literals can be
done without crossings.) See [2, Section 2.1] for a more detailed description.

SWAT 2018

31:4 Planar 3-SAT with a Clause/Variable Cycle

1.2 Results
We first prove that Linked Planar 3-SAT is NP-complete. In the following sections, we
refine the construction to show that restricted variants of the problem remain hard as well.
In particular, we do this for formulas without negated and unnegated variables in the same
clause (Monotone Planar 3-SAT), and formulas for which the edges to negated variables
are all on the same side of κ (recall that κ is the Hamiltonian cycle that first visits all
variables and then all clauses). Also, we may require that all clauses contain exactly three
distinct variables. A cycle κ in instances of Positive Planar 1-in-3-SAT (which requires
exactly one true literal in each clause) also keeps the problem hard.

Finally, we discuss settings in which the planarity constraint is fulfilled only by satisfiable
formulas. In particular, we show that planar CNF formulas with at least four variables per
clause are always satisfiable. The same holds for instances of Monotone Planar 3-SAT
with exactly three variables per clause. This solves an open problem by Darmann, Döcker,
and Dorn [5, 6], who show that the corresponding problem with at most three variables
per clause remains NP-complete with bounds on the variable occurrences, which refines the
result of de Berg and Khosravi [7].

2 NP-hardness of Linked Planar 3-SAT

We now show that Linked Planar 3-SAT is NP-hard by reducing Planar 3-SAT to it.
We are thus given a 3-SAT formula φ̃ with variable set Ṽ , clause set C̃, and incidence graph
Gφ̃. Our goal is to construct another formula φ that is an instance of Linked Planar
3-SAT with incidence graph Gφ and Hamiltonian cycle κ such that φ is satisfiable if and
only if φ̃ is. The construction of Gφ will be given by an embedding.

We start by producing a suitable embedding of the initial graph Gφ̃. We require an
embedding Γ of Gφ̃ on the integer grid, with edges drawn as x-monotone curves. (Our
construction can easily be modified for non-x-monotone edges, but this assumption facilitates
the presentation.) We further require that the size of the grid is polynomial in the size of φ̃.
It is well-known that a planar graph with n vertices can be embedded with straight-line edges
on a O(n)×O(n) grid in O(n) time [9, 26]. We can take such an embedding and perturb the
clause vertices s.t. each variable has even x-coordinate, and the x-coordinate of each clause is
odd. This can be done without introducing crossings by choosing the grid sufficiently large
and scaling Γ; a blow-up by a factor polynomial in n is sufficient.4 More specifically, we scale
Γ by a polynomial multiple of 2 and increase the x-coordinate of each clause vertex by 1.
(It will become apparent that our reduction merely uses the combinatorial structure of the
embedding; however, it seems easier to describe the construction with a fixed straight-line
embedding of Gφ̃ on the integer grid.)

With a suitable drawing of Gφ̃ at hand, we start the drawing of Gφ with the curve that
will contain the cycle κ (we add its vertices later). It can be partitioned into two paths, one
that will contain the elements of the variable set V (κV) and one for the elements of the clause
set (κC). In our drawing shown in Figure 3 (left), we obtain a rectangular region R, whose
intersection with κ consists of vertical line segments of unit distance, in alternation belonging
to κV and κC . We call them the clause segments and variable segments, respectively. We

4 We can consider the smallest horizontal distance between a vertex and a non-incident edge. This distance
v is rational with numerator and denominator quadratic in the largest coordinate. By multiplying
the x-coordinates of the vertices by 2/v, rounding, and again multiplying by 2, we get the desired
embedding, similar to [1, Lemma 6.1].

Alexander Pilz 31:5

Figure 3 Left: Drawings of the paths κC (solid) and κV (dotted), containing the clauses and
variables of φ, respectively. They intersect a rectangle R (gray) in vertical segments. The incidence
graph is drawn inside R. Right: A similar construction can be used to show that all the incidence
graphs we obtain can be augmented by either a clause cycle or a variable cycle (and not just two
paths obtained from κ).

assume that the segments are placed on the integer grid with unit distance, with the variable
segments having even x-coordinates and the clause segments having odd x-coordinates. In
other words, R represents a grid in which the columns are traversed in alternation by κV
and κC .

Place Γ inside R. By the construction of γ, all its variable vertices have even x-coordinates
and are thus on variable segments, and its clause vertices are on clause segments. We obtain
Gφ by replacing the edges of Γ by gadgets, consisting of subgraphs of Gφ. In the construction,
we will make use of “cyclic implications”, effectively copying the value of a variable; the graph
Gφ will contain many pairs of variables x and x′ with a clause cx = (¬x ∨ x′) and a clause
c′
x = (x ∨ ¬x′). Clearly, x = x′ in any satisfying assignment. We depict the negation in such
a clause cx by an arrow from x to cx, and from cx to x′ (where the arrows are also edges of
the incidence graph). In general, we use the convention that an arrow from a variable to
a clause denotes that the variable occurs negated in that clause, while an arrow from the
clause to the variable means that the variable occurs unnegated.

We replace each edge e of Γ by a sequence of so-called connector gadgets. A connector
gadget consists of two variables x and x′, and two clauses cx = (¬x ∨ x′) and c′

x = (¬x′ ∨ x),
implying x = x′ in any satisfying truth assignment. The variable vertices are placed on the
intersections of e with two consecutive variable segments in R, and the clause vertices are
placed on the clause segment between them (also close to the crossing of e and the clause
segment), effectively subdividing κ. An edge in Γ connecting a variable ṽ ∈ Ṽ to a clause
c̃ ∈ C̃ that crosses κ can be replaced by a sequence of connector gadgets in a sufficiently
small neighborhood of the edge, as shown in Figure 4. Thus, in the resulting drawing, we
have subdivided κ to remove crossings with e, and the resulting formula is satisfiable if and
only if the initial formula is satisfiable.

Replacing the edges of Γ by the connector gadgets results in a drawing of Gφ. As all
edges are x-monotone, all crossings with κ are replaced. Thus this drawing is planar and
contains a number of vertices that is polynomial in |C|, as the number of crossings of an edge

SWAT 2018

31:6 Planar 3-SAT with a Clause/Variable Cycle

x

c̃ c

x x

x′
x′

x′′

cx

c′x

Figure 4 An edge of the initial incidence graph crossing the cycle κ (left) can be replaced by a
sequence of connector gadgets. Variable vertices are white dots, clause vertices are black. The two
variables in the connector gadget (middle) have the same value, and the occurrence of a variable x
in the clause c̃ is replaced by the last variable x′′ to obtain an equivalent clause c.

in Γ with clause and variable segments (and thus the number of vertices needed to replace
the edge) is bounded by the grid size. Also, all “new” clauses contain only two variables (we
will see a modification of the reduction without this property). As none of the edges in the
resulting embedding of Gφ crosses the initially drawn cycle for κ, Gφ can be augmented by
κ along that cycle maintaining planarity. Finally, observe that φ is satisfiable if and only if φ̃
is: the two variables of a connector gadget must have the same value, and the clauses not
part of the connector gadget are the clauses of C̃ in which we replaced variables by others
that have to be equal. We thus obtain our main result.

I Theorem 2. Linked Planar 3-SAT is NP-complete.

Observe that our construction also does not change the number of satisfiable assignments,
i.e., the reduction is parsimonious. Since counting the number of satisfiable assignments to a
planar 3-SAT formula is #P-complete [15], this also holds for Linked Planar 3-SAT.

3 Further variants

We use the main idea of drawing the cycle κ as shown in Figure 3 to obtain similar reductions
for variants of the planar satisfiability problem. If the initial problem is known to be hard,
we merely need to find an according connector gadget to replace the crossings of edges of Gφ̃
and κ.

3.1 Positive Planar 1-in-3-SAT
It is easy to transform our reduction to be an instance of 1-in-3-SAT, where exactly one
variable is true: we get the “main” clauses directly from an initial 1-in-3-SAT instance, and
the connector gadgets are the same. We therefore impose two more requirements on the
instance. First, all clauses should have three elements, and second, all literals should be
positive.

I Definition 3 (Positive Planar 1-in-3-SAT [24]). Given a formula φ in which each
clause contains exactly three distinct unnegated literals, and an embedding of the incidence
graph Gφ, the Positive Planar 1-in-3-SAT problem asks whether there exists a satisfying
assignment of φ such that exactly one variable in each clause is true.

Mulzer and Rote [24] show that deciding satisfiability of Positive Planar 1-in-3-SAT
instances is hard, even if the incidence graph can be augmented by a variable cycle.

I Theorem 4. The Positive Planar 1-in-3-SAT problem remains NP-complete even for
problem instances that are also instances of the Linked Planar 3-SAT problem.

Alexander Pilz 31:7

x x′

b

c
x

c̃

a

Figure 5 Reduction for the Positive Planar 1-in-3-SAT variant. If x = 1, then both a = 0
and b = 0, and thus x′ = 1 as well. Otherwise, one of a and b is 1 and we again have x = x′. Since
the connector gadgets have width 4, we may “overshoot” when coming from the right.

Proof. The reduction works again by blowing up the grid embedding of the initial Positive
Planar 1-in-3-SAT incidence graph by a polynomial factor f and increase the x-coordinate
of each clause by 1. We choose f to be a multiple of 8, as (i) all variable vertices should have
even x-coordinates (and are thus placed on the appropriate part of κ), (ii) the number of
clause segments between a variable and a clause (before increasing its x-coordinate by 1) is a
multiple of two (because of the gadget width described below), and (iii) there are at least
three variable segments between each clause vertex of the initial instance and each of its
variables, even after increasing the x-coordinate of each clause vertex by 1 (to have sufficient
space for “detours” described below). As before, f is chosen such that moving the clauses
does not produce any crossings in the straight-line embedding. Then, we use two clauses
sharing two variables to produce a connector gadget, as shown in Figure 5. The two clauses
(x, a, b) and (x′, a, b) ensure that x = x′.

The construction works analogous to the simpler connector gadget of the previous section,5
except for the following caveat. The connector gadgets have width 4, and this is the reason
for requiring condition (ii): We placed each clause of the initial formula at positions with
x-coordinate 8k + 1, for some integer k. The sketch on the right of Figure 5 shows how to
connect the clause to the connector gadgets. (Note the “detour” one chain of connector
gadgets may have to take in the vicinity of the initial clause to connect to it if all three edges
of the clause emanate to the right in the initial drawing; this does not interfere with other
gadgets as f is a multiple of 8.) J

3.2 Exactly three distinct variables per clause
If we require the formula to have exactly three distinct variables in each clause, the reduction
can also be modified accordingly. Mansfield [22] showed how to extend Lichtenstein’s
construction to obtain a planar 3-SAT formula with exactly three different variables per
clause6 by constructing such a formula with planar incidence graph and a variable that is
false in every satisfying assignment.

I Theorem 5. The Linked Planar 3-SAT problem remains NP-complete even if each
clause contains exactly three different variables.

Proof. We reduce from the non-linked version of the problem by drawing an incidence graph
on our grid and replace edge parts by gadgets that transport the truth settings of a variable.
To this end, we use a modified connector gadget shown in Figure 6, which assure that two

5 We thank an anonymous referee for simplifying the previously-used gadget.
6 This restriction has been re-discovered, e.g., in [15].

SWAT 2018

31:8 Planar 3-SAT with a Clause/Variable Cycle

x x′

u

u′

a

b c
x

c̃

Figure 6 A modified connector gadget. The leftmost variable has to have the same value as
the rightmost one. All clauses have exactly three distinct variables. An arrow from a variable to a
clause indicates that the variable occurs negated. For an arrow from the clause to the variable, the
occurrence is unnegated.

variables x and x′ always have the same value: When removing u from the shown formula, we
get x⇒ a and a⇒ x′, as well as x⇒ b and b⇒ x′. Since u occurs unnegated in the clauses
containing a, and it occurs negated in the clauses containing b, one of the two implication
pairs will make sure that x ⇒ x′. More formally, we have (¬x ∨ a ∨ u) ∧ (¬a ∨ u ∨ x′),
which entails (¬x ∨ u ∨ x′), and (¬x ∨ b ∨ ¬u) ∧ (¬b ∨ ¬u ∨ x′), which entails (¬x ∨ ¬u ∨ x′).
These two clauses have (¬x∨ x′) as a resolvent. Analogously, the clauses containing u′ imply
x′ ⇒ x.

We note that in Mansfield’s reduction it is no longer shown that there exists a variable
cycle, so we cannot rely on a “three-legged” embedding but rather use a straight-line one. As
in the previous reduction, the connector gadgets have width 4. We thus again use a suitable
blow-up factor and place each clause of the initial formula at positions with x-coordinate
8k + 1, for some integer k. J

Note that the bi-implication implemented by the connector gadget has sixteen different
truth assignments, independent of whether x is true or false. As the Planar 3-SAT problem
is known to be #P-complete even if each clause contains exactly three distinct variables [15],
we can add connector gadgets to transform any such instance into a Linked Planar 3-SAT
instance. For each connector gadget, the number of solutions is multiplied by 16.

I Theorem 6. The Linked Planar 3-SAT problem remains #P-complete even if each
clause contains exactly three different variables.

3.3 Monotonicity restrictions
We can add the following list of restrictions to the setting for which the problem remains
hard. Both can be shown by reducing from Monotone Planar 3-SAT.

A clause is monotone if it contains either only negated or only unnegated literals; a
formula is monotone if all its clauses are monotone.

I Definition 7 (Monotone Planar 3-SAT). Let Gφ = (C ∪V,E) be the incidence graph
of a 3-SAT formula φ, where C is the set of clauses and V is the set of variables of φ, and
each clause of C is monotone. The Monotone Planar 3-SAT problem asks whether φ is
satisfiable.

This problem has been shown to be NP-complete by de Berg and Khosravi [7]; they
actually show that the problem remains hard even if there is a variable cycle separating
the clauses with the negated variables from the ones with the unnegated variables. That is,

Alexander Pilz 31:9

x

c̃

x

x

x′

x
x

x′x′

Figure 7 A variant of the connector gadget in which all clauses are monotone. We have
x 6= x 6= x′ = x in the middle. The gadget can be further split to have each variable vertex of degree
at most three (right).

the incidence graph can be drawn in a rectilinear way, with the variables on the x-axis and
exactly the clauses with the negated occurrences below the x-axis. We can use their result
to show hardness of the according problem in our setting.

I Theorem 8. The Linked Planar 3-SAT problem remains NP-complete even if all
clauses are monotone.

Proof. We reduce from Monotone Planar 3-SAT. The reduction is the same as for
general Linked Planar 3-SAT, but with a different connector gadget. We use two sub-
gadgets that contain two clauses, one all positive one all negative, that ensure that two
variables are not equal. Two such gadgets in sequence form a new connector gadget. See
Figure 7. We can deal with the position of the clause being off by one to the end of each
connector gadget in the same way as in Figure 6 (right). J

Lichtenstein already showed that Planar 3-SAT remains NP-complete even if we require
that the variable cycle partitions the edges of every variable vertex into those leading to a
negated occurrence and those leading to an unnegated one [21, Lemma 1]. (As he mentions,
this also implies that one could split a variable vertex into two literal vertices while preserving
planarity.) Note that there is a subtle difference to the restriction of de Berg and Khosravi [7]
to Monotone Planar 3-SAT, as the side of the variable cycle to which the edges to the
negated occurrences emanate is not fixed globally. The following set of related restrictions
could be particularly interesting for further reductions.

I Theorem 9. The Linked Planar 3-SAT problem remains NP-complete even if, for each
clause, the edges corresponding to positive occurrences emanate to the interior of the cycle κ,
and the ones to negated occurrences to the exterior. In addition, each variable occurs in at
most three clauses.

Proof. We reduce from the Monotone Planar 3-SAT variant of de Berg and Khosravi [7],
using a “three-legged” embedding. The construction (see Figure 8) uses cycles consisting of
the variables x1, . . . xk and x1, . . . , xk and clauses (¬xi ∨ xi+1) and (¬xi ∨ xi+1) for all valid
indices, as well as the clauses (x1 ∨ x1) and (¬xk ∨¬xk). The latter thus entails (¬x1 ∨¬x1).
We therefore have xi = xj , xi = xj , and xi 6= xj for i, j ≤ k. The variable vertices are placed
from left to right with increasing indices. Thus, the variables on the upper part of the cycle
have the opposite value of those on the lower part. For a clause with positive literals in the
Monotone Planar 3-SAT instance, we connect the variables as in Figure 8.

We therefore have variable gadgets that consist of said cycles; see the three bottom-most
cycles in Figure 8. These variable gadgets are connected to the clause c (which represents the
clause of the initial formula) either directly (for the middle variable gadget), or via another
cycle (for the left and the right variable gadget). For these connector gadgets, we again have
that the variables on the upper part have the opposite value as those of the lower part; in the

SWAT 2018

31:10 Planar 3-SAT with a Clause/Variable Cycle

c

Figure 8 All clauses have negative literals to the left and positive literals to the right. The
variable state is transported by cycles where the variables on top have the negative value of the
variables at the bottom. A clause c̃ = (x ∨ y ∨ z) is transformed to c = (¬xi ∨ ¬yj ∨ zk). The
“three-legged” embedding of the clause is indicated by the gray contour.

way a variable gadget and a connector gadget are connected, a variable on the upper part of
the variable gadget has the same value as one on the lower part of the connector gadget. The
clause c has two edges to the left (which therefore correspond to negated occurrences) and
one to the right (an unnegated occurrence). In the setting shown in Figure 8), we consider
a variable set to true if the variables on the lower part of the variable gadget are true. A
clause c̃ = (x ∨ y ∨ z) is thus transformed to c = (¬xi ∨ ¬yj ∨ zk). We can have variable
gadgets of arbitrary width simply by having larger cycles, and connect the clauses according
to the “three-legged” embedding. The resulting construction is thus crossing-free, and the
formula is satisfiable if and only if the initial one is. J

Observe that the connector gadgets in Figure 8 use only clauses with two variables. The
reduction therefore also works for Planar 2-SAT instances. While Planar 2-SAT can
be solved in polynomial time, it is known to be #P-complete [29]. As our gadgets are
parsimonious (i.e., do not change the number of solutions), they can be applied to show
#P-completeness.

I Corollary 10. The Linked Planar 2-SAT problem is #P-complete. It remains #P-
complete even if for each clause, the edges corresponding to positive occurrences emanate to
the interior of the cycle κ, and the ones to negative literals to the exterior.

Note that making each variable occur in at most three clauses requires that there are
clauses with at most two (different) literals, as every CNF formula with exactly three literals
per clause and at most three occurrences per variable is satisfiable [28].

Darmann, Döcker, and Dorn [5, 6] showed how to reduce the number of times a variable
occurs. For the variant of Monotone Planar 3-SAT that requires exactly three different
variables per clause, the complexity was previously unknown [5, 6]. Surprisingly, it turns out
that such instances are always satisfiable, as discussed in the next section.

4 Remark: different cycles through clauses and variables

Observe that, for all our constructions, Gφ still allows for adding a variable cycle H, as well
as a clause cycle H ′, as shown in Figure 3 (right). But these cycles will, in general, cross
mutually. Also, they will cross the cycle κ. Recall that if H did not cross H ′ or κC , the
problem would be solvable in polynomial time [10].

Using the gadgets and the two cycles shown in Figure 3 (right), we observe that Planar
3-SAT remains NP-complete even if these cycles exist for all variants mentioned. While
the variable and clause cycles have been identified in [21] and [20], respectively, it seems to

Alexander Pilz 31:11

Figure 9 Clause (black) with at least three distinct variables (white). We can augment the graph
with a 3-cycle through variables (dashed) and remove the clauses while preserving planarity. In any
4-coloring of the graph, the three variables belong to three different color classes and thus there
always exists a satisfying truth assignment by setting the variables of two color classes to true.

have been unknown for the variants using exactly three variables per clause (even though
Mansfield’s construction [22] can be embedded to obtain the cycles). Also, it seems that clause
cycles have not been considered for Monotone Planar 3-SAT and Planar Positive
1-in-3-SAT.

5 Properties forcing satisfiability

Planarity is a rather drastic combinatorial restriction on the structure of a graph. While
NP-completeness of 3-SAT is preserved in the planar setting, further properties may lead not
only to polynomial-time algorithms (as for Planar NAE-SAT [23]), but also to instances
that are always satisfiable.

I Theorem 11. Every instance of Planar SAT in which each clause has three negated or
three unnegated occurrences of three distinct variables is satisfiable. A satisfying assignment
can be found in quadratic time.

Proof. Consider any plane drawing of the incidence graph of the formula. For each clause
vertex, we can add a 3-cycle consisting of three of its variable vertices that are either all
negated or all unnegated, as shown in Figure 9. (For clauses with three variables this is
similar to a Y-∆ transform, a common operation to replace a vertex of degree 3 by a 3-cycle:
connect two variables by a curve in a neighborhood of the two edges connecting them to
the clause.) Observe that, after removing the clause vertices, the resulting graph is still
planar. It is thus 4-colorable [3] and we may consider any 4-coloring of the variables. Set
the variables of the vertices with colors 1 and 2 to true, and the others to false. A 3-cycle
contains three different colors, and thus a 3-cycle through three (monotone) variable vertices
has at least one variable set to true and one variable set to false. A 4-coloring can be found
in quadratic time [25]. J

I Corollary 12. Every instance of Monotone Planar SAT with at least three distinct
variables per clause is satisfiable.

I Corollary 13. Every instance of Planar SAT with at least five distinct variables per
clause is satisfiable.

For at least four variables per clause, we can give a similar result, closing the gap between
Corollary 13 and Mansfield’s result [22], using less heavy machinery than the Four-Color
theorem. The proof makes use of Hall’s theorem [13], inspired by a technique by Tovey [28]:
each subset of k clauses has at least k variables occurring in it.

I Lemma 14. Let G = (B ∪C,E) be a bipartite planar graph with parts B and C such that
all vertices in C have degree at least four. Then there exists a matching covering every vertex
of C.

SWAT 2018

31:12 Planar 3-SAT with a Clause/Variable Cycle

Proof. Consider any plane embedding of G and let F be its set of faces. Thus, by Euler’s
formula, we have |B| + |C| − |E| + |F | = 1 + k, where k ≥ 1 is the number of connected
components of G. Every edge has two incidences with faces, and since G is bipartite,
every face has at least four incidences with edges. We get 2|E| =

∑
f∈F |f | ≥ 4|F | (where

|f | is the number of sides of the face f). Combining this with Euler’s formula to |E| ≥
2(1 + k − |B| − |C|+ |E|) gives the bound

2|B|+ 2|C| − 2− 2k ≥ |E| . (1)

Further, |E| ≥ 4|C|, as G is bipartite and every element of C is incident to at least four
edges. Combining this with (1) results in

|C| ≤ |B| − 1− k . (2)

Finally, observe that every subset of C plus its neighbors in B also induce a graph in which
the analogue of (2) holds. As, for every subset of C, the set of adjacent elements in B has at
least the same cardinality, there is a matching on G that covers C by Hall’s theorem [13]. J

I Theorem 15. Each CNF formula with planar incidence graph of n vertices and at least
four distinct variables per clause has a satisfying assignment, which can be found in O(n1.5)
time.

Proof. Let φ be a planar SAT instance with vertex set V and clause set C, and let Gφ =
(V ∪ C,E) be the associated incidence graph. By Lemma 14, there is a matching on
Gφ covering C, which assigns a distinct variable to each clause (i.e., a system of distinct
representatives for the clauses). If we set the according literal to true, we get an assignment
satisfying φ. The matching can be found using the algorithm by Hopcroft and Karp [14]. J

References
1 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-

tions of a simple polygon is np-complete. Discrete & Computational Geometry, 54(2):368–
389, 2015. doi:10.1007/s00454-015-9709-7.

2 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic nintendo games
are (computationally) hard. Theor. Comput. Sci., 586:135–160, 2015. doi:10.1016/j.tcs.
2015.02.037.

3 Kenneth Appel and Wolfgang Haken. Every Planar Map is Four-Colorable. Number 98 in
Contemporary Mathematics. AMS, 1989. With the collaboration of J. Koch.

4 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

5 Andreas Darmann, Janosch Döcker, and Britta Dorn. On planar variants of the monotone
satisfiability problem with bounded variable appearances. CoRR, abs/1604.05588, 2016.
arXiv:1604.05588.

6 Andreas Darmann, Janosch Döcker, and Britta Dorn. The monotone satisfiability problem
with bounded variable appearances. Int. J. Foundations Comp. Sci., 2017. To appear.

7 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in
the plane. Int. J. Comput. Geometry Appl., 22(3):187–206, 2012. URL: http://www.
worldscinet.com/doi/abs/10.1142/S0218195912500045.

8 Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. A left-first search
algorithm for planar graphs. Discrete & Computational Geometry, 13:459–468, 1995.
doi:10.1007/BF02574056.

http://dx.doi.org/10.1007/s00454-015-9709-7
http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://dx.doi.org/10.1016/j.tcs.2015.02.037
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://arxiv.org/abs/1604.05588
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
http://dx.doi.org/10.1007/BF02574056

Alexander Pilz 31:13

9 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990. doi:10.1007/BF02122694.

10 Erik Demaine. Algorithmic lower bounds: Fun with hardness proofs; Lecture 7. http:
//courses.csail.mit.edu/6.890/fall14/scribe/lec7.pdf. Scribe: Quanquan Liu, Jef-
frey Bosboom. Retrieved June 21, 2017.

11 Michael R. Fellows, Jan Kratochvíl, Matthias Middendorf, and Frank Pfeiffer. The
complexity of induced minors and related problems. Algorithmica, 13(3):266–282, 1995.
doi:10.1007/BF01190507.

12 Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–
529, 2008. doi:10.1016/j.dam.2006.06.020.

13 Philip Hall. On representatives of subsets. J. London Math. Soc., s1-10(1):26–30, 1935.
14 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.
15 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, and Richard Edwin

Stearns. The complexity of planar counting problems. SIAM J. Comput., 27(4):1142–1167,
1998. doi:10.1137/S0097539793304601.

16 Sanjeev Khanna and Rajeev Motwani. Towards a syntactic characterization of PTAS. In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 329–337.
ACM, 1996. doi:10.1145/237814.237979.

17 Donald E. Knuth. Nested satisfiability. Acta Inf., 28(1):1–6, 1990. doi:10.1007/
BF02983372.

18 Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives.
SIAM J. Discret. Math., 5(3):422–427, 1992.

19 Jan Kratochvíl and Mirko Krivánek. Satisfiability of co-nested formulas. Acta Inf.,
30(4):397–403, 1993. doi:10.1007/BF01209713.

20 Jan Kratochvíl, Anna Lubiw, and Jaroslav Nesetril. Noncrossing subgraphs in topological
layouts. SIAM J. Discrete Math., 4(2):223–244, 1991. doi:10.1137/0404022.

21 David Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11:329–343, 1982.
22 Anthony Mansfield. Determining the thickness of graphs is NP-hard. Math. Proc. Cam-

bridge Phil. Soc., 93(01):9–23, 1983.
23 Bernard M. E. Moret. Planar NAE3SAT is in P. SIGACT News, 19(2):51–54, 1988.
24 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is np-hard. J. ACM,

55(2):11:1–11:29, 2008. doi:10.1145/1346330.1346336.
25 Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. Efficiently four-

coloring planar graphs. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May
22-24, 1996, pages 571–575. ACM, 1996. doi:10.1145/237814.238005.

26 Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor,
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24
January 1990, San Francisco, California., pages 138–148. SIAM, 1990. URL: http://dl.
acm.org/citation.cfm?id=320176.320191.

27 Simon Tippenhauer. On planar 3-SAT and its variants. Master’s thesis, Freie Universität
Berlin, 2016.

28 Craig A. Tovey. A simplified np-complete satisfiability problem. Discrete Applied Mathe-
matics, 8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.

29 Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM
J. Comput., 31(2):398–427, 2001. doi:10.1137/S0097539797321602.

SWAT 2018

http://dx.doi.org/10.1007/BF02122694
http://courses.csail.mit.edu/6.890/fall14/scribe/lec7.pdf
http://courses.csail.mit.edu/6.890/fall14/scribe/lec7.pdf
http://dx.doi.org/10.1007/BF01190507
http://dx.doi.org/10.1016/j.dam.2006.06.020
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/S0097539793304601
http://dx.doi.org/10.1145/237814.237979
http://dx.doi.org/10.1007/BF02983372
http://dx.doi.org/10.1007/BF02983372
http://dx.doi.org/10.1007/BF01209713
http://dx.doi.org/10.1137/0404022
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.1145/237814.238005
http://dl.acm.org/citation.cfm?id=320176.320191
http://dl.acm.org/citation.cfm?id=320176.320191
http://dx.doi.org/10.1016/0166-218X(84)90081-7
http://dx.doi.org/10.1137/S0097539797321602

Tree-Residue Vertex-Breaking: a new tool for
proving hardness
Erik D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA
02139, USA.
edemaine@mit.edu

Mikhail Rudoy
MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge, MA
02139, USA. Now at Google Inc.
mrudoy@gmail.com

https://orcid.org/0000-0002-9210-1006

Abstract
In this paper, we introduce a new problem called Tree-Residue Vertex-Breaking (TRVB): given
a multigraph G some of whose vertices are marked “breakable,” is it possible to convert G into
a tree via a sequence of “vertex-breaking” operations (replacing a degree-k breakable vertex by
k degree-1 vertices, disconnecting the k incident edges)?

We characterize the computational complexity of TRVB with any combination of the following
additional constraints: G must be planar, G must be a simple graph, the degree of every breakable
vertex must belong to an allowed list B, and the degree of every unbreakable vertex must belong
to an allowed list U . The two results which we expect to be most generally applicable are that
(1) TRVB is polynomially solvable when breakable vertices are restricted to have degree at most
3; and (2) for any k ≥ 4, TRVB is NP-complete when the given multigraph is restricted to be
planar and to consist entirely of degree-k breakable vertices. To demonstrate the use of TRVB,
we give a simple proof of the known result that Hamiltonicity in max-degree-3 square grid graphs
is NP-hard.

We also demonstrate a connection between TRVB and the Hypergraph Spanning Tree prob-
lem. This connection allows us to show that the Hypergraph Spanning Tree problem in k-uniform
2-regular hypergraphs is NP-complete for any k ≥ 4, even when the incidence graph of the hy-
pergraph is planar.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases NP-hardness, graphs, Hamiltonicity, hypergraph spanning tree

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.32

Related Version https://arxiv.org/abs/1706.07900

Acknowledgements We would like to thank Zachary Abel and Jayson Lynch for their helpful
discussion about this research. We would also like to thank Yahya Badran for pointing out the
connection between TRVB and the Hypergraph Spanning Tree problem.

1 Introduction

In this paper, we introduce the Tree-Residue Vertex-Breaking (TRVB) problem. Given
a multigraph G some of whose vertices are marked “breakable,” TRVB asks whether it
is possible to convert G into a tree via a sequence of applications of the vertex-breaking

© Erik D. Demaine and Mikhail Rudoy;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edemaine@mit.edu
mailto:mrudoy@gmail.com
https://orcid.org/0000-0002-9210-1006
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.32
https://arxiv.org/abs/1706.07900
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Tree-Residue Vertex-Breaking: a new tool for proving hardness

→

Figure 1 The operation of breaking a vertex. The vertex (left) is replaced by a set of degree-1
vertices with the same edges (right).

operation: replacing a degree-k breakable vertex with k degree-1 vertices, disconnecting the
incident edges, as shown in Figure 1.

In this paper, we analyze the computational complexity of this problem as well as several
variants (special cases) where G is restricted with any subset of the following additional
constraints:

1. every breakable vertex of G must have degree from a list B of allowed degrees;
2. every unbreakable vertex of G must have degree from a list U of allowed degrees;
3. G is planar;
4. G is a simple graph (rather than a multigraph).

Modifying TRVB to include these constraints makes it easier to reduce from the TRVB
problem to some other. For example, having a restricted list of possible breakable vertex
degrees B allows a reduction to include gadgets only for simulating breakable vertices of those
degrees, whereas without that constraint, the reduction would have to support simulation of
breakable vertices of any degree.

We prove the following results (summarized in Table 1), which together fully classify the
variants of TRVB into polynomial-time solvable and NP-complete problems:
1. Every TRVB variant whose breakable vertices are only allowed to have degrees of at most

3 is solvable in polynomial time.
2. Every planar simple graph TRVB variant whose breakable vertices are only allowed to

have degrees of at least 6 and whose unbreakable vertices are only allowed to have degrees
of at least 5 is solvable in polynomial time (and in fact the correct output is always “no”).

3. In all other cases, the TRVB variant is NP-complete. In particular, the TRVB variant
is NP-complete if the variant allows breakable vertices of some degree k ≥ 4, and in
the planar graph case, also allows either breakable vertices of some degree b ≤ 5 or
unbreakable vertices of some degree u ≤ 4. For example, for any k ≥ 4, TRVB is
NP-complete in planar multigraphs whose vertices are all breakable and have degree k.

Among these results, we expect the most generally applicable to be the results that (1)
TRVB is polynomially solvable when breakable vertices are restricted to have degree at most
3; and (2) for any k ≥ 4, TRVB is NP-complete when the given multigraph is restricted to
be planar and to consist entirely of degree-k breakable vertices.

Application to proving hardness

In general, the TRVB problem is useful when proving NP-hardness of what could be called
single-traversal problems: problems in which some space (e.g., a configuration graph or a
grid) must be traversed in a single path or cycle subject to local constraints. Hamiltonian
Cycle and its variants fall under this category, but so do other problems. For example, a
single traversal problem may allow the solution path/cycle to skip certain vertices entirely
while mandating other local constraints. In other words, TRVB can be a useful alternative
to Hamiltonian Cycle when proving NP-hardness of problems related to traversal.

E.D. Demaine and M.Rudoy 32:3

Table 1 A summary of this paper’s results (where B and U are the allowed breakable and
unbreakable vertex degrees).

All breakable
vertices have
small degree
(B ⊆ {1, 2, 3})

Graph
restrictions

All vertices have large
degree (B ∩ {1, 2, 3, 4} = ∅
and U ∩ {1, 2, 3, 4, 5} = ∅)

TRVB variant
complexity Section

Yes ∗ ∗ Polynomial Time Section 9

No Planar or simple
or unrestricted ∗ NP-complete Sections 4, 5, 6

No Planar and
simple No NP-complete Section 7

No Planar and
simple Yes

Polynomial Time
(every instance is
a “no” instance)

Section 8

Figure 2 Ab-
straction of a pos-
sible edge gadget
(top) and the local
solution (bottom).
The bold paths are
(forced to be) part of
the traversal while
the “inside” of the
gadget is shown in
grey.

Figure 3 Abstraction of a possible breakable vertex gadget. The gadget
should join some number of edge gadgets (in this case four) as shown on the
left. The center and right figures show the two possible local solutions to the
breakable vertex gadget. One solution connects the interiors of the incoming
edge gadgets within the vertex gadget while the other disconnects them. In
both figures, the bold paths are part of the traversal, while the “inside” of the
gadget is shown in grey.

To prove a single-traversal problem hard by reducing from TRVB, it is sufficient to
demonstrate two gadgets: an edge gadget and a breakable degree-k vertex gadget for some
k ≥ 4. This is because TRVB remains NP-hard even when the only vertices present are
degree-k breakable vertices for some k ≥ 4. Furthermore, since this version of TRVB
remains NP-hard even for planar multigraphs, this approach can be used even when the
single-traversal problem under consideration involves traversal of a planar space.

One possible approach for building the gadgets is as follows. The edge gadget should
contain two parallel paths, both of which must be traversed because of the local constraints
of the single-traversal problem (see Figure 2). The vertex gadget should have exactly
two possible solutions satisfying the local constraints of the problem: one solution should
disconnect the regions inside all the adjoining edge gadgets, while the other should connect
these regions inside the vertex gadget (see Figure 3). We then simulate the multigraph from
the input TRVB instance by placing these edge and vertex gadgets in the shape of the input
multigraph as shown in Figure 4.

When trying to solve the resulting single-traversal instance, the only option (while
satisfying local constraints) is to choose one of the two possible local solutions at each vertex
gadget, corresponding to the choice of whether to break the vertex. The candidate solution

SWAT 2018

32:4 Tree-Residue Vertex-Breaking: a new tool for proving hardness

→

Figure 4 The input multigraph on
the left could be converted into a layout
of edge and vertex gadgets as shown
on the right. In this example, we use
a grid layout; in general, we could use
any layout consistent with the edge and
vertex gadgets.

→ →

Figure 5 A choice of which vertices to break in the input
multigraph (left) corresponds to a choice of local solutions
at each of the breakable vertex gadgets, thereby yielding a
candidate solution to the single-traversal instance (center).
As a result, the shape of the interior of the candidate
solution (right) is essentially the same as the shape of the
residual multigraph after breaking vertices.

produced will satisfy all local constraints, but might still not satisfy the global (single cycle)
constraint. Notice that the candidate solution is the boundary of the region “inside” the
local solutions to the edge and vertex gadgets, and that this region ends up being the same
shape as the multigraph obtained after breaking vertices. See Figure 5 for an example. The
boundary of this region is a single cycle if and only if the region is connected and hole-free.
Since the shape of this region is the same as the shape of the multigraph obtained after
breaking vertices, this condition on the region’s shape is equivalent to the condition that
the residual multigraph must be connected and acyclic, or in other words, a tree. Thus, this
construction yields a correct reduction, and in general this proof idea can be used to show
NP-hardness of single-traversal problems.

Outline

In Section 2, we give an example of an NP-hardness proof following the above strategy. By
reducing from TRVB, we give a simple proof that Hamiltonian Cycle in max-degree-3 square
grid graphs is NP-hard (a result previously shown in [3]). We also use the same proof idea
in manuscript [1] to show the novel result that Hamiltonian Cycle in hexagonal thin grid
graphs is NP-hard.

In Section 3, we formally define the variants of TRVB under consideration. In the full
version of this paper, we prove membership in NP and provide the obvious reductions between
the variants.

Sections 4–7 address our NP-hardness results. In Section 4, we reduce from an NP-hard
problem to show that Planar TRVB with only degree-k breakable vertices and unbreakable
degree-4 vertices is NP-hard for any k ≥ 4. All the other hardness results in this paper are
derived directly or indirectly from this one. In Section 5, we prove the NP-completeness
of the variants of TRVB and of Planar TRVB in which breakable vertices of some degree
k ≥ 4 are allowed. Similarly, we show in Section 6 that Graph TRVB is also NP-complete
in the presence of breakable vertices of degree k ≥ 4. Finally, in Section 7, we show that
Planar Graph TRVB is NP-complete provided (1) breakable vertices of some degree k ≥ 4
are allowed and (2) either breakable vertices of degree b ≤ 5 or unbreakable vertices of degree
u ≤ 4 are allowed.

Next, in Section 8, we proceed to one of our polynomial-time results: that a variant of
TRVB is solvable in polynomial time whenever the multigraph is restricted to be a planar
graph, the breakable vertices are restricted to have degree at least 6, and the unbreakable
vertices are restricted to have degree at least 5. In such a graph, it is impossible to break
a set of breakable vertices and get a tree. As a result, variants of TRVB satisfying these
restrictions are always solvable with a trivial polynomial time algorithm.

E.D. Demaine and M.Rudoy 32:5

In Section 9, we establish a connection between TRVB and the Hypergraph Spanning Tree
problem (given a hypergraph, decide whether it has a spanning tree). Namely, Hypergraph
Spanning Tree on a hypergraph is equivalent to TRVB on the corresponding incidence graph
with edge nodes marked breakable and vertex nodes marked unbreakable. This equivalence
allows us to construct a reduction from TRVB to Hypergraph Spanning Tree: given a TRVB
instance, we can first convert that instance into a bipartite TRVB instance (by inserting
unbreakable vertices between adjacent breakable vertices and merging adjacent unbreakable
vertices) and then construct the hypergraph whose incidence graph is the bipartite TRVB
instance.

This connection allows us to obtain results about both TRVB and Hypergraph Spanning
Tree. By leveraging known results about Hypergraph Spanning Tree (see [2]), we prove
that TRVB is polynomial-time solvable when all breakable vertices have small degrees
(B ⊆ {1, 2, 3}). This final result completes our classification of the variants of TRVB. We
also apply the hardness results from this paper to obtain new results about Hypergraph
Spanning Tree: namely, Hypergraph Spanning Tree is NP-complete in k-uniform 2-regular
hypergraphs for any k ≥ 4, even when the incidence graph of the hypergraph is planar. This
improves the previously known result that Hypergraph Spanning Tree is NP-complete in
k-uniform hypergraphs for any k ≥ 4 (see [5]).

2 Example of how to use TRVB: Hamiltonicity in max-degree-3
square grid graphs

In this section, we show one example of using TRVB to prove hardness of a single-traversal
problem. Namely, the result that Hamiltonian Cycle in max-degree-3 square grid graphs is
NP-hard [3] can be reproduced with the following much simpler reduction.

The reduction is from the variant of TRVB in which the input multigraph is restricted
to be planar and to have only degree-4 breakable vertices, which is shown NP-complete in
Section 5. Given a planar multigraph G with only degree-4 breakable vertices, we output a
max-degree-3 square grid graph by appropriately placing breakable degree-4 vertex gadgets
(shown in Figure 7) and routing edge gadgets (shown in Figure 6) to connect them. The
appropriate placement of gadgets can be accomplished in polynomial time by the results
from [6]. Each edge gadget consists of two parallel paths of edges a distance of two apart,
and as shown in the figure, these paths can turn, allowing the edge to be routed as necessary
(without parity constraints). Each breakable degree-4 vertex gadget joins four edge gadgets
in the configuration shown. Note that, as desired, the maximum degree of any vertex in the
resulting grid graph is 3.

Consider any candidate set of edges C that could be a Hamiltonian cycle in the resulting
grid graph. In order for C to be a Hamiltonian cycle, C must satisfy both the local constraint
that every vertex is incident to exactly two edges in C and the global constraint that C is
a cycle (rather than a set of disjoint cycles). It is easy to see that, in order to satisfy the
local constraint, every edge in every edge gadget must be in C. Similarly, there are only two
possibilities within each breakable degree-4 vertex gadget which satisfy the local constraint.
These possibilities are shown in Figure 8.

We can identify the choice of local solution at each breakable degree-4 vertex gadget
with the choice of whether to break the corresponding vertex. Under this bijection, every
candidate solution C satisfying local constraints corresponds with a possible multigraph
G′ formed from G by breaking vertices. The key insight is that the shape of the region R

inside C is exactly the shape of G′. This is shown for an example graph-piece in Figure 9.

SWAT 2018

32:6 Tree-Residue Vertex-Breaking: a new tool for proving hardness

Figure 6 An
edge gadget con-
sisting of two par-
allel paths a dis-
tance of 2 apart.

Figure 7 A degree-4
breakable vertex gadget.

Figure 8 The two possible solutions to the ver-
tex gadget from Figure 7 that satisfy the local con-
straints imposed by the Hamiltonian Cycle problem
(broken on the left and unbroken on the right).

The boundary of R, also known as C, is exactly one cycle if and only if R is connected
and hole-free. Since the shape of region R is the same as the shape of multigraph G′, this
corresponds to the condition that G′ is connected and acyclic, or in other words that G′ is a
tree. Thus, there exists a candidate solution C to the Hamiltonian Cycle instance (satisfying
the local constraints) that is an actual solution (also satisfying the global constraints) if and
only if G is a “yes” instance of TRVB. Therefore, Hamiltonian Cycle in max-degree-3 square
grid graphs is NP-hard.

3 Problem variants

In this section, we will formally define the variants of TRVB under consideration. In the full
version of the paper, we also prove some basic results about these variants.

To begin, we formally define the TRVB problem. The multigraph operation of breaking
vertex v in undirected multigraph G results in a new multigraph G′ by removing v, adding a
number of new vertices equal to the degree of v in G, and connecting these new vertices to
the neighbors of v in G in a one-to-one manner (as shown in Figure 1 in Section 1). Using
this definition, we pose the TRVB problem:

I Problem 1. The Tree-Residue Vertex-Breaking Problem (TRVB) takes as input a multi-
graph G whose vertices are partitioned into two sets VB and VU (called the breakable and
unbreakable vertices respectively), and asks to decide whether there exists a set S ⊆ VB such
that after breaking every vertex of S in G, the resulting multigraph is a tree.

In order to avoid trivial cases, we consider only input graphs that have no degree-0
vertices.

Next, suppose B and U are both sets of positive integers. Then we can constrain the
breakable vertices of the input to have degrees in B and constrain the unbreakable vertices
of the input to have degrees in U . The resulting constrained version of the problem is defined
below:

I Definition 2. The (B, U)-variant of the TRVB problem, denoted (B, U)-TRVB, is the
special case of TRVB where the input multigraph is restricted so that every breakable vertex
in G has degree in B and every unbreakable vertex in G has degree in U .

Throughout this paper we consider only sets B and U for which membership can be
computed in pseudopolynomial time (i.e., membership of n in B or U can be computed in
time polynomial in n). As a result, verifying that the vertex degrees of a given multigraph
are allowed can be done in polynomial time.

E.D. Demaine and M.Rudoy 32:7

Figure 9 Given a multigraph including the piece shown in the top left, the output grid graph
might include the section shown in the bottom left (depending on graph layout). If the top vertex
in this piece of the multigraph is broken, resulting in the piece of multigraph G′ shown in the top
right, then the resulting candidate solution C (shown in bold) in the bottom right contains region R

(shown in grey) whose shape resembles the shape of G′.

breakable unbreakable

Figure 10 Depiction of vertex types in this paper.

We can also define three further variants of the problem depending on whether G is
constrained to be planar, a (simple) graph, or both: the Planar (B, U)-variant of the TRVB
problem (denoted Planar (B, U)-TRVB), the Graph (B, U)-variant of the TRVB (denoted
Graph (B, U)-TRVB), and the Planar Graph (B, U)-variant of the TRVB problem (denoted
Planar Graph (B, U)-TRVB).

3.1 Diagram conventions
Throughout this paper, when drawing diagrams, we will use filled circles to represent
unbreakable vertices and unfilled circles to represent breakable vertices. See Figure 10.

4 Planar ({k}, {4})-TRVB is NP-hard for any k ≥ 4

The overall goal of this section is to prove NP-hardness for several variants of TRVB. In
particular, we will introduce an NP-hard variant of the Hamiltonicity problem in Section 4.1
and then reduce from this problem to Planar ({k}, {4})-TRVB for any k ≥ 4 in Section 4.2.
This is the only reduction from an external problem in this paper. All further hardness
results will be derived from this one via reductions between different TRVB variants.

SWAT 2018

32:8 Tree-Residue Vertex-Breaking: a new tool for proving hardness

4.1 Planar Hamiltonicity in Directed Graphs with all in- and
out-degrees 2 is NP-hard

The following problem was shown NP-complete in [4]:

I Problem 3. The Planar Max-Degree-3 Hamiltonicity Problem asks for a given planar
directed graph whose vertices each have total degree at most 3 whether the graph is Hamiltonian
(has a Hamiltonian cycle).

For the sake of simplicity we will assume that every vertex in an input instance of the
Planar Max-Degree-3 Hamiltonicity problem has both in- and out-degree at least 1 (and
therefore at most 2). This is because the existence of a vertex with in- or out-degree 0 in a
graph immediately implies that there is no Hamiltonian cycle in that graph.

As it turns out, this problem is not quite what we need for our reduction, so below we
introduce several new definitions and define a new variant of the Hamiltonicity problem:

I Definition 4. Call a vertex v ∈ G alternating for a given planar embedding of a planar
directed graph G if, when going around the vertex, the edges switch from inward to outward
oriented more than once. Otherwise, call the vertex non-alternating. A non-alternating
vertex has all its inward oriented edges in one contiguous section and all its outward oriented
edges in another; an alternating vertex on the other hand alternates between inward and
outward sections more times.

We call a planar embedding of planar directed graph G a planar non-alternating embedding
if every vertex is non-alternating under that embedding. If G has a planar non-alternating
embedding we say that G is a planar non-alternating graph.

I Problem 5. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem
asks, for a given planar non-alternating directed graph whose vertices each have in- and
out-degree exactly 2, whether the graph is Hamiltonian

In the full version of this paper we prove that this problem is NP-hard by reducing from
the Planar Max-Degree-3 Hamiltonicity Problem:

I Theorem 6. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem
is NP-hard.

4.2 Reduction to Planar ({k}, {4})-TRVB for any k ≥ 4
Consider the following algorithm Rk:

I Definition 7. For k ≥ 4, algorithm Rk takes as input a planar non-alternating graph
G whose vertex in- and out-degrees all equal 2, and outputs an instance M ′ of Planar
({k}, {4})-TRVB.

To begin, we construct a labeled undirected multigraph M as follows; refer to Figure 11.
First we build all the vertices (and vertex labels) of M . For each vertex in G, we include

an unbreakable vertex in M and for each edge in G we include a breakable vertex in M . If v

is a vertex or e is an edge of G, we define m(v) and m(e) to be the corresponding vertices in
M .

Next we add all the edges of M . Fix vertex v in G. Let (u1, v) and (u2, v) be the edges
into v and let (v, w1) and (v, w2) be the edges out of v. Then add the following edges to M :

Add an edge from m(v) to each of m((u1, v)), m((u2, v)), m((v, w1)), and m((v, w2)).
Add an edge from m((v, w1)) to m((v, w2)).
Add k − 3 edges from m((u1, v)) to m((u2, v)).

E.D. Demaine and M.Rudoy 32:9

Figure 11 If the planar non-alternating directed graph on
the left is G, and if k = 4, then we first produce multigraph M

on the right. If k > 4, then the output M remains the same
except some edges are duplicated.

Figure 12 We modify M in
the vicinity of one vertex v̂ to get
the output M ′ of our reduction.
This figure shows one possible M ′

for the M in Figure 11, where v̂

is chosen to be the bottom left
vertex.

Figure 13 This figure shows a Hamiltonian cycle in example graph G from Figure 11 (left) and
the corresponding solution of TRVB instance M ′ shown in Figure 12 (right).

Finally, pick any specific vertex v̂ in G; refer to Figure 12. Let (u1, v̂) and (u2, v̂) be the
edges into v̂ and let (v̂, w1) and (v̂, w2) be the edges out of v̂. We modify M by removing
vertex m(v̂) (and all incident edges), and adding the two edges (m((u1, v̂)), m((u2, v̂))),
and (m((v̂, w1)), m((v̂, w2))). Call the resulting multigraph M ′ and return it as output of
algorithm Rk.

We prove in the full version of this paper that algorithm Rk is a polynomial time reduction
from the Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem to Planar
({k}, {4})-TRVB. Figure 13 demonstrates the correspondence between a Hamiltonian Cycle
in input G and a TRVB solution in output Rk(G) = M ′. Thus we have the following:

I Theorem 8. Planar ({k}, {4})-TRVB is NP-hard for any k ≥ 4.

5 Planar TRVB and TRVB are NP-complete with high-degree
breakable vertices

I Theorem 9. Planar (B, U)-TRVB is NP-complete if B contains any k ≥ 4. Also (B, U)-
TRVB is NP-complete if B contains any k ≥ 4.

SWAT 2018

32:10 Tree-Residue Vertex-Breaking: a new tool for proving hardness

Q0 Q1

P0 P1

Figure 14 A gadget
simulating an unbreak-
able degree-4 vertex us-
ing a planar arrangement
of only breakable degree-
4 vertices.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

k - 1 edges

...

Figure 15 A gadget simulating an un-
breakable degree-(k − 2a) vertex using only
breakable degree-k vertices arranged in a pla-
nar manner. For k > 4, choosing a appro-
priately yields an unbreakable degree-3 or
degree-4 gadget.

Figure 16 The degree-
4 unbreakable vertex on
the left can be simu-
lated with two degree-3
unbreakable vertices as
shown on the right while
maintaining planarity.

...

...

Q1 Q2 Q3 Q4 Qk-1 Qk

P1 P2 P3 Pk-2

Figure 17 A gadget simulating an unbreakable degree-2 vertex using only breakable degree-k
vertices arranged without self loops or duplicated edges.

The basic idea for this theorem is to reduce from Planar ({k}, {4})-TRVB to Planar
({k}, ∅)-TRVB by creating a gadget which simules the behavior of an unbreakable degree-4
vertex using only breakable degree-k vertices. Figures 14, 15, and 16 sketch the construction
of this gadget.

6 Graph TRVB is NP-complete with high-degree breakable vertices

I Theorem 10. Graph (B, U)-TRVB is NP-complete if B contains any k ≥ 4.

The basic idea for this theorem is to reduce from (B, U)-TRVB by inserting a gadget into
each edge which behaves like a degree-2 unbreakable vertices and which is built entirely out
of breakable degree-k vertices. This converts the multigraph into a simple graph without
affecting the answer of the TRVB instance and without adding any new values to B or U .
Figure 17 sketches the construction of this gadget.

7 Planar Graph TRVB is NP-hard with both low-degree vertices and
high-degree breakable vertices

I Theorem 11. Planar Graph (B, U)-TRVB is NP-complete if (1) either B∩{1, 2, 3, 4, 5} 6= ∅
or U ∩ {1, 2, 3, 4} 6= ∅ and (2) there exists a k ≥ 4 with k ∈ B.

As in the previous section, the idea for this theorem is to use unbreakable degree-2 vertex
gadgets to reduce from Planar (B, U)-TRVB, converting the input multigraph into a simple
graph. We build such a gadget in one of several ways, depending on which vertex types are
present. Figures 18–24 sketch the gadget construction for the various cases. See the full
version of this paper for details.

E.D. Demaine and M.Rudoy 32:11

k edges

... ...

Figure 18 A gadget simulat-
ing an unbreakable degree-2 ver-
tex using only breakable degree-
k and unbreakable degree-4 ver-
tices arranged in a planar man-
ner without self loops or dupli-
cate edges.

... ...

k edges

Figure 19 A gadget simulat-
ing an unbreakable degree-2 ver-
tex using only breakable degree-
k and unbreakable degree-3 ver-
tices arranged in a planar man-
ner without self loops or dupli-
cate edges.

k - 2 edges

...

Figure 20 A gadget
simulating an unbreakable
degree-2 vertex using only
breakable degree-k and un-
breakable degree-1 vertices
arranged in a planar manner
without self loops or dupli-
cate edges.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

...

Figure 21 A gadget simu-
lating an unbreakable degree-
(k − 2a) vertex using only
breakable degree-k and degree-
2 vertices arranged in a planar
manner without self loops or
duplicate edges.

Q1 Q2 Q3

P

Figure 22 A gadget simu-
lating an unbreakable degree-
2 vertex using only breakable
degree-3 vertices arranged in
a planar manner without self
loops or duplicate edges.

Figure 23 A gadget simu-
lating an unbreakable degree-
2 vertex using only breakable
degree-4 vertices arranged in
a planar manner without self
loops or duplicate edges.

8 Planar Graph TRVB is polynomial-time solvable without small
vertex degrees

The overall purpose of this section is to show that variants of Planar Graph TRVB which
disallow all small vertex degrees are polynomial-time solvable because the answer is always
“no.” Consider for example the following theorem.

I Theorem 12. If b > 5 for every b ∈ B and u > 5 for every u ∈ U , then Planar Graph
(B, U)-TRVB has no “yes” inputs. As a result, Planar Graph (B, U)-TRVB problem is
polynomial-time solvable.

Proof. The average degree of a vertex in a planar graph must be less than 6, so there are no
planar graphs with all vertices of degree at least 6. Thus, if b > 5 for every b ∈ B and u > 5
for every u ∈ U , then every instance of Planar Graph (B, U)-TRVB is a “no” instance. J

In fact, we will strengthen this theorem below to disallow “yes” instances even when
degree-5 unbreakable vertices are present by using the particular properties of the TRVB
problem. Note that this time, planar graph inputs which satisfy the degree constraints are
possible, but any such graph will still yield a “no” answer to the Tree-Residue Vertex-Breaking
problem.

We describe the proof idea in Section 8.1 with details available in the full version of the
paper.

SWAT 2018

32:12 Tree-Residue Vertex-Breaking: a new tool for proving hardness

Figure 24 A gadget simulating an unbreakable degree-2 vertex using only breakable degree-5
vertices arranged in a planar manner without self loops or duplicate edges.

Figure 25 A degree-10 vertex with seven degree-1 neighbors (shown) and three other neighbors
(not shown). The edges to the degree-1 neighbors form two bundles of size 2 and one bundle of
size 3.

8.1 Proof idea
Consider the hypothetical situation in which we have a solution to the TRVB problem in a
planar graph whose unbreakable vertices each have degree at least 5 and whose breakable
vertices each have degree at least 6. The general idea of the proof is to show that this
situation is impossible by assigning a scoring function (described below) to the possible states
of the graph as vertices are broken. The score of the initial graph can easily be seen to be
zero and assuming the TRVB instance has a solution, the score of the final tree can be shown
to be positive. It is also the case, however, that if we break the vertices in the correct order,
no vertex increases the score when broken, implying a contradiction.

Next, we introduce the scoring mechanism. Consider one vertex in the graph after some
number of vertices have been broken. This vertex has several neighbors, some of which have
degree 1. We can group the edges of this vertex that lead to degree-1 neighbors into “bundles”
seperated by the edges leading to higher degree neighbors. For example, in Figure 25, the
vertex shown has two bundles of size 2 and one bundle of size 3. Each bundle is given a
score according to its size, and the score of the graph is equal to the cumulative score of all
present bundles. In particular, if a bundle has a size of 1, then we assign the bundle a score
of −1, and otherwise we assign the bundle a score of n− 1 where n is the size of the bundle.

As it turns out, under this scoring mechanism, any tree all of whose non-leaves have
degree at least 5 always has a positive score. In fact, it is easy to see that in our TRVB
instance, if breaking some set of breakable vertices S results in a tree, then this degree
constraint applies: the non-leaves are vertices from the original graph and therefore have
degree at least 5. Thus, the score of the original graph is zero (since there are no bundles),
and the score after all the vertices in S are broken is positive.

Next, we define a breaking order for the vertices of S. In short, we will break the
vertices of S starting on the exterior of the graph and moving inward. More formally, we

E.D. Demaine and M.Rudoy 32:13

will repeatedly do the following step until all vertices in S have been broken. Consider the
external face of the graph at the current stage of the breaking process. Since not every vertex
in S has been broken, the graph is not yet a tree and the current external face is a cycle.
Every cycle in the graph must contain a vertex from S (in order for the final graph to be a
tree), so choose a vertex from S on the current external face and break that vertex next.

Breaking the vertices of S in this order has an interesting effect on the bundles in the
graph: since every vertex from S is on the external face when it is broken, every degree-1
vertex ends up within the external face when it appears. Thus all bundles are within the
external face of the graph at all times.

Consider the effect that breaking one vertex from S with degree d ≥ 6 has on the score of
the graph. Any vertex in S on the external face has exactly two edges which border this face.
The remaining d− 2 edges must all leave the vertex into the interior of the graph. When
the vertex is broken, each of these d− 2 edges becomes a new bundle (since the interior of
the graph never has any bundles). Thus, breaking the vertex creates d− 2 new bundles of
size 1, thereby decreasing the score of the graph by d− 2. On the other hand, the two edges
which were on the external face are now each added to a bundle, thereby increasing the size
of that bundle by one and increasing its score by at most two (in the case that the size was
originally 1). Thus, the increase in the score of the graph due to these two edges is at most
4. In summary, breaking one vertex decreases the graph’s score by d− 2 ≥ 4 and increases
the graph’s score by at most 4. Thus, the total score of the graph does not increase.

Since the score of the graph does not increase with any step of the process, the final
result should have at most the same score as the original graph. This contradicts the fact
that the tree at the end of the process has positive score while the original graph has score
zero. By contradiction, we conclude that S cannot exist, giving us our desired result.

I Theorem 13. If b > 5 for every b ∈ B and u > 4 for every u ∈ U , then Planar Graph
(B, U)-TRVB can be solved in polynomial time.

9 TRVB and the Hypergraph Spanning Tree problem

In the full version of this paper, we demonstrate the connection between the TRVB problem
and the Hypergraph Spanning Tree problem.

In particular, we reduce from (B, U)-TRVB with B ⊆ {1, 2, 3} to a version of the
Hypergraph Spanning Tree problem in which the hypergraphs are restricted to have only
edges with at most 3 endpoints. The Hypergraph Spanning Tree problem in such hypergraphs
is known to be polynomial-time solvable (see [2]), so we can conclude the following:

I Theorem 14. (B, U)-TRVB with B ⊆ {1, 2, 3} is polynomial-time solvable.

We also reduce from Planar ({k}, ∅)-TRVB to a version of the Hypergraph Spanning Tree
problem in which the hypergraphs are restricted to be k-uniform and 2-regular and to have
planar incidence graphs. Applying the fact that Planar ({k}, ∅)-TRVB is NP-hard for any
k ≥ 4, we immediately obtain the following:

I Theorem 15. The Hypergraph Spanning Tree problem is NP-complete in k-uniform 2-
regular hypergraphs for any k ≥ 4, even when the incidence graph of the hypergraph is
planar.

SWAT 2018

32:14 Tree-Residue Vertex-Breaking: a new tool for proving hardness

References
1 Erik D. Demaine and Mikhail Rudoy. Hamiltonicity is hard in thin or polygonal grid graphs,

but easy in thin polygonal grid graphs. arXiv:1706.10046, 2017. https://arxiv.org/abs/
1706.10046.

2 László Lovász. Matroid matching and some applications. J. Comb. Theory, Ser. B,
28(2):208–236, 1980. doi:10.1016/0095-8956(80)90066-0.

3 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related
to the traveling salesman problem. J. Algorithms, 5(2):231–246, 1984. doi:10.1016/
0196-6774(84)90029-4.

4 Ján Plesník. The np-completeness of the hamiltonian cycle problem in planar digraphs with
degree bound two. Inf. Process. Lett., 8(4):199–201, 1979. doi:10.1016/0020-0190(79)
90023-1.

5 Hans Jürgen Prömel and Angelika Steger. The Steiner tree problem: a tour through graphs,
algorithms, and complexity. Springer Science & Business Media, 2002.

6 Markus W. Schäffter. Drawing graphs on rectangular grids. Discrete Applied Mathematics,
63(1):75–89, 1995. doi:10.1016/0166-218X(94)00020-E.

https://arxiv.org/abs/1706.10046
https://arxiv.org/abs/1706.10046
http://dx.doi.org/10.1016/0095-8956(80)90066-0
http://dx.doi.org/10.1016/0196-6774(84)90029-4
http://dx.doi.org/10.1016/0196-6774(84)90029-4
http://dx.doi.org/10.1016/0020-0190(79)90023-1
http://dx.doi.org/10.1016/0020-0190(79)90023-1
http://dx.doi.org/10.1016/0166-218X(94)00020-E

Nearly Optimal Separation Between Partially and
Fully Retroactive Data Structures
Lijie Chen1

Massachusetts Institute of Technology
lijieche@mit.edu

Erik D. Demaine
Massachusetts Institute of Technology
edemaine@mit.edu

Yuzhou Gu
Massachusetts Institute of Technology
yuzhougu@mit.edu

Virginia Vassilevska Williams2

Massachusetts Institute of Technology
virgi@mit.edu

Yinzhan Xu
Massachusetts Institute of Technology
xyzhan@mit.edu

Yuancheng Yu
Massachusetts Institute of Technology
ycyu@mit.edu

Abstract
Since the introduction of retroactive data structures at SODA 2004, a major unsolved problem
has been to bound the gap between the best partially retroactive data structure (where changes
can be made to the past, but only the present can be queried) and the best fully retroactive
data structure (where the past can also be queried) for any problem. It was proved in 2004 that
any partially retroactive data structure with operation time Top(n,m) can be transformed into
a fully retroactive data structure with operation time O(

√
m · Top(n,m)), where n is the size of

the data structure and m is the number of operations in the timeline [7]. But it has been open
for 14 years whether such a gap is necessary.

In this paper, we prove nearly matching upper and lower bounds on this gap for all n and m.
We improve the upper bound for n�

√
m by showing a new transformation with multiplicative

overhead n logm. We then prove a lower bound of min{n logm,
√
m}1−o(1) assuming any of the

following conjectures:
Conjecture I: Circuit SAT requires 2n−o(n) time on n-input circuits of size 2o(n).

This conjecture is far weaker than the well-believed SETH conjecture from complexity
theory, which asserts that CNF SAT with n variables and O(n) clauses already requires
2n−o(n) time.

Conjecture II: Online (min,+) product between an integer n × n matrix and n vectors
requires n3−o(1) time.

This conjecture is weaker than the APSP conjectures widely used in fine-grained com-
plexity.

1 Supported by an Akamai Fellowship.
2 Partially supported by an NSF Career Award, a Sloan Fellowship, NSF Grants CCF-1417238, CCF-

1528078 and CCF-1514339, and BSF Grant BSF:2012338.

© Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams, Yinzhan Xu, and
Yuancheng Yu;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 33; pp. 33:1–33:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijieche@mit.edu
mailto:edemaine@mit.edu
mailto:yuzhougu@mit.edu
mailto:virgi@mit.edu
mailto:xyzhan@mit.edu
mailto:ycyu@mit.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

Conjecture III (3-SUM Conjecture): Given three sets A,B,C of integers, each of size
n, deciding whether there exist a ∈ A, b ∈ B, c ∈ C such that a + b + c = 0 requires n2−o(1)

time.
This 1995 conjecture [13] was the first conjecture in fine-grained complexity.

Our lower bound construction illustrates an interesting power of fully retroactive queries:
they can be used to quickly solve batched pair evaluation. We believe this technique can prove
useful for other data structure lower bounds, especially dynamic ones.

2012 ACM Subject Classification Theory of computation → Lower bounds and information
complexity

Keywords and phrases retroactive data structure, conditional lower bound

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.33

Acknowledgements We would like to thank Quanquan Liu and Ryan Williams for helpful dis-
cussions, and the anonymous reviewers for their generous comments.

1 Introduction

Retroactive Data Structures

A data structure can be thought of as a sequence of updates being applied to an initial state.
In traditional data structures, we can only append updates to the end of this sequence, called
the timeline, and can only query about the final state of the data structure resulting from all
the updates. Retroactive data structures, introduced at SODA 2004 [7], allow us to add or
remove updates in the past, i.e., anywhere in the timeline rather than only at the end.

There are two main kinds of retroactive data structures: partially retroactive data
structures, where we are only allowed to query the present, i.e., the final version resulting
from the whole update sequence; and fully retroactive data structures, where we are also
allowed to query about a past state, i.e., the state resulting from applying only a prefix of
the update sequence given by the timeline.

Unlike persistence [11], there is no general efficient transformation from a data structure
into a retroactive data structure, even partially retroactive with sublinear multiplicative
overhead [7]. Nonetheless, several efficient retroactive data structures have been developed [8,
5, 15, 10, 23, 17, 24, 9].

Motivation: Full Retroactivity versus Partial Retroactivity

A key problem, posed in the original paper on retroactive data structures [7], is whether the
full retroactivity requirement makes problems much harder than their partially retroactive
counterpart. The same paper established an O(

√
m) multiplicative overhead transformation

from a partially retroactive data structure to a fully retroactive one, where m is the number
of updates in the timeline.

Prior to our work, there was no data structure problem whose best known fully retroactive
version was substantially (more than a polylogarithmic factor) worse than the best known
partially retroactive version. Priority queues used to be the only problem with a polynomial
gap (between O(

√
m logm) and O(logm) time [7]). But at WADS 2015 it was shown that

priority queues have a polylogarithmic fully retroactive solution [9], and more generally,
any “time-fusable” data structure can be transformed from partial to full retroactivity with
polylogarithmic overhead. Can this transformation be generalized to all data structures?

http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.33

L. Chen, E. Demaine, Y. Gu, V. Vassilevska Williams, Y. Xu, and Y. Yu 33:3

Our Results: Conditional Lower Bounds

We show that, perhaps surprisingly, the O(
√
m) overhead for transforming partial retroactivity

into full retroactivity is nearly optimal for general data structure problems, conditioned on
any of three well-believed conjectures:

I Conjecture I. In the Word-RAM model of computation with O(logn) bit words, it takes
2n−o(n) time to solve SIZE(2o(n)) Circuit SAT: decide whether a given n-input circuit C of
size 2o(n) is satisfiable.

I Remark 1. The problem SIZE(2o(n)) Circuit SAT is far harder than CNF SAT, and the
conjecture above is much weaker than the well-believed Strong Exponential Time Hypothesis
(SETH) [21] which states that for every ε > 0, there is a clause length k such that k-SAT
on n variables cannot be solved in 2(1−ε)n time. Due to the Sparsification Lemma [21], the
formulas that SETH concerns have linear size. It is much easier to believe that Circuit SAT
for an unrestricted circuit (as opposed to a formula), of much larger, 2o(n) size requires
enumeration of all possible inputs.

I Conjecture II. Online (min,+) product between an integer n× n matrix and n length-n
vectors requires n3−o(1) time in the word-RAM model of computation with O(logn) bit words.
That is, given an integer matrix A ∈ Zn×n, and n vectors v1, v2, . . . , vn that are revealed one
by one, we wish to compute the (min,+)-products

A � v :=
(

n
min
k=1

(A1,k + vk),
n

min
k=1

(A2,k + vk), . . . ,
n

min
k=1

(An,k + vk)
)

between A and each of the vis. We get to access vi+1 only after we have output A � vi. The
conjecture asserts that the whole computation requires n3−o(1) time.

I Remark 2. The offline (and thus easier) version of the above problem is equivalent
to calculating the (min,+)-product of two matrices of size n × n, which is known to be
asymptotically equivalent to the famous APSP problem [12]: (min,+)-product is in O(nc)
time if and only if APSP is in O(nc) time, for any constant c.

The online (min,+)-product conjecture is a natural generalization of the online Boolean
Matrix-Vector Product conjecture of Henzinger et al. [19] that asserts that given a Boolean
n × n matrix, multiplying it with n Boolean vectors given online requires n3−o(1) time, in
the Word-RAM model. There is no known relationship between the APSP conjecture and the
Online Boolean Matrix-Vector Product conjecture, so one may be true even if the other fails.
It is not hard to embed Boolean product into (min,+)-product, and hence our conjecture is a
weakening of both of these conjectures simultaneously, making ours very believable.

I Conjecture III (3-SUM Conjecture). There exists a constant q, so that given three size-n
sets A, B, C of integers in [−nq, nq], deciding whether there exist a ∈ A, b ∈ B, c ∈ C such
that a+ b+ c = 0 requires n2−o(1) time in the word-RAM model with O(logn) bit words.

I Remark 3. The 3-SUM Conjecture was the first attempt to address fine-grained complexity,
back in 1995 [13]. By a standard hashing trick, we can assume q ≤ 3 + δ for any δ > 0.3 [26].
It remains open despite several slightly subquadratic algorithms [4, 6, 18].

We can now state our lower bounds conditioned on the conjectures above, whose proofs
are in Section 2. As in our conjectures above, throughout the paper, we assume that we are
working in the word-RAM model with word size w = Θ(log max{n,m}), where n denotes
the size of the data structure problem and m denotes the length of the update sequence
(timeline).

SWAT 2018

33:4 Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

I Theorem 1. There is a data structure problem that has an O(n1+o(1))-time partially
retroactive data structure, but conditioned on Conjecture I, requires Ω(n2−o(1)) time for fully
retroactive queries when m = Θ(n2).

I Theorem 2. There is a data structure problem that has an O(logn)-time partially retro-
active data structure, but conditioned on Conjecture II, requires Ω(n1−o(1)) time for fully
retroactive queries when m = Θ(n2).

I Theorem 3. There is a data structure problem that has an O(
√
n)-time partially retroactive

data structure, but conditioned on Conjecture III, requires Ω(n1−o(1)) time for fully retroactive
queries when m = Θ(n).

Our Results: Matching Upper bound

The three theorems above show that improving the general dependence on
√
m is impossible

based on any of these three conjectures. But we may hope to have a better data structure
when m� n2. In fact, we show in Section 3 that this is possible, for any “reasonable” data
structure, by establishing the following theorem:

I Theorem 4. Suppose a data structure of size n satisfies the following conditions:
1. There is a sequence of O(n) queries to extract the whole state3 S from it.
2. Given a state S of size n, there is a sequence of O(n) operations to update the data

structure from empty initial state to S.
3. It is partially retroactive with operation time Top(n,m).
Then the corresponding problem has an amortized fully retroactive data structure with operation
time O

(
min{

√
m,n logm} · Top(n,m)

)
.

I Remark 4. The data structure of Theorem 4 is similar to the data structure described in
[9, Section 2.2].

Combining the above four theorems, we conclude that under reasonable conditions, the
optimal gap between partial and full retroactivity is Θ(min{

√
m,n}), up to mo(1) factors,

for any n and m.

Related Work

The field of fine-grained complexity studies the exact running time for problems in P and
beyond, and proves many lower bounds for data structure problems conditioned on various
conjectures [25, 3, 19, 22, 1, 20, 16]. Look at the recent survey [26] for a summary of the
known results in fine-grained complexity. We mention two of the related papers. Building
on work by Patrascu [25] who focused on the 3-SUM conjecture, Abboud and Vassilevska
W. [3] proved hardness for data structure problems under a variety of hypotheses: SETH,
3-SUM, APSP etc. [3] introduced SETH as a hardness hypothesis for data structure problems
and obtained SETH-hardness for the following dynamic problems: maintaining under edge
updates (insertions or deletions) the strongly connected components of a graph, the number
of nodes reachable from a fixed source, a 1.3-approximation of the diameter of the graph,
or whether there is (s, t) ∈ S × T such that s can reach t for two fixed node sets S and
T . Henzinger et al. [19] introduces the Online Matrix-Vector Multiplication Conjecture,
and shows that it implies tight hardness result for subgraph connectivity, Pagh’s problem,
d-failure connectivity, decremental single-source shortest paths, and decremental transitive
closure.

3 The state of a data structure is a description of all data it currently stores.

L. Chen, E. Demaine, Y. Gu, V. Vassilevska Williams, Y. Xu, and Y. Yu 33:5

2 Lower Bounds

In this section, we first give a data structure framework, which eases the construction of our
separation, and then we prove Theorem 1, Theorem 2, and Theorem 3.

2.1 Data Structure Framework
We present a data structure framework which turns out to be easy for partially retroactive
data structures, but hard for their fully retroactive counterparts. In this framework, a data
structure D maintains several lists, and answers a certain question on them. The formal
definition is given below.

I Framework 1 (Data Structure Problem PF). In our data structure problem PF . We are
required to maintain a constant number of lists consisting of items from an entry set E.
Denote the lists as L1,L2, . . . ,Lk, and F is a function defined on these lists.

We can view each list Li as a mapping from N to E and initially every list maps all
indices to the idle symbol ⊥. We use L[a] to denote the a-th element of the list L, and we
measure the size of a list L (denoted by |L|) by the number of a’s such that L[a] 6=⊥. The
size of the data structure is then measured by sum of the sizes of all its lists.4

There are two types of operations.
set-element(Li, a, e): Set Li[a] = e.
F -evaluation: Evaluate F on the current maintained lists L1,L2, . . . ,Lk.

The key property for the problem PF is that, once we have a data structure DF for it, it
supports partially retroactive queries with essentially no overhead.

I Lemma 1. Suppose there is a data structure DF for the data structure problem PF with
update time TU and query time TQ. Then there is a partially retroactive data structure Dpart

F

for problem PF with update time TU +O(logm) and query time TQ.

Proof. Our partially retroactive data structure Dpart
F simply simulates an instance of the

regular structure DF which represents the current version of the data structure. Whenever
there is an update in the history, it could be either inserting or deleting an operation
set-element(Li, a, e) at time t, it only affects the a-th element in Li of the current version of
the data structure DF .

Therefore, we can use a BST to organize all set-element operations on each location of
each list in the chronological order. We update the corresponding BST on the a-th element
of list Li when dealing with insertion or deletion of an operation set-element(Li, a, e) in the
history. When the latest set-element changes in the BST (or the BST becomes empty), we
update the corresponding value in DF . And the query operation is equivalent to the same
query operation on the current data structure DF . The time cost is the usual time cost of
BST. J

2.2 Lower Bound from SIZE(2o(n)) Circuit SAT
Now we are ready to prove our lower bounds. First we prove Theorem 1, which we repeat
here for completeness:

4 A list can also be viewed as a dictionary over integers. We view them as lists because, in our construction,
it is much more convenient to do so.

SWAT 2018

33:6 Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

I Reminder: Conjecture I. In the Word-RAM model with O(logn) bit words, it takes
2n−o(n) time to solve Circuit SAT on n-input circuits of size 2o(n).

I Reminder: Theorem 1. There is a data structure problem that has an O(n1+o(1))-time
partially retroactive data structure, but conditioned on Conjecture I, requires Ω(n2−o(1)) time
for fully retroactive queries when m = Θ(n2).

Proof. Let d = no(1). We use the entry set

E := Cd × {0, 1}≤d,

where Cd is the set of descriptions of all circuits of size at most d, and {0, 1}≤d is the set of
binary strings of length at most d. These descriptions take at most O(poly(d)) = no(1) bits.
Therefore, an item from E consists of no(1) bits. Denote this number by d′.

Consider the data structure problem PF (SAT) with respect to two lists L1,L2 of items in
E and the function F (SAT) defined on them as follows. F (SAT)(L1,L2) = 1 if the following
holds:

There exist a and b with L1[a] = (C1, x1) 6=⊥ and L2[b] = (C2, x2) 6=⊥ such
that
C1 = C2;
C2 is a valid description of a circuit of size at most d with exactly |x1|+ |x2|
bits of input;
C2(x1, x2) = 1.

F (SAT)(L1,L2) = 0 otherwise. We say a pair (C1, x1) and (C2, x2) is good if they satisfy the
conditions above.

Let ` := (|L1|+ |L2|). The size of the whole structure is n = d′`.

Partially Retroactive Upper Bound. In order to maintain F (SAT)(L1,L2), we keep a
counter nSAT recording the number of pairs a and b such that L1[a] and L2[b] is a good pair.
Whenever we modify an element in lists L1 or L2, it takes O(n1+o(1)) time to update the
counter nSAT.

Now, since we have an O(n1+o(1)) update time algorithm for PF (SAT) , by Lemma 1, it
extends to an algorithm for the partially retroactive version.

Fully Retroactive Lower Bound. Given a circuit C of size 2o(u) with u inputs. Let
` = 2u/4 be the size of the lists in the data structure (assuming u is divisible by 4 for
simplicity).

Let A and B be two identical lists of entries in E with size 2u/2 = `2, such that the i-th
element of A and B is (C,wi), where wi is the i-th length u/2 binary string in lexicographic
order. Then we divide A and B into ` = 2u/4 groups of equal size, and denote them by
A1, A2, . . . , A` and B1, B2, . . . , B` correspondingly, where each Ai and each Bi is a list of
size `.

The circuit C is satisfiable if and only if there exists a ∈ A and b ∈ B such that a and b
is a good pair. Consider the following operation sequences:

First, for each k ∈ [`], we add an operation set-element(L1, k,⊥). We denote the operation
time by tk.
Next for each j ∈ [`], we add an operation set-element(L2, k, Bj [k]) for each k ∈ [`]. We
denote the time right after adding the last operation for each j (set-element(L2, `, Bj [`]))
by qj .

L. Chen, E. Demaine, Y. Gu, V. Vassilevska Williams, Y. Xu, and Y. Yu 33:7

Now, for each i ∈ [`], we replace the operation on time tk by an operation set-element(L1,

k, Ai[k]) for each k ∈ [`], and after that, we make fully retroactive query F (SAT)-evaluation
at time qj for each j ∈ [`]. From the definition of F (SAT), it tells us whether there exists
a ∈ Ai, b ∈ Bj such that a and b is a good pair, for each i, j ∈ [`].

The whole procedure consists of m = Θ(`2) = O(n2) operations. Conditioning on
Conjecture I, the whole sequence takes at least 2u(1−o(1)) = `4−o(1) = n4−o(1) time, which
means a fully retroactive operation takes at least amortized Ω(n2−o(1)) time, and completes
the proof. J

2.3 Lower Bounds from Online (min, +)-product
Next we prove Theorem 2, which we recap here for completeness:

I Reminder: Conjecture II. Online (min,+) product between an integer n× n matrix and
n length-n vectors requires n3−o(1) time in the word-RAM model with O(logn) bit words.
That is, given an integer matrix A ∈ Zn×n, and n vectors v1, v2, . . . , vn which are revealed
one by one, we wish to compute the (min,+)-product

A � v :=
(

n
min
k=1

(A1,k + vk),
n

min
k=1

(A2,k + vk), . . . ,
n

min
k=1

(An,k + vk)
)

between A and each of the vis. We get to access vi+1 only after we have output A � vi. The
conjecture asserts that the whole computation requires n3−o(1) time.

I Reminder: Theorem 2. There is a data structure problem that has an O(logn)-time
partially retroactive data structure, but conditioned on Conjecture II, requires Ω(n1−o(1))
time for fully retroactive queries when m = Θ(n2).

Proof. Let c be a constant such that all entries from A and all vi’s lie in [0, nc].
Now, consider the data structure problem PF (min,+) with respect to two lists L1,L2 and

the function F (min,+) defined on them as

F (min,+)(L1,L2) := min
a:L1[a] 6=⊥,L2[a] 6=⊥

(L1[a] + L2[a]) .

The entry set E here is the integers in [0, nc].

Partially Retroactive Upper Bound. Clearly, the operations in PF (min,+) can be sup-
ported in O(polylog(n)) time: we use a priority queue to maintain the sums L1[a] + L2[a]
for all the valid a’s, and update the priority queue correspondingly after each set-element
operations. Therefore, by Lemma 1, we know the update/query operations in the partially
retroactive version of PF (min,+) can be supported in O(polylog(n) + logm) time.

Fully Retroactive Lower Bound. Let a1, a2, . . . , an be the n rows of A, and v be a vector.
Computing the (min,+) product of A and v is equivalent to compute

(ai � v) :=
n

min
k=1

(ai,k + vk)

for each i ∈ [n].
We are going to show that a fully retroactive algorithm for PF (min,+) can be utilized to

compute (ai � vj) for each i, j ∈ [n] in an online fashion.
Consider the following operation sequences. First we add set-element(L1, k, 0) for each

k ∈ [n]; then for each j ∈ [n], we add set-element(L2, k, aj,k) for each k ∈ [n]. We use tj to

SWAT 2018

33:8 Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

denote the time right after adding the operation set-element(L2, n, aj,n), i.e., the time we
have just set L2 to represent vector aj .

Then for each i ∈ [n], we delete the first n operations in the history (that is, we clear all
the set-element operations on L1); and then we add set-element(L1, k, v

i
k) for each k ∈ [n]

at the beginning of the operation sequence (that is, we set L1 to represent the vector vi);
next we make a fully retroactive query F (min,+)-evaluation at the time tj for each j ∈ [n]. It
is easy to see that querying at time tj gives us the value of (aj � vi). So, after performing
the above procedure for vi, we have calculated the (min,+) product between A and vi.

The size of data structure is Θ(n), and there are m = Θ(n2) operations in total. Hence,
conditioned on Conjecture II, any fully retroactive data structure running on the above
algorithm takes at least amortized n1−o(1) time for either update or query operation. J

2.4 Lower Bounds from 3-SUM
Next, we prove Theorem 3, which we recap here for completeness:

I Reminder: Conjecture III (3-SUM Conjecture). There is a constant q such that, given
three size-n sets A, B, C of integers in [−nq, nq], deciding whether there exist a ∈ A, b ∈ B,
c ∈ C such that a+ b+ c = 0 requires n2−o(1) time in the word-RAM model with O(logn) bit
words.

I Reminder: Theorem 3. There is a data structure problem that has an O(
√
n)-time

partially retroactive data structure, but conditioned on Conjecture III, requires Ω(n1−o(1))
time for fully retroactive queries when m = Θ(n).

Proof. Consider the data structure problem PF (3SUM) with respect to three lists L1,L2,L3
and the function F (3SUM) defined on them as follows

F (3SUM)(L1,L2,L3) :=


1 |L2|2 ≤ |L1|, |L3|2 ≤ |L1|, and there exist a, b, c such that
L1[a] 6=⊥, L2[b] 6=⊥, L3[c] 6=⊥ and L1[a] + L2[b] + L3[c] = 0;

0 otherwise.

Let n :=
3∑

i=1
|Li| be size of the whole structure, and ni := |Li|.

Partially Retroactive Upper Bound. We use L̃2 (resp. L̃3) to denote the sublists
consisting of the first (at most)

√
n1 elements of L2 (resp. L3). Then by maintaining a BST

for each list, an operation on L2 (resp. L3) can be easily reduced to at most one operation
on L̃2 (resp. L̃3). Since whenever L̃2 6= L2 or L̃3 6= L3, F (L1,L2,L3) is defined to be zero,
we can pretend to work with L̃2 and L̃3.

We build a hash table H storing all the elements in L1, and every value of the form
−a− b for a ∈ L̃2, b ∈ L̃3. Using this table, we can count and maintain the number of the
triples (a, b, c) such that L1[a] + L̃2[b] + L̃3[c] = 0. We denote this number by ntriple.

Whenever we modify the list L1, we make the corresponding change on H. This may also
cause O(1) additional operations on L̃2 and L̃3, as n1 can be larger or smaller. And when we
modify the list L̃2 or L̃3, this causes updating at most max(|L̃2|, |L̃3| = O(

√
n) values in H.

Since we have an O(
√
n) update time algorithm for PF (3SUM) , by Lemma 1, it extends to

an algorithm for the partially retroactive version.

Fully Retroactive Lower Bound. Let A, B, C be three integer lists of size n. For
convenience we assume that n is a square number. We divide B and C into

√
n groups of

L. Chen, E. Demaine, Y. Gu, V. Vassilevska Williams, Y. Xu, and Y. Yu 33:9

equal size, and denote them by B1, B2, . . . , B√n and C1, C2, . . . , C√n correspondingly. Then
each Bi and each Ci is a list of size

√
n.

Consider the following operation sequence.
First, for each i ∈ [n], we add an operation set-element(L1, i, A[i]), that is, we set the list
L1 to represent the setA; then for each k ∈ [

√
n], we add an operation set-element(L2, k, 0),

whose operation time is denoted by tk.
Next for each j ∈ [

√
n], we add an operation set-element(L3, k, Cj [k]) for each k ∈ [

√
n].

We denote the time right after adding the operation set-element(L3,
√
n,Cj [

√
n]) as time

qj .
Now, for each i ∈

[√
n
]
, we replace the operation on time tk by an operation set-element(L2,

k, Bi[k]). After that, we make a fully retroactive query F 3SUM-evaluation at time qj for
each j ∈

[√
n
]
. From the definition of F 3SUM, the queries tell us whether there exists

a ∈ A, b ∈ Bi, c ∈ Cj such that a + b + c = 0 for each i, j ∈
[√
n
]
, and thus solve the

3SUM problem.

The data structure above has size Θ(n), and the whole procedure consists of m = Θ(n)
operations. Therefore, conditioned on Conjecture III, either update or query for a fully
retroactive data structure for problem PF (3SUM) takes amortized Ω(n1−o(1)) time. J

3 Upper Bounds

In this section, we prove Theorem 4:

I Reminder: Theorem 4. Suppose a data structure of size n satisfies the following conditions:
1. There is a sequence of O(n) queries to extract the whole state S from it.
2. Given a state S of size n, there is a sequence of O(n) operations to update the data

structure from empty initial state to S.
3. It is partially retroactive with operation time Top(n,m).
Then the corresponding problem has an amortized fully retroactive data structure with operation
time O

(
min{

√
m,n logm} · Top(n,m)

)
.

Proof. We use a weight-balanced binary tree (WBT) T to maintain the whole operation
sequence [14]. The subtree of each node u corresponds to an interval of operations Su in the
whole operation sequence. We can build a partially retroactive data structure Du on Su as
augmented information in node u. One property of WBT is that when we insert or delete
its nodes, the amortized total number of element changes to all Su is only O(logm). More
formally, if Su is the set of operations before a node insertion or deletion, and S′u is the set
of operations after the insertion or deletion, then WBT ensures∑

u

|Su \ S′u|+ |S′u \ Su|

is amortized O(logm). For each element change in Su, we can update Du using the partially
retroactive data structure in O(Top(n,m) · logm) amortized time per insert/delete of an
operation.

For each fully retroactive query, we first extract the corresponding prefix of the operation
sequence from the WBT. By properties of WBT, in O(logm) time, we can get k = O(logm)
nodes, u1, u2, . . . , uk, such that the concatenation of these Sui

’s is exactly the prefix we are
asking. Next we maintain a data structure state S initialized as the empty state. We go
through each ui in order: first append O(n) operations at the beginning of Du to set the
initial state inside Du to be S, and then make O(n) queries on Du, to extract its final state,

SWAT 2018

33:10 Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

and set S to be that state. By a simple induction, we can see that after we finished processing
node ui, the final state of Dui

corresponds to the state resulting from the concatenation of
Su1 , Su2 , . . . , Sui

. Therefore, we can then query Duk
to get the answer we want. Finally, we

delete all the operations we added in those Du, so they can be used for the future queries.
To summarize, we invoke partially retroactive update/query O(n · logm) times, and hence
the whole query takes O(n · logm · Top(n,m)) time.

Demaine et al. [7] showed a reduction with O(
√
m) overhead. Roughly, their transforma-

tion maintains
√
m equally distributed checkpoints, and for each checkpoint, they maintain

a partially retroactive data structure for the prefix up to that checkpoint. For update, they
need to update all the

√
m partially retroactive data structures; for query of a prefix, they

first find the closest checkpoint, adding or deleting operations to this checkpoint in order for
it to match the prefix, and then do the query. For both update and query, there are O(

√
m)

calls to the partially retroactive data structure, hence the O(
√
m) overhead.

Combining these two transformations gives an O(min{
√
m,n · logm}) overhead. There

is a subtle issue here as this requires us to know n and m beforehand. We can avoid that
by using the standard technique that maintains two structures D1 and D2 simultaneously,
one with

√
m overhead and one with n · logm overhead. We simulate D1 and D2 in an

interleaving fashion, and answer the query as soon as one of them gives its answer. J

4 Discussion

Many lower bounds for algorithm problems are based on plausible conjectures from fine-
grained complexity theory. Besides the three canonical ones (SETH, APSP, 3-SUM) mentioned
above, some interesting hardness candidates include Boolean Matrix Multiplication [27],
Online Matrix Vector Multiplication [19], and the Triangle Collection problem [2]. Their
relationship and applications are discussed in detail in [26].

Our lower bound constructions reveal that fully retroactive queries facilitate batched
pair evaluation. We believe this technique can prove useful for other data structure lower
bounds, especially dynamic ones. Some examples include the total update time for partially-
dynamic algorithms, worst-case update time, query/update time tradeoffs [19], and space/time
tradeoffs [16].

References
1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In Proceedings of the IEEE 57th Annual Symposium on Foundations of
Computer Science, pages 477–486, 2016.

2 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, pages 41–50, New York, NY,
USA, 2015. ACM.

3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proceedings of the IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 434–443, 2014.

4 Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for 3SUM.
Algorithmica, 50(4):584–596, 2007.

5 Guy E. Blelloch. Space-efficient dynamic orthogonal point location, segment intersection,
and range reporting. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 894–903, 2008.

L. Chen, E. Demaine, Y. Gu, V. Vassilevska Williams, Y. Xu, and Y. Yu 33:11

6 Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median,+)-convolution,
and some geometric 3sum-hard problems. In Proceedings of SODA 2018, 2018. to appear.

7 Erik D. Demaine, John Iacono, and Stefan Langerman. Retroactive data structures. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 274–
283, 2004.

8 Erik D. Demaine, John Iacono, and Stefan Langerman. Retroactive data structures. ACM
Transactions on Algorithms, 3(2):13:1–13:21, 2007.

9 Erik D. Demaine, Tim Kaler, Quanquan Liu, Aaron Sidford, and Adam Yedidia. Polylog-
arithmic fully retroactive priority queues via hierarchical checkpointing. In Proceedings of
the 14th International Symposium on Workshop on Algorithms and Data Structures, pages
263–275. Springer, 2015.

10 Matthew T. Dickerson, David Eppstein, and Michael T. Goodrich. Cloning voronoi dia-
grams via retroactive data structures. In Proceedings of the 18th Annual European Sym-
posium on Algorithms, pages 362–373, 2010.

11 James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

12 Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive
closure. In 12th Annual Symposium on Switching and Automata Theory, East Lansing,
Michigan, USA, October 13-15, 1971, pages 129–131, 1971.

13 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Computational Geometry: Theory and Applications, 5:165–185, 1995.

14 Igal Galperin and Ronald L. Rivest. Scapegoat trees. In Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, pages 165–174. Society for Industrial and
Applied Mathematics, 1993.

15 Yoav Giora and Haim Kaplan. Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Trans. Algorithms, 5(3):28:1–28:51, 2009.

16 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower
bounds for space/time tradeoffs. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger
Sack, editors, Algorithms and Data Structures, pages 421–436, Cham, 2017. Springer Inter-
national Publishing.

17 Michael T. Goodrich and Joseph A. Simons. Fully retroactive approximate range and
nearest neighbor searching. In Proceedings of the 22nd International Symposium on Al-
gorithms and Computation, pages 292–301, 2011.

18 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Pro-
ceedings of the IEEE 55th Annual Symposium on Foundations of Computer Science, pages
621–630, 2014.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the 47th Annual ACM Symposium on
Theory of Computing, pages 21–30, 2015.

20 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional hardness for sensitivity problems. arXiv preprint arXiv:1703.01638, 2017.

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

22 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1272–1287, 2016.

23 Yakov Nekrich. Searching in dynamic catalogs on a tree. CoRR, abs/1007.3415, 2010.
arXiv:1007.3415.

SWAT 2018

http://arxiv.org/abs/1007.3415

33:12 Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

24 Salman Parsa. Algorithms for the Reeb Graph and Related Concepts. PhD thesis, Duke
University, 2014.

25 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachu-
setts, USA, 5-8 June 2010, pages 603–610, 2010.

26 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, 2018. To appear.

27 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proceedings of the 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, FOCS ’10, pages 645–654, Washington, DC, USA,
2010. IEEE Computer Society.

	p00-frontmatter
	Preface

	p01-amato
	p02-friedler
	p03-moitra
	p04-abdelkader
	Introduction
	Preliminaries
	Macbeath regions
	Delone sets and the Hilbert metric

	Macbeath regions as Delone sets
	Varying the scale
	Size bound

	Macbeath ellipsoids
	Approximate polytope membership (APM)

	p05-agarwal
	Introduction
	NP-hardness
	A Simple (1+epsilon)-Approximation Algorithm
	A Faster (1+epsilon)-Approximation Algorithm
	An O(1)-Approximation Algorithm
	Proof of Correctness
	An (1+epsilon)-Approximation Algorithm

	Shortest Path Queries
	Stochastic Shortest Path

	p06-ahn
	Introduction
	Our results

	Preliminaries
	Computing All Events for a Sweep-Line-Like Approach
	Algorithm Based on a Sweep-Line-Like Approach
	Quickest Pair-Visibility Query Problem
	Binary Search for the Path-Events
	Binary Search for the Boundary-Events
	Binary Search for the Bend-Events

	p07-bampis
	Introduction
	Min-MPM for bipartite graphs
	Metric-Min-MPM
	APX-hardness for 2 time steps
	A 3-approximation algorithm for 2 time steps
	A 3-approximation algorithm for 3 time steps

	Max-MPM
	APX-hardness for 2 time steps
	Constant factor approximation algorithms

	Concluding remarks

	p08-barba
	Introduction
	Preliminaries
	Cactus domains and general properties
	Characterization of geodesically convex sets
	Computing the geodesic convex hull

	p09-bentert
	Introduction
	Display with Soft Polytomies
	Single-Labeled Trees
	Tree Containment in Multilabeled Trees
	2-Labeled Trees

	Conclusion

	p10-biedl
	Introduction
	Related results
	Our contribution
	Outer-string graphs and apices

	Exponential-sized Outer-string Representations
	Monotone string representations
	Independent set in monotone outer-string graphs
	Line-grounded monotone string graphs
	Strip-grounded monotone string graphs

	Conclusions

	p11-biniaz
	Introduction
	Related Work
	Our Contribution
	Preliminaries

	Minimum Number of Flips
	Points in Convex Position
	Bichromatic Matchings
	Conclusions

	p12-bose
	Introduction
	Computing 1-Bend 2-Sided Boundary Labelings
	Technical Background
	Algorithm

	Relating Boundary Labeling to Outerstring Graphs
	Conclusion

	p13-bose
	Introduction
	Related work
	The model

	Background, notation, and terminology
	General notation
	Slabs and the three regions of an edge
	Flow diagrams

	1-Gatherability
	2-Gatherability

	p14-bose
	Introduction
	Iterative Guarding
	Guarding by Coloring
	Distant Quadrilaterals
	Conclusion

	p15-chakraborty
	Introduction
	Preliminaries
	Max-flow and farthest min-cut

	Farthest Min-cut of Shortest Path Subgraph
	Computing farthest min-cut of shortest path subgraph
	Disjoint shortest path lemma

	Construction of k-WTSS and Locality Lemma
	Construction of k-WTSS(t)
	Description of the algorithm
	Correctness proof
	Bound on the size of E(t)

	Lower Bound Results for the Size of k-WTSS

	p16-chen
	Introduction
	Previous works on dynamic DFS
	Our results
	Organization of the Paper

	Preliminaries
	Handling batch insertions
	Dealing with queries in BatchInsert
	Answering a single query in O(log n) time
	An O(n^2)-space data structure
	An O(m log n)-space data structure

	p17-elzein
	Introduction and Motivation
	Preliminaries
	One-Dimensional Point Reporting
	Tree Representation
	Sparse Arrays

	Semi-Dynamic Succinct One-Dimensional Point Reporting
	Fully-Dynamic Succinct One-Dimensional Point Reporting
	Fully-Dynamic Structure with Amortized Updates
	Fully-Dynamic Structure with Worst Case Updates

	Succinct Static One-Dimensional Point Reporting With Fast Construction Time

	p18-elbassioni
	Introduction
	The vertex enumeration problem
	VE for 0/1-Polyhedra Associated with 0/1-Totally Unimodular Matrices

	Notation and Preliminaries
	Hypergraphs and Transversals
	Polyhedra
	Totally Unimodular Matrices
	0/1-Network matrices
	Decomposition of 0/1-totally unimodular matrices

	Decomposition of the hypergraph transversal problem
	2-sum decomposition
	3-sum decomposition - case 1
	3-sum decomposition - case 2

	p19-feldmann
	Introduction
	Related work

	The reduction
	Properties of the constructed graph
	An algorithm for low doubling metrics

	p20-filtser
	Introduction
	Preliminaries
	Our results

	DFDS under translation
	Translation in 1D
	A general scheme for BOP
	MUPP and WDFD under translation in 1D
	Discussion

	p21-fomin
	Introduction
	Partial complementation to triangle-free graph classes
	Complement to degenerate graphs
	Complement to M-partition
	Partial complementation to graph classes of bounded clique-width
	Hardness of partial complementation to r-regular graphs
	Conclusion and open problems

	p22-gayen
	Introduction
	Our Results
	Previous work

	Background and definitions
	The models
	Smooth functions and smooth histograms
	Notation

	A transfer theorem for smooth functions
	Better and simpler algorithm for symmetric smooth functions

	Applications: Computing F_p and Clustering
	Computing F_p
	Metric clustering
	Metric k-median clustering
	Metric k-center clustering

	Proofs of clustering results

	p23-golovach
	Introduction
	Preliminaries
	Parameterized complexity of Strong F-closure
	Parameterized complexity of Strong Triadic Closure
	Concluding remarks

	p24-hanaka
	Introduction
	Definitions and Preliminaries
	Hardness of Approximation and W-hardness
	Chordal Graphs
	SETH Lower Bound for Treewidth
	Algorithm for Clique-Width
	W-hardness for Clique-Width

	p25-huang
	Introduction
	Our Contributions
	Other Related Work

	Formulate SVM as Saddle Point Optimization
	Saddle Point Optimization Algorithms for SVM
	Distributed SVM

	p26-huang
	Introduction
	Lower Bounds on Shortcutting Digraphs
	Using O(n) Shortcuts
	Using O(m) Shortcuts

	Lower Bounds on Additive Spanners and Emulators
	O(n)-sized Spanners
	O(n)-sized Emulators

	Conclusion

	p27-ito
	Introduction
	Preliminaries
	Reconfiguration of colorable sets
	Graph classes

	Shortest reconfiguration in interval graphs
	The distance between c-colorable sets
	Computing the distance in linear time
	Finding a shortest reconfiguration sequence in linear time

	Split graphs
	Polynomial-time algorithm for fixed c
	PSPACE-completeness when c is a part of input

	Concluding remarks

	p28-kowalik
	Introduction
	Preliminaries
	Hardness of List Edge Coloring in Multigraphs
	Hardness of List Edge Coloring in Simple Graphs
	Intuition
	Construction
	Structure of coloring
	Equivalence
	Proof of Theorem 2

	Conclusions and further research

	p29-mitzenmacher
	Introduction
	The Threshold Question
	Terminology

	Outline of the Argument
	No small Hall-witness exists
	The significance of Hall-witnesses
	Conclusion

	p30-nguyen
	Introduction
	Greedy Algorithm

	p31-pilz
	Introduction
	Motivation
	Results

	NP-hardness of Linked Planar 3-SAT
	Further variants
	Positive Planar 1-in-3-SAT
	Exactly three distinct variables per clause
	Monotonicity restrictions

	Remark: different cycles through clauses and variables
	Properties forcing satisfiability

	p32-rudoy
	Introduction
	Example of how to use TRVB: Hamiltonicity in max-degree-3 square grid graphs
	Problem variants
	Diagram conventions

	Planar {k},{4}-TRVB is NP-hard for any k>=4
	Planar Hamiltonicity in Directed Graphs with all in- and out-degrees 2 is NP-hard
	Reduction to Planar {k},{4}-TRVB for any k>=4

	Planar TRVB and TRVB are NP-complete with high-degree breakable vertices
	Graph TRVB is NP-complete with high-degree breakable vertices
	Planar Graph TRVB is NP-hard with both low-degree vertices and high-degree breakable vertices
	Planar Graph TRVB is polynomial-time solvable without small vertex degrees
	Proof idea

	TRVB and the Hypergraph Spanning Tree problem

	p33-yu
	Introduction
	Lower Bounds
	Data Structure Framework
	Lower Bound from SIZE(2^o(n)) Circuit SAT
	Lower Bounds from Online (min,+)-product
	Lower Bounds from 3-SUM

	Upper Bounds
	Discussion

