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Preface

The papers in this volume were accepted for presentation at the 33rd Computational
Complexity Conference (CCC 2018), held June 22–24, 2018 in San Diego, California. The
conference is organized by the Computational Complexity Foundation in cooperation with
the European Association for Theoretical Computer Science (EATCS) and the ACM Special
Interest Group on Algorithms and Computation Theory (SIGACT). CCC 2018 is sponsored
by Microsoft Research.

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 74 submissions the program committee selected 28 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation and especially its president Dieter van Melkebeek for extensive advice and
assistance; Ryan O’Donnell and David Zuckerman for sharing their knowledge as prior
PC chairs for CCC; Andrei Krokhin for contributing two one-hour tutorials on the topic
of “Constraints, Consistency and Complexity”; and Michael Wagner for coordinating the
production of these proceedings.
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Abstract
We propose a new framework for constructing pseudorandom generators for n-variate Boolean
functions. It is based on two new notions. First, we introduce fractional pseudorandom gener-
ators, which are pseudorandom distributions taking values in [−1, 1]n. Next, we use a fractional
pseudorandom generator as steps of a random walk in [−1, 1]n that converges to {−1, 1}n. We
prove that this random walk converges fast (in time logarithmic in n) due to polarization. As an
application, we construct pseudorandom generators for Boolean functions with bounded Fourier
tails. We use this to obtain a pseudorandom generator for functions with sensitivity s, whose seed
length is polynomial in s. Other examples include functions computed by branching programs
of various sorts or by bounded depth circuits.

2012 ACM Subject Classification Theory of computation→ Pseudorandomness and derandom-
ization

Keywords and phrases AC0, branching program, polarization, pseudorandom generators, ran-
dom walks, Sensitivity

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.1

Acknowledgements We thank Avi Wigderson and David Zuckerman for various stimulating
discussions during the course of our work.

1 Introduction

Pseudorandom generators (PRG) are widely studied in complexity theory. There are several
general frameworks used to construct PRGs. One is based on basic building blocks, such
as small bias generators [15, 2], k-wise independence, or expander graphs [10]. Another
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1:2 Pseudorandom Generators from Polarizing Random Walks

approach is based on hardness vs randomness paradigm, which was introduced by Nisan and
Wigderson [17] and has been very influential. Many of the hardness results used in the latter
framework are based on random restrictions, and the analysis of how they simplify the target
class of functions. The number of papers in these lines of work is on the order of hundreds,
so we do not even attempt to give a comprehensive survey of them all.

The purpose of this paper is to introduce a new framework for constructing PRGs based
on polarizing random walks. We develop the theory in this paper and give a number of
applications; perhaps the most notable one is a PRG for functions of sensitivity s whose seed
length is polynomial in s. But, as this is a new framework, there are many questions that
arise, both technical and conceptual, and we view this paper as mostly preliminary, with the
hope that many more applications would follow.

1.1 PRGs and fractional PRGs
Let f : {−1, 1}n → {−1, 1} be a Boolean function. The standard definition of a PRG for f
with error ε > 0, is a random variable X ∈ {−1, 1}n such that

|EX [f(X)]− EU [f(U)]| ≤ ε,

where U denotes a random variable with the uniform distribution in {−1, 1}n. We relax this
definition by introducing a new object called a fractional PRG, defined in the next paragraph.

To prepare the notation for the definition, identify f with a real multi-linear polynomial,
namely its Fourier expansion. This extends f to f : Rn → R, although, we would only
be interested in inputs from [−1, 1]n. Observe that if x ∈ [−1, 1]n then f(x) = EX [f(X)]
where X ∈ {−1, 1}n is a random variable sampled as follows: for every i ∈ [n] sample
Xi ∈ {−1, 1} independently with E[Xi] = xi. In particular, f on [−1, 1]n is bounded, namely
f : [−1, 1]n → [−1, 1]. Also, f(0) = EU [f(U)]. The following is a key definition.

I Definition 1 (Fractional PRG). Let f : [−1, 1]n → [−1, 1] be multilinear. A fractional PRG
for f is a random variable X ∈ [−1, 1]n such that

|EX [f(X)]− f(0)| ≤ ε.

One trivial construction of a fractional PRG is X ≡ 0 but this is not going to be useful
for our purpose of constructing PRGs. To disallow such examples, we require each coordinate
of X to be far from zero with some noticeable probability. Formally, X ∈ [−1, 1]n is called
p-noticeable if E[X2

i ] ≥ p for all i = 1, . . . , n.
A good example to keep in mind is the following. Let G : {−1, 1}r → {−1, 1}n be a

(Boolean valued) function, and set X = pG(U), where U ∈ {−1, 1}r is uniform. Notice that
X is p2-noticeable. In this case we say X has seed length r. More generally, X has seed
length r if X = G(U) where G : {−1, 1}r → [−1, 1]n.

Fractional PRGs are easier to construct than standard PRGs, as they can take values in
[−1, 1]n. For example, assume that f has Fourier tails bounded in L1. That is, there exist
parameters a, b ≥ 1 for which∑

S⊂[n]:|S|=k

|f̂(S)| ≤ a · bk ∀k = 1, . . . , n.

We show (in Lemma 22) that if X ∈ {−1, 1}n is small-biased, then pX is a fractional PRG
for f with p ≈ 1/b. The reason is that this choice of p controls all the Fourier coefficients
of f with large Hamming weight, while X controls the ones with small weight. (In fact, to
optimize parameters one can choose X to be almost k-wise independent; see Lemma 22 for
details). In any case, note that pX is p2-noticeable as pX takes values in {−p, p}n.
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1.2 Fractional PRG as steps in a random walk
Let X ∈ [−1, 1]n be a fractional PRG for f with error ε. That is,

|EX [f(X)]− f(0)| ≤ ε.

The goal is to construct a random variable Y ∈ {−1, 1}n such that EY [f(Y )] ≈ f(0),
where the fractional PRG X provides a “small step" towards this approximation. If we can
combine these small steps in a way that they converge fast to {−1, 1}n, then we would be
done. To be a bit more precise, consider a random walk starting at 0 with the following
properties:
1. The value of f at each step typically does not change by too much.
2. The random walk converges fast to {−1, 1}n.

Observe that if we take X as the first step, then property 1 is satisfied for the first step.
Considering later steps leads to the following question: Given a point α ∈ [−1, 1]n, can we
find a random variable A = A(α,X) such that

|E[f(A)]− f(α)| ≤ ε,

and such that A takes values closer to Boolean values? We show that this is indeed the case
if we assume that X not only fools f , but also fools any possible restriction of f .

To formalize this, let F be a family of n-variate Boolean functions f : {−1, 1}n → {−1, 1}.
We say that F is closed under restrictions if for any f ∈ F , if we fix some inputs of f to
constants {−1, 1}, then the new restricted function is still in F . Most natural families of
Boolean functions studied satisfy this condition. Some examples are functions computed
by small-depth circuits, functions computed by bounded width branching programs, and
functions of low sensitivity.

We show that if X is a fractional PRG for such F , then it can be used to approximate
f(α) for any α ∈ [−1, 1]n. Define δα ∈ [0, 1]n by (δα)i = 1− |αi|. For x, y ∈ [−1, 1]n define
x ◦ y ∈ [−1, 1]n to be their coordinate-wise product, (x ◦ y)i = xiyi. Note that under this
definition, the sub-cube {α + δα ◦ y : y ∈ [−1, 1]n} is the largest symmetric sub-cube of
[−1, 1]n centered at α.

We show (Claim 15) that if X ∈ [−1, 1]n is a fractional PRG for F which is closed under
restrictions, then for any f ∈ F and any α ∈ [−1, 1]n it holds that

|E[f(α+ δα ◦X)]− f(α)| ≤ ε.

Technically, we need to also assume that X is symmetric, which means that Pr[X = x] =
Pr[X = −x] for all x. This is easy to achieve from any X which is not symmetric, for example
by multiplying X with a uniform bit (thus, increasing its seed length by 1 bit).

1.3 Polarization and fast convergence
Our next goal is to show fast convergence of the random walk to {−1, 1}n. To that end, we
need to analyze the following martingale:

Y1 = X1

Yi = Yi−1 + δYi−1 ◦Xi

where X1, X2, . . . are independent copies of a fractional PRG. We show that for some t not
too large, Yt is close to a point in {−1, 1}n. But why would that be true? This turns out to

CCC 2018



1:4 Pseudorandom Generators from Polarizing Random Walks

be the result of polarization in the random walk. It suffices to show this for every coordinate
individually.

So, let Z1, Z2, . . . ∈ [−1, 1] be independent random variables (which are the i-th coordinate
of X1, X2, . . . for some fixed i), and define the following one-dimensional martingale:

W1 = Z1

Wi = Wi−1 + (1− |Wi−1|)Zi.

Claim 17 shows that if (i) Zi is symmetric, and (ii) E[Z2
i ] ≥ p (which follows from our

assumption that the fractional PRG is p-noticeable), then it holds that

Pr[|Wt| ≥ 1− δ] ≥ 1− δ

for t = O(log(1/δ)/p). Setting δ = ε/n guarantees that with probability 1 − ε all the
coordinates of Yt are ε/n close to {−1, 1}. Then a simple argument shows that rounding the
coordinates gives a PRG with error O(ε), as desired.

We now state our main theorem.

I Theorem 2 (Main theorem, informal version of Theorem 12). Let F be a family of n-variate
Boolean functions that is closed under restrictions. Let X ∈ [−1, 1]n be a symmetric p-
noticeable fractional PRG for F with error ε. Set t = O(log(n/ε)/p) and let X1, . . . , Xt be
i.i.d. copies of X. Define the following random variables taking values in [−1, 1]n:

Y0 = 0; Yi = Yi−1 + δYi−1 ◦Xi i = 1, . . . , t.

Let G = sign(Yt) ∈ {−1, 1}n obtained by taking the sign of the coordinates in Yt. Then G is
a PRG for F with error (t+ 1)ε.

1.4 PRG for functions with bounded Fourier tails
As mentioned above, the families of Boolean functions that are fooled by our PRG include
ones that satisfy the following two properties: (i) being closed under restrictions; (ii) having
bounded L1 Fourier tails. Tal [20] showed that the latter condition follows from a widely
studied condition, that of bounded L2 Fourier tails. Thus, using existing bounds for L2
Fourier tails, we get that our PRG fools several classes of Boolean functions. Below we list
the results for error ε = O(1), and refer the reader to the corresponding claims for the details
of the full range of parameters:
1. Functions of sensitivity s: seed length O(s3 log logn). The best previous construc-

tion [9] required seed length sub-exponential in s (concretely, their dependence on s is
exp(
√
s)).See Corollary 24 for details.

2. Unordered read-once branching programs of width w: seed length O(log2w+1 n ·
log logn). This is quadratically worse than the best known PRG [5]. However, our PRG
construction does not utilize the branching program structure at all, except to obtain the
Fourier tail bounds. See Corollary 25 for details.

3. Permutation unordered read-once branching programs of width w: seed length
O(w4 logn · log logn). This improves the dependence on n quadratically compared to the
previous best PRG [18]. See Corollary 26 for details.

4. Bounded depth circuits: if f is computed by AC0 circuits of depth d and size poly(n),
our PRG has seed length O(log2d−1 n · log logn). This is quadratically worse than the
best known PRG [20]. See Corollary 27 for details.
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Other than the PRG for functions of low sensitivity, all the other PRGs are comparable
to the best known tailored PRG. However, the main message is that they are all the same
PRG. Our general theorem is the following.

I Theorem 3 (PRG for functions of bounded L1 Fourier tail, informal version of Theorem 23).
Let F be a family of n-variate Boolean functions closed under restrictions. Assume that there
exist a, b ≥ 1 such that for every f ∈ F ,∑

S⊂[n]:|S|=k

|f̂(S)| ≤ a · bk.

Then, for any ε > 0 there exists an explicit PRG X ∈ {−1, 1}n which fools F with error
ε > 0, whose seed length is O(log(n/ε)(log logn+ log(a/ε))b2).

We note again that by [20], Theorem 3 holds also if we instead assume a bound on the L2
Fourier tails (which are more common), namely if we assume that for every f ∈ F it holds
that ∑

S⊂[n]:|S|≥k

f̂(S)2 ≤ a · 2−k/b.

1.5 PRG for functions which simplify under random restriction

A major component in prior constructions of PRGs that are based on random restrictions is
finding a much smaller set of ‘pseudorandom retrictions’. Ajtai and Wigderson [1] proposed
such a PRG for low depth circuits based on Håstad’s switching lemma [8]. Many follow-up
works are based on this framework to build PRGs for various classes of functions including
low depth circuits, branching programs, low-sensitivity functions [21, 6, 18, 5, 9], and a major
component of the analysis is proving that the derandomized random restrictions work.

Our framework for constructing PRGs directly applies to function families that simplify
under random restrictions without the need to derandomize the restrictions. Let F be a
family of functions f : {−1, 1}n → {−1, 1} which are extended multilinearly to [−1, 1]n. Fix a
parameter 0 < p < 1 and define the p-averaged function of f , denoted fp : {−1, 1}n → [−1, 1],
as follows: sample A ⊂ [n] where Pr[i ∈ A] = p independently for i ∈ [n], and define

fp(x) = EA,U [f(xA, UAc)]

where xA ∈ {−1, 1}A is the restriction of the input x to the coordinates inA, and U ∈ {−1, 1}n
is independently and uniformly chosen. The crucial observation (Claim 28) is that for every
x ∈ {−1, 1}n it holds that

f(px) = fp(x).

Suppose now we have a standard PRG X for the class of p-averaged functions Fp = {fp :
f ∈ F}. Note a PRG for the p-random restriction of functions in F would do, as fp is a
convex combination of p-random restrictions of f (namely, averaging over U). Then, using
our observation above, this implies that X ′ = pX is a fractional PRG for the class F . Now
by using our framework of viewing this fractional PRG as a random walk step, one can derive
a standard PRG for F using O(log(1/ε)/p2) independent copies of X.

CCC 2018
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1.6 Fourier tails of low degree F2 polynomials
Viola [22] gave a construction of a pseudorandom generator which fools n-variate polynomials
over F2. The construction is the XOR of d independent small-bias generators. We wonder
whether our framework can be used to achieve similar bounds. In particular, we raise the
following problem: does the class of low-degree polynomials over F2 have bounded L1 Fourier
tails? It’s trivially true for d = 1 and it can be shown to hold for d = 2. However, to the
best of our knowledge nothing was known for d ≥ 3.

We show (see Theorem 29 for more details) that for any Boolean function f : {−1, 1}n →
{−1, 1} computed by a F2-polynomial of degree at most d, the following L1 Fourier tail
bound holds:∑
|S|=k

|f̂(S)| ≤ kk23dk ∀k = 1, . . . , n.

This bound however falls short of implying a PRG using our techniques, and we conjecture
that the correct bound is ckd, for some constant cd = 2O(d).

1.7 PRGs with respect to arbitrary product distributions
We note the following interesting generalization of our results that is almost direct from
our techniques. Consider the problem of ‘fooling’ a family of functions with respect to an
arbitrary product distribution D on {−1, 1}n (the uniform distribution being a special case).
More formally, given a distribution D on {−1, 1}n and a family of functions F , we say that
a random variable X is a PRG for F (with respect to D) if |E[f(D)]− E[f(X)]| ≤ ε.

We show a way to fool functions with respect to arbitrary product distributions.

I Corollary 4. Let F be a family of n-variate Boolean functions which is closed under
restrictions and let D be any product distribution on {−1, 1}n. Let X ∈ [−1, 1]n be a
symmetric p-noticeable fractional PRG for F with error ε and seed length `. Let t =
O(log(n/ε)/p). Then there exists an explicit PRG for F with respect to D with error tε and
seed length t`.

Proof sketch. If D is a product distribution on {−1, 1}n, then E[f(D)] = f(α), where
α = E[D] ∈ [−1, 1]n. Thus, we now start our random walk (defined by the fractional PRG)
from the point α instead of from 0, and the convergence follows from polarization in exactly
the same way. J

Thus all our PRG results in fact generalize to PRGs with respect to arbitrary product
distributions. To the best of our knowledge, we are not aware of any non-trivial PRGs
against arbitrary product distributions for the classes of functions we study. We wonder if
this notion of fooling arbitrary product distributions has interesting applications.

1.8 Related works
The line of research closest in spirit to our work, and which motivated our work, is that of
using random and pseudo-random restrictions to construct PRGs. A good example is [6]
which uses pseudo-random restrictions to construct PRGs. Our framework can be seen
as extending this, as we do not need to analyze pseudo-random restrictions; instead, we
analyze fractional PRGs, where the restriction happens automatically from the fractional
PRG structure, and no derandomization is necessary.
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Another line of work is the use of random walks in combinatorial optimization, for example
in the algorithmic versions of Spencer’s theorem [3, 12] and follow up works. It would be
interesting to see if polarization can be used to speed up random walks in combinatorial
optimization as well.

1.9 Open problems
As we give a new framework for constructing PRGs, there are many open problems that
arise, both conceptual and technical.

1.9.1 Early termination
Our analysis requires a random walk with t = O(log(n/ε)/p) steps, each coming from a
p-noticeable fractional PRG. We believe that for some natural families of functions shorter
random walks might also suffice, but we do not know how to show this. We discuss this
further in Section 7.

I Open problem 5. Find conditions on classes of Boolean functions so that short random
walks can be used to construct PRGs. In particular, are there nontrivial classes where the
number of steps is independent of n?

1.9.2 Less independence
Our analysis of Theorem 12 currently requires to assume t independent copies of a fractional
PRG X. It might be possible that they copies can be chosen in a less independent form,
where the analysis still holds.

I Open problem 6. Can the fractional PRGs X1, . . . , Xt in Theorem 12 be chosen not
independently, such that the conclusion still holds? Concrete examples to consider are k-wise
independence for k � t, or using an expander random walk.

1.9.3 More applications
Our current applications follow from the construction of a fractional PRG for functions
with bounded Fourier tails. The fractional PRG itself follows from standard constructions
in pseudo-randomness (almost k-wise independent) adapted to our scenario. It will be
interesting to try and find other classes of Boolean functions for which different constructions
of fractional PRG work.

1.9.4 Gadgets
We can view the random walk as a “gadget construction". Given independent p-noticeable
fractional PRGs X1, . . . , Xt ∈ [−1, 1]n, view them as the rows of a t× n matrix, and then
apply a gadget g : [−1, 1]t → {−1, 1} to each column to obtain the outcome in {−1, 1}n.
We show that the random walk gives such a gadget which converges for t = O(log(n/ε)/p).
Many constructions of PRGs can be viewed in this framework, where typically Xi ∈ {−1, 1}n.
Ours is the first construction which allows Xi to take non-Boolean values. It is interesting
whether other gadgets can be used instead of the random walk gadget, and whether there
are general properties of gadgets that would suffice.

CCC 2018
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1.9.5 Low degree polynomials
As discussed above, we wonder if our techniques can be used to construct a PRG for low
degree F2 polynomials. In particular, we ask if one could improve the bounds we obtain (see
Theorem 29) on the L1 Fourier tails of low degree F2 polynomials.

I Open problem 7. Let f = (−1)p where p : Fn2 → F2 is a polynomial of degree d. Is there
a constant cd such that

∑
S:|S|=k |f̂(S)| ≤ ckd which is independent of n? In particular, we

conjecture that cd = 2O(d) should work.

Note that the exponential dependence on k is needed, as witnessed from the following example:
consider the quadratic F2 polynomial q(x) =

∑n/2
i=1 x2i−1x2i. Then (−1)q has Fourier L1

weight
(
n
n/2
)
· 2−n/2 = 2Ω(n) on the (n/2)-th level.

1.10 Paper organization
We describe the general framework in detail in Section 2. We prove Theorem 12 in Section 3.
We describe applications in Section 4. Our framework also applies to function families that
simplify under random restrictions. We describe this in Section 5. We prove L1 Fourier tail
bounds for low degree F2 polynomials in Section 6. We try to partially answer the question
related to early termination of the random walk in Section 7.

2 General framework

2.1 Boolean functions
Let f : {−1, 1}n → [−1, 1] be an n-variate Boolean function, identified with its multi-
linear extension, also known as its Fourier expansion. For x ∈ [−1, 1]n define f(x) =∑
S⊆[n] f̂(S)

∏
i∈S xi. As f is multilinear, a convenient viewpoint is to view f(x) as

computing the expected value of f on a product distribution on {−1, 1}n. That is, let
W = W (x) ∈ {−1, 1}n be a random variable, where W1, . . . ,Wn are independently chosen
so that E[Wi] = xi. Then f(x) = Ef(W ). In particular, f(0) = Ef(U), where U ∈ {−1, 1}n
is uniformly chosen.

A family F of n-variate Boolean functions is said to be closed under restrictions if for
any f ∈ F and any function f ′ : {−1, 1}n → {−1, 1} obtained from f by fixing some of its
inputs to {−1, 1} it holds that also f ′ ∈ F .

2.2 Pseudorandom generators
Let F be a family of n-variate Boolean functions. The following is the standard definition of
a pseudorandom generator (PRG) for F , adapted to our notation.

I Definition 8 (PRG). A random variable X ∈ {−1, 1}n is a PRG for F with error ε, if for
any f ∈ F it holds that

∣∣f(0)− Ef(X)
∣∣ ≤ ε.

We introduce the notion of a fractional PRG. It is the same as a PRG, except that the
random variable is allowed to take values in [−1, 1]n, instead of only Boolean values.

I Definition 9 (Fractional PRG). A random variable X ∈ [−1, 1]n is a fractional PRG for F
with error ε, if for any f ∈ F it holds that

∣∣f(0)− Ef(X)
∣∣ ≤ ε.
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Our main goal will be to “amplify” fractional PRGs for F in order to obtain PRGs for F .
To that end, we need to enforce some non-triviality conditions on the fractional PRG. For
example, X = 0 is a fractional PRG for any function. We require that for any coordinate
i ∈ [n], the value of Xi is far from zero with noticeable probability. Formally, we require a
noticeable second moment.

IDefinition 10 (p-noticeable random variable). A random variableX ∈ [−1, 1]n is p-noticeable
if for every i ∈ [n], E[X2

i ] ≥ p.

For technical reasons, we would also need X to be symmetric, which means that the
distribution of −X is the same as the distribution of X. This is easy to achieve, for example
by multiplying all elements of X with a uniformly chosen sign.

2.3 Polarizing random walks
The main idea is to view a fractional PRG as steps in a random walk in [−1, 1]n that
converges to {−1, 1}n. To that end, we define a gadget that implements the random walk;
and moreover, that allows for fast convergence. As we will see later, the fast convergence is
an effect of polarization.

I Definition 11 (Random walk gadget). For any t ≥ 1 define the random walk gadget
gt : [−1, 1]t → [−1, 1] as follows. Let a1, . . . , at ∈ [−1, 1]. Define g1(a1) := a1 and for t > 1,

gt(a1, . . . , at) := gt−1(a1, . . . , at−1) + (1− |gt−1(a1, . . . , at−1)|)at.

We extend the definition to act on bit-vectors. Define gnt : ([−1, 1]n)t → [−1, 1]n as follows.
For x1, . . . , xt ∈ [−1, 1]n define

gnt (x1, . . . , xt) = (gt(x1,1, . . . , xt,1), . . . , gt(x1,n, . . . , xt,n)) .

Equivalently, we can view gnt as follows: construct a t× n matrix whose rows are x1, . . . , xt;
and then apply gt to each column of the matrix to obtain a resulting vector in [−1, 1]n.

The following theorem shows how to “amplify" fractional PRGs using the random walk
gadget to obtain a PRG. Below, for x ∈ [−1, 1]n we denote by sign(x) ∈ {−1, 1}n the Boolean
vector obtained by taking the sign of each coordinate (the sign of 0 can be chosen arbitrarily).

I Theorem 12 (Amplification Theorem). Let F be a family of n-variate Boolean functions
which is closed under restrictions. Let X ∈ [−1, 1]n be a symmetric p-noticeable fractional
PRG for F with error ε. Set t = O(log(n/ε)/p) and let X1, . . . , Xt be iid copies of X. Define
a random variable G ∈ {−1, 1}n as follows:

G := G(X1, . . . , Xt) = sign(gnt (X1, . . . , Xt)).

Then G is a PRG for F with error (t+ 1)ε.

3 Proof of Amplification Theorem

We prove Theorem 12 in this section. From here onwards, we fix a family F of n-variate
Boolean functions which is closed under restrictions. The proof is based on the following
two lemmas. The first lemma amplifies a p-noticeable fractional PRG to a (1− q)-noticeable
fractional PRG. The second lemma shows that setting q = ε/n, the latter fractional PRG
can be rounded to a Boolean-valued PRG without incurring too much error.

CCC 2018
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I Lemma 13 (Amplification lemma). Let X1, . . . , Xt ∈ [−1, 1]n be independent symmetric
p-noticeable fractional PRGs for F with error ε. Define a random variable Y ∈ [−1, 1]n as

Y := gnt (X1, . . . , Xt).

Then Y is a (1− q)-noticeable fractional PRG for F with error tε, where q = 2−Ω(pt).

I Lemma 14 (Rounding lemma). Let Y ∈ [−1, 1]n be a (1− q)-noticeable fractional PRG for
F with error ε. Then sign(Y ) ∈ {−1, 1}n is a PRG for F with error ε+ qn.

Theorem 12 follows directly by applying Lemma 13 with t = O(log(n/ε)/p) to obtain
q = ε/n and then applying Lemma 14.

3.1 Proof of Lemma 13
We prove Lemma 13 in this section. We need to prove two claims: that gnt (X1, . . . , Xt) is a
fractional PRG for F with error εt, and that it is (1− q)-noticeable. This is achieved in the
following sequence of claims.

First we need some notations. For y ∈ [−1, 1]n define δy ∈ [−1, 1]n by (δy)i := 1− |yi|.
For two vectors x, y ∈ [−1, 1]n define x ◦ y ∈ [−1, 1]n to be their pointwise product, namely
(x ◦ y)i := xiyi. Observe that {y + δy ◦ x : x ∈ [−1, 1]n} is the largest symmetric sub-cube in
[−1, 1]n centered at y.

I Claim 15. Let X ∈ [−1, 1]n be a fractional PRG for F with error ε. Then for any f ∈ F
and any y ∈ [−1, 1]n,

|f(y)− Ef(y + δy ◦X)| ≤ ε.

Proof. Consider a distribution over F ∈ F obtained from f by fixing the i-th input to
sign(yi) with probability |yi|, independently for each i. That is,

F (x) := f(R(x)),

where R(x) ∈ {−1, 1}n is a random variable obtained by sampling R1, . . . , Rn independently
where Pr[Ri = sign(yi)] = |yi| and Pr[Ri = xi] = 1− |yi|. By the multi-linearity of f , and as
R(x) is a product distribution,

EF [F (x)] = ER[f(R(x))] = f(ER[R(x)]) = f(y + δy ◦ x).

Setting x = X and averaging over X gives

|f(y)− EX [f(y + δy ◦X)]| =
∣∣EFF [(0)]− EF,X [F (X)]

∣∣ ≤ EF
∣∣F (0)− EX [F (X)]

∣∣ ≤ ε,
since F ∈ F with probability one and X is a fractional PRG for F with error ε. J

I Claim 16. Let X1, . . . , Xt ∈ [−1, 1]n be independent fractional PRGs for F with error ε.
Then for any f ∈ F ,∣∣f(0)− EX1,...,Xt [f(gnt (X1, . . . , Xt))]

∣∣ ≤ tε.
Proof. The proof is by induction on t. The base case t = 1 follows by definition as
gn1 (X1) = X1. For t > 1 we will show that∣∣E[f(gnt−1(X1, . . . , Xt−1))]− E[f(gnt (X1, . . . , Xt))]

∣∣ ≤ ε,
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from which the claim follows by the triangle inequality. In fact, we will show a stronger
inequality: for any fixing of x1, . . . , xt−1 ∈ [−1, 1]n, it holds that∣∣f(gnt−1(x1, . . . , xt−1))− EXt

[f(gnt (x1, . . . , xt−1, Xt))]
∣∣ ≤ ε.

The first inequality then follows by averaging over x1 = X1, . . . , xt−1 = Xt−1. To see why
this latter inequality holds, set y = gnt−1(x1, . . . , xt−1). Then by definition,

gnt (x1, . . . , xt−1, Xt) = y + δy ◦Xt.

The claim now follows from Claim 15. J

We have so far proved that gnt (X1, . . . , Xt) is a fractional PRG for F with slightly worse
error. Although we do not need it, it is worth noting that it is symmetric since X1, . . . , Xt

are symmetric and −gnt (X1, . . . , Xt) = gnt (−X1, . . . ,−Xt). To conclude, we show that it
converges fast to a value close to {−1, 1}n. This is the effect of polarization. It will be enough
to analyze this for one-dimensional random variables.

I Claim 17. Let A1, . . . , At ∈ [−1, 1] be independent symmetric random variables with
E[A2

i ] ≥ p. For i = 1, . . . , t define

Bi := gi(A1, . . . , Ai) = Bi−1 + (1− |Bi−1|)Ai.

Then E[B2
t ] ≥ 1− q where q = 3 exp(−tp/8).

Proof. Let Ci := 1− |Bi| be the distance to {−1, 1} at step i. We show that Ci converges
to 0 exponentially fast. Observe that Ci satisfies the following recursive definition:

Ci =
{
Ci−1(1−Ai) if Ci−1(1−Ai) ≤ 1
2− Ci−1(1−Ai) if Ci−1(1−Ai) > 1

.

In either case one can verify that Ci ∈ [0, 1] and that

Ci ≤ Ci−1(1−Ai).

As Ci−1 and Ai are independent we obtain that

E
[√

Ci

]
= E

[√
Ci−1

]
E
[√

1−Ai
]
.

We now use the assumption that the Ai are symmetric. The Taylor expansion of
√

1− x in
[−1, 1] is

√
1− x = 1− x

2 −
x2

8 −
x3

16 − . . .

In particular, all the coefficients except for the constant term are negative. As Ai is symmetric,
E[Aki ] = 0 for any odd k, so

E
[√

1−Ai
]
≤ 1− E[A2

i ]
8 ≤ 1− p

8 ≤ exp(−p/8).

Thus

E
[√

Ct

]
≤

t∏
i=1

E
[√

1−Ai
]
≤ exp(−tp/8).
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By Markov’s inequality, Pr[Ct ≥ exp(−tp/2)] ≤ exp(−tp/8). If Ct ≤ exp(−tp/2) then
1 − B2

t ≤ 2 exp(−tp/2). If not, then we can trivially bound 1 − B2
t ≤ 1. Putting these

together gives

E[1−B2
t ] ≤ 2 exp(−tp/2) + exp(−tp/8) ≤ 3 exp(−tp/8). J

To provide a piece of intuition explaining the fast convergence of this random walk, notice
that once Ci becomes sufficiently small, it gets more and more difficult to inrease the value
of Ci again. This could be best explained with an example. Suppose all Ai’s take value in
{−0.5, 0.5}. We start at B0 = 0 and take a step, say A1 = 0.5, and therefore B1 = 0.5. Now
observe that the length of the next step would be only (1 − |B1|)|A2| = 0.25. So even if
A2 = −0.5, we get B2 = 0.25, which means we still need to take one more step to become
less than 0. In other words, once we get close to the boundary {−1, 1}, the random walk
converges faster as it gets more difficult to move away from the boundry.

I Corollary 18. Let X1, . . . , Xt ∈ [−1, 1]n be independent symmetric p-noticeable random
variables. Define Y = gnt (X1, . . . , Xt). Then Y is (1− q)-noticeable for q = 3 exp(−tp/8).

Proof. Apply Claim 17 to each coordinate of Y . J

Lemma 13 follows by combining Claim 16 and Corollary 18.

3.2 Proof of Lemma 14
We prove Lemma 14 in this section. Let x ∈ [−1, 1]n be a potential value obtained by X.
Let W := W (x) ∈ {−1, 1}n be a random variable, where W1, . . . ,Wn are independent and
E[Wi] = xi. Then EW [f(W )] = f(x). As f takes values in [−1, 1], we can upper bound
|f(x)− f(sign(x))| by

|f(x)− f(sign(x))| = |EW [f(W )]− f(sign(x))| ≤ Pr[W 6= sign(x)].

The last term can be bounded by the union bound,

Pr[W 6= sign(x)] ≤
n∑
i=1

Pr[Wi 6= sign(xi)] = 1
2

n∑
i=1

1− |xi|.

Setting x = X and averaging over X gives

|EX [f(X)]− EX [f(sign(X))]| ≤ EX |f(X)− f(sign(X))| ≤ 1
2

n∑
i=1

E[1− |Xi|].

As X is (1−q)-noticeable it satisfies E[X2
i ] ≥ 1−q for all i. As 1−z ≤ 1−z2 for all z ∈ [0, 1]

we have

E[1− |Xi|] ≤ E[1−X2
i ] ≤ q.

This concludes the proof as

|f(0)− EX [f(sign(X))]| ≤ |f(0)− EX [f(X)]|+ |EX [f(X)]− EX [f(sign(X))]| ≤ ε+ qn,

where the first inequality follows as X is a fractional PRG with error ε, and the second by
the discussion above.
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4 PRGs for functions with bounded Fourier tails

Several natural families of Boolean functions have bounded Fourier tails, such as: AC0 circuits
[11, 14]; functions with bounded sensitivity [7, 13]; and functions computed by branching
programs of various forms [18, 5]. Our goal is to construct a universal PRG which fools any
such function. We consider two variants: L1 bounds and L2 bounds.

I Definition 19 (L1 bounds). For a, b ≥ 1, we denote by Ln1 (a, b) the family of n-variate
Boolean functions f : {−1, 1}n → {−1, 1} which satisfy∑

S⊂[n]
|S|=k

|f̂(S)| ≤ a · bk ∀k = 1, . . . , n.

I Definition 20 (L2 bounds). For a, b ≥ 1, we denote by Ln2 (a, b) the family of n-variate
Boolean functions f : {−1, 1}n → {−1, 1} which satisfy∑

S⊂[n]
|S|≥k

f̂(S)2 ≤ a · 2−k/b ∀k = 1, . . . , n.

Tal [20] showed that L2 bounds imply L1 bounds: if f ∈ L2(a, b) then f ∈ L1(a, b′) for
b′ = O(b). The reverse direction is false, as can be witnessed by the PARITY function. So,
the class of functions with L1 bounded Fourier tails is richer, and we focus on it.

In the following lemma, we construct a fractional PRG for this class, which we will then
amplify to a PRG. We note that this lemma holds also for bounded functions, not just
Boolean functions. The construction is based on a scaling of almost d-wise independent
random variables, whose definition we now recall.

I Definition 21 (Almost d-wise independence). A random variable Z ∈ {−1, 1}n is ε-almost
d-wise independent if, for any restriction of Z to d coordinates, the marginal distribution
has statistical distance at most ε from the uniform distribution on {−1, 1}d.

Naor and Naor [15] gave an explicit construction of an ε-almost d-wise random variable
Z ∈ {−1, 1}n with seed length O(log logn+ log d+ log(1/ε)). We note that this seed length
is optimal, up to the hidden constants.

I Lemma 22. Fix n, a, b ≥ 1 and ε > 0. There exists a fractional PRG X ∈ [−1, 1]n that
fools Ln1 (a, b) with error ε, such that
(i) X is p-noticeable for p = 1

4b2 .
(ii) The seed length of X is O(log logn+ log(a/ε)).

Proof. Fix f ∈ Ln1 (a, b). Set d = dlog 2a/εe, δ = ε/2a, β = 1/2b. Let Z ∈ {−1, 1}n be
an δ-almost d-wise independent random variable, and set X = βZ which takes values in
{−β, β}n. We claim that X satisfies the requirements of the lemma. Claim (i) clearly holds,
and claim (ii) holds by the Naor-Naor construction. We thus focus on proving that X fools
F with error ε.

Fix f ∈ F and consider its Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)xS .

We need to show that E[f(X)] is close to f(0). Averaging over X gives

|E[f(X)]− f(0)| ≤
∑
|S|>0

|f̂(S)| · |E[XS ]| =
∑
|S|>0

|f̂(S)| · β|S||E[ZS ]|.
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We next bound |E[ZS ]|. If |S| ≤ d then by the definition of Z we have |E[ZS ]| ≤ δ. If |S| > d

we bound trivially |E[ZS ]| ≤ 1. Let Wk =
∑
S:|S|=k |f̂(S)|, where by assumption Wk ≤ a · bk.

Thus

|E[f(X)]− f(0)| ≤ δ
d∑
k=1

Wkβ
k +

∑
k>d

Wkβ
k ≤ δa

d∑
k=1

(βb)k + a
∑
k>d

(βb)k ≤ δa+ 2−da

where we used the choice of β = 1/2b. The claim follows as we set δ = ε/2a and 2−d ≤
ε/2a. J

Applying Theorem 12 using the fractional PRG constructed in Lemma 22 gives the
following PRG construction. Note that we still need to require that F is closed under
restrictions.

I Theorem 23. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that F ⊂ Ln1 (a, b) or that F ⊂ Ln2 (a, b). Then, for any ε > 0 there exists an explicit
PRG X ∈ {−1, 1}n which fools F with error ε > 0, whose seed length is O(log(n/ε)(log logn+
log(a/ε))b2).

4.1 Applications
We apply our PRG from Theorem 23 to several well studied classes of Boolean functions
that are known to satisfy a Fourier tail bound.

4.1.1 Functions of bounded sensitivity
Let f : {−1, 1}n → {−1, 1} be a Boolean function. Its sensitivity at an input x ∈ {−1, 1}n is
the number of neighbors x′ of x (that is, x′ and x differ at exactly one coordinate) such that
f(x′) 6= f(x). The (max) sensitivity of f is s(f) = maxx s(f, x). The sensitivity conjecture
speculates that functions of sensitivity s can be computed by decision trees of depth poly(s).
A corollary would be that almost poly(s)-wise distributions fool functions of low sensitivity.
So, one may ask to construct comparable PRGs for functions of low sensitivity.

This question was first considered by Hatami and Tal [9]. They constructed a PRG with
sub-exponential seed length exp(O(

√
s)). Theorem 23 gives an improved construction that

essentially matches the consequence of the sensitivity conjecture. Our PRG uses the recent
bounds of Gopalan et al. [7] on the Fourier tail of functions of low sensitivity. Concretely,
Gopalan et al. [7] show that if s(f) = s then f ∈ L1(1, t) for t = O(s). It is straightforward
to verify that a restriction can only decrease the sensitivity of the function, so that the class
of functions of sensitivity at most s is closed under restrictions. A direct application of
Theorem 23 gives a PRG with seed length O(s2 log(n/ε)(log log(n) + log(1/ε))).

To get a somewhat improved bound, one can apply a result of Simon [19] that shows
that if s(f) = s then f depends on at most m = 4s many inputs. In this case, the analysis
of Theorem 12 can be applied with m variables instead of n variables , so that we only
need O(logm/ε) iterations. Note that the fractional PRG still requires a seed length which
depends on the original n. We obtain:

I Corollary 24. For any n, s ≥ 1 and ε > 0, there exists an explicit PRG which fools n-variate
Boolean functions with sensitivity s with error ε, whose seed length is O(s3 log(1/ε)(log logn+
log(1/ε))).

We note that the log logn term cannot be removed. Indeed, even if we restrict attention
to functions which are XOR of at most 2 bits (for which s = 2) the seed length required is
Ω(log logn+ log(1/ε)).
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4.1.2 Unordered branching programs

An oblivious read-once branching program (abbrv ROBP) B of width w is a non-uniform
model of computation, that captures randomized algorithms with space logw. A branching
program B maintains a state in the set {1, . . . , w} and reads the input bits in a known fixed
order. At time step i = 1, . . . , n, B reads a bit and based on the time step, the read bit
and the current state it transitions to a new state. Thus, B can be thought of as a layered
directed graph, with w nodes in each layer, and two edges going out of each node to the
immediately next layer, one labeled with a 1 and the other labeled with a −1.

Let Bn(w) be the class of n-variate Boolean functions computed by read-once oblivious
branching programs of width w, where the order of the inputs is arbitrary. A recent work
of Chattopadhyay et al. [5] showed that these functions have L1 bounded Fourier tails.
Concretely, Bn(w) ⊂ Ln1 (t) for t = (logn)w. They used this to construct a PRG with seed
length O(logn)w−1 log2(n/ε) log logn. Using our PRG from Theorem 23 we get a comparable
(although slightly worse) seed length. Note that Bn(w) is closed under restrictions.

I Corollary 25. Fix n,w ≥ 1 and ε > 0. There is an explicit PRG which fools Bn(w) with
error ε > 0, whose seed length is O(log(n/ε)(log logn+ log 1/ε)(logn)2w).

4.1.3 Permutation branching programs

A special case of read-once branching programs are permutation branching programs, where
the transition function from level i to level i + 1 in the graph is a permutation for every
choice of the input bit. We denote it by Bnperm(w) ⊂ Bn(w). Reingold et al. [18] showed
that if a Boolean function is computed by a permutation branching program of width w,
then it has L2 bounded Fourier tails with parameter 2w2. Note that permutation branching
programs are also closed under restrictions. Thus we obtain the following result:

I Corollary 26. Fix n,w ≥ 1 and ε > 0. There is an explicit PRG which fools Bnperm(w)
with error ε > 0, whose seed length is O(log(n/ε)(log logn+ log 1/ε)w4).

The dependence on n in our PRG is better than in the previous work of [18], as they
obtained seed length O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε)).

The work of [18] actually shows the Fourier tail bounds for a more general class of
branching programs, called regular branching programs. However, these are not closed under
restriction, and hence our PRG construction fails to work (the same problem occurs also in
the construction of [18]).

4.1.4 Bounded depth circuits

The class of bounded-depth Boolean circuits AC0 has been widely studied. In particular,
Linial, Mansour and Nisan [11] showed that it has bounded L2 Fourier tails. Tal [20] obtained
improved bounds. If f is an n-variate Boolean function computed by an AC0 circuit of depth
d and size s, then f ∈ L2(n, t) for t = 2O(d) logd−1 s. Theorem 23 provides a new PRG for
AC0 which is comparable with the existing PRGs of Nisan [16] and Braverman [4].

I Corollary 27. Fix n, s ≥ 1 and ε > 0. There is an explicit PRG which fools n-variate
functions which can be computed by AC0 circuits of size s and depth d, with error ε > 0,
whose seed length is O(log(n/ε)(log logn+ log 1/ε) log2d−2 s).
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5 PRG for functions which simplify under random restriction

Another generic application of our framework is constructing PRGs for classes that simplify
under random restriction. Let F be a family of functions f : {−1, 1}n → {−1, 1} which are
extended multilinearly to [−1, 1]n. Fix a parameter 0 < p < 1 and define the p-averaged
function of f , denoted fp : {−1, 1}n → [−1, 1] as follows: sample A ⊂ [n] where Pr[i ∈ A] = p

independently for i ∈ [n], and define

fp(x) = EAEU [f(xA, UAc)]

where xA ∈ {−1, 1}A is the restriction of the input x to the coordinates inA, and U ∈ {−1, 1}n
is independently and uniformly chosen.

I Claim 28. fp(x) = f(px).

Proof. Let A,U be random variables as defined above. Define a random variable Y ∈
{−1, 1}n as follows:

Yi =
{
xi if Ai = 1
Ui if Ai = 0

.

Note that Y is a product distribution. By definition of fp, fp(x) = E[f(Y )]. By multilinearity
of f , E[f(Y )] = f(E[Y ]) = f(px). J

Suppose that we have a standard PRG X for the class of p-averaged functions Fp = {fp :
f ∈ F}. Claim 28 implies that X ′ = pX is a fractional PRG for the class F . Theorem 12
then constructs a PRG for F using O(log(1/ε)/p2) independent copies of X.

6 Spectral tail bounds for low degree F2-polynomials

In this section, we prove L1 Fourier tail bounds for functions computed by low degree
polynomials on F2. However, our bounds fall short of implying PRGs for the class of
low-degree F2 polynomials in our framework.

I Theorem 29. Let p : Fn2 → F2 be a polynomial of degree d, and let f(x) = (−1)p(x). Then∑
S⊂[n]
|S|=k

|f̂(S)| ≤ (k23d)k ∀k = 1, . . . , n.

We note that L2 bounds do not hold for low-degree polynomials, as can be witnessed by
taking a high-rank quadratic polynomial. We prove Theorem 29 in the remainder of this
section.

We first introduce some notation to simplify the presentation. Define

Wk(f) :=
∑
|S|=k

|f̂(S)|

denote the weight of the level-k Fourier coefficients of a Boolean function f , and let

W (d, k) := max{Wk(f) : f = (−1)p, deg(p) ≤ d}

be the maximum ofWk over degree d polynomials. Note that we do not make any assumption
on the number of variables n. We prove the following lemma from which Theorem 29 follows
relatively easily.
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I Lemma 30. For any d, k ≥ 1,

W (d, k)2 ≤ 22kW (d− 1, 2k) +W (d, k) ·
k∑
`=1

(
k

`

)
W (d, k − `).

We first show that Theorem 29 follows easily from Lemma 30.

Proof of Theorem 29 given Lemma 30. The proof of Theorem 29 is by induction, first on
d and then on k. The base case of d = 1 is straightforward, so assume d ≥ 2. By Lemma 30
we have

W (d, k)2 ≤ 22k
(

2k · 23(d−1)
)2k

+W (d, k)
k∑
`=1

(
k

`

)(
(k − `)23d)k−`

≤
(
k · 23d−1)2k +W (d, k)

k∑
`=1

(
k

`

)(
(k − 1)23d)k−`

=
(
k · 23d−1)2k +W (d, k)

((
(k − 1)23d + 1

)k − ((k − 1)23d)k) .
Assume towards a contradiction that W (d, k) > (k23d)k. Dividing by W (d, k) on both sides
gives

W (d, k) ≤
(
k · 23d−1)k +

(
(k − 1)23d + 1

)k − ((k − 1)23d)k .
If k = 1 then we reach a contradiction as 23d−1 +1 ≤ 23d. If k > 1 then as (k−1)23d ≥ k23d−1

the first term gets canceled by the third term, and the second term is at most (k23d)k. In
either case, we reached a contradiction. J

From now on we focus on proving Lemma 30. To that end, fix f computed by a polynomial
of degree d which maximizes Wk(f). We shorthand g(S) = |f̂(S)|. The following claims are
used in the proof of Lemma 30.

I Claim 31. For any 0 ≤ a < b ≤ n and A ⊂ [n] of size |A| = a,∑
B:|B|=b,A⊂B

g(B) ≤W (d, b− a).

I Claim 32.∑
S,T :|S|=|T |=k,S∩T=∅

g(S)g(T ) ≤ 22kW (d− 1, 2k).

I Claim 33. For any 1 ≤ ` ≤ k,

∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T ) ≤
(
k

`

)
W (d, k)W (d, k − `).

We first show how to prove Lemma 30 using the above claims.
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Proof of Lemma 30. We have,

W (d, k)2 =
∑

S,T :|S|=|T |=k

g(S)g(T )

=
k∑
`=0

∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T )

=
∑

S,T :|S|=|T |=k,S∩T=∅

g(S)g(T ) +
k∑
`=1

∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T )

≤ 22kW (d− 1, 2k) +W (d, k) ·
k∑
`=1

(
k

`

)
W (d, k − `),

where the last inequality follows by using the bounds from Claim 32 and Claim 33. J

We now proceed to prove the missing claims.

Proof of Claim 31. We use induction on a and b. The claim is direct for a = 0 and any
b > a. Thus suppose b > a > 0 and let i ∈ A. Let A′ = A \ {i}. We have∑

B:|B|=k,A⊂B

g(B) =
∑

B′⊂[n]\{i}:|B′|=b−1,A′⊂B′
g(B′ ∪ {i})

=
∑

B′⊂[n]\{i}:|B′|=b−1,A′⊂B′
|f̂(B′ ∪ {i})|.

Let fi→1 and fi→−1 be the functions obtained from f by setting the i’th bit to 1 and −1,
respectively. It is easy to verify that |f̂(B∪{i})| ≤ 1

2 (f̂i→1(B)+ f̂i→−1(B)). Thus, continuing
with our estimate, we have∑

B:|B|=b,A⊂B

g(B) ≤ 1
2

∑
B′:|B′|=b−1,A′⊂B′∪{i}

(
|f̂i→1(B′)|+ |f̂i→−1(B′)|

)
≤W (d, (b− 1)− (a− 1)) = W (d, b− a),

where the last inequality follows from induction hypothesis. J

Proof of Claim 32. For any S ⊂ [n], let eS ∈ {−1, 1} be the sign of f̂(S), so that g(S) =
eS · f̂(S). Let X,Y, Z be independent uniform distributions on {−1, 1}n. We have∑

S,T :|S|=|T |=k,S∩T =∅

g(S)g(T ) =
∑

S,T :|S|=|T |=k,S∩T =∅

eSeTEY [f(Y )Y S ] · EZ [f(Z)ZT ]

=
∑

S,T :|S|=|T |=k,S∩T =∅

eSeTEY,Z [f(Y )Y Sf(Z)ZT ]

=
∑

S,T :|S|=|T |=k,S∩T =∅

eSeTEX,Y,Z [f(X ◦ Y )f(X ◦ Z)XS∪T Y SZT ].

This follows as (Y,Z) and (X ◦Y,X ◦Z) are identically distributed. Now consider any fixing
of Y = y and Z = z. Define the function hy,z(x) = f(x ◦ y)f(x ◦ z). Recall that f = (−1)p
where p is a F2-polynomial of degree d. Thus h = (−1)q where q is the derivative of f in
direction y ◦ z. In particular, its degree is at most d− 1. Thus we have∑

S,T :|S|=|T |=k,S∩T=∅

eSeT y
SzTE[f(X ◦ y)f(X ◦ z)XS∪T ] ≤

(
2k
k

) ∑
R:|R|=2k

∣∣∣E[h(X)XR]
∣∣∣

≤ 22kW (d− 1, 2k).
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The proof follows now by noting that the above bound holds for any choice of y and z, and
then averaging over y = Y, z = Z. J

Proof of Claim 33. We have,∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T ) ≤
∑

L:|L|=`

( ∑
S:|S|=k,L⊂S

g(S)
)2

≤
(

max
L:|L|=`

∑
S:|S|=k,L⊂S

g(S)
)( ∑

L,S:|L|=`,|S|=k,L⊂S

g(S)
)

≤W (d, k − `) ·
( ∑
S:|S|=k

∑
L:L⊂S,|L|=`

g(S)
)
((using Claim 31))

≤W (d, k − `) ·
(
k

`

)
·W (d, k). J

7 Smoothness

In this section we provide a partial answer for Open Problem 5, regarding early termination
of the random walk. Let Yt ∈ [−1, 1]n be the location of the random walk at time t. We
would like to guarantee that if Yt is close enough to sign(Yt) then we can round Yt to sign(Yt)
without changing the value of f by too much. Therefore, given f : [−1, 1]n → [−1, 1], it
would be desirable to show f is “smooth" enough: there is a bound W such that

∀α, β ∈ [−1, 1]n, |f(α)− f(β)| ≤W‖α− β‖∞.

Observe that should such W exists, then if at some step t we have ‖Yt − sign(Yt)‖∞ ≤
ε/W , then we can terminate the random walk immediately and guarantee that ‖f(Yt)−
f(sign(Yt))‖∞ ≤ ε. We show that such smoothness property holds for functions with bounded
sensitivity.

7.1 Bounded sensitivity functions.
We show that smoothness follows from a bound on the (maximum) sensitivity of a boolean
function.

I Lemma 34. Let f : {−1, 1}n → [−1, 1] be a boolean function with maximum sensitivity s.
Then, for any α, β ∈ [−1, 1]n it holds that

|f(α)− f(β)| ≤ 4s‖α− β‖∞.

We first consider the case that ‖α− β‖∞ is very small.

I Claim 35. Let f : {−1, 1}n → [−1, 1] be a boolean function with maximum sensitivity s.
Let α, β ∈ [−1, 1]n such that ‖α− β‖∞ ≤ 1/n2. Then

|f(α)− f(β)| ≤ 4s‖α− β‖∞.

To prove the result for arbitrary α, β ∈ [−1, 1]n using Claim 35, consider the line segment
from α to β and integrate f along that line segment. Thus, Lemma 34 follows directly from
Claim 35.
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Proof of Claim 35. Let δ = ‖α − β‖∞. We first consider the easier case of α ∈ {−1, 1}n.
Pick b ∈ {−1, 1}n randomly by flipping each coordinate of α independently with probability
|αi − βi|/2 so that Ef(b) = f(β). Note that f(b) 6= f(α) if either exactly one sensitive
coordinate of α is flipped, which occurs with probability at most sδ, or if at least two
coordinates get flipped, which occurs with probability at most (nδ)2. Therefore

|f(α)− Ef(b)| ≤ sδ + n2δ2 ≤ 2sδ

given our assumption on δ.
Next, consider the general case of α ∈ [−1, 1]n. This case requires introducing an extra

point γ ∈ [−1, 1]n in a way that allows us to prove

|f(α)− f(γ)| ≤ 2s · ‖α− γ‖∞ (1)

and

|f(β)− f(γ)| ≤ 2s · ‖β − γ‖∞ (2)

separately. We choose γ in a way that ∀i ∈ [n], γi = αi or γi = βi. These equations altogether
give the claim. To choose γ, let S ⊂ [n] be the set of coordinates that |αi| < |βi| and pick
γi = αi if i ∈ S, and γi = βi otherwise.

We next prove Equation (1). The proof of Equation (2) is analogous. Consider a joint
random variable (a, c) that satisfies the following properties:
1. a ∈ {−1, 1}n, c ∈ [−1, 1]n, Ea = α, and Ec = γ.
2. The marginal distributions of a and c are product distributions.
3. ‖a− Ec[c|a]‖∞ ≤ ‖α− γ‖∞ holds with probability one.

Observe that given such (a, c),

|f(α)− f(γ)| = |Ea,c[f(a)− f(c)]| ≤ Ea |f(a)− Ec[f(c)|a]| ≤ 2s · ‖α− γ‖∞,

where the last inequality uses the first case in the proof, as a ∈ {−1, 1}n.
Now let us construct the joint random variable (a, c). Fix i ∈ [n] and suppose without

loss of generality that αi ≥ 0. Note that by construction −αi ≤ γi ≤ αi. First sample ai so
that E[ai] = αi. If ai = −1 then set ci = −1, otherwise set ci = 2γi+1−αi

1+αi
. It’s easy to check

that this choice of (a, c) satisfies the required conditions, finishing the proof. J
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Abstract
We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold
functions. Random constructions achieve the optimal seed length of O(logn+ log 1

ε ), however
the best known explicit construction of [8] uses a seed length of O(logn · ε−8). In this work we
give an explicit construction that uses a seed length of O(logn+( 1

ε )o(1)). Note that this improves
the seed length substantially and that the dependence on the error ε is additive and only grows
subpolynomially as opposed to the previously known multiplicative polynomial dependence.

Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom
generator given by Lu, Kabanets [18].
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1 Introduction

1.1 Background and importance
We say that a function f : Rn → {+1,−1} is a (degree-d) polynomial threshold function(PTF)
if it is of the form f(x)=sgn(p(x)) for p some (degree-d) polynomial in n variables. Polynomial
threshold functions make up a natural class of Boolean functions and have applications
to a number of fields of computer science such as circuit complexity [2], communication
complexity [17] and learning theory [14].

In this paper, we study the question of pseudorandom generators (PRGs) for polynomial
threshold functions of Bernoulli inputs(and in particular for d=2). In other words, we wish
to find explicit functions F : {±1}s → {±1}n so that for any degree-2 polynomial threshold
function f , we have

| E
x∼u{±1}s

[f(F (x))]− E
X∼{±1}n

[f(X)]| < ε.

We say that such an F is a pseudorandom generator of seed length s that fools degree-2
polynomial threshold functions with respect to the Bernoulli distribution to within ε. In
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2:2 A PRG for Boolean PTF of Degree 2 w/ Seed Length Subpoly in ε and Log in n

Table 1 Pseudorandom Generators

Paper Bernoulli/Gaussian d Seedlength s

Diakonikolas, Gopalan, etal [5] Bernoulli 1 logn ·O(ε−2 log2(1/ε))
Meka, Zuckerman [15] Bernoulli 1 O(logn+ log2(1/ε))
Gopalan, Kane, Meka [7] Bernoulli 1 O(log(n/ε) · [log log(n/ε)]2)
Diakonikolas, Kane, Nelson [8] Gaussian 1 logn ·O(ε−2)
Kane [12] Gaussian 1 O(logn+ log3/2(1/ε))
Diakonikolas, Kane, Nelson [8] Both 2 logn ·O(ε−8)†

Kane [12] Gaussian 2 logn · exp[Õ(log(1/ε)2/3)]
Kane [13] Gaussian 2 O(log6(1/ε) · logn · log log(n/ε))
Kane, Sankeerth This paper Bernoulli 2 O(logn+ e

√
log 1

ε
log log 1

ε )
Kane [9] Both d logn ·Od

(
ε−2O(d)

)
Meka, Zuckerman [15] Bernoulli d logn · 2O(d)ε−8d−3

Kane [11] Bernoulli d logn ·Od(ε−11.1)
Kabanets, Lu [18] Bernoulli d eO(

√
d logn log log(n/ε))

Kane [10] Gaussian d logn · 2O(d)ε−4.1

Kane [11] Gaussian d logn ·Od(ε−2.1)
Kane [12] Gaussian d logn ·Oc,d(ε−c)

this paper, we develop a generator with s = O(logn + e
√

log 1
ε log log 1

ε ). The main idea is
to apply a Johnson-Lindenstrauss like dimensionality reduction on the Nisan-Wigderson
based pseudorandom generator by Lu, Kabanets [18]. A random construction shows the
existence of a PRG that uses a seed length of s = O(logn + log 1

ε ), however there are no
known constructions that achieve this. The best known constructions for Boolean degree
2 PTFs use a seed length of s = logn · poly( 1

ε ), the current work improves this especially
the error dependence to s = O(logn+subpoly( 1

ε )).The Meka-Zuckerman PRG for LTFs in
[15] uses a similar type of dimensionality reduction idea to reduce the seed length from
O(log2(nε )) to O(logn+ log2 1

ε ).

1.2 Prior Work
An existential argument shows that there are optimal pseudo random generators of seed length
O(d logn+ log 1

ε ). There has been a lot of research towards giving explicit constructions that
approach this seed length. The following are the past results of pseudorandom generators
constructed for PTFs of degree d.

1.3 Our results and merits of the paper
The main goal for degree 2 PRG constructions has been to achieve the optimal seed length
of O(logn + log( 1

ε )) via explicit constructions. Random constructions do achieve this
optimal seed length, however the best known explicit construction of [8] uses a seed length
of O(logn · ε−8). In this paper we give an explicit construction that uses a seed length
of O(logn+( 1

ε )
o(1)). Note that this improves the seed length substantially and that the

dependence on the error ε is additive and only grows subpolynomially as opposed to the

†The original analysis only got logn · Õ(ε−9) until [11] led to an improved analysis using the same
ideas.
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previously known multiplicative polynomial dependence. In particular we give a construction
for a seed length of O(logn + e

√
log 1

ε log log 1
ε ). The major improvement of this work is in

separating out the n-dependence from the ε-dependence. It would be very interesting to
improve this further to the optimal logarithmic dependence on ε.

The main theorem of this paper is:

I Theorem 1. Given ε > 0, n ∈ N, we construct a function F : {±1}s → {±1}n such that
for any degree 2 polynomial p : {±1}n → R, the probability that p(x) ≥ 0 at a uniformly
random point in {±1}n is approximately (within ε) equal to the probability that p(F [z]) ≥ 0
at a uniformly random point in {±1}s. That is,

| E
x∼{±1}n

sgn(p(x))− E
z∼{±1}s

sgn(p(F [z]))| ≤ ε.

Here s is called the seed length of F and it is given by s = O(logn+ e
√

log 1
ε log log 1

ε ).

We construct F by doing a dimensionality reduction like argument on a Nisan-Wigderson
based pseudorandom generator for Boolean PTFs constructed by Kabanets, Lu in [18]. Their
construction uses a seed length of O(e

√
logn log log n

ε ).
Our generator is best thought of as a dimension reduction gadget. It reduces the problem

of finding a PRG in n dimensions to that of finding a PRG in poly(1/ε) dimensions (with an
additive loss of O(logn) in seed length). This means that if you combine it with a generator
that has seed length s(n, ε), we get a new generator with seed length O(logn)+s(poly(1/ε), ε).
This is particularly useful if the other generator is the Kabanets-Lu generator, since that
generator has a great ε dependence at the expense of having a poor dependence on n. One
could also use the trivial generator (i.e. the uniform distribution over the entire hypercube
for which s(n, ε) = n), and get a generator with seed length O(logn) + poly(1/ε).

In particular we don’t require the Kabanets-Lu generator, but since what we do only
reduces the dimension of the problem, we do need some other generator. When we use the
trivial PRG instead after using our technique, we can get O(logn) + poly(1/ε). We believe
that even this is new.

1.4 Proof overview with an outline of key technical ideas used

We construct our PRG F by composing a Johnson-Lindenstrauss matrix Lt with the following
PRG H constructed by Kabanets, Lu in [18], that is F = L ◦ H. They construct H by
constructing a hard function that can’t be computed by PTFs and using the Nisan-Wigderson
hardness vs randomness template.

I Theorem 2. Given ε > 0, n ∈ N, one can construct a function H : {±1}t → {±1}n such
that for any degree 2 polynomial q : {±1}n → R, the probability that q(x) ≥ 0 at a uniformly
random point in {±1}n is approximately (within ε) equal to the probability that q(H[z]) ≥ 0
at a uniformly random point in {±1}t. That is,

| E
x∼{±1}n

sgn(q(x))− E
z∼{±1}t

sgn(q(H[z]))| ≤ ε.

where the seed length of H is t = O(e
√

logn log log n
ε ).

Let’s first understand the seed length needed for our PRG F .

CCC 2018



2:4 A PRG for Boolean PTF of Degree 2 w/ Seed Length Subpoly in ε and Log in n

Seed length

We use Kabanets PRG H to stretch from an initial seed of length t to dimension m. This is
further stretched by L from m to n (think of m as ( 1

ε )Ω(1)). Thus the seed length t needed
to make Kabanets PRG H work is t = O(e

√
logm log log(mε )), since m = ( 1

ε )
Ω(1) this would

amount to a seed of t = O(e
√

log( 1
ε ) log log( 1

ε )). L would further use randomness needing an
extra seed of O(logn). Thus F would need a total seed length s = O(logn+e

√
log( 1

ε ) log log( 1
ε )).

Analysis

To analyse our PRG we split the error into two steps as follows:
Replace the n pure random bits input by m pure random bits We replace the n pure
random bits x by Ly, where y has only m purely random bits.
Replace the m pure random bits by t pseudorandom bits We further replace the m pure
random bits y by even fewer t purely random bits z. This is done via H, that is y = H[z].

We depict this in the following equation:

| E
x∼{±1}n

sgn(p(x))− E
z∼{±1}t

sgn(p(F [z]))| = | E
x∼{±1}n

sgn(p(x))− E
z∼{±1}t

sgn(pL(H[z]))|

≤| E
x∼{±1}n

sgn(p(x))− E
y∼{±1}m

sgn(pL(y))|

+| E
y∼{±1}m

sgn(pL(y))− E
z∼{±1}t

sgn(pL(H[z]))|.

Let’s understand these steps:

1.4.1 Stretch t pure bits to m pure bits,
| E
y∼{±1}m

sgn(pL(y))− E
z∼{±1}t

sgn(pL(H[z]))|

As L is a linear operator, pL would still be a polynomial of degree 2. This error is small
because H fools all degree 2 PTFs including pL. Thus we are using the PRG H to go from a
space of dimension t = O(e

√
log( 1

ε ) log log( 1
ε )) to a space of dimension m = 1

εΩ(1) . The main
technical idea used by [18] to achieve this is to give a hard function for PTFs and invoke the
Nisan-Wigderson hardness vs randomness template.

1.4.2 Stretch m pure bits to n pure bits,
| E
x∼{±1}n

sgn(p(x))− E
y∼{±1}m

sgn(pL(y))|

We show that this error is small in two steps:
Move from Boolean to Gaussian setting We first move from the Boolean input to the
Gaussian input setting. This can be done very easily for some special polynomials
(regular). For a non regular polynomial we use technical ideas like the regularity lemma
[6].
L is a good PRG for Gaussian inputs When the input is Gaussian we have a lot of
geometric structure. In particular using Central limit theorems(as done in [3]) any
polynomial can be seen as a low dimensional very structured part and a lump mass that
can be approximated by a single Gaussian. We show that L preserves this structure and
thus we don’t incur much error in changing x to Ly.
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Move from Boolean to Gaussian setting

There are two technical ideas used here.
Regular polynomials A polynomial is regular if no single input variable has a huge
influence over the value of the polynomial. When a polynomial is regular one doesn’t incur
much loss when switching the input from boolean to gaussian as shown by the Invariance
principle [16]. Think of this replacement as a telescope of replacing the variables one at a
time and the error incurred when the ith variable is replaced is captured by its influence.
In fact in this paper we show that L keeps regular polynomials regular. Thus if p is
regular then so is pL. Thus we switch from boolean inputs to gaussian inputs for both p
and pL.
Regularity Lemma If a polynomial is not regular, then you could incur huge loss by
directly switching the inputs from boolean to Gaussian. However there could be very few
variables that have such a huge influence over the polynomial. So if these few variables
are fixed the rest of the polynomial will either have negligible mass or be regular both of
which are amenable to replacement from boolean to gaussian inputs. Thus the technical
idea used here is the Regularity lemma of [6] which shows that every polynomial can
be seen as a decision tree corresponding to the high influence variables that are fixed
wherein the leaves are either regular or almost constant polynomials. We show that our
JL matrix L interacts well with the Regularity Lemma. That is under the hash function
of L we don’t see any collision for the high influence variables whp. Also the low influence
variables that do hash collide with these high influence variables contribute very little
mass to pL.

L is a good PRG for Gaussian inputs

There are two technical ideas used here.
Central Limit Theorem If all the eigenvalues of a polynomial are small relative to its
variance then the polynomial can be well approximated by a single Gaussian as shown
in [3] via a Central Limit Theorem. Since the variance of the polynomial is a constant,
there can be only few large eigenvalues. Thus any polynomial can be seen as a structured
polynomial consisting of the few large eigenvalues and an eigenregular polynomial that
can be replaced by a single Gaussian. Thus the only essential information is in the top
eigenstructure and the lump mass of the rest of the eigenvalues.
Structure preservation by L We show that our JL matrix preserves the structure of
these top few eigenvalues and also maps polynomials with small eigenvalues to polynomials
with small eigenvalues with high probability. Thus L keeps this top eigenstructure+lump
mass structure intact. It also approximately preserves the L2 norms and covariance of
polynomials and thus we see that L is a good PRG in the Gaussian setting.

The Meka-Zuckerman PRG for LTFs in [15] uses a similar type of dimensionality reduction
idea to reduce the seed length from O(log2(nε )) to O(logn+ log2 1

ε ).

1.5 Overview of the paper

We present the mathematical preliminaries required in section 2 and show that the PRG
construction works under the assumption that p is regular in section 3. Then we prove a
reduction from the general case to the special case of regular polynomials in Section 4. We
present the conclusions in section 5.

CCC 2018
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Note:

All through the paper we will be bounding errors whp as 1
mΩ(1) . Note that these errors are

less than ε if m is chosen to be a sufficiently a large polynomial of 1
ε . Think of whp to mean

with probability 1− 1
mΩ(1) .

All through the paper we leave the errors in terms of m, think of adding up all the errors
and union bounding the probabilities and fixing all the parameters in terms of ε and then we
choose a sufficiently large m = 1

εΩ(1) to make the sum of all the errors O(ε) and the union of
all the error probabilities O(ε).

2 Preliminaries

2.1 Basic results on polynomials, concentration, anticoncentration,
invariance and regularity

Concentration

We begin with a standard concentration bound from [4] that says that Gaussian degree-2
polynomials are concentrated around their mean. We would need this multiple times in the
paper to show concentration of Gaussian polynomials.

I Lemma 3. Let p : Rn → R be a degree-2 polynomial. We have

Pr
x∼Nn(0,1)

[
|p(x)− E[p(x)]| > t

√
V ar[p]

]
≤ e−Ω(t).

Anticoncentration

We will need the following standard Carbery-Wright anticoncentration bound from [1],[4] that
proves a bound on the mass a Gaussian degree-2 polynomial could have around any point.
This would be useful in many instances including when we change functions of Gaussians.

I Lemma 4. Let p : Rn → R be a degree-2 polynomial that is not identically 0. Then for all
ε > 0 and all θ ∈ R, we have

Pr
x∼Nn(0,1)

[
|p(x)− θ| < ε

√
V ar[p]

]
≤ O(

√
ε).

The following lemma from [4] is very useful as it helps us bound the distributional distance
between two Gaussian polynomials by just bounding the L2 norm. The proof follows from
an application of Lemmas 3,4.

I Lemma 5. Let a(x), b(x) be degree-2 polynomials over Rn. For x ∼ Nn(0, 1),
if E[a(x)−b(x)] = 0, V ar[a] = 1 and V ar[a−b] ≤ (β/2)6, then

| E
x∼Nn(0,1)

sgn(a(x))− E
x∼Nn(0,1)

sgn(b(x))| ≤ O(β).

Invariance Principle

The Invariance principle bounds the change in E[sgn(p(x))] when the input is changed from
Boolean to Gaussian. We use the following lemma based on [16].
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I Lemma 6. For any degree 2 multilinear polynomial p =
∑

i,j∈[n]
aijxixj +

∑
l∈[n]

blxl + C, we

have the following bound:

| E
x∼{±1}n

sgn(p(x))− E
x∼Nn(0,1)

sgn(p(x))| ≤ O
[ n∑
i=1

Inf2
i (p)

(V ar[p])2

] 1
9

.

where the ith influence of p is defined as Infi(p) = E| ∂p∂xi |
2 = 2

∑
j∈[n]

a2
ij + b2i .

Think of ith influence as the variance of p along the ith coordinate.
Observe that V ar[p] ≤

n∑
i=1

Infi(p) ≤ 2V ar[p]. Now we define the notion of regularity for

polynomials which essentially means that there is no single variable whose influence is very
large as compared to the rest of the variables.

I Definition 7. We say that the polynomial p is τ -regular if max
i∈[n]

Infi(p) ≤ τV ar[p].

Thus for a τ -regular polynomial p we can bound the replacement error above as O(τ 1
9 )

because
n∑
i=1

Inf2
i (p)

(V ar[p])2 ≤
[max

i
Infi(p)]

n∑
i=1

Infi(p)

(V ar[p])2 ≤ 2τ.

Note that when we apply this, we pick τ = εO(1).

Regularity Lemma

We will use the following Regularity Lemma from [6]:

I Lemma 8. Every multilinear degree 2 polynomial p : {±1}n → R can be written as a

decision tree of depth D = 1
τ ·O

(
log 1

τθ

)O(1)
such that with probability (1−θ) over a random

leaf the resulting polynomial pα is either
(i) τ regular, OR
(ii) V ar(pα) < θ||p||22.

Note that when we apply this Regularity lemma we will choose θ = 1√
m
, τ = εO(1) so that

D = (logm)O(1). After all the parameters are fixed we finally pick m = 1
εΩ(1) large enough

so that all the errors get bounded by O(ε).

2.2 Eigenvalues of polynomials, Central Limit Theorem.
Eigenvalues

Let p : Rn → R be a multilinear polynomial of degree 2. Thus there exist a real symmetric
matrix A, a vector Bt and a constant C such that

p(x) = xtAx+Btx+ C.

The eigenvalues of p are defined to be the eigenvalues λ1, . . . , λn of the real symmetric
matrix A. Since p is a multilinear polynomial we have

n∑
i=1

λi = 0.

CCC 2018
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We have the following expression for variance of the polynomial from [3]:

V ar[p] =
n∑
i=1

(b2i + 2a2
ii) +

∑
1≤i<j≤n

a2
ij .

The eigenvalues capture a lot of information about the polynomial. For instance if all the
eigenvalues are small then the polynomial behaves like a single Gaussian. Let’s define this
notion of regular polynomials.

I Definition 9. If all the eigenvalues of a polynomial p are small relative to it’s variance,
that is |λmax(p)| ≤ ε

√
V ar[p], then it is called an ε-regular polynomial.

Central Limit theorem

We would need the following Central Limit Theorem from [3](Lemma 31 in their paper).
It essentially says that if all the eigenvalues of a degree 2 polynomial p are small then the
polynomial can be well approximated with a single Gaussian which has the same mean and
variance. That is,

I Lemma 10. Let p : Rn → R be a degree-2 polynomial over independent standard Gaussians.
If |λmax(p)| ≤ ε

√
V ar[p], then p is O(ε)-close to the Gaussian N (E[p], V ar[p]) in total

variation distance(hence also in Kolmogorov distance).

2.3 Definition of L and basic facts.
We define L as follows: L is determined by a hash function h : [n]→ [m] and a sign function
σ : [n]→ {±1} as follows:

L(y)i = σ(i)yh(i).

Note that for each i ∈ [n], h is uniformly random on [m] and σ is ±1 uniformly at random.
h, σ are chosen from 8-wise independent families. Thus L can be represented by a n ×m
matrix where the ith row of L is ci = σ(i)eh(i) where ej is the jth standard basis vector of
Rm. It is depicted in the following figure:

L =n

m

ci

Figure 1 Construction of L

Note that the rows of L satisfy the following properties:

EL[〈ci, cj〉1] = EL[〈ci, cj〉3] = δij .

EL[〈ci, cj〉2] =
{

1, if i=j.
1
m , else.
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Note that this is a standard Johnson-Lindenstrauss matrix. In the following Lemma we
show that they preserve L2 norms and inner products of vectors to give a feel for the kind of
computations we need. In fact Lt preserves a lot more structure as we shall see in the next
section.
I Lemma 11. For any n, ε > 0, there exists an m = poly( 1

ε ) and an explicit family of Linear
transformations Lt(with seed length O(logn) from {±1}m → {±1}n) so that for any two unit
vectors v1, v2 ∈ Rn we have

|〈Ltv1, L
tv2〉−〈v1, v2〉| < ε wp 1−2ε over L.

Proof. We know that Ltv1 =
n∑
i=1

vi1ci, L
tv2 =

n∑
j=1

vj2cj .

Thus we have

〈Ltv1, L
tv2〉 = 〈

n∑
i=1

vi1ci,

n∑
j=1

vj2cj〉 =
∑
i,j∈[n]

vi1v
j
2〈ci, cj〉

〈Ltv1, L
tv2〉−〈v1, v2〉 =

∑
i 6=j∈[n]

vi1v
j
2〈ci, cj〉

(〈Ltv1, L
tv2〉−〈v1, v2〉)2 =

∑
i1 6=j1
i2 6=j2

vi11 v
i2
1 v

j1
2 v

j2
2 〈ci1 , cj1〉〈ci2 , cj2〉.

Note that when averaged wrt EL, the only terms that survive are those that are paired either
as (i1 = i2, j1 = j2) or (i1 = j2, i2 = j1).

The rest of the terms average to 0 because of the sign σ, that is Eσ[σ(i1)σ(i2)σ(j1)σ(j2)]
only survives if the indices are paired and we already have the constraints i1 6= j1, i2 6= j2.

Thus we have

EL(〈Ltv1, L
tv2〉−〈v1, v2〉)2 =

∑
i 6=j

(vi1)2(vj2)2EL〈ci, cj〉2 +
∑
i 6=j

vi1v
i
2v
j
1v
j
2EL〈ci, cj〉2

= 1
m

∑
i6=j

[(vi1)2(vj2)2 + vi1v
i
2v
j
1v
j
2]

≤ 1
m

(|v1|22|v2|22 + 〈v1, v2〉2) ≤ 2
m

Thus using Chebyshev’s inequality we have

|〈Ltv1, L
tv2〉−〈v1, v2〉| ≤

1
m1/3 wp

(
1− 2

m1/3

)
over L.

Now we choose m = 1
ε3 to have

|〈Ltv1, L
tv2〉−〈v1, v2〉| ≤ ε wp 1−2ε over L.

This completes the proof. J

To see that norms are preserved too just choose v1 = v2 above.

Note

All through the paper we will be computing such expected moments and bounding them by
1

mΩ(1) and then use Markov|Chebyshev’s inequality (We can’t use big moments because L
has limited independence). Think of these errors as small because after all the parameters
are fixed we pick m = 1

εΩ(1) , to be a sufficiently large polynomial of 1
ε to bound all the terms

by O(ε). We showed the constants explicitly in the above Lemma but we would not be
computing them exactly later on and just denote them with O(1).

CCC 2018
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2.4 Technical Lemmas involving L
We show that the transformation p → pL doesn’t change the variance by a lot. If p(x) =
xtAx + Btx + C then pL(y) = yt(LtAL)y + (BtL)y + C. Note that this is just a basic
moment computation and doesn’t involve anything non trivial.

I Lemma 12. If p(x) = xtAx+Btx+ C is a multilinear polynomial, pL(y) = yt(LtAL)y +
(BtL)y + C. Then,

ELV ar[pL] =
n∑
i=1

b2i +
(

1 + 3
m

)
|A|2F = V ar[p] + 3

m
|A|2F

Proof. We know that

V ar[p] =
n∑
i=1

(b2i + a2
ii) + ||A||2F =

n∑
i=1

b2i + ||A||2F .

Let’s compute the same for pL. Note that LtAL =
∑

i,j∈[n]
aijci ⊗ cj .

Thus,

|LtAL|2F =
∑

i1,j1,i2,j2∈[n]

ai1,j1ai2,j2〈ci1 , ci2〉〈cj1 , cj2〉

=
∑
i1 6=j1
i2 6=j2

σ(i1)σ(i2)σ(j1)σ(j2)ai1,j1ai2,j2I{h(i1)=h(i2), h(j1)=h(j2)}.

Let’s take expectation over σ. We know that Eσ[σ(i1)σ(i2)σ(j1)σ(j2)] 6= 0 iff (i1, j1) = (i2, j2)
or (i1, j1) = (j2, i2).

Let T1 denote the terms of the first kind, then we have T1 =
∑
i1,j1

a2
i1,j1

= |A|2F . Let T2

denote the terms of the second kind, then we have T2 =
∑
i1,j1

a2
i1,j1

I{h(i1)=h(j1)} and thus

EL[T2] =
∑
i1,j1

a2
i1,j1

1
m = 1

m |A|
2
F .

Also

〈BtL,BtL〉 =
∑

i1,i2∈[n]

bi1bi2〈ci1 , ci2〉 =
∑
i1,i2

σ(i1)σ(i2)bi1bi2I{h(i1) = h(i2)}

Eσ〈BtL,BtL〉 =
∑
i

b2i .

We now compute
∑
l∈[m]

(LtAL)2
ll.

∑
l∈[m]

(LtAL)2
ll =

m∑
l=1

( ∑
i,j∈[n]

aijc
l
ic
l
j

)2
=

∑
i1,i2,j1,j2

ai1j1ai2j2

m∑
l=1

cli1c
l
i2c

l
j1c

l
j2

=
∑
i1 6=j1
i2 6=j2

σ(i1)σ(i2)σ(j1)σ(j2)ai1,j1ai2,j2I{h(i1)=h(i2)=h(j1)=h(j2)}

Let’s take expectation over σ. We know that Eσ[σ(i1)σ(i2)σ(j1)σ(j2)] 6= 0 iff (i1, j1) =
(i2, j2) or (i1, j1) = (j2, i2).

Eσ
∑
l∈[m]

(LtAL)2
ll = 2

∑
i1,j1

a2
i1j1I{h(i1) = h(j1)}
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Thus,

EL
∑
l∈[m]

(LtAL)2
ll = 2

m
|A|2F . J

In the following Lemma we prove bounds on V arL[V ary[pL]]. This would help us show
that V ary[pL] = Θ(V ar[p]) whp.

I Lemma 13.

V arL[V ary[pL]] = O(1)
m

.

Proof. From Lemma 12 we have

V ary[pL] = |LtAL|2F + |BtL|22 +
m∑
l=1

(LtAL)2
ll

=
∑

i1,i2,j1,j2

ai1j1ai2j2〈ci1 , ci2〉〈cj1 , cj2〉+
∑
r1,r2

br1br2〈cr1 , cr2〉+
m∑
l=1

(LtAL)2
ll

where∑
l∈[m]

(LtAL)2
ll =

∑
i1 6=j1
i2 6=j2

σ(i1)σ(i2)σ(j1)σ(j2)ai1,j1ai2,j2I{h(i1)=h(i2)=h(j1)=h(j2)}

Thus we have

V ary[pL]− EL[V ary[pL]] =
∑

(i1,j1)6=(i2,j2)

ai1j1ai2j2〈ci1 , ci2〉〈cj1 , cj2〉+
∑
r1 6=r2

br1br2〈cr1 , cr2〉

+
m∑
l=1

(LtAL)2
ll −

3
m
|A|2F .

We skip showing the elaborate yet simple moment calculations but observe that when squared
and averaged over L each term above will have atleast a 1

m term in it. Also the corresponding
coefficients can be bounded using Cauchy Schwarz and noting that |B|22 ≤ 1 and |A|2F ≤ 1.

Thus

EL
(
V ary[pL]− EL[V ary[pL]]

)2
= O

(V ar2[p]
m

)
. J

Now we put together these two Lemmas to show that V ary[pL] = Θ(V ar[p]) whp. We
exclude the proof as it is a direct consequence of Chebyshev inequality using Lemma 12 and
Lemma 13.

I Lemma 14.

|V ary[pL]− V ar[p]| ≤ O
(V ar[p]
m1/3

)
wp
(

1− 1
m1/3

)
over L.

The following lemma would also be useful. Intuitively it means that L would not perturb
an eigenvalue of A by a huge amount whp. In fact this would imply that all the eigenvalues
of A would be in the pseudospectrum of LtAL.
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I Lemma 15. Let λ be an eigenvalue of A and let the unit vector v be the corresponding
eigenvector. Then we have

EL|(LtAL− λIm×m)Ltv|22 = O
( 1
m

)
.

Proof. Substituting Av = λv, we have

(LtAL− λIm×m)Ltv = LtALLtv − LtAv.

Expanding the product LtALLtv we have,

LtALLtv =
∑

i,j,k∈[n]

ai,jci〈cj , ck〉vk

LtALLtv − LtAv =
∑
i

j 6=k

ai,jci〈cj , ck〉vk

Thus

|LtALLtv − LtAv|22 =
∑
i1,i2
j1 6=k1
j2 6=k2

ai1,j1ai2,j2vk1vk2〈ci1 , ci2〉〈cj1 , ck1〉〈cj2 , ck2〉.

A term survives Eσ only if all the indices {i1, i2, j1, j2, k1, k2} are paired appropriately.
However when we take Eh since we have j1 6= k1, j2 6= k2 we would see atleast a 1/m in every
term. Now the corresponding coefficient can be bounded using Cauchy Schwarz and noting
that |v|22 = 1 and |A|2F ≤ 1. Thus we have

EL|(LtAL− λIm×m)Ltv|22 = O(1)
m

. J

3 The regular case

A polynomial is regular if a single variable can’t influence its value by a lot. This comes
into play when we try to employ the Invariance principle. Invariance principle shows that
when the underlying variables are changed from Boolean to Gaussian the probability that
the polynomial is positive will change by an amount proportional to the maximum influence
of a variable over the polynomial. Thus let’s assume regularity in this section so that we
don’t incur much error when we switch between Boolean and Gaussian inputs.

Proof under the assumption that polynomial is regular

In this section we assume that the degree 2 polynomial p(x) is τ -regular and show that
| E
x∼{±1}n

sgn(p(x))− E
y∼{±1}m

sgn(pL(y))| is small whp over L.

We do this in three steps:
Replacement from Boolean to Gaussian for p(x) We change the underlying input variables
from Boolean to Gaussian. Since we assume the polynomial is regular, we do not incur
much error when we do this via Invariance principle.
PRG error for Gaussian setting Once we are in Gaussian setting we show that L is a
pseudorandom generator for degree 2 polynomials for Gaussian inputs. The basic idea
is that for PTFs in the Gaussian context one only needs to keep track of the top few
eigenvalues and the total L2 norm of rest of rest of the eigenvalues. We show that a
Johnson-Lindenstrauss matrix preserves this top eigenvalue structure and the mass in
the rest of the eigenvalues.
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Replacement from Gaussian to Boolean for pL Since p is regular we show that pL is
regular whp too. This let’s us go back from Gaussian to Boolean setting via the Invariance
principle.

This is depicted in the following equation:

| E
x∼{±1}n

sgn(p(x))− E
y∼{±1}m

sgn(pL(y))| ≤ | E
x∼{±1}n

sgn(p(x))− E
x∼Nn(0,1)

sgn(p(x))|

+ | E
x∼Nn(0,1)

sgn(p(x))− E
y∼Nm(0,1)

sgn(pL(y))|

+ | E
y∼Nm(0,1)

sgn(pL(y))− E
y∼{±1}m

sgn(pL(y))|.

The first term | E
x∼{±1}n

sgn(p(x)) − E
x∼Nn(0,1)

sgn(p(x))| ≤ O(ε) using invariance principle

from [16] since we assumed that p(x) is τ -regular where τ = εO(1).
Now we bound the other two terms in the following sections.

3.1 Gaussian PRG | E
x∼Nn(0,1)

sgn(p(x))− E
y∼Nm(0,1)

sgn(pL(y))|

In this section we will show that in the Gaussian setting p cannot distinguish between x and
Ly. The main idea is that to understand the average sign of a degree 2 polynomial you just
need to keep track of the top few eigenvalues and the total mass in the rest of the eigenvalues.
This is because either the latter eigenvalues are too small and thus the truncated part overall
contributes very little mass to the total polynomial or these eigenvalues are small but do
contribute a significant fraction of the total mass(we call this part the eigenregular part),
then you could replace all of them by a single Gaussian with the same total mass via the
CLT tools used in [3].

Thus let’s think of the polynomial p as the top few eigenvalues and a lump mass of the
rest of the eigenvalues. The Johnson-Lindenstrauss like matrix L we use preserves the top
eigenvalue structure of the polynomial and also keeps the eigenregular part still eigenregular.
It introduces some negligible dependence between the top eigenvalue part and the eigenregular
part which we remove to begin with to keep them independent.

To begin with assume p(x) = xtAx+Btx+ C be a degree 2 multilinear polynomial with
|A|F = 1. Since A is a real symmetric matrix, let it be diagonalised as A = V ΛV t, where V
is an orthonormal matrix who columns are the eigenvectors of A. Let the eigenvalues of A
be |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Now let k + 1 be the first index with |λk+1| < δ where we will
choose δ = εO(1) later on. Since

∑
i∈[n]

λ2
i = 1, we know that k ≤ 1

δ2 = ( 1
ε )O(1) � m. Let V≤k

denote the first k eigenvectors of V and Λk denote the top k × k diagonal submatrix of Λ
containing the top k eigenvalues of A.

I Definition 16. Define A1 = V≤kΛkV t≤k to be the top eigenpart of A and A2 = V>kΛnk+1V
t
>k

to be the lower eigenpart of A, we have A = A1 +A2.

Accordingly decompose p(x) = q1(x) + r1(x) where

q1(x) = xtA1x+BtV≤kV
t
≤kx+ C,

r1(x) = xtA2x+BtV>kV
t
>kx.

Note that q1(x) and r1(x) are independent of each other because the columns of V≤k are
orthogonal to the columns of V>k. In the following lemma we replace r1(x) by just a single
Gaussian that has the same mass and thus ignoring the total structure of r1(x). Let z be an
one dimensional Gaussian independent of x.
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I Lemma 17. Given ε > 0 let δ be a sufficiently large power of ε, δ=εO(1). If p(x) can
be written as a sum of two independent polynomials, that is p(x) = q1(x) + r1(x) where
|λmax(r1)| < δ, then∣∣∣ E

x∼Nn(0,1)
sgn(p(x))− E

x∼Nn(0,1)
z∼N (0,1)

sgn
(
q1(x) +

√
V ar[r1]z

)∣∣∣ < O(ε).

Proof. We consider two cases:
Case I - Say r1 has very small variance, that is

√
V ar[r1(x)] < δ

ε . Then we can use
Lemma 5 to see that the replacement of r1(x) by

√
V ar[r1]z will only incur an error of

at most O( δε )
1
3 . By an appropriate choice of δ = εO(1) that we make later on this error

will be O(ε).
Case II - Say

√
V ar[r1(x)] > δ

ε , then note that every eigenvalue λ of r1(x) satisfies
|λ| < ε

√
V ar[r1]. Such a polynomial all of whose eigenvalues are small compared to

its variance are called eigenregular polynomials and we could use Lemma 10 to replace
r1(x) by

√
V ar[r1]z and incur an error of at most O(ε). Note that we are using the

independence of q1(x) and r1(x) in a convolution argument used to insert q1 after applying
the CLT.

Thus in either case the lemma holds after an appropriate choice of δ = εO(1). J

To keep the presentation simple henceforth we assume that LtV≤k still has orthonormal
columns, that is V t≤kLLtV≤k = Ik×k. The exact computation proceeds by first using the
Gram Schmidt process to orthonormalize {Ltv1, . . . L

tvk}. However this would not be very
different from the exact analysis because L approximately preserves inner products and
norms whp and we can union bound because k is a small constant depending on ε. In
particular we have the following lemma.

I Lemma 18.

EL
∣∣∣V t≤kLLtV≤k−Ik×k∣∣∣2

F
= O

(k2

m

)
.

Proof. This is a straightforward computation. Replacing Ik×k=V t≤kV≤k,
we have V t≤kLLtV≤k−Ik×k = V t≤k(LLt−In×n)V≤k. This gives,∣∣∣V t≤k(LLt−In×n)V≤k

∣∣∣2
F

=
∑
a,b∈[k]

( ∑
i1 6=i2

vi1a v
i2
b 〈ci1 , ci2〉

)2

=
∑
a,b∈[k]

∑
i1 6=i2
i3 6=i4

vi1a v
i2
b v

i3
a v

i4
b 〈ci1 , ci2〉〈ci3 , ci4〉.

This gives

EL
∣∣∣V t≤k(LLt−In×n)V≤k

∣∣∣2
F
≤ O

(k2

m

)
J

Let y ∼ Nm(0, 1) be a Gaussian independent of x, z. Since Gaussian distribution is
invariant to rotations V t≤kx ∼ N k(0, 1) and [V t≤kL]y ∼ N k(0, 1) are identically distrib-
uted. Thus q1(x) = [xtV≤k]Λk[V t≤kx] + BtV≤k[V t≤kx] + C is identically distributed as
[ytLtV≤k]Λk[V t≤kLy] +BtV≤k[V t≤kLy] + C which is exactly q1(Ly).

Thus we have,∣∣∣ E
x∼Nn(0,1)

sgn(p(x))− E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q1(Ly) +

√
V ar[r1]z

)∣∣∣ < O(ε).
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Let’s look at p(Ly). We have

p(Ly) = ytLtALy +BtLy + C = yt[LtV ]Λ[V tL]y +BtLy + C.

Let P denote the projection matrix onto the vector space spanned by Ltv1, . . . , L
tvk. The

projection matrix can be expressed by the m×m matrix P def= LtV≤k(V t≤kLLtV≤k)−1V t≤kL.
Note that P 2 = P, P t = P . Since V t≤kLLtV≤k = Ik×k, this simplifies to P = LtV≤kV

t
≤kL.

Now as before we break p(Ly) into two pieces p(Ly) = q2(y) + r2(y), wherein

q2(y) = ytLtA1Ly +BtLPy + C

r2(y) = ytLtA2Ly +BtL[I−P ]y

The goal is to do similar CLT like analysis but the problem is that q2(y) and r2(y) are
not independent. We refine r2(y) to r3(y) to make it independent of q2(y) by separating the
part of it that correlates with q2(y). That is, define

r3(y) = yt[I−P ]LtA2L[I−P ]y +BtL[I−P ]y
s(y) = ytPLtA2L[I−P ]y + ytLtA2LPy.

Observe that r3(y) is independent of q2(y). We have p(Ly) = q2(y) + r3(y) + s(y). First let’s
get rid of s(y) by showing that V ar[s] is small whp over L and invoking Lemma 5.

I Lemma 19. V ar[s] = O( 1√
m

) wp
(

1−O(1)√
m

)
over L.

Proof. It suffices to show that |LtA2LP |F is small. Since P is a projection matrix we have,

|LtA2LP |2F = Tr[LtA2LPL
tA2L] = |LtA2LL

tV≤k|2F .

Since A = A1 +A2, we have

LtA2L = LtAL−LtA1L = LtAL−LtV≤kΛkV t≤kL.

Thus

LtA2LL
tV≤k = (LtAL)LtV≤k−LtV≤kΛk

Ik×k︷ ︸︸ ︷
V t≤kLL

tV≤k

= (LtAL)LtV≤k−LtV≤kΛk,

Thus we have

|LtA2LL
tV≤k|2F =

k∑
l=1
|(LtAL)Ltvl−λlLtvl|22.

Now we could use Lemma 15 to bound this. So we have,

EL|LtA2LL
tV≤k|2F = O

( k
m

)
.

Now the Lemma follows by Markov’s inequality and noting that V ar[s] = O(|LtA2LP |2F ).
J

Now we could apply Lemma 5 to remove s. That is,

| E
y∼Nm(0,1)

sgn(q2(y)+r3(y))− E
y∼Nm(0,1)

sgn(pL(y))| ≤ O
( 1
mO(1)

)
wp
(

1− O(1)√
m

)
over L

Now that q2(y) and r3(y) are independent, to go ahead with the CLT like analysis we
first show that the largest eigenvalue of r3(y) is at most

√
δ.
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I Lemma 20. λmax[r3(y)] ≤
√
δ whp

Proof. We want to show that the eigenvalues of [I−P ](LtA2L)[I−P ] are small. Its eigenval-
ues are interlaced into the eigenvalues of LtA2L because [I−P ] is a projection matrix. Thus
it suffices to bound the eigenvalues of LtA2L, where A2 = V>kΛnk+1V

t
>k. Note that A2 is a

symmetric matrix with spectrum 0k, λk+1, λk+2, . . . , λn. To bound the eigenvalues of LtA2L

we bound Tr(LtA2L)4 = |(LtA2L)2|2F . We have

|(LtA2L)2|2F =
∑

j1···j8∈[n]

A2j1j2A2j3j4A2j5j6A2j7j8〈cj1 , cj5〉〈cj2 , cj3〉〈cj4 , cj8〉〈cj6 , cj7〉

EL|(LtA2L)2|2F =
∑

j1,j2,j4,j6∈[n]

A2j1j2A2j2j4A2j1j6A2j6j4 + O(1)
m

= Tr(A4
2) + O(1)

m
≤ δ2 + O(1)

m
.

This shows that the maximum absolute eigenvalue of r3(y) is at most O(
√
δ) whp. This let’s

us either remove it as a low variance term or apply the CLT machinery on r3(y). J

Now that q2 and r3 are independent polynomials and since Lemma 20 gives λmax[r3(y)] ≤√
δ we could use a slight variant of Lemma 17 to bound the following error:

| E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q2(y) +

√
V ar[r3]z

)
− E
y∼Nm(0,1)

sgn(q2(y)+r3(y))| < O(ε).

We now bound the remaining term that finishes the telescoping for the Gaussian PRG part.

I Lemma 21.∣∣∣ E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q1(Ly) +

√
V ar[r1]z

)
− E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q2(y) +

√
V ar[r3]z

)∣∣∣ ≤ O(ε)whp

Proof. Since y and z are independent it suffices to show that V ary[q1(Ly)−q2(y)] and
|V ar[r1]−V ar[r3]| are both small and invoke Lemma 5 to prove this Lemma.

We have

q2(y)−q1(Ly) = Bt[LLt−I]V≤kV t≤kLy

V ar
[
q2(y)−q1(Ly)

]
=
∣∣∣B[LLt−I]V≤kV t≤kL

∣∣∣2
2

Since LtV≤k has orthonormal columns, this simplifies further to

V ar
[
q2(y)−q1(Ly)

]
=
∣∣∣Bt[LLt−I]V≤k

∣∣∣2
2

=
k∑
l=1

[ ∑
j1 6=j2∈[n]

〈cj1 , cj2〉bj1v
j2
l

]2
Thus ELV ar

[
q2(y)−q1(Ly)

]
= O

(k|B|2
m

)
.

To see that V ar[r1] ≈ V ar[r3], note that V ar[r3] ≈ V ar[r2] because V ar[s(y)] is small as
shown above. Now to show that V ar[r1] ≈ V ar[r2] we need to show the following:
|A2|F ≈ |LtA2L|F . This follows from Lemma 12.
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|BtV>kV t>k|2≈|BtL[I−P ]|2. To show this note that |BtV>kV t>k|22=
n∑

t=k+1
〈Bt, vt〉2. Since

LtV≤k has orthonormal columns, we have

|BtL[I−P ]|22 = |BtL|22 −
k∑
l=1
〈BtL,Ltvl〉2.

Now this follows by noting that Lt approximately preserves the norms and inner products
of vectors and that since k is a constant we can union bound. J

To summarize we telescoped the Gaussian PRG error as:

| E
x∼Nn(0,1)

sgn(p(x))− E
y∼Nm(0,1)

sgn(pL(y))| ≤∣∣∣ E
x∼Nn(0,1)

sgn(p(x))− E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q1(Ly) +

√
V ar[r1]z

)∣∣∣
+
∣∣∣ E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q1(Ly) +

√
V ar[r1]z

)
− E
y∼Nm(0,1)
z∼N (0,1)

sgn
(
q2(y) +

√
V ar[r3]z

)∣∣∣
+ | E

y∼Nm(0,1)
z∼N (0,1)

sgn
(
q2(y) +

√
V ar[r3]z

)
− E
y∼Nm(0,1)

sgn(q2(y)+r3(y))|

+ | E
y∼Nm(0,1)

sgn(q2(y)+r3(y))− E
y∼Nm(0,1)

sgn(pL(y))|

and showed that each of the terms is small whp over L. This completes the analysis of the
Gaussian PRG error term.

Now we move back from Gaussian to Boolean setting to finish the analysis for regular
polynomials.

3.2 Replacement for pL | E
y∼Nm(0,1)

sgn(pL(y))− E
y∼{±1}m

sgn(pL(y))|

We do this change in two parts:
Linearize pL to pLlin The application of invariance principle needs the polynomial to be
multilinear but pL need not be multilinear even though p is. Thus we pre-process pL to
convert to the multilinear polynomial pLlin.
Replacement for pLlin Since p is multilinear, we show that pLlin is regular whp and then
apply the invariance principle.

Thus we split the replacement term for pL as an error between pL, pLlin in Gaussian setting
and a replacement error for pLlin. This is depicted in the following equation.

| E
y∼Nm(0,1)

sgn(pL(y))− E
y∼{±1}m

sgn(pL(y))| ≤

| E
y∼Nm(0,1)

sgn(pL(y))− E
y∼Nm(0,1)

sgn(pLlin(y))|

+| E
y∼Nm(0,1)

sgn(pLlin(y))− E
y∼{±1}m

sgn(pLlin(y))|.

3.2.1 Linearize pL to pLlin
| E
y∼Nm(0,1)

sgn(pL(y))− E
y∼Nm(0,1)

sgn(pLlin(y))|

Note that p is a multilinear polynomial but pL need not be multilinear. For example L could
map both xi, xj to yl and thus the monomial xixj to y2

l . y2
l would be the constant 1 in the

boolean case but would be a non linear term in the Gaussian case. However the invariance
principle works only for multilinear polynomials. Thus we linearize pL as follows:
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I Definition 22. pLlin is the linearized version of pL - Every occurence of a term like y2
l is

replaced by the constant 1.

Note that pLlin satisfies the following properties:
(i) pLlin(y) = pL(y) when y is Boolean.
(ii) E

y∼Nm(0,1)
[pL(y)− pLlin(y)] = 0.

We bound this linearization error using lemma 23 and lemma 5. Lemma 5 shows that
the distributional distance between pL, pLlin is small if |pL−pLlin|2 is small and Lemma 23
shows that this is the case.

I Lemma 23. The non-linear part of pL has small variance with high probability over L,

E
y∼Nm(0,1)

[pL(y)−pLlin(y)]2 < V ar[p]√
m

wp
(

1− O(1)√
m

)
over L.

Proof. From the basic definitions of p, L, pLlin we have,

p =
∑
i,j

aijxixj +
∑
k

bkxk + C.

pL =
∑
i,j

aijσ(i)σ(j)yh(i)yh(j) +
∑
k

bkσ(k)yh(k) + C.

pL− pLlin =
∑
t∈[m]

[y2
t − 1]

∑
i,j:

h(i)=h(j)=t

aijσ(i)σ(j).

We calculate the variance of pL−pLlin by noting that E
yt∼N 1(0,1)

[y2
t − 1]2 = 2,

E
y∼Nm(0,1)

[pL(y)− pLlin(y)]2 = 2
∑
t∈[m]

∑
i,j,k,l:

h(i)=h(j)=h(k)=h(l)=t

aijaklσ(i)σ(j)σ(k)σ(l).

We then calculate the expected variance over the sign σ. This makes a term 0 unless it is
paired as {i, j} = {k, l}.

Eσ E
y∼Nm(0,1)

[pL(y)− pLlin(y)]2 = 2
∑
t∈[m]

∑
i,j:

h(i)=h(j)=t

a2
ij .

Now we calculate the expected value of this over the hash function h.

EhEσ E
y∼Nm(0,1)

[pL(y)− pLlin(y)]2 = 2
∑
t

∑
i,j

1
m2 a

2
ij = 2

m
||A||2F ≤

2
m
V ar[p].

The lemma now follows by the Markov inequality applied to E
y∼Nm(0,1)

[pL(y)−pLlin(y)]2. J

Now we invoke Lemma 5 to finish the bound on the linearization error.

| E
y∼Nm(0,1)

sgn(pL(y))− E
y∼Nm(0,1)

sgn(pLlin(y))| ≤ O(1)
m1/12 wp

(
1− O(1)√

m

)
over L.
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3.2.2 Replacement for pLlin
| E
y∼Nm(0,1)

sgn(pLlin(y))− E
y∼{±1}m

sgn(pLlin(y))|

Using Invariance principles from [16], Lemma 6 we have,

| E
y∼Nm(0,1)

sgn(pLlin(y))− E
y∼{±1}m

sgn(pLlin(y))| ≤ O
[ m∑
r=1

Inf2
r (pLlin)

(V ar[pLlin])2

] 1
9

.

where

Infr(pLlin) = 2
∑

s∈[m]\r

[ ∑
h(i)=r
h(j)=s

aijσ(i)σ(j)
]2

+
[ ∑
h(l)=r

blσ(l)
]2

A simple but elaborate computation would show that

EL
( m∑
r=1

Inf2
r (pLlin)−

n∑
i=1

Inf2
i (p)

)2
= O

(V ar4[p]
m

)
= O(1)

m
.

Thus using Chebyshev’s inequality we have,
m∑
r=1

Inf2
r (pLlin) ≤

n∑
i=1

Inf2
i (p) + V ar2[p]

m
1
3

wp
(

1− O(1)
m

1
3

)
over L.

Since p is τ -regular, we have
n∑
j=1

Inf2
j (p) ≤ max

i
Infi(p) ·

n∑
i=1

Infi(p) ≤ 2τV ar2[p].

Note that V ar[pLlin] = Θ(V ar[p]) wp (1− 1
mO(1) ) over L by Lemma 12.

Thus we can bound the replacement error for pLlin as follows:

| E
y∼Nm(0,1)

sgn(pLlin(y))− E
y∼{±1}m

sgn(pLlin(y))| ≤ O
(

2τ+ 1√
m

) 1
9 wp

(
1− 1

mO(1)

)
over L.

Note that we will be choosing τ = εO(1) and m = 1
εΩ(1) which would also ensure that this

error is ≤ O(ε).

4 Reduction to the regular case

If the polynomial p is not regular we fix few variables that have large influence to get to
a polynomial that is either regular or constant. We note that under L the high influence
variables would most likely have landed in separate bins and thus remain independent. The
other variables that land in the same bin as one of these high influence variables do not
contribute much to the size of the polynomial.

Proof that theorem holds for regular polynomials implies it holds for all polynomials

The idea of this reduction is a careful analysis of Lemma 8. This is the standard Regularity
Lemma from [6].

We look at p as a decision tree using Lemma 8. If α denotes a path to the leaf in the
decision tree then let pα denote the restriction polynomial along the path. Let S(α) denote
the set of variables that are set along the path α.
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Note

pα is only a function n−|S(α)| coordinates that are not set along the decision tree path α.
For the ease of notation we look at it still as a function of n coordinates, wherein it just
ignores the coordinates that are already fixed along α.

Averaging over all the decision tree paths we have,

E
x∼{±1}n

sgn(p(x)) = Eα[ E
x∼{±1}[n]\S(α)

sgn(pα(x))].

Thus let’s split the change from x to Ly, | E
x∼{±1}n

sgn(p(x))− E
y∼{±1}m

sgn(pL(y))| into
two parts:

Change x to Ly only at decision tree leaves Here we average the values along the decision
paths based on the values set by α and only make the change x to Ly at the leaves. Note
that analyzing this would be easier since the disagreement is only at the leaves and we
know that the leaves are either regular or constant.
Changing Ly at leaves to Ly overall Here we bound the error we incur by going from α

setting the values along the decision path followed by Ly setting the values at the leaves
to Ly setting the values overall. To analyse this we will be introducing a new distribution
Ly′ that only disagrees with Ly on very few variables.

This split is depicted in the following equation,

| E
x∼{±1}n

sgn(p(x))− E
y∼{±1}m

sgn(pL(y))| ≤

|Eα[ E
x∼{±1}[n]\S(α)

sgn(pα(x))]− Eα[ E
y∼{±1}m

sgn(pα(Ly))]|

+|Eα[ E
y∼{±1}m

sgn(pα(Ly))]− E
y∼{±1}m

sgn(pL(y))|

4.1 Leaf change
|Eα[ E

x∼{±1}[n]\S(α)
sgn(pα(x))]− Eα[ E

y∼{±1}m
sgn(pα(Ly))]|

Using Jensen’s inequality, also known here as the triangle inequality we have

|Eα[ E
x∼{±1}Sc

sgn(pα(x))]− Eα[ E
y∼{±1}m

sgn(pα(Ly))]| ≤

Eα| E
x∼{±1}Sc

sgn(pα(x))− E
y∼{±1}m

sgn(pα(Ly))|.

By the regularity lemma we know that with probability atleast (1−θ) (where θ = 1√
m
), the

leaf pα is either τ -regular (where τ = εO(1)) or pα is almost constant (that is V ar[pα] ≤ 1√
m
).

Now
Regular If pα is τ - regular, we could just bound the error by ε using our results from the
previous section.
Constant If pα is almost constant, then wlog it is of the form 1+q where V ar[q] = 1√

m
,

thus sgn(pα(x)) = sgn(pα(Ly)) with probability 1− 1√
m
.

In either case we have

|Eα[ E
x∼{±1}[n]\S(α)

sgn(pα(x))]− Eα[ E
y∼{±1}m

sgn(pα(Ly))]|

≤ (1−θ)ε+ 2θ wp
(

1− 1
mO(1)

)
over L

= ε+ 1
mO(1) wp

(
1− 1

mO(1)

)
over L since θ = 1√

m
.
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4.2 Changing Ly overall
|Eα[ E

y∼{±1}m
sgn(pα(Ly))]− E

y∼{±1}m
sgn(pL(y))|

To bound this term we introduce a new intermediate distribution Ly′. As long as L doesn’t
hash collide two high influence decision path α variables, Ly and Ly′ are identically distributed.
In fact they agree on all variables except on those variables that hash collide with the decision
path variables. On these variables Ly′ just assigns the decision path variable’s value to every
other variable that lands in its bin.

I Definition 24. We define Ly′ as follows:

(Ly′)i =


xi i ∈ S(α)
(Ly)i i ∈ LS(α)c

xh−1(h(i)) i ∈ LS(α) \ S(α).

where LS = {i ∈ [n] : h(i) ∈ h(S)} and for j ∈ [m], h−1(j) is the smallest i ∈ [n] such that
h(i) = j. This essentially fixes all the bits that hash collide with the decision path variables.

Now we split the error in changing Ly on leaves to Ly overall further into two steps.
Changing Ly on leaves to Ly′ Here we observe that Ly and Ly′ agree everywhere except
the variables that hash collide with the decision path variables. The depth of the tree is
small D = logm, thus each variable collides with a decision path variable with very small
probability logm

m . Thus this difference amounts to a negligible fraction of the variance of
the polynomial.
Changing from Ly′ to Ly overall Here we only need to bound the probability that two
decision path variables along α dont hash collide. As long as thing doesn’t happen Ly
and Ly′ are identically distributed.

This is depicted in the following equation:

|Eα[ E
y∼{±1}m

sgn(pα(Ly))]− E
y∼{±1}m

sgn(pL(y))| ≤

|Eα[ E
y∼{±1}m

sgn(pα(Ly))]− Eα[ E
y∼{±1}m

sgn(pα(Ly′))]|

+|Eα[ E
y∼{±1}m

sgn(pα(Ly′))]− E
y∼{±1}m

sgn(pL(y))|

4.2.1 Changing from Ly′ to Ly overall
|Eα[ E

y∼{±1}m
sgn(pα(Ly′))]− E

y∼{±1}m
sgn(pL(y))|

Here we only need to bound the probability that there is no hash collision on S(α). This
is because if h does not have a hash collision on S(α), then Ly and Ly′ are identically
distributed. That is,∣∣∣Eα[ E

y∼{±1}[m]\h(S(α))
sgn(pα(Ly′))]− Eyh[S(α)] [ E

y∼{±1}[m]\h[S(α)]
sgn(pL(y))]

∣∣∣
≤ 2 Pr

α

(
|h[S(α)]| 6= |S(α)|

)
.

Note that the above equation is for a fixed hash map h. The probability is over the choice of
random paths α of the decision tree but for this fixed h. It is the probability that a random
decision tree path sees a collision wrt this fixed hash map h.

We show that for most hash maps (whp over L) this term is very small.
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I Lemma 25.

Eh
[

Pr
α

(
|h[S(α)]| 6= |S(α)|

)]
≤ D2

m
.

Proof. Interchange the expectations and fix a depth D decision tree path and observe that
the probability that a random h has a collision along this path is at most (D2)

m . J

Hence by Markov’s inequality we have,

Pr
α

(
|h[S(α)]| 6= |S(α)|

)
≤ D2
√
m

wp
(

1− O(1)√
m

)
over L.

Note that D here is poly(logm).

4.2.2 Changing Ly on leaves to Ly′
|Eα[ E

y∼{±1}m
sgn(pα(Ly))]− Eα[ E

y∼{±1}m
sgn(pα(Ly′))]|

Note that Ly and Ly′ agree everywhere except the variables that hash collide with the
decision path variables. Thus the part of the polynomial that disagrees wrt Ly and Ly′

only contributes little mass to the total polynomial. However in order to use this fact to
bound this term we would need to move back to Gaussian setting so that we could use
Anticoncentration like ideas.

Jensen’s inequality, also known here as the triangle inequality gives

|Eα[ E
y∼{±1}m

sgn(pα(Ly))]− Eα[ E
y∼{±1}m

sgn(pα(Ly′))]|

≤ Eα
[
| E
y∼{±1}m

sgn(pα(Ly))− E
y∼{±1}m

sgn(pα(Ly′))|
]
.

Now we move back to Gaussian setting by doing a replacement on both pα(Ly), pα(Ly′).

Eα
[
| E
y∼{±1}m

sgn(pα(Ly))− E
y∼{±1}m

sgn(pα(Ly′))|
]
≤

Eα
[
| E
y∼{±1}m

sgn(pα(Ly))− E
y∼Nm(0,1)

sgn(pα(Ly))|
]

+Eα
[
| E
y∼Nm(0,1)

sgn(pα(Ly))− E
y∼Nm(0,1)

sgn(pα(Ly′))|
]

+Eα
[
| E
y∼Nm(0,1)

sgn(pα(Ly′))− E
y∼{±1}m

sgn(pα(Ly′))|
]
.

Replacement Errors:

Note that with probability (1−θ)(where θ = 1√
m
) the decision tree path α is such that pα(·)

is either regular or almost constant. We use similar analysis as done in the previous section
to bound both the replacement error terms as follows:

Eα
[
| E
y∼{±1}m

sgn(pα(Ly))− E
y∼Nm(0,1)

sgn(pα(Ly))|
]
≤ O

(
ε+ 1

mO(1)

)
wp
(

1−O(1)√
m

)
over L

and

Eα
[
| E
y∼Nm(0,1)

sgn(pα(Ly′))− E
y∼{±1}m

sgn(pα(Ly′))|
]
≤ O

(
ε+ 1

mO(1)

)
wp
(

1−O(1)√
m

)
over L
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Change Ly on leaves to Ly′ in Gaussian setting

We just need to bound Eα
[
| E
y∼Nm(0,1)

sgn(pα(Ly))− E
y∼Nm(0,1)

sgn(pα(Ly′))|
]
.

We show that E
y∼Nm(0,1)

[pα(Ly)−pα(Ly′)]2 is small in Lemma 26 and then invoke Lemma

5 to bound | E
y∼Nm(0,1)

sgn(pα(Ly))− E
y∼Nm(0,1)

sgn(pα(Ly′))|.

We expect E
y∼Nm(0,1)

[pα(Ly) − pα(Ly′)]2 to be small because pα(Ly), pα(Ly′) agree on

all terms except those that contain a variable that hash collides with the decision tree path.
Since this is a low probability event (Dm = (logm)O(1)

m ), we expect the overall mass in this
difference pα(Ly)− pα(Ly′) to be very small.

I Lemma 26.

E
y∼Nm(0,1)

[pα(Ly)− pα(Ly′)]2 ≤ 1√
m

wp
(

1− O(1)√
m

)
over L.

Proof. Let W = LS(α) \ S(α). Expanding out the terms we have

pα(Ly)− pα(Ly′) = 2
∑

j1∈S,j2∈W
aj1j2xj1 [σ(j2)yh(j2)−xh−1[h(j2)]]

+
∑
l∈W

bl[σ(l)yh(l)−xh−1(h(l))]

+ 2
∑

j1∈LSc,j2∈W
σ(j1)aj1j2yh(j1)[σ(j2)yh(j2)−xh−1[h(j2)]]

+
∑

j1,j2∈W
aj1j2 [σ(j1)σ(j2)yh(j1)yh(j2)−xh−1[h(j1)]xh−1[h(j2)]].

Note that j2 needs to be in W in all of the terms above. This is a very low probability
event. In fact Prh(j2 ∈W ) = D

m where D = |S(α)| is the depth of the decision tree and is
chosen to be (logm)O(1).

EL E
y∼Nm(0,1)

[pα(Ly)− pα(Ly′)]2 = O
(DV ar[pα]

m

)
= O

( (logm)O(1)

m

)
.

Thus

E
y∼Nm(0,1)

[pα(Ly)− pα(Ly′)]2 < (logm)O(1)
√
m

wp
(

1− O(1)√
m

)
over L. J

Now we invoke Lemma 5 to finish bounding this term,

Eα
[
| E
y∼Nm(0,1)

sgn(pα(Ly))− E
y∼Nm(0,1)

sgn(pα(Ly′))|
]
<
( (logm)O(1)

√
m

)1/6

wp
(

1− O(1)√
m

)
over L
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Abstract
Our main contribution in this paper is a new reduction from explicit two-source extractors for
polynomially-small entropy rate and negligible error to explicit t-non-malleable extractors with
seed-length that has a good dependence on t. Our reduction is based on the Chattopadhyay
and Zuckerman framework (STOC 2016), and surprisingly we dispense with the use of resilient
functions which appeared to be a major ingredient there and in follow-up works. The use of
resilient functions posed a fundamental barrier towards achieving negligible error, and our new
reduction circumvents this bottleneck.

The parameters we require from t-non-malleable extractors for our reduction to work hold in a
non-explicit construction, but currently it is not known how to explicitly construct such extractors.
As a result we do not give an unconditional construction of an explicit low-error two-source
extractor. Nonetheless, we believe our work gives a viable approach for solving the important
problem of low-error two-source extractors. Furthermore, our work highlights an existing barrier
in constructing low-error two-source extractors, and draws attention to the dependence of the
parameter t in the seed-length of the non-malleable extractor. We hope this work would lead to
further developments in explicit constructions of both non-malleable and two-source extractors.
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1 Introduction

A two-source extractor hashes samples from two independent weak sources into one output
whose distribution is close to uniform. Formally, we say a distribution X is an (n, k) source
if X is distributed over {0, 1}n and its min-entropy is at least k (i.e., all strings in its
support have probability mass at most 2−k). An ((n1, k1), (n2, k2), ε) two-source extractor
is a function E : {0, 1}n1 × {0, 1}n2 → {0, 1}m that maps any pair of independent (n1, k1)
and (n2, k2) sources X1, X2 to a distribution E(X1, X2) which is ε-close to Um, the uniform
distribution over {0, 1}m.

Non-explicitly there are ((n, k), (n, k), ε) two-source extractors as long as k ≥ logn +
2 log( 1

ε ) +O(1). More generally,

I Fact 1. Assume k1 + k2 ≥ log(2k1n1 + 2k2n2) + 2 log( 1
ε ) + O(1). Then, there exists a

(non-explicit) ((n1, k1), (n2, k2), ε) two-source extractor E : {0, 1}n1 × {0, 1}n2 → {0, 1}m.

Finding such explicit constructions is a long-standing, important and challenging problem.
A key parameter is the error ε obtained by the two-source extractor. Research in the area
can be divided into three regimes:

Very large error: Finding explicit two-source extractors with any error smaller than 1 (i.e.,
any non-trivial error) is already very challenging and is essentially equivalent to finding
an explicit bipartite Ramsey graph. A K Ramsey graph is a graph that contains no
monochromatic set (i.e., a clique or an independent set) of size K; a K bipartite Ramsey
graph is a bipartite graph with no bipartite monochromatic sets of size K. A K =
2k bipartite Ramsey graph over 2N = 2 · 2n vertices, is essentially equivalent to an
((n, k), (n, k), ε) two-source extractor, with ε = ε(n) < 1.
A long line of research was devoted to explicitly constructing Ramsey graphs [1, 30, 22, 12,
23, 31, 2, 24, 3], bipartite Ramsey graph [4, 5, 17], and two-source extractors [11, 34, 7].
Two years ago, Cohen [17] constructed a K bipartite Ramsey graph over 2N vertices with
logK = polylog(logN). This corresponds to an ((n, k), (n, k), ε) two-source extractor,
with k = polylogn and some non-trivial error ε. Independently, Chattopadhyay and
Zuckerman [10] gave another construction that gives about the same bipartite Ramsey
graphs, but with smaller error. We discuss this next.

Medium size error: Chattopadhyay and Zuckerman constructed an efficient ((n, k), (n, k), ε)
two-source extractor, with k = polylogn and running time polynomial in 1/ε. Several
improvements followed, including [29, 27]. Currently, following [6, 18, 28], the best explicit
construction achieves k = O(logn log logn) which is pretty close to the optimal Ω(logn)
bound.
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All these constructions have running time which is at best polynomial in 1/ε, and as
we explain below this seems to be inherent to the approach that is taken. In contrast,
non-explicit constructions may have exponentially small error in the entropy k of the two
sources. Similarly, these constructions usually output few close-to-uniform bits, while
non-explicitly, almost all of the entropy can be extracted.

Exponentially small error: There are several explicit two-source extractors constructions
with exponentially small error:
1. The inner-product function gives a simple construction when k > n/2 [11].
2. Bourgain [7] gave a two-source extractor construction for k =

( 1
2 − α

)
n, for some

small constant α > 0.
3. Raz [34] constructed an ((n1, k1), (n2, k2), ε) two-source extractor that has an unbal-

anced entropy requirement; the first source is long (of length n1) and very weak (k1
can be as small as log logn1 +O(1)), the second source is short (of length O(logn1))
and somewhat dense with k2 ≥ αn2, for some constant α > 1

2 .
On the positive side, all of these constructions have exponentially small error (in Raz’s
extractor, the error is exponentially small in the smaller entropy). On the negative side,
however, in all of these constructions one of the sources is required to have entropy rate
close to half, i.e., the entropy of the source has to be at least

( 1
2 − α

)
n > 0.49n.

To summarize:
Current explicit constructions of low-error, two-source extractors require one source to
have entropy rate close to half, and,
There are explicit two-source extractors that work with astonishingly small min-entropy,
but currently they only handle large error, or, more precisely, their running time is
polynomial in 1/ε.

As we shall see shortly, there is a good reason for the two barriers that are represented in
the above two items. The goal of this paper is to present a new approach for bypassing these
barriers.

1.1 Extractors and Entropy-Rate Half
Let us start with the rate-half barrier for low-error constructions. For that we compare
two-source extractors with strong seeded extractors.

I Definition 2. E : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) extractor if for every (n, k)
source X, (Y,E(X,Y )) is ε-close to Y × Um, where Y is uniformly distributed over {0, 1}d

and is independent of X.

A seeded extractor E must have seed length d ≥ logn+ 2 log( 1
ε )−O(1) [33]. In essence,

the error of a seeded extractor has two origins:
The fraction ε1 of bad seeds for which E(X, y) is ε2-far from uniform, and,
The distance ε2 between E(X, y) and Um for good seeds.

These two errors can be very different, for example, it might be the case that for half
the seeds the error is extremely small, and then ε1 is constant and ε2 is tiny, or vice versa.
In the terminology of a seeded extractor, these two errors are unified to one parameter ε.
In the two-source extractor notation these two errors are essentially separated, where 2k2 is,
roughly, the number of bad seeds making ε1 ≈ 2k2−n2 , where ε of the two-source extractor
represents the ε2 above. More formally:
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I Fact 3. Suppose E : {0, 1}n×{0, 1}d → {0, 1} is an ((n, k), (d, d′), ε2) two-source extractor.
Then, E is a strong (k, ε = ε1 + ε2) extractor, for ε1 = 2d′+1−d, and furthermore, for every
(n, k) source X,

Pr
y∈{0,1}d

[E(X, y) 6≈ε2 U1] ≤ ε1.

Proof. Let X be an (n, k) source and let B ⊆ {0, 1}d so that for every y ∈ B, E(X, y) 6≈ε2U1.
Partition B = B0∪B1 where y ∈ Bz if the ε2 bias is towards z. Assume towards contradiction
that |Bz| ≥ 2d′ for some z and consider the flat distribution Y over the set Bz. Thus,
H∞(Y ) ≥ d′ so E(X,Y ) ≈ε2 U1 but by our definition, E(X,Y ) is biased towards z – a
contradiction. Altogether, |B| ≤ 2d′+1 so ε1 ≤ |B|/2d = 2d′+1−d. J

The lower bound d ≥ logn+ 2 log( 1
ε )−O(1) imposed on extractors, does not reveal which

of the two errors forces d to be large. Stating it more precisely, define a (k, ε1, ε2) function
E : {0, 1}n×{0, 1}d → {0, 1}m so that for every (n, k) source X, Pry∈{0,1}d [E(X, y) 6≈ε2U1] ≤
ε1. What is the dependence of d on ε1 and ε2?

The existence of ((n, k), (d = n, d′ = O(logn)), ε) two-source extractors, implies that the
dependence of d on ε1 might be very close 1 · log 1

ε1
. On the other hand, the dependence

of d on ε2 is larger, d ≥ d′ ≥ 2 log 1
ε2
, since we can view E as a strong (d′, ε2) extractor

{0, 1}d×{0, 1}k → {0, 1} and d′ ≥ 2 log 1
ε2

is again a lower bound [33]. Thus, the two-source
extractor terminology allows a finer characterization of the quality of an extractor, separating
the two errors ε1 and ε2 above.

Looking at it that way we see why rate-half is a natural barrier: An extractor with
seed length dependence 2 log( 1

ε ) guarantees that out of the D = 2d possible seeds, at most
D

1
2 +β are D−β bad. Thus, one can get an explicit two-source extractor, where the seed

has some constant density 1
2 + β, and exponentially small error, by constructing an explicit

strong seeded extractor with seed length dependence (2 + γ) log( 1
ε ) for some small constant γ.

Constructing a two-source extractor with d′/d below half necessarily means using techniques
that do not apply to strong seeded extractors. Bourgain achieves that in an ingenious way,
by using additive combinatorics together with the inner product function, but, at least so
far, this approach can only handle min-entropies slightly below half.

1.2 The CZ Approach
We now explain the main ideas in the construction of the two-source extractor of [10] and the
bottleneck for achieving smaller error. The CZ construction builds upon two main ingredients:
the existence of explicit non-malleable extractors and resilient functions, and we recall both
now.

I Definition 4. E : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) t-non-malleable (n.m.)
extractor, if for every (n, k) source X and every t functions f1, . . . , ft : {0, 1}d → {0, 1}d with
no fixed-points6 it holds that

|(Y,E(X,Y ), E(X, f1(Y )), . . . , E(X, ft(Y )))− (Y, Um, E(X, f1(Y )), . . . , E(X, ft(Y )))| ≤ ε,

where Y is uniformly distributed over {0, 1}d and is independent of X and Um is the uniform
distribution over {0, 1}m.

6 That is, for every i and every x, we have fi(x) 6= x.



A. Ben-Aroya, E. Chattopadhyay, D. Doron, X. Li, and A. Ta-Shma 3:5

In words and roughly speaking, this means that there are many good seeds, and for a good
seed y, E(X, y) is close to uniform even given the value of E on t other seeds f1(y), . . . , ft(y)
maliciously chosen by an adversary. Said differently, if we build a table with D = 2d rows, and
put E(X, i) in the i-th row, then rows of good seeds are close to uniform, and, furthermore,
those good rows are close to being t-wise independent, in the sense that every t good rows
are ≈ tε close to uniform (see Lemma 10).

A resilient function is a nearly-balanced function f : {0, 1}D → {0, 1} whose output
cannot be heavily influenced by any small set of q “bad” bits. We think of the bad bits as a
coalition of malicious players trying to bias the output after seeing the D − q coin tosses
of the honest players (the honest players toss independent random coin). The function f is
(q, t) resilient if it is resilient even when there are q bad players and even when the honest
players are only t-wise independent.

Now, let X1 and X2 be two independent (n, k) sources. The starting point of [10] is to
use a t-non-malleable extractor E with error ε1 and seed length d1 to produce a table T1 with
D1 = 2d1 entries, where the i-th entry is E(X1, i). Using the property of the non-malleable
extractor, one can show that (1−√ε1)-fraction of the rows are uniform and almost t-wise
independent (in the sense that any t good rows are close to uniform). The remaining rows
are, however, arbitrarily correlated with those rows. Then, they

Use the second source X2 to sample a sub-table T2 with some D2 rows of the table T1,
such that a fraction of at most ε2 of its rows are bad, and every t good rows are √ε1-close
to uniform, and,
Apply a resilient function f : {0, 1}D2 → {0, 1} on the sub-table T2. f has to be resilient
against √ε2D2 bad players, and should perform correctly even when the good players are
t-wise independent.

It turns out that the sub-table T2 is Dt
2t
√
ε1-close to a table where the good players are

truly t-wise independent (as required by f) and so it is enough to choose ε1 small enough so
that Dt

2t
√
ε1 is small, and this proves the correctness of the construction.

While this beautiful approach does give an unbiased output bit, it seems that it is
inherently bound to have running time polynomial in 1/ε. This is because no matter which
resilient function we use, even if there is just a single bad player among the D2 players, then
that player alone may have 1/D2 influence over the result (in fact, [25] showed there is a
player with Ω( logD2

D2
) influence) and therefore that player can bias the result by 1/D2. Thus,

the running time, which is at least D2, is at least Ω( 1
ε ), and this is indeed a common feature

of all the constructions so far that use the CZ approach.
One could have hoped to sample a sub-table T2 that w.h.p. avoids all bad players, thus

dispensing with the use of the resilient function. This approach is futile: If T2 avoids all
bad players then every row y of it will do, so indeed E(X, y) is close to uniform and we
can compute it fast, allowing for a small error. However, this brings us back to the seeded
extractors case, and we already saw this cannot handle densities above half.

1.3 Our Main Result
The main result in the paper is a reduction showing how to explicitly construct low-error two-
source extractors given explicit t-non-malleable extractors with small seed length dependence
on t. Formally,

I Theorem 5. Suppose for some constant α > 0 for every n1, k1, ε1 and t there exists an
explicit function

E : {0, 1}n1 × {0, 1}d → {0, 1}m
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that is a strong (k1, ε1) t-non-malleable extractor with d ≤ αt · log( 1
ε1

).
Then, there exists an explicit function

F : {0, 1}n1 × {0, 1}n2 → {0, 1}m

that is a ((n1, k1), (n2 = O( dα ), k2 = O(αn2)), 2√ε1) two-source extractor, where the constants
hidden in the big-O notation are independent of α.

We first remark that such non-malleable extractors non-explicitly exist. In fact, much
better parameters are possible:

I Theorem 6. Let n, k, t and ε be such that k ≥ (t + 1)m + 2 log 1
ε + log d + 4 log t + 3.

There exist a strong (k, ε) t-n.m. extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ 2 log 1
ε +

log(n− k) + 2 log(t+ 1) + 3.

The proof of the Theorem is based on [21], where they only handle the t = 1 case. The
Theorem was also independently proved by Cohen and Shinkar [20]. For completeness we
give the proof in Appendix A.

The currently best explicit construction of t-n.m. extractors is due to Li:

I Theorem 7 ([28]). For any integer n, t and ε > 0, there exists an efficiently-computable
function

nmEXT : {0, 1}n × {0, 1}d → {0, 1}

that is a strong (k = d, tε) t-non-malleable extractor with seed length d = O(t2(logn+ log 1
ε ·

log log 1
ε )).

So far the main focus in explicit constructions of t-non-malleable extractors has been
getting an optimal seed length dependence on n and ε. Thus, Chattopadhyay et al. has
d = log2(nε ) [8] and this has been improved in [15, 16, 9, 14] with the current best construction
being Theorem 7 of [28] with d = O(logn+log 1

ε log log 1
ε ). However, in all these constructions

t is treated as a constant. In fact, Cohen [15, Lemma 2.5] proved that if one constructs a
n.m. extractor for t = 1 then an explicit construction for t follows at the cost of multiplying
the seed by a t2 multiplicative factor.

There is a huge gap between the dependence of the seed length on t in the non-explicit
construction of Theorem 6, where t contributes an additive 2 log t factor to the seed length,
and the explicit Theorem 7 where t contributes a multiplicative t2 factor to the seed length.7
Correspondingly, the quality of the two source construction we give significantly improves
with a better dependence of the seed on the parameter t. In Table 1 we list the two-source
extractors constructions we get for:

The current best explicit constructions (we get nothing),
A quadratic improvement over currently best explicit (we improve upon Raz’s extractor),
and,
A further polynomial improvement.

The parameters in the second row (and Theorem 5) resemble those of Raz’s extractor:
one source is long with very low entropy, the other is short with constant entropy rate. The

7 It is worth mentioning that an early construction of Cohen, Raz and Segev [19], although not explicitly
stating it, does get a very good dependence of d on t with d = O(log n

ε + t). However, their construction
only works for high min entropy and so does not imply a two-source extractor for densities below half.
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Table 1 Bounds for ((n, k), (n2, k2), ε) two-source extractors assuming an explicit t n.m. extractor
with various seed length d dependence on t. In all cases, the error ε is low.

Dependence on t k n2 k2

ω
(
t log 1

ε

)
The approach fails

αt log( 1
ε
) arbitrary O( d

α
) O(α)n2 α is any constant

tα log( 1
ε
) or better arbitrary polyα,β(d) nβ2 For some constants α, β < 1

tα log( 1
ε
) or better small enough n nβ For some constant β < 1

main difference is that in Raz’s extractor the entropy rate has to be above half, whereas here,
assuming the existence of the appropriate explicit non-malleable extractors, the entropy rate
can be an arbitrarily small constant.

By allowing the seed-length of the n.m. extractor to have an even better dependence on
t (and non-explicitly it does), we succeed in supporting polynomially-small min-entropies.
More specifically, if the seed length dependence on t is tα log( 1

ε ) for a small enough constant
α, then we can support min-entropy of k2 = nβ2 where β = β(α) is another constant.

Also, in that regime of dependence, we can set the error ε to be small enough so that
n2 = n, in which case we get a balanced two-source extractor supporting some polynomially-
small min-entropy (see Corollary 19).

We believe this clearly demonstrates that the dependence of the seed length on t in
non-malleable extractors is directly related to the required density of the seed (i.e., second
source) in low-error, two-source constructions. We believe this understanding is an important,
qualitative understanding. We believe our work is the first to draw attention to this important
question and we hope it will facilitate further research on achieving the correct dependence
of the seed on the non-malleability parameter t.

1.4 Our Technique
In the CZ construction we have the following ingredients:
1. The use of the first source to construct a table with many good rows (every row in the

table corresponds to applying an extractor on the first source, with some fixed seed).
2. The use of t-non-malleable extractors to get local t-wise independence, where every t

good rows are close to uniform.
3. The use of the second source to sample a sub-table of the table constructed from the first

source.
4. The realization that with the right choice of parameters the sub-table is globally close to

a table where the good rows are perfectly t-wise.
5. The use of resilient functions.

In our solution we keep (1)-(3) and completely dispense with (4) and (5), i.e., we do not
use resilient functions and we do not try to achieve a sub-table that is globally close to a truly
t-wise independent distribution. Instead, we work with the much weaker local guarantee that
every t good rows are close to uniform.

Thus, our construction is as follows. We are given two samples from independent sources
x1 ∼ X1 and x2 ∼ X2. Then:
1. We use a t-non-malleable extractor E with error ε1 and seed length d1 to construct a

table with D1 = 2d1 entries, where the i-th entry is E(X1, i). Using the property of
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non-malleable extractors one can show that (1 − √ε1)-fraction of the rows are good
in the sense that a good row is close to uniform even conditioned on t − 1 other rows.
The remaining rows are arbitrarily correlated with the good ones. So far, everything is
identical to the [10] construction.

2. We use the second sample x2 to sample t rows from that table, with the property that
with high probability (over the choice of x2 ∼ X2) at least one of the t samples is a
good row (in the table with D1 rows).
We note that this is very different from the [10] construction, where the requirement is
that with high probability (over the choice of x2 ∼ X2) the fraction of bad rows in the
sub-table is about the same as the fraction of bad rows in the original table.

3. We then take the parity of the t strings written in the t rows we sampled.
This is again very different from the [10] construction, where a resilient function is applied
on the sub-table (and notice that the parity function is not resilient at all).

Conceptually, what happened is that we take a dramatically smaller sample set than
before. Specifically, in [10, 6] the sample set is much larger than t, whereas in our algorithm
the sample size is t. Accordingly, we replace the requirement that the fraction of bad players
in the sample set is small, with the weaker requirement that not all of the players in the
sample set are bad. If the sample size is t and not all the players in the sample are bad, then
every good player (and even if there is just a single good player) is almost independent of
the other t− 1 players, and therefore we can just apply the parity function on the t bits in
the sample. Thus, we can also dispense with the resilient function f and just use the parity
function instead.

Notice that by doing so we also get rid of the annoying (and expensive) requirement that
Dt

2ε1 < 1, because we no longer need to convert a table where every t rows are locally close
to uniform, to a table that is globally close to being perfectly t-wise independent.

There is still a fundamental question we need to answer. Inspecting the argument, we
see that there is a circular dependency in the construction: The sample size of the sampler
determines the required t-non-malleability of the extractor, which then affects the parameters
of the extractor, and in particular the number of bad rows, which, in turn, affects the required
degree of the sampler. It is therefore, offhand, not clear whether such a construction is
possible at all even assuming the best possible non-malleable extractors.

The above inquiry raises the question of what is the dependence of the seed length of
non-malleable extractors on the non-malleability parameter t. This question was considered
before by several people. In particular, Cohen and Shinkar [20] independently investigated
this. As we explained before, it turns out that in non-explicit constructions the dependence
is very mild, and such an approach can be easily supported.

In the paper we analyze what is the threshold beyond which such an approach cannot
work. Roughly speaking, non-malleable extractors with seed length below t log(nε ) work
well, while non-malleable extractors with seed length above it do not. In Section 3 we
demonstrate how the dependence of the seed length d on t affects the parameters of the
two-source extractor construction.

Finally, we are left with two questions regarding explicitness:
We ask whether the sampler can be made explicit, i.e., whether we can find a sampler with
such a small sample size that except for very few x2-s always sees at least one good row.
This question readily translates to the existence (or the explicit existence) of dispersers
that are good against small tests. Remarkably, Zuckerman [35] gave a beautiful explicit
construction with nearly optimal bounds, and we show the dispersers he constructed
work well for us.
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Current explicit constructions of non-malleable extractors [13, 8, 15, 14, 9, 18, 28] for
small entropies are above that threshold. This is mainly due to the use of alternating
extraction techniques which treat the seed and the source symmetrically. Thus, this paper
raises the challenge of explicitly constructing non-malleable extractors with better seed
length dependence on t.

We believe identifying the connection between the seed length dependence on t and low
error, two-source extractors is important on its own, and is a major contribution of the
paper. We hope this work would lead to further developments in explicit constructions of
both non-malleable and two-source extractors.

1.5 Related work

Li [26] showed how to build a ((n, 0.499n), (n, k), 2−Ω(n)) two-source extractor assuming a
1-non-malleable extractor with seed-length d = 2 log(1/ε) + o(n). Li’s work is orthogonal
to ours. First, it asks for small seed dependence on the error: the seed-length of the non-
malleable extractor has to be at most 2.001, while we look on the dependence on t. Also,
it achieves limited parameters (even assuming non-explicit constructions) that are close to
those in Bourgain’s construction, and it is also close in spirit to Bourgain’s construction.

As we said before, we believe our work reveals an intrinsic connection between the
dependence of the seed length of a non-malleable extractor on the non-malleability parameter
t and the quality of low-error two-source extractors, and is the first work to draw attention
to the important problem of the dependence of the seed length on t in explicit construction.
We hope, and believe, this approach may lead to getting better explicit, low-error, two source
extractors, which is a fundamental problem and a long standing barrier in TCS.

2 Preliminaries

Throughout the paper we have the convention that lowercase variables are the logarithm
(in base-2) of their corresponding uppercase variables, e.g., n = logN , d = logD, etc. The
density of a set B ⊆ [D] is ρ(B) = |B|

D .

2.1 Random Variables, Min-Entropy

The statistical distance between two distributions X and Y on the same domain D is defined
as |X − Y | = maxA⊆D(Pr[X ∈ A]− Pr[Y ∈ A]). If |X − Y | ≤ ε we say that X is ε-close to
Y and denote it by X ≈ε Y . We will denote by Un a random variable distributed uniformly
over {0, 1}n and which is independent of all other variables. We also say that a random
variable is flat if it is uniform over its support.

For a function f : D1 → D2 and a random variable X distributed over D1, f(X) is
the random variable, distributed over D2, which is obtained by choosing x according to
X and computing f(x). For a set A ⊆ D1, we simply denote f(A) = {f(x) | x ∈ A}. It is
well-known that for every f : D1 → D2 and two random variables X and Y , distributed over
D1, it holds that |f(X)− f(Y )| ≤ |X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log 1
Pr[X = x] .
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A random variable X distributed over {0, 1}n with min-entropy at least k is called
an (n, k)-source. Every distribution X with H∞(X) ≥ k can be expressed as a convex
combination of flat distributions, each with min-entropy at least k.

2.2 Extractors
I Definition 8. A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is an ((n1, k1), (n2, k2), ε)
two-source extractor if for every two independent sources X1 and X2 where X1 is an (n1, k1)
source and X2 is an (n2, k2) source, it holds that 2Ext(X1, X2) ≈ε Um.

I Definition 9. E : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) t-non-malleable (n.m.)
extractor, if for every (n, k) source X and every functions f1, . . . , ft : [D] → [D] with no
fixed-points it holds that,∣∣∣(Y,E(X,Y ), {E(X, fi(Y ))}ti=1)− (Y, Um, {E(X, fi(Y ))}ti=1)

∣∣∣ ≤ ε,

where Y is uniformly distributed over {0, 1}d and is independent of X.

A simple consequence, proved in [10], is:

I Lemma 10 ([10], Lemma 3.4). Let E : {0, 1}n×{0, 1}d → {0, 1}m be a strong (k, ε) t-non-
malleable extractor. Let X be any (n, k) source. Then there exists a set BAD ⊆ [N ] with
ρ(BAD) ≤

√
ε such that for every y 6∈ BAD, and every y′1, . . . , y′t ∈ [D] \ y,∣∣∣(E(X, y), {E(X, y′i)}i∈[t]

)
−
(
Um, {E(X, y′i)}i∈[t]

)∣∣∣ ≤ √ε.
2.3 Dispersers
I Definition 11. A function Γ: [N ]× [D]→ [M ] is a (K,K ′) disperser if for every A ⊆ [N ]
with |A| ≥ K it holds that

∣∣∣⋃i∈[D] Γ(A, i)
∣∣∣ ≥ K ′.

Zuckerman showed the following remarkable explicit construction:

I Theorem 12 ([35], Theorem 1.9). There exists a constant cdisp such that the following
holds. For every constants 0 < a, b < 1, every N , K = Na, M ≤ K1−b and K ′ < M there
exists an efficient family of (K,K ′) dispersers

Γ: [N ]× [D]→ [M ]

with degree D = cdisp ·
log N

K

log M
K′

.

The parameters in Theorem 12 are tight up to a constant factor:

I Theorem 13 ([33], Theorem 1.5). There exists a constant c0 such that the following
holds. Let Γ: [N ]× [D]→ [M ] be a (K,K ′) disperser where K < N and K ′ < M/2. Then,
D ≥ c0 ·

log N
K

log M
K′

.

3 The Construction

3.1 The Overall Structure
Given:

E : {0, 1}n1 × [D]→ {0, 1}m

Γ: {0, 1}n2 × [t+ 1]→ [D]
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We define 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m by

2Ext(x1, x2) =
⊕

y : ∃i s.t. Γ(x2, i) = y

E(x1, y).

I Theorem 14. Assume E is a strong (k1, ε1) t-n.m. extractor and Γ is a (B2,
√
ε1D)

disperser. Then, for every k2, 2Ext is a
(

(n1, k1), (n2, k2), B2
K2

+√ε1

)
two-source extractor.

Proof. Let X1 be an (n1, k1) source and X2 an (n2, k2) source. W.l.o.g. X1 and X2 are flat.
As E is t-n.m., by Lemma 10 there exists a set BAD1 ⊆ [D] with ρ(BAD1) ≤ √ε1 such that
for every y 6∈ BAD1 and every y′1, . . . , y′t ∈ [D] \ {y},∣∣∣(E(X, y), {E(X, y′i)}i∈[t]

)
−
(
Um, {E(X, y′i)}i∈[t]

)∣∣∣ ≤ √ε1.

Let BAD2 ⊆ [N2] be

BAD2 = {x2 ∈ {0, 1}n2 : Γ(x2) ⊆ BAD1} .

Thus, Γ(BAD2) ⊆ BAD1. Since |BAD1| ≤
√
ε1D and Γ2 is a (B2,

√
ε1D) disperser, it

follows that |BAD2| ≤ B2. However, for any x2 ∈ {0, 1}n2 \BAD2, there exists an i ∈ [t+ 1]
such that y = Γ(x2, i) 6∈ BAD1. Hence,∣∣∣(E(X, y), {E(X, yj)}yj∈Γ(x2)\{y}

)
−
(
Um, {E(X, yj)}yj 6=Γ(x2)\{y}

)∣∣∣ ≤ √ε1.

Thus,∣∣∣∣∣∣
⊕

y : ∃i s.t. Γ(x2, i) = y

E(x1, y) − Um

∣∣∣∣∣∣ ≤ √ε1.

Altogether, the error is at most |BAD2|
K2

+√ε1 and the proof is complete. J

3.2 The Activation Threshold
In the previous subsection we assumed the existence of a (B2,

√
ε1D) disperser Γ and a t-n.m.

extractor E. However,
The degree D2 of the disperser Γ affects the non-malleability parameter t of the extractor,
because the argument requires t ≥ D2 − 1,
The non-malleability parameter t affects the degree 2d = D of the extractor, because
intuitively, the greater t is the greater the degree has to be,
The degree D determines |BAD1| =

√
ε1D, and,

The size B1 of the set BAD1 determines the degree of the disperser Γ as D2 = O

(
log N2

B2
log D

B1

)
,

and up to a multiplicative factor this is also a lower bound on D2.

Thus we have a circular dependence and it is not clear at all that such a construction is
even possible. Indeed, as we shall see, if the seed length of E is larger than t log( 1

ε1
) such a

construction is impossible. However, at least non-explicitly, better non-malleable extractors
exist that comfortably suffice for the construction. Our goal in this section is to determine
which dependence of the seed length on t and ε1 suffices for the construction.
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3.3 The analysis fails when d ≥ ct log(1
ε
) for some constant c

I Lemma 15. Suppose

E : {0, 1}n1 × [D]→ {0, 1}m

Γ: {0, 1}n2 × [t+ 1]→ [D]

are such that E is a strong (k1, ε1) t-n.m. extractor and Γ is any (B2, B1 = √ε1D) disperser,
as required by Theorem 14. Suppose Theorem 14 gives that

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is an ((n1, k1), (n2, k2), 2√ε1) two-source extractor with K2 <
√
N2. Then, log1/ε1 D ≤

t+1
c0

,
where c0 is the constant guaranteed by Theorem 13.

Proof. We first give some easy bounds on the parameters:
B2 ≤ K2, for otherwise Theorem 12 constructs 2Ext with the trivial error 1.
Also, tB2 ≥ B1, for otherwise we can take a set A ⊆ {0, 1}n2 of cardinality B2 and the
size of its neighbor set is at most B2t < B1 violating the disperser property.
Finally, B1

t ≥
√
B1 because otherwise

√
B1 < t and then

D1 = B1√
ε1

<
t2
√
ε1
≤ n2

1√
ε1
≤ 1
ε2

1
,

where the last inequality follows from the assumption on ε1. This contradicts the
lower-bound for extractors [33].

Together, N2
B2
≥ N2

K2
≥ K2 ≥ B2 ≥ B1

t ≥
√
B1 = √ε1D and D

B1
= 1√

ε1
. Now, Γ: {0, 1}n2×

[t+ 1]→ [D] is a (B2, B1 = √ε1D) disperser and therefore by Theorem 13 it has degree at

least c0 ·
log N2

B2
log D

B1
for some constant c0. Therefore,

t+ 1 ≥ c0 ·
log N2

B2

log D
B1

≥ c0 ·
log√ε1D

log 1√
ε1

= 2c0 · log1/ε1(
√
ε1D) = 2c0 · (log1/ε1 D − 1/2) ≥ c0 log1/ε1 D. J

The analysis in the above proof is quite tight and in the next subsection we prove the
converse (which also entails Theorem 5).

3.4 When d = O(t log(1
ε
))

I Lemma 16. Let ε1 ≤ 1
n . Suppose there exists an explicit

E : {0, 1}n1 × [D1]→ {0, 1}m

that is a strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ α
8cdisp t for some constant α > 0,

some constant t and some k1. Then there exists an explicit

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

that is a ((n1, k1), (n2 = 4
αd1, k2 = αn2), 2√ε1) two-source extractor.
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Proof. Fix t as in the hypothesis of the lemma. Set D such that log1/ε1 D = αt
8cdisp . Let

Γ: [N2 = D4/α]× [D2]→ [D]

be the (B2 = D2, B1 = √ε1D) disperser promised to us by Theorem 12 for a = α
2 (because

B2 = Na
2 ) and b = 1

2 (because D = Bb2). By Theorem 12 the degree D2 of Γ is

D2 = cdisp ·
log N2

B2

log D
B1

= cdisp ·
4(1−a)
α logD
log 1√

ε1

= cdisp ·
(

1
α
− 1

2

)
8 logD
log 1/ε1

= cdisp ·
(

8
α
− 4
)

log1/ε1 D

= cdisp ·
(

8
α
− 4
)

αt

8cdisp
=
(

1− α

2

)
t < t.

Let

E : {0, 1}n1 × [D1]→ {0, 1}m

be the explicit, strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ α
8cdisp t = log1/ε1 D promised

by the hypothesis of the lemma. As 1
ε > 1, we see that D1 ≤ D and we may take D1 larger

so that it equals D.
Now let

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

be constructed from E and Γ as above. As E is a strong (k1, ε1) t-n.m. extractor and Γ is a
(B2,

√
ε1D1) disperser, Theorem 14 tells us that for every k2, 2Ext is a ((n1, k1), (n2, k2), B2

K2
+√

ε1) two-source extractor. Taking k2 = αn2,

B2

K2
+
√
ε1 = D2

1
D4

1
+
√
ε1 = 1

D2
1

+
√
ε1.

But D1 ≥ 1
ε21

(this is true for any seeded extractor [33]). Altogether the error is at most
√
ε1 + 1

ε21
≤ 2√ε1. J

3.5 When d = O(tα log(1
ε
))

A careful examination of the parameters shows that if the dependence of d1 on t is better,
our scheme yields a two-source extractor that supports even smaller min-entropies. Roughly
speaking, if log1/ε1 D1 = tα for some α < 1 we can support some polynomially-small
min-entropy k2 = nβ2 , instead of only supporting min-entropies of constant rate. Specifically:

I Lemma 17. Let ε1 ≤ 1
n . There exists a constant β0 < 1 such that for every β0 < β < 1

there exist constants α < 1 and γ > 1 so that the following holds. Suppose there exists an
explicit

E : {0, 1}n1 × [D1]→ {0, 1}m

that is a strong (k, ε1) t-n.m. extractor with log1/ε1 D1 ≤ tα for some k1, and t which is a
large enough polynomial in log 1

ε1
. Then there exists an explicit

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

that is a ((n1, k1), (n2 = dγ1 , k2 = nβ2 ), 2√ε1) two-source extractor.
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The proof is similar to the proof of Lemma 16. However, it is no longer true that K2 is
a constant power of N2, so we should be more careful with the parameters of Zuckerman’s
disperser. Particularly, in this regime of parameters, the degree D2 (and consequently t)
is no longer constant but will be poly-logarithmic in 1

ε . The following Theorem extends
Theorem 12 for the more general case.

I Theorem 18 ([35], Theorem 1.9). There exist constants c1, c2 > 1 such that the following
holds. For every 0 < δ < 1, N , K = Nδ, M ≤ Nδc2 and K ′ < M there exists an efficient
family of (K,K ′) dispersers

Γ: [N ]× [D]→ [M ]

with degree D =
( 1
δ

)c1 · n
log M

K′
.

We are now ready to prove Lemma 17.

Proof of Lemma 17. Let c1 and c2 be as in Theorem 18. Set β0 = 1 − 1
c2

and fix some
β0 < β < 1. Fix t as in the hypothesis of the lemma. Set D such that log1/ε1 D = tα for
α = α(β) we will soon explicitly determine. Let

Γ: [N2 = D1/δc2 ]× [D2]→ [D]

be the (B2 = Nδ
2 , B1 = √ε1D) disperser promised to us by Theorem 18, for δ = 1

2n
−(1−β)
2 .

Notice that b2 = δn2 = 1
2n

β
2 and set k2 = 2b2 = nβ2 . Also, observe that n2 = 1

δc2 d = (2c2d)γ′

for

γ′ = 1
1− c2(1− β) .

As β > β0 we see that γ′ > 1. It follows that n2 = dγ for some γ′ < γ < 2γ′.
By Theorem 18, the degree D2 of Γ is

D2 =
(

1
δ

)c1
· n2

log D
B1

=
(

1
δ

)c1
· 2n2

log(1/ε1)

=
(

2n1−β
2

)c1
· 2 · n2

log(1/ε1) = 2c1+1 · n
1+c1(1−β)
2

log(1/ε1) = 2c1+1 · (logD)γ(1+c1(1−β))

log(1/ε1) .

Set ξ = γ(1 + c1(1− β)) > 1 and α = 1
2ξ (note that α is in fact a function of β). We get that:

D2 = 2c1+1 logξD
log(1/ε1) = 2c1+1

(
logξ−1 1

ε1

)(
log1/ε1 D

)ξ
= 2c1+1

(
logξ−1 1

ε1

)
tαξ.

Now, note that tαξ =
√
t, so D2 < t as long as t > 4c1+1 log2(ξ−1) 1

ε1
.

Let

D : {0, 1}n1 × [D1]→ {0, 1}m

be the explicit, strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ tα = log1/ε1 D promised
by the hypothesis of the lemma. Again, we can take D1 = D.

Now let

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m
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be constructed from E and Γ as in Section 3.1. We have that E is a strong (k1, ε1) t-n.m.
extractor and Γ is a (B2,

√
ε1D1) disperser, so by Theorem 14 2Ext is a ((n1, k1), (n2, k2), B2

K2
+√

ε1) two-source extractor.
In our case, B2

K2
= 2b2−k2 = 2−b2 . We stress that b2 ≥ 1

2 log 1
ε1
. To see this, note that

2b2 = nβ2 = dβγ1 . As βγ ≥ βγ′ = β
1−c2(1−β) ≥ 1, and d1 ≥ 2 log 1

ε1
(again, this is true for any

seeded extractor), we finally have that 2b2 ≥ d1 > log 1
ε1
. Overall,

B2

K2
+
√
ε1 ≤ 2

√
ε1

and we are done. J

Next, we show that we can balance the above two-source extractor (i.e., n1 = n2) by
choosing the error ε1 appropriately and assuming k1 is small enough. The resulting two-source
extractor supports polynomially-small min-entropies from both sources. Formally:

I Corollary 19. Let ε1 ≤ 1
n . There exists a constant β0 < 1 such that for every β0 < β < 1

there exits a constant α < 1 so that the following holds. Suppose there exists an explicit

E : {0, 1}n1 × [D1]→ {0, 1}m

that is a strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ tα for some k1 ≤ d1, and t which
is a large enough polynomial in log 1

ε1
. Then there exists an explicit

2Ext : {0, 1}n × {0, 1}n → {0, 1}m

that is an ((n, k = k1), (n, k), ε) two-source extractor for k = nβ and ε = 2−nΩ(1) .

Proof. Following the notations of Lemma 17, let β0, α, γ be the constants set according to β.
Let 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m be the explicit ((n1, k1), (n2 = dγ1 , k2 = nβ2 ), 2√ε1)
that is guaranteed to us.

We require n = n1 = n2 = dγ1 , so as d1 = tα log 1
ε1
≤ t log 1

ε1
and t is polynomial in log 1

ε1
,

denote t log 1
ε1

= logη
′ 1
ε1

and n = logη 1
ε1

for some large enough constants η′, η = γη′. This
guarantees that ε = 2√ε1 = 2−nΩ(1) .

Next, note that k1 ≤ d1 and d1 = n
1
γ . Indeed, n

1
γ ≤ nβ since we already observed in

the proof of Lemma 17 that γβ ≥ 1. Overall k1 ≤ nβ for every β > β0. As by construction
k2 = nβ2 for every β > β0 as well, the proof is concluded. J
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A The dependence of the seed on the non-malleability degree

In this section we extend the [21] result, where non-malleability was considered only in the
case of t = 1. We repeat Theorem 6 and prove:

I Theorem 20. Let n, k, t and ε be such that k ≥ (t + 1)m + 2 log 1
ε + log d + 4 log t + 3.

There exist a strong (k, ε) t-n.m. extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ 2 log 1
ε +

log(n− k) + 2 log(t+ 1) + 3.

This was also independently proved by Cohen and Shinkar [20].

Proof. Choose a function E : [N ]× [D] → [M ] uniformly at random. Fix a flat source X
(which we identify with a subset X ⊆ [N ] of size K), t functions f1, . . . , ft : [D]→ [D] with
no fixed-points and a distinguisher function D : {0, 1}(t+1)m+d → {0, 1}. We want to bound
the probability (over E) that

Pr[D(E(X,Y ), E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) = 1]−
Pr[D(Um, E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) = 1] > ε.

For every y ∈ [D] and z1, . . . , zt ∈ [M ], define

Count(y, z1, . . . , zt) = |{z ∈ [M ] : D(z, z1, . . . , zt, y) = 1}| .
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For every x ∈ X and y ∈ [D], define the following random variables (where the randomness
comes from E):

L(x, y) = D(E(x, y), E(x, f1(y)), . . . , E(x, ft(y)), y),

R(x, y) = 1
M
· Count(y,E(x, f1(y)), . . . , E(x, ft(y))),

Q(x, y) = L(x, y)−R(x, y),

Q = 1
KD

∑
x∈X,y∈[D]

Q(x, y).

As we mentioned above, we want to bound Pr[Q > ε]. Notice that for every x ∈ X and y ∈ [D],
due to the fact that f1, . . . , ft have no fixed points, we have that E[L(x, y)] = E[R(x, y)] and
thus E[Q] = 0. However, the values of Q on different inputs are not independent.

To see why the Q-s are not independent, think for example about the case where t = 2
and y is such that f2(f1(y)) = y. In such a scenario,

L(x, y) = D(E(x, y), E(x, f1(y)), E(x, f2(y)), y),
L(x, f1(y)) = D(E(x, f1(y)), E(x, f1(f1(y))), E(x, y), f1(y)),

so, depending on D, Q(x, y) and Q(x, f1(y)) may not be independent. Luckily, it is sufficient
to disregard such cycles in order to obtain sufficient “independence”.

Let G = (V = [D], E) be a directed graph (multiple edges allowed) such that

E = {(y, fk(y)) : y ∈ [D], k ∈ [t]} ,

so the out-degree of every vertex is exactly t.

I Lemma 21. Assume that there exists a subset V ′ ⊆ V such that the induced subgraph
G′ ⊆ G is acyclic. Then, the set {Q(x, y)}x∈X,y∈V ′ can be enumerated by Q1, . . . ,Qm=K|V ′|
such that

E[Qi | Q1, . . . ,Qi−1] = 0

for every i ∈ [m].

Proof. G′ is acyclic so it induces a partial order on V ′. Use this partial order to induce
a total order on {1, . . . ,m} such that if (y, y′) ∈ E and Qj = Q(x, y′), Qi = Q(x, y) then
j ≤ i.

Fix some i ∈ [m] and assume Qi = Q(x, y). The key point is that the variables
Q1, . . . ,Qi−1 never query E on the input (x, y). Conditioned on any choice of the value of
E for all points other than (x, y), denote them by e1, . . . , et, we have that

E[Qi] = E
[
D(E(x, y), e1, . . . , et, y)− 1

M
· Count(y, e1, . . . , et)

]
= 0,

and as we noted, Q1, . . . ,Qi−1 are deterministic functions of E and independent of E(x, y).
J

We now need a partition of the vertices of G into acyclic induced subgraphs. The following
lemma shows that such a partition exists with a small number of sets.

I Lemma 22 ([32, Corollary 4]). For any directed graph G = (V,E) with maximum out-degree
t (multiple edges allowed), there exists a partition V = V1 ∪ . . . ∪ Vt+1 such that for every
i ∈ [t+ 1], the subgraph of G induced by Vi is acyclic.
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In light of the above two lemmas, there exists a partition of {Q(x, y)}x∈X,y∈[D] to
t + 1 sets

{
Q1

1, . . . ,Q1
s1

}
, . . . ,

{
Qt

1, . . . ,Qt
st

}
such that for every k ∈ [t + 1] and i ∈ [sk],

E[Qk
i | Qk

1 , . . . ,Qk
i−1] = 0. Now, define Ski =

∑i
j=1 Qk

j and note that every sequence
Sk1 , . . . , S

k
sk

is a martingale. Also, |Ski − Ski−1| = |Qk
i | ≤ 1 with probability 1. Thus, using

Azuma’s inequality,

Pr[Q > ε] = Pr
[
t+1∑
k=1

Sksk > εKD

]
≤

t+1∑
k=1

Pr
[
Sksk >

εKD

t+ 1

]

≤
t+1∑
k=1

exp

−
(
εKD
t+1

)2

2 · sk

 ≤ (t+ 1)e−
ε2KD

2(t+1)2 ,

where the last inequality follows from the fact that sk ≤ KD.
To complete our analysis, we require E to work for any X, f1, . . . , ft and D. By the

union bound, the probability for a random E to fail, denote it by pE , is given by

pE ≤
(
N

K

)
DtD2D·M

t+1
(t+ 1)e−

ε2KD
2(t+1)2

≤ 2K log(NeK )+tDd+DMt+1+log(t+1)− ε
2KD log e
2(t+1)2

≤ 2K(n−k+2)+tDd+DMt+1+log(t+1)− ε2KD
2(t+1)2 .

To prove that pE < 1 (in fact this will show pE � 1) it is sufficient to prove that:
1. K(n− k + 2) ≤ ε2KD

8(t+1)2 .
2. D(td+M t+1) + log(t+ 1) ≤ ε2KD

8(t+1)2 , or alternatively D(2td+M t+1) ≤ ε2KD
8(t+1)2 .

Item (1) is true whenever

D ≥ 8(t+ 1)2(n− k + 2)
ε2 .

Item (2) is true whenever

K ≥ 8(t+ 1)2(2td+M t+1)
ε2 .

The bounds on d and k follow from the above two inequalities. J
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Abstract
For a vector space Fn over a field F, an (η, β)-dimension expander of degree d is a collection
of d linear maps Γj : Fn → Fn such that for every subspace U of Fn of dimension at most ηn,
the image of U under all the maps,

∑d
j=1 Γj(U), has dimension at least β dim(U). Over a finite

field, a random collection of d = O(1) maps Γj offers excellent “lossless” expansion whp: β ≈ d

for η ≥ Ω(1/d). When it comes to a family of explicit constructions (for growing n), however,
achieving even modest expansion factor β = 1 + ε with constant degree is a non-trivial goal.

We present an explicit construction of dimension expanders over finite fields based on linear-
ized polynomials and subspace designs, drawing inspiration from recent progress on list-decoding
in the rank-metric. Our approach yields the following:

Lossless expansion over large fields; more precisely β ≥ (1− ε)d and η ≥ 1−ε
d with d = Oε(1),

when |F| ≥ Ω(n).
Optimal up to constant factors expansion over fields of arbitrarily small polynomial size; more
precisely β ≥ Ω(δd) and η ≥ Ω(1/(δd)) with d = Oδ(1), when |F| ≥ nδ.

Previously, an approach reducing to monotone expanders (a form of vertex expansion that is
highly non-trivial to establish) gave (Ω(1), 1 + Ω(1))-dimension expanders of constant degree
over all fields. An approach based on “rank condensing via subspace designs” led to dimension
expanders with β &

√
d over large fields. Ours is the first construction to achieve lossless

dimension expansion, or even expansion proportional to the degree.
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1 Introduction

The field of pseudorandomness is concerned with efficiently constructing objects that share
desirable properties with random objects while using no or little randomness. The ideas
developed in pseudorandomness have found broad applications in areas such as complexity
theory, derandomizaton, coding theory, cryptography, high-dimensional geometry, graph
theory, and additive combinatorics. Due to much effort on the part of many researchers,
nontrivial constructions of expander graphs, randomness extractors and condensers, Ramsey
graphs, list-decodable codes, compressed sensing matrices, Euclidean sections, and pseudor-
andom generators and functions have been presented. Interestingly, while these problems
may appear superficially to be unrelated, many of the techniques developed in one context
have been useful in others, and the deep connections uncovered between these pseudorandom
objects have led to a unified theory of “Boolean pseudoranomness”. (See for instance this
survey by Vadhan [28] for more discussion of this phenomenon.)

More recently, there is a developing theory of “algebraic pseudorandomness,” wherein
the pseudorandom objects of interest now have “algebraic structure” rather than a purely
combinatorial structure. In these scenarios, instead of studying the size of subsets or min-
entropy, we consider the dimension of subspaces. Many analogs of classical pseudorandom
objects have been defined, such as dimension expanders, subspace-evasive sets, subspace
designs, rank-preserving condensers, and list-decodable rank-metric codes. Beyond being
interesting in their own rights, these algebraic pseudorandom objects have found many
applications: for example, subspace-evasive sets have been used in the construction of
Ramsey graphs [26] and list-decodable codes [19, 17]; subspace designs have been used to
list-decode codes over the Hamming metric and the rank-metric [20, 17]; and rank-preserving
condensers have been used in affine extractors [11] and polynomial identity testing [23, 9].

In this work, we focus upon providing explicit constructions of dimension expanders over
finite fields. A dimension expander is a collection of d linear maps Γj : Fn → Fn such that,
for any subspace U ⊆ Fn of sufficiently small dimension, the sum of the images of U under
all the maps Γ1(U) + · · ·+ Γd(U) has dimension which is a constant factor larger than dimU .
As suggested by their name, dimension expanders may be viewed as a linear-algebraic analog
of expander graphs. Indeed, one can imagine creating a graph with vertex set Fn, and then
we add an edge from a vertex u ∈ Fn to the vertices Γj(u).3. Alternatively, one may consider
the bipartite graph with left and right partition given by Fn, and we attach a vertex u ∈ Fn
in the left partition to Γj(u) in the right partition for each j. For this reason, d is referred
to as the degree of the dimension expander. The property of being a dimension expander
then says that, given any (sufficiently small) subspace, the span of the neighborhood will
have appreciably larger dimension. Indeed, we use the notation Γj for the linear maps in
analogy with the “neighborhood function” of a graph. Just as with expander graphs, we seek

3 In general, this yields a directed graph. However, we may assume the maps Γj are invertible and then
add the maps Γ−1

j to the collection, which makes the graph undirected.

http://dx.doi.org/10.4230/LIPIcs.CCC.2018.4
https://eccc.weizmann.ac.il/report/2018/017/
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dimension expanders with constant degree, and moreover we would like to be able expand
subspaces of dimension at most ηn by a multiplicative factor of β, where η = Ω(1) and
β = 1 + Ω(1). We refer to such an object as an (η, β)-dimension expander. If β = Ω(d), we
deem the dimension expander degree-proportional. If moreover β = (1− ε)d, we deem the
dimension expander lossless. Via a probabilistic argument, it is a simple exercise to show
that constant-degree lossless dimension expanders exist over every field (see )

Finally, we indicate that unbalanced bipartite expander graphs play a key role in con-
structions of extractors and other Boolean pseudorandom objects. In this scenario, the left
partition is significantly larger than the right partition, but we still have that sufficiently
small subsets U of the left partition expand significantly, with (1 − ε)d|U | neighbors in
the right partition in the lossless case. Such unbalanced expanders are closely related to
randomness condensers, which preserve all or most of the min-entropy of a source while
compressing its length. The improved min-entropy rate at the output makes subsequent
extraction of near-uniformly random bits easier. Indeed, the extractors in [15] were obtained
via this paradigm, once lossless expanders based on list-decodable codes were constructed.
Inspired by this, we consider the challenge of constructing unbalanced dimension expanders:
for N and n not necessarily equal, we would like a collection of maps Γ1, . . . ,Γd : FN → Fn
that expand sufficiently small subspaces by a factor of ≈ d. We quantify the “unbalancedness”
of the dimension expander by b = N

n , and we refer to it as a b-unbalanced dimension expander
in Fn. Again, if the expansion factor is Ω(d) we deem the unbalanced dimension expander
degree-proportional, while if the expansion factor is (1− ε)d we deem it lossless.

1.1 Our results
We provide various explicit constructions of dimension expanders. More precisely, we have
a family of sets of matrices {{Γ(nk)

1 , . . . ,Γ(nk)
d }}k∈N for an infinite sequence of integers

n1 < n2 < · · · , where each Γ(nk)
j is an nk × nk matrix (or nk × bnk matrix in the case of

b-unbalanced expanders). The family is explicit if there is an algorithm outputting the list of
matrices Γ(nk)

1 , . . . ,Γ(nk)
d in poly(nk) field operations.

First of all, we provide the first explicit construction of a lossless dimension expander.
Moreover we emphasize that the η parameter is optimal as well, as one cannot hope to
expand subspaces of dimension more than n

d by a factor of ≈ d.

I Theorem 1.1 (Informal Statement; cf. Theorem 5.2). For all ε > 0 constant, there exists
an integer d = d(ε) sufficiently large such that there is an explicit family of ( 1−ε

d , (1− ε)d)-
dimension expanders of degree d over Fn when |F| ≥ Ω(n).

The main drawback of the above result is the constraint on the field size. Our next result
allows for smaller field sizes, but we are only able to guarantee degree-proportional expansion.
We remark that prior to this work, no explicit constructions of degree-proportional dimension
expanders were known.

I Theorem 1.2 (Informal Statement; cf. Theorem 5.1). For all δ > 0 constant, there exists
an integer d = d(δ) sufficiently large such that there is an explicit family of

(
Ω
( 1
δd

)
,Ω(δd)

)
-

dimension expanders of degree d over Fn when |F| ≥ nδ.

Moreover, our paradigm is flexible enough to allow for the construction of unbalanced
dimension expanders. We remark that while the results of Forbes and Guruswami [8] could
be adapted to obtain nontrivial constructions of unbalanced expanders, our work is the first
to explicitly state this. Furthermore, our work is the first to achieve lossless expansion,
or even degree-proportionality. Recall that we view unbalanced dimension expanders as
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mapping FN → Fn and we call it b-unbalanced dimension expander over Fn where b = N
n .

Below we provide informal statements of our results; we refer to the full version for precise
statements.

First, we provide a construction of a lossless unbalanced dimension expander, again over
fields of linear size.

I Theorem 1.3 (Informal Statement). For all ε > 0 and integer b ≥ 1, there exists an
integer d = d(ε, b) sufficiently large such that there is an explicit family of b-unbalanced
( 1−ε
db , (1− ε)d)-dimension expanders of degree d over Fn when |F| ≥ Ω(n).

This result is again complemented by a construction of degree-proportional unbalanced
dimension expanders over fields of arbitrarily small polynomial size.

I Theorem 1.4 (Informal Statement). For all δ > 0 and integer b ≥ 1, there exists an
integer d = d(δ, b) sufficiently large such that there is an explicit family of b-unbalanced(
Ω
( 1
δbd

)
,Ω(δd)

)
-dimension expanders of degree d over Fn when |F| ≥ nδ.

1.2 Our approach
Our approach for constructing dimension expanders uses ideas recently developed in the
context of list-decoding rank-metric codes. A rank-metric code is a set of matrices C ⊆ Fm×n
with m ≥ n, and we define the rank-distance between matrices A,B to be dR(A,B) =
rank(A−B). A code C is said to be (ρ, L)-list-decodable if, for any Y ∈ Fm×n, the number of
matrices in C at rank-distance at most ρn from Y is at most L. A line of work [18] succeeded
in constructing high-rate rank-metric codes which are list-decodable up to the Singleton
bound.4 The code may also readily be seen to be list-recoverable in the following sense:
given vector spaces V1, . . . , Vn ⊆ Fm of bounded dimension, the number of matrices in A ∈ C
with Ai ∈ Vi for all i ∈ [n] is bounded, where Ai denotes the ith column of A. The code
constructed in [18] is a carefully selected subcode of the Gabidulin code [10], which is based
on the evaluation of low degree linearized polynomials and is the analog of Reed-Solomon
codes for the rank metric. Briefly, the Gabidulin code G[n,m, k, q] is obtained by evaluating
linearized polynomials f(X) =

∑k−1
i=0 fiX

qi ∈ Fqm [X] at the Fq-linearly independent points
α1, . . . , αn ∈ Fqm , and then identifying the vector (f(α1), . . . , f(αn)) with the matrix in
Fm×nq obtained by expressing f(αj) ∈ Fqm as an element of Fmq by fixing a basis for Fqm
over Fq. The q-degree of f =

∑k−1
i=0 fiX

qi is the maximal i such that fi 6= 0.
In the case of Boolean pseudorandomness, not long after the construction of Parvaresh-

Vardy codes and folded Reed-Solomon codes [25, 14], the techniques used to prove list-
decodability of these codes were adapted to show lossless expansion properties of unbalanced
expanders built from these codes [15]. Our approach is strongly inspired by the connection
between list recovery and expansion that drives [15] and its instantiation with algebraic
codes shown to achieve optimal redundancy for list decoding. Indeed, our methodology
can be viewed as an adaption of the GUV approach to the “linearized world”. Various
challenges arise in attempting to adapt the approach of the GUV framework to the setting
of Gabidulin-like codes. For instance, we are no longer able to “append the seed” (in our
context, the field element αj) to the output of the neighborhood functions as is done in [15],
as that will prevent the maps from being linear.5 More significantly, we also need to perform

4 The Singleton bound from coding theory over the Hamming metric possesses a natural analog in the
rank-metric case.

5 One could instead try tensoring the output with the seed, but it is unclear to us how to make this
approach work without suffering a significant hit in the expansion factor.
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a careful “pruning” of subspaces which arise in the analysis by exploiting the extra structure
possessed by these subspaces. In turn this calls for better “subspace designs” which we
construct. Broadly speaking, our approach necessitates the use of more sophisticated ideas
from linear-algebraic list-decoding than were present in [15].

We now describe our approach in more detail. Let Fqn [X; (·)q]<k denote the space of
all linearized polynomials of q-degree less than k. We fix a subspace F ⊆ Fqn [X; (·)q]<k of
dimension n over Fq, and then each Γj is simply the evaluation of f ∈ F at a point αj ∈ Fqn ,
i.e., Γj(f) = f(αj). We will in fact choose α1, . . . , αd to span a degree d field extension Fh
over Fq.

The analysis of this construction mirrors the proof of the list-decodability of the codes
from [18] and we sketch it here. In contrapositive, the dimension expander property amounts
to showing that for every subspace V ⊆ Fqn of bounded dimension, the space of f ∈ F
such that f(αj) ∈ V ∀j ∈ [d] has dimension about a factor d smaller. So we study the
structure of the space of polynomials f ∈ Fqn [X, (·)q]<k which, for some fixed subspace V ,
have f(αj) ∈ V for all j ∈ [d], and show that it forms a periodic subspace (cf. Definition 2.6).
Thus, the challenge at this point is to find an appropriate subspace F ⊆ Fqn [X; (·)q]<k that
has small intersection with every periodic subspace.

We accomplish this by using an appropriate construction of a subspace design (cf. Defin-
ition 2.5). Subspace designs were originally formulated for applications to algebraic list-
decoding, where they led to optimal redundancy list-decodable codes over small alphabets [20]
and over the rank-metric [18]. Briefly, subspace designs are collections of subspaces {Hi}ki=1
such that, for any subspace W of bounded dimension, the total intersection dimension∑k
i=1 dim(Hi ∩W ) is small. In fact, we will be interested in a slightly more general object:

we are only required to have small intersection with Fh-subspaces W , where we recall that
Fh is an extension field of Fq. Once we have a good subspace design, it will suffice to define
F =

{
f(X) =

∑k−1
i=0 fiX

qi : fi ∈ Hi+1

}
.

Thus, we have reduced the task of constructing dimension expanders to the task of
constructing subspace designs. We provide two constructions, yielding our two claimed
constructions of dimension expanders. Both use an explicit subspace design given in [13] as
a black box (cf. Lemma 4.1). We remark that in this work the authors only considered the
d = 1 case, i.e., the Hi’s were required to have small intersection with all Fq-subspaces, and
not just Fh-subspaces. Thus, our task is easier in the sense that we only require intersection
with Fh-subspaces to be small. However, for our purposes, we will require a better bound
on the total intersection dimension than that which is guaranteed by [13]. We also remark
that this construction requires linear-sized fields which prevents us from obtaining dimension
expanders over fields of subpolynomial size.

The subspace design which yields our degree-proportional expander is more elementary
so we describe it first. Essentially, we take the subspace design of [13] and define it over
an “intermediate field” F`, i.e., Fq ⊆ F` ⊆ Fh. By appropriately choosing the degree of the
extension we are able to guarantee smaller intersections with Fh-subspaces and also allow q

to be smaller (as it is now only ` that must be linear in n, and we can take ` ≈ q1/δ).
Our construction which yields lossless dimension expanders is more involved. We take

the construction of [13] and now view it as lying in Fq[Y ]<δn (for an appropriately chosen
constant δ > 0), where Fq[Y ]<δn denotes the Fq-vector space of polynomials of degree < δn.
We then map each of the subspaces into Fn/dh by evaluating the polynomials at a tuple of
correlated degree d places (recall that h = qd). Identifying Fn/dh with Fqn completes the
construction. Ideas similar to the linear algebraic list-decoding of folded Reed-Solomon
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codes [12, 16] are used to prove the final bound on intersection dimension, which with a
careful choice of parameters is good enough to guarantee lossless expansion. For technical
reasons, in order to explicitly construct the degree d place we require n = q − 1.

1.3 Previous work
We now survey previous work on dimension expanders. Previous constructions have followed
one of three main approaches: the first uses Cayley graphs of groups satisfying Kazhdan’s
property T , the second uses monotone expanders, and the third uses rank condensers.

1.3.1 Property T

The problem of constructing dimension expanders was originally proposed by Wigderson [29,
1]. Along with the definition, he conjectured that dimension expanders could be constructed
with Cayley graphs. This is in analogy with expander graphs, where such approaches
have been very successful. To construct an expanding Cayley graph, one uses a group G
with generating set S satisfying Kazhdan’s property T . Wigderson conjectured (see Dvir
and Wigderson [7], Conjecture 7.1) that an expanding Cayley graph would automatically
yield a dimension expander. More precisely, if one takes any irreducible representation
ρ : G→ GLn(F) of the group G, then ρ(S) would provide a dimension expander.

In characteristic zero, Lubotzky and Zelmanov [24] succeeded in proving Wigderson’s
conjecture. Unfortunately, their approach intrinsically uses the notion of unitarity which
does not possess a meaningful definition over positive characteristic. They also provided
an example of an expanding group whose linear representation over a finite field does not
yield a dimension expander, although in the example the characteristic of the field divides
the order of the group. In an independent work, Harrow [22] proved the same result in the
context of quantum expanders, which imply dimension expanders in characteristic zero. The
following theorem summarizes this discussion.

I Theorem 1.5 ([24, 22]). Let F be a field of characteristic zero, n ≥ 1 an integer. There
exists an explicit (1/2, 1 + Ω(1))-dimension expander over Fn of constant degree.

Unfortunately, this approach is inherently unable to construct unbalanced dimension
expanders. Moreover, it is unclear to us if it is possible to obtain expansion proportional to
the degree via this strategy.

1.3.2 Monotone expanders
Consider a bipartite graph G with left and right partition given by [n], and let Γ1, . . . ,Γd :
[n]→ [n] denote the neighbor (partial)6 functions of the graph, i.e., each left vertex i ∈ [n] is
connected to Γj(i) whenever it’s defined. One can then define the linear maps Γ′1, . . . ,Γ′d
which map ei 7→ eΓj(i) whenever Γj(i) is defined and then extending linearly, where the ei
are the standard basis vectors. It is easily seen that if G is an expander, the corresponding
collection {Γ′j}dj=1 will expand subspaces of the form span{ei : i ∈ S} for S ⊆ [n]. To
expand all subspaces (and hence obtain dimension expanders), Dvir and Shpilka [6] implicitly
observed that it is sufficient for the maps Γj to be monotone (this observation is made
explicit in [7]). Note that the matrices Γ′j have entires in {0, 1}, and they form a dimension
expander over every field.

6 That is, Γj need only be defined on a subset of [n].



V. Guruswami, N. Resch, and C. Xing 4:7

Thus, in order to construct dimension expanders, it suffices to construct monotone
expander graphs. Unfortunately, constructing monotone expander graphs is a highly non-
trivial task: indeed, the standard probabilistic arguments seem insufficient to even prove the
existence of monotone expanders (see [7, 3]). Nonetheless, Dvir and Shpilka [5] succeeded
in constructing monotone expanders with logarithmic degree, as well as constant-degree
expanders with inverse-logarithmic expansion. Later, using the zig-zag product of Reingold,
Vadhan and Wigderson [27], Dvir and Wigderson [7] constructed monotone expanders
of degree log(c) n (the c-th iterated logarithm) for any constant c. Moreover, given any
constant-degree monotone expander as a starting point (which is not known to exist via the
probabilistic method), their method is capable of constructing a constant degree monotone
expander graph. Lastly, by a sophisticated analysis of expansion in the group SL2(R),
Bourgain and Yehudayoff [3] were able to construct explicit monotone expanders of constant
degree. Thus, we have the following theorem.

I Theorem 1.6 ([3]). Let n ≥ 1 be an integer. There exists an explicit (1/2, 1 + Ω(1))-
dimension expander of degree O(1) over Fn, for every field F.

Unfortunately, just as with the previous approach, it is unclear to us if this argument
could be adapted to yield degree-proportional dimension expanders.

1.3.3 Rank condensers

This final approach to constructing dimension expanders, developed by Forbes and the
first author [8], uses rank condensers. Unlike the constructions of the previous sections, it
inherently uses ideas from algebraic pseudorandomness and thus is most in the spirit of our
work. The construction proceeds in two steps. First, one “trivially” expands the subspaces
by a factor of d by defining Tj : Fn → Fn ⊗ Fd mapping v 7→ v ⊗ ej . The challenge is then
to map Fn ⊗ Fd ∼= Fnd back to Fn such that subspaces do not decrease in dimension too
much. This is precisely the problem of lossy rank condensing, namely, of constructing a small
collection of linear maps Sk : Fnd → Fn such that, for any subspace U of bounded degree,
there exists some Sk such that dimSk(U) ≥ (1 − ε) dimU . To complete the construction,
one takes the set of all SkTj . We remark that the construction of the rank condenser from
this work used the subspace designs of [13], providing more evidence for the interrelatedness
of the objects studied in algebraic pseudorandomness. Unfortunately, the construction of
subspace designs used in this work require polynomially large fields. The authors are able
to decrease the field size using techniques reminiscent of code-concatenation at the cost of
certain logarithmic penalties.

The following theorem was obtained.

I Theorem 1.7 ([8]).
1. Let n, d ≥ 1. Assume |F| ≥ Ω(n2). There exists an explicit (Ω(1/

√
d),Ω(

√
d))-dimension

expander in Fn of degree d.
2. Let Fq be a finite field, n, d ≥ 1. There exists an explicit (Ω(1/d logq(dn)),Ω(d))-dimension

expander in Fnq of degree O(d2 logq(dn)).

In order to improve the dependence on the field size, improved subspace designs over
small fields were constructed by Guruswami, Xing and Yuan [21]. These subspace designs
yield a family of explicit (Ω(1/ logq logq n), 1 + Ω(1))-dimension expander of degree O(logq n)
over Fnq .
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1.4 Organization
In Section 2 we set notation and define the various pseudorandom objects that we use in our
construction. We also provide probabilistic arguments ascertaining the existence of good
dimension expanders in order to set expectations. In Section 3 we prove that the problem
of constructing dimension expanders can be reduced to that of constructing appropriate
subspace designs, which is the task we address in Section 4. In Section 5, we put all of the
pieces together to deduce our main theorems for balanced dimension expanders (for our
results on unbalanced dimension expanders, we refer to the full version of the paper). We
summarize our work and list open problems in Section 6.

2 Background

2.1 Notation
First, we briefly summarize the notation that we will use regularly (other notation will be
introduced as needed). F will always refer to an arbitrary field, q always denotes a prime
power, and Fq denotes the finite field with q elements. We denote [n] := {1, . . . , n}. We
write a|b to assert that the integer a divides the integer b without remainder.

Given a subspace U ⊆ Fn and a linear map T : Fn → Fm, T (U) = {Tu : u ∈ U}
denotes the image of the subspace U under the map T . Given two subspaces U, V ⊆ Fn,
U + V = {u+ v : u ∈ U, v ∈ V } denotes their sum, which is also a subspace.

The finite field with qn elements, i.e., Fqn , has the structure of a vector space over Fq of
dimension n. Thus, we often identify Fqn with Fnq . Moreover, if h = qd is a power of q and
d|n, so Fh ⊆ Fqn , the field Fqn also has the structure of a vector space over Fh of dimension
n/d. Throughout this work, we will always assume d|n and write n = md.

We will sometimes have subspaces of W ⊆ Fqn that are linear over Fh, i.e., for all w ∈W
and α ∈ Fh we have αw ∈ W . When we wish to emphasize this, we will say that W is an
Fh-subspace. Moreover, we will write dimFq W or dimFhW if we need to emphasize that the
dimension is computed when viewing W as an Fq-subspace or as an Fh-subspace, respectively.

A q-linearized polynomial f is a polynomial of the form f(X) =
∑k−1
i=0 fiX

qi . We denote
the space of q-linearized polynomials with coefficients in Fqn as Fqn [X; (·)q]. The q-degree
of a linearized polynomial f(X) =

∑k−1
i=0 fiX

qi is the maximum i such that fi 6= 0, and
is denoted degq f . We denote Fqn [X; (·)q]<k =

{
f ∈ Fqn [X; (·)q] : degq f < k

}
, which we

remark is a k-dimensional vector space over Fqn .
Note that if α, β ∈ Fqn and a, b ∈ Fq then for any f ∈ Fqn [X; (·)q], f(aα + bβ) =

af(α) + bf(β), i.e., f gives an Fq-linear map from Fqn → Fqn . Moreover, the space of roots
of such an f is an Fq-subspace of dimension at most degq f (assuming f 6= 0).

2.2 Dimension expanders
We now formally define dimension expanders and provide an alternate characterization that
we find easier to reason about.

I Definition 2.1 (Dimension expander). Let n, d ≥ 1 be an integer, η > 0 and β > 1. Let
Γ1, . . . ,Γd : Fn → Fn be linear maps. The collection {Γj}dj=1 forms a (η, β)-dimension
expander if for all subspaces U ⊆ Fn of dimension at most ηn,

dim

 d∑
j=1

Γj(U)

 ≥ β dimU .

The degree of the dimension expander is d.
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When clear from context we refer to a dimension expander just as an expander. The
following proposition follows easily from the definitions.

I Proposition 2.2 (Contrapositive characterization). Let n ≥ 1 be an integer, η > 0 and
β > 1. Let Γ1, . . . ,Γd : Fn → Fn be linear maps. Suppose that for all V ⊆ Fn of dimension
at most ηβn,

dim {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]} ≤ 1
β

dimV .

Then {Γj}dj=1 forms an (η, β)-dimension expander.

Next, we define a slight generalization of dimension expanders, wherein the domain and
codomain may no longer have the same dimension. That is, the linear maps Γj now map
FN → Fn, where N,n may not be equal. We parametrize the “unbalancedness” of the
dimension expander by b = N

n . In our construction we will assume for simplicity that b ∈ Z,
although we note that this is not a fundamental restriction. The formal definition is as
follows.

I Definition 2.3 (Unbalanced dimension expanders). Let N,n, d ≥ 1 be integers, η > 0 and
β > 1. Let Γ1, . . . ,Γd : FN → Fn be linear maps. Set b = N

n . The collection {Γj}dj=1 forms
a b-unbalanced (η, β)-dimension expander if for all subspaces U ⊆ FN of dimension at most
ηN ,

dim

 d∑
j=1

Γj(U)

 ≥ β dimU .

The degree of the unbalanced dimension expander is d.

Lastly, we state the parameters achievable via the probabilistic method in order to set
expectations.

I Proposition 2.4 (Simple generalization of Proposition C.10 of [8]). Let Fq be a finite field,
N,n positive integers and put b := N

n . Let β > 1 and η ∈ (0, 1
bβ ). Then, assuming

d ≥ β + b

1− bβη + logq 16 ,

there exists a collection of linear maps Γ1, . . . ,Γd : FNq → Fnq forming a (η, β)-unbalanced
dimension expander.

Thus, for b = 1, if we wish to have β = (1− ε)d and η = 1−ε
d we may take d = O(1/ε2).

We remark that in Theorem 5.2, we obtain d = O(1/ε3).

2.3 Subspace design
A crucial ingredient in our construction of dimension expanders are subspace designs. They
were originally introduced by two of the authors [20] in order to obtain algebraic codes
list-decodable up to the Singleton bound. As in [18], we will be concerned with a slight
weakening of this notion, where we are only concerned with having small intersection with
subspaces which are linear over an extension of the base field, although we will also require
the intersection dimension to be smaller.
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4:10 Dimension expanders

I Definition 2.5. Let V be a Fqd -vector space. A collection H1, . . . ,Hk ⊆ V of Fq-subspaces
is called a (s,A, d)-subspace design in V if for every Fqd -subspace W ⊆ V of Fqd -dimension
s,

k∑
i=1

dimFq (Hi ∩W ) ≤ As .

We call a subspace design explicit if there is an algorithm outputting Fq-bases for each
subspace Hi in poly(n) field operations.

I Remark. In previous works, what we have termed a (s,A, d)-subspace design would have
been called a (s,As, d)-subspace design. We find it more convenient in this work to remove
the multiplicative factor of s from the parameter in the definition.

2.4 Periodic subspaces
We now abstract the kind of structure that will be found in the subspace of Fnq which is
mapped entirely into a low-dimensional subspace of Fnq by the d linear transformations in
our dimension expander construction. We note that our definition here is slightly different in
form and notation than earlier ones in [20, 18].

I Definition 2.6 (Periodic subspaces). For positive integers n, k, s, d with d|n, an Fq-subspace
T of Fkqn is said to be (s, d)-periodic if there exists an Fqd-subspace W ⊆ Fqn of dimension
at most s such that for all j, 1 ≤ j ≤ k, and all ξ1, ξ2, . . . , ξj−1 ∈ Fqn , the Fq-affine subspace

{ξj : ∃v ∈ T with vι = ξι for 1 ≤ ι ≤ j} ⊆ Fqn

belongs to a coset ofW . In other words, for every prefix (ξ1, . . . , ξj−1), the possible extensions
ξj to the j’th symbol that can belong to a vector in T are contained in a coset of W .

An important property of periodic subspaces is that they have small intersection with
subspace designs. This is captured by the following proposition.

I Proposition 2.7 ([18], Proposition 3.9). Let T be a (s, d)-periodic Fq-subspace of Fkqn ,
and H1, . . . ,Hk ⊆ Fqn be Fq-subspaces forming a (s,A, d) subspace design in Fqn . Then
T ∩ (H1 × · · · ×Hk) is an Fq-subspace of dimension at most As.

3 Dimension expander construction

As discussed in the introduction (Section 1), the construction of our dimension expander
is inspired by recent constructions of variants of Gabidulin codes for list-decoding in the
rank-metric. Indeed, the analysis of our dimension expander proceeds similarly to the
analysis of list-decodability of the rank-metric codes presented in [18]. The presentation here
is self-contained algebraically, and does not refer to any coding-theoretic context or language.

3.1 Construction
Our dimension expanders map Fnq → Fnq . We view the domain as

F :=
{
f(X) =

k−1∑
i=0

fiX
qi : fi ∈ Hi, i = 0, . . . , k − 1

}
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where H0, . . . ,Hk−1 give a collection of Fq-subspaces of Fqn , each of Fq-dimension n
k (thus,

we assume k|n). We will choose H1, H2, . . . ,Hk forming a subspace design. We view the
image space as Fqn . Let h = qd, and let α1, . . . , αd give a basis for Fh over Fq. We assume
d|n and write md = n. For j = 1, . . . , d, we define

Γj : F → Fqn by f 7→ f(αj) . (1)

That is, each Γj(f) is just the evaluation of f at the basis element αj . These maps are
clearly linear over Fq.

3.2 Analysis

We now state the steps involved in showing that the collection {Γj}dj=1 forms a dimension
expander. We have omitted the proofs; they can be found in the full version of the paper.

For a positive integers D, s with s ≤ m, we define LD,s to be the space of polynomials
Q ∈ Fqn [Z0, . . . , Zs−1] of the form Q(Z0, . . . , Zs−1) = A0(Z0) + · · ·+As−1(Zs−1) with each
Ai ∈ Fqn [X; (·)q]<D, i.e., each Ai is a q-linearized polynomial of q-degree at most D − 1.

I Lemma 3.1. Let V ⊆ Fqn be an Fq-subspace of dimension B. If Ds > B, there exists a
nonzero polynomial Q ∈ LD,s such that

∀v ∈ V, Q(v, vh, . . . , vh
s−1

) = 0 . (2)

Given a polynomial g(X) = g0 + g1X + · · ·+ grX
r and an automorphism τ of Fqn , we

write gτ for the polynomial gτ (X) = τ(g0) + τ(g1)X + · · ·+ τ(gr)Xr, and let gτ i = (gτ i−1)τ .
We let σ : γ 7→ γh, i.e., σ is the Frobenius automorphism of Fhm = Fqn over Fh.

I Lemma 3.2. Let f ∈ Fqn [X] be a q-linearized polynomial with q-degree at most k − 1.
Let V ⊆ Fqn be an Fq-subspace, and Q ∈ LD,s a polynomial satisfying (2). Suppose that
f(α) ∈ V for all α ∈ Fh = Fqd and that D ≤ d− k + 1. Then

A0(f(X)) +A1(fσ(X)) + · · ·+As−1(fσ
s−1

(X)) = Q(f(X), fσ(X), . . . , fσ
s−1

(X)) = 0 .
(3)

I Lemma 3.3. The set of solutions to Equation (3), for any nonzero Q ∈ LD,s (for arbitrary
D), is an (s− 1, d)-periodic subspace.

Equipped with these lemmas, we are in position to deduce our main theorem for this
section.

I Theorem 3.4. Let {Hi}k−1
i=0 give a (s,A, d)-subspace design for all s ≤ µn for some

0 < µ < 1/d. Then {Γj}dj=1 is a (µA, d−k+1
A )-dimension expander. Moreover if the subspace

design is explicit then the dimension expander is explicit.

Thus, we have that subspaces of dimension As are expanded to subspaces of dimension
(d−k+1)s/A. This informs what we should hope for from our subspace designs. In particular,
obtaining A = O(1) is enough to obtain a degree proportional expander (by setting k = Θ(d)),
while if A ≈ 1 + ε and k ≈ εd we can obtain a lossless expander. With these goals in mind,
we turn our attention to constructing subspace designs.
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4:12 Dimension expanders

4 Constructions of subspace designs

For the case of d = 1, explicit constructions of subspace designs have been given in previous
works. The first explicit construction was given in [13], using ideas which had been developed
in constructions of list-decodable codes. This construction was subsequently improved over
fields of small size in [21].

A previous construction of a subspace design for d > 1 was given in [18]. In this work, a
subspace design over the base field (i.e., for d = 1) was intersected with a subspace evasive set
from [4]. However, for our purposes, the size of the intersection dimension (i.e., the product
As) of this construction is too large. In that work, the authors were more concerned with
ensuring that the Hi’s had large dimension; however, we only require that the Hi’s have
dimension n/k.

We provide two constructions of subspace designs in this work, yielding our two construc-
tions of dimension expanders. The first construction yields a degree-proportional dimension
expander over fields of size nδ (for arbitrarily small constant δ). The next yields a lossless
dimension expander. The only drawback is that it requires a field of size linear in n.7 We
present our first construction in Section 4.1 and our second construction in Section 4.2. The
full version contains all of the proofs that we have removed from this section.

Both of our constructions use as a black box a subspace design provided in [13]. Specifically,
by taking r = 2 in Theorem 7 of [13], we obtain a subspace design with the following
parameters.

I Lemma 4.1. For all positive integers s, t,m and prime powers ` satisfying s ≤ t ≤ m < `,
there is an explicit collection of M ≥ `2

4t F`-spaces V1, V2, . . . , VM ⊆ Fm` , each of codimension
2t, which forms an (s, m−1

2(t−s+1) , 1) subspace design in Fm` .

4.1 Subspace designs via an intermediate field
This first construction takes the subspace design of Lemma 4.1 defined over an intermediate
field F`. That is, we fix an integer 1 < c < d such that c|d so that, for ` = qc, Fq ⊆ F` ⊆ Fh.
Then, if ω1, . . . , ωm gives a basis for Fhm/Fh, define

L =
{

m∑
i=1

aiωi : ai ∈ F`

}
.

This is an F`-subspace of Fhm = Fqn of F`-dimensionm, as ω1, . . . , ωm are linearly independent
over Fh and so a fortiori are linearly independent over the subfield F`. Thus, L ' Fm` , and
we fix an F`-linear isomorphism ψ : Fm` → L. Note that an F`-linear map is automatically
Fq-linear, so, in particular, the dimension of Fq-subspaces in Fm` are preserved by ψ. Then, if
V1, . . . , Vk give the subspace design from Lemma 4.1, we define Hi := ψ(Vi) for i = 1, . . . , k.

I Proposition 4.2. Let ` = qc with c = d
k ·

m
m−2t , where 1 ≤ k < d. For all 1 ≤ s <

t < ` and 1 ≤ k < d such that `2 ≥ 4kt, k|d, m|k(m − 2t) and k(m − 2t)|n, there is an
explicit construction of {Hi}ki=1 that forms a (s, dk ·

m−1
m−2t ·

m
2(t−s) , d)-subspace design in Fqn .

Furthermore dimFq Hi = n
k for all i = 1, . . . , k.

We now fix parameters in such a way to show that we can obtain a subspace design over
fields of size nδ for any constant δ > 0.

7 In fact, in order to ensure our construction is algorithmically explicit, we take q − 1 = n.
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I Corollary 4.3. Let δ > 0 be given and choose an integer r such that 1
2δ < r ≤ 1

δ . Let k, d
be integers such that d = 2k and r|k. Assume moreover that 2r|m. Then, assuming q ≥ nδ,
there exists an explicit construction of {Hi}ki=1 that forms a (s, 8

δ , d)-subspace design in Fqn
for all s ≤ 1−2δ

4d n. Moreover dimFq Hi = n
k for all i = 1, . . . , k.

4.2 Construction via correlated high-degree places

This next construction utilizes techniques developed in the context of linear algebraic list-
decoding of folded Reed-Solomon codes [12, 16]. Briefly, we take a subspace design in the
space of polynomials of bounded degree, and then map it into Fmh in a manner reminiscent of
the encoding map of the folded Reed-Solomon code. As we are concerned with bounding the
intersection dimension with Fh-linear spaces, we in fact evaluate the polynomial at degree d
places. The details follow.

Let ζ be a primitive root of the finite field Fq. Choose a real δ ∈ (0, 1) such that δ > 1
k

and δn < q − 1, where we recall 0 < k < d and n = md. Denote by σ the automorphism of
the function field Fq(Y ) sending Y to ζY . The order of σ is q − 1 ≥ m. Given g ∈ Fq(Y ),
we abbreviate gσ := σ(g(Y )) = g(ζY ).8

Denote by Fq[Y ]<δn the set of polynomials of degree less than δn. By Lemma 4.1, there
exist V1, V2, . . . , Vk of Fq[Y ]<δn, each of codimension δn− n

k , which forms a (r, δn−1
δn−nk−2r+2 , 1)

subspace design.
Let P (Y ) be an irreducible polynomial of degree d such that P, P σ, . . . , P σm−1 are pairwise

coprime. Consider the map

π : Fq[Y ]<δn → Fmqd , f 7→ (f(P ), f(Pσ), . . . , f(Pσ
m−1

)) ,

where f(Pσj ) is viewed as the residue of f in the residue field Fq[Y ]/(Pσj ) ∼= Fqd = Fh. The
Chinese Remainder Theorem guarantees that π is injective. We define

H̃i = π(Vi) =
{

(f(P ), f(Pσ), . . . , f(Pσ
m−1

)) : f ∈ Vi
}
⊆ Fmh (4)

for i = 1, 2, . . . , k.
We remark that this π is reminiscent of the encoding map of the folded Reed-Solomon

code (recall that Pσ = P (ζY )), although in this case we evaluate f at the high-degree place
P .

I Proposition 4.4. If s < (1− δ)m = (1− δ)nd , then the subspaces H̃1, H̃2, . . . , H̃k defined
above is an (s, δ

1−δ ·
m

(δ− 1
k )m− 2s

d(1−δ)
, d)-subspace design in Fmh . Moreover dimFq H̃i = n

k for
all i = 1, . . . , k.

Lastly, when n = q − 1, the subspace design can be constructed explicitly.

By choosing k, d and appropriately we obtain the following corollary.

I Corollary 4.5. Let δ > 0 be such that 1/δ ∈ Z and put k = 1/δ2, d = 1/δ3. Assume that
q − 1 = n. There exist H1, . . . ,Hk which form an explicit (s, 1

1−2δ−δ2+2δ3 , d)-subspace design
in Fqn for all s ≤ 1−2δ

d n. Moreover dimFq Hi = n
k for all i = 1, . . . , k.

8 Note that in Section 3 we wrote gσ to denote the polynomial obtained by applying σ to the coefficients
of g. We hope that this notation does not cause any confusion.
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5 Explicit instantiations of dimension expanders

As outlined in Section 3, our approach for obtaining explicit constructions of dimension
expanders is by reducing to the construction of subspace designs. Specifically, we will will apply
Theorem 3.4 with the constructions of Section 4. These results yield Theorems 1.2 and 1.1,
respectively.

First, using the subspace design constructed in Corollary 4.3, we obtain a degree-
proportional dimension expander over fields of arbitrarily small polynomial size.

I Theorem 5.1. Let δ > 0 be given and assume |Fq| ≥ nδ. Let r be an integer satisfying
1
2δ ≤ r < 1

δ , let k be a multiple of r, and let d = 2k. There exists an explicit construction
of a (η, β)-dimension expander of degree d over Fnq whenever 2dr|n, where η = Ω

( 1
δd

)
and

β = Ω(δd).

Next, we use the subspace design constructed in Corollary 4.5 to obtain an explicit
construction of a lossless dimension expander.

I Theorem 5.2. Fix ε > 0, and choose δ = Θ(ε) sufficiently small and such that 1/δ ∈ Z.
Let d = 1/δ3 and k = 1/δ2 and assume that q − 1 = n and d|n. Then there exists an explicit
construction of a ( 1−ε

d , (1− ε)d)-dimension expander with degree d over Fnq .

We remark that this construction has degree d = O(1/ε3). Recalling Proposition 2.4,
we know that one could hope for d = O(1/ε2) when η = 1−ε

d and β = (1− ε)d. Hence, the
dependence of the degree on ε is just a factor of ε away from the randomized construction.

6 Conclusion

In this work we provide the first explicit construction of a lossless dimension expander.
Our construction uses ideas from recent constructions of list-decodable rank-metric codes,
which is in analogy with the approach taken by [15] in the “Boolean” world. Our approach
is sufficiently general to achieve lossless expansion even in the case that the expander is
“unbalanced”, i.e., when the codomain has dimension smaller than the domain.

The main open problem that remains is to achieve similar constructions over fields of
smaller size. Our construction of lossless expanders requires fields of size q > n, whereas
our construction of degree-proportional expanders requires fields of size nδ for arbitrarily
small (constant) δ. The constraints on the field size arise largely from the constructions of
subspace designs that we employed. Thus, we believe that a fruitful avenue of attack on this
problem would be to obtain constructions of subspace designs over smaller fields.9

The authors of [21] addressed precisely this challenge. In this work the authors do manage
to construct subspace designs over all fields, but the intersection size now grows with logq n.
If q = O(1), then instantiating our approach with these subspace designs only guarantees
expansion if the degree is logarithmic. One could also have q grow polynomially with n and
achieve degree-proportional expanders, but as this does not improve over the intermediate
fields approach of Section 4.1 we have not included it.

Lastly, we recall that our construction of a ( 1−ε
d , (1− ε)d)-dimension expander had degree

d = Θ(1/ε3), while the probabilistic argument shows d = O(1/ε2) is sufficient. Moreover

9 In [13] there is also an “extension field” construction that allows for smaller field sizes, but only
guarantees the existence of “weak” subspace designs, which does not suffice for the dimension expander
application.
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if one is satisfied with a ( 1
2d , (1 − ε)d)-dimension expander then it is sufficient to have

d = O(1/ε). Thus, constructing lossless expanders whose degree has even better dependence
on ε would also be interesting.
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Abstract
The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit
that computes a given truth table. It is a prominent problem in NP that is believed to be
hard, but for which no proof of NP-hardness has been found. A significant number of works
have demonstrated the central role of this problem and its variations in diverse areas such as
cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds.

The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent
with a given truth table was proved by W. Masek [31] in 1979. In this work, we make the
first progress in showing NP-hardness for more expressive classes of circuits, and establish an
analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD2. Our
techniques extend to an NP-hardness result for MODm gates at the bottom layer under inputs
from (Z/mZ)n.
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1 Introduction

1.1 The Minimum Circuit Size Problem
In the Minimum Circuit Size Problem (MCSP), we are given the truth table of a Boolean
function as input together with a positive integer s, and the question is whether a circuit of
size at most s exists for the function represented by this truth table. It is easy to see that
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MCSP is in NP: simply guess a circuit C of size at most s, and check that C computes each
entry of the truth table correctly.

When solving MCSP deterministically, though, it is unclear how to avoid exhaustive search
over the space of circuits of size at most s. A natural question arises: is MCSP NP-complete?
The answer to this problem remains far from clear. MCSP is one of the very few natural
problems in NP for which we have no strong evidence for or against NP-completeness. This
is despite the fact that MCSP has long been recognized as a fundamental problem since
the earliest research on complexity theory in the Soviet Union in the 1950s [41]. Indeed,
it is reported in [8] that Levin delayed the publication of his NP-completeness results for
Satisfiability because he was hoping to show similar results for MCSP.

The difficulty of showing MCSP to be NP-hard was explicitly addressed in the work of
Kabanets and Cai [27]. Roughly speaking, suppose we have a polynomial-time reduction f
from Satisfiability to MCSP that is “‘natural”, in the sense that the output length and output
parameter depend only on the input length, and the input length is polynomially bounded
in the output length – this is a property that all standard reductions have. Kabanets and
Cai argued that by applying f to a trivial family of unsatisfiable formulas, we can show that
the class E of problems solvable in linear exponential time requires superpolynomial circuit
size. Given that the question of proving super-polynomial circuit lower bounds for explicit
functions is a longstanding open question in complexity theory, this provides a significant
obstacle to showing NP-hardness of MCSP via natural reductions. Note, though, that the
Kabanets-Cai result does not give any evidence against NP-hardness of MCSP – it only
suggests that NP-hardness might be hard to establish. There has been a long sequence of
works [7, 32, 24, 23, 6] building on this result to give further evidence of the difficulty of
showing NP-hardness of MCSP.

One way around the Kabanets-Cai obstacle is to study the complexity of MCSP for
circuit classes for which strong circuit lower bounds are already known. Given a class C of
circuits, let C-MCSP be the problem where, given a truth table and a number s, we wish to
know if there is a C-circuit of size s computing the given truth table.

Studying C-MCSP for restricted classes C of circuits is independently motivated by
algorithmic applications in circuit minimization, proof complexity [30, Chapter 30], learning
theory (cf. [38, 5, 18, 11]), and cryptography and lower bounds [39] (see also [10]). It was
shown already in 1979 by Masek [31] that DNF-MCSP is NP-hard.2 There have been
different proofs of this result [15, 5], and extensions to hardness of approximation [5, 18, 29].
Nevertheless, almost four decades after Masek’s result, and despite the significant attention
that the MCSP problem has received (see also [2, 3, 4, 36]), NP-hardness of C-MCSP is
still not known for any natural class C of circuits more expressive than DNFs. To quote
Allender et al. [5], “Thus an important open question is to resolve the NP-hardness of both
learnability results as well as function minimization results above for classes that are stronger
than DNF.”

1.2 Our Result
The main contribution in this work is the first NP-hardness result for C-MCSP for a class
C of depth–3 circuits, namely the class of (unbounded fan-in) OR ◦ AND ◦MODm circuits,
where m is any integer.

2 For a self-contained presentation of a proof of NP-hardness of DNF-MCSP, see [5].



S. Hirahara, I.C. Oliveira, and R. Santhanam 5:3

I Theorem 1 (Main Result). For every m ≥ 2, given the truth table of a function f : Znm →
{0, 1}, where Zm = Z/mZ = {0, 1, . . . ,m− 1}, it is NP-hard under polynomial-time determ-
inistic many-one reductions to determine the size of the smallest OR ◦ AND ◦MODm circuit
C that computes f , where circuit size is measured as the top fan-in of C.3

A few comments are in order. First, we elaborate on our computational model and
complexity measure. We work with circuits which have an OR gate at the top, AND gates
at the middle level, and MODm gates at the bottom level. We refer to such circuits as
OR-AND-MOD circuits, or equivalently, DNF-MOD circuits. Such circuits operate in a
natural way on inputs from Znm. We allow arbitrary constants from Zm to feed in to gates
at the bottom layer, and insist that inputs to the middle AND layer are Boolean. In other
words, a MODm gate outputs 1 if and only if its corresponding linear equation over Zm is
satisfied, and the computations beyond the first layer are all Boolean. For m = 2, this is
precisely the traditional model of DNF of Parities (cf. [14], [25], [26, Section 11.9], [1]).

The complexity measure we use is the top fan-in of the circuit, i.e., fan-in to the top
OR gate. The main reason we work with this measure is naturalness and convenience. As
argued in [14], top fan-in is the preferred measure for OR-AND-MOD2 circuits because: (i)
it measures the number of affine subspaces required to cover the 1s of the function, and thus
has a nice combinatorial meaning; (ii) the number of MOD2 gates feeding in to any middle
layer AND gate can be assumed to be at most n without loss of generality, by using basic
linear algebra, and thus the top fan-in approximates the total number of gates to within a
factor of n; and (iii) the size of a DNF is often measured by the number of terms in it, and
analogously it makes sense to measure the size of a DNF of Parities by the top fan-in of the
circuit.

Our results are not however critically dependent on the complexity measure we use, and
admit different extensions. Indeed, we demonstrate the robustness of our techniques by
adapting them to show a hardness result for computing the number of gates in OR-AND-
MODp formulas, where p is prime (Appendix B). Moreover, we mention that our approach
can be modified to show a hardness of approximation result (Appendix C).

The strategy for the proof of Theorem 1 is explained in Section 1.3. In short, we
reduce from a variant of the well-known set cover problem [28]. The reduction consists of
two stages, and it is initially presented as a randomized reduction. As one ingredient in
the derandomization of our approach, we show the existence of near-optimal (seed length
O(logn + log 1/ε)) pseudorandom generators against AND ◦ MODm circuits over Znm of
arbitrary size. This result might be of independent interest, and we refer to the discussion in
Section 1.3 for more details.

Before further exploring the ideas of our proof, we give some perspective on the result and
the possibility of extending it to more expressive circuit classes. Using the Kabanets-Cai [27]
connection between NP-hardness and circuit lower bounds mentioned before, it is not hard
to show that our reduction yields a 2Ω(n) lower bound on the size of DNF-MOD2 circuits for
a function in E = DTIME[2O(n)]. Such strong exponential lower bounds for explicit functions
have long been known for the model we consider (see e.g. [22], and also [13, 12]). On the
other hand, extending the NP-hardness result even to slightly different classes such as depth-3
AC0 circuits might be a challenge. It is still unknown if E requires depth-3 AC0 circuits of
size 2Ω(n), and using the Kabanets-Cai connection, natural approaches to an NP-hardness
result would imply such a lower bound.

3 As stated, Theorem 1 refers to the complexity of the optimization problem of finding the smallest circuit
size for a given truth table, rather than the MCSP decision problem as defined. Note however that
these two computational problems are easily seen to be polynomial-time equivalent to each other.
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What might be more feasible though is showing NP-hardness of C-MCSP for other related
classes C of circuits, and under weaker kinds of reductions, such as quasi-polynomial time
reductions or non-uniform reductions. For instance, it might be possible to extend our
techniques to classes such as THR ◦ AND ◦MOD and depth-3 AC0 circuits of small bottom
fan-in. In these cases, exponential lower bounds of the form 2Ω(n) have been obtained (cf. [22],
[37]).

More broadly, we believe that showing NP-hardness of MCSP for more expressive classes
C is an important direction in better understanding circuit classes from the perspective of
meta-complexity, i.e., complexity questions about computational problems involving circuits
and algorithms. There are various criteria for measuring our understanding of a circuit class,
for example, (i) Can we design non-trivial satisfiability algorithms for circuits in the class?
(ii) Can we unconditionally construct pseudo-random generators secure against circuits in the
class? (iii) Can we learn the class using membership queries under the uniform distribution?
(iv) Can we prove lower bounds against proof systems whose lines are encoded by circuits in
the class? We suggest that the NP-hardness of C-MCSP is another strong indication that we
understand a circuit class C well.

1.3 Overview of the Proof of Theorem 1

The rest of the paper is dedicated to the proof of Theorem 1, which will be completed in
Section 4. Here we provide a high-level description of the reduction. For simplicity, our
exposition mostly focuses on the case m = 2. After that, we explain the main difficulties in
extending the result to general m, and how these are addressed in our proof.

As mentioned above, Masek [31] was the first to establish the NP-hardness of DNF
minimization, and Theorem 1 can be interpreted as an extension of Masek’s result to the
more expressive DNF-MOD circuits. The structure of our argument follows however a
two-step reduction introduced by Gimpel (cf. Allender et al. [5]), brought to our attention
thanks to an alternative proof of Masek’s result from [5]. More precisely, their work presents
a new proof of the first stage of Gimpel’s reduction, and provides a self-contained exposition
of the entire argument.

Our NP-hardness proof for DNF-MOD circuits heavily builds on ideas of Gimpel and
[5], but the extension to depth-3 requires new ideas and makes the argument much more
involved. Let (DNF ◦ XOR)-MCSP be the computational problem described in Theorem 1
when m = 2, and let (DNF ◦ XOR)-MCSP∗ be its natural generalization to partial boolean
functions. In other words, an input to (DNF ◦ XOR)-MCSP∗ encodes the truth table of a
function f : {0, 1}n → {0, 1, ∗}, and we are interested in the size of the minimum (DNF◦XOR)-
circuit that agrees with f on f−1({0, 1}). Let r ∈ N be a large enough constant. Our proof
reduces from the NP-complete problem r-Bounded Set Cover (cf. [19]): Given a set system
S ⊆

(
n
≤r
)
that covers [n], determine the minimum number ` of sets S1, . . . , S` ∈ S such that⋃`

i=1 Si = [n]. (We refer to Section 2.2 for a precise formulation of these computational
problems.)

In a bit more detail, we present a randomized (2-approximate) reduction from r-Bounded
Set Cover to (DNF◦XOR)-MCSP∗, and a randomized reduction from (DNF◦XOR)-MCSP∗ to
(DNF◦XOR)-MCSP. These reductions are then efficiently derandomized using an appropriate
pseudorandom generator. As opposed to previous works on the NP-hardness of DNF
minimization, our proof crucially explores the fact that r-Bounded Set Cover is NP-hard
even to approximate (by roughly a ln r-factor), a result from [17, 42] (see Theorem 5, Section
2.2).
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We discuss each reduction in more detail now. Common to both of them is a convenient
characterization of the sets C−1(1) ⊆ {0, 1}n of inputs that can be accepted by non-trivial
AND ◦ XOR circuits C. If m is prime, it is not hard to show that this is precisely the class
of affine subspaces of {0, 1}n. Consequently, for a non-trivial partial function f : {0, 1}n →
{0, 1, ∗}, its corresponding DNFXOR(f) complexity is exactly the minimum number t of affine
subspaces A1, . . . , At ⊆ {0, 1}n such that f−1(1) ⊆

⋃t
i=1Ai and

⋃t
i=1Ai ⊆ f−1({1, ∗}) (see

Section 2.1). The analysis of our polynomial-time reductions, which will not be covered in
this section, relies on this characterization in fundamental ways.

Step 1. A randomized reduction from r-Bounded Set Cover to (DNF ◦ XOR)-MCSP∗ (Sec-
tion 3.1).

Given a set-system S ⊆
(
n
≤r
)
, we define a partial boolean function f : {0, 1}t → {0, 1, ∗},

where t = O(r logn). This function is probabilistically constructed as follows. First, we
associate to each i ∈ [n] a random vector vi ∈ {0, 1}t. For S ∈ S, let vS = {vi | i ∈ S}.
Then, we let f be 1 on each input vi, 0 on inputs that are not in the linear span of vS for
every S ∈ S, and ∗ elsewhere.

Using this construction, we are able to show by a delicate analysis that if t is suffi-
ciently large, the following holds with high probability: if S admits a cover of size K, then
DNFXOR(f) ≤ K; moreover, if DNFXOR(f) ≤ K, then S admits a cover of size ≤ 2K. (We
discuss the intuition for this claim in Section 3.1.) This construction and the hardness of
approximation result for r-Bounded Set Cover imply that (DNF ◦ XOR)-MCSP∗ is NP-hard
under many-one randomized reductions.

Step 2. A randomized reduction from (DNF ◦ XOR)-MCSP∗ to (DNF ◦ XOR)-MCSP (Sec-
tion 3.2).

Let f : {0, 1}t → {0, 1, ∗} be an instance of (DNF ◦ XOR)-MCSP∗. We probabilistically
construct from f a related total function g : {0, 1}t × {0, 1}s → {0, 1}, where r = t + 2
and s = O(r + t). In more detail, we encode for each x ∈ {0, 1}t its corresponding value
f(x) ∈ {0, 1, ∗} as a boolean function gx on a hypercube {0, 1}s. For an input x such that
f(x) ∈ {0, 1}, we let g(x0s) = gx(0s) = f(x), where gx(·) = 0 elsewhere. On the other hand,
if f(x) = ∗, we pick a random linear subspace Lx ⊆ {0, 1}s of dimension r, and we encode
f(x) as the characteristic function of Lx.

Again, a careful argument allows us to establish the following connection between the
partial function f and the total function g: with high probability over the choice of the
random linear subspaces (Lx)x∈f−1(∗), DNFXOR(g) = DNFXOR(f) + |f−1(∗)|. (We discuss the
intuition for this claim in Section 3.2.) Consequently, it follows from this and the previous
reduction that (DNF ◦ XOR)-MCSP is NP-hard under many-one randomized reductions.

Step 3. Efficient derandomization of the reductions (Section 4.1).
It is possible to prove that the first reduction is always correct provided that the collection

of random vectors vi is nice with respect to the set-system S (Definition 12). Similarly, we
can prove that the second reduction is correct whenever the collection (Lx)x∈f−1(∗) of linear
subspaces is scattered (Definition 18). It turns out that both conditions can be checked in
polynomial time. This implies that the previously discussed reductions are in fact zero-error
reductions. Consequently, if we can efficiently construct nice vectors and scattered families
of linear subspaces, the reductions can be made deterministic.

In order to achieve this, we use in both cases a subtle derandomization argument that relies
on (polynomial-time computable) ε-biased distributions [33]. Recall that such distributions
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can fool arbitrary linear tests. By a more careful analysis, it is also known that they fool
AND ◦ XOR circuits. We do not describe an AND ◦ XOR circuit to check if a collection of
vectors is nice, or to check if a collection of linear subspaces is scattered. Still, we are able
to show that if ε < 2−s then some scattered collection of linear subspaces is encoded by a
string in the support of an ε-biased distribution, and that the same holds with respect to a
nice collection of vectors if ε < 2−t. In particular, trying all possible seeds of an ε-biased
generator produces the combinatorial and algebraic objects that are sufficient to derandomize
our reductions. (We refer to Section 4.1 for more details.)

Overall, combining the (derandomized) reductions and using the hardness of approxima-
tion result for r-Bounded Set Cover mentioned above, it follows that (DNF ◦ XOR)-MCSP is
NP-hard under many-one deterministic polynomial-time reductions.

The argument for arbitrary m ≥ 2. Let (DNF◦MODm)-MCSP and (DNF◦MODm)-MCSP∗

be the corresponding computational problems with respect to an arbitrary m ≥ 2. (Recall
that the input boolean functions in this case are defined over Znm.) As we explain next,
additional difficulties are present for general m.

An immediate challenge is that it is no longer clear if the analogous characterization (via
affine subspaces) of the class of subsets of Znm accepted by non-trivial AND ◦MODm circuits
holds, and this is crucially exploited when m = 2. The main issue is that, while in the latter
case the result can be established by elementary techniques using that Zn2 is a vector space
over Z2, for an arbitrary m the underlying structure might be just a module. Without a
basis, the result is less clear.

Nevertheless, it is possible to prove that the analogous result for AND ◦MODm circuits
holds (cf. Lemma 2). The alternative and more general argument relies on a property of
double orthogonal complements in Znm (Appendix A), and we refer to Section 2.1 for more
details. Armed with this characterization, the reductions discussed before can be adapted
to arbitrary m. Finding the right generalization of each definition requires some work, but
after that, the randomized reductions for m = 2 and arbitrary m ≥ 2 can be presented in a
unified and transparent way.

In order to conclude the proof of Theorem 1, we need to derandomize the new reductions.
For m = 2, the argument was based on an efficient construction of ε-biased distributions
supported over {0, 1}n, and the fact that such distributions are also able to fool AND ◦ XOR
circuits over {0, 1}n. Without going into further details, we mention that for arbitrary m
it is sufficient to use a pseudorandom generator that fools AND ◦MODm circuits over Znm.
However, a generator with near-optimal dependency on n and ε is needed if we are hoping to
obtain a polynomial-time reduction. We were not able to find such a result in the literature.4

We show in Section 4.2 that, for every m ≥ 2, there is an efficient pseudorandom generator
Gn : {0, 1}O(logn+log 1/ε) → Znm that ε-fools AND ◦ MODm circuits of arbitrary size. Our
construction relies on the efficient ε-biased generators for Znm from [9], together with a
proof of the following result: If G is an ε-biased generator against Znm, then G (mε)-fools
AND ◦ MODm circuits. Again, we cannot rely on a adaptation of the similar claim for
m = 2, which requires a basis. Our proof proceeds instead by a careful analysis of certain
exponential sums encoding the behaviour of the circuit, and that can be used to connect the
distinguishing probability to the guarantees offered by the ε-biased generator. We refer to
Section 4.2 for more details.

4 Existing generators seem to generate bits only, or are restricted to prime modulus, or can handle larger
classes of functions but are not efficient enough for our purposes. We refer to [21] and the references
therein for related results.
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2 Preliminaries

Notation. For an integer n ≥ 1, let [n] denote {1, . . . , n}.

Some notions from group theory. Let m ≥ 2 be a constant. Let Zm := Z/mZ denote the
integers modulo m, where all operations on elements in Zm = 〈+, {0, 1, . . . ,m−1}〉 are taken
mod m. For any integer t ≥ 1, we regard Ztm as an additive group with component-wise
addition. A non-empty subset H ⊆ Ztm is called a linear subspace if H is a subgroup,
that is, 0 ∈ H and x + y ∈ H for any x, y ∈ H. A subset A ⊆ Ztm is called an affine
subspace if A is a coset, that is, there exist a ∈ Ztm and a linear subspace H ⊆ Ztm such that
A = H + a := {h+ a | h ∈ H }.

We stress that Ztm gives rise to a module and not to a vector space when m is a composite
number; however, we borrow some standard notation; for example, for a scalar c ∈ Zm and a
“vector” v ∈ Ztm, let cv denote the scalar multiplication. Let 〈x, y〉 :=

∑t
i=1 xiyi (∈ Zm ) for

any x, y ∈ Ztm and t ∈ N.

2.1 Circuit Size Measure and Its Characterization
For any integer m ≥ 2, an OR ◦ AND ◦MODm ( = DNF ◦MODm ) circuit is a DNF formula
whose terms are AND ◦MODm circuits. Here, the MODm gate is a Boolean function such
that MODm(x) = 1 if and only if

∑n
i=1 xi mod m = 0 on input x ∈ {0, 1}n. We allow

multiple input wires and access to constant input bits in the circuit. Note that this allows
for more general equations to be computed by a bottom-layer modular gate.

The size of a circuit is usually defined as the number of gates. However, for us it is
important to define the size of a DNF ◦MODm circuit as the top fan-in of the circuit, or
equivalently, its number of AND ◦MODm terms. (Note that the same size measure was used
in [14] in the case m = 2.) For a Boolean function f : {0, 1}t → {0, 1}, define DNFMODm

(f)
as the minimum number of terms of a DNF ◦MODm circuit computing f , i.e., the fan-in of
its OR gate.

In order to present our results in a unified way for any integer m ≥ 2, we extend the
input {0, 1}t of a DNF ◦MODm circuit to the larger domain Ztm in a natural way: that is,
we regard the bottom MODm gate as a function MODm : Z∗m → {0, 1} that outputs 1 if and
only if the sum of its input elements is congruent to 0 mod m. Again, more general equations
can be obtained using multiple input wires and access to constants in Zm.

An AND ◦MODm circuit C accepts the set X ⊆ Ztm if for any x ∈ Ztm, x ∈ X if and only
if C outputs 1 on x. There is a nice combinatorial characterization of the set of inputs that
such circuits can accept.

I Lemma 2 (Characterization of the power of AND ◦ MODm circuits). Let X ⊆ Ztm be a
nonempty set. Then, an AND◦MODm circuit accepts X if and only if X is an affine subspace
of Ztm.

This is a standard fact when m is a prime (cf. [14] for m = 2), in which case Ztm is a vector
space. However, the same characterization holds when m ≥ 2 is an arbitrary composite
number, as established below. The proof relies on the following fact about orthogonal
complements in the more general context of modules.

I Fact 3 (Double orthogonal complement). Let H ⊆ Ztm be a linear subspace, and let
H⊥ := {x ∈ Ztm |

∑t
i=1 xiyi = 0 for any y ∈ H } be its orthogonal complement. Then,

(H⊥)⊥ = H.
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For completeness, we include a proof of this result in Appendix A. Assuming Fact 3, we
proceed to a proof of Lemma 2.

Proof of Lemma 2. Let x := (x1, . . . , xt) ∈ Ztm denote the input to the circuit.
Suppose that an AND ◦MODm circuit

∧K
k=1 Ck accepts X, where each Ck is a MODm

gate. Each MODm gate Ck in the circuit defines a linear equation over (x1, . . . , xt). That is,
there are coefficients a1

k, . . . , a
t
k ∈ Zm and an element bk ∈ Zm such that

∑t
i=1 a

i
kxi = bk if

and only if Ck accepts the input x. Therefore, the circuit
∧K
k=1 Ck accepts the intersection

of such linear equations over Zm. Specifically, for a matrix A := (aik)k∈[K],i∈[t] and a
vector b := (bk)k∈[K], the circuit accepts all inputs x ∈ Ztm such that Ax = b; namely,
X = {x ∈ Ztm | Ax = b }. Since X is nonempty, we can take some element x0 ∈ X. Now, we
can rewrite X as

X = {x ∈ Ztm | A(x− x0) = 0 } = { y ∈ Ztm | Ay = 0 }+ x0,

which is an affine subspace of Ztm.
For the converse direction, we use the notion of orthogonal complement. Suppose that

X ⊆ Ztm is an affine subspace. By definition, we can decompose X into a linear subspace
H ⊆ Ztm and a shift a ∈ Ztm so that X = H + a.

We first claim that H can be accepted by some AND ◦MODm circuit. To prove this, it is
sufficient to show the existence of some matrix A ∈ ZK×tm such that H = {x ∈ Ztm | Ax = 0 }.
Since H is a linear subspace, by Fact 3, for any x ∈ Ztm,

x ∈ H if and only if
t∑
i=1

xi · yi = 0 for every y ∈ H⊥.

That is, we can define a matrix A ∈ Z|H
⊥|×t

m as (yi)y∈H⊥,i∈[t]. (In other words, for each
y ∈ H⊥, we add a MODm gate that checks if

∑t
i=1 xi · yi = 0, where each coefficient yi is

simulated using multiple input wires.)
To accept X, we just need to shift H by a. Indeed, for a vector b := Aa, we have

X = H + a = {x ∈ Ztm | Ax = b }; thus we can construct an AND ◦MODm circuit accepting
X by simulating the condition Ax = b. J

As a consequence of Lemma 2, for a function f : Ztm → {0, 1}, the minimum size of
a DNF ◦ MODm circuit computing f equals the minimum number S of affine subspaces
T1, . . . , TS ⊆ Ztm such that

⋃S
i=1 Ti = f−1(1).

2.2 Computational Problems
The starting point of our NP-hardness results is the set cover problem on instances where
each set has size at most r.

I Definition 4 (r-Bounded Set Cover Problem). For an integer r ∈ N, the r-Bounded Set
Cover Problem is defined as follows:

Input. An integer n ∈ N and a collection S ⊆ 2[n] of nonempty subsets of the universe
[n] such that |S| ≤ r for each S ∈ S, and

⋃
S∈S S = [n].

Output. The minimum number ` of subsets S1, . . . , S` ∈ S such that
⋃`
i=1 Si = [n].

For this problem, a tight inapproximability result based on NP-hardness is known.
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I Theorem 5 (Feige [17], Trevisan [42]). Let r be a sufficiently large constant. It is NP-hard
(under polynomial-time many-one reductions) to approximate the solution of the r-bounded
set cover problem within a factor of ln r−O(ln ln r). That is, for any language L ∈ NP, there
exists a polynomial-time machine that, on input x, outputs a threshold θ and an instance S
of the r-bounded set cover problem such that if x ∈ L then S has a cover of size at most θ,
and if x 6∈ L then S does not have a cover of size at most θ · (ln r −O(ln ln r)).

We stress that the inapproximability result is essential for us; we will present a reduction from
a 2-factor approximation of the r-bounded set cover problem to the minimum DNF ◦MODm

circuit minimization problem.

I Definition 6 (Minimum Circuit Size Problem for DNF ◦MODm). For an integer m ≥ 2, the
Minimum Circuit Size Problem for DNF ◦MODm, abbreviated as (DNF ◦MODm)-MCSP, is
defined as follows:

Input. A Boolean function f : Ztm → {0, 1}, represented as a truth table of length mt.
Output. DNFMODm(f).

While our final theorem confirms that (DNF ◦ MODm)-MCSP is NP-hard, we will first
prove NP-hardness of the circuit minimization problem on instances of a partial function
f : Ztm → {0, 1, ∗}. That is, we regard any input x ∈ f−1(∗) as “undefined.” For a partial
function f : Ztm → {0, 1, ∗}, we say that a circuit C computes f if C(x) = f(x) for any
x ∈ f−1({0, 1}). We extend the definition of DNFMODm(f) to the size of the minimum
DNF ◦ MODm circuit computing the partial function f : Ztm → {0, 1, ∗}. The following
problem is concerned with the circuit size of partial functions, and we distinguish it from the
problem above by adding a superscript ∗.

I Definition 7 (Minimum Circuit Size Problem for Partial Functions). For an integer m ≥ 2,
the Minimum Circuit Size Problem∗ for DNF◦MODm, abbreviated as (DNF◦MODm)-MCSP∗,
is defined as follows:

Input. A Boolean function f : Ztm → {0, 1, ∗}, represented as a string of length mt over
the alphabet {0, 1, ∗}.
Output. DNFMODm

(f).

3 Hardness of (DNF ◦ MODm)-MCSP Under Randomized Reductions

3.1 Reduction from r-Bounded Set Cover to (DNF ◦ MODm)-MCSP∗

This subsection is devoted to proving the following theorem.

I Theorem 8. (DNF◦MODm)-MCSP∗ is NP-hard under (zero-error) randomized polynomial-
time many-one reductions.

Let r be a large enough constant so that the approximation factor of ln r −O(ln ln r) in
Theorem 5 is larger than 2. We present a reduction from a 2-factor approximation of the
r-bounded set cover problem to (DNF ◦MODm)-MCSP∗.

Let us prepare some notation. Let S be an instance of the r-bounded set cover problem
over the universe [n] (in particular,

⋃
S∈S S = [n]). Let t ∈ N be a parameter chosen later.

For each i ∈ [n], pick vi ∈R Ztm independently and uniformly at random. For any S ⊆ [n],
let vS denote { vi | i ∈ S }. Let span(vS) := {

∑
i∈S ci · vi | ci ∈ Zm for any i ∈ S } denote

the linear span of vS . (Note that span(vS) is a linear subspace of Ztm whenever S 6= ∅.) In
our reduction, an element i ∈ [n] is mapped to a random point vi of Ztm, and a set S ∈ S
corresponds to a linear subspace span(vS).
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For any set cover instance S, we define a function f : Ztm → {0, 1, ∗} as

f(x) :=


1 (if x = vi for some i ∈ [n])
0 (if x 6∈

⋃
S∈S span(vS))

∗ (otherwise)

for any x ∈ Ztm. The truth table of f is the output of our reduction.
It is not hard to see that DNFMODm(f) is at most the minimum set cover size for S (Claim

9 below). Of course, the difficulty is in proving a circuit lower bound for f (Claim 10 below).
The idea is as follows: For simplicity of the exposition, let us focus on the case of m = 2,

and moreover let us first consider the case of a DNF ◦MOD2 circuit C for f that accepts a
union of linear subspaces (instead of affine subspaces). More precisely, let C−1(1) be a union
of linear subspaces {Tk}k∈[K]. Then Tk is a subset of C−1(1) ⊆ f−1({1, ∗}) =

⋃
S∈S span(vS);

furthermore, each span(vS) is a random linear subspace of small dimension r; therefore, it is
possible to show that, with high probability, the set { i ∈ [n] | vi ∈ Tk } of points covered by
Tk is contained in some legal set S ∈ S of the set cover instance; hence the circuit size K is
at least the minimum set cover size.

In the case that a circuit C accepts the union of affine subspaces, it is no longer true
that, for any affine subspace T such that T ⊆

⋃
S∈S span(vS), the set { i ∈ [n] | vi ∈

T } is covered by some legal set S ∈ S; indeed, for any two points vi and vj , the set
{vi, vj}

(
= vi ⊕ {0, vi ⊕ vj}

)
is an affine subspace of Zt2, whereas {i, j} is not necessarily

legal in the set cover instance S. Nonetheless, we can still prove that, with high probability, the
set { i ∈ [n] | vi ∈ T } is covered by two legal sets S1, S2 ∈ S. As a consequence, the minimum
number of affine subspaces needed to cover v1, . . . , vn gives us a 2-factor approximation of
the minimum set cover size for S. By Theorem 5, it follows that (DNF ◦ XOR)-MCSP∗ is
NP-hard under randomized reductions. Details follow.

I Claim 9 (Easy part). Suppose that S has a set cover of size K. Then DNFMODm
(f) ≤ K.

Proof. Let C ⊆ S be a set cover of size K. For each S ∈ C, by Lemma 2, there exists an
AND ◦ MODm circuit CS such that CS accepts span(vS). Define a DNF ◦ MODm circuit
C :=

∨
S∈C CS . It is easy to see that C computes f . J

Conversely, we prove the following:

I Claim 10 (Hard part). For some parameter t such that mt = (nm)O(r), the following holds
with probability at least 1

2 (over the choice of (vi)i∈[n]):
Let K := DNFMODm

(f). Then S has a set cover of size 2K.

The two claims above imply that 2DNFMODm
(f) is a 2-factor approximation for the set cover

problem: indeed, let s be the minimum set cover size for S; then we have s ≤ 2DNFMODm
(f) ≤

2s. It thus remains to prove Claim 10.
To prove Claim 10, let us clarify the desired condition that random objects (vi)i∈[n]

should satisfy. For any I ⊆ [n], define the affine span of vI as

affine-span(vI) :=
{∑
i∈I

civ
i | ci ∈ Zm for i ∈ I and

∑
i∈I

ci = 1
}
.

The important property of the affine span is that, if an affine subspace A covers the set vI of
points in I ⊆ [n], then its affine span must also be covered by A.
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I Claim 11 (Property of the affine span). For any affine subspace A of Ztm and any I ⊆ [n],
if vI ⊆ A then affine-span(vI) ⊆ A.

Proof. Let us write A = H + a for some linear space H ⊆ Ztm and vector a ∈ Ztm. Since
vi ∈ vI ⊆ A for each i ∈ I, there exists some vector hi ∈ H such that vi = hi + a. Take any
coefficients (ci)i∈I such that ci ∈ Zm and

∑
i∈I ci = 1. Then,∑

i∈I
civ

i =
∑
i∈I

ci(hi + a) =
∑
i∈I

cih
i + a ∈ H + a. J

By Lemma 2, the circuit size of f equals the minimum number of affine subspaces
A1, . . . , AK ⊆ f−1({1, ∗}) such that

⋃K
i=1Ai ⊇ f−1(1). Intuitively, we would like to require

that, if the set vI
(
⊆ f−1(1)

)
of points is covered by some affine subspace A ⊆ f−1({1, ∗}),

then there exist two legal sets S1, S2 of the set cover instance S such that I ⊆ S1 ∪ S2. In
fact, one of these sets can be taken as a singleton:

I Definition 12. We say that (vi)i∈[n] is nice (with respect to S) if, for any I ⊆ [n],

affine-span(vI) ⊆
⋃
S∈S

span(vS) =⇒ I ⊆ SI ∪ {iI} (1)

for some SI ∈ S and iI ∈ [n].

We will prove that (vi)i∈[n] is nice with probability at least 1
2 , and that for any nice (vi)i∈[n],

the minimum size of DNF ◦MODm is a 2-factor approximation of the minimum set cover
size. We prove the latter first:

I Claim 13. Let (vi)i∈[n] be nice, and K := DNFMODm
(f). Then S has a set cover of size

2K.

Proof. Let C =
∨K
k=1 Ck be a DNF ◦MODm circuit computing f , where each Ck ∈ AND ◦

MODm is nontrivial. By Lemma 2, C−1
k (1) is an affine subspace of Ztm. For each Ck, we will

choose 2 sets from S so that the union of all these sets cover the universe [n].
Fix any Ck and let Ik := { i ∈ [n] | Ck(vi) = 1 } be the set of all points covered by

Ck. Since C−1
k (1) is an affine subspace of Ztm and vIk ⊆ C−1

k (1), we have affine-span(vIk ) ⊆
C−1
k (1) by Claim 11. Since the circuit C computes f , C−1

k (1) ⊆ C−1(1) ⊆ f−1({1, ∗}) =⋃
S∈S span(vS). Thus we have affine-span(vIk ) ⊆

⋃
S∈S span(vS), which means that the

hypothesis of niceness (1) is satisfied; hence there exist some subset Sk1 ∈ S and some
element ik ∈ [n] such that Ik ⊆ Sk1 ∪ {ik}. Take any set Sk2 ∈ S such that ik ∈ Sk2 (such a
set Sk2 must exist because we assumed

⋃
S∈S S = [n]). Then Ik ⊆ Sk1 ∪ Sk2.

Now we claim that
⋃K
k=1 Sk1 ∪ Sk2 = [n] (and hence the set cover instance S has a cover

of size 2K). Indeed, for any i ∈ [n], we have f(vi) = 1 and hence C(vi) = 1, which means
that there exists some subcircuit Ck such that Ck(vi) = 1. Thus i ∈ Ik ⊆ Sk1 ∪ Sk2 for some
k ∈ [K]. J

It remains to show that a random choice of (vi)i∈[n] is nice with high probability:

I Claim 14. For each i ∈ [n], pick vi ∈R Ztm uniformly at random and independently. If
t ≥ r + ((r + 2) logn+ log |S|+ 1)/ logm, then (vi)i∈[n] is nice with probability at least 1

2 .

To prove Claim 14, we will use a union bound over all relevant subsets I ⊆ [n]; however,
the definition of niceness (1) appears to suggest that we need to take a union bound over
exponentially many subsets I. The next claim shows that this is in fact not the case.
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I Claim 15 (Characterization of niceness). (vi)i∈[n] is not nice (with respect to S) if and only
if there exists some subset I ⊆ [n] such that all the following conditions hold:

1. |I| ≤ r + 2,

2. I 6⊆ S ∪ {i} for any S ∈ S and i ∈ [n], and

3. affine-span(vI) ⊆
⋃
S∈S span(vS).

In particular, there are at most nr+2 subsets I ⊆ [n] over which we need to take a union
bound.

Proof. By the definition of niceness, (vi)i∈[n] is not nice if and only if there exists some
subset I ⊆ [n] such that affine-span(vI) ⊆

⋃
S∈S span(vS) whereas I 6⊆ S ∪ {i} for any S ∈ S

and i ∈ [n]. Therefore, it is clear that the three conditions imply that (vi)i∈[n] is not nice;
we prove below the converse direction (the “only if” part of Claim 15).

A crucial observation is that, for any subset I ⊆ [n] of size at least r + 2, the second
condition always holds: Indeed, recall that S is an instance of the r-bounded set cover
instance; that is, |S| ≤ r for any S ∈ S. Hence, for any S ∈ S and i ∈ [n], we have
|S ∪ {i}| ≤ r + 1; thus I cannot be a subset of S ∪ {i} simply because |I| ≥ r + 2.

Now suppose that there exists some subset I ⊆ [n] satisfying the second and third
conditions, but not the first one, that is, |I| > r + 2. Take any subset I ′ ⊆ I such that
|I ′| = r + 2. We claim that I ′ satisfies all three conditions: The first condition (|I ′| ≤ r + 2)
is obvious. The second condition holds because of the observation above. To see the third
condition, by assumption, we have affine-span(vI) ⊆

⋃
S∈S span(vS); hence, we also have

affine-span(vI′) ⊆ affine-span(vI) ⊆
⋃
S∈S span(vS). J

Now let us proceed to a proof of Claim 14.

Proof of Claim 14. We will bound the probability that a random (vi)i∈[n] is not nice, by
using the union bound over all the subsets I ⊆ [n] such that the first and second conditions
in Claim 15 hold. To this end, fix any subset I ⊆ [n] such that |I| ≤ r+ 2 and I 6⊆ S ∪{i} for
any S ∈ S and i ∈ [n] (in particular, I is not empty). We would like to bound the probability
that the affine subspace of vI is a subset of

⋃
S∈S span(vS).

Take an arbitrary (e.g. the smallest) element i0 ∈ I. Define coefficients (ci)i∈I as follows:
ci := 1 ∈ Zm for any i ∈ I \ i0 and ci0 := (2 − |I|) mod m ∈ Zm. By this definition, we
have

∑
i∈I ci = 1; hence,

∑
i∈I civ

i ∈ affine-span(vI). Therefore,

Pr
v1,...,vn

[
affine-span(vI) ⊆

⋃
S∈S

span(vS)
]
≤ Pr

[∑
i∈I

civ
i ∈

⋃
S∈S

span(vS)
]

≤
∑
S∈S

Pr
[∑
i∈I

civ
i ∈ span(vS)

]
.

By the assumption on I, we have I 6⊆ S ∪ {i0} for any S ∈ S; that is, there exists some
index jS ∈ I \{i0}\S. Note that cjS

= 1 because jS ∈ I \{i0}. Therefore, the last probability
is
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∑
S∈S

Pr
[∑
i∈I

civ
i ∈ span(vS)

]
=
∑
S∈S

Pr

vjS ∈ span(vS)−
∑

i∈I\{jS}

civ
i


=
∑
S∈S

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i for some (di)i∈S


=
∑
S∈S

∑
(di)i∈S

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i


≤ |S| ·mr ·m−t,

where the last inequality holds because the random vector vjS does not appear in the right
summations.

Finally, by taking the union bound over all I such that |I| ≤ r + 2 (and I 6⊆ S ∪ {i} for
any S ∈ S and i ∈ [n]), the probability that (vi)i∈[n] is not nice is bounded from above by
nr+2 · |S| ·mr−t ≤ 1

2 . J

Given these claims above, it is immediate to complete the whole proof.

Proof of Claim 10. We may assume without loss of generality that |S| ≤ nr since S is an
instance of the r-bounded set cover problem. We set t ∈ N to be the smallest integer such
that t ≥ r + ((r + 2) logn+ log |S|+ 1)/ logm; then t = O(r log(nm)/ logm). (Here the O
notation hides only a universal constant.) Combining Claims 13 and 14, we immediately
obtain Claim 10. J

Proof of Theorem 8. The encoding of the function f : Ztm → {0, 1, ∗} is of size O(mt) =
(nm)O(r), which is a polynomial in the input size poly(n, |S|).

Moreover, it is possible to make the reduction zero-error: Indeed, the condition of the
niceness can be checked in polynomial time, by using the characterization of Claim 15.

Finally, recall that the r-bounded set cover problem is NP-hard to approximate within
a factor of 2 by Theorem 5 for a sufficiently large constant r ∈ N. Hence, NP-hardness of
(DNF ◦MODm)-MCSP∗ follows from Claims 9 and 10. J

3.2 Reduction from (DNF ◦ MODm)-MCSP∗ to (DNF ◦ MODm)-MCSP
Next, we present a reduction for the minimum circuit size problem for partial functions to
that for total functions:

I Theorem 16. There is a (zero-error) randomized polynomial-time many-one reduction
from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP.

Let f : Ztm → {0, 1, ∗} be an instance of (DNF ◦ MODm)-MCSP∗. Let r := t + 2 and
s := d(2r + 2t) logm+ 2e = d4(t+ 1) logm+ 2e. We encode each value f(x) ∈ {0, 1, ∗} of
the partial function f as a function on a “hypercube” Zsm: namely, we construct a new total
function g : Ztm × Zsm → {0, 1} such that f(x) corresponds to (g(x, y))y∈Zs

m
. Specifically,

if f(x) 6= ∗, then f(x) is encoded as a hypercube whose origin5 0s is assigned f(x) and

5 0s denotes the zero of Zs
m for any s ∈ N.
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other points are assigned 0; if f(x) = ∗, then we pick a random linear subspace Lx ⊆ Zsm of
dimension r and we encode f(x) as the characteristic function of Lx.

Formally, for each x ∈ f−1(∗), we pick v1
x, . . . , v

r
x ∈R Zsm uniformly and independently

at random, and define a random linear subspace Lx := span(v1
x, . . . , v

r
x). Then the output

g : Ztm × Zsm → {0, 1} of our reduction is defined as

g(x, y) :=


f(x) (if f(x) ∈ {0, 1} and y = 0s)
1 (if f(x) = ∗ and y ∈ Lx)
0 (otherwise)

for any (x, y) ∈ Ztm × Zsm.
The idea is as follows: Let us imagine how a minimum DNF ◦MODm circuit C computing

g looks like. We need to cover g−1(1) by as few affine subspaces as possible. Note that g−1(1)
consists of two parts: {(x, 0s)} for each x ∈ f−1(1), and {x} × Lx for each x ∈ f−1(∗). In
order to cover the latter one, it is likely that we need to use the affine subspace {x} × Lx
itself for each x ∈ f−1(∗); indeed, since each Lx is a random linear subspace, under our
constraints with high probability there is no affine subspace which simultaneously covers (a
large fraction of) two random affine subspaces {x} × Lx and {x′} × Lx′ for x 6= x′ ∈ f−1(∗)
(Claim 21 below). Therefore, the minimum circuit C should contain a subcircuit which
accepts {x}×Lx for each x ∈ f−1(∗). Now it remains to cover {(x, 0s)} for each x ∈ f−1(1),
but here we can optionally cover {(x, 0s)} for each x ∈ f−1(∗) (which has been already
covered by {x} × Lx). This is exactly the same situation as (DNF ◦MODm)-MCSP∗; thus
with high probability we have DNFMODm

(g) = DNFMODm
(f) + |f−1(∗)|. Details follow.

I Claim 17. DNFMODm
(g) ≤ DNFMODm

(f) + |f−1(∗)|.

Proof. Suppose that a DNF◦MODm circuit C =
∨K
k=1 Ck computes f . For each x∗ ∈ f−1(∗),

take an AND ◦MODm formula Cx∗ such that C−1
x∗ (1) = {x∗} × Lx∗ (by Lemma 2). Define

C ′(x, y) :=
∨K
k=1(Ck(x) ∧ (y1 = 0) ∧ · · · ∧ (ys = 0)) ∨

∨
x∗∈f−1(∗) Cx∗(x, y). It is easy to see

that C ′(x, y) = g(x, y) for any (x, y) ∈ Ztm × Zsm. J

In order to prove the other direction, let us clarify the desired condition for random
linear spaces. We require that (Lx)x∈f−1(∗) is pairwise “disjoint” and that each Lx is
nondegenerated.

I Definition 18. We say that (Lx)x∈f−1(∗) is scattered if |Lx| = mr and Lx ∩ Lx′ = {0s}
for any distinct x, x′ ∈ f−1(∗).

It is easy to prove that the collection of random linear spaces satisfies the condition above.

I Claim 19. (Lx)x∈f−1(∗) is scattered with probability at least 1
2 , provided that s ≥ (2r +

2t) logm+ 2.

Proof. We first bound the probability that (Lx)x∈f−1(∗) is not pairwise disjoint.

Pr
[
Lx ∩ Lx′ 6= {0s} for some distinct x, x′ ∈ f−1(∗)

]
≤

∑
x6=x′∈f−1(∗)

Pr [Lx ∩ Lx′ 6= {0s}]

≤
∑

x6=x′∈f−1(∗)

Pr
[

r∑
i=1

civ
i
x =

r∑
i=1

div
i
x′ for some nonzero (ci)i∈[r], (di)i∈[r]

]

< m2t ·m2r · 2−s ≤ 1
4 ,
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where, in the last line, we used the fact that the probability that
∑r
i=1 civ

i
x =

∑r
i=1 div

i
x′ is

at most 2−s for nonzero (i.e. ci 6= 0, dj 6= 0 for some i, j ∈ [r]) coefficients (ci)i∈[r], (di)i∈[r].6
Next, we bound the probability that |Lx| < mr. Indeed,

Pr
[
|Lx| < mr for some x ∈ f−1(∗)

]
≤

∑
x∈f−1(∗)

Pr
[

r∑
i=1

civ
i
x = 0s for some nonzero (ci)i∈[r]

]

≤ mt ·mr · 2−s ≤ 1
4 .

Overall, the probability that (Lx)x∈f−1(∗) is not scattered is less than 1
4 + 1

4 = 1
2 . J

Note that the condition of being scattered can be checked in polynomial time. Indeed, for
each x ∈ f−1(∗), one can enumerate all the elements of Lx, which are at most polynomially
many in the input size mO(t). Thus, our zero-error randomized reduction picks random linear
subspaces (Lx)x∈f−1(∗) until we obtain a scattered collection of linear subspaces.

In the rest of the proof, we can thus assume that (Lx)x∈f−1(∗) is scattered. The next
claim gives the reverse inequality of Claim 17.

I Claim 20. DNFMODm
(g) ≥ DNFMODm

(f) + |f−1(∗)| if (Lx)x∈f−1(∗) is scattered.

Let C =
∨K
k=1 Ck be a minimum DNF ◦ MODm circuit computing g. (In particular,

K = DNFMODm
(g) ≤ DNFMODm

(f) + |f−1(∗)| ≤ mt+1.) For each x ∈ f−1(∗), we first
extract a subcircuit Cl(x) that covers (a large fraction of) the random linear subspace Lx.
Let l(x) ∈ [K] be one of the indices such that |C−1

l(x)(1) ∩ ({x} × Lx)| is maximized. That
is, Cl(x) covers the largest fraction of the affine subspace {x} × Lx; in particular, since⋃
k∈[K] C

−1
k (1) ⊇ {x} × Lx, there are at least |Lx|/K

(
= mr/K ≥ mr−t−1 ≥ 2

)
points in

the set C−1
l(x)(1) ∩ ({x} × Lx). Intuitively, the subcircuits {Cl(x) | x ∈ f−1(∗) } are supposed

to cover random linear subspaces, and the rest of the subcircuits computes f .
To make the intuition formal, we will prove the following two claims. The first asserts

that, under our constraints, no affine subspace can cover a large fraction of two distinct
random linear subspaces.

I Claim 21. l : f−1(∗)→ [K] is injective.

The second claim asserts that, if an affine subspace C−1
l(x′)(1) covers a large fraction of

{x′} × Lx′ , then it cannot cover a point (x, 0s) such that f(x) = 1.

I Claim 22. Cl(x′)(x, 0s) = 0 for any x ∈ f−1(1) and x′ ∈ f−1(∗).

Assuming these two claims, it is easy to prove Claim 20.

Proof of Claim 20. For each k ∈ [K], define an AND ◦ MODm circuit C ′k as C ′k(x) :=
Ck(x, 0s) on input x ∈ Ztm. Define a DNF ◦MODm circuit C ′ :=

∨
k∈ [K] \ { l(x)|f(x)=∗ } C

′
k.

By Claim 21, the number of subcircuits in C ′ is K − |f−1(∗)|.
We claim that C ′ computes f . Indeed, for any x ∈ f−1(1), we have C(x, 0s) = g(x, 0s) =

f(x) = 1; hence, there is some k ∈ [K] such that Ck(x, 0s) = 1, which implies that C ′k(x) = 1
by the definition of C ′k. Claim 22 implies k 6∈ { l(x′) | f(x′) = ∗ }; thus C ′(x) = 1. On the
other hand, for any x ∈ f−1(0), we have C(x, 0s) = g(x, 0s) = f(x) = 0; in particular, for
any k ∈ [K], Ck(x, 0s) = 0. Thus C ′k(x) = 0 for any k ∈ [K], which implies C ′(x) = 0. J

6 Note that any equation ax = b (mod m) with a 6= 0 is satisfied with probability ≤ 1/2 over a random
choice of x.
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It remains to prove Claims 21 and 22. We prove the latter fist.

Proof of Claim 22. Assume, by way of a contradiction, that Cl(x′)(x, 0s) = 1 for some
x ∈ f−1(1) and x′ ∈ f−1(∗). By the definition of l(x′), there are at least 2 distinct points
(x′, a) and (x′, b) in C−1

l(x′)(1) ∩ ({x′} × Lx′). Since C−1
l(x′)(1) is an affine subspace, we have

(x′, a)− (x′, b) + (x, 0s) = (x, a− b) ∈ C−1
l(x′)(1) (as in the proof of Claim 11). It follows that

C(x, a− b) = 1. Since C computes g, we also have g(x, a− b) = 1, which contradicts the fact
that a− b 6= 0s and the definition of g. J

Proof of Claim 21. Assume that l(x1) = l(x2) =: k for distinct inputs x1, x2 ∈ f−1(∗).
Take any 2 distinct points (x1, a) and (x1, b) from C−1

k (1) ∩ ({x1} × Lx1) and any point
(x2, c) from C−1

k (1) ∩ ({x2} × Lx2). Since C−1
k (1) is an affine subspace, we have (x1, a) −

(x1, b) + (x2, c) = (x2, a− b+ c) ∈ C−1
k (1). We also have (x2, a− b+ c) ∈ {x2} × Lx2 , since

C−1
k (1) ∩ ({x2} × Zsm) ⊆ g−1(1) ∩ ({x2} × Zsm) = {x2} × Lx2 . Therefore, a − b + c ∈ Lx2 .

Since c ∈ Lx2 and this is a linear subspace, it follows that a− b ∈ Lx2 . On the other hand,
by the definition of a and b, we have 0s 6= a − b ∈ Lx1 . However, this is a contradiction
because 0s 6= a− b ∈ Lx1 ∩ Lx2 = {0s}. J

Proof of Theorem 16. By Claims 17 and 20, we obtain DNFMODm(g) = DNFMODm(f) +
|f−1(∗)| for a scattered collection (Lx)x∈f−1(∗). Since s = O(t logm), the truth table of g is
of length mt+s = mO(t logm), which is a polynomial in the input length for every constant
m ≥ 2. Finally, since it is possible to check whether (Lx)x∈f−1(∗) is scattered in polynomial
time, the reduction is zero-error. J

On our proof strategy and the restriction to functions over boolean inputs (m >

2). The linear-algebraic and probabilistic techniques employed here naturally suggest to
view a set of inputs for the input instance f as a subset of the algebraic structure Znm (a
vector space or module, depending on m). In order to establish a similar NP-hardness result
with respect to functions on the hypercube and AND-OR-MODm circuits, one is tempted
to encode elements from the structure Znm as binary strings, and to consider a bijection
ϕ : Znm ↔ Γ ⊆ {0, 1}∗ between vectors and binary strings. However, a binary encoding allows
a bottom-layer modular gate to access individual bits of this encoding, and as a consequence,
this gate might accept a set A ⊆ {0, 1}∗ that does not correspond under ϕ to the set of
solutions of a modular equation over Zm. When this is the case, our argument no longer
works.

Another natural approach would be to restrict the input function to boolean inputs, and
to directly view such inputs as elements in {0, 1}n ⊆ Znm. Here certain technical difficulties
are transferred to our probabilistic analysis involving affine subspaces of Znm, and it is not
immediately clear to us how to modify the argument in this case.

For these reasons, when m > 2 our techniques do not seem to be directly applicable
to functions defined over boolean inputs only, and a more complicated argument might be
necessary. Note however that this does not exclude the existence of different and potentially
simpler reductions among these and other intermediary problems.

4 Derandomization and Pseudorandom Generators for AND ◦MODm

In this section, we present a unified way of efficiently derandomizing the zero-error reductions
of Section 3. The crucial idea is that certain subconditions of being nice or scattered can be
checked by AND◦MODm circuits over Znm; hence, a pseudorandom generator for AND◦MODm

circuits can be used to derandomize the reductions.
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In order to achieve this, we show that there exists a quick pseudorandom generator with
logarithmic seed length that fools any AND ◦MODm circuit (regardless of its size), a result
that might be of independent interest.

I Theorem 23. For every ε = ε(n) > 0 and each m ≥ 2, there exists a quick pseudorandom
generator G = {Gn : [Γn]→ Znm}n∈N that ε-fools any AND ◦MODm circuit over Znm, where
Γn = poly(n, 1/ε,m) is a positive integer.

Here we say that, for ε > 0 and an integer m ≥ 2, a function Gn : [Γn] → Znm ε-fools
AND ◦MODm circuits if |Eγ∈R[Γn][C(Gn(γ))]− Ev∈RZn

m
[C(v)]| ≤ ε for every AND ◦MODm

circuit C; such a function Gn is called an ε-pseudorandom generator for AND ◦ MODm

circuits. We say that a family {Gn}n∈N of pseudorandom generators is quick if Gn can be
computed in poly(Γn) time. (Recall that [Γn] denotes the set {1, . . . ,Γn}, which means that
the seed-length of Gn is logarithmic in n, m, and 1/ε when its input elements are represented
as binary strings.)

4.1 Derandomizing the Reductions
We defer a proof of Theorem 23 to the next subsection, and present its applications first:
The pseudorandom generator implies polynomial-time derandomizations of the reductions
presented in Section 3.

I Theorem 24 (Restatement of Theorem 1). (DNF ◦ MODm)-MCSP is NP-hard under
polynomial-time many-one reductions.

Our basic strategy is as follows: Each reduction of Section 3 employs random variables
that take value on Zkm, for different choices of k. To derandomize the reductions, we simply
replace these random variables by the output of the pseudorandom generator of Theorem 23;
then we try all possible Γn seeds of Gn, and check whether the generated random variables
satisfy the desired condition (which can be done in polynomial time). Below we give details
for each reduction, starting with the second.

Derandomizing the second reduction. We start with the reduction from
(DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP. The reduction required a scattered collec-
tion of linear subspaces, which is provided by the probabilistic argument of Claim 19. Here
we present a deterministic construction of such a collection.

I Theorem 25. For any integer m ≥ 2, there exists a deterministic algorithm that, on
inputs t and r, outputs a scattered collection of r-dimensional linear subspaces (Lh)h∈[H] for
H := mt. Specifically,
1. Lh is a linear subspace of Zsm for s := d(2r + 2t) logm+ 2e,
2. |Lh| = mr, and
3. Lh ∩ Lh′ = {0s} for any distinct h, h′ ∈ [H].
The running time of the algorithm is mO((r+t) logm).

In the proof of Theorem 16, we picked random vectors v1
x, . . . , v

r
x ∈R Zsm and defined

Lx := span(v1
x, . . . , v

r
x) for each x ∈ f−1(∗) ⊆ Ztm. We take a similar approach, but instead

of generating vectors uniformly at random, we use the output of the pseudorandom generator
as the source of randomness. Specifically, let γ ∈ [ΓrsH ] be a seed of the pseudorandom
generator of GrsH ; define vectors (v1

h, . . . , v
r
h)h∈[H] := GrsH(γ) ∈ (Zrsm)H ; then, define

Lh := span(v1
h, . . . , v

r
h) for each h ∈ [H]. We show that the probabilistic argument of Claim

19 still works even if the randomness is replaced in this way:
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I Claim 26. Let GrsH be the pseudorandom generator of Theorem 23 with error parameter
ε = 2−s. Pick a seed γ ∈R [ΓrsH ] uniformly at random, and define a collection (Lh)h∈[H] of
linear subspaces as above. Then, (Lh)h∈[H] is scattered with nonzero probability.

Proof. Note that union bounds hold for any distribution; hence, by using the union bounds
as in Claim 19, the probability that (Lh)h∈[H] is not pairwise disjoint is

Pr [ Lh ∩ Lh′ 6= {0s} for some distinct h, h′ ∈ [H] ]

≤
∑

h6=h′∈[H]

∑
(ci),(di)

Pr
[

r∑
i=1

civ
i
h =

r∑
i=1

div
i
h′

]
, (2)

where the second sum is taken over all nonzero coefficient vectors (ci)i∈[r] and (di)i∈[r]
with entries ci, di ∈ Zm. If the random vectors (vih)h,i were uniformly distributed, the
probability in (2) could be bounded by 2−s as in Claim 19; Here the probability is taken
over a random seed γ ∈R [ΓrsH ] of the pseudorandom generator GrsH . The condition that∑r
i=1 civ

i
h =

∑r
i=1 div

i
h′ can be checked by some AND ◦MODm circuit that takes (vih)h,i as

input; thus the circuit is ε-fooled by the pseudorandom generator; as a consequence, the
probability (2) is strictly less than m2t ·m2r · (2−s + ε) ≤ 1

2 .
Similarly,

Pr [ |Lh| < mr for some h ∈ [H] ]

≤
∑
h∈[H]

∑
(ci)

·Pr
[

r∑
i=1

civ
i
h = 0s

]

< mt ·mr · (2−s + ε) ≤ 1
2 .

Overall, the probability that (Lh)h∈[H] is not scattered is strictly less than 1
2 + 1

2 = 1. J

Proof of Theorem 25. By Claim 26, there exists some seed γ ∈ [ΓrsH ] such that the
output GrsH(γ) defines a scattered collection (Lh)h∈[H] of linear subspaces. By exhaustively
searching all the seeds, one can enumerate all the outputs of GrsH in time poly(ΓrsH) =
poly(rsH, 2s,m). Moreover, one can check whether GrsH(γ) defines a scattered collection
for each γ ∈ [ΓrsH ] in time poly(H,ms). Overall, the running time of our construction is
poly(ms) = mO((r+t) logm). J

The randomized reduction of Theorem 16 can be now derandomized, using the determin-
istic construction of Theorem 25 for r := t+ 2.

I Corollary 27. There is a polynomial-time (mO(t logm) time on input length O(mt)) many-
one reduction from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP.

Derandomizing the first reduction. We now consider the reduction from the r-bounded
set cover problem to (DNF ◦MODm)-MCSP∗. Let [n] be the universe, and S ⊆

([n]
≤r
)
be an

input to the set cover problem. Derandomizing the reduction amounts to a deterministic
construction of a nice collection (vi)i∈[n] of vectors. We generate the random vectors using
the pseudorandom generator for AND ◦ MODm circuits, and show that the probabilistic
argument of Claim 14 still works.

I Claim 28 (Revised Claim 14). Let Gtn be the pseudorandom generator of Theorem 23
with error parameter ε < m−t. Pick a seed γ ∈R [Γtn] uniformly at random. Define
(v1, . . . , vn) := Gtn(γ) ∈ (Ztm)n. If t ≥ r + ((r + 2) logn+ log |S|+ 1)/ logm, then (vi)i∈[n]
is nice with nonzero probability.
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Proof. By using union bounds as in Claim 14, it is sufficient to prove

nr+2 · |S| ·mr · Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i

 < 1 (3)

for coefficients (ci)i∈I , (di)i∈S and jS ∈ I \ S, where the probability is taken over a random
seed γ.

The condition vjS =
∑
i∈S div

i −
∑
i∈I\{jS} civ

i can be checked by an AND ◦ MODm

circuit that takes (v1, . . . , vn) ∈ Ztnm as input. By Theorem 23, we get

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i

 ≤ m−t + ε.

Consequently, due to our choice of t and using ε < m−t, the left-hand side of (3) is strictly
less than

nr+2 · |S| ·mr · 2m−t ≤ 1,

which completes the proof. J

In particular, there exists some seed γ ∈ [Γtn] such that (v1, . . . , vn) = Gtn(γ) is nice.
The number of seeds is at most Γtn = poly(tn, 1/ε,m) = poly(n,mt) = (nm)O(r), which is
a polynomial in the input length; hence, in polynomial time, one can try all possible seeds
and find a nice collection (vi)i∈[n] of vectors. Thus the reduction of Theorem 8 can be
derandomized:

I Corollary 29. (DNF ◦MODm)-MCSP∗ is NP-hard under polynomial-time many-one reduc-
tions.

Proof of Theorem 24. Immediate from Corollaries 29 and 27. J

4.2 Near-Optimal Pseudorandom Generators for AND ◦ MODm

This subsection contains a proof of Theorem 23. We assume basic familiarity with concepts
from analysis of boolean functions [35]. For simplicity, we first focus on the case of m = 2,
which admits a simpler proof.

Proof for m = 2. An ε-biased generator, introduced by Naor and Naor [34], is a pseudoran-
dom generator for XOR functions. That is, we say that a function G : {0, 1}s → {0, 1}n is an
ε-biased generator if |Ex∈R{0,1}n [χS(x)]− Es∈R{0,1}s [χS(G(s))]| ≤ ε for any S ⊆ [n], where
χS(x) :=

⊕
i∈S xi. While this definition only requires the generator to fool XOR functions,

it can be shown that any Boolean function with small `1 Fourier norm can be fooled by
ε-biased generators.

I Lemma 30 (see e.g., [16, Lemma 2.5]). Every function f : {0, 1}n → {0, 1} can be ε|̂|f |̂|1
fooled by any ε-biased generator. Here, |̂|f |̂|1 :=

∑
S⊆[n] |f̂(S)|.

Proof Sketch. Use the Fourier expansion f(x) =
∑
S⊆[n] f̂(S)χS(x), and apply the triangle

inequality. J

Moreover, it is known that any AND ◦ XOR circuit f has |̂|f |̂|1 = 1.
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I Lemma 31 (see e.g., [35, Proposition 3.12]). |̂|f |̂|1 = 1 for any Boolean function f : {0, 1}n
→ {0, 1} computable by a nontrivial AND ◦ XOR circuit.

Proof Sketch. Let H + a ⊆ {0, 1}n be the (nonempty) affine subspace accepted by f . Take
a basis of H⊥. Write a characteristic function of f using the basis, and expand it to obtain a
Fourier expansion of f . J

Combining these two lemmas, any ε-biased generator fools AND ◦ XOR circuits. Moreover,
Naor and Naor [34] gave an explicit construction of an ε-biased generator of seed length
O(logn+ log(1/ε)), from which Theorem 23 follows when m = 2.

In the proof sketched above, we exploited the fact that {0, 1}n = Zn2 is a vector space:
We took a basis of a linear subspace in the proof of Lemma 31. In order to generalize the
result to the case of m ≥ 2, we need a more direct proof which does not rely on a basis.

Proof for any m ≥ 2. Azar, Motwani and Naor [9] generalized the notion of ε-biased
generator on {0, 1}n to Znm for any integer m ≥ 2, and gave an explicit construction. We
review the generalized notion and their result below.

I Definition 32 ([9]). For a probability distribution D over Znm and a vector a ∈ Znm, biasD(a)
is defined as follows: for g := gcd(a1, . . . , an,m),

biasD(a) := 1
g

max
0≤k<m/g

∣∣∣ Pr
x∼D

[〈a, x〉 = kg]− g

m

∣∣∣ .
We say that a distribution D is ε-biased if biasD(a) ≤ ε for every a ∈ Znm. We say that a
function G : [Γ] → Znm is an ε-biased generator if the distribution G(γ) for a random seed
γ ∈R [Γ] is ε-biased.

I Theorem 33 ([9, Theorem 6.1]). For m(n) ≥ 2 and ε = ε(n) > 0, there exists a quick
ε-biased generator G = {Gn : [Γn]→ Znm}n∈N for some Γn = poly(n, 1/ε,m).

We use the same pseudorandom generator G as in Theorem 33. In what follows, we will
show that any ε-biased generator mε-fools AND ◦MODm circuits, which completes the proof
of Theorem 23.

Define em : Zm → C× as em(k) := exp(2π
√
−1 · k/m) for k ∈ Zm.

I Lemma 34. For any distribution D on Znm and any nonzero vector a ∈ Znm, we have∣∣∣ E
x∼D

[em (〈a, x〉)]
∣∣∣ ≤ m · biasD(a).

Proof. The proof follows the same approach of [9, Lemma 4.4]. Let g := gcd(a1, . . . , an,m).

∣∣∣ E
x∼D

[em (〈a, x〉)]
∣∣∣ =

∣∣∣∣∣∣
∑

0≤k<m/g

em(kg) Pr
x∼D

[〈a, x〉 = kg]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

0≤k<m/g

em(kg)
(

Pr
x∼D

[〈a, x〉 = kg]− g

m

)∣∣∣∣∣∣
≤

∑
0≤k<m/g

|em(kg)| ·
∣∣∣ Pr
x∼D

[〈a, x〉 = kg]− g

m

∣∣∣
≤ m

g
· 1 · g · biasD(a) = m · biasD(a),
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where the first equality follows from the fact that 〈a, x〉 is a multiple of g for any x ∈ Znm,
and in the second equality we used that

∑
0≤k<m/g em(kg) = 0 for g < m, which is true if

a 6= 0n. J

As a consequence of the previous lemma, we can prove that any affine function can be
“fooled”:

I Lemma 35. For any ε-biased probability distribution D on Znm, any vector a ∈ Znm, and
any scalar b ∈ Zm,∣∣∣∣ E

x∼D
[em (〈a, x〉+ b)]− E

x∈RZn
m

[em (〈a, x〉+ b)]
∣∣∣∣ ≤ mε.

Proof. When a = 0n, both expectations are constant, and hence the lemma follows. Other-
wise, we have Ex∈RZn

m
[em (〈a, x〉)] = 0, since this expression can be written as a product of

expectations, and one of them evaluates to zero. Using Lemma 34, we obtain∣∣∣∣ E
x∼D

[em (〈a, x〉+ b)]− E
x∈RZn

m

[em (〈a, x〉+ b)]
∣∣∣∣

= |em(b)| ·
∣∣∣∣ E
x∼D

[em (〈a, x〉)]− E
x∈RZn

m

[em (〈a, x〉)]
∣∣∣∣ = 1 ·

∣∣∣ E
x∼D

[em (〈a, x〉)]
∣∣∣

≤ m biasD(a) ≤ mε. J

I Theorem 36. For any ε-biased probability distribution D on Znm and any function f :
Znm → {0, 1} computable by some AND ◦MODm circuit,

∣∣∣∣ E
x∼D

[f(x)]− E
x∈RZn

m

[f(x)]
∣∣∣∣ ≤ mε

Proof. Suppose that an AND ◦MODm circuit computing f has K MODm gates, and, for
each k ∈ [K], let gk : Znm → Zm denote the affine function that corresponds to the kth
MODm gate. That is, gk(x) = 〈ak, x〉+ bk for some vector ak ∈ Znm and some scalar bk ∈ Zm;
moreover, for any input x ∈ Znm, f(x) = 1 if and only if gk(x) = 0 for all k ∈ [K].

We employ the following construction. Let p(z) be the polynomial over C defined as
follows.

p(z) := 1
m

∏
α∈Zm\{0}

(z − em(α)) (4)

= 1
m

zm − 1
z − 1 = 1

m

m−1∑
i=0

zi, (5)

where the second equality holds because the roots of the polynomial zm − 1 are { em(α) |
α ∈ Zm }. Useful properties of this polynomial are that, by (4), we have p(em(α)) = 0 for
any α ∈ Zm \ {0}, and that p(em(0)) = p(1) = 1 because of (5). Using the polynomial, we
can write f as follows:
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f(x) =
∧
k∈[K]

[gk(x) = 0]

=
∧
k∈[K]

[p(em(gk(x))) = 1]

=
∏
k∈[K]

p(em(gk(x)))

=
∏
k∈[K]

 1
m

m−1∑
j=0

em(j · gk(x))


= 1

mK

∏
k∈[K]

∑
αk∈Zm

em(αkgk(x))

= 1
mK

∑
α∈ZK

m

em

 ∑
k∈[K]

αkgk(x)

 .

Now, by using Lemma 35, we obtain∣∣∣∣ E
x∼D

[f(x)]− E
x∈RZn

m

[f(x)]
∣∣∣∣

≤ 1
mK

∑
α∈ZK

m

∣∣∣∣∣∣ E
x∼D

em
 ∑
k∈[K]

αkgk(x)

− E
x∈RZn

m

em
 ∑
k∈[K]

αkgk(x)

∣∣∣∣∣∣
≤ mε,

where in the last inequality we used the fact that
∑
k∈[K] αkgk(x) is an affine function. J

Proof of Theorem 23. The result is immediate from Theorems 33 and 36. J
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A Proof of Fact 3 – Double Orthogonal Complement in (Z/mZ)n

In this section we present the proof of Fact 3, which for convenience is reformulated as
Theorem 37 stated below. Our presentation follows the proof outlined in [20].

Recall the following concepts. We consider the Abelian group G := (Z/mZ)n equipped
with component-wise addition modulo m, and let 〈x, y〉 :=

∑
i∈[n] xiyi mod m, where

x, y ∈ G. For a subgroup V of G, define V ⊥ := {x ∈ G | 〈x, y〉 = 0 for all y ∈ V }, which is
again a subgroup of G.

I Theorem 37 (folklore). V ⊥⊥ = V for any subgroup V of G = (Z/mZ)n.

It is easy to see V ⊆ V ⊥⊥: indeed, for any x ∈ V , we have 〈x, y〉 = 0 for each y ∈ V ⊥ by
the definition of V ⊥; hence x ∈ V ⊥⊥. Therefore, it is sufficient to show that the size of V ⊥⊥
is equal to that of V . To this end, we prove the following claim.

I Claim 38. |V ⊥| = |G|/|V | for any subgroup V of G.

Note that, applying this claim twice, we obtain |V ⊥⊥| = |G|/|V ⊥| = |G|/(|G|/|V |) = |V |,
which completes the proof of Theorem 37. Claim 38 will be proved by combining the three
claims below.

Let H be any finite Abelian group. A character of the group H is a homomorphism
χ : H → C× Let Ĥ denote the dual group of H, that is, the group of all characters of H.
(See e.g. [35, Section 8.5] for more details.) It is known that the order of a group H and the
order of its dual group Ĥ are the same.
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I Claim 39 ([35, Corollary of Proposition 8.55 and Exercise 8.35]). |H| = |Ĥ| for any finite
Abelian group H.

For any subgroup V of G, define V ∗ := {χ ∈ Ĝ | χ(v) = 1 for every v ∈ V }.

I Claim 40. Ĝ/V ∼= V ∗ for any subgroup V of G.

Proof. We define an isomorphism ϕ : Ĝ/V → V ∗. Given χ ∈ Ĝ/V , we define ϕ(χ) : G→ C×
by ϕ(χ)(x) := χ(x+V ) for x ∈ G. We claim that ϕ(χ) is indeed in V ∗: First, ϕ(χ) : G→ C×
is a homomorphism since ϕ(χ)(x+y) = χ(x+y+V ) = χ((x+V )+(y+V )) = χ(x+V )χ(y+V )
for any x, y ∈ G. Second, ϕ(χ)(v) = χ(v + V ) = χ(V ) = 1 for any v ∈ V . (Here, we used
the fact that the homomorphism χ maps the identity 0 + V ∈ G/V to the identity 1 ∈ C×.)

We claim that ϕ is a homomorphism. Indeed, ϕ(χ1χ2)(x) = (χ1χ2)(x + V ) = χ1(x +
V )χ2(x + V ) = ϕ(χ1)(x)ϕ(χ2)(x) for any x ∈ G and any χ1, χ2 ∈ Ĝ/V ; hence ϕ(χ1χ2) =
ϕ(χ1)ϕ(χ2).

In order to prove that ϕ is a bijection, we construct an inverse map ψ : V ∗ → Ĝ/V . Given
χ ∈ V ∗, define ψ(χ)(a+ V ) := χ(a) for any coset a+ V ∈ G/V . Note that this map is well
defined since a + V = b + V implies a − b ∈ V , and thus 1 = χ(a − b) = χ(a)/χ(b). It is
straightforward to see that ψ = ϕ−1: indeed, ψ(ϕ(χ))(a + V ) = ϕ(χ)(a) = χ(a + V ) and
ϕ(ψ(χ))(a) = ψ(χ)(a+ V ) = χ(a) for any a ∈ G. Hence ϕ is both injective and surjective,
and consequently, an isomorphism. J

I Claim 41. V ∗ ∼= V ⊥ for any subgroup V of G = (Z/mZ)n.

Proof. We first prepare some notation: For any i ∈ [n], let ei ∈ G be the vector whose value
is 1 on the ith coordinate and is 0 on the other coordinates. Let ω := exp(2π

√
−1/m) ∈ C×

denote the mth root of unity.
We construct an isomorphism ϕ : V ⊥ → V ∗. Given x ∈ V ⊥, define ϕ(x) ∈ V ∗ as

ϕ(x)(y) := ω〈x,y〉 for any y ∈ G. Note that the image of ϕ is contained in V ∗: indeed, for
any v ∈ V ⊥, we have ϕ(x)(v) = ω〈x,v〉 = ω0 = 1.

We claim that ϕ is injective. It is easy to see that ϕ is a homomorphism; thus, it is
sufficient to prove that the kernel of ϕ is just 0 ∈ V ⊥. If ϕ(x) is the constant function 1,
then 〈x, y〉 = 0 for any y ∈ G; in particular, letting y ∈ {e1, . . . , en}, we obtain x = 0.

Finally, we claim that ϕ is surjective. For any χ ∈ V ∗ and any i ∈ [n], there is some
xi ∈ Z/mZ such that χ(ei) = ωxi : indeed, since 1 = χ(0) = χ(m · ei) = χ(ei)m, χ(ei) is
one of the mth roots of unity. Now we define x :=

∑n
i=1 xiei ∈ G. Then, for any y ∈ G,

ϕ(x)(y) = ω〈x,y〉 =
∏n
i=1 ω

xiyi =
∏n
i=1 χ(ei)yi =

∏n
i=1 χ(yiei) = χ(

∑n
i=1 yiei) = χ(y); hence

ϕ(x) = χ for some x ∈ G. Moreover, for any v ∈ V , we have χ(v) = ω〈x,v〉 = 1 since χ ∈ V ∗;
thus we have 〈x, v〉 = 0, which implies that x ∈ V ⊥. J

Combining these three claims, we obtain |V ⊥| = |V ∗| = |Ĝ/V | = |G/V | = |G|/|V |, which
completes the proof of Claim 38.

B On Different Complexity Measures for DNF ◦ MODp Circuits

In this section, we provide an example of the robustness of our arguments with respect to
variations of the complexity measure. Let p ≥ 2 be a fixed prime. We sketch the proof of a
hardness result for a variant of the (DNF ◦MODp)-MCSP∗ problem, described as follows. We
consider layered OR ◦ AND ◦MODp formulas7 over Znp , and measure complexity by the total

7 Recall that in a formula every non-input gate has fan-out one.
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number of (non-input) gates in the formula.8 A bit more precisely, we adapt the proof of
Theorem 8 from Section 3.1, and show that this problem is also NP-hard under randomized
reductions.

Since Ztp is a vector space over the field Zp, we can define the dimension of an affine
subspace: For a linear subspace H ⊆ Ztp, let dim(H) denote the dimension of H, and let
codim(H) := dim(H⊥) = t− dim(H); then, for any a ∈ Ztp, define the dimension of an affine
subspace H + a as dim(H + a) := dim(H), and codim(H + a) := dim(H). Observe that
this notion is well-defined. Using dimension, we can characterize the number of gates in
AND ◦MODp formulas.

I Lemma 42. Let A be an affine subspace of Ztp. Then, the minimum number of gates in
any layered AND ◦MODp formula accepting A is exactly 1 + codim(A).

Proof Sketch. As in the proof of Lemma 2, a layered AND◦MODp formula C with 1+s gates
accepts the set A = C−1(1) of solutions of s linear equations over MODp. Let B ∈ Zs×tp be
the matrix that defines these linear equations. Then, we have dim ker(B) = dim(A), and by
the rank-nullity theorem, we obtain codim(A) = t−dim(A) = t−dim ker(B) = rank(B) ≤ s.

Conversely, let A =: H+a for some linear subspace H and some a ∈ Ztp, and let γ1, . . . , γs
be a basis of H⊥, where s := codim(H). Then, using orthogonal complements, it is easy to
check that x ∈ A if and only if 〈γi, x〉 = 〈γi, a〉 for all i ∈ [s]. The latter condition can be
written as an AND ◦MODp layered formula with 1 + s gates. J

As a corollary, for any optimal layered (DNF ◦MODp)-formula C =
∨K
k=1 Ck for a function

f : Znp → {0, 1}, where Ck is an AND ◦MODp circuit for each k ∈ [K], the total number of
gates in the formula is precisely 1 +K +

∑K
k=1 codim(C−1

k (1)).
For convenience, given a function f : Ztp → {0, 1, ∗}, let size(f) denote the complexity of

f according to our size measure. Now let us revise the proof of Theorem 8. Given an instance
S ⊆

(
n
≤r
)
of the r-bounded set cover instance, we construct a function f : Ztp → {0, 1, ∗} in

exactly the same way. Below we adapt the corresponding claims from Section 3.1. Then we
employ the new claims to argue that the NP-hardness result still holds.

I Claim 43 (Adaptation of Claim 9). Assume that S has a set cover of size K. Then
size(f) ≤ (t+ 1)K + 1.

Proof. Let C ⊆ S be a set cover of size K. For each S ∈ C, let CS be an AND◦MODp circuit
over Ztp that accepts span(vS). Define a DNF◦MODp circuit C :=

∨
S∈C CS . Then the circuit

size of C is 1 +K +
∑K
i=1 codim(C−1

S (1)), which is obviously at most 1 +K(t+ 1). J

I Claim 44 (Adaptation of Claim 13). Let (vi)i∈[n] be nice, and s := size(f). Then S has a
set cover of size 2(s− 1)/(t− r − (log |S|/ log p) + 1).

Proof. Let C =
∨K
k=1 Ck be an optimal DNF ◦MODp layered formula of size s computing f .

Then, as discussed above, we have s = 1 +K +
∑K
k=1 codim(C−1

k (1)). On the other hand,
the same analysis from Claim 13 shows that S has a set cover of size ≤ 2K. It thus remains
to give an upper bound on K.

Since C computes f , we have C−1
k (1) ⊆ C−1(1) ⊆ f−1({1, ∗}) =

⋃
S∈S span(vS). By

counting the number of elements in C−1
k (1) and

⋃
S∈S span(vS), we obtain pdim(C−1

k
(1)) ≤

|S| · pr. Hence, we have codim(C−1
k (1)) ≥ t− r − log |S|/ log p; therefore,

8 Under our notion of layered formulas, an (AND ◦MODp)-circuit with a single MODp gate has size 2.
While this is convenient for the exposition, it is not particularly important for the result.
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s ≥ 1 +K +
K∑
k=1

codim(C−1
k (1)) ≥ 1 +K +K(t− r − log |S|/ log p),

which implies K ≤ (s− 1)/(t− r − (log |S|/ log p) + 1). J

Let K be the minimum size of a cover for S. By the claims above, we have size(f) . tK

and K . 2size(f)/t, because t can be taken large enough compared to the other relevant
parameters; hence size(f)/t roughly gives us a 2-factor approximation. More precisely, we
have size(f) ≤ (t+1)K+1 ≤ 2(t+1)K, and K ≤ 2(size(f)−1)/((t+1)/2) ≤ 4size(f)/(t+1)
for any t ≥ 2r + 2 log |S|/ log p− 1. That is, the set cover size K satisfies

size(f)
2(t+ 1) ≤ K ≤ 4size(f)

t+ 1 ,

which gives an 8-factor approximation of K. Since we can take r to be a sufficiently large
constant in Theorem 5, the result holds.

C A Hardness of Approximation Result for (DNF ◦ MODm)-MCSP

The reduction from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP presented in Section 3
is not approximation-preserving: given a partial function f : Ztm → {0, 1, ∗}, it produces a
total function g : ZO(t logm)

m → {0, 1} such that DNFMODm(g) = DNFMODm(f)+ |f−1(∗)|. The
reduction introduces an additive term |f−1(∗)|, and hence a (multiplicative) approximation
of DNFMODm

(g) does not give a good approximation of DNFMODm
(f). In order to fix this

situation, we give an approximation-preserving reduction. Our approach is inspired by a
reduction described in [5].

I Theorem 45 (Approximation-preserving version of Corollary 27). There is a polynomial-time
algorithm that, given the truth table of a partial function f : Ztm → {0, 1, ∗}, produces the
truth table of a total function g : Z2t+2s

m → {0, 1} such that

DNFMODm
(g) = |f−1(∗)| · (DNFMODm

(f) + 1),

where s := d(6t+ 4) logm+ 2e.

Proof. The idea of the proof is to amplify the circuit size for f ; that is, we would like to
force any circuit C computing g to also compute sub-functions corresponding to |f−1(∗)|
copies of f .

We can amplify the circuit size as follows. Let (Lx)x∈f−1(∗) be a scattered collection
of linear subspaces of Zsm. Define a function g′ by g′(x, z, w) := f(x) if z ∈ f−1(∗) and
w ∈ Lz; otherwise g′(x, z, w) := 0. Then, under an appropriate choice of parameters, it
can be shown that DNFMODm(g′) = |f−1(∗)| · DNFMODm(f). By combining an analogous
reduction and the idea behind the proof of Theorem 16, we can obtain a total function g
such that DNFMODm

(g) = DNFMODm
(g′) + |f−1(∗)| = |f−1(∗)| · (DNFMODm

(f) + 1).9 Details
follow.

9 A black-box application of Corollary 27 produces a function g such that DNFMODm
(g) = DNFMODm

(g′) +
|g′−1(∗)|, which is not sufficient for our purpose because |g′−1(∗)| is larger than |f−1(∗)|.
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We first obtain a scattered collection (Lx)x∈f−1(∗) of r-dimensional linear subspaces of
Zsm by using Theorem 25 for r := 2t+ 2. Then we define g : Z2t+2s

m → {0, 1} as

g(x, y, z, w) :=


f(x) (if f(x) ∈ {0, 1} and y = 0s and f(z) = ∗ and w ∈ Lz)
1 (if f(x) = ∗ and y ∈ Lx)
0 (otherwise)

for any ((x, y), (z, w)) ∈ (Zsm × Ztm)2.

I Claim 46 (Analogue of Claim 17). DNFMODm
(g) ≤ |f−1(∗)| · (DNFMODm

(f) + 1).

Proof. Suppose that a DNF◦MODm circuit C =
∨K
k=1 Ck computes f . For each x∗ ∈ f−1(∗),

take an AND ◦MODm circuit Cx∗ accepting {x∗} × Lx∗ (by Lemma 2). Define

C ′(x, y, z, w) :=
∨

z∗∈f−1(∗)

K∨
k=1

(Ck(x)∧y1 = 0∧· · ·∧ys = 0∧Cz∗(z, w))∨
∨

x∗∈f−1(∗)

Cx∗(x, y).

It is easy to see that C ′ computes g. J

The rest of the proof is devoted to the reverse direction.

I Claim 47 (Analogue of Claim 20). DNFMODm
(g) ≥ |f−1(∗)| · (DNFMODm

(f) + 1).

Let C =
∨K
k=1 Ck be a minimum DNF ◦ MODm circuit computing g. In particular,

K = DNFMODm(g) ≤ |f−1(∗)| · (DNFMODm(f) + 1) ≤ m2t+1. For each x ∈ f−1(∗), let
l(x) ∈ [K] be one of the indices such that |C−1

l(x)(1)∩ ({x} ×Lx ×Zt+sm )| is maximized. Since⋃
k∈[K] C

−1
k (1) ⊇ {x} × Lx × Zt+sm , there are at least |Lx| ·mt+s/K ≥ mr+t+s/m2t+1 ≥ 2

points in the set C−1
l(x)(1) ∩ ({x} × Lx × Zt+sm ).

Define T0 := {Cl(x) | f(x) = ∗ }. For each z ∈ f−1(∗), let Tz be the set of all Ck such that
k ∈ [K] and Ck accepts at least 2 elements from {(x, 0s, z)}×Lz for some x ∈ f−1(1). We will
show that the sets T0, {Tz}z∈f−1(∗) are pairwise disjoint, and hence K ≥ |T0|+

∑
z∈f−1(∗) |Tz|.

We will also prove that |T0| = |f−1(∗)| and |Tz| ≥ DNFMODm
(f), which completes the proof.

I Claim 48. l : f−1(∗)→ [K] is injective (hence |T0| = |f−1(∗)|).

I Claim 49. T0 ∩ Tz = ∅ for any z ∈ f−1(∗).

Since the proofs of these claims are essentially the same as in Claims 21 and 22, respectively
(except that we have extra coordinates taking values in Ztm × Zsm), we omit them.

I Claim 50. Tz1 ∩ Tz2 = ∅ for any distinct elements z1, z2 ∈ f−1(∗).

Proof. The proof is basically the argument from Claim 21. For completeness, we briefly
repeat it here. Towards a contradiction, assume that there exists a circuit Ck in Tz1 ∩Tz2 . By
the definition of Tz1 and Tz2 , there exist elements x1, x2 ∈ f−1(1), a 6= b ∈ Lz1 , and c ∈ Lz2

such that Ck(x1, 0s, z1, a) = Ck(x1, 0s, z1, b) = Ck(x2, 0s, z2, c) = 1. Since C−1
k (1) is an affine

subspace, we have (x1, 0s, z1, a)−(x1, 0s, z1, b)+(x2, 0s, z2, c) = (x2, 0s, z2, a−b+c) ∈ C−1
k (1).

Since C−1
k (1) ∩ ({(x2, 0s, z2)} × Zsm) ⊆ {(x2, 0s, z2)} × Lz2 , we get a− b+ c ∈ Lz2 . However,

given that c ∈ Lz2 , we obtain 0s 6= a− b ∈ Lz1 ∩Lz2 , which contradicts Lz1 ∩Lz2 = {0s}. J

Fix any z ∈ f−1(∗). For each Ck ∈ Tz, define an AND ◦ MODm circuit C ′k so that
C ′−1
k (1) = {x ∈ Ztm | Ck(x, 0s, z, w) = 1 for some w ∈ Zsm }. (Note that a projection of an

affine subspace C−1
k (1) is again an affine subpace because a projection is a homomorphism.)

Now define Cz :=
∨
Ck∈Tz

C ′k.
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I Claim 51. Cz computes f for any z ∈ f−1(∗). (In particular, |Tz| ≥ DNFMODm
(f).)

Proof. Fix any x ∈ f−1(1). Since {(x, 0s, z)} × Lz is covered by
⋃
k∈[K] C

−1
k (1), and

|Lz| = mr, K ≤ m2t+1, and r = 2t+ 2, there exists k ∈ [K] such that there are at least 2
elements in ({(x, 0s, z)} × Lz) ∩ C−1

k (1); hence, by the definition of Tz, we have Ck ∈ Tz.
Moreover, C ′k(x) = 1 by the definition of C ′k; thus Cz(x) =

∨
Ck∈Tz

C ′k(x) = 1.
Now fix any x ∈ f−1(0). Since g(x, 0s, z, w) = 0 for every w ∈ Zsm, we get Ck(x, 0s, z, w) =

0 for any Ck ∈ Tz; thus C ′k(x) = 0, which implies that Cz(x) = 0. J

Combining the claims above, we obtain

DNFMODm
(g) = K ≥ |T0|+

∑
z∈f−1(∗)

|Tz| ≥ |f−1(∗)| · (DNFMODm
(f) + 1).

This completes the proof of Theorem 45. J

We can then establish a hardness of approximation result for computing DNFMODm
(f).

For a function f : Ztm → {0, 1}, define |f | := mt, which is the number of entries in the truth
table of a function f .

I Theorem 52. There exists a constant c > 0 such that if there is a quasipolynomial-
time algorithm which approximates DNFMODm(f) to within a factor of c log log |f |, then
NP ⊆ DTIME(2(logn)O(1)).

Proof. As noted by Trevisan [42], by choosing the parameters of Feige’s reduction [17], one
can obtain hardness of approximation results for the r-bounded set cover problem. While
Trevisan only analyzed the case when r is constant (cf. Theorem 5), a similar analysis10
shows that it is NP-hard (under quasipolynomial-time many-one reductions) to approximate
the r(n)-bounded set cover problem on n points within a factor of γ log r(n) ( = γ log logn )
for r(n) := logn and some small constant γ > 0.

Suppose that DNFMODm
(g) can be approximated to within a factor of (γ/6) log log |g| by

an algorithm A, where g : Ztm → {0, 1} is a total function. We show below that if A runs in
quasipolynomial time, then NP ⊆ DTIME(2(logn)O(1)).

First, note that in order to conclude this it is enough to describe a quasipolynomial-time
algorithm B that approximates r-Bounded Set Cover to within a factor of γ log r(n) for
r(n) = logn. Let ([n],S) be an instance of the r-Bounded Set Cover Problem. Algorithm
B applies the deterministic nO(r(n))-time reduction provided by Corollary 29 to produce a
partial Boolean function f : ZO(r logn)

m → {0, 1, ∗}. It then invokes the deterministic reduction
from Theorem 45 to construct from f a total function g : ZO(r logn)

m → {0, 1}. Finally, B uses
the approximation algorithm A to compute a (γ/6) log log |g| approximation to DNFMODm(g).
Let g̃ ∈ N be the value output by A. Algorithm B outputs K̃ := 2g̃/|f−1(∗)|.

Note that B runs in quasipolynomial time under our assumptions. It remains to show that
it approximates the solution of the original set cover problem within a factor of γ log logn.
Let K be the cost of an optimal solution to the initial set cover instance. Recall that

10 Specifically, for the parameters and notation in [17], given a 3CNF-5 formula on n variables, let k be a
sufficiently large constant, m :=

√
log n, and ` := c log log m for a large constant c. Then the output

of Feige’s reduction is an instance of the set cover problem on N
(

:= m(5n)`
)
points such that each

set is of size at most m2O(`) ≤ r(N) = log N , and the gap between yes instances and no instances is
(1− 4

k ) ln m = Ω(log log N).
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2DNFMODm(f) is a 2-factor approximation for K; that is, K ≤ 2 · DNFMODm(f) ≤ 2K. On
the other hand, the guarantees of the algorithm A imply that

DNFMODm
(g) ≤ g̃ ≤ DNFMODm

(g) · (γ/6) log log |g|.

Since DNFMODm
(g) = |f−1(∗)| · (DNFMODm

(f) + 1), we get

K ≤ 2g̃
|f−1(∗)| ≤ (γ/6) log log |g| · (K + 1)

Therefore, for large enough n and on non-trivial instances (i.e. K ≥ 1), the value K̃ output
by B approximates K to within a factor of 2 · (γ/6) log log |g| ≤ (γ/3) · (log r(n) + log logn+
O(1)) ≤ (γ/3) · 3 log logn. J

Finally, we note that when m is prime, it is possible to design a quasipolynomial-time
approximation algorithm for DNFMODm(f) with an approximation factor of O(log |f |).

I Theorem 53. Let p be a prime number. There is a quasipolynomial-time algorithm which
approximates DNFMODp(f) to within a factor of ln |f |.

Proof. Let |f | = pt be the number of entries in the truth table of f , the input function.
By the results of Section 2.1, computing DNFMODp(f) is equivalent to solving a set cover
instance. Recall that set cover admits a polynomial-time approximation algorithm that
achieves an approximation factor of lnN on instances over a universe of size N (cf. [40]).
Consequently, in order to prove the result it is enough to verify that computing DNFMODp(f)
reduces to a set cover instance with domain size Nf := |f−1(1)| ≤ |f | and of size at most
quasipolynomial in |f |.

Indeed, for a non-zero function f : Ztp → {0, 1}, DNFMODp
(f) is exactly the minimum

number of affine subspaces that cover f−1(1). Therefore, by relabelling elements, computing
DNFMODp

(f) reduces to a set cover instance ([Nf ],Sf ), where a set S ∈ Sf if and only if S
viewed as a subset of Ztp is an affine subspace contained in f−1(1). Each such affine subspace
has dimension at most t, and can be explicitly described by a basis v1, . . . , v` ∈ Ztp, where
` ≤ t, and a vector b ∈ Ztp. Hence there are at most pO(t2) such spaces, and consequently,
|Sf | ≤ pO(t2). In other words, we get a set cover instance over a ground set of size ≤ |f |, and
this instance contains at most |f |O(log |f |) sets.

Finally, since the sets in Sf can be generated in time at most |f |O(log |f |), and the set cover
approximation algorithm runs in time polynomial in its input length, the result holds. J
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Abstract
We consider the problem of representing Boolean functions exactly by “sparse” linear combina-
tions (over R) of functions from some “simple” class C. In particular, given C we are interested
in finding low-complexity functions lacking sparse representations. When C forms a basis for
the space of Boolean functions (e.g., the set of PARITY functions or the set of conjunctions)
this sort of problem has a well-understood answer; the problem becomes interesting when C is
“overcomplete” and the set of functions is not linearly independent. We focus on the cases where
C is the set of linear threshold functions, the set of rectified linear units (ReLUs), and the set of
low-degree polynomials over a finite field, all of which are well-studied in different contexts.

We provide generic tools for proving lower bounds on representations of this kind. Applying
these, we give several new lower bounds for “semi-explicit” Boolean functions. Let α(n) be an
unbounded function such that nα(n) is time constructible (e.g. α(n) = log?(n)). We show:

Functions in NTIME[nα(n)] that require super-polynomially many linear threshold functions
to represent (depth-two neural networks with sign activation function, a special case of depth-
two threshold circuit lower bounds).
Functions in NTIME[nα(n)] that require super-polynomially many ReLU gates to represent
(depth-two neural networks with ReLU activation function).
Functions in NTIME[nα(n)] that require super-polynomially many O(1)-degree Fp-polynomials
to represent exactly, for every prime p (related to problems regarding Higher-Order “Uncer-
tainty Principles”). We also obtain a function in ENP requiring 2Ω(n) linear combinations.
Functions in NTIME[npoly(logn)] that require super-polynomially many ACC ◦THR circuits to
represent exactly (further generalizing the recent lower bounds of Murray and the author).

We also obtain “fixed-polynomial” lower bounds for functions in NP, for the first three represent-
ation classes. All our lower bounds are obtained via algorithms for analyzing linear combinations
of simple functions in the above scenarios, in ways which substantially beat exhaustive search.
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1 Introduction

Given f : {0, 1}n → {0, 1} and a class C of “simple” functions, when can f be represented
exactly as a short R-linear combination of functions from C? When C forms a basis for
Bn (the set of all Boolean functions on n inputs) the question has a unique answer that
is generally easy to obtain, by analyzing the appropriate linear system (the cases where
C is the set of all parity functions or the set of all conjunctions are canonical examples).
For |C| � 2n, the situation becomes much more interesting, as there can be many possible
representations. The general problem of understanding which functions do and do not have
sparse representations for simple C arises in many different mathematical topics. Three
relevant to TCS are depth-two threshold circuits, depth-two neural networks with various
activation functions, and higher-order Fourier analysis. We use the notation

SUM ◦ C

to denote the class of R-linear combinations of C-functions; for example, SUM◦MOD2 denotes
R-linear combinations of PARITY functions. The relevant complexity measure for a “circuit”
in SUM ◦ C is the fan-in of the SUM gate, which we call the sparsity of the circuit.

Sums of Threshold Circuits

Let SUM ◦ THR be linear combinations of linear threshold functions (LTFs).2 As there are
2Θ(n2) n-variate threshold functions [55], a function f : {0, 1}n → {0, 1} has many possible
representations as a SUM ◦ THR. Such circuits are also known in the machine learning
literature as depth-two neural networks with sign activation functions.

In 1994, Roychowdhury, Orlitsky, and Siu [38] noted that no interesting size lower bounds
were known for computing Boolean functions with SUM ◦ THR circuits (beyond the few that
are/were known for THR ◦ THR [22, 38, 28, 14, 43, 2]). The problem was raised again more
recently in CCC’10 by Hansen and Podolskii [23]. In particular, the following remains largely
unanswered:

Problem: Find an explicit f : {0, 1}? → {0, 1} without polynomially-sparse SUM ◦
THR, i.e., every linear combination of LTFs computing f on n-bit inputs needs nω(1)

LTFs, for infinitely many n.

Because of prior lower bounds in weaker settings (such as majority-of-majority [22] and
majority-of-thresholds [36]), it is natural to think that correlation bounds against linear
threshold functions should help.3 Correlation bounds do imply lower bounds for SUM ◦THR,
but only when the weights in the linear combination are not too large (i.e., the weights must
be in [−2δn, 2δn] for small δ < 1). However, if arbitrary weights are allowed, interesting lower
bounds on SUM ◦ THR (beyond Ω(n2.5 wires [28]) were open, to the best of our knowledge.
In Section 4, we prove arbitrary polynomial lower bounds for NP functions:

2 From here on, “linear combination” means “R-linear combination”, unless otherwise specified.
3 That is, one wants to show that a function cannot be (1/2 + ε(n))-approximated by a linear threshold

function, for the tiniest ε(n) > 0 possible.
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I Theorem 1. For all k, there is an fk ∈ NP without SUM ◦ THR circuits of nk sparsity.
Furthermore, for every unbounded α(n) such that nα(n) is time constructible, there is a
function in NTIME[nα(n)] that does not have SUM ◦ THR circuits of polynomial sparsity.

Note that for arbitrary circuits (even for THR ◦ THR circuits) the best known complexity
for such functions without nk-size circuits (for fixed k) is MA/1 ([40]) and Sp2 .

Sums of ReLU Gates

A ReLU (rectified linear unit) gate is a function f : {0, 1}t → R+ such that there is a vector
w ∈ Rt and scalar a ∈ R such that for all x,

f(x) = max{0, 〈x,w〉+ a}.

It is important to note that ReLU gates might not be Boolean-valued, but they must output
non-negative numbers on all Boolean inputs. Linear combinations of ReLU gates are also
known as depth-two neural networks with ReLU activation functions, and they are intensely
studied in machine learning. Several lower bounds for Sums-of-ReLU functions (which for
consistency we call SUM ◦ ReLU) have recently been shown for functions with real-valued
inputs and outputs (examples include [16, 44, 3, 15, 39]) but none of the methods extend to
Boolean functions, to the best of our knowledge. Recently, Mukherjee and Basu [33] have
proved Ω(n1−δ)-gate lower bounds for SUM ◦ ReLU circuits computing the Andreev function,
extending ideas in [28, 13].

Observing that for |〈x,w〉| ≥ 1 we have

max{0, 〈x,w〉+ 1} −max{0, 〈x,w〉} = sign(〈x,w〉),

it follows that every SUM◦THR circuit can be simulated by a SUM◦ReLU circuit with only a
doubling of the sparsity. In Section 5 we extend our lower bounds to Sums-of-ReLU circuits:

I Theorem 2. For all k, there is an fk ∈ NP without SUM ◦ ReLU circuits of nk sparsity.
Furthermore, for every unbounded α(n) such that nα(n) is time constructible, there is a
function in NTIME[nα(n)] that does not have SUM ◦ ReLU circuits of polynomial sparsity.

Representing Boolean Functions With Higher-Order Polynomials

Higher-order Fourier analysis of Boolean functions deals with representing Boolean functions
by R-linear combinations of F2-polynomials of degree higher than one (see [25] for a survey of
some applications in CS theory). The question of which (if any) explicit functions lack sparse
representations, even for degree-two polynomials, has been wide open. Letting MOD2 be the
class of parity functions, this question asks to find lower bounds for SUM ◦MOD2 ◦ AND2
circuits (in our notation, ANDk denotes ANDs of fan-in at most k). Such lower bound
problems appear much more difficult than the degree-one case of SUM ◦ MOD2. Even
understanding the sparsity of the AND function in the quadratic (and in general, degree-
O(1)) setting is a prominent open problem:

I Hypothesis 3 (Quadratic Uncertainty Principle [17]). There is an ε > 0 such that the AND
function on n variables does not have SUM ◦MOD2 ◦ AND2 circuits of 2εn sparsity.

Although it is believed that AND needs exponential sparsity, to our knowledge the only
lower bound known for an explicit function in SUM ◦MOD2 ◦ AND2 was Ω(n)-sparsity. For
completeness we include a proof provided to us by Lovett [30]) in Appendix A. Again, when

CCC 2018



6:4 Limits on representing Boolean functions by linear combinations of simple functions

the weights in the linear combination are required to be small (magnitudes are 2εn for small
ε > 0), correlation bounds yield some results: one example (among many) is the work of
Green [20] showing that a majority vote of quadratic F3-polynomials needs 2Ω(n) polynomials
to compute PARITY. (Other works in this vein include [24, 10, 9, 19]; see Viola [49] for a
survey.) However, for arbitrary weights, no non-trivial lower bounds have been reported (to
our knowledge).

In Section 6, we prove polynomial sparsity lower bounds for Boolean functions in NP and
2Ω(n)-size lower bounds for ENP, against linear combinations of polynomials over any prime
field with any constant degree:

I Theorem 4. For every integer k, d ≥ 1 and prime p, there is an fk ∈ NP without
SUM ◦MODp ◦ ANDd circuits of nk sparsity. Furthermore, for every unbounded α(n) such
that nα(n) is time constructible, there is a function in NTIME[nα(n)] that does not have
SUM ◦MODp ◦ ANDd circuits of polynomial sparsity.

I Theorem 5. For every d ≥ 1 and prime p, there is an α > 0 and an f ∈ ENP without
SUM ◦MODp ◦ ANDd circuits of 2αn sparsity.

Note the “smallest” known complexity class for a function lacking 2Ω(n)-size circuits is
EΣ2P [32], and it is a longstanding open problem to reduce the complexity class for such a
function, even against depth-3 AC0 circuits.

1.1 Intuition

Here we give an overview of some of the ideas used to prove the lower bounds in this work.
The lower bounds of this paper follow the high-level strategy of proving circuit lower bounds
by designing circuit-analysis (satisfiability) algorithms [51, 53, 52]. However, in this work we
must execute this strategy differently. All previous lower bounds proved in this framework
utilize the “polynomial method” from circuit complexity in various ways (representing a
circuit by a low-degree polynomial of some kind), combined with fast matrix multiplication
and/or fast polynomial evaluation. These approaches do not seem to work for solving SAT on
linear combinations of thresholds, low-degree polynomials, or ReLU gates. For example, we
do not know how to get a sparse (probabilistic or approximate) polynomial (over any field)
for computing an OR of many SUM ◦ THRs, and it is likely that any reasonable approach
via polynomials would fail to yield non-trivial results. However, we are able to adapt some
bits of the polynomial method to the setting of low-degree polynomials (see Section 6).

Another complication is that, in the prior lower bound arguments, a nondeterministic
procedure guesses a small circuit C of the kind one wishes to prove a lower bound against,
and composes C with other Boolean circuitry to form a SAT instance. In our case, if we guess
some arbitrary SUM ◦ C circuit, we first need to know if this circuit is actually computing a
Boolean function; if not, then the satisfiability question itself is not well-defined, and it will
not be possible to meaningfully compose such a circuit with other Boolean circuits. Thus we
need a way to efficiently check whether a linear combination is Boolean-valued.

We give a generic way to “lift” non-trivial algorithms for counting SAT assignments to
short products of C circuits to non-trivial algorithms for detecting if a given SUM ◦ C circuit
is Boolean-valued and for counting SAT assignments. More precisely, we show that in order
to prove lower bounds for linear combinations of C-functions, it suffices to solve a certain
sum-product task faster than exhaustive search:
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Sum-Product over C: Given k functions f1, . . . , fk from C, each on Boolean variables
x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

Note the Sum-Product is computed over R, and the task makes sense even if the functions
f1, . . . , fk output non-Boolean values. Further note that if the functions f1, . . . , fk are
Boolean-valued, then the product of k of them is simply the AND of k of them. In general,
the Sum-Product problem will be NP-hard for most interesting representation classes: for
example, it is already equivalent to Subset Sum when C is the set of exact threshold functions
(see Section 2 for a definition). Our meta-theorem states that mild improvements over
exhaustive search for Sum-Product over C imply strong lower bounds for SUM ◦ C:

I Theorem 6. Suppose every C ∈ C has a poly(n)-bit representation, where each C can be
evaluated on a given input in poly(n) time. Assume there is an ε > 0 and for k = 1, . . . , 4
there is an nO(1) · 2n−εn-time algorithm for computing the Sum-Product of k functions
f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C. Then:
1. For every k, there is a function in NP that does not have SUM ◦ C circuits of sparsity nk.
2. For every unbounded α(n) such that nα(n) is time constructible, there is a function in

NTIME[nα(n)] that does not have SUM ◦ C circuits of polynomial sparsity.

Theorem 6 is used to prove lower bounds against SUM ◦ THR, SUM ◦ ReLU, and SUM ◦
MOD2 ◦ ANDO(1), by providing non-trivial algorithms solving the Sum-Product problem for
these various classes. For the ENP lower bounds, we use a closure property of SUM ◦MOD2 ◦
ANDO(1) combined with standard ideas from this line of work (see Theorem 21).

Theorem 6 (and its components) can also be used to easily “lift” existing circuit lower
bounds to linear combinations of those circuits:

I Theorem 7. For every d,m ≥ 1, there is a b ≥ 1 and an f ∈ NTIME[nlogb n] that does not
have SUM ◦ AC0

d[m] ◦ THR circuits of na size, for every a.

That is, we obtain super-polynomial sparsity lower bounds on representing nondetermin-
istic quasi-polynomial-time functions with R-linear combinations of ACC ◦THR circuits (each
of quasi-polynomial size). This applies the fact that we can solve the Sum-Product problem
on ACC ◦ THR circuits (because we can count SAT assignments to them), with an analogous
running time as the best SAT algorithm. More details on Theorem 7 can be found in
Section 3.

Outline

The next section is the Preliminaries, which gives background knowledge. Section 3 proves
Theorem 6. In Sections 4, 5, and 6, Sum-Product algorithms for THR, ReLU, and MODp ◦
ANDd (degree-d Fp-polynomials) are provided which beat exhaustive search. The algorithms
for THR and ReLU (Theorems 24 and 25) build upon and extend old Subset-Sum algorithms
(Theorem 9). The algorithm for MODp ◦ANDd (Theorem 26) uses tools from the polynomial
method in a new way. Applying Theorem 6 to each of these algorithms, we obtain strong
lower bounds for SUM ◦ C for all three classes C.
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2 Preliminaries

Let C be a class of functions of the form f : {0, 1}n → R. Each member C ∈ C has a number
of inputs n and a size, which is the length of the representation of C in bits. For the classes
THR, MOD2 ◦ ANDO(1), and ReLU, the size |C| of a representation is poly(n) bits, without
loss of generality; see Proposition 8. (For classes such as MOD2 ◦ ANDlog2(n), a member of
the class takes Ω(nlogn) bits to represent, in the worst case.) We assume that for all n, our
class C contains the projection functions fi(x1, . . . , xn) = xi for all i = 1, . . . , n. We also
assume that C is evaluatable, meaning that there is a universal k ≥ 1 such that every C ∈ C
can be evaluated on a given input in O(|C|k) time. All classes we consider have this property.

As is standard, we let ANYc denote the class of Boolean functions with c inputs (the
class contains “any” such function).

An arbitrary SUM ◦ C circuit C over n variables represents some function f : {0, 1}n → R.
We say that C is Boolean-valued if for all x ∈ {0, 1}n, the output of C on x is in {0, 1}.
The following proposition is useful to keep in mind, as it shows that every sparse linear
combination of Boolean functions implementing another Boolean function has an equivalent
linear combination with “reasonable” coefficients.

I Proposition 8. Let C be a class of functions with co-domain {0, 1}, and let C be a SUM◦C
circuit of sparsity s that is Boolean-valued. There is an equivalent SUM ◦ C circuit C ′ such
that every weight in the linear combination of C ′ has the form j/k, where both j and k are
integers in [−ss/2, ss/2].

Proof. (See also [34, 4].) Let C be a linear combination of s functions from C. WLOG,
the set of s Boolean functions from C is a linearly independent set (otherwise, we could
obtain a smaller linear combination representing the same function). The problem of finding
coefficients for the Boolean-valued C is equivalent to solving a certain linear system Ax = b

in s unknowns over the rationals, where b ∈ {0, 1}2n and A ∈ {0, 1}s×2n . Take a linearly
independent subsystem of s of these 2n equations. Since the determinant of any s×s Boolean
matrix is in [−ss/2, ss/2] [21], the result follows from Cramer’s rule. J

The relevant theorem for sums of ReLU gates is more involved, but Maass [31] shows
how the weights for a circuit of size s need only poly(s, n) bits of precision. Such “analog-to-
digital” results are crucial for our work, as in our lower bound proofs we will need a discrete
nondeterministic algorithm to guess a SUM ◦ C circuit and check various properties of it.

Useful Results For Thresholds

We draw from several algorithms and representation theorems from past work. For SUM◦THR,
we eventually appeal to a classic result from exact algorithms:

I Theorem 9 (Horowitz and Sahni [26]). The number of Subset Sum solutions to any
arbitrary instance of n items with integer weights of magnitude [−2W , 2W ] can be computed
in 2n/2 · poly(W ) time.

Theorem 9 is usually stated in terms of finding a subset sum solution, but the algorithm
can be easily adapted to count solutions as well.

A Boolean function f is called an exact threshold function if there are real-valued
α1, . . . , αn and t such that for all x,

f(x) = 1 ⇐⇒
∑
i

αixi = t.



R. R. Williams 6:7

Let ETHR be the class of exact threshold functions. For our SUM ◦ THR circuit results, the
following transformation is extremely useful:

I Theorem 10 (Hansen and Podolskii [23]). Every linear threshold function in n variables
can be represented as an linear combination of poly(n) exact threshold functions, each with
coefficient 1.

It follows that every SUM ◦ THR of sparsity s has an equivalent SUM ◦ ETHR of sparsity
poly(s). The idea is that a THR function defines a set of points in the Boolean hypercube
lying on one side of a given hyperplane; we can “cover” all the points lying on one side by a
disjoint sum of poly(n) hyperplanes, which function as ETHR gates. Thus each coefficient in
the linear combination is simply 1.

Another useful property of ETHR gates is that they are closed under AND:

I Theorem 11 (Hansen and Podolskii [23]). Every conjunction of t exact threshold functions
in n variables with integer weights in [−W,W ] can be converted in poly(t, n) time to an
equivalent single exact threshold gate, with weights in [−(nW )Θ(t), (nW )Θ(t)].

The idea is simple: if we multiply the ith exact threshold gate’s linear form by the factor
(nW )i, no linear form will “interfere” with the other sums, and we can determine if all of
them are satisfied simultaneously with one exact threshold.

Useful Results for Finite Field Polynomials

Two tools from the literature will be helpful for our results on linear combinations of
polynomials. The first is modulus-amplifying polynomials, which have been used in Toda’s
Theorem [46], representations of ACC and ACC-SAT algorithms [6, 53], algorithms for All-
Pairs Shortest Paths [12], and algorithms for solving polynomial systems [29]:

I Lemma 12 (Beigel and Tarui [6]). For all ` ∈ Z+, the degree-(2`− 1) polynomial (over Z)

P`(y) = 1− (1− y)`
`−1∑
j=0

(
`+ j − 1

j

)
yj

has the property for all integers m ≥ 2,
if y = 0 mod m then P`(y) = 0 mod m`,
if y = 1 mod m then P`(y) = 1 mod m`.

Furthermore, each coefficient in F` has magnitude at most 2O(`).

Recall that a multivariate polynomial is multilinear if it contains no powers larger than
one. The second tool is a classic result on rapidly evaluating a multilinear polynomial on all
points in the Boolean hypercube.

I Theorem 13 (cf. [8], Section 2.2). Given the 2n-coefficient vector of a multilinear polynomial
p ∈ Z[x1, . . . , xn] where each coefficient is in [−W,W ], the value of p on all points in {0, 1}n
can be computed in 2n · poly(n, logW ) time.

The algorithm of Theorem 13 can be obtained by divide-and-conquer (as described in [50])
or by dynamic programming (as in [8], Section 2.2).
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Connections Between Nondeterministic Circuit UNSAT Algorithms and Circuit
Lower Bounds

We also appeal to several known connections between circuit UNSAT algorithms that beat
exhaustive search and circuit lower bounds against nondeterministic time classes, which build
on prior work [51, 27, 41, 7].

I Theorem 14 ([35]). If there is an ε > 0 such that Circuit Unsatisfiability for (fan-in 2)
circuits with n inputs and 2εn size is solvable in O(2n−εn) nondeterministic time, then for
every k there is a function in NP that does not have nk-size (fan-in 2) circuits.

I Theorem 15 (Corollary 12 in Tell [45], following [35]). If there is a δ > 0 and c ≥ 1 such
that Circuit Unsatisfiability for (fan-in 2) circuits with n variables and m gates is solvable
in O(2n(1−δ) ·mc) nondeterministic time, then for every unbounded α(n) such that nα(n) is
time-constructible, there is a function in NTIME[nα(n)] that is not in P/poly.

I Theorem 16 ([35]). If there is an ε > 0 such that Circuit Unsatisfiability for (fan-in 2)
circuits with n inputs and 2nε size is solvable in O(2n−nε) nondeterministic time, then for
every k there is a function in NTIME[npoly(logn)] that does not have nlogk n-size (fan-in 2)
circuits.

In fact, all of these algorithms-to-lower-bounds connections still hold when we replace
Circuit Unsatisfiability with the promise problem of distinguishing unsatisfiable circuits from
circuits with 2n−1 satisfying assignments.

The Power of Linear Combinations of Low-Degree Polynomials

We note that classical work suggests that R-linear combinations of higher-degree F2-
polynomials can be quite powerful. For example, applying Valiant’s depth reduction [47] and
using the representation of the AND function in the Fourier basis, it is easy to show that every
O(n)-size O(logn)-depth circuit can be represented by a linear combination of 2O(n/ log logn)

F2-polynomials of degree O(nε), for any desired ε > 0. Moreover, one can represent any O(n)-
size “Valiant series-parallel” circuit (see [11]) by a linear combination of 2εn F2-polynomials
of degree 22O(1/ε) . Hence there is a natural barrier to proving exponential-sparsity lower
bounds for linear combinations of “somewhat-low” degree polynomials.

3 Meta-Theorem for Lower Bounds on Linear Combinations of
Simple Functions

In this section, we prove our generic theorem which is applied in subsequent sections to
prove lower bounds against linear combinations of threshold functions, ReLU gates, and
constant-degree polynomials. Recall (from the Introduction) the Sum-Product problem:

Sum-Product over C: Given k functions f1, . . . , fk from C, each on Boolean variables
x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

I Reminder of Theorem 6. Suppose every C ∈ C has a poly(n)-bit representation, where
each C can be evaluated on a given input in poly(n) time. Assume there is an ε > 0 and for
k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for computing the Sum-Product of k
functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C. Then:
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1. For every c, there is a function in NP that does not have SUM ◦ C circuits of sparsity nc.
2. For every unbounded α(n) such that nα(n) is time constructible, there is a function in

NTIME[nα(n)] that does not have SUM ◦ C circuits of polynomial sparsity.

The remainder of this section will prove Theorem 6, and an extension to ENP in some
cases. We are able to use much of the earlier arguments [51, 53, 35] as black boxes. However
we need several modifications.

The first new component needed is a method for checking that a given linear combination
of C circuits actually encodes a Boolean function (i.e. is Boolean-valued on all Boolean
inputs). This is provided by the following theorem:

I Theorem 17. Assume there is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time
algorithm for computing the Sum-Product of k functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)
from C.
Then there is a 2n−εn ·poly(n, s)-time algorithm that, given f(x1, . . . , xn) which is an arbitrary
linear combination of s functions from C, determines whether or not f(a) ∈ {0, 1} for all
a ∈ {0, 1}n.

Proof. Suppose we are given f =
∑s
i=1 αici, where αi ∈ R and ci ∈ C each have n inputs.

Consider the polynomial

h(x) := f(x)2 · (1− f(x))2 = f(x)2 − 2f(x)3 + f(x)4.

Observe that:
If f(a) ∈ {0, 1} for all a ∈ {0, 1}n, then h(a) = 0 for all a.
f(b) /∈ {0, 1} implies h(b) > 0.
For all a ∈ {0, 1}n, h(a) ≥ 0.

Therefore
∑
a∈{0,1}n h(a) = 0 if and only if f(a) ∈ {0, 1} for all a ∈ {0, 1}n. By applying the

distributive law to each of f(x)2, f(x)3, f(x)4, and exchanging the order of summation, we
have

∑
a∈{0,1}n

h(a) =
∑
i1,i2

βi1,i2

 ∑
a∈{0,1}n

fi1(x) · fi2(x)


+
∑
i1,i2,i3

γi1,i2,i3

 ∑
a∈{0,1}n

fi1(x) · fi2(x) · fi3(x)


+

∑
i1,i2,i3,i4

δi1,i2,i3,i4

 ∑
a∈{0,1}n

fi1(x) · fi2(x) · fi3(x) · fi4(x)


for βi1,i2 = αi1 · αi2 , γi1,i2,i3 = −2αi1 · αi2 · αi3 , δi1,i2,i3,i4 = αi1 · αi2 · αi3 · αi4 .

Observe that each sum over a ∈ {0, 1}n on the RHS is precisely a Sum-Product task
over C, with products ranging from k = 2 to k = 4. Therefore we can check that the sum∑
a∈{0,1}n h(a) is zero with O(s4) calls to Sum-Product over C. By assumption, this can be

done in O(2n−εn · poly(n, s)) time. J

The second crucial component yields the ability to solve Circuit Unsatisfiability efficiently
with nondeterminism, under the hypotheses (in fact, weaker hypotheses). This is provided
by the following lemma, which is similar to (but more complicated than) Lemma 3.1 in [53]:
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I Lemma 18. Assume:
There is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for
computing the Sum-Product of k functions from C.
The Circuit Evaluation problem has SUM ◦ C circuits of sparsity nc, for some c > 0.

Then there is a nondeterministic 2n−εn · poly(n, s)-time algorithm for Circuit Unsatisfiability,
on arbitrary fan-in-2 circuits with n inputs and s gates.

Proof. Suppose we are given a circuit C with n inputs and s gates of fan-in 2, and wish to
nondeterministically prove it is unsatisfiable. Let us index the gates in topological order, so
that gates 1, . . . , n are the input gates, and the s-th gate is the output gate.

Our nondeterministic algorithm begins by guessing a SUM ◦ C circuit EV AL with n+
O(log s) inputs and sparsity at most (n + s)c+1, which is intended to encode the Circuit
Evaluation function:

EV AL(C, x, i) := Evaluate C on x, and output the value of the i-th gate of C.

(Note i is encoded as an O(log s)-bit string.) Let

D(x, i) := EV AL(C, x, i),

i.e., we think of C as hard-coded in the function, to simplify the notation. Applying
Theorem 17, we can check that D encodes a Boolean function in 2n−εn · poly(s, n) time.

Next, we check that D(a, s) = 0 for all a ∈ {0, 1}n; in other words, D claims that C
outputs 0 on every input. Suppose D has the form

D(x, i) =
(n+s)c+1∑
j=1

αj · cj(x, i),

for some αj ∈ R and cj ∈ C. Since D has already been determined to be Boolean, it suffices
to compute

∑
a∈{0,1}n D(a, s) to know whether or not D(x, s) = 0 for all a. By exchanging

the order of summation,

∑
a∈{0,1}n

D(a, s) =
∑

a∈{0,1}n

∑
j

αj · cj(a, i)


=
∑
j

αj ·

 ∑
a∈{0,1}n

cj(a, i)

 .

Therefore we only need to make (n + s)c+1 calls to Sum-Product over C (with k = 1) to
determine that D(x, s) = 0 for all a ∈ {0, 1}n. This can be done in 2n−εn · poly(n, s) time,
by assumption.

Next, we have to check that for every gate i = 1, . . . , s, and every a ∈ {0, 1}n, D(a, i)
correctly reports the output of the i-th gate when C evaluates a. To check the input gates,
we need to check that D(x, i) = xi for all i = 1, . . . , n; we can do this by checking that∑

a∈{0,1}n
(D(x, i)− xi)2 = 0,

which (by distributivity and re-arranging the order of summation, as in the proof of The-
orem 17) can be computed with O((n+ s)2(c+1)) calls to Sum-Product over C (with k = 2)
in 2n−εn · poly(n, s) time.
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For all gates i other than the input gates, the ith-gate takes inputs from previous gates
indexed by some i1 < i and i2 < i, and computes a function of their two outputs. To check
the consistency of gate i, we can form a degree-3 polynomial pi(A,B,C) which outputs 0-1
values on all A,B,C ∈ {0, 1}, such that pi(A,B,C) = 0 if and only if A is the output of gate
i, given that B is the output of gate i1 and C is the output of gate i2.

Since D is Boolean-valued, we have reduced our problem to determining that∑
a∈{0,1}n

p(D(a, i), D(a, i1), D(a, i2)) = 0,

for each gate i = n+1, . . . , s, and each gate i’s corresponding input gates i1 and i2. Applying
the distributive law to the LHS and exchanging the order of summation (as before), this
results in O((n + s)3(c+1)) Sum-Product-over-C computations with up to k = 3 products,
computable in 2n−εn · poly(n, s) time.

Our nondeterministic algorithm determines that the input circuit C is unsatisfiable if and
only if all of the above checks pass. If C is satisfiable, then every possible D guessed will
fail some check. If C is unsatisfiable, then under the hypotheses of the theorem, a SUM ◦ C
circuit D simulating every gate of C always exists. By guessing this D, and running the
assumed Sum-Product algorithm, our nondeterministic algorithm accepts. J

After the above preparation, we turn back to the proof of Theorem 6. At this point, it is
simply a matter of applying the above Lemma 18 with the known algorithms-to-lower-bound
connections:

Proof of Theorem 6. Suppose every C ∈ C has a poly(n)-bit representation, where each C
can be evaluated on a given input in poly(n) time. Recall the hypothesis of the theorem is:

(A) There is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for
computing the Sum-Product of k functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C.

Furthermore, recall that Lemma 18 states:

Assuming (A) and assuming Circuit Evaluation has SUM ◦ C circuits of sparsity nk
for some k, there is a nondeterministic 2n−εn · poly(n, s)-time algorithm for Circuit
Unsatisfiability, on arbitrary fan-in-2 circuits with n inputs and s gates.

We can then prove the lower bounds of the theorem readily, as follows.
(1) Assume every function in NP has SUM ◦ C circuits of nk sparsity circuits, for some fixed

k. Then both hypotheses of Lemma 18 are satisfied (note Circuit Evaluation is in P),
and the conclusion implies that there is an ε > 0 such that Circuit Unsatisfiability for
(fan-in 2) circuits with n inputs and 2εn size is solvable in O(2n−εn) nondeterministic
time. Therefore by Theorem 14, for every k there is a function in NP that does not have
nk-size (fan-in 2) circuits. This is a contradiction because SUM ◦ C circuits of nk sparsity
can be simulated with nck-size fan-in-2 circuits, for some universal c.

(2) The same argument as in (1) and (2) (but with Theorem 15 applied) shows that for every
unbounded α(n) such that nα(n) is time-constructible, there is a function in NTIME[nα(n)]
that does not have SUM ◦ C circuits of polynomial sparsity.

This completes the proof. J
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A Note on Lower Bounds for Linear Combinations of ACC Circuits

There are other new lower bound consequences of the arguments in Theorem 6 that we will
not study in detail here, because they follow easily from combining known results. Here is
an example:

I Reminder of Theorem 7. For every d,m ≥ 1, there is a b ≥ 1 and an f ∈ NTIME[nlogb n]
that does not have SUM ◦ AC0

d[m] ◦ THR circuits of na size, for every a.

This lower bound can be obtained as follows. First, the argument of Lemma 18 also
shows:

I Theorem 19. Assume
There is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−nε-time algorithm for
computing the Sum-Product of k functions from C.
The Circuit Evaluation problem has SUM ◦ C circuits of sparsity na, for some a > 0.

Then there is a nondeterministic 2n−nε · poly(n, s)-time algorithm for Circuit Unsatisfiability,
on arbitrary fan-in-2 circuits with n inputs and s gates.

Now we combine this theorem with the following two facts:
1. For every depth d and integer m ≥ 2, there is an ε > 0 such that the Sum-Product of

O(1) AC0
d[m] ◦ THR circuits of 2nε size can be computed in 2n−nε time. This simply

applies the algorithm for counting satisfying assignments of AC0
d[m] ◦ THR circuits ([52]).

2. If for some α > 0 there is a nondeterministic 2n−nα -time Circuit Unsatisfiability algorithm
for 2nα -size circuits, then for every a ≥ 1, there is a b ≥ 1 such that NTIME[nlogb n] does
not have nloga n-size circuits (this is a theorem of Murray and Williams [35]).

Theorem 7 is immediate: Assuming NTIME[nlogb n] has SUM ◦ AC0
d[m] ◦ THR circuits of

na size for some a ≥ 1, both hypotheses of Theorem 19 are satisfied for C = AC0
d[m] ◦ THR,

and the conclusion of Theorem 19 combined with item 2 above yields a contradiction.

3.1 Lower Bounds for Exponential Time With an NP Oracle
For classes C with a natural closure property, the lower bounds can be extended to 2Ω(n)

sparsity for a function in ENP. Recall ANYc denotes the class of Boolean functions with c
inputs (the class contains “any” such function).

For an integer c ≥ 1, we say that C is efficiently closed under NC0
c if there is a polynomial-

time algorithm A such that, given any circuit C of the form C ◦ ANYc, algorithm A outputs
an equivalent circuit D from C (which is only polynomially larger). We note this property is
true of O(1)-degree polynomials:

I Proposition 20. For every integer m ≥ 2 and c ≥ 1, the class C =
⋃
d≥1 MODm ◦ ANDd

is efficiently closed under NC0
c.

Proof. Every MODm◦ANDd ◦ANYc circuit can be represented by an MODm◦ANDdc circuit.
In particular, every Boolean function on c inputs has an exact representation as a sum
(modulo m) of ANDs of fan-in c; composing such a sum with a MODm ◦ AND circuit and
applying the distributive law yields the result. J

I Theorem 21. There is a universal c ≥ 1 satisfying the following. Suppose C is efficiently
closed under NC0

c, and suppose every C ∈ C has a poly(n)-bit representation, where each C
can be evaluated on a given input in poly(n) time.
Assume there is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for
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computing the Sum-Product of k functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C.
Then there is a function in ENP that does not have SUM ◦ C circuits of sparsity 2αn, for some
α > 0.

The remainder of this section sketches the proof of Theorem 21; we give only a sketch, as
the argument closely resembles others [53, 27]).

Let ε ∈ (0, 1). Assume C is efficiently closed under NC0
c . Furthermore:

(A) There is an ε > 0 and an O(2n−εn)-time algorithm for computing the Sum-Product of k
functions from C, and

(B) For all functions f ∈ TIME[2O(n)]NP and all α > 0, f has SUM ◦ C circuits of sparsity
2αn.

We wish to establish a contradiction. In particular, we will show that assumptions (A) and
(B) together imply that every problem in NTIME[2n] can be simulated by a nondeterministic
o(2n)-time algorithm, contradicting the (strong) nondeterministic time hierarchy theorem [42,
56].

Let L ∈ NTIME[2n]. On a given input x, our nondeterministic o(2n)-time algorithm for
L has two parts:
(i) It guesses a witness for x of o(2n) size.
(ii) It verifies that witness for x in o(2n) time.

To handle (i), we use assumption (B) to show that one can nondeterministically guess a
2αn · poly(n)-size SUM ◦ C circuit that encodes a witness for x, applying a simple “easy
witness” lemma from [51]:

I Lemma 22 (Lemma 3.2 in [51]). Let D be any class of circuits. If ENP has circuits of size
S(n) from class D, then for every L ∈ NTIME[2n] and every verifier V for L, and every
x ∈ L of length n = |x|, there is a y of length O(2n) such that V (x, y) accepts and the
D-circuit complexity of y (construed as a function f : {0, 1}n+O(1) → {0, 1}) is at most S(n).

In other words, assumption (B) implies that every yes-instance of L has S(n)-size “witness
circuits”: a witness of length O(2n) that can be represented as an S(n)-size SUM◦C Boolean-
valued circuit. Furthermore, this holds for every verifier for L.

To handle (ii), we choose an appropriate verifier, so that verifying witnesses becomes
equivalent to a simple Sum-Product call. In particular we use the following extremely “local”
reduction from L ∈ NTIME[2n] to 3SAT instances of 2n · poly(n) length:

I Lemma 23 ([27]). Every L ∈ NTIME[2n] can be reduced to 3SAT instances of O(2n ·n4) size.
Moreover, there is an algorithm that, given an instance x of L and an integer i ∈ [O(2n · n4)]
in binary, reads only O(1) bits of x and outputs the i-th clause of the resulting 3SAT
formula, in O(n4) time.

Since in Lemma 23 each bit of the output is a function of some c ≤ O(1) inputs, each bit
of the output is a member of ANYc. So for every instance x of length n for the language L,
we can produce (in deterministic poly(n) time) a circuit Dx which is an ordered collection of
O(n) functions from ANYc. The circuit Dx takes n+O(logn) binary inputs, construes that
input as an integer i, and outputs the i-th clause of a formula Fx which is satisfiable if and
only if x ∈ L.

Our nondeterministic algorithm for L guesses a 2O(αn)-sparse SUM ◦ C circuit Cx that
takes n+O(logn) inputs and is meant to encode a satisfying assignment for the formula Fx.
We can check Cx is Boolean-valued on all 2n · poly(n) inputs in 2n−εn/2 time, by applying
Theorem 17 and letting α > 0 be sufficiently small.
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6:14 Limits on representing Boolean functions by linear combinations of simple functions

Composing Cx with the O(n) polynomials forming Dx, we obtain a 2O(αn)-sparse SUM ◦
C ◦ANYc circuit E with n+O(logn) inputs (composed of three copies of Cx, and O(n) copies
of Dx) such that

E is unsatisfiable if and only if Cx encodes a satisfying assignment for Fx.

(We leave out the details, as they are provided in multiple other papers [51, 53].) To complete
the o(2n)-time algorithm for L, it suffices to check unsatisfiability of the resulting 2O(αn)-size
circuit E in o(2n) nondeterministic time. This would yield the desired contradiction.

Such a nondeterministic UNSAT algorithm is provided by first converting E into a SUM◦C
circuit in 2O(αn) time (using the fact that C is efficiently closed under NC0). This yields a
sum of 2O(αn) C-circuits. Analogously to the proof of Lemma 18, checking the unsatisfiability
of such an E can be reduced to 2O(αn) calls to Sum-Product of C, by applying distributivity.
Applying the Sum-Product algorithm of assumption (A) that runs in O(2n−εn) time, and
setting α > 0 to be sufficiently small, the running time is o(2n).

This completes the proof of Theorem 21.

4 Sparse Combinations of Threshold Functions

We now turn to proving SUM ◦ THR lower bounds. Due to Lemma 6, it suffices to give a
2n−εn-time algorithm for the Sum-Product Problem over THR:

Sum-Product over THR: Given k linear threshold functions f1, . . . , fk, each on
Boolean variables x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

Putting together various pieces (described in the Preliminaries), there is a substantially
faster-than-2n time algorithm:

I Theorem 24. The Sum-Product of k linear threshold functions on n variables (with weights
in [−nn, nn]) can be computed in 2n/2 · nO(k) time.

Note that having weights in [−nn, nn] is without loss of generality (in our lower bound
proofs, our nondeterministic algorithm can always guess an equivalent circuit with such
weights, as described by Proposition 8).

Proof. Let f1, . . . , fk be n-variable threshold functions. Applying Theorem 10, we can write
each fi as a sum of t = poly(n) exact threshold functions:

fi(x) =
t∑
i=1

gi(x),

where each gi(x) is defined by some weights wi,1, . . . , wi,n ∈ R and a threshold value t ∈ R.
Therefore we can write the product f1 · · · fk as

k∏
i=1

fi =
∑

(i1,...,ik)∈[t]k
gi1 · · · gik .

Each term gi1 · · · gik is a conjunction of k exact thresholds. Applying Theorem 11, each such
term can be replaced with a single exact threshold gate, with weights of magnitude nO(kn),
i.e., each weight is representable with O(kn logn) bits. Thus
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k∏
i=1

fi =
∑

(i1,...,ik)∈[t]k
hi1,...,ik

for some exact threshold gates hi1,...,ik . The desired sum can therefore be written as

∑
a∈{0,1}n

k∏
i=1

fi(a) =
∑

a∈{0,1}n

∑
(i1,...,ik)∈[t]k

hi1,...,ik(a)

=
∑

(i1,...,ik)∈[t]k

 ∑
a∈{0,1}n

hi1,...,ik(a)

 .

Now observe that each sum
∑
a∈{0,1}n hi1,...,ik(a) on the RHS is equivalent to an instance of

#Subset Sum. In particular, each such sum is counting the number of subsets of a given set
of n weights in [−nΩ(kn), nO(kn)] which sum to zero. By Theorem 9, this can be computed
in poly(k, n) · 2n/2 time. Since there are nO(k) such sums to compute in the outer sum, the
total running time is nO(k) · 2n/2. J

The following are immediate from Theorem 6:

I Reminder of Theorem 1. For all k, there is an fk ∈ NP without SUM ◦ THR circuits of
nk sparsity. Furthermore, for every unbounded α(n) such that nα(n) is time constructible,
there is a function in NTIME[nα(n)] that does not have SUM ◦ THR circuits of polynomial
sparsity.

5 Sparse Combinations of ReLU Gates

Recall that a function f : {0, 1}n → R from the class ReLU is defined with respect to a weight
vector w ∈ Rn and a scalar a ∈ R, such that for all a ∈ {0, 1}n,

f(x) = max{0, 〈w, x〉+ a}.

To prove SUM ◦ ReLU lower bounds, we give a 2n−εn-time algorithm for the Sum-Product
Problem over ReLU:

Sum-Product over ReLU: Given k ReLU functions f1, . . . , fk, each on Boolean
variables x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

I Theorem 25. The Sum-Product of k ReLU functions on n variables (with weights in
[−W,W ]) can be computed in 2n/2 · nO(k) · poly(k, n, logW ) time.

The proof is similar in spirit to the algorithm for Sum-Product of threshold functions
(Theorem 24), except that complications arise due to the real-valued outputs of ReLU
functions. We end up having to solve a problem generalizing #Subset Sum, but which turns
out to have a nice “split-and-list” 2n/2-time algorithm, analogously to #Subset Sum.
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Proof. Let f1, . . . , fk be n-variable ReLU functions, defined by weight vectors w1, . . . , wk ∈
Rn and scalars a1, . . . , ak ∈ R, respectively. Our task is to compute∑

x∈{0,1}n
max{0, 〈x,w1〉+ a1} · · ·max{0, 〈x,wk〉+ ak}.

First, we note the above sum is equal to∑
x∈{0,1}n

[〈x,w1〉 ≥ −a1] · (〈x,w1〉+ a1) · · · [〈x,wk〉 ≥ −ak] · (〈x,wk〉+ ak),

where we are using the Iverson bracket notation [P ] to denote a function that outputs 1 if P
is true and 0 otherwise. Applying Theorem 10, each of the threshold functions [〈x,wi〉 ≥ −ai]
can be represented as a linear combination of t = poly(n) exact threshold functions. In
particular there are exact thresholds gi,j such that the above sum equals

∑
x

 t∑
j=1

g1,j(x)

 · (〈x,w1〉+ a1) · · ·

 t∑
j=1

gk,j(x)

 · (〈x,wk〉+ ak).

Applying the distributive law, the above sum equals∑
x

∑
j1,...,jk∈[t]k

g1,j1(x) · · · gk,jk(x) · (〈x,w1〉+ a1) · · · (〈x,wk〉+ ak).

Re-arranging the summation order yields∑
j1,...,jk∈[t]k

(∑
x

g1,j1(x) · · · gk,jk(x) · (〈x,w1〉+ a1) · · · (〈x,wk〉+ ak)
)
.

Applying Theorem 11, each g1,j1(x) · · · gk,jk(x) can be replaced by a single exact threshold
hj1,...,jk(x).

Our task has been reduced to nO(k) computations of the form∑
x∈{0,1}n

hj1,...,jk(x) · (〈x,w1〉+ a1) · · · (〈x,wk〉+ ak). (1)

Without the (〈x,w1〉 + a1) · · · (〈x,wk〉 + ak) term, (1) would be exactly a #Subset Sum
instance, as in Theorem 24. In this new situation, we need to count a “weighted” sum over
the subset sum solutions, where the weights are determined by a product of k inner products
of the solution vectors with some fixed vectors.

Let us now describe how to solve the generalized problem given by (1). To keep the
exposition clear, we will walk through an attempted solution and fix it as it breaks.

Suppose the exact threshold function hj1,...,jk(x) of (1) is defined by weights α1, . . . , αn ∈
R and threshold value t ∈ R, so that

hj1,...,jk(x) = 1 ⇐⇒
n∑
i=1

αixi = t.

As with the Subset Sum problem, we begin by splitting the set of variables x into two halves,
{x1, . . . , xn/2} and {xn/2+1, . . . , xn} (WLOG, assume n is even). Correspondingly, we split
each of the k weight vectors wi ∈ Rn of (1) into two halves, w(1)

i ∈ Rn/2 and w(2)
i ∈ Rn/2 for

the first and second halves of variables, respectively.
We list all 2n/2 partial assignments to the first half, and all 2n/2 partial assignments to

the second. For each partial assignment A = (A1, . . . , An/2) to the first half of variables
{x1, . . . , xn/2}, we compute a vector vA, as follows:
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vA[0] := −t+
∑n/2
i=1 αiAi,

for all j = 1, . . . , k, vA[j] := aj +
〈
w

(1)
j , (A1, . . . , An/2)

〉
.

For each partial assignment A′ = (An/2+1, . . . , An) from the second half, we compute a
vector wA′ :

wA′ [0] :=
∑n
i=n/2+1 αiAi,

for all j = 1, . . . , k, wA′ [j] :=
〈
w

(2)
j , (An/2+1, . . . , An)

〉
.

Notice that vA[0] + wA′ [0] = 0 if and only if hj1,...,jk(A,A′) = 1. Thus in our sum, we only
need to consider pairs of vectors vA from the first half and vectors wA′ from the second half
such that vA[0] + wA′ [0] = 0. Moreover, note that for all j = 1, . . . , k,

vA[j] + wA′ [j] = 〈x,wj〉+ aj .

It follows that (1) equals∑
(vA,wA′ ) : vA[0]+wA′ [0]=0

(vA[1] + wA′ [1]) · · · (vA[k] + wA′ [k]).

The Subset-Sum algorithm of Horowitz and Sahni [26] shows how to efficiently find
pairs (vA, wA′) with vA[0] + wA′ [0] = 0: sorting all vectors in the second half by their
0-th coordinate, for each vector vA from the first half we can compute (in poly(n) time)
the number of second-half vectors wA′ satisfying vA[0] + wA′ [0] = 0 (even if there are
exponentially many such vectors). However it is unclear how to incorporate the odd-looking
(vA[1] + wA′ [1]) · · · (vA[k] + wA′ [k]) multiplicative factors into a weighted sum.

To do so, we modify the vectors vA and wB as follows. Consider the expansion of∏k
i=1(vA[i] + wA′ [i]) into a sum of 2k products: it can be seen as the inner product of two

2k-dimensional vectors, where one vector’s entries is a function solely of vA and the other
vector’s entries is a function solely of wA′ . (Furthermore, note that the number of bits needed
to describe entries in these new vectors has increased only by a multiplicative factor of k.)

Thus we can assign (2k + 1)-dimensional vectors v′A (in place of the vA) and w′B (in place
of the wB) such that v′A[0] = vA[0], w′A[0] = wA[0], and for all A,A′ we have

(vA[1] + wA′ [1]) · · · (vA[k] + wA′ [k]) =
2k∑
j=1

v′A[j] · w′A′ [j].

Now our goal is to compute

∑
(v′
A
,w′
A′ ) : v′

A
[0]+w′

A′ [0]=0

 2k∑
j=1

v′A[j] · w′A′ [j]

 . (2)

We can get a more efficient algorithm for the problem defined by (2), by preprocessing the
second half of vectors (i.e., the w′A′ vectors). For each distinct value e = w′A[0] ∈ R among
the 2n/2 vectors in the second half, we make a new (2k + 1)-dimensional vector W ′e where:

W ′e[0] = e, and
for all i = 1, . . . , 2k, W ′e[i] =

∑
w′
A

: w′
A

[0]=e w
′
A[i].

That is, the coordinates 1, . . . , 2k of W ′e are obtained by component-wise summing
all vectors w′A such that w′A[0] = e. The preparation of the vectors W ′e can be done in
2n/2 · poly(k, n, logW ) time, by partitioning all 2n/2 vectors w′A from the second half of
variables into equivalence classes (where two vectors are equivalent if their 0-coordinates are
equal), then obtaining each W ′e by summing the vectors in one equivalence class.
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Finally, we can use the W ′A′ vectors to compute the sum (2) in 2n/2 · 2k · poly(k, n, logW )
time. Have a running sum that is initially 0. Iterate through each vector v′A from the first
half of variables, look up the corresponding second-half vector W ′e (with v′A[0] = −W ′e[0]) in
poly(k, n, logW ) time, and add the inner product

2k∑
i=1

v′A[i] ·W ′e[i]

to the running sum. Because each vector (W ′e[1], . . . ,W ′e[2k]) is the sum of all vectors
(w′A′ [1], . . . , w′A′ [2k]) such that v′A[0] + w′A′ [0] = 0, each inner product

∑2k
i=1 v

′
A[i] ·W ′e[i]

contributes

∑
w′
A′ : v′

A
[0]+w′

A′ [0]=0

 2k∑
j=1

v′A[j] · w′A[j]


to the running sum. Therefore after iterating through all vectors v′A, our running sum has
computed (2) exactly, in only 2n/2 · 2k · poly(n, logW ) time. J

From the algorithm of Theorem 25, we immediately obtain the SUM ◦ReLU lower bounds
of Theorem 2.

6 Sparse Combinations of Low-Degree Polynomials over Finite Fields

We can also prove lower bounds for linear combinations of low-degree Fp-polynomials in n
variables, for any prime p, by giving a faster Sum-Product algorithm. In this context, the
Sum-Product problem becomes:

Sum-Product over MODp ◦ANDd: Given k polynomials p1, . . . , pk ∈ Fp[x1, . . . , xn],
each of degree at most d, compute

∑
x∈{0,1}n

(
k∏
i=1

pi(x)
)
,

where the sum over all x ∈ {0, 1}n is taken over the reals (or rationals).

That is, we treat each
∏k
i=1 pi(x) as a function from {0, 1}n to {0, 1, . . . , p− 1} ⊂ Q, and

wish to compute the sum of these integers over all x ∈ {0, 1}n.
In related work, Lokshtanov et al. [29] showed how to (deterministically) count solutions

in Fnp to a system of ` degree-d Fp-polynomials in pn+o(n)−n/O(dp6/7) · poly(`) time. For our
Sum-Product problem, we need to compute a “weighted” sum (the terms can take on values
in {0, . . . , p− 1}), and we need to count the weighted sum over only Boolean assignments.
We can achieve this, with a comparable runtime savings involving k and p:

I Theorem 26. The Sum-Product of k degree-d polynomials p1, . . . , pk ∈ Fp[x1, . . . , xn] can
be computed in p2k · (1.9n + 2n−n/(6dp)) · poly(n) time.

Proof. Let p1, . . . , pk be given. We wish to compute

∑
x∈{0,1}n

(
k∏
i=1

pi(x)
)
, (3)
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where each product outputs an integer in {0, 1, . . . , p− 1}. We first convert the Sum-Product
problem of (3) to an equivalent sum where each “term” in the sum is a small system of
polynomial equations.

We say that a function f : {0, 1}n → {0, 1} is an exact Fp-polynomial function if there is
a polynomial p ∈ Fp[x1, . . . , xn] and a ∈ Fp such that for all x ∈ {0, 1}n,

f(x) = 1 ⇐⇒ p(x) = a.

We use the notation [p(x) = a] to denote such an exact polynomial function. Let us replace
each polynomial pi(x) in the sum-product expression with an equivalent linear combination
(over Z) of exact polynomial functions. In particular, replace each pi(x) with the sum over
the integers∑

a∈Fp

a · [pi(x) = a].

That is, we are replacing pi(a) with an equivalent integer-valued sum of p Boolean functions.
Now the desired sum (3) has the form:

∑
x∈{0,1}n

 k∏
i=1

∑
a∈Fp

a · [pi(x) = a]


=

∑
x∈{0,1}n

∑
(a1,...,ak)∈Fkp

a1 · · · ak ·
k∏
i=1

[pi(x) = ai] (by distributivity) (4)

=
∑

(a1,...,ak)∈Fkp

a1 · · · ak ·

 ∑
x∈{0,1}n

[p1(x) = a1] · · · [pk(x) = ak]

 . (5)

Each inner sum in (5) counts the number of Boolean solutions to a system of polynomial
equations p1(x) = a1, . . . , pk(x) = ak. We can further reduce this problem to counting the
number of Boolean solutions to one equation, by applying a simple reduction (from [54]).
Namely, we have the equation

∑
x∈{0,1}n

k∏
i=1

[pi(x) = ai] (6)

= 1
pk

∑
(b1,...,bk)∈Fkp

∑
x∈{0,1}n

 k∑
j=1

bj · (pj(x)− aj) = 0

−
 k∑
j=1

bj · (pj(x)− aj) = 1

 .

(7)

To see why (6) holds, let x ∈ {0, 1}n such that [p1(x) = a1] · · · [pk(x) = ak] = 1. Then for
every (b1, . . . , bk) ∈ Fkp, we have [

∑k
j=1 bj · (pj(x)− aj) = 0] = 1. So every solution x to the

system of k equations is counted for pk times in (6); since the result is divided by pk, each
solution contributes 1 to (6). On the other hand, if x is not a solution to the system, and
[p1(x) = a1] · · · [pk(x) = ak] = 0, then for some j, pj(a)− aj 6= 0. It follows that there are
precisely pk−1 vectors (b1, . . . , bk) ∈ Fkp such that [

∑k
j=1 bj · (pj(x)− aj) = 0] = 1, and there

are precisely pk−1 (other) vectors (b′1, . . . , b′k) ∈ Fkp such that [
∑k
j=1 b

′
j · (pj(x)− aj) = 1] = 1.

These two equal counts cancel out in the sum of (6), so non-solutions to the system contribute
0 to the sum of (6).
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Putting (5) and (6) together, the original Sum-Product problem (3) can now be reduced
to the computation of O(p2k) sums, each of the form∑

x∈{0,1}n
[q(x1, . . . , xn) = 0],

where q is an Fp-polynomial of degree at most d. That is, to obtain (3), we only need to count
the Boolean roots of O(p2k) polynomials q, and take the appropriate R-linear combination
of these counts.

Let us now focus on counting roots to a single polynomial q(x1, . . . , xn) of degree d.
Let P`(z) be the modulus-amplifying polynomial of degree 2` − 1, from Theorem 12. Let
δ ∈ (0, 1/2) be a parameter, and consider the following “reduced” polynomial in n − δn
variables, over the integers:

Q(x1, . . . , xn−δn) :=
∑

a1,...,aδn∈{0,1}

Pδn(1− q(x1, . . . , xn−δn, a1, . . . , aδn)p−1).

Note that Q has degree less than 2dpδn. Set δ = 1/(6dp), and note that 2dpδn < (n− δn)/2.
Over Fp, the polynomial 1 − q(x)p−1 equals 1 mod p if x is a root of q, and is 0 mod p
otherwise. Applying the modulus-amplifying properties of Pδn, we have:

If x is a root of q, then Pδn(1− q(x)p−1) = 1 mod pδn.
If x is not a root of q, then Pδn(1− q(x)p−1) = 0 mod pδn.

As the sum in Q is over only 2δn such Pδ(· · · ) terms, and p ≥ 2, we conclude that for
all b1, . . . , bn−δn ∈ {0, 1}, the quantity (Q(b1, . . . , bn−δn) mod pδn) equals the number of
a1, . . . , aδn ∈ {0, 1} such that

q(b1, . . . , bn−δn, a1, . . . , aδn) = 0.

Therefore if we evaluate the polynomial Q over all 2n−δn Boolean assignments (b1, . . . , bn−δn),
compute each value separately modulo pδn, then sum those values over the integers, we will
obtain the number of Boolean roots of q.

Over Boolean assignments, we may assume without loss of generality that Q is multilinear
(i.e. x2

i = xi for all i). Since 2dpδn < (n− δn)/2, standard properties of binomial coefficients
imply that the number of monomials of Q is

O

((
n− δn
2dpδn

))
.

By constructing Q term-by-term (expanding each Pδn(1− q(x1, . . . , xn−δn, a1, . . . , aδn)p−1)
one-by-one, and adding them to a running sum, similar to [12, 29]), we may represent Q as a
sum of O

((
n−δn
2dpδn

))
monomials, constructed in poly(n)·

(
n−δn
2dpδn

)
time. Letting δ = 1/(6dp), the

number of monomials of Q is less than
(
n
n/3
)
≤ 1.9n. Applying the fast polynomial evaluation

algorithm of Theorem 13, Q can be evaluated on all 2n−n/(6dp) Boolean assignments in time
(1.9n + 2n−n/(6dp)) · poly(n) time. J

Therefore, for every fixed degree d and prime p, there is an ε > 0 such that the relevant
Sum-Product problem is in 2n−εn · poly(n) time. This immediately implies the lower bounds
of Theorems 4 and 5. In particular, to prove 5 we apply Theorem 21. Fix an integer
degree d, and let c ≥ 1 be the universal constant (from Theorem 21) such that we need to
solve Sum-Product for MODp ◦ ANDd ◦ ANYc circuits. Converting to SUM ◦MODp ◦ ANDdc,
Theorem 26 says that the Sum-Product problem can be solved in 2n−n/O(dc) time (omitting
low-order terms).
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7 Conclusion

Applying old and new tools, we have established several strong new lower bounds for
representing Boolean functions in different regimes. Among the most interesting open
problems remaining, we find the Quadratic Uncertainty Principle (the conjecture that AND
requires large R-linear combinations of quadratic F2-polynomials) to be especially intriguing.
Quadratic polynomials have special properties that higher degrees do not; for example, one
can count the roots of a given quadratic Fp-polynomial in polynomial time (see [54] for a
recent application of this phenomenon). Therefore in some cases, our 2n−εn-time algorithms
become poly(n)-time algorithms. Intuitively, an extremely efficient counting algorithm should
imply lower bounds for functions in polynomial time against linear combinations of quadratic
F2-polynomials, perhaps even lower bounds against the AND function, but so far we have
not yet been able to prove such bounds.

The Constant Degree Hypothesis?

A longstanding problem in circuit complexity – seemingly related to the Quadratic Uncertainty
Principle – is the Constant Degree Hypothesis of Barrington, Straubing, and Therien [5]:

I Hypothesis 27 (Constant Degree Hypothesis (CDH)). For every constant d ≥ 1 and primes
p, q, there is an ε > 0 such that the AND function on n variables cannot be computed by
MODp ◦MODq ◦ ANDd circuits of 2εn size.

The CDH is currently only known to be true for d = 1, and for p = q. Can the techniques
of this paper say anything about such problems, even for the case of d = 2?

Split-and-List as a Lower Bound Technique?

As noted by a CCC reviewer, the algorithmic approaches applied in this paper (in particular,
the “split-and-list” paradigm [18]) were essentially known in the literature, and yet they were
already powerful enough to prove strong lower bounds against functions in NP. Is there a
more direct method for proving circuit lower bounds that “corresponds” to the split-and-list
paradigm, without having to go through a generic connection between SAT algorithms and
circuit lower bounds?

Intuitively, the algorithmic split-and-list paradigm is related to communication complexity.
In split-and-list, the variable space of an instance is “split” into smaller parts, and we find a
global solution to the instance by “listing” partial solutions to the variables, and combining
partial solutions together in some interesting way. This feels related to the situation where
multiple parties hold parts of a global input, and they communicate to determine if the
global input is a solution to some problem. Indeed, intuitive connections between the two
have been successfully made in several papers, and articulated fairly strongly in [48, 37, 1].

However, there is a sense in which split-and-list seems more powerful. A good example is
the algorithm for Subset-Sum: it splits the variables of the solution space into two parts,
and uses the ability to quickly and deterministically sort and search the list of 2n/2 partial
solutions to find a Subset-Sum faster. In contrast, deterministic communication between
two parties holding n/2 bits each (with public knowledge of a Subset-Sum instance of n
items) cannot always determine with low communication if their joint n-bit assignment is
a solution to the instance. (When the weights of the instance are exponentially large, the
communication problem becomes as hard as EQUALITY.)
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A Linear Lower Bound for AND With Sums of Quadratic Polynomials

For reference, we report a folklore Ω(n) lower bound on representing AND with linear
combinations of quadratic F2-polynomials (recall it is conjectured that the sparsity lower
bound is 2Ω(n)). The below proof was communicated to us by Shachar Lovett.

I Theorem 28 (Lovett [30]). The AND function on n inputs does not have SUM ◦MOD2 ◦
AND2 circuits of sparsity less than n/2.

Proof. Let f : {0, 1}n → {0, 1} be the NOR function (which by DeMorgan’s laws has the
same sparsity as AND). Suppose we can write

f(x) =
s∑
i=1

αi(−1)qi(x),

where the qi(x) are quadratic F2-polynomials, and all αi ∈ R. Note that without loss of
generality we may assume qi(0) = 0 for all i (if qi(0) = 1, then replacing αi by −αi and qi(x)
by qi(x) + 1 yields an equivalent expression). If s < n/2, then by the Chevalley–Warning
theorem, the number of common roots of {q1, ..., qr} is divisible by 2. But then there is
another common root x?, so f(0) = f(x?), contradicting the definition of NOR. J
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Abstract
We study the power of randomized complexity classes that are given oracle access to a natural
property of Razborov and Rudich (JCSS, 1997) or its special case, the Minimal Circuit Size
Problem (MCSP). We show that in a number of complexity-theoretic results that use the SAT
oracle, one can use the MCSP oracle instead. For example, we show that ZPEXPMCSP 6⊆ P/poly,
which should be contrasted with the previously known circuit lower bound ZPEXPNP 6⊆ P/poly.
We also show that, assuming the existence of Indistinguishability Obfuscators (IO), SAT and
MCSP are equivalent in the sense that one has a ZPP algorithm if and only the other one
does. We interpret our results as providing some evidence that MCSP may be NP-hard under
randomized polynomial-time reductions.
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1 Introduction

Historically, the problem of minimizing a circuit representing a given Boolean function
(MCSP) was one of the first where the prohibitive computational cost of searching through a
huge space of candidate solutions was noted [30, 44]. This issue would later be formalized
in the theory of NP-completeness. However, the complexity of circuit minimization itself
remains largely mysterious. It is an NP problem, but neither known to be NP-complete nor
in any sub-class of NP thought proper. This mystery remains despite a large body of work
devoted to this problem [28, 2, 4, 3, 5, 24, 38, 23].

For negative hardness results, we do know that MCSP is not NP-hard (even P-hard)
under very restrictive reductions [38]. We also know that MCSP is not NP-hard under certain
“black-box” reductions [23]. For other kinds of restricted reductions, we know that proving
the NP-hardness of MCSP under such reductions would be difficult as such a proof would
also yield new circuit lower bounds [28, 38, 5].
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On the other hand, for positive hardness result, we know that MCSP is SZK-hard
under general randomized (BPP) reductions [3], and NC1-hard under truth-table reductions
computable by non-uniform TC0 circuits [40].

Looking at the negative results about NP-hardness of MCSP, one has to wonder: Are these
results actually about MCSP and its relationship to other problems, or about the weakness
of certain types of reductions? Given the positive results about hardness of MCSP under
more powerful reductions, it seems more likely that the aforementioned negative hardness
results are in fact about the weakness of certain reductions, and that it may be the case that
MCSP is NP-hard under, say, general randomized polynomial-time reductions.

We seem to be very far from being able to prove the NP-hardness of MCSP. If we cannot
prove that MCSP is as hard as SAT, can we find other evidence that MCSP is indeed a hard
problem, or at least that it will be difficult to design an efficient algorithm for it?

One possible kind of evidence that MCSP may be “almost as hard as” SAT would be to
show that many known complexity-theoretic statements that use the SAT oracle will remain
true when the SAT oracle is replaced with the MCSP oracle, i.e., that the power of the MCSP
oracle is often as good as that of SAT. This is the research direction pursued in the present
paper.

1.1 Our results
While, for simplicity, we state our results below for MCSP, in most of our results, MCSP
could be replaced with any other natural property in the sense of Razborov and Rudich [41]
(having largeness and usefulness, but with oracle access replacing constructivity). Roughly,
our results are of three kinds:

circuit lower bounds for randomized complexity classes with MCSP oracle,
relations between Indistinguishability Obfuscation (IO) and MCSP, and
hardness results for relativized versions of MCSP under randomized reductions.

We provide a more detailed description of our results next.

1.1.1 Conditional collapses
Below, the notation SIZE[s] denotes the class of Boolean functions computable by size s
Boolean circuits.

I Theorem 1. Let Γ ∈
{
⊕P,P#P,PSPACE,EXP,NEXP,EXPNP

}
. If Γ ⊆ P/poly, then

Γ ⊆ ZPPMCSP.

1.1.1.1 Interpretation

The results of [36], [8], [25] and [15] (building upon [31]) imply collapse theorems for the
classes P#P,PSPACE and EXP,NEXP,EXPNP, respectively. More specifically, they show that
if any of the above classes has polynomial size Boolean circuits, then the corresponding class
collapses to MA, which is known to be contained in ZPPNP [7, 20]. Our Theorem 1 shows
that the power of the MCSP oracle is sufficient for these conditional collapses.

As it is also known that MA ⊆ NPMCSP (see, e.g., [2]), the conditional collapses to NPMCSP

are immediate. Our Theorem 1 strengthens these collapses to the potentially smaller class
ZPPMCSP.

Finally, we also interpret Theorem 1 as follows: A proof that MCSP is not NP-hard (or
even #P-hard) under Turing ZPP-reductions would imply that P#P 6⊆ P/poly.
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1.1.2 Circuit lower bounds
Given the collapse theorems above, we get fixed-polynomial and super-polynomial lower
bounds for randomized polynomial and exponential time, respectively. The extra bit of
advice in the case of randomized polynomial time comes to accommodate the need to keep
the promise of bounded error (the same problem arises in [10, 19, 37, 42, 49]). Alternatively,
we can consider the corresponding class of promise problems (i.e., prZPP).

I Theorem 2. We have the following:
1. ZPPMCSP/1 6⊆ SIZE[nk] and prZPPMCSP 6⊆ SIZE[nk], for all k ∈ N.
2. ZPEXPMCSP 6⊆ P/poly.

1.1.2.1 Interpretation

It is known that MA-EXP 6⊆ P/poly [14]. By padding, we get that MA-EXP ⊆ ZPEXPNP

(using MA ⊆ ZPPNP [7, 20]), and hence ZPEXPNP 6⊆ P/poly. Theorem 2 (item 2) shows that
the MCSP oracle can replace the SAT oracle in that latter circuit lower bound.

1.1.2.2 Consequences for natural properties

The above result still holds if we relax the MCSP oracle to a natural property strongly useful
against P/poly (see Theorem 41 for more details). Combining this result with Lemma 25, we
obtain that PAC learning algorithms imply fixed-polynomial lower bounds against BPP/1
and super polynomial lower bounds again BPEXP. These bounds match the results of [49]
and [18, 32], respectively (see Corollary 26 for more details). In this sense, our unconditional
lower bounds generalize the conditional lower bounds of [49] and [18, 32]. Indeed, our result
is obtained by extending the techniques of [18, 32, 49].

The following theorem should be contrasted with a result from [25] saying that the
existence of a P-natural property (even without the largeness condition) that is useful against
P/poly would imply that NEXP 6⊆ P/poly. With the largeness condition, the circuit lower
bound can be shown to hold for the potentially smaller uniform complexity class ZPEXP.
This theorem is an immediate consequence of Theorem 2, item (2).

I Theorem 3. Suppose there is a strongly useful ZPP-natural property. Then ZPEXP 6⊆
P/poly.

I Remark. The conclusion of Theorem 3 still holds if we assume a natural property with
only weakly-exponential usefulness, 2nΩ(1) .

I Corollary 4. If there is a ZPP-natural property that is weakly-exponentially useful against
ACC0 circuits, then ZPEXP 6⊆ ACC0. 1

1.1.3 Obfuscation
We also relate the powers of MCSP and SAT to the existence of indistinguishability obfuscators
(IO) [11]. Roughly speaking, an IO is an efficient randomized procedure that maps circuits to
circuits, preserving the circuit input-output functionality but in an “unintelligible” manner.
Indeed, applying the IO to any two functionally equivalent circuits of the same size yields
two indistinguishable distributions on circuits (see Definition 27 for more details). We show
the following.

1 The result that P-natural properties against sub-exponential size circuits yield ZPEXP lower bounds
was also obtained in independent work by Igor Oliveira and Rahul Santhanam [40].
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I Theorem 5. Let A denote the class of randomized polynomial-time algorithms with MCSP
oracle. If there exists an A-indistinguishable obfuscator IO then NP ⊆ ZPPMCSP.

I Corollary 6. Suppose a computational obfuscator IO exists. Then MCSP ∈ ZPP iff
NP = ZPP.

Proof. If NP = ZPP then, clearly, MCSP ∈ ZPP. For the other direction, if MCSP ∈ ZPP
then IO is also an A-indistinguishable obfuscator. Therefore, NP ⊆ ZPPMCSP = ZPPZPP =
ZPP. J

1.1.3.1 Interpretation

Corollary 6 says that, under a cryptographic assumption that computational IO exists, the
computational powers of SAT and MCSP are the same in the sense that a ZPP algorithm for
MCSP is as good as a ZPP algorithm for SAT.

1.1.4 Hardness of relativized versions of MCSP
We consider the relativized version of MCSP relative to an oracle A, denoted MCSPA, which
asks to determine the minimum circuit size for a given Boolean function (given by its truth
table) where the circuit is allowed to use A-oracle gates. It is shown by [2] that every language
in PSPACE is reducible to MCSPPSPACE via ZPP-reductions. We use different techniques to
re-prove this result, as well as obtain a few new results along the same lines. (Below CkP is
the kth level of the counting hierarchy, CH, where C1P = PP, and Ck+1P = PPCkP, for all
k ≥ 1.)

I Theorem 7. 1. PSPACE ⊆ ZPPMCSPPSPACE
[2]

2. ⊕P ⊆ ZPPMCSP⊕P

3. P#P ⊆ BPPMCSP#P

4. PP ⊆ BPPMCSPPP
. Moreover, for k ≥ 2: CkP ⊆ Ck−1PMCSPPP .

1.1.4.1 Interpretation

All of the inclusions of Theorem 7 become trivial if one replaces the relativized MCSP problem
with the relativized SAT problem (or even just some relativized P-complete problem), since
we have trivially that, e.g., PSPACE ⊆ PPSPACE. Theorem 7 says that the circuit minimization
problem for circuits with A-oracle gates (for certain kinds of oracles) is at least as hard as
the evaluation problem for A, under sufficiently powerful (randomized) reductions.

In [23], Hirahara and Watanabe defined the notion of oracle-independent randomized
reductions and initiated a study of the set of languages that are reducible in randomized
polynomial time to MCSPB for every B. As a part of their study, they showed that⋂
B BPPMCSPB [1] ⊆ AM∩coAM; this implies that NP-hardness of MCSP cannot be established

via oracle-independent reductions unless the polynomial hierarchy collapses. We show circuit
lower bounds for the class

⋂
B BPPMCSPB

.

I Theorem 8. We have that
⋂
B

BPPMCSPB

/1 6⊆ SIZE[nk] and
⋂
B

prBPPMCSPB

6⊆ SIZE(nk),

for all k ∈ N, and that
⋂
B

BPEXPMCSPB

6⊆ P/poly.



R. Impagliazzo, V. Kabanets, and I. Volkovich 7:5

1.2 Our techniques
We rely on the result of [16] showing that natural properties useful against a (sufficiently
powerful) circuit class C yield learning algorithms (under the uniform distribution, with
membership queries) for the same circuit class. We note that this result relativizes in the
following sense: if we have a natural property useful against circuits with L oracle gates
(say, MCSPL), for some language L, then we can approximately learn L, with the hypotheses
being circuits with MCSPL oracle gates. If, in addition, this language L is both downward
and random self-reducible, then we can learn L exactly, with the same type of MCSPL oracle
circuits, using the ideas of [27].

This allows us to prove, for example, that P#P ⊆ BPPMCSP#P
, as #P has a complete

problem (the permanent) that is well-known to be both downward and random self-reducible.
We show that ⊕P also has such a complete problem (building upon [45]), getting the inclusion
⊕P ⊆ BPPMCSP⊕P

. To get the stronger result that ⊕P ⊆ ZPPMCSP⊕P
, we use Toda’s Theorem

[43] and hardness-randomness tradeoffs of [26] to get rid of the two-sided error of our BPP
reduction (similarly to the work of [28]).

Our circuit lower bounds are proved using similar ideas. For example, ZPEXPMCSP 6⊆
P/poly is argued as follows. If PSPACE 6⊆ P/poly, we are done (as PSPACE ⊆ EXP).
Assuming PSPACE ⊆ P/poly, we get that PSPACE ⊆ ZPPMCSP, using the fact that PSPACE
contains a complete problem that is both downward and random self-reducible [45], and that
MCSPPSPACE ∈ PSPACE ⊆ P/poly. The circuit lower bound then follows by a translation
argument, as we get that EXPSPACE ⊆ ZPEXPMCSP and EXPSPACE is known to contain
languages of maximal circuit complexity (by a simple diagonalization argument).

As another consequence of the results in [16], we get the following.

I Theorem 9. For any language B, n ∈ N and δ > 0, there exists a MCSPB-oracle circuit
C of size poly(n, 1/δ) that is 1− δ close to B|n. If, in addition, B is self-correctable then B
has polynomial size MCSPB-oracle circuits.

I Theorem 10. Let B be a language such that PSPACEB has polynomial size B-oracle
circuits. Then B has polynomial-size MCSPB-oracle circuits. 2

For the indistinguishability related results, we combine ideas from [21, 35] with a result
from [2]. Let ⊥s denote a canonical circuit of size s that outputs ′0′ on every input. Let A
denote the class of randomized polynomial-time algorithms with MCSP oracle. Given an
A-indistinguishable obfuscator IO, we consider the function fs(r) = IO(⊥s, r), where r is a
random string. Observe that for any s, the function fs(r) is computable in time polynomial
in |r|. We then apply a result of [2] that allows us to find preimages of such functions with
probability 1/poly(n).

Given a circuit C of size s, we first compute an obfuscation of C, Ĉ = IO(C, r), (for a
random r). Next, we (attempt to) find a preimage r′ of Ĉ. That is, r′ such that IO(⊥s, r′) = Ĉ.
We accept if and only if r′ is indeed a preimage. That is, if and only if IO(⊥s, r′) = Ĉ.

We observe the following:
If C = ⊥s then the algorithm will accept with probability 1/poly(n).

2 In [2], the same outcome was achieved under a stronger assumption that PSPACEB ⊆ PB . We note
our result is not a mere syntactical improvement, as there are numerous languages B for which
PSPACEB ⊆ PB/poly yet PSPACEB 6= PB ; see Appendix C for more details. While we suspect that
the consequent of the theorem holds unconditionally, we note that the precondition statement of the
theorem cannot be improved further since Lemma 19 implies that, for every language B, the class
PSPACEB does not have fixed-polynomial size B-oracle circuits.
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If C is satisfiable then by the correctness requirement of IO (Requirement 2) for all r, r′:
IO(C, r) 6= IO(⊥s, r′). Therefore, the algorithm will always reject.
Finally, if C is an unsatisfiable circuit of size s, then by the indistinguishability requirement
(Requirement 3) the algorithm cannot distinguish between the obfuscation of ⊥s and the
obfuscation of C. Hence, the algorithm will accept with probability about 1/poly(n).

Overall, we obtain that SAT ∈ RPMCSP.

1.2.0.1 Remainder of the paper

We give basic definitions and notation in Section 2. In Section 3, we prove our main results
(Theorems 1 - 8) which show new collapse results as well as new circuit lower bounds for
uniform complexity classes with oracle access to (relativized) MCSP. In fact, we prove
somewhat stronger results (Theorems 40 and 41) which apply to the more general type of
oracles: strongly useful natural properties. We prove our IO-related result, Theorem 5, in
Section 3.3. Next, in Section 3.4, we prove our results about reductions to the problem
MCSPB , for various languages B. Specifically, we give such reductions for several complexity
classes (Theorem 7), and also show that every language B can be approximated by “small”
Boolean circuits containing MCSPB oracle gates (Theorem 9). Finally, we show that under
certain conditions, a language B can be computed exactly by “small” Boolean circuits
containing MCSPB oracle gates (rather than just approximated) (Theorem 10). We conclude
with some open questions in Section 4. Some of the proofs (e.g., our proof that ⊕P has
a complete problem that is both downward and random self-reducible) are given in the
appendix.

2 Preliminaries

2.1 Basics
A function negl(n) is negligible if for any k ∈ N there exists nk ∈ N such that for all n > nk,
negl(n) < 1/nk.

For Boolean functions f, g : {0, 1}n → {0, 1}, we define the relative distance ∆(f, g) to
be the fraction of inputs x ∈ {0, 1}n where f(x) 6= g(x). For ε ≥ 0, we say that f is ε-close
to g if ∆(f, g) ≤ ε, otherwise we say that f is ε-far from g.

Let L ⊆ {0, 1}∗ be a language. We denote by L|n the set of the strings of length n in
L. We will associate a language L with a corresponding Boolean function in the natural
way: L(x) = 1 ⇐⇒ x ∈ L. We say that L has circuits of size a(n) and denote it by
L ∈ SIZE(a(n)) if for every n ∈ N the function L|n can be computed by a Boolean circuit of
size O(a(n)). The circuit complexity sL(n) of L at length n is the smallest integer t such
that there is a Boolean circuit of size t that computes L|n. We similarly define sBL (n) to be
the circuit complexity of L with respect to B-oracle circuits and SIZEB(a(n)). We have the
following easy observation.

I Observation 11. Let A,B be two languages. Suppose that A ∈ SIZEB(nk) for some k ∈ N.
Then for every language L: sBL (n) ≤ sAL(n)k+1.

A promise problem is a relaxation of a language, defined as follows.

I Definition 12 (Promise Problems). Π = (ΠY ES ,ΠNO) is a promise problem if ΠY ES ∩
ΠNO = ∅. We say that a language L is consistent with Π iff x ∈ ΠY ES =⇒ x ∈ L and
x ∈ ΠNO =⇒ x 6∈ L. The containment of L outside of ΠY ES ·∪ΠNO can be arbitrary. We
say that a set of languages Γ is consistent with a set of promise problems Λ iff for every
Π ∈ Λ there is L ∈ Γ that is consistent with Π.
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We refer the reader to [6] for the definitions of standard complexity classes such as P,
ZPP, RP, BPP, NP, MA, PSPACE, etc. We say that a language L ∈ BPP/1 if L can be
decided by a BPP machine with an auxiliary advice bit bn for each input of length n; note
that given the complement advice bit b̄n, the machine is not guaranteed to be a BPP machine
(i.e., may not have bounded away acceptance and rejection probabilities on all inputs of
length n). We define ZPP/1 in a similar fashion.

We define a family of natural problems complete for prBPP relative to any oracle.

I Definition 13 (Circuit Approximation). For a language B, define the following prBPPB-
complete problem: CAB ∆= (CAB

Y ES ,CAB
NO), where

CAB
Y ES =

{
C is a B-oracle circuit

∣∣ ∆(C, 0̄) ≥ 3/4
}
,

and

CAB
NO =

{
C is a B-oracle circuit

∣∣ ∆(C, 0̄) ≤ 1/4
}
.

To prove lower bounds against randomized classes with one bit of advice, we shall rely on
the following definitions (and their extensions) from [42, 49].

I Definition 14 (Padded Languages). Let L be a language. For k ∈ N we define the padded
version of L, denoted L′k, to consist of the strings 1mx satisfying the following: (1) m is
power of 2; (2) 0 < r

∆= |x| ≤ m; (3) x ∈ L; and (4) sL(r) ≤ m2k.

The main property of the padded languages is that, for every L, sufficiently small circuits
for L′k can be used to construct small circuits for L.

I Lemma 15 ([42, 49]). Let k ∈ N. Suppose L′k ∈ SIZE[nk]. Then sL(n) = O(n2k).

The next lemma is implicit in [49]. We provide the proof for completeness.

I Lemma 16. Let R be a strongly useful natural property and let L be a downward self-
reducible and self-correctable language. Then, for all k ∈ N, we have L′k ∈ BPPR/1.

Proof. Let y = 1mx be an input for L′k. Conditions 1 and 2 of Definition 14 can be
checked easily. As y has a unique interpretation, we use the advice bit to determine whether
sL(|x|) ≤ m2k. If the advice bit is 0 (i.e “no”) we reject. Otherwise, we apply Lemma 39
with t = m2k to decide if x ∈ L. J

We also need the following result that shows that a lower bound on ZPP/1 carries over
to prZPP.

I Lemma 17 ([42]). For every circuit function u(n), if ZPP/1 6⊆ SIZE[u(n)], then prZPP 6⊆
SIZE[u(n)].

Finally, we need the following collapse results and a simple circuit lower bound against
PSPACE.

I Lemma 18 ([8, 25, 15]). If Γ ∈
{

EXP,NEXP,EXPNP
}

is in P/poly, then Γ = MA.

I Lemma 19 ([29]). For any language B and k ∈ N, PSPACEB 6⊆ SIZEB [nk]. More generally,
for every function s(n) = O(2n), DSPACEB(poly(s(n))) 6⊆ SIZEB [s(n)].

I Lemma 20 (Folklore). For any oracle A: NP ⊆ BPPA =⇒ NP ⊆ RPA.
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7:8 The Power of Natural Properties as Oracles

2.2 Derandomization from hardness
We recall the celebrated hardness-randomness tradeoff.

I Lemma 21 ([39, 9, 26, 46, 33]). There is a polynomial-time computable oracle predicate
MB(x, y) and a constant ` ∈ N such that the following holds for every language B and s ∈ N.
If tt ∈ {0, 1}2

m

is a string that represents the truth table of an m-variate Boolean function f
which requires B-oracle circuits of size s`, then, for all s-size B-oracle circuits C, MB(C, tt)
is consistent with CAB.

The non-relativized version of this result was used in [28] to show that BPP ⊆ ZPPMCSP.
We use the relativized version to show that under certain assumptions BPPA = ZPPA.

I Lemma 22. Let A,B be any languages such that: (1) A ∈ PB/poly, and (2) MCSPB ∈
ZPPA. Then BPPA = ZPPA.

Proof. By definition, ZPPA ⊆ BPPA. For the second direction, let L ∈ BPPA. Then for each
n there exists an A-oracle circuit C(w, r) of size poly(n) such that x ∈ L ⇐⇒ C(x, ·) ∈ CAA.
We now describe a machine that decides L: “Form = O(logn) pick a truth table tt ∈ {0, 1}2

m

at random. If tt has B-circuits of size less than 2m/4 return “?” (using an oracle to MCSPB).
Otherwise, run MA(C(x, ·), tt) and answer the same (using MA from Lemma 21).”

By counting arguments, a random function requires exponential size circuits w.h.p.
Therefore, the algorithm will output “?” extremely rarely. By Observation 11 tt requires
A-oracle circuits of size 2Ω(m) = nΩ(1). Consequently, the correctness of the algorithm follows
from Lemma 21. As described, the algorithm can be implemented in ZPPA,MCSPB

. By the
preconditions, ZPPA,MCSPB

⊆ ZPPA,ZPPA

= ZPPA due to the self-lowness of ZPP. J

2.3 Natural properties, PAC learning and MCSP
We first define natural properties.

I Definition 23 (Natural Property [41]). Let C be a circuit class and Γ be complexity classes.
We say that a property R is Γ-natural with density δn and useful against C if the following
holds:
1. Constructivity: Given a binary string tt ∈ {0, 1}2

m

, tt ∈ R can be decided in Γ.
2. Largeness: For all n,R contains at least a δn fraction of all 2n binary strings, representing

n-variate Boolean functions.
3. Usefulness: For every Boolean function family {fn}n≥0, where fn is a function on n

variables, such that {tt | tt is a truth table of some fn } ⊆ R for almost all n, we have
that {fn} 6∈ Λ for almost all n.

We say that R is strongly useful if there exists a ∈ N such that R is useful against
SIZE[2an] and has density δn ≥ 2−an.

Considering R as an oracle allows us to “ignore” its complexity. In addition, if R is a
strongly useful property, then, as observed in [16, Lemma 2.7], there exists another strongly
useful property R′ ∈ PR with density δn ≥ 1/2. Therefore, when considering a strongly
useful property as an oracle we can assume w.l.o.g that it has density δn ≥ 1/2.

Observe that MCSP yields a strongly useful natural property. Often, the only requirement
from an MCSP oracle is to “serve” as a strongly useful natural property. Consequently, the
oracle can be relaxed. The following can be shown along the lines of the proof of Lemma 22.
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I Lemma 24. Let R be a strongly useful natural property. Then BPP ⊆ ZPPR. If, in
addition, R ∈ P/poly then BPPR = ZPPR.

Recall Valiant’s PAC learning model [48]. We have a (computationally bounded) learner
that is given a set of samples of the form (x̄, f(x̄)) from some fixed function f ∈ C, where x̄
is chosen according to some unknown distribution D. Given ε > 0 and δ > 0, the learner’s
goal is to output, with probability 1− ε a hypothesis f̂ such that f̂ is a 1− δ close to f under
D. We say that a function class C is PAC learnable if there exists a learner which given any
f ∈ C, ε > 0 and δ > 0 in time polynomial in n, 1/ε, 1/δ, |f | outputs a hypothesis as required.
In a more general model, the learner is allowed membership queries (as in the exact learning
model). In this case, we say that C is PAC learnable with membership queries.

In [16] it was shown that natural properties yield efficient learning algorithms. Specifically,
a BPP-natural property that is strongly useful against a circuit class C implies that C is
PAC learnable under the uniform distribution, with membership queries (see Section 37 for
more details). Here we show that the converse holds as well: if C is PAC learnable under the
uniform distribution, with membership queries then there is a BPP-natural property that is
strongly useful against C.

I Lemma 25. Let C be a circuit class. If C is PAC learnable under the uniform distribution,
with membership queries, then there exists a BPP-natural property that is strongly useful
against C.

The proof goes along the lines of Theorem 3 from [49], where it is shown how to turn
an efficient randomized exact learner A for a circuit class C into a P/poly-natural property
strongly useful against C. Combined with Theorem 2, we obtain a somewhat different proof
for the conditional lowers bounds of [49] and [18, 32].

I Corollary 26. For every circuit class C, if C is PAC learnable under the uniform distribution,
with membership queries then:
1. BPP/1 6⊆ C-SIZE[nk] and prBPP 6⊆ C-SIZE[nk], for all k ∈ N [49] .
2. BPEXP 6⊆ C-SIZE[poly] [18, 32].

2.4 Obfuscation
In this section we define the notion of an Indistinguishability Obfuscator.

I Definition 27 (Indistinguishability Obfuscator [11]). Let A be a class of algorithms. We
say that a procedure IO is an A-Indistinguishability Obfuscator for a circuit class C if the
following holds:
1. Correctness: For every circuit C ∈ C and for all inputs x, C(x) = IO(C)(x).
2. Polynomial slowdown: There exists k ∈ N s.t. for every circuit C ∈ C, |IO(C)| ≤ |C|k.
3. Indistinguishability: For all pairs of circuits C1, C2 ∈ C that compute the same function,

if |C1| = |C2| = s then the distributions of IO(C1) and IO(C2) are indistinguishable by
any algorithm A ∈ A. More precisely, there is a negligible function negl(n) such that for
any algorithm A ∈ A:

|Pr[A(IO(C1)) = 1]− Pr[A(IO(C2)) = 1]| ≤ negl(s).

In particular, when A the class of randomized polynomial-time algorithms, we call
such IO a Computational Obfuscator.
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2.5 Downward self-reducible and self-correctable languages
IDefinition 28. We say that a language L is downward self-reducible if there is a deterministic
polynomial-time algorithm COMPUTE such that, for all n ≥ 1, COMPUTEL|n−1 = L|n. In
other words, COMPUTE efficiently computes L on inputs of size n given oracle access to a
procedure that computes L on inputs of size n− 1.
We say that a language L is self-correctable3 if there is a probabilistic polynomial-time
algorithm CORRECT such that, for any n ∈ N and a Boolean function f : {0, 1}n → {0, 1}
it holds that if ∆(f, L|n) ≤ 1/n then for all x̄ ∈ {0, 1}n: Pr[CORRECTf (x̄) 6= L|n(x̄)] ≤
1/poly(n).

Several complexity classes have complete problems that are both downward self-reducible
and self-correctable.4

I Lemma 29 ([47, 12, 36, 27]). There exists a downward self-reducible and self-correctable
#P-complete language Lperm.

I Lemma 30 ([45]). There is a downward self-reducible and self-correctable PSPACE-complete
language LPSPACE.

Using similar ideas as in [45], we also show the following; see Appendix A for the proof.

I Lemma 31. There is a downward self-reducible and self-correctable ⊕P-complete language
L⊕P.

To handle a larger family of languages, we generalize the notion of self-correctability.

I Definition 32. A language L is (ε(n), A)-correctable if there are a polynomial r(n) and a
randomized polynomial-time algorithm CORRECT such that, for all n ∈ N and f : {0, 1}r(n) →
{0, 1}, if ∆

(
f,A|r(n)

)
≤ ε(n), then, for all x̄ ∈ {0, 1}n, Pr

[
CORRECTf (x̄) 6= L|n(x̄)

]
≤

1/poly(n).

In other words, there is a randomized polynomial-time algorithm that can decide L|n
given an oracle to a function that approximates a A|r(n). Self-correctability is special case
when ε = 1/n, A = L and r(n) = n. The following is immediate using Adleman’s result [1]:

I Lemma 33. Let L be a (ε(n), A)-correctable language with r(n), and let B be a language.
Suppose C is an r(n)-variate B-oracle circuit of size s such that ∆(C,A|r(n)) ≤ ε(n), for
some n ∈ N. There exists a randomized polynomial-time algorithm that given C as input,
outputs an n-variate B-oracle circuit C ′ of size poly(r(n), s) such that C ′ ≡ L|n, w.h.p.

In particular, this result implies that such C ′ exists for every C.
Klivans and van Melkebeek [33] show that any language L is (ε(n), A)-correctable for

A computable in PSPACE with an oracle to L (by encoding the truth table of L with an
appropriate error-correcting code).

I Theorem 34. For any language L and ε(n) there exist a language A ∈ DSPACEL(n+1/ε(n))
such that L is (ε(n), A)-correctable with r(n) = poly(n, 1/ε(n)).

3 More generally, such languages are referred to as “random self-reducible” languages.
4 It is not hard to see that every downward self-reducible language is computable in PSPACE. On the

other hand, the results of [17] suggest that there cannot be self-correctable languages which are complete
for any level of the polynomial hierarchy, unless the hierarchy collapses.
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2.6 Learning downward self-reducible and self-correctable languages
The following lemma essentially shows that the PAC learnability for downward self-reducible
and self-correctable languages implies exact learnability; a similar lemma also appeared in
[40]. See the Appendix (Section B) for the proof.

I Lemma 35. Let B be a language. Suppose Boolean circuits are PAC learnable using
membership and B queries with hypotheses being B-oracle circuits. Suppose L is a downward
self-reducible and self-correctable language. Then there is a randomized algorithm making
oracle queries to B, that, given x and t, computes L(x) with probability at least 1−1/poly(|x|)
in time poly(|x| , t), provided that t ≥ sL(|x|).

3 The proofs

Our proofs will use the following.

I Lemma 36 (Extension of Theorem 5.1 from [16]). Let R be a natural property with density
at least 1/5, that is useful against SIZE[u(n)], for some size function u(n) : N → N. Then
there is a randomized algorithm that makes oracle queries to R such that, given s ∈ N, oracle
access to a function f : {0, 1}n → {0, 1} computable by a Boolean circuit of size s, and δ > 0,
it produces in time poly(n, 1/δ, 2u−1(poly(n,1/δ,s))) an R-oracle circuit C where ∆(C, f) ≤ δ.

I Corollary 37. Let R be a strongly useful natural property. Then Boolean circuits are PAC
learnable under the uniform distribution, using membership and R queries with hypotheses
being R-oracle circuits.

I Theorem 38. Boolean circuits are PAC learnable under the uniform distribution, using
membership and MCSP queries with hypotheses being MCSP-oracle circuits.

Combining Lemma 35 and Corollary 37, we get the following.

I Lemma 39. Let R be a strongly useful natural property and let L be a downward self-
reducible and self-correctable language. Then there is a randomized algorithm that makes
oracle queries to R, that given x and t computes L(x) with probability at least 1− 1/poly(|x|)
in time poly(|x| , t) provided that t ≥ sL(|x|).

3.1 Conditional collapses
Theorem 1 follows as a corollary from the next, somewhat stronger, theorem.

I Theorem 40. Let R be a strongly useful natural property, and furthermore let Γ ∈{
⊕P,P#P,PSPACE,EXP,NEXP,EXPNP

}
. Then, if Γ ⊆ P/poly, then Γ ⊆ BPPR. If, in

addition, R ∈ PH then Γ ⊆ ZPPR.

Proof. First, consider the case of Γ such that PSPACE ⊆ Γ. For LPSPACE from Lemma 30,
we have that sLPSPACE

(n) = O(nk) for some k ∈ N. By Lemma 39, given x, we can compute
LPSPACE(x) in randomized polynomial time given oracle to R. Consequently, PSPACE ⊆
BPPR. By Lemma 18, we get Γ = MA. Hence, we have Γ ⊆ MA ⊆ PSPACE ⊆ BPPR. If, in
addition, R ∈ PH then R ∈ Γ ⊆ P/poly. By Lemma 24, BPPR ⊆ ZPPR.

For Γ = ⊕P, we argue as before, using Lemma 31 instead of Lemma 30, to obtain that
⊕P ⊆ BPPR. If, in addition, R ∈ PH, then, by Toda’s Theorem [43], PH ⊆ BPP⊕P, and
hence R ∈ BPP⊕P ⊆ P/poly. The rest of the argument follows as above.
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For Γ = P#P, we argue as before using Lemma 29 instead of 30, with the additional
observation that in this case the permanent has small Boolean circuits. The only difference
is that in this case the function has multiple inputs. For more details we refer the reader to
[27]. J

3.2 Circuit lower bounds for MCSP-oracle classes
Theorems 2 and 3 follow from the next theorem.

I Theorem 41. For any strongly useful natural property R we have
1. ZPPR/1 6⊆ SIZE[nk] and prZPPR 6⊆ SIZE[nk] for all k ∈ N, and
2. ZPEXPR 6⊆ P/poly.

Proof. Assume w.l.o.g that R ∈ P/poly (otherwise there is nothing to prove). Consider
L = LPSPACE from Lemma 30. As L ∈ PSPACE ⊆ EXP, by a translation argument there
exists d ≥ 1 such that L ∈ SIZE(2nd). Therefore, sL(n) is well-defined and in particular
sL(n) = O(2nd).

We first prove part (1) of the theorem. We focus on the class ZPPR/1; the claim about
prZPP will follow by Lemma 17. We consider two cases:
Case 1: PSPACE ⊆ P/poly. By Theorem 1 and Lemma 24, PSPACE ⊆ BPPR ⊆ ZPPR.

Hence, by Lemma 19, for all k ∈ N : ZPPR 6⊆ SIZE[nk].
Case 2: PSPACE 6⊆ P/poly. As L is PSPACE-complete, we have that L 6∈ P/poly. Assume

towards contradiction that BPPR/1 ⊆ SIZE[nk], for some k ∈ N. By Lemma 16, L′k ∈
SIZE[nk]. And thus, by Lemma 15, sL(n) = O(n2k). This contradicts the assumption
that L 6∈ P/poly. As in Lemma 24, we obtain that, for all k ∈ N, ZPPR/1 6⊆ SIZE[nk].

Part (2) of the theorem is also shown by considering two cases:
Case 1: PSPACE ⊆ P/poly. As above, PSPACE ⊆ ZPPR. By a translation argument,

EXPSPACE ⊆ ZPEXPR. By Lemma 19, ZPEXPR 6⊆ P/poly.
Case 2: PSPACE 6⊆ P/poly. Since PSPACE ⊆ EXP ⊆ ZPEXPR, the theorem follows. J

3.3 IO related results
We prove more general statements for strongly useful natural properties.

I Theorem 42. Let R be a strongly useful natural property and let A denote the class of
randomized polynomial-time algorithms with R oracle. If there exists an A-indistinguishable
obfuscator IO then NP ⊆ ZPPR.

Before proving the Theorem we require the following result of [2] that allows to find
preimages of polynomial-time computable functions5.

I Lemma 43 ([2]). Let R be a strongly useful natural property. Let fy(x) = f(y, x) be a
function computable uniformly in time polynomial in |x|. There exists a polynomial-time
probabilistic oracle Turing machine M and k ∈ N such that for any n and y:

Pr
|x|=n,t

[
fy
(
MR(y, fy(x), t)

)
= fy(x)

]
≥ 1/nk

where x is chosen uniformly at random and t denotes the randomness of M .

5 The original result in formulated in a slightly different terminology.
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We now present the proof of Theorem 42.

Proof. Consider the function fC(r) = IO(C, r), where C is a circuit and r is a random string.
Observe that fC(r) is computable uniformly in time polynomial in |r|. By the Lemma above
there exists a polynomial-time probabilistic oracle Turing machine M and k ∈ N such that
for any circuit C:

Pr
r,t

[
fC
(
MR(C, IO(C, r), t)

)
= fC(r)

]
≥ 1/ |r|k

where r is chosen uniformly at random and t denotes the randomness of M .

We now describe a polynomial-time randomized Turing machine that decides SAT. For
s ∈ N, we denote by ⊥s a canonical unsatisfiable circuit. Note that given s, ⊥s can be
computed uniformly in time polynomial in s. Given a circuit C as input:
1. Let s = |C|.
2. Ĉ = IO(C, r) for r chosen uniformly at random.
3. Run MR(⊥s, Ĉ, t) to obtain r′.
4. Accept if and only if IO(⊥s, r′) = Ĉ.
We observe the following:

If C = ⊥s then the algorithm will accept with probability ≥ 1/ |r|k.
If C ∈ SAT then by the correctness requirement of IO (Requirement 2) for all r, r′:
IO(⊥s, r′) 6= IO(C, r). Therefore, the algorithm will always reject.
Finally, if C ∈ SAT, then by the indistinguishability requirement (Requirement 3),
the oracle machine MR could not distinguish between the obfuscation of ⊥s and the
obfuscation of C. Hence, the algorithm will accept with probability 1/ |r|k − negl(|r|).
By repeating the algorithm, we obtain that SAT ∈ RPR

By Lemma 20, SAT ∈ RPR and hence SAT ∈ ZPPR. J

3.4 Hardness of relativized versions of MCSP
First we observe that, for every oracle B, there is a PMCSPB -natural property for B-oracle
circuits. Combined with Lemma 36, this yields the following theorem along the lines of
Theorem 38.

I Theorem 44. For every oracle B the class of B-oracle circuits is PAC learnable under the
uniform distribution, using membership and MCSPB queries with hypotheses being MCSPB-
oracle circuits.

I Lemma 45. Let A,B be two oracles (languages) such that A ∈ PB/poly. Then:
1. For every n ∈ N and δ > 0, there exists a MCSPB-oracle circuit C of size poly(n, 1/δ)

such that ∆(C,A|n) ≤ δ.
2. If, in addition, A is self-correctable then A ∈ PMCSPB

/poly.
3. If, in addition to the above, A is downward self-reducible, then A ∈ BPPMCSPB

.

Proof.
1. By the assumption, for every n ∈ N the function A|n(x) has a B-oracle circuit of size

poly(n). Therefore, by Theorem 44, given oracle access to A|n, the learning algorithm
produces an MCSPB-oracle circuit C of size poly(n, 1/δ) such that ∆(C,B|n) ≤ δ.

2. Follows from Lemma 33.
3. Follows by combining Theorem 44 with Lemma 35. J
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I Remark. In the lemma above, although the learning algorithm actually needs oracle access
to A|n to produce C, in parts 1 and 2 we are only interested in mere existence. In part 3, on
the other hand, we actually benefit from the learning algorithm.

We are now ready to give the proofs of Theorems 7–10. For convenience, we re-state
them below.

I Theorem 46 (Theorem 7 re-stated).
1. PSPACE ⊆ ZPPMCSPPSPACE

[2]
2. ⊕P ⊆ ZPPMCSP⊕P

3. P#P ⊆ BPPMCSP#P

4. PP ⊆ BPPMCSPPP
. Moreover, for k ≥ 2: CkP ⊆ Ck−1PMCSPPP .

Proof.
1. Consider any PSPACE-complete language B. Let LPSPACE be the language from Lemma

30. By Lemma 45 (3), LPSPACE ∈ BPPMCSPB

, and hence PSPACE ⊆ BPPMCSPB

. Observe
that

MCSPB ∈ NPB ⊆ PSPACEB = PSPACE,

and so MCSPB ∈ PB/poly. By Lemma 22, we conclude that BPPMCSPB

= ZPPMCSPB

.
2. Arguing as above, using Lemma 31 instead of Lemma 30, we obtain ⊕P ⊆ BPPMCSP⊕P

.
By Toda’s Theorem [43], NP⊕P ⊆ BPP⊕P. Therefore, we get

MCSP⊕P ∈ NP⊕P ⊆ BPP⊕P ⊆ P⊕P/poly.

The rest of the argument is the same as above.
3. Similar to the first proof, using Lemma 29 instead of Lemma 30.
4. Since P#P = PPP [43], we get that PP ⊆ P#P ⊆ BPPMCSPPP

.
5. PP ⊆ BPPMCSPPP

. The second part of the claim follows by induction since CkP =
PPCk−1P. J

I Theorem 47 (Theorem 8 re-stated).
⋂
B

BPPMCSPB

/1 6⊆ SIZE[nk] and
⋂
B

prBPPMCSPB

6⊆

SIZE(nk) for all k ∈ N, and
⋂
B

BPEXPMCSPB

6⊆ P/poly.

Proof. As in the proof of Theorem 41, we consider two cases:
Case 1: PSPACE ⊆ P/poly. Let LPSPACE be the language from Lemma 30. Observe that for

every language B, we have LPSPACE ∈ PB/poly. By Lemma 45 (3), PSPACE ⊆ BPPMCSPB

for all B. By Lemma 19, the required circuit lower bound follows.
Case 2: PSPACE 6⊆ P/poly. For each k ∈ N there exists L′k 6∈ SIZE(nk) such that L′k ∈

BPPMCSPB

/1 for all B. J

I Theorem 48 (Theorem 9 re-stated). For any language B, n ∈ N and δ > 0, there exists a
MCSPB-oracle circuit C of size poly(n, 1/δ) that is 1− δ close to B|n. If, in addition, B is
self-correctable then B has polynomial size MCSPB-oracle circuits.

Proof. The proof follows from Lemma 45 for A = B, since B ∈ PB/poly. J

I Theorem 49 (Theorem 10 re-stated). Let B be a language such that PSPACEB has polyno-
mial size B-oracle circuits. Then B has polynomial-size MCSPB-oracle circuits.
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Proof. Let A ∈ PSPACEB be a language such that B is (1/poly(n), A)-correctable with
r(n) = poly(n), as guaranteed by Theorem 34. By assumption, A ∈ PSPACEB ⊆ PB/poly.
By Lemma 45 (1), for every n ∈ N, there exists an MCSPB-oracle circuit Cn of size poly(n)
such that ∆(Cn, A|r(n)) ≤ 1/poly(n). Lemma 33 completes the proof. J

4 Open questions

The main open question is, of course, to determine the complexity of MCSP. The results in
this paper may be interpreted as giving some hope that hardness of MCSP is possible to prove
under randomized Turing reductions, as we see a growing list of non-trivial computational
tasks that can be solved with the help of the MCSP oracle rather than the SAT oracle.
It would be interesting to see more examples of complexity results proved with the SAT
oracle that remain true when SAT is replaced with MCSP. For example, is it true that
if SAT ∈ P/poly, then SAT circuits can be found by a ZPPMCSP algorithm (strengthening
the ZPPNP result by [13, 34])? Probably a simpler question along these lines is: Does
SAT ∈ P/poly imply that NP ⊆ ZPPMCSP?

Some of our hardness results for the relativized MCSP (Theorem 7) are for ZPP reductions,
while others for BPP reductions. Is it possible to replace the BPP reductions with ZPP
reductions? We have shown it for PSPACE and ⊕P, but not for #P.

Finally, we proved that, under some assumptions, every language L is computable by
a polynomial-size circuit with MCSPL oracle gates (Theorem 10). Is it true without any
assumptions?
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A Self-correctable and downward-reducible ⊕P-complete problem

In this section we prove Lemma 31

I Lemma 50. There is a downward self-reducible and self-correctable ⊕P-complete language
L⊕P.

Proof sketch. The proof is very similar to the one in [45] for the case of PSPACE. We define a
formula Φn(x̄, ȳ) that is universal for n-variate 3-cnf formulas on the variables x̄ = (x1, . . . , xn),
where ȳ = (y1, . . . , y8n3) describes a particular 3-cnf formula φ by specifying, for each possible
clause on 3 variables, whether this clause is present in φ. For example, if c1, . . . , cm, for
m = 8n3, is a sequence of all possible 3-clauses on n variables x1, . . . , xn, we can define Φ as
follows:

Φ(x̄, ȳ) = ∧mi=1((yi ∧ ci) ∨ ¬yi).

We now “arithmetize” the formula Φ, getting a polynomial that agrees with Φ over all
Boolean inputs. We will work over the finite field F2k of characteristic 2, for k = 5 logn.
Arithmetizing all clauses ci’s (by replacing each ci with a degree 3 multilinear polynomial
c′i, in the same 3 variables, that agrees with ci over Boolean all assignments), we get the
following arithmetization Φ′ of Φ:

Φ′(x̄, ȳ) =
m∏
i=1

(yi · c′i + 1 + yi).

For each 0 ≤ i ≤ n, define a polynomial

fn,i(x1, . . . , xi, ȳ) =
∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ′(x̄, ȳ),

where the summation is over our field F2k of characteristic 2. Note that fn,0(ȳ), for a Boolean
ȳ, is exactly ⊕SAT on the 3-cnf instance described by ȳ. So fn,0 is ⊕P-hard to compute.
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We have that fn,i can be expressed in terms of fn,i+1, for i < n, by the formula:

fn,i(x1, . . . , xi, ȳ) = fn,i+1(x1, . . . , xi, 0) + fn,i+1(x1, . . . , xi, 1).

So fn,i can be computed in polynomial time with oracle access to fn,i+1. It is also clear that
fn,n can be evaluated in polynomial time (directly).

Next, in the same way as in [45], we define a Boolean function family F = {Ft}t≥1 so
that each fn,i is “embedded” into some Fh(n,i), for some function h : N× N→ N. Namely, h
can be chosen so that

h(n, i) > h(n, i+ 1) (and so we have downward-reducibility for fn,i’s), and
the length h(n, i) is large enough to accommodate both an input to fn,i and an index
j ∈ [k].

We then define

Fh(n,i)(x1, . . . , xi, ȳ, j) = fn,i(x1, . . . , xi, ȳ)j ,

i.e., the jth bit of the value of fn,i in the field F2k , whose elements are viewed as k-bit
vectors.

The downward-reducibility of F follows from the properties of fn,i (and the way we
arranged the lengths h(n, i)). The self-correctability of F follows from the fact each fn,i is
a O(n3)-degree polynomial over the field of size 2k ≥ n5 (see [45] for more details). The
⊕P-hardness of F follows from ⊕P-hardness of fn,0’s.

It remains to show that F ∈ ⊕P. Note that every bit j of the value of fn,n(ȳ), for
every input ȳ, is computable in P, and hence also in ⊕P. For any 0 ≤ i < n, the jth bit of
fn,i(x1, . . . , xi, ȳ) can be computed in ⊕P using the following nondeterministic algorithm:

“Nondeterministically guess Boolean values bi+1, . . . , bn. Compute the value

v = Φ′(x1, . . . , xi, bi+1, . . . , bn, ȳ).

Accept if the jth bit of the computed field element v is 1, and reject otherwise.”

The parity of the number of accepting paths of the algorithm above is exactly the sum
modulo 2 of the bits vj , over all Boolean assignments to xi+1, . . . , xn. The latter is exactly
the jth bit of fn,i because addition in the field F2k is the bit-wise XOR of the corresponding
k-bit vectors. J

B Proof of Lemma 35

Let A be a PAC learner for C and let n = |x|. First, we describe an algorithm that produces
B-oracle circuits for L|1, L|2, . . . , L|n w.h.p. We then use the circuit for L|n to decide x.

Begin with a look-up table C̃1 = C1 for L|1.
For i ≥ 2, invoke A with ε = 1/i3 and δ = 1/i to learn a circuit C̃i of size t for L|i.
Answer the queries to B using the provided oracle.
Given a query to L|i, invoke COMPUTE with Ci−1(x) as an oracle.
Set Ci

∆= CORRECTC̃i (convert the algorithm into a circuit using Lemma 33).

We claim that w.h.p it holds for all 1 ≤ i ≤ n that Ci is a B-oracle circuit of size poly(i, t)
computing L|i. The proof is by induction on i. Basis i = 1 is clear. Now assume that
hypothesis holds for i− 1. Observe that since Ci−1(x) is B-oracle circuit, it can be evaluated
in polynomial time given and an oracle to B. Hence, by downward self-reducibility of L

CCC 2018
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invoking COMPUTE with Ci−1(x) can be used to obtain oracle access to L|i. As t ≥ sL(i),
A will output a circuit C̃i of size poly(i, t). which is 1/i close to L|i. Finally, using Lemma
33 the algorithm will produce a circuit Ci of size poly(i, t) that computes L|i.

The above analysis is correct assuming that no errors have occurred. Note that the total
number of steps is poly(i) while each steps has at most 1/poly(i) probability error. As the
latter polynomial can be made arbitrary small, we obtain that w.h.p. for all i, Ci ≡ L|i.

Finally, all the listed procedures are in time poly(n, t), given oracle access to B.

C Oracles B where PSPACEB ⊆ PB/poly but PSPACEB 6= PB

I Lemma 51. Let B be a language such that EXPB ⊆ PB/poly. Then PSPACEB 6= PB.

Proof. Assume the contrary. By Meyer’s Theorem [31]: EXPB ⊆ ΣB
2 ⊆ PSPACEB. By the

assumption, EXPB ⊆ PSPACEB ⊆ PB which contradicts Time Hierarchy Theorem. J

There are numerous examples of languages satisfying the preconditions of the Lemma;
see, e.g., [22, 14].
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Abstract
We initiate a systematic study of linear sketching over F2. For a given Boolean function treated
as f : Fn2 → F2 a randomized F2-sketch is a distribution M over d × n matrices with elements
over F2 such thatMx suffices for computing f(x) with high probability. Such sketches for d� n

can be used to design small-space distributed and streaming algorithms.
Motivated by these applications we study a connection between F2-sketching and a two-

player one-way communication game for the corresponding XOR-function. We conjecture that
F2-sketching is optimal for this communication game. Our results confirm this conjecture for
multiple important classes of functions: 1) low-degree F2-polynomials, 2) functions with sparse
Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results
rely on a new structural theorem that shows that F2-sketching is optimal (up to constant factors)
for uniformly distributed inputs.

Furthermore, we show that (non-uniform) streaming algorithms that have to process random
updates over F2 can be constructed as F2-sketches for the uniform distribution. In contrast with
the previous work of Li, Nguyen and Woodruff (STOC’14) who show an analogous result for
linear sketches over integers in the adversarial setting our result does not require the stream
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1 Introduction

Linear sketching is the underlying technique behind many of the biggest algorithmic break-
throughs of the past two decades. It has played a key role in the development of streaming
algorithms since [3] and most recently has been the key to modern randomized algorithms for
numerical linear algebra (see survey [52]), graph compression (see survey [37]), dimensionality
reduction, etc. Linear sketching is robust to the choice of a computational model and can be
applied in settings as seemingly diverse as streaming, MapReduce as well as various other
distributed models of computation including the congested clique model [19, 12, 23], allowing
to save computational time, space and reduce communication in distributed settings. This
remarkable versatility is based on properties of linear sketches enabled by linearity: simple
and fast updates and mergeability of sketches computed on distributed data. Compatibility
with fast numerical linear algebra packages makes linear sketching particularly attractive for
applications.

Even more surprisingly linear sketching over the reals is known to be the best possible
algorithmic approach (unconditionally) in certain settings. Most notably, under some mild
conditions linear sketches are known to be almost space optimal for processing dynamic
data streams [10, 31, 1]. Optimal bounds for streaming algorithms for a variety of computa-
tional problems can be derived through this connection by analyzing linear sketches rather
than general algorithms. Examples include approximate matchings [5, 4], additive norm
approximation [1] and frequency moments [31, 51].

In this paper we study the power of linear sketching over F2. 5 To the best of our
knowledge no such systematic study currently exists as prior work focuses on sketching over
the field of reals (or large finite fields as reals are represented as word-size bounded integers).
Formally, for a random set S ⊆ [n] let χS =

⊕
i∈S xi. Given a function f : Fn2 → F2 that

needs to be evaluated over an input x = (x1, . . . , xn) we are looking for a distribution over
k subsets S1, . . . ,Sk ⊆ [n] such that the following holds: for any input x given parities
computed over these sets and denoted as χS1(x), χS2(x), . . . , χSk(x), it should be possible
to compute f(x) with probability 1 − δ. While the switch from reals to F2 might seem
restrictive, we are unaware of any problem for which sketching over reals gives any advantage
over F2. Furthermore, as shown very recently and subsequently to the early version of this
work [39], almost all dynamic graph streaming algorithms6 can be seen as F2-sketches [25]
without losing optimality in space7.

5 It is easy to see that sketching over finite fields can be significantly better than linear sketching over
integers for certain computations. As an example, consider a function (x mod 2) (for an integer input
x) which can be trivially sketched with 1 bit over the field of two elements while any linear sketch over
the integers requires word-size memory.

6 With the only exception being the work of [24] on spectral graph sparsification.
7 Technically [25] uses F3, but replacing F3 with F2 doesn’t change their results.
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In matrix form F2-sketching corresponds to multiplication over F2 of the row vector
x ∈ Fn2 by a random n× k matrix whose i-th column is a characteristic vector of the random
parity χSi :

(
x1 x2 . . . xn

) 
...

...
...

...
χS1 χS2 . . . χSk
...

...
...

...

 =
(
χS1(x) χS2(x) . . . χSk(x)

)

This sketch alone should then be sufficient for computing f with high probability for any
input x. This motivates us to define the randomized linear sketch complexity of a function f
over F2 as the smallest k which allows one to satisfy the above guarantee.

I Definition 1 (F2-sketching). For a function f : Fn2 → F2 we define its randomized linear
sketch complexity 8 over F2 with error δ (denoted as Rlinδ (f)) as the smallest integer k
such that there exists a distribution χS1 , χS2 , . . . , χSk over k linear functions over F2 and a
postprocessing function g : Fk2 → F2

9 which satisfies:

∀x ∈ Fn2 : Pr
S1,...,Sk

[f(x1, x2, . . . , xn) = g(χS1(x), χS2(x), . . . , χSk(x))] ≥ 1− δ.

We note that while the above definition requires that f is computed exactly, most of our
structural results including Theorem 4 can be extended to allow approximate computation
of real-valued functions f : Fn2 → R as shown in [54].

As we show in this paper the study of Rlinδ (f) is closely related to a certain communication
problem. For f : Fn2 → F2 define the XOR-function f+ : Fn2 ×Fn2 → F2 as f+(x, y) = f(x+ y)
where x, y ∈ Fn2 . Consider a communication game between two players Alice and Bob holding
inputs x and y respectively. Given access to a shared source of random bits Alice has to send
a single message to Bob so that he can compute f+(x, y). This is known as the one-way
communication problem for XOR-functions.

I Definition 2 (Randomized one-way communication complexity of XOR function). For a
function f : Fn2 → F2 the randomized one-way communication complexity with error δ
(denoted as R→δ (f+)) of its XOR-function is defined as the smallest size10 (in bits) of the
(randomized using public randomness) message M(x) from Alice to Bob which allows Bob to
evaluate f+(x, y) for any x, y ∈ Fn2 with error probability at most δ.

Communication complexity of XOR-functions has been recently studied extensively in the
context of the log-rank conjecture (see e.g. [45, 55, 38, 28, 30, 47, 32, 49, 34, 18]). However,
such studies either mostly focus on deterministic communication complexity or are specific
to the two-way communication model. We discuss implications of this line of work for our
F2-sketching model in our discussion of prior work.

8 In the language of decision trees this can be interpreted as randomized non-adaptive parity decision
tree complexity. We are unaware of any systematic study of this quantity either. Since heavy decision
tree terminology seems excessive for our applications (in particular, sketching is done in one shot so
there isn’t a decision tree involved) we prefer to use a shorter and more descriptive name.

9 Technically g can also depend on the sampled sets S1, . . . , Sk, but all sketches used in this paper are
oblivious to the choice of these sets.

10Formally the minimum here is taken over all possible protocols where for each protocol the size of the
message M(x) refers to the largest size (in bits) of such message taken over all inputs x ∈ Fn

2 . See [27]
for a formal definition.
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It is easy to see that R→δ (f+) ≤ Rlinδ (f) as using shared randomness for sampling
S1, . . . ,Sk Alice can just send k bits χS1(x), χS2(x), . . . , χSk(x) to Bob who can for each
i ∈ [k] compute χSi(x+ y) = χSi(x) +χSi(y). This gives Bob an F2-sketch of f on x+ y and
hence suffices for computing f+(x, y) with probability 1− δ. The main open question raised
in our work is whether the reverse inequality holds (at least approximately), thus implying
the equivalence of the two notions.

I Conjecture 3. Is it true that R→δ (f+) = Θ̃
(
Rlinδ (f)

)
for every f : Fn2 → F2 and 0 < δ <

1/2?

In fact all known one-way protocols for XOR-functions can be seen as F2-sketches so it is
natural to ask whether this is always true. In this paper we further motivate this conjecture
through a number of examples of classes of functions for which it holds. One important
such example from the previous work is a function Ham≥k which evaluates to 1 if and only
if the Hamming weight of the input string is at least k. The corresponding XOR-function
Ham+

≥k can be seen to have one-way communication complexity of Θ(k log k) via the small
set disjointness lower bound of [9] and a basic upper bound based on random parities [20].
Conjecture 3 would imply that in order to prove a one-way disjointness lower bound it suffices
to only consider F2-sketches.

A deterministic analog of Definition 1 requires that f(x) = g(χα1(x), χα2(x), . . . , χαk(x))
for a fixed choice of α1, . . . , αk ∈ Fn2 . The smallest value of k which satisfies this definition is
known to be equal to the Fourier dimension of f denoted as dim(f). It corresponds to the
smallest dimension of a linear subspace of Fn2 that contains the entire spectrum of f (see
Section 2.2 for a formal definition). In order to keep the notation uniform we also denote
it as Dlin(f). Most importantly, as shown in [38] an analog of Conjecture 3 holds without
any loss in the deterministic case, i.e. D→(f+) = dim(f) = Dlin(f), where D→ denotes the
deterministic one-way communication complexity. This striking fact is one of the reasons
why we suggest Conjecture 3 as an open problem.

Previous work and our results
In the discussion below using Yao’s principle we switch to the equivalent notion of distribu-
tional complexity of the above problems denoted as D→δ and Dlinδ respectively. For the formal
definitions we refer to the reader to Section 2.1 and a standard textbook on communication
complexity [27]. Equivalence between randomized and distributional complexities allows us
to restate Conjecture 3 as D→δ = Θ̃(Dlinδ ).

For a fixed distribution µ over Fn2 we define Dlin,µδ (f) to be the smallest dimension of an
F2-sketch that correctly outputs f with probability 1− δ over µ. Similarly for a distribution
µ over (x, y) ∈ Fn2 × Fn2 we denote distributional one-way communication complexity of f
with error δ as D→,µδ (f+) (See Section 2 for a formal definition). Our first main result is an
analog of Conjecture 3 for the uniform distribution U over (x, y) that matches the statement
of the conjecture up to constant factors:

I Theorem 4. For any f : Fn2 → F2 it holds that D→,U1/9 (f+) ≥ 1
6 · D

lin,U
1/3 (f).

In order to prove Theorem 4 we introduce the notion of an approximate Fourier dimension
(Definition 13) that extends the definition of exact Fourier dimension to allow that only 1− ε
fraction of the total “energy” in f ’s spectrum should be contained in the linear subspace.
The key ingredient in the proof is a structural theorem, Theorem 14, that characterizes both
Dlin,Uδ (f) and D→,Uδ (f+) in terms of f ’s approximate Fourier dimension.
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Using Theorem 14 we confirm Conjecture 3 for several well-studied classes of functions in
Section 4. It is important to note that while we could have stated these results for randomized
one-way communication it is critical that all lower bounds in this section hold for uniform
distribution in order to derive our results for random streams in Section 5.

Low-degree F2 polynomials

Low-degree F2 polynomials have been extensively studied in theoretical computer science in
various contexts: learning theory (Mossel, O’Donnell and Servedio [40]), property testing
(Rubinfield and Sudan [42], Bhattacharyya et al. [6], Alon et al [2]), pseudorandomness
(Bogdanov and Viola [8], Lovett [33], Viola [50]), communication complexity (Tsang et al.[49]),
etc.

Tsang et al. [49] studied deterministic two-way communication protocols for XOR-
functions with low F2-degree. They gave an upper bound on deterministic communication
complexity of f+ in terms of the spectral norm and the F2-degree of f . Their result was
obtained by observing that the communication complexity of f+ is bounded above by the
parity decision tree complexity of f , and then bounding the latter. In this work, we prove a
lower bound on the randomized one-way communication complexity of f+ in terms of the
Fourier dimension of f and the F2-degree of f , denoted as d. We prove the following result:

Dlin(f) = O
(
R→1/3(f+) · d

)
.

In the regime d = O(1), the above result implies that use of randomness does not enable
us to design a better linear-sketching or a one-way communication protocol. Furthermore,
since Rlin1/3(f) ≤ Dlin(f), the above result implies Conjecture 3 for constant degree F2-
polynomials. For F2 polynomials with bounded spectral norm this implies a new bound on
Fourier dimension shown in Corollary 23: Dlin(f) = dim(f) = O(d‖f̂‖21) improving a result
of Tsang et al. for d = ω

(
log1/3 ‖f̂‖1

)
.

Address function and Fourier sparsity

The number s of non-zero Fourier coefficients of f (known as Fourier sparsity) is one of
the key quantities in the analysis of Boolean functions. It also plays an important role
in the recent work on log-rank conjecture for XOR-functions [49, 46]. A recent result by
Sanyal [44] shows that for Boolean functions dim(f) = O(

√
s log s), namely all non-zero

Fourier coefficients are contained in a subspace of a polynomially smaller dimension. This
bound is almost tight as the address function (see Section 4.2 for a definition) exhibits a
quadratic gap. A direct implication of Sanyal’s result is a deterministic F2-sketching upper
bound of O(

√
s log s) for any f with Fourier sparsity s. As we show in Section 4.2 this

dependence on sparsity can’t be improved even if randomization is allowed.

Symmetric functions

A function f is symmetric if it only depends on the Hamming weight of its input. In
Section 4.3 we show that Conjecture 3 holds for all symmetric functions which are not too
close to a constant function or the parity function

∑
i xi, where the sum is taken over F2.

Composition theorem for recursive majority

As an example of a composition theorem we give such a theorem for recursive majority.
For an odd integer n the majority function Majn is defined to be 1 if and only if the
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8:6 Linear Sketching over F2

Hamming weight of the input is greater than n/2. Of particular interest is the recursive
majority function Maj◦k3 that corresponds to k-fold composition of Maj3 for k = log3 n.
This function was introduced by Boppana [43] and serves as an important example of various
properties of Boolean functions, most importantly in randomized decision tree complexity
([43, 22, 36, 29, 35]), deterministic parity decision tree complexity [7] and communication
complexity [22, 13].

In Section 4.4 we use Theorem 14 to obtain the following result:

I Theorem 5. For any ε ∈ [0, 1
2 ], ξ > 4ε2 and k = log3 n it holds that:

D→,U1−ξ
6

(Maj◦k3
+) = Ω(ε2n).

Applications to streaming and distributed computing

In the turnstile streaming model of computation a vector x of dimension n is updated through
a sequence of additive updates applied to its coordinates and the goal of the algorithm is to
be able to output f(x) at any point during the stream while using space that is sublinear
in n. In the real-valued case we have either x ∈ [0,m]n or x ∈ [−m,m]n for some universal
upper bound m and updates can be increments or decrements to x’s coordinates of arbitrary
magnitude.

For x ∈ Fn2 additive updates have a particularly simple form as they always flip the
corresponding coordinate of x. In the streaming literature this model is referred to as the
XOR update model (see e.g. [48]) Note that XOR updates can’t be handled using standard
turnstile streaming algorithms as only the coordinate but not the sign of the update is given.
As we show in Section 5.2 it is easy to see based on the recent work of [10, 31, 1] that in
the adversarial streaming setting the space complexity of turnstile streaming algorithms
over F2 is determined by the F2-sketch complexity of the function of interest. However, this
proof technique only works for very long streams which are unrealistic in practice – the
length of the adversarial stream has to be triply exponential in n in order to enforce linear
behavior. Large stream length requirement is inherent in the proof structure in this line of
work and while one might expect to improve triply exponential dependence on n at least an
exponential dependence appears necessary, which is a major limitation of this approach.

As we show in Section 5.1 it follows directly from our Theorem 4 that turnstile streaming
algorithms that achieve low error probability under random F2 updates might as well be
F2-sketches. For two natural choices of the random update model short streams of length
either O(n) or O(n logn) suffice for our reduction. We stress that our lower bounds are also
stronger than the worst-case adversarial lower bounds as they hold under an average-case
scenario. Furthermore, our Conjecture 3 would imply that space optimal turnstile streaming
algorithms over F2 have to be linear sketches for adversarial streams of length only 2n. We
believe that such result will also help show an analogous statement for real-valued linear
sketches thus removing the triply exponential in n stream length assumption of [31, 1].

By linearity all F2-sketching upper bounds are also applicable in the distributed setting
where two parties Alice and Bob need to send messages to the coordinator who is required
to output f+. This is also known as the Simultaneous Message Passing (SMP) model and
all our one-way lower bounds hold in this model as well.

Other previous work

Closely related to ours is work on communication protocols for XOR-functions [45, 38, 49, 18].
In particular [38] presents two basic one-way communication protocols based on random
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parities. The first one, stated as Fact 60 generalizes the classic communication protocol for
equality. The second one uses the result of Grolmusz [17] and implies that `1-sampling of
Fourier characters gives a randomized F2-sketch of size O(‖f̂‖21) (for constant error).

In [18] structural results about deterministic two-way communication protocols for
XOR-functions have been obtained. In particular, they show that the parity decision tree
complexity of f is O(D(f+)6). The key difference between our work and [18] lies in our focus
on randomized protocols. In [18] it is left as the main open problem whether randomized
parity decision tree complexity can be bounded by poly(R(f+)). Our results can be seen as a
step towards resolving this open problem in one-way communication setting. Full resolution
of Conjecture 3 would show that the conjecture of [18] holds even without polynomial loss
for one-way communication as we show for all the classes considered in Section 4.

Another line of work that is closely related to ours is the study of the two-player
simultaneous message passing model (SMP). This model can also allow to prove lower bounds
on F2-sketching complexity. Since our results hold for one-way communication they also hold
in the SMP model. Moreover, in the context of our work there is no substantial difference as
for product distributions the two models are essentially equivalent. Recent results in the
SMP model include [38, 30, 32].

While decision tree literature is not directly relevant to us since our model doesn’t
allow adaptivity we remark that there has been interest recently in the study of (adaptive)
deterministic parity decision trees [7] and non-adaptive deterministic parity decision trees [46,
44]. As mentioned above, our model can be interpreted as non-adaptive randomized parity
decision trees and to the best of our knowledge it hasn’t been studied explicitly before.
Another related model is that of parity kill numbers. In this model a composition theorem
has recently been shown by [41] but the key difference is again adaptivity.

Finally recent developements in the line of work on lifting theorems such as [15, 14] might
suggest that such results might be applied in our context. However for our purposes we
would need a lifting theorem for the XOR gadget and to the best of our knowledge no such
result is known for randomized one-way communication.

Organization

The rest of this paper is organized as follows. In Section 2 we introduce the required
background from communication complexity and Fourier analysis of Boolean functions. In
Section 3 we prove Theorem 4. In Section 4 we give applications of this theorem for recursive
majority (Theorem 5), address function, low-degree F2 polynomials and symmetric functions.
In Section 5 we describe applications to streaming.

In Appendix B we give some basic results about deterministic F2-sketching (or Fourier
dimension) of composition and convolution of functions. We also present a basic lower
bound argument based on affine dispersers. In Appendix C we give some basic results about
randomized F2-sketching including a lower bound based on extractors and a classic protocol
based on random parities which we use as a building block in our sketch for LTFs. We also
present evidence for why an analog of Theorem 14 doesn’t hold for arbitrary distributions. In
Appendix D we show a lower bound for one-bit protocols making progress towards resolving
Conjecture 3.

2 Preliminaries

For an integer n we use notation [n] = {1, . . . , n}. For integers n ≤ m we use notation
[n,m] = {n, . . . ,m}. For an arbitrary domain D we denote the uniform distribution over
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this domain as U(D). We use the notation x, x′ ∼ U(D) to denote that x and x′ are sampled
uniformly at random and independently from D. The variance of a random variable X is
denoted by Var[X]. For a vector x and p ≥ 1 we denote the p-norm of x as ‖x‖p and reserve
the notation ‖x‖0 for the Hamming weight.

2.1 Communication complexity
Consider a function f : Fn2 × Fn2 → F2 and a distribution µ over Fn2 × Fn2 . The one-way
distributional complexity of f with respect to µ, denoted as D→,µδ (f) is the smallest commu-
nication cost of a one-way deterministic protocol that outputs f(x, y) with probability at
least 1− δ over the inputs (x, y) drawn from the distribution µ. The one-way distributional
complexity of f denoted as D→δ (f) is defined as D→δ (f) = supµD

→,µ
δ (f). By Yao’s minimax

theorem [53] it follows that R→δ (f) = D→δ (f). One-way communication complexity over
product distributions is defined as D→,×δ (f) = supµ=µx×µy D

→,µ
δ (f) where µx and µy are

distributions over Fn2 .
With every two-party function f : Fn2 × Fn2 we associate a communication matrix Mf ∈

F2n×2n
2 with entries Mf

x,y = f(x, y). We say that a deterministic protocol M(x) with length t
of the message that Alice sends to Bob partitions the rows of this matrix into 2t combinatorial
rectangles where each rectangle contains all rows of Mf corresponding to the same fixed
message y ∈ {0, 1}t.

2.2 Fourier analysis
We consider functions11 from Fn2 to R. For any fixed n ≥ 1, the space of these functions forms
an inner product space with the inner product 〈f, g〉 = Ex∈Fn2

[f(x)g(x)] = 1
2n
∑
x∈Fn2

f(x)g(x).
The `2 norm of f : Fn2 → R is ‖f‖2 =

√
〈f, f〉 =

√
Ex[f(x)2] and the `2 distance between

two functions f, g : Fn2 → R is the `2 norm of the function f − g. In other words, ‖f − g‖2 =√
〈f − g, f − g〉 =

√
1

2n
∑
x∈Fn2

(f(x)− g(x))2.
For α ∈ Fn2 , the character χα : Fn2 → {+1,−1} is the function defined by χα(x) = (−1)α·x.

Characters form an orthonormal basis as 〈χα, χβ〉 = δαβ where δ is the Kronecker symbol.
The Fourier coefficient of f : Fn2 → R corresponding to α is f̂(α) = Ex[f(x)χα(x)]. The
Fourier transform of f is the function f̂ : Fn2 → R that returns the value of each Fourier
coefficient of f . We use notation Spec(f) = {α ∈ Fn2 : f̂(α) 6= 0} to denote the set of all
non-zero Fourier coefficients of f . The Fourier `1 norm, or the spectral norm of f , is defined
as ‖f̂‖1 :=

∑
α∈Fn2

|f̂(α)|.

I Fact 6 (Parseval’s identity). For any f : Fn2 → R it holds that

‖f‖2 = ‖f̂‖2 =
√∑
α∈Fn2

f̂(α)2.

Moreover, if f : Fn2 → {+1,−1} then ‖f‖2 = ‖f̂‖2 = 1.

We use notation A ≤ Fn2 to denote the fact that A is a linear subspace of Fn2 .

11 In all Fourier-analytic arguments Boolean functions are treated as functions of the form f : Fn
2 →

{+1,−1} where 0 is mapped to 1 and 1 is mapped to −1. Otherwise we use these two notations
interchangeably.
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I Definition 7 (Fourier dimension). The Fourier dimension of f : Fn2 → {+1,−1} denoted
as dim(f) is the smallest integer k such that there exists A ≤ Fn2 of dimension k for which
Spec(f) ⊆ A.

We say that A ≤ Fn2 is a standard subspace if it has a basis v1, . . . , vd where each vi has
Hamming weight equal to 1. An orthogonal subspace A⊥ is defined as:

A⊥ = {γ ∈ Fn2 : ∀x ∈ A γ · x = 0}.

An affine subspace (or coset) of Fn2 of the form A = H + a for some H ≤ Fn2 and a ∈ Fn2 is
defined as:

A = {γ ∈ Fn2 : ∀x ∈ H⊥ γ · x = a · x}.

We now introduce notation for restrictions of functions to affine subspaces.

I Definition 8. Let f : Fn2 → R and z ∈ Fn2 . We define f+z : Fn2 → R as f+z(x) = f(x+ z).

I Fact 9. The Fourier coefficients of f+z are f̂+z(γ) = (−1)γ·z f̂(γ) and hence:

f+z =
∑
S∈Fn2

f̂(S)χS(z)χS .

IDefinition 10 (Coset restriction). For f : Fn2 → R, z ∈ Fn2 andH ≤ Fn2 we write f+z
H : H → R

for the restriction of f to H + z.

IDefinition 11 (Convolution). For two functions f, g : Fn2 → R their convolution (f∗g) : Fn2 →
R is defined as (f ∗ g)(x) = Ey∼U(Fn2 ) [f(y)g(x+ y)].

For S ∈ Fn2 the corresponding Fourier coefficient of convolution is given as f̂ ∗ g(S) =
f̂(S)ĝ(S).

3 F2-sketching over the uniform distribution

We use the following definition of Fourier concentration that plays an important role in
learning theory [26]. As mentioned above in all Fourier-analytic arguments we replace the
range of the functions with {+1,−1}.

I Definition 12 (Fourier concentration). The spectrum of a function f : Fn2 → {+1,−1} is
ε-concentrated on a collection of Fourier coefficients Z ⊆ Fn2 if

∑
α∈Z f̂

2(α) ≥ ε.

We now introduce the notion of approximate Fourier dimension of a Boolean function.

I Definition 13 (Approximate Fourier dimension). Let Ak be the set of all linear subspaces of
Fn2 of dimension k. For f : Fn2 → {+1,−1} and ε ∈ (0, 1] the ε-approximate Fourier dimension
dimε(f) is defined as:

dimε(f) = min
{
k : ∃A ∈ Ak :

∑
α∈A

f̂2(α) ≥ ε
}
.

The following theorem shows that for uniformly distributed inputs, both the one-way
communication complexity of f+ and the linear sketch complexity of f are characterized
by the approximate Fourier dimension of f . An immediate corollary is that, up to some
slack in the dependence on the probability of error, the one-way communication complexity
under the uniform distribution matches the linear sketch complexity. We note that the lower
bounds given by this theorem are stronger than the basic extractor lower bound given in
Appendix C.1. See Remark C.1 for further discussion.
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8:10 Linear Sketching over F2

I Theorem 14. Let f : Fn2 → {+1,−1} be a Boolean function. Let ξ ∈ [0, 1] and γ < 1−
√
ξ

2 .
Let d = dimξ(f). Then,

1. D→,U(1−ξ)/2(f+) ≤ Dlin,U(1−ξ)/2(f) ≤ d, 2. Dlin,Uγ (f) ≥ d, 3. D→,U(1−ξ)/6 ≥
d

6 .

Proof.

Part 1. 12 Since d = dimξ(f), there exists a subspace A ≤ Fn2 of dimension at most d which
satisfies

∑
α∈A f̂

2(α) ≥ ξ. Let g : Fn2 → R be a function defined by its Fourier transform as
follows:

ĝ(α) =
{
f̂(α), if α ∈ A
0, otherwise.

Consider drawing a random variable θ from the distribution with p.d.f 1− |θ| over [−1, 1].

I Proposition 15. For all t such that −1 ≤ t ≤ 1 and z ∈ {+1,−1} random variable θ
satisfies:

Pr
θ

[sgn(t− θ) 6= z] ≤ 1
2(z − t)2.

Proof. W.l.o.g we can assume z = 1 as the case z = −1 is symmetric. Then we have:

Pr
θ

[sgn(t− θ) 6= 1] =
∫ 1

t

(1− |γ|)dγ ≤
∫ 1

t

(1− γ)dγ = 1
2(1− t)2. J

Define a family of functions gθ : Fn2 → {+1,−1} as gθ(x) = sgn(g(x)− θ). Then we have:

E
θ

[
Pr
x∼Fn2

[gθ(x) 6= f(x)]
]

= E
x∼Fn2

[
Pr
θ

[gθ(x) 6= f(x)]
]

= E
x∼Fn2

[
Pr
θ

[sgn(g(x)− θ) 6= f(x)]
]

≤ E
x∼Fn2

[
1
2(f(x)− g(x))2

]
(by Proposition 15)

= 1
2‖f − g‖

2
2.

Using the definition of g and Parseval we have:

1
2‖f − g‖

2
2 = 1

2‖f̂ − g‖
2
2 = 1

2‖f̂ − ĝ‖
2
2 = 1

2
∑
α/∈A

f̂2(α) ≤ 1− ξ
2 .

Thus, there exists a choice of θ such that gθ achieves error at most 1−ξ
2 . Clearly gθ can be

computed based on the d parities forming a basis for A and hence Dlin,U(1−ξ)/2(f) ≤ d.

12This argument is a refinement of the standard “sign trick” from learning theory which approximates a
Boolean function by taking a sign of its real-valued approximation under `2.
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Part 2. Fix any deterministic sketch that uses d − 1 parities χα1 , . . . , χαd−1 and let S =
(α1, . . . , αd−1). For fixed values of these sketches b = (b1, . . . , bd−1) where bi = χαi(x) we
denote the resulting affine restriction of f as f |(S,b). Using the standard expression for the
Fourier coefficients of an affine restriction the constant Fourier coefficient of the restricted
function is given as:

f̂ |(S,b)(∅) =
∑

Z⊆[d−1]

(−1)
∑

i∈Z
bi f̂

(∑
i∈Z

αi

)
.

Thus, we have:

f̂ |(S,b)
2
(∅) =

∑
Z⊆[d−1]

f̂2(
∑
i∈Z

αi) +
∑

Z1 6=Z2⊆[d−1]

(−1)
∑

i∈Z1∆Z2
bi
f̂(
∑
i∈Z1

αi)f̂(
∑
i∈Z2

αi).

Taking expectation over a uniformly random b ∼ U(Fd2) we have:

Eb∼U(Fd2)

[
f̂ |(S,b)

2
(∅)
]

=Eb∼U(Fd2)

 ∑
Z⊆[d−1]

f̂2

(∑
i∈Z

αi

)
+

∑
Z1 6=Z2⊆[d−1]

(−1)
∑

i∈Z1∆Z2
bi
f̂

(∑
i∈Z1

αi

)
f̂

(∑
i∈Z2

αi

)
=

∑
Z⊆[d−1]

f̂2

(∑
i∈Z

αi

)
.

The latter sum is the sum of squared Fourier coefficients over a linear subspace of
dimension d− 1 < dimξ(f), and hence is strictly less than ξ. Using Jensen’s inequality:

Eb∼U(Fd2)

[
|f̂ |(S,b)(∅)|

]
≤

√
Eb∼U(Fd2)

[
f̂ |(S,b)

2
(∅)
]
<
√
ξ.

For a fixed restriction (S, b) if |f̂ |(S,b)(∅)| < α then |Pr[f |(S,b) = 1]− Pr[f |(S,b) = −1]| < α

and hence no algorithm can predict the value of the restricted function on this coset with
probability at least 1+α

2 . Thus no algorithm can predict f |(α1,b1),...,(αd−1,bd−1) for a uniformly
random choice of (b1, . . . , bd−1), and hence also on a uniformly at random chosen x, with
probability at least 1+

√
ξ

2 .

Part 3. We will need the following fact about entropy of a binary random variable. The
proof is given in the appendix (Section A.1).

I Fact 16. For any random variable X supported on {1,−1}, H(X) ≤ 1− 1
2 (EX)2.

We will need the following proposition that states that random variables taking value in
{1,−1} that are highly biased have low variance. The proof of Proposition 17 can be found
in the appendix (Section E.1).

I Proposition 17. Let X be a random variable taking values in {1,−1}. Define p :=
minb∈{1,−1} Pr[X = b]. Then Var[X] ∈ [2p, 4p].
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In the next two lemmas, we look into the structure of a one-way communication protocol
for f+, and analyze its performance when the inputs are uniformly distributed. We give
a lower bound on the number of bits of information that any correct randomized one-way
protocol reveals about Alice’s input, in terms of the linear sketching complexity of f for
uniform distribution13.

The next lemma bounds the probability of error of a one-way protocol from below in
terms of the Fourier coefficients of f , and the conditional distributions of different parities of
Alice’s input conditioned on Alice’s random message.

I Lemma 18. Let ε ∈ [0, 1
2 ). Let Π be a deterministic one-way protocol for f+ such that

Prx,y∼U(Fn2 )[Π(x, y) 6= f+(x, y)] ≤ ε. Let M denote the distribution of the random message
sent by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm denote the
distribution of Alice’s input x conditioned on the event that M = m. Then,

4ε ≥
∑
α∈Fn2

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
[χα(x)]

)2
)
.

Proof. For any fixed input y of Bob, define ε(y)
m := Prx∼Dm [Π(x, y) 6= f+(x, y)]. Thus,

ε ≥ E
m∼M

E
y∼U(Fn2 )

[ε(y)
m ]. (1)

Note that the output of the protocol is determined by Alice’s message and y. Hence for
a fixed message and Bob’s input, if the restricted function is largely unbiased, then any
protocol is forced to commit an error with high probability. Formally,

ε(y)
m ≥ min

b∈{1,−1}
Pr

x∼Dm
[f+(x, y) = b] ≥ Varx∼Dm [f+(x, y)]

4 . (2)

Since f+(·, ·) takes values in {+1,−1}, the second inequality follows from Proposition 17.
Now,

Varx∼Dm [f+(x, y)] = 1−
(

E
x∼Dm

[f+(x, y)]
)2

(since f+(x, y) ∈ {1,−1})

= 1−

∑
α∈Fn2

f̂(α)χα(y) E
x∼Dm

[χα(x)]

2

(by Fact 9 and linearity of expectation)

= 1−

∑
α∈Fn2

f̂2(α)
(

E
x∼Dm

[χα(x)]
)2

+
∑

(α1,α2)∈Fn2×Fn2 :α1 6=α2

f̂(α1)f̂(α2)χα1+α2(y) E
x∼Dm

[χα1(x)] E
x∼Dm

[χα2(x)]

 .

Taking expectation over y we have:

E
y∼U(Fn2 )

[
Varx∼Dm [f+(x, y)]

]
= 1−

∑
α∈Fn2

f̂2(α)
(

E
x∼Dm

[χα(x)]
)2

. (3)

13We thus prove an information complexity lower bound. See, for example, [21] for an introduction to
information complexity.
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Taking expectation over messages it follows from (1), (2) and (3) that,

4ε ≥ 1−
∑
α∈Fn2

f̂2(α) · E
m∼M

(
E

x∼Dm
[χα(x)]

)2

=
∑
α∈Fn2

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
[χα(x)]

)2
)
. (4)

The second equality above follows from the Parseval’s identity (Fact 6). The lemma follows.
J

Let ε := 1−ξ
6 . Let Π be a deterministic protocol such that Prx,y∼U(Fn2 )[Π(x, y) 6= f+(x, y)] ≤ ε,

with optimal cost cΠ := D→,Uε (f+) = D→,U1−ξ
6

(f+). Let M denote the distribution of the
random message sent by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm
denote the distribution of Alice’s input x conditioned on the event that M = m. To prove
Part 3 of Theorem 14 we use the protocol Π to come up with a subspace of Fn2 . Next, in
Lemma 19 (a) we prove, using Lemma 18, that f is ξ-concentrated on that subspace. In
Lemma 19 (b) we upper bound the dimension of that subspace in terms of cΠ.

I Lemma 19. Let A := {α ∈ Fn2 : Em∼M (Ex∼Dm χα(x))2 ≥ 1
3} ⊆ Fn2 . Let ` = dim(span(A)).

Then,
(a) ` ≥ d.
(b) ` ≤ 6cΠ.

Proof. (a) We prove part (a) by showing that f is ξ-concentrated on span(A). By Lemma 18
we have that

4ε ≥
∑

α∈span(A)

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
χα(x)

)2
)

+

∑
α/∈span(A)

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
χα(x)

)2
)

>
2
3 ·

∑
α/∈span(A)

f̂2(α).

Thus
∑
α/∈span(A) f̂

2(α) < 6ε. Hence,
∑
α∈span(A) f̂

2(α) ≥ 1 − 6ε = ξ. Hence we have
` = dim(span(A)) ≥ dimξ(f) = d.

(b) Notice that χα(x) is a unbiased random variable taking values in {1,−1}. For each α
in the set A in Proposition 19, the value of Em∼M (Ex∼Dm χα(x))2 is bounded away from
0. This suggests that for a typical message m drawn from M , the distribution of χα(x)
conditioned on the event M = m is significantly biased. Fact 16 enables us to conclude
that Alice’s message reveals Ω(1) bit of information about χα(x). However, since the total
information content of Alice’s message is at most cΠ, there can be at most O(cΠ) independent
vectors in A. Now we formalize this intuition.
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8:14 Linear Sketching over F2

Let T = {α1, . . . , α`} be a basis of span(A). Then,

cΠ ≥ H(M) (by the third inequality of Fact 45 (1))
≥ I(M ;χα1(x), . . . , χα`(x)) (by observation 47)
= H(χα1(x), . . . , χα`(x))−H(χα1(x), . . . , χα`(x) |M)
= `−H(χα1(x), . . . , χα`(x) |M)

(by Fact 45 (3) as χαi(x)’s are independent as random variables)

≥ `−
∑̀
i=1

H(χαi(x) |M) (by Fact 45 (2))

≥ `− `
(

1− 1
2 ·

1
3

)
(by Fact 16)

= `

6 . J

Recall that cΠ = D→,U1−ξ
6

(f+). Part 3 of Theorem 14 follows easily from Lemma 19:

D→,U1−ξ
6

(f+) = cΠ

≥ `

6 (by Lemma 19 (b))

≥ d

6 . (by Lemma 19 (a)) J

The proof of Theorem 4 now follows directly from Part 1 and Part 3 of Theorem 14 by
setting ξ = 1/3.

4 Applications

In this section using Theorem 14 we confirm Conjecture 3 for several funcion classes: low-
degree F2 polynomials, functions with sparse Fourier spectrum and symmetric functions
(which are not too imbalanced). We also give an example of a composition theorem using
recursive majority function as an example.

4.1 Low-degree F2 polynomials
In this section we show that for Boolean functions with low F2-degree randomness does not
help in the design of linear sketches or one-way communication protocols. We briefly review
some basic definitions, facts and results below.

I Fact 20. For every Boolean function f : Fn2 → F2 there is a unique n-variate polynomial
p ∈ F2[x1, . . . , xn] such that for every (x1, . . . , xn) ∈ Fn2 , f(x1, . . . , xn) = p(x1, . . . , xn).

The uniqueness of this representation in particular implies that the only F2 polynomial
representing the constant 0 function is the polynomial 0. Taking the contrapositive, we have
that for every non-constant F2 polynomial there is an assignment to its input variables on
which the polynomial evaluates to 1.

The degree of p is referred to as the F2-degree of f . We will need the following standard
result which states that a function with low F2-degree cannot vanish on too many points in
its domain. For the sake of completion, we add a proof of it in the appendix (Section E.2).
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I Lemma 21. Let f be a Boolean function different than the constant 0 function with F2
degree d. Then,

Pr
x∼U(Fn2 )

[f(x) = 1] ≥ 1
2d .

In this section we prove the following theorem.

I Theorem 22. Let f : Fn2 → F2 be a Boolean function, and let the F2-degree of f be d.
Then,

Dlin(f) = dim(f) = O
(
R→1/3(f+) · d

)
.

Proof. Let ` = Dlin,U1
4·2d

(f). This implies that there is a set P = {P1, . . . , P`} of at most `

parities and a Boolean function g such that Prx∼U(Fn2 )[f(x) 6= g(P1(x), . . . , P`(x))] ≤ 1
4·2d .

We now prove that Dlin(f) (or equivalently Fourier dimension) of f is at most `. That will
prove the theorem as:

Dlin,U1
4·2d

(f) = O

(
D→,U1

12·2d
(f+)

)
,

D→,U1
12·2d

(f+) = O
(
R→1

12·2d
(f+)

)
,

R→1
12·2d

(f+) = O
(
R→1/3(f+) · d

)
.

where the first relation follows by invoking parts 1 and 3 of Theorem 14 with ξ = 1− 1
2d+1 ,

the second relation holds by fixing the randomness of a randomized one-way protocol
appropriately, and the third relation is true because the error of a randomized one-way
protocol can be reduced from 1/3 to 1

12·2d by taking the majority of O(d) independent parallel
repetitions.

It is left to prove that Dlin(f) ≤ `. We prove it by showing that evaluations of all the
parities in the set P determine the value of f . For each b = (b1, . . . , b`) ∈ F`2, let Vb denote
the affine subspace {x ∈ Fn2 : P1(x) = b1, . . . , P`(x) = b`} and define:

pb := Pr
x∼U(Vb)

[f(x) 6= g(P1(x), . . . , P`(x))] = Pr
x∼U(Vb)

[f(x) 6= g(b1, . . . , b`)].

Note that:

pb ≥ min{ Pr
x∼U(Vb)

[f(x) = 0], Pr
x∼U(Vb)

[f(x) = 1]} ≥ 1
2 Pr
x,x′∼U(Vb)

[f(x) 6= f(x′)]. (5)

Given this observation, define F : Fn2 × Fn2 → F2 as follows. For x, x′ ∈ Fn2 let:

F (x, x′) := 1f(x)6=f(x′) = f(x) + f(x′) mod 2.

Note that F2-degree of F is at most d. Now,

Pr
x∼U(Fn2 )

[f(x) 6= g(P1(x), . . . , P`(x))] ≤ 1
4 · 2d

⇒ Eb∼U(F`2)

[
Pr

x∼U(Vb)
[f(x) 6= g(b1, . . . , b`)]

]
≤ 1

4 · 2d

⇒ Eb∼U(F`2) [pb] ≤
1

4 · 2d

⇒ Eb∼U(F`2)

[
Pr

x,x′∼U(Vb)
[f(x) 6= f(x′)]

]
≤ 1

2 · 2d (From equation (5))

⇒ Eb∼U(F`2)

[
Pr

x,x′∼U(Vb)
[F (x, x′) = 1]

]
≤ 1

2 · 2d (6)
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8:16 Linear Sketching over F2

Let V denote the subspace {(x, x′) ∈ Fn2 × Fn2 : P1(x) = P1(x′), . . . , P`(x) = P`(x′)} of
Fn2 × Fn2 . From 6 we have that

Pr
(x,x′)∼U(V )

[F (x, x′) = 1] ≤ 1
2 · 2d <

1
2d . (7)

Since F2-degree of F is at most d, restriction of F to V also has F2 degree at most d.
Equation 7 and Fact 21 imply that F is the constant 0 function on V . Thus for each x, x′
such that P1(x) = P1(x′), . . . , P`(x) = P`(x′), f(x) = f(x′). Thus f(x) is a function of
P1(x), . . . , P`(x). Hence, Fourier dimension of f is at most `. J

For low-degree polynomials with bounded spectral norm we obtain the following corollary.

I Corollary 23. Let f : Fn2 → F2 be a Boolean function of F2-degree d. Then

Dlin(f) = dim(f) = O
(
d · ‖f̂‖21

)
.

Proof. The proof follows from the result of Grolmusz [17, 38] that shows that R→1/3(f+) =
O(‖f̂‖21) and Theorem 22. J

This result should be compared with Corollary 6 in Tsang et al. [49] who show that
Dlin(f) = O(2d3/2 logd

2
‖f̂‖1). Corollary 23 gives a stronger bound for d = ω

(
log1/3 ‖f̂‖1

)
.

4.2 Address function and Fourier sparsity
Consider the addressing function Addn : {0, 1}logn+n → {0, 1} defined as follows14:

Addn(x, y1, . . . , yn) = yx, where x ∈ {0, 1}logn, yi ∈ {0, 1},

i.e. the value of Addn on an input (x, y) is given by the x-th bit of the vector y where
x is treated as a binary representation of an integer number in between 1 and n. Here
x is commonly referred to as the address block and y as the addressee block. Addressing
function has only n2 non-zero Fourier coefficients. In fact, as shown by Sanyal [44] the
Fourier dimension, and hence by Fact 48 also the deterministic sketch complexity, of any
Boolean function with Fourier sparsity s is O(

√
s log s).

Below using the addressing function we show that this relationship is tight (up to a
logarithmic factor) even if randomization is allowed, i.e. even for a function with Fourier
sparsity s an F2 sketch of size Ω(

√
s) might be required.

I Theorem 24. For the addressing function Addn and values 1 ≤ d ≤ n and ξ > d/n it
holds that:

Dlin,U
1−
√
ξ

2

(Add+
n ) > d, D→,U1−ξ

6
(Addn) > d

6 .

Proof. If we apply the standard Fourier notation switch where we replace 0 with 1 and 1
with −1 in the domain and the range of the function then the addressing function Addn(x, y)
can be expressed as the following multilinear polynomial:

Addn(x, y) =
∑

i∈{0,1}logn

yi
∏

j : ij=1

(
1− xj

2

) ∏
j : ij=0

(
1 + xj

2

)
,

14 In this section it will be more convenient to represent both domain and range of the function using
{0, 1} rather than F2.
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which makes it clear that the only non-zero Fourier coefficents correspond to the sets that
contain a single variable from the addressee block and an arbitrary subset of variables
from the address block. This expansion also shows that the absolute value of each Fourier
coefficient is equal to 1

n .
Fix any d-dimensional subspace Ad and consider the matrix M ∈ Fd×(logn+n)

2 composed
of the basis vectors as rows. We add to M extra logn rows which contain an identity
matrix in the first logn coordinates and zeros everywhere else. This gives us a new matrix
M ′ ∈ F(d+logn)×(logn+n)

2 . Applying Gaussian elimination to M ′ we can assume that it is of
the following form:

M ′ =

Ilogn 0 0
0 Id′ M ′′

0 0 0

 ,

where d′ ≤ d. Thus, the total number of non-zero Fourier coefficients spanned by the rows of
M ′ equals nd′. Hence, the total sum of squared Fourier coeffients in Ad is at most d′

n ≤
d
n ,

i.e. dimξ(Addn) > d. By Part 2 and Part 3 of Theorem 14 the statement of the theorem
follows. J

4.3 Symmetric functions
A function f : Fn2 → F2 is symmetric if it can be expressed as g(‖x‖0) for some function
g : [0, n]→ F2. We give the following lower bound for symmetric functions:

I Theorem 25 (Lower bound for symmetric functions). For any symmetric function f : Fn2 →
F2 that isn’t (1− ε)-concentrated on {∅, {1, . . . , n}}:

Dlin,Uε/8 (f) ≥ n

2e , D→,Uε/12 (f+) ≥ n

2e .

Proof. First we prove an auxiliary lemma. LetWk be the set of all vectors in Fn2 of Hamming
weight k.

I Lemma 26. For any d ∈ [n/2], k ∈ [n− 1] and any d-dimensional subspace Ad ≤ Fn2 :

|Wk ∩ Ad|
|Wk|

≤
(
ed

n

)min(k,n−k,d)
≤ ed

n
.

Proof. Fix any basis in Ad and consider the matrix M ∈ Fd×n2 composed of the basis vectors
as rows. W.l.o.g we can assume that this matrix is diagonalized and is in the standard form
(Id,M ′) where Id is a d × d identity matrix and M ′ is a d × (n − d)-matrix. Clearly, any
linear combination of more than k rows of M has Hamming weight greater than k just from
the contribution of the first d coordinates. Thus, we have |Wk ∩ Ad| ≤

∑k
i=0
(
d
i

)
.

For any k ≤ d it is a standard fact about binomials that
∑k
i=0
(
d
i

)
≤
(
ed
k

)k. On the
other hand, we have |Wk| =

(
n
k

)
≥ (n/k)k. Thus, we have |Wk∩Ad|

|Wk| ≤
(
ed
n

)k and hence for
1 ≤ k ≤ d the desired inequality holds.

If d < k then consider two cases. Since d ≤ n/2 the case n− d ≤ k ≤ n− 1 is symmetric
to 1 ≤ k ≤ d. If d < k < n− d then we have |Wk| > |Wd| ≥ (n/d)d and |Wk ∩ Ad| ≤ 2d so
that the desired inequality follows. J

Any symmetric function has its spectrum distributed uniformly over Fourier coefficients
of any fixed weight. Let wi =

∑
S∈Wi

f̂2(S). By the assumption of the theorem we have
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∑n−1
i=1 wi ≥ ε. Thus, by Lemma 26 any linear subspace Ad of dimension at most d ≤ n/2

satisfies that:

∑
S∈Ad

f2(S) ≤ f̂2(∅) + f̂2({1, . . . , n}) +
n−1∑
i=1

wi
|Wi ∩ Ad|
|Wi|

≤ f̂2(∅) + f̂2({1, . . . , n}) +
n−1∑
i=1

wi
ed

n

≤ (1− ε) + ε
ed

n
.

Thus, f isn’t 1 − ε(1 − ed
n )-concentrated on any d-dimensional linear subspace, i.e.

dimξ(f) > d for ξ = 1− ε(1− ed
n ). By Part 2 of Theorem 14 this implies that f doesn’t have

randomized sketches of dimension at most d which err with probability less than:

1
2 −

√
1− ε(1− ed

n )
2 ≥ ε

4

(
1− ed

n

)
≥ ε

8

where the last inequality follows by the assumption that d ≤ n
2e . The communication

complexity lower bound follows by Part 3 of Theorem 14 by setting d = n
2e . J

4.4 Composition theorem for majority
In this section using Theorem 14 we give a composition theorem for F2-sketching of the
composedMaj3 function. Unlike in the deterministic case for which the composition theorem
is easy to show (see Lemma 53) in the randomized case composition results require more
work.

I Definition 27 (Composition). For f : Fn2 → F2 and g : Fm2 → F2 their composition f ◦
g : Fmn2 → F2 is defined as:

(f ◦ g)(x) = f(g(x1, . . . , xm), g(xm+1, . . . , x2m), . . . , g(xm(n−1)+1, . . . , xmn)).

Consider the recursive majority function Maj◦k3 ≡Maj3 ◦Maj3 ◦ · · · ◦Maj3 where the
composition is taken k times.

I Theorem 28. For any d ≤ n, k = log3 n and ξ > 4d
n it holds that dimξ

(
Maj◦k3

)
> d.

First, we show a slighthly stronger result for standard subspaces and then extend this result
to arbitrary subspaces with a loss of a constant factor. Fix any set S ⊆ [n] of variables. We
associate this set with a collection of standard unit vectors corresponding to these variables.
Hence in this notation ∅ corresponds to the all-zero vector.

I Lemma 29. For any standard subspace whose basis consists of singletons from the set
S ⊆ [n] it holds that:∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2
≤ |S|

n

Proof. The Fourier expansion of Maj3 is given as

Maj3(x1, x2, x3) = 1
2 (x1 + x2 + x3 − x1x2x3) .
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For i ∈ {1, 2, 3} let Ni = {(i− 1)n/3 + 1, . . . , in/3}. Let Si = S ∩Ni. Let αi be defined as:

αi =
∑

Z∈span(Si)

(
̂Maj◦k−1

3 (Z)
)2

.

Then we have:∑
Z∈span(S)

(
M̂aj◦k3 (Z)

)2
=

3∑
i=1

∑
Z∈span(Si)

(
M̂aj◦k3 (Z)

)2
+

∑
Z∈span(S)−∪3

i=1span(Si)

(
M̂aj◦k3 (Z)

)2
.

For each Si we have∑
Z∈span(Si)

(
M̂aj◦k3 (Z)

)2
= 1

4
∑

Z∈span(Si)

(
̂Maj◦k−1

3 (Z)
)2

= αi
4 .

Moreover, for each Z ∈ span(S)− ∪3
i=1span(Si) we have:

M̂aj◦k3 (Z) =
{
− 1

2
̂Maj◦k−1

3 (Z1) ̂Maj◦k−1
3 (Z2) ̂Maj◦k−1

3 (Z3) if Z ∈ ×3
i=1(span(Si) \ ∅)

0 otherwise.

Thus, we have: ∑
Z∈(span(S1)\∅)×(span(S2)\∅)×(span(S3)\∅)

(
M̂aj◦k3 (Z)

)2

=
∑

Z∈(span(S1)\∅)×(span(S2)\∅)×(span(S3)\∅)

1
4

(
̂Maj◦k−1

3 (Z1)
)2
·
(

̂Maj◦k−1
3 (Z2)

)2
·

(
̂Maj◦k−1

3 (Z3)
)2

= 1
4

 ∑
Z∈(span(S1)\∅)

(
̂Maj◦k−1

3 (Z1)
)2
 ·

 ∑
Z∈(span(S2)\∅)

(
̂Maj◦k−1

3 (Z2)
)2
 ·

 ∑
Z∈(span(S3)\∅)

(
̂Maj◦k−1

3 (Z3)
)2


= 1
4α1α2α3.

where the last equality holds since ̂Maj◦k−1
3 (∅) = 0. Putting this together we have:∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2
= 1

4(α1 + α2 + α3 + α1α2α3)

≤ 1
4

(
α1 + α2 + α3 + 1

3(α1 + α2 + α3)
)

= 1
3(α1 + α2 + α3).

Applying this argument recursively to each αi for k − 1 times we have:

∑
Z∈span(S)

(
M̂aj◦k3 (Z)

)2
≤ 1

3k
3k∑
i=1

γi,

where γi = 1 if i ∈ S and 0 otherwise. Thus,
∑
Z∈span(S)

(
M̂aj◦k3 (Z)

)2
≤ |S|n . J
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To extend the argument to arbitrary linear subspaces we show that any such subspace has
less Fourier weight than a collection of three carefully chosen standard subspaces. First we
show how to construct such subspaces in Lemma 30.

For a linear subspace L ≤ Fn2 we denote the set of all vectors in L of odd Hamming
weight as O(L) and refer to it as the odd set of L. For two vectors v1, v2 ∈ Fn2 we say that
v1 dominates v2 if the set of non-zero coordinates of v1 is a (not necessarily proper) subset
of the set of non-zero coordinates of v2. For two sets of vectors S1, S2 ⊆ Fn2 we say that S1
dominates S2 (denoted as S1 ≺ S2) if there is a matching M between S1 and S2 of size |S2|
such that for each (v1 ∈ S1, v2 ∈ S2) ∈M the vector v1 dominates v2.

I Lemma 30 (Standard subspace domination lemma). For any linear subspace L ≤ Fn2 of
dimension d there exist three standard linear subspaces S1, S2, S3 ≤ Fn2 such that:

O(L) ≺ O(S1) ∪ O(S2) ∪ O(S3),

and dim(S1) = d− 1, dim(S2) = d, dim(S3) = 2d.

Proof. Let A ∈ Fd×n2 be the matrix with rows corresponding to the basis in L. We will
assume that A is normalized in a way described below. First, we apply Gaussian elimination
to ensure that A = (I,M) where I is a d × d identity matrix. If all rows of A have even
Hamming weight then the lemma holds trivially since O(L) = ∅. By reordering rows and
columns of A we can always assume that for some k ≥ 1 the first k rows of A have odd
Hamming weight and the last d− k have even Hamming weight. Finally, we add the first
column to each of the last d− k rows, which makes all rows have odd Hamming weight. This
results in A of the following form:

A =



1 0 · · · 0 0 · · · 0 a

0
Ik−1 0 M1...

0
1

0 Id−k M2...
1


We use the following notation for submatrices: A[i1, j1; i2, j2] refers to the submatrix of A
with rows between i1 and j1 and columns between i2 and j2 inclusive. We denote to the
first row by v, the submatrix A[2, k; 1, n] as A and the submatrix A[k + 1, d; 1, n] as B. Each
x ∈ O(L) can be represented as

∑
i∈S Ai where the set S is of odd size and the sum is over

Fn2 . We consider the following three cases corresponding to different types of the set S.

Case 1. S ⊆ rows(A) ∪ rows(B). This corresponds to all odd size linear combinations of
the rows of A that don’t include the first row. Clearly, the set of such vectors is dominated
by O(S1) where S1 is the standard subspace corresponding to the span of the rows of the
submatrix A[2, d; 2, d].

Case 2. S contains the first row, |S ∩ rows(A)| and |S ∩ rows(B)| are even. All such linear
combinations have their first coordinate equal 1. Hence, they are dominated by a standard
subspace corresponding to span of the rows the d× d identity matrix, which we refer to as
S2.
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Case 3. S contains the first row, |S ∩ rows(A)| and |S ∩ rows(B)| are odd. All such linear
combinations have their first coordinate equal 0. This implies that the Hamming weight of
the first d coordinates of such linear combinations is even and hence the other coordinates
cannot be all equal to 0. Consider the submatrix M = A[1, d; d+ 1, n] corresponding to the
last n − d columns of A. Since the rank of this matrix is at most d by running Gaussian
elimination on M we can construct a matrix M ′ containing as rows the basis for the row
space of M of the following form:

M ′ =
(
It M1
0 0

)
where t = rank(M). This implies that any non-trivial linear combination of the rows of
M contains 1 in one of the first t coordinates. We can reorder the columns of A in such
a way that these t coordinates have indices from d+ 1 to d+ t. Note that now the set of
vectors spanned by the rows of the (d+ t)× (d+ t) identity matrix Id+t dominates the set
of linear combinations we are interested in. Indeed, each such linear combination has even
Hamming weight in the first d coordinates and has at least one coordinate equal to 1 in the
set {d+ 1, . . . , d+ t}. This gives a vector of odd Hamming weight that dominates such linear
combination. Since this mapping is injective we have a matching. We denote the standard
linear subspace constructed this way by S3 and clearly dim(S3) ≤ 2d. J

The following proposition shows that the spectrum of the Maj◦k3 is monotone decreasing
under inclusion if restricted to odd size sets only:

I Proposition 31. For any two sets Z1 ⊆ Z2 of odd size it holds that:∣∣∣M̂aj◦k3 (Z1)
∣∣∣ ≥ ∣∣∣M̂aj◦k3 (Z2)

∣∣∣ .
Proof. The proof is by induction on k. Consider the Fourier expansion of Maj3(x1, x2, x3) =
1
2 (x1 + x2 + x3 − x1x2x3). The case k = 1 holds since all Fourier coefficients have absolute
value 1/2. Since Maj◦k3 = Maj3 ◦ (Maj◦k−1

3 ) all Fourier coefficients of Maj◦k3 result from
substituting either a linear or a cubic term in the Fourier expansion by the multilinear
expansions of Maj◦k−1

3 . This leads to four cases.

Case 1. Z1 and Z2 both arise from linear terms. In this case if Z1 and Z2 aren’t disjoint
then they arise from the same linear term and thus satisfy the statement by the inductive
hypothesis.

Case 2. If Z1 arises from a cubic term and Z2 from the linear term then it can’t be the
case that Z1 ⊆ Z2 since Z2 contains some variables not present in Z1.

Case 3. If Z1 and Z2 both arise from the cubic term then we have (Z1∩Ni) ⊆ (Z2∩Ni) for

each i. By the inductive hypothesis we then have
∣∣∣∣ ̂Maj◦k−1

3 (Z1 ∩Ni)
∣∣∣∣ ≥ ∣∣∣∣ ̂Maj◦k−1

3 (Z2 ∩Ni)
∣∣∣∣.

Since for j = 1, 2 we have M̂aj◦k3 (Zj) = − 1
2
∏
i

̂Maj◦k−1
3 (Zj ∩ Ni) the desired inequality

follows.

Case 4. If Z1 arises from the linear term and Z2 from the cubic term then w.l.o.g. assume
that Z1 arises from the x1 term. Note that Z1 ⊆ (Z2 ∩N1) since Z1 ∩ (N2 ∪N3) = ∅. By
the inductive hypothesis applied to Z1 and Z2 ∩N1 the desired inequality holds. J
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We can now complete the proof of Theorem 28

Proof of Theorem 28. By combining Proposition 31 and Lemma 29 we have that any set T of
vectors that is dominated by O(S) for some standard subspace S satisfies

∑
S∈T M̂aj◦k3 (S)2 ≤

dim(S)
n . By the standard subspace domination lemma (Lemma 30) any subspace L ≤ Fn2 of

dimension d has O(L) dominated by a union of three standard subspaces of dimension 2d, d
and d− 1 respectively. Thus, we have

∑
S∈O(L) M̂aj◦k3 (S)2 ≤ 2d

n + d
n + d−1

n ≤
4d
n . J

We have the following corollary of Theorem 28 that proves Theorem 5.

I Corollary 32. For any ε ∈ [0, 1
2 ], ξ > 4ε2 and k = log3 n it holds that:

Dlin,U
1−
√
ξ

2

(Maj◦k3 ) > ε2n, D→,U1−ξ
6

(Maj◦k3
+) > ε2n

6 .

Proof. Fix d = ε2n. For this choice of d Theorem 28 implies that for ξ > 4ε2 it holds tha t
dimξ

(
Maj◦k3

)
> d. The first part follows from Part 2 of Theorem 14. The second part is by

Part 3 of Theorem 14. J

5 Streaming algorithms over F2

Let ei be the standard unit vector in Fn2 . In the turnstile streaming model the input x ∈ Fn2
is represented as a stream σ = (σ1, σ2, . . . ) where σi ∈ {e1, . . . , en}. For a stream σ the
resulting vector x corresponds to its frequency vector freq σ ≡

∑
i σi. Concatenation of two

streams σ and τ is denoted as σ ◦ τ .

5.1 Random streams
In this section we show how to translate our results in Section 3 and 4 into lower bounds for
streaming algorithms. We consider the following two natural models of random streams over
F2:

Model 1. In the first model we start with x ∈ Fn2 that is drawn from the uniform distribution
over Fn2 and then apply a uniformly random update y ∼ U(Fn2 ) obtaining x + y. In the
streaming language this corresponds to a stream σ = σ1 ◦ σ2 where freq σ1 ∼ U(Fn2 ) and
freq σ2 ∼ U(Fn2 ). A specific example of such stream would be one where for both σ1 and σ2
we flip an unbiased coin to decide whether or not to include a vector ei in the stream for
each value of i. The expected length of the stream in this case is n.

Model 2. In the second model we consider a stream σ which consists of uniformly random
updates. Let σi = er(i) where r(i) ∼ U([n]). This corresponds to each update being a flip
in a coordinate of x chosen uniformly at random. This model is equivalent to the previous
model but requires longer streams to mix. Using coupon collector’s argument such streams
of length Θ(n logn) can be divided into two substreams σ1 and σ2 such that with high
probability both freq σ1 and freq σ2 are uniformly distributed over Fn2 and σ = σ1 ◦ σ2.

I Theorem 33. Let f : Fn2 → F2 be an arbitrary function. In the two random streaming
models for generating σ described above any algorithm that computes f(freq σ) with probability
at least 8/9 in the end of the stream has to use space that is at least Dlin,U1/3 (f).
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Proof. The proof follows directly from Theorem 4 as in both models we can partition the
stream into σ1 and σ2 such that freq σ1 and freq σ2 are both distributed uniformly over Fn2 .
We treat these two frequency vectors as inputs of Alice and Bob in the communication game.
Since communication D→,U1/9 (f+) ≥ Dlin,U1/3 (f) is required no streaming algorithm with less
space exists as otherwise Alice would transfer its state to Bob with less communication. J

Using the same proof as in Theorem 33 it follows that all the lower bounds in Section 4
hold for both random streaming models described above.

5.2 Adversarial streams
We now show that any randomized turnstile streaming algorithm for computing f : Fn2 → F2
with error probability δ has to use space that is at least Rlin6δ (f)−O(logn+ log(1/δ)) under
adversarial sequences of updates. The proof is based on the recent line of work that shows that
this relationship holds for real-valued sketches [10, 31, 1]. The proof framework developed
by [10, 31, 1] for real-valued sketches consists of two steps. First, a turnstile streaming
algorithm is converted into a path-independent stream automaton (Definition 35). Second,
using the theory of modules and their representations it is shown that such automata can
always be represented as linear sketches. We observe that the first step of this framework
can be left unchanged under F2. However, as we show the second step can be significantly
simplified as path-independent automata over F2 can be directly seen as linear sketches
without using module theory. Furthermore, since we are working over F2 we also avoid the
O(logm) factor loss in the reduction between path independent automata and linear sketches
that is present in [10].

We use the following abstraction of a stream automaton from [10, 31, 1] adapted to our
context to represent general turnstile streaming algorithms over F2.

I Definition 34 (Deterministic Stream Automaton). A deterministic stream automaton A is a
Turing machine that uses two tapes, an undirectional read-only input tape and a bidirectional
work tape. The input tape contains the input stream σ. After processing the input, the
automaton writes an output, denoted as φA(σ), on the work tape. A configuration (or state)
of A is determined by the state of its finite control, head position, and contents of the work
tape. The computation of A can be described by a transition function ⊕A : C × F2 → C,
where C is the set of all possible configurations. For a configuration c ∈ C and a stream
σ, we denote by c⊕A σ the configuration of A after processing σ starting from the initial
configuration c. The set of all configurations of A that are reachable via processing some
input stream σ is denoted as C(A). The space of A is defined as S(A) = log |C(A)|.

We say that a deterministic stream automaton computes a function f : Fn2 → F2 over a
distribution Π if Prσ∼Π[φA(σ) = f(freq σ)] ≥ 1− δ.

IDefinition 35 (Path-independent automaton). An automatonA is said to be path-independent
if for any configuration c and any input stream σ, c⊕A σ depends only on freq σ and c.

I Definition 36 (Randomized Stream Automaton). A randomized stream automaton A is
a deterministic automaton with an additional tape for the random bits. This random
tape is initialized with a random bit string R before the automaton is executed. During
the execution of the automaton this bit string is used in a bidirectional read-only manner
while the rest of the execution is the same as in the deterministic case. A randomized
automaton A is said to be path-independent if for each possible fixing of its randomness R
the deterministic automaton AR is path-independent. The space complexity of A is defined
as S(A) = maxR(|R|+ S(AR)).
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Theorems 5 and 9 of [31] combined with the observation in Appendix A of [1] that
guarantees path independence yields the following:

I Theorem 37 (Theorems 5 and 9 in [31] + [1]). Suppose that a randomized stream automaton
A computes f on any stream with probability at least 1 − δ. For an arbitrary distribution
Π over streams there exists a deterministic15 path independent stream automaton B that
computes f with probability 1− 6δ over Π such that S(B) ≤ S(A) +O(logn+ log(1/δ)).

The rest of the argument below is based on the work of Ganguly [10] adopted for our
needs. Since we are working over a finite field we also avoid the O(logm) factor loss in
the reduction between path independent automata and linear sketches that is present in
Ganguly’s work.

Let An be a path-independent stream automaton over F2 and let⊕ abbreviate⊕An . Define
the function ∗ : Fn2×C(An)→ C(An) as: x∗a = a⊕σ, where freq(σ) = x. Let o be the initial
configuration of An. The kernel MAn of An is defined as MAn = {x ∈ Fn2 : x ∗ o = 0n ∗ o}.

I Proposition 38. The kernel MAn of a path-independent automaton An is a linear subspace
of Fn2 .

Proof. For x, y ∈MAn by path independence (x+y)∗o = x∗(y∗o) = 0n∗o so x+y ∈MAn . J

Since MAn ≤ Fn2 the kernel partitions Fn2 into cosets of the form x+MAn . Next we show
that there is a one to one mapping between these cosets and the states of An.

I Proposition 39. For x, y ∈ Fn2 and a path independent automaton An with a kernel MAn

it holds that x ∗ o = y ∗ o if and only if x and y lie in the same coset of MAn .

Proof. By path independence x ∗ o = y ∗ o iff x ∗ (x ∗ o) = x ∗ (y ∗ o) or equivalently
0n ∗ o = (x+ y) ∗ o. The latter condition holds iff x+ y ∈MAn which is equivalent to x and
y lying in the same cost of MAn . J

The same argument implies that the the transition function of a path-independent automaton
has to be linear since (x+ y) ∗ o = x ∗ (y ∗ o). Combining these facts together we conclude
that a path-independent automaton has at least as many states as the best deterministic
F2-sketch for f that succeeds with probability at least 1 − 6δ over Π (and hence the best
randomized sketch as well). Putting things together we get:

I Theorem 40. Any randomized streaming algorithm that computes f : Fn2 → F2 under
arbitrary updates over F2 with error probability at least 1− δ has space complexity at least
Rlin6δ (f)−O(logn+ log(1/δ)).
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A Information theory

Let X be a random variable supported on a finite set {x1, . . . , xs}. Let E be any event in
the same probability space. Let P[·] denote the probability of any event. The conditional
entropy H(X | E) of X conditioned on E is defined as follows.

I Definition 41 (Conditional entropy).

H(X | E) :=
s∑
i=1

P[X = xi | E ] log2
1

P[X = xi | E ]

An important special case is when E is the entire sample space. In that case the above
conditional entropy is referred to as the Shannon entropy H(X) of X.

I Definition 42 (Entropy).

H(X) :=
s∑
i=1

P[X = xi] log2
1

P[X = xi]

Let Y be another random variable in the same probability space as X, taking values from a
finite set {y1, . . . , yt}. Then the conditional entropy of X conditioned on Y , H(X | Y ), is
defined as follows.

I Definition 43.

H(X | Y ) =
t∑
i=1

P[Y = yi] ·H(X | Y = yi)

We next define the binary entropy function Hb(·).

I Definition 44 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hb(p), is defined
to be the Shannon entropy of a random variable taking two distinct values with probabilities
p and 1− p.

Hb(p) := p log2
1
p

+ (1− p) log 1
1− p .

http://dx.doi.org/10.1561/0400000060
http://dx.doi.org/10.1016/j.tcs.2010.03.027
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The following properties of entropy and conditional entropy will be useful.

I Fact 45.
(1) Let X be a random variable supported on a finite set A, and let Y be another random

variable in the same probability space. Then 0 ≤ H(X | Y ) ≤ H(X) ≤ log2 |A|.
(2) (Sub-additivity of conditional entropy). Let X1, . . . , Xn be n jointly distributed random

variables in some probability space, and let Y be another random variable in the same
probability space, all taking values in finite domains. Then,

H(X1, . . . , Xn | Y ) ≤
n∑
i=1

H(Xi | Y ).

(3) Let X1, . . . , Xn are independent random variables taking vakues in finite domains. Then,

H(X1, . . . , Xn) =
n∑
i=1

H(Xi).

(4) (Taylor expansion of binary entropy in the neighbourhood of 1
2 ).

Hb(p) = 1− 1
2 loge 2

∞∑
n=1

(1− 2p)2n

n(2n− 1)

I Definition 46 (Mutual information). Let X and Y be two random variables in the same
probability space, taking values from finite sets. The mutual information between X and Y ,
I(X;Y ), is defined as follows.

I(X;Y ) := H(X)−H(X | Y ).

It can be shown that I(X;Y ) is symmetric in X and Y , i.e. I(X;Y ) = I(Y ;X) = H(Y )−
H(Y | X).
The following observation follows immediately from the first inequality of Fact 45 (1).

I Observation 47. For any two random variables X and Y , I(X;Y ) ≤ H(X).

A.1 Proof of Fact 16

Let EX = δ. Then,

H(X) =
{

1 with probability 1
2 + δ

2
−1 with probability 1

2 −
δ
2

So,

H(X) = Hb

(
1
2 + δ

2

)
= 1− 1

2 loge 2

∞∑
n=1

δ2n

n(2n− 1) (From Fact 45 (4))

≤ 1− δ2

2 .
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B Deterministic F2-sketching

In the deterministic case it will be convenient to represent F2-sketch of a function f : Fn2 → F2
as a d× n matrix Mf ∈ Fd×n2 that we call the sketch matrix. The d rows of Mf correspond
to vectors α1, . . . , αd used in the deterministic sketch so that the sketch can be computed
as Mfx. W.l.o.g below we will assume that the sketch matrix Mf has linearly independent
rows and that the number of rows in it is the smallest possible among all sketch matrices
(ties in the choice of the sketch matrix are broken arbitrarily).

The following fact is standard (see e.g. [38, 16]):

I Fact 48. For any function f : Fn2 → F2 it holds that Dlin(f) = dim(f) = rank(Mf ).
Moreover, set of rows of Mf forms a basis for a subspace A ≤ Fn2 containing all non-zero
coefficients of f .

B.1 Disperser argument

We show that the following basic relationship holds between deterministic linear sketching
complexity and the property of being an affine disperser. For randomized F2-sketching an
analogous statement holds for affine extractors as shown in Lemma 56.

I Definition 49 (Affine disperser). A function f is an affine disperser of dimension at least
d if for any affine subspace of Fn2 of dimension at least d the restriction of f on it is a
non-constant function.

I Lemma 50. Any function f : Fn2 → F2 which is an affine disperser of dimension at least d
has deterministic linear sketching complexity at least n− d+ 1.

Proof. Assume for the sake of contradiction that there exists a linear sketch matrix Mf with
k ≤ n− d rows and a deterministic function g such that g(Mfx) = f(x) for every x ∈ Fn2 .
For any vector b ∈ Fk2 , which is in the span of the columns of Mf , the set of vectors x which
satisfy Mfx = b forms an affine subspace of dimension at least n − k ≥ d. Since f is an
affine disperser for dimension at least d the restriction of f on this subspace is non-constant.
However, the function g(Mfx) = g(b) is constant on this subspace and thus there exists x
such that g(Mfx) 6= f(x), a contradiction. J

B.2 Composition and convolution

In order to prove a composition theorem for Dlin we introduce the following operation on
matrices which for a lack of a better term we call matrix super-slam16.

I Definition 51 (Matrix super-slam). For two matrices A ∈ Fa×n2 and B ∈ Fb×m2 their
super-slam A † B ∈ Fab

n×nm
2 is a block matrix consisting of a blocks (A † B)i. The i-th

block (A † B)i ∈ Fb
n×nm

2 is constructed as follows: for every vector j ∈ {1, . . . , b}n the
corresponding row of (A †B)i is defined as (Ai,1Bj1 , Ai,2Bj2 , . . . , Ai,nBjn), where Bk denotes
the kth row of B.

I Proposition 52. rank(A †B) ≥ rank(A)rank(B).

16This name was suggested by Chris Ramsey.



S. Kannan, E. Mossel, S. Sanyal, and G. Yaroslavtsev 8:31

Proof. Consider the matrix C which is a subset of rows of A†B where from each block (A†B)i
we select only b rows corresponding to the vectors j of the form αn for all α ∈ {1, . . . , b}.
Note that C ∈ Fab×mn2 and C(i,k),(j,l) = Ai,jBk,l. Hence, C is a Kronecker product of A and
B and we have:

rank(A †B) ≥ rank(C) = rank(A)rank(B). J

The following composition theorem for Dlin holds as long as the inner function is balanced:

I Lemma 53. For f : Fn2 → F2 and g : Fm2 → F2 if g is a balanced function then:

Dlin(f ◦ g) ≥ Dlin(f)Dlin(g)

Proof. The multilinear expansions of f and g are given as f(y) =
∑
S∈Fn2

f̂(S)χS(y) and
g(y) =

∑
S∈Fm2

ĝ(S)χS(y). The multilinear expansion of f ◦ g can be obtained as follows. For
each monomial f̂(S)χS(y) in the multilinear expansion of f and each variable yi substitute
yi by the multilinear expansion of g on a set of variables xm(i−1)+1,...,mi. Multiplying all
these multilinear expansions corresponding to the term f̂(S)χS gives a polynomial which is
a sum of at most bn monomials where b is the number of non-zero Fourier coefficients of g.
Each such monomial is obtained by picking one monomial from the multilinear expansions
corresponding to different variables in χS and multiplying them. Note that there are no
cancellations between the monomials corresponding to a fixed χS . Moreover, since g is
balanced and thus ĝ(∅) = 0 all monomials corresponding to different characters χS and χS′
are unique since S and S′ differ on some variable and substitution of g into that variable
doesn’t have a constant term but introduces new variables. Thus, the characteristic vectors
of non-zero Fourier coefficients of f ◦ g are the same as the set of rows of the super-slam of
the sketch matrices Mf and Mg (note, that in the super-slam some rows can be repeated
multiple times but after removing duplicates the set of rows of the super-slam and the set of
characteristic vectors of non-zero Fourier coefficients of f ◦ g are exactly the same). Using
Proposition 52 and Fact 48 we have:

Dlin(f ◦ g) = rank(Mf◦g) = rank(Mf †Mg) ≥ rank(Mf )rank(Mg) = Dlin(f)Dlin(g).J

Deterministic F2-sketch complexity of convolution satisfies the following property:

I Proposition 54. Dlin(f ∗ g) ≤ min(Dlin(f), Dlin(g)).

Proof. The Fourier spectrum of convolution is given as f̂ ∗ g(S) = f̂(S)ĝ(S). Hence, the set
of non-zero Fourier coefficients of f ∗ g is the intersection of the sets of non-zero coefficients of
f and g. Thus by Fact 48 we have Dlin(f ∗g) ≤ min(rank(Mf ,Mg)) = min(Dlin(f), Dlin(g)).

J

C Randomized F2-sketching

We represent randomized F2-sketches as distributions over d × n matrices over F2. For a
fixed such distributionMf the randomized sketch is computed asMfx. If the set of rows of
Mf satisfies Definition 1 for some reconstruction function g then we call it a randomized
sketch matrix for f .
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C.1 Extractor argument

We now establish a connection between randomized F2-sketching and affine extractors which
will be used to show that the converse of Part 1 of Theorem 14 doesn’t hold for arbitrary
distributions.

I Definition 55 (Affine extractor). A function f : Fn2 → F2 is an affine δ-extractor if for any
affine subspace A of Fn2 of dimension at least d it satisfies:

min
z∈{0,1}

Pr
x∼U(A)

[f(x) = z] > δ.

I Lemma 56. For any f : Fn2 → F2 which is an affine δ-extractor of dimension at least d it
holds that:

Rlinδ (f) ≥ n− d+ 1.

Proof. For the sake of contradiction assume that there exists a randomized linear sketch
with a reconstruction function g : Fk2 → F2 and a randomized sketch matrixMf which is a
distribution over matrices with k ≤ n− d rows. First, we show that:

Pr
x∼U(Fn2 )M∼Mf

[g(Mx) 6= f(x)] > δ.

Indeed, fix any matrix M ∈ supp(Mf ). For any affine subspace S of the form S = {x ∈
Fn2 |Mx = b} of dimension at least n− k ≥ d we have that minz∈{0,1} Prx∼U(S)[f(x) = z] > δ.
This implies that Prx∼U(S)[f(x) 6= g(Mx)] > δ. Summing over all subspaces corresponding
to the fixed M and all possible choices of b we have that Prx∼U(Fn2 )[f(x) 6= g(Mx)] > δ.
Since this holds for any fixed M the bound follows.

Using the above observation it follows by averaging over x ∈ {0, 1}n that there exists
x∗ ∈ {0, 1}n such that:

Pr
M∼Mf

[g(Mx∗) 6= f(x∗)] > δ.

This contradicts the assumption thatMf and g form a randomized linear sketch of dimension
k ≤ n− d. J

I Fact 57. The inner product function IP (x1, . . . xn) =
∑n/2
i=1 x2i−1 ∧ x2i is an (1/2− ε)-

extractor for affine subspaces of dimension ≥ (1/2 + α)n where ε = exp(−αn).

I Corollary 58. Randomized linear sketching complexity of the inner product function is at
least n/2−O(1).

I Remark. We note that the extractor argument of Lemma 56 is often much weaker than the
arguments we give in Part 2 and Part 3 Theorem 14 and wouldn’t suffice for our applications
in Section 4. In fact, the extractor argument is too weak even for the majority function
Majn. If the first 100

√
n variables of Majn are fixed to 0 then the resulting restriction has

value 0 with probability 1− e−Ω(n). Hence for constant error Majn isn’t an extractor for
dimension greater than 100

√
n. However, as shown in Section 4.3 for constant error F2-sketch

complexity of Majn is linear.
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C.2 Existential lower bound for arbitrary distributions
Now we are ready to show that an analog of Part 1 of Theorem 14 doesn’t hold for arbitrary
distributions, i.e. concentration on a low-dimensional linear subspace doesn’t imply existence
of randomized linear sketches of small dimension.

I Lemma 59. For any fixed constant ε > 0 there exists a function f : Fn2 → {+1,−1} such
that Rlinε/8(f) ≥ n− 3 logn such that f is (1− 2ε)-concentrated on the 0-dimensional linear
subspace.

Proof. The proof is based on probabilistic method. Consider a distribution over functions
from Fn2 to {+1,−1} which independently assigns to each x value 1 with probability 1− ε/4
and value −1 with probability ε/4. By a Chernoff bound with probability e−Ω(ε2n) a random
function f drawn from this distribution has at least an ε/2-fraction of −1 values and hence
f̂(∅) = 1

2n
∑
α∈Fn2

f(x) ≥ 1− ε. This implies that f̂(∅)2 ≥ (1− ε)2 ≥ 1− 2ε so f is (1− 2ε)-
concentrated on a linear subspace of dimension 0. However, as we show below the randomized
sketching complexity of some functions in the support of this distribution is large.

The total number of affine subspaces of codimension d is at most (2 · 2n)d = 2(n+1)d since
each such subspace can be specified by d vectors in Fn2 and a vector in Fd2. The number
of vectors in each such affine subspace is 2n−d. The probability that less than ε/8 fraction
of inputs in a fixed subspace have value −1 is by a Chernoff bound at most e−Ω(ε2n−d).
By a union bound the probability that a random function takes value −1 on less than ε/8
fraction of the inputs in any affine subspace of codimension d is at most e−Ω(ε2n−d)2(n+1)d.
For d ≤ n− 3 logn this probability is less than e−Ω(εn). By a union bound, the probability
that a random function is either not an ε/8-extractor or isn’t (1− 2ε)-concentrated on f̂(∅)
is at most e−Ω(εn) + e−Ω(ε2n) � 1. Thus, there exists a function f in the support of our
distribution which is an ε/8-extractor for any affine subspace of dimension at least 3 logn
while at the same time is (1 − 2ε)-concentrated on a linear subspace of dimension 0. By
Lemma 56 there is no randomized linear sketch of dimension less than n− 3 logn for f which
errs with probability less than ε/8. J

C.3 Random F2-sketching
The following result is folklore as it corresponds to multiple instances of the communication
protocol for the equality function [27, 11] and can be found e.g. in [38] (Proposition 11). We
give a proof for completeness.

I Fact 60. A function f : Fn2 → F2 such that minz∈{0,1} Prx[f(x) = z] ≤ ε satisfies

Rlinδ (f) ≤ log ε2
n+1

δ
.

Proof. We assume that argminz∈{0,1} Prx[f(x) = z] = 1 as the other case is symmetric.
Let T = {x ∈ Fn2 |f(x) = 1}. For every two inputs x 6= x′ ∈ T a random F2-sketch χα for
α ∼ U(Fn2 ) satisfies Pr[χα(x) 6= χα(x′)] = 1/2. If we draw t such sketches χα1 , . . . , χαt then
Pr[χαi(x) = χαi(x′),∀i ∈ [t]] = 1/2t. For any fixed x ∈ T we have:

Pr[∃x′ 6= x ∈ T ∀i ∈ [t] : χαi(x) = χαi(x′)] ≤
|T | − 1

2t ≤ ε2n

2t ≤
δ

2 .

Conditioned on the negation of the event above for a fixed x ∈ T the domain of f is
partitioned by the linear sketches into affine subspaces such that x is the only element of T in
the subspace that contains it. We only need to ensure that we can sketch f on this subspace
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which we denote as A. On this subspace f is isomorphic to an OR function (up to taking
negations of some of the variables) and hence can be sketched using O(log 1/δ) uniformly
random sketches with probability 1 − δ/2. For the OR-function existence of the desired
protocol is clear since we just need to verify whether there exists at least one coordinate of
the input that is set to 1. In case it does exist a random sketch contains this coordinate with
probability 1/2 and hence evaluates to 1 with probability at least 1/4. Repeating O(log 1/δ)
times the desired guarantee follows. J

D Towards the proof of Conjecture 3

We call a function f : Fn2 → {+1,−1} non-linear if for all S ∈ Fn2 there exists x ∈ Fn2 such
that f(x) 6= χS(x). Furthermore, we say that f is ε-far from being linear if:

max
S∈Fn2

[
Pr

x∼U(Fn2 )
[χS(x) = f(x)]

]
= 1− ε.

The following theorem is our first step towards resolving Conjecture 3. Since non-linear
functions don’t admit 1-bit linear sketches we show that the same is also true for the
corresponding communication complexity problem, namely no 1-bit communication protocol
for such functions can succeed with a small constant error probability.

I Theorem 61. For any non-linear function f that is at most 1/10-far from linear D→1/200(f+)
> 1.

Proof. Let S = arg maxT
[
Prx∈Fn2

[χT (x) = f(x)
]
. Pick z ∈ Fn2 such that f(z) 6= χS(z). Let

the distribution over the inputs (x, y) be as follows: y ∼ U(Fn2 ) and x ∼ Dy where Dy is
defined as:

Dy =
{

y + z with probability 1/2,
U(Fn2 ) with probability 1/2.

Fix any deterministic Boolean function M(x) that is used by Alice to send a one-bit message
based on her input. For a fixed Bob’s input y he outputs gy(M(x)) for some function gy that
can depend on y. Thus, the error that Bob makes at predicting f for fixed y is at least:

1−
∣∣Ex∼Dy [gy(M(x))f(x+ y)]

∣∣
2 .

The key observation is that since Bob only receives a single bit message there are only four
possible functions gy to consider for each y: constants −1/1 and ±M(x).

Bounding error for constant estimators

For both constant functions we introduce notation Bcy =
∣∣Ex∼Dy [gy(M(x))f(x+ y)]

∣∣ and
have:

Bcy =
∣∣Ex∼Dy [gy(M(x))f(x+ y)]

∣∣ = |Ex∼Dy [f(x+ y)]| =
∣∣∣∣12f(z) + 1

2Ew∼U(Fn2 )[f(w)]
∣∣∣∣

If χS is not constant then
∣∣Ew∼U(Fn2 )[f(w)]

∣∣ ≤ 2ε we have:∣∣∣∣12f(z) + 1
2Ew∼U(Fn2 )[f(w)]

∣∣∣∣ ≤ 1
2
(
|f(z)|+

∣∣Ew∼U(Fn2 )[f(w)]
∣∣) ≤ 1/2 + ε.
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If χS is a constant then w.l.o.g χS = 1 and f(z) = −1. Also Ew∼U(Fn2 )[f(w)] ≥ 1− 2ε.
Hence we have:∣∣∣∣12f(z) + 1

2Ew∼U(Fn2 )[f(w)]
∣∣∣∣ = 1

2
∣∣−1 + Ew∼U(Fn2 )[f(w)]

∣∣ ≤ ε.
Since ε ≤ 1/10 in both cases Bcy ≤ 1

2 + ε which is the bound we will use below.

Bounding error for message-based estimators

For functions ±M(x) we need to bound
∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣. We denote this expression
as BMy . Proposition 62 shows that Ey[BMy ] ≤

√
2

2 (1 + ε).

I Proposition 62. Ey∼U(Fn2 )
[∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣] ≤ √2
2 (1 + ε).

We have:

Ey
[∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣]
= Ey

[∣∣∣∣12 (M(y + z)f(z) + Ex∼Dy [M(x)f(x+ y)]
)∣∣∣∣]

= 1
2Ey [|(M(y + z)f(z) + (M ∗ f)(y))|]

≤ 1
2

(
Ey
[
((M(y + z)f(z) + (M ∗ f)(y)))2

])1/2

= 1
2
(
Ey
[(

(M(y + z)f(z))2 + ((M ∗ f)(y))2 + 2M(y + z)f(z)(M ∗ f)(y))
)])1/2

= 1
2
(
Ey
[(

(M(y + z)f(z))2]+ Ey
[
((M ∗ f)(y))2]+

2Ey [M(y + z)f(z)(M ∗ f)(y)))])1/2

We have (M(y + z)f(z))2 = 1 and also by Parseval, expression for the Fourier spectrum
of convolution and Cauchy-Schwarz:

Ey[((M ∗ f)(y))2] =
∑
S∈Fn2

M̂ ∗ f(S)2 =
∑
S∈Fn2

M̂(S)2f̂(S)2 ≤ ||M ||2||f ||2 = 1

Thus, it suffices to give a bound on E[M(y + z)f(z)(M ∗ f)(y))]. First we give a bound
on (M ∗ f)(y):

(M ∗ f)(y) = Ex[M(x)f(x+ y)] ≤ Ex[M(x)χS(x+ y)] + 2ε

Plugging this in we have:

Ey[M(y + z)f(z)(M ∗ f)(y))]
= −χS(z)Ey[M(y + z)(M ∗ f)(y))]
≤ −χS(z)Ey [M(y + z)(M ∗ χS)(y)] + 2ε
= −χS(z)(M ∗ (M ∗ χS))(z) + 2ε

= −χS(z)2M̂(S)2 + 2ε
≤ 2ε.

where we used the fact that the Fourier spectrum of (M ∗ (M ∗ χS)) is supported on S only
and ̂M ∗ (M ∗ χS)(S) = M̂2(S) and thus (M ∗ (M ∗ χS))(z) = M̂2(S)χS(z).

Thus, overall, we have:

Ey
[∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣] ≤ 1
2
√

2 + 4ε ≤
√

2
2 (1 + ε). J
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Putting things together

We have that the error that Bob makes is at least:

Ey

[
1−max(Bcy, BMy )

2

]
=

1− Ey[max(Bcy, BMy )]
2

Below we now bound Ey[max(Bcy, BMy )] from above by 99/100 which shows that the error is
at least 1/200.

Ey[max(Bcy, BMy )]

= Pr[BMy ≥ 1/2 + ε]E[BMy |BMy ≥ 1/2 + ε] + Pr[BMy < 1/2 + ε]
(

1
2 + ε

)
= Ey[BMy ] + Pr[BMy < 1/2 + ε]

(
1
2 + ε− E[BMy |BMy < 1/2 + ε]

)
Let δ = Pr[BMy < 1/2 + ε]. Then the first of the expressions above gives the following bound:

Ey[max(Bcy, BMy )] ≤ (1− δ) + δ

(
1
2 + ε

)
= 1− δ

2 + εδ ≤ 1− δ

2 + ε

The second expression gives the following bound:

Ey[max(Bcy, BMy )] ≤
√

2
2 (1 + ε) + δ

(
1
2 + ε

)
≤
√

2
2 + δ

2 +
√

2
2 ε+ ε.

These two bounds are equal for δ = 1 −
√

2
2 (1 + ε) and hence the best of the two bounds

is always at most (
√

2
4 + 1

2 ) + ε
(√

2
4 + 1

)
≤ 99

100 where the last inequality uses the fact that
ε ≤ 1

10 .

E Auxiliary Proofs

E.1 Proof of Proposition 17
Without loss of generality assume that p = Pr[X = 1]

Var[X] = E[X2]− (E[X])2

= 1− (E[X])2 (X2 = 1 as X is supported on {1,-1})
= 1− (p · 1 + (1− p)(−1))2

= 1− (2p− 1)2)
= 4p(1− p)

Since p ≤ 1
2 , 4(1− p) ∈ [2, 4] and the proposition follows.

E.2 Proof of Lemma 21
Let p ∈ F2[x1, . . . , xn] be the F2-polynomial corresponding to f . Fix one monomialM =
Πi∈Sxi of the largest degree. Thus |S| = d. We will show that for each assignment aS to the
variables outside of S, there is an assignment aS to the variables in S such that p(aS , aS) = 1.
This will prove that there are at least 2n−d assignments on which p evaluates to 1, and will
thus imply the lemma.
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To this end, fix an assignment aS to the variables in S. Let p |S←a
S

be the polynomial
obtained from p by setting the variables in S according to aS . Notice that sinceM was a
monomial of largest degree in p,M continues to be a monomial in p |S←a

S

. Thus p |S←a
S

is
a non-constant polynomial in the variables {xi | i ∈ S}. In particular, this implies that there
exists an assignment aS to the variables in S, such that p |S←a

S

(aS) = 1 (see the discussion
in the paragraph after fact 20). This in turn implies that p(aS , aS) = 1.
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Abstract
We study problems in randomized communication complexity when the protocol is only required
to attain some small advantage over purely random guessing, i.e., it produces the correct output
with probability at least ε greater than one over the codomain size of the function. Previously,
Braverman and Moitra (STOC 2013) showed that the set-intersection function requires Θ(εn)
communication to achieve advantage ε. Building on this, we prove the same bound for several
variants of set-intersection: (1) the classic “tribes” function obtained by composing with And
(provided 1/ε is at most the width of the And), and (2) the variant where the sets are uniquely
intersecting and the goal is to determine partial information about (say, certain bits of the index
of) the intersecting coordinate.
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1 Introduction

In randomized communication complexity, protocols are commonly required to succeed with
probability at least some constant less than 1, such as 3/4. Achieving success probability
one over the codomain size of the function is trivial by outputting a uniformly random guess.
There is a spectrum of complexities between these extremes, where we require a protocol
to achieve success probability ε greater than one over the codomain size, i.e., advantage ε.
We study the fine-grained question “How does the communication complexity of achieving
advantage ε depend on ε?”

Formally, for a two-party function F , let Rp(F ) denote the minimum worst-case com-
munication cost of any randomized protocol (with both public and private coins) that is
p-correct in the sense that for each input (X,Y ) in the domain of F , it outputs F (X,Y )
with probability at least p.

First let us consider functions with codomain size 2. One observation is that running
an advantage-ε protocol O(1/ε2) times independently and taking the majority outcome
yields an advantage-1/4 protocol (we call this “majority-amplification”); i.e., R1/2+ε(F ) ≥
Ω(ε2R3/4(F )). However, this does not tell the whole story; achieving advantage ε may be
harder than this bound suggests, depending on the function. For example, consider the well-
studied functions Inner-Prod (inner product mod 2), Set-Inter (set-intersection, where
1-inputs are intersecting), and Gap-Hamming (determining whether the Hamming distance
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is ≥ n/2 +
√
n or ≤ n/2−

√
n). Each of these three functions F satisfies R3/4(F ) = Θ(n),

and yet
R1/2+ε(Inner-Prod) = Θ(n) provided ε ≥ 2−o(n) [19, §3.5–3.6 and references therein];
R1/2+ε(Set-Inter) = Θ(εn) provided εn ≥ 1 [3, 12];
R1/2+ε(Gap-Hamming) = Θ(ε2n) provided ε2n ≥ 1 [7, 23, 22].

(We provide a proof of the Gap-Hamming upper bound in the full version.)
Hence it is naturally interesting to study the dependence of the complexity on ε for

different important functions, in order to build a more complete understanding of randomized
communication. For functions with codomain size greater than 2, small-advantage protocols
are not even amenable to amplification, so no lower bounds for them follow a priori from
lower bounds for higher-advantage protocols.

The functions we study are defined using composition. Letting g : X × Y → {0, 1} be a
two-party total function (usually called a gadget), and f : {0, 1}n → {0, 1} be a (possibly
partial) function, the two-party composed (possibly partial) function f ◦gn : Xn×Yn → {0, 1}
is defined by (f ◦ gn)(X,Y ) := f

(
g(X1, Y1), . . . , g(Xn, Yn)

)
where X = (X1, . . . , Xn) and

Y = (Y1, . . . , Yn) with Xi ∈ X and Yi ∈ Y for each i. Sometimes, the outer function f itself
will be defined using standard function composition.

In the functions Andm and Orm, the subscript indicates the number of input bits.

1.1 Tribes
Just as Set-Inter is the canonical NP-complete communication problem, so-called Tribes
is the canonical Π2P-complete communication problem. A linear randomized lower bound for
Tribes (with constant advantage) was shown in [17] using information complexity (thereby
giving a nearly optimal (quadratic) separation between the (NP ∩ coNP)-type and BPP-type
communication complexity measures for a total function). This spawned a line of research
on the communication complexity of read-once formulas [16, 20, 15, 9]. An alternative
proof of the lower bound for Tribes was given in [13] using the smooth rectangle bound
technique introduced by [14, 7]. A multi-party version of Tribes has been studied in the
message-passing model [8].

Analogously to Set-Interm := Orm ◦Andm2 , we have the definition

Tribes`,m := And` ◦Or`m ◦And`×m2 = And` ◦ Set-Inter`m.

We always assume m ≥ 2 (since if m = 1 then Tribes`,m is trivially computable with
constant communication). Note that the outer function And` ◦Or`m takes a boolean `×m
matrix and indicates whether every row has at least one 1. For Tribes`,m, Alice and Bob
each get such a matrix, and the above function is applied to the bitwise And of the two
matrices.

I Theorem 1. R1/2+ε(Tribes`,m) = Θ(ε`m) provided ε` ≥ 1.

The upper bound is shown as follows. Let M denote the boolean ` ×m matrix that
is fed into And` ◦Or`m. Consider the protocol in which Alice and Bob publicly sample a
uniformly random set of 4ε` rows, evaluate all the bits of M in those rows (using O(ε`m)
communication), and accept iff each of those rows of M contains at least one 1. For a 1-input,
this rejects with probability 0, and for a 0-input it finds an all-0 row (and hence rejects) with
probability at least 4ε. Now if we modify the above protocol so it rejects automatically with
probability 1/2− ε and otherwise proceeds as before, then it rejects 1-inputs with probability
1/2 − ε and 0-inputs with probability at least (1/2 − ε) + (1/2 + ε) · 4ε ≥ 1/2 + ε. The
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provision ε` ≥ 1 was stated cleanly to ensure that we can round 4ε` up to an integer without
affecting the asymptotic complexity. (If ε` ≤ o(1) then just evaluating a single row of M
takes ω(ε`m) communication.) The lower bound, which we prove in Section 2, does not
require this provision.

Let us describe why the Ω(ε`m) lower bound does not follow straightforwardly from
known results. First of all, applying standard majority-amplification to the known Ω(`m)
lower bound for constant advantage only yields an Ω(ε2`m) lower bound. What about the
technique used by [12] to give a simplified proof of the tight ε-advantage lower bound for
Set-Inter? Let us summarize this technique (known as “and-amplification”) as applied
to the complement function Set-Disj: Running an ε-advantage protocol O(1/ε) times, and
accepting iff all runs accept, yields a so-called SBP-type protocol, for which the complexity is
characterized by the corruption bound. Hence the ε-advantage complexity is always at least
Ω(ε) times the corruption bound (which is Ω(n) for Set-Disjn by [21]). Applied to Tribes`,m
(or its complement), the and-amplification technique can only yield an essentially Ω(ε ·
max(`,m)) lower bound, since Tribes`,m has an O(` logm)-communication nondeterministic
(in particular, SBP-type) protocol and an O(m+ log `)-communication conondeterministic
(in particular, coSBP-type) protocol.

Can we leverage the known smooth rectangle lower bound for Tribes√n,√n [13]? The
smooth rectangle bound in general characterizes the complexity of so-called WAPP-type
protocols [14, 10]. Thus if we could “amplify” an ε-advantage protocol into a (sufficiently-
large-constant-advantage) WAPP-type protocol with o(1/ε2) factor overhead, we would get
a nontrivial ε-advantage lower bound for Tribes√n,√n. However, the smooth rectangle
lower bound for Gap-Hamming [7] shows that this cannot always be done, i.e., an Ω(1/ε2)
overhead is sometimes necessary (at least for general partial functions).

Instead, our basic approach to prove the lower bound in Theorem 1 is to combine the
information complexity techniques of [3] (developed for the ε-advantage lower bound for
Set-Inter) with the information complexity techniques of [17] (developed for the constant-
advantage lower bound for Tribes). However, in trying to combine these techniques, there
are a variety of technical hurdles, which require several new ideas to overcome.

1.2 What if ε` ≤ o(1)?
As mentioned above, when ε` ≤ o(1), our proof of the O(ε`m) upper bound for Tribes`,m
breaks down. So what upper bound can we give in this case? Let us restrict our attention to
` = 2 (and let ε > 0 be arbitrary).

First of all, notice that the communication protocol in Section 1.1 is actually a query
complexity (a.k.a. decision tree complexity) upper bound for the outer function. A com-
munication protocol for any composed function (with constant-size gadget) can simulate a
decision tree for the outer function, using constant communication to evaluate the output
of each gadget when queried by the decision tree. In the next paragraph, we describe an
O(
√
εm)-query ε-advantage randomized decision tree for And2 ◦Or2

m (thus showing that
R1/2+ε(Tribes2,m) ≤ O(

√
εm) provided

√
εm ≥ 1).

Say the input is z = (z1, z2) ∈ {0, 1}m × {0, 1}m. Consider the following randomized
decision tree: Pick S1, S2 ⊆ [m] both of size 2

√
εm, independently uniformly at random, and

accept iff z1|S1 and z2|S2 each contain at least one 1. For a 1-input, each of these two events
happens with probability at least 2

√
ε, so they happen simultaneously with probability at

least 4ε. For a 0-input, one of the two events never happens, and hence this accepts with
probability 0. Now if we modify the above randomized decision tree so it accepts automatically
with probability 1/2 − ε and otherwise proceeds as before, then it accepts 0-inputs with
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probability 1/2− ε and 1-inputs with probability at least (1/2− ε) + (1/2 + ε) · 4ε ≥ 1/2 + ε,
and queries at most O(

√
εm) bits.

We conjecture that this communication upper bound is tight, i.e., R1/2+ε(Tribes2,m) ≥
Ω(
√
εm). This remains open, but we at least prove the query complexity version of this

conjecture, which can be construed as evidence for the communication version. (The query
complexity measure Rdt

p (f) is defined in the natural way.)

I Theorem 2. Rdt
1/2+ε(And2 ◦Or2

m) = Θ(
√
εm) provided

√
εm ≥ 1.

We prove the lower bound of Theorem 2 in Section 3. There are some known powerful
“simulation theorems” (e.g., [10]) for converting query lower bounds for an outer function
into matching communication lower bounds for a composed function; however, we lack a
simulation theorem powerful enough to convert Theorem 2 into a communication lower
bound. Furthermore, we have not found a way to emulate the query lower bound proof with
information complexity tools to get a communication lower bound.

1.3 Which part contains the intersecting coordinate?
We now turn our attention away from Tribes.

Suppose Alice and Bob are given uniquely intersecting subsets X and Y from a universe
of size n that is partitioned into ` ≥ 2 equal-size parts, and they wish to identify which
part contains the intersection. Of course, they can succeed with probability 1/` by random
guessing without communicating about their sets. To do better they can use the following
protocol.

Alice and Bob publicly sample a uniformly random subset S of size 2εn
They exchange X ∩ S and Y ∩ S using 4εn bits of communication
If S ∩X ∩ Y 6= ∅ they output the label of the part containing the known point of
intersection
Otherwise they publicly sample and output a uniformly random part label

This protocol succeeds with probability 2ε+ (1− 2ε)/` = 1/`+ (1− 1/`) · 2ε ≥ 1/`+ ε. We
prove that this is optimal: Ω(εn) communication is necessary to achieve advantage ε.2

We state this using the following notation. Define the partial function Which` : {0, 1}` →
[`] that takes a string of Hamming weight 1 and outputs the coordinate of the only 1.
Define the “unambiguous-or” function Unambig-Orm as Orm restricted to the domain
of strings of Hamming weight 0 or 1. Define the “unambiguous-set-intersection” function3
Unambig-Interm := Unambig-Orm ◦Andm2 .

I Theorem 3. R1/`+ε(Which` ◦Unambig-Inter`m) = Θ(ε`m) provided ε`m ≥ 1.

We prove the lower bound in Section 4.
The key to the proof is in relating the complexity of Which` ◦ F ` to the complexity

of F (for an arbitrary two-party F with boolean output). It is natural to conjecture that
the complexity goes up by roughly a factor of ` after composition with Which`; this is
an alternative form of direct sum problem. In the standard direct sum setting, the goal
is to evaluate F on each of ` independent inputs; our form is equivalent but under the

2 We mention that there is some prior work studying a peripherally related topic: the randomized
complexity of “finding the exact intersection” [2, 5, 6], albeit not restricting the size of the intersection.

3 Sometimes this is called “unique-set-intersection”, but our terminology is more consistent with classical
complexity; see [11].
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promise that one of the inputs evaluates to 1 and the rest to 0. Thus proving the direct sum
conjecture (factor ` increase in complexity) appears qualitatively harder in our setting than
in the standard setting. We show an information complexity version of the conjecture, and
we combine this with [3] to derive Theorem 3.

For worst-case communication, we at least show that the complexity does not go down
after composition with Which`. In particular, this yields a simple proof of a communication
lower bound due to [18] which implies the communication complexity class separation
UP ∩ coUP 6⊆ BPP. The proof in [18] is technically somewhat involved, exploiting a “fine-
tuned” version of Razborov’s corruption lemma [21]; our simple proof of the same lower
bound is by a black-box reduction to the standard (constant-advantage) lower bound for
Unambig-Inter.

1.4 Preliminaries

We first note that it suffices to prove our lower bounds for And` ◦Or`m ◦And`×m2 (Theorem
1) and Which` ◦Unambig-Or`m ◦And`×m2 (Theorem 3) with And2 replaced by a different
two-party gadget, namely the equality function on trits 3Eq : {0, 1, 2} × {0, 1, 2} → {0, 1}
(3Eq(X,Y ) = 1 iff X = Y ). This is because 3Eq reduces to Unambig-Or3 ◦And3

2 (with
Alice and Bob both mapping their trit to its characteristic bit vector of Hamming weight 1),
and thus Unambig-Orm ◦ 3Eqm reduces to Unambig-Or3m ◦And3m

2 , and Orm ◦ 3Eqm

reduces to Or3m ◦And3m
2 .

We now mention some notational conventions. We use P for probability, E for expectation,
H for Shannon entropy, I for mutual information, D for relative entropy, and ∆ for statistical
(total variation) distance. We use bold letters to denote random variables, and non-bold
letters for particular outcomes. We use ∈u to denote that a random variable is distributed
uniformly over some set.

All protocols Π are randomized and have both public and private coins, unless otherwise
stated, and we use CC (Π) to denote the worst-case communication cost. When we speak of
an arbitrary F , by default it is assumed to be a two-party partial function. Also, complexity
class names (such as BPP) refer to classes of (families of) two-party partial functions with
polylogarithmic communication protocols of the relevant type.

2 Communication Lower Bound for Tribes

The upper bound for Theorem 1 was shown in Section 1.1. In this section we give the proof
of the lower bound, which is broken into four steps corresponding to the four subsections.

2.1 Step 1: Conditioning and direct sum

In this step, we use known techniques [1, 17, 3] to show that it suffices to prove a certain
information complexity lower bound for a constant-size function. There are no substantially
new ideas in this step.

As noted in Section 1.4, it suffices to prove the lower bound for Tribes′`,m := And` ◦
Or`m ◦ 3Eq`×m instead of Tribes`,m. Suppose for contradiction there is a (1/2 + ε)-correct
protocol Π for Tribes′`,m with CC (Π) ≤ o(ε`m). As a technicality, we assume Π has been
converted into a private-coin-only protocol, where Alice first privately samples the public
coins (if any) and sends them to Bob. (This could blow up the communication, but we
will only use the fact that the “original communication” part of the transcript has bounded
length, not the “public coins” part.)
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We can think of the input to Tribes′`,m as an `×m table where each cell has two trits,
one for Alice and one for Bob. As is standard in information complexity lower bounds, we
define a distribution over inputs, equipped with a “conditioning scheme” that decomposes
the distribution into a mixture of product distributions (where Alice’s and Bob’s parts of the
input are independent of each other). We do this by placing a uniformly random 1-input to
3Eq at a uniformly random cell in each row, and for each of the remaining cells choosing
at random a rectangular “window” of 0-inputs to 3Eq, from which the input to that cell is
drawn.

Formally, let us define W1 :=
{
{00}, {11}, {22}

}
as the set of “1-windows” of 3Eq, and

define W0 :=
{
{01, 02}, {10, 12}, {20, 21}, {10, 20}, {01, 21}, {02, 12}

}
as the set of “0-windows”

of 3Eq. We define a probability space with the following random variables: X ∈ {0, 1, 2}`×m,
Y ∈ {0, 1, 2}`×m, τ ∈ {0, 1}∗, J ∈ [m]`, and W ∈ (2{0,1,2}2)`×m. Choose J uniformly, and
for each (i, j) ∈ [`]× [m] independently, let

Wi,j ∈u

{
W1 if j = Ji

W0 if j 6= Ji

and let (Xi,jYi,j) ∈u Wi,j . Note that XY is supported on 1-inputs of Tribes′`,m, and that
X and Y are independent conditioned on W . Finally, let τ be the random transcript on
input (X,Y ).

Define X−J := (Xi,j)j 6=Ji
(and Y−J similarly), and let τC denote the “original commu-

nication” part of τ , and τR denote the “public coins” part of τ . We have

I
(
τ ; X−JY−J

∣∣W )
= I

(
τC ; X−JY−J

∣∣WτR
)
≤ H

(
τC
∣∣WτR

)
≤ CC (Π) ≤ o(ε`m)

where the equality holds by the chain rule and independence of τR andWXY . If we augment
the probability space with random variables (i,k) sampled uniformly from ([`]×[m])r{(i,Ji) :
i ∈ [`]} (independent of the other random variables, conditioned on J), then by the standard
direct sum property for mutual information we have

I
(
τ ; Xi,kYi,k

∣∣Wik
)
≤ 1

`(m−1) · I
(
τ ; X−JY−J

∣∣W )
≤ o(ε).

For convenience let j := Ji, let h := {j,k}, let Wi,h be the restriction of W to the 2
coordinates in {i} × h, and let W−i,h be the restriction of W to the remaining `×m− 2
coordinates. There must exist outcomes i∗, h∗, W ∗−i∗,h∗ such that

I
(
τ ; Xi,kYi,k

∣∣Wi,hk, i = i∗, h = h∗, W−i,h = W ∗−i∗,h∗
)
≤ o(ε). (1)

Note that given this i∗, h∗,W ∗−i∗,h∗ , the remaining conditioning variables Wi,hk have 36
possible outcomes: 2 choices for k (it could be either element of h∗, and j is the other), 3
choices for Wi,j , and 6 choices for Wi,k.

We rephrase the situation by considering a protocol Π∗ that interprets its input as
Xi∗,h∗ , Yi∗,h∗ , uses private coins to sample X−i∗,h∗ , Y−i∗,h∗ uniformly from W ∗−i∗,h∗ , then
runs the private-coin protocol Π on the combined input X,Y . Observe that Π∗ is a (1/2 + ε)-
correct protocol for Or2 ◦ 3Eq2 since with probability 1, (Or2 ◦ 3Eq2)(Xi∗,h∗ , Yi∗,h∗) =
Tribes′`,m(X,Y ) (as the evaluation of the 3Eq functions on X−i∗,h∗ , Y−i∗,h∗ is guaranteed
to have a 1 in each of the non-i∗ rows, and 0’s in the non-h∗ columns of the i∗ row). Here,
we now think of the two coordinates in {i∗} × h∗ as being labeled 1 and 2.

For convenience, we henceforth recycle notation by letting Π denote the new protocol Π∗
and letting (j,k) ∈u {(1, 2), (2, 1)}, Wj ∈u W1, Wk ∈u W0, (X1Y1) ∈u W1, (X2Y2) ∈u W2.
With respect to this recycled notation, the inequality (1) becomes

I
(
τ ; XkYk

∣∣Wk
)
≤ o(ε). (2)
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The following lemma, whose proof occupies the remaining three subsections, provides the
contradiction, completing the proof of Theorem 1.

I Lemma 4. If (2) holds then Π is not a (1/2 + ε)-correct protocol for Or2 ◦ 3Eq2.

2.2 Step 2: Uniformly covering a pair of gadgets
Let us set up some notation (all in reference to the private-coin protocol Π). If x is an Alice
input and y is a Bob input, let πx,y denote the probability Π accepts on input (x,y). For a
1× 2 rectangle of inputs {u} × {v,w} let ιu,vw denote the mutual information between the
random transcript of Π and a uniformly random input from {(u,v), (u,w)}. Similarly, for
a 2× 1 rectangle of inputs {v,w} × {u} let ιvw,u denote the mutual information between
the random transcript of Π and a uniformly random input from {(v,u), (w,u)}. We write
u = u1u2 ∈ {0, 1, 2}2 and similarly for v and w.

Since in the inequality (2) there are only a constant number of possible outcomes for
Wk, the o(ε) bound holds conditioned on each of those outcomes. Thus, (2) can be further
rephrased as

ιu,vw ≤ o(ε) and ιvw,u ≤ o(ε) if u1,v1,w1 are all equal and u2,v2,w2 are all distinct,
or u2,v2,w2 are all equal and u1,v1,w1 are all distinct.

(3)

The following lemma (illustrated in Figure 1) is proved in the remaining two subsections.

I Lemma 5. For any Alice inputs a,b,c and Bob inputs d,e, f, we have

πa,d − πa,f − πc,d + πc,f ≤ 128
(
ιa,de + ιab,d + ιc,fe + ιcb,f

)
.

Proof of Lemma 4. First we define a map from {0, 1, 2}2×{±1}2 to ({0, 1, 2}2)6 that takes
“data” consisting of t1, t2 ∈ {0, 1, 2} and δ1, δ2 ∈ {±1} and maps it to a tuple of Alice inputs
a,b,c and Bob inputs d,e, f defined by

a := t1, (t2+δ2) b := t1, t2 c := (t1+δ1), t2 d := t1, (t2−δ2) e := t1, t2 f := (t1−δ1), t2

(where the addition is mod 3). For any choice of the data, we have (b,e) ∈ (3Eq2)−1(11)
(hence the dark gray shading in Figure 1), (a,d), (b,d), (a,e) ∈ (3Eq2)−1(10) and
(c, f), (c,e), (b, f) ∈ (3Eq2)−1(01) (hence the light gray shading), and (a, f), (c,d) ∈
(3Eq2)−1(00).

Note that there are 36 possible choices of the data, and that
∣∣(3Eq2)−1(00)

∣∣ = 36 and∣∣(3Eq2)−1(10)
∣∣ =

∣∣(3Eq2)−1(01)
∣∣ = 18. It is straightforward to verify the following key

properties of our map.
The a,d coordinates form a 2-to-1 map onto (3Eq2)−1(10) (since δ1 is irrelevant).
The c, f coordinates form a 2-to-1 map onto (3Eq2)−1(01) (since δ2 is irrelevant).
The a, f coordinates form a 1-to-1 map onto (3Eq2)−1(00).
The c,d coordinates form a 1-to-1 map onto (3Eq2)−1(00).
The quantities ιa,de, ιab,d, ιc,fe, ιcb,f are always ≤ o(ε) by (3).

Now we have (letting the dependence of a,b,c,d,e, f on t1, t2, δ1, δ2 be implicit)∑
(x,y)∈(3Eq2)−1(10)∪(3Eq2)−1(01) πx,y −

∑
(x,y)∈(3Eq2)−1(00) πx,y

= 1
2
∑
t1,t2,δ1,δ2

(
πa,d − πa,f − πc,d + πc,f

)
≤ 1

2
∑
t1,t2,δ1,δ2

128
(
ιa,de + ιab,d + ιc,fe + ιcb,f

)
≤ 1

2 · 36 · 128 · 4 · o(ε)
= o(ε)
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πa,d

πc,f

−πa,f

−πc,d

ιab
,d

ιa,de

ιc,fe

ι c
b,

f

a

b

c

d e f

Figure 1 Illustration for Lemma 5.

−ad 2ae −af

2bd −4be 2bf

−cd 2ce −cf
I

(
d,a

,b)

I(a,d,e)

I(c,f,e)

I
(f

,c
,b

)

a

b

c

d e f

Figure 2 Illustration for Lemma 8.

where the second line is by the first four key properties of our map, the third line is by Lemma
5, and the fourth line is by the last key property. Hence Π cannot be (1/2 + ε)-correct for
Or2◦3Eq2 since otherwise the first line would be at least 36·(1/2+ε)−36·(1/2−ε) = 72ε. J

2.3 Step 3: Relating information and probabilities for inputs
We first set up some notation. For numbers u, v, w ∈ [0, 1], define I(u, v, w) := u(v−w)2/(v+
w) (with the convention that 0/0 = 0). For an input (x,y) and a transcript τ , we let the
numbers τx, τy ∈ [0, 1] be such that P[Π(x,y) has transcript τ ] = τx · τy (where τx does not
depend on y, and τy does not depend on x). Note that πx,y =

∑
accepting τ τx · τy.

The following fact was also used in [3]; we provide a proof for completeness.

I Lemma 6. For any rectangle {u}× {v,w} we have ιu,vw ≥ 1
4
∑
τ I(τu, τv, τw). Symmetri-

cally, for any rectangle {v,w} × {u} we have ιvw,u ≥ 1
4
∑
τ I(τu, τv, τw).

Proof. Assume the random variable Y ∈u {v,w} is jointly distributed with τ (the random
variable representing the transcript). Note that P[τ = τ ] = 1

2τu(τv +τw) and that ∆
(
(Y | τ =

τ),Y
)

= 1
2 −min(τv, τw)/(τv + τw) = 1

2 |τv − τw|/(τv + τw). Then we have

ιu,vw := I(τ ; Y )
= Eτ∼τD

(
(Y | τ = τ)

∥∥Y )
≥
∑
τ P[τ = τ ] · 2∆

(
(Y | τ = τ),Y

)2
=
∑
τ

( 1
2τu(τv + τw)

)
· 2
( 1

2 (τv − τw)/(τv + τw)
)2

= 1
4
∑
τ τu(τv − τw)2/(τv + τw)

where the second line is a general fact, and the third line is by Pinsker’s inequality. J

Intuitively, Lemma 6 means I(τu, τv, τw) lower bounds the “contribution” of τ to the
information cost. Now that we have related the information costs to the contributions, we
need to relate the contributions to the probabilities of observing individual transcripts. The
following two lemmas allow us to do this.

I Lemma 7. For any four numbers q, r, s, t ∈ [0, 1], we have

−qs+ qt+ rs− rt ≤ 2
(
I(q, s, t) + I(s, q, r)

)
.
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I Lemma 8. For any six numbers a, b, c, d, e, f ∈ [0, 1], we have

−ad+2ae−af+2bd−4be+2bf−cd+2ce−cf ≤ 32
(
I(a, d, e)+I(d, a, b)+I(c, f, e)+I(f, c, b)

)
.

Lemma 7 is from [3]. Lemma 8 (illustrated in Figure 2) is more involved and constitutes
one of the key technical novelties in our proof of Theorem 1. For example, one insight is
in finding the proper list of coefficients on the left side of the inequality in Lemma 8, to
simultaneously make the lemma true and enable it to be used in our proof approach for
Lemma 5.

The proof of Lemma 7 in [3] proceeds by clearing denominators and then decomposing the
difference between the right and left sides into a sum of parts, such that the (weighted) AM–
GM inequality implies each part is nonnegative. A priori, it is conceivable the same approach
could work for Lemma 8; however, the problem of finding an appropriate decomposition can
be expressed as a linear program feasibility question, and with the help of an LP solver we
found that this approach actually does not work for Lemma 8 (even with 32 replaced by
other constants). To get around this, we begin by giving a significantly different proof of
Lemma 7,4 which we are able to generalize to prove Lemma 8. We provide our proofs of
both lemmas in the remaining subsection, where we also give some intuition.

For now we complete the proof of Lemma 5. Here we employ another key idea (beyond
the proof structure of [3]): The corresponding part of the argument in [3] finishes by simply
summing Lemma 7 over accepting transcripts, but this approach does not work in our context.
We also need to take into account the rejecting transcripts and the fact that the acceptance
and rejection probabilities sum to 1, in order to orchestrate all the necessary cancellations.

Proof of Lemma 5. We have

− πa,d + 2πa,e − πa,f + 2πb,d − 4πb,e + 2πb,f − πc,d + 2πc,e − πc,f

=
∑

accepting τ
(
−τaτd + 2τaτe − τaτf + 2τbτd − 4τbτe + 2τbτf − τcτd + 2τcτe − τcτf

)
≤ 32

∑
accepting τ

(
I(τa, τd, τe) + I(τd, τa, τb) + I(τc, τf, τe) + I(τf, τc, τb)

)
. (4)

by Lemma 8 with (a, b, c, d, e, f) = (τa, τb, τc, τd, τe, τf). We also have

2
(
πa,d − πa,e − πb,d + πb,e

)
= 2

(
−(1− πa,d) + (1− πa,e) + (1− πb,d)− (1− πb,e)

)
= 2

∑
rejecting τ

(
−τaτd + τaτe + τbτd − τbτe

)
≤ 4

∑
rejecting τ

(
I(τa, τd, τe) + I(τd, τa, τb)

)
(5)

by Lemma 7 with (q, r, s, t) = (τa, τb, τd, τe). Similarly,

2
(
πc,f − πc,e − πb,f + πb,e

)
≤ 4

∑
rejecting τ

(
I(τc, τf, τe) + I(τf, τc, τb)

)
(6)

by Lemma 7 with (q, r, s, t) = (τc, τb, τf, τe). Summing the inequalities (4), (5), (6) yields

πa,d − πa,f − πc,d + πc,f ≤ 32
∑
τ

(
I(τa, τd, τe) + I(τd, τa, τb) + I(τc, τf, τe) + I(τf, τc, τb)

)
≤ 128

(
ιa,de + ιab,d + ιc,fe + ιcb,f

)
by Lemma 6. J

4 In fact, properly balancing the calculations in our proof of Lemma 7 shows that the factor of 2 can be
improved to the golden ratio φ ≈ 1.618, which does not seem to follow from the proof in [3].
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Figure 3 Intuition for Lemma 8.

2.4 Step 4: Relating information and probabilities for transcripts
We first give some intuition for why the inequality in Lemma 8 is true. Suppose for some
small δ, ε > 0 we have a = 1/2 + δ, e = 1/2 + ε, and b = c = d = f = 1/2, as illustrated in
Figure 3. (Although this is just a specific example, the phenomenon it illustrates turns out
to hold in general.)

The left side of the inequality is the linear combination of the areas of the 9 rectangles,
with coefficients as indicated in the figure. The purple regions are congruent and hence
cancel out since the coefficients sum to 0. The red regions are congruent and hence cancel
out since the coefficients in the top row sum to 0. The blue regions are congruent and hence
cancel out since the coefficients in the middle column sum to 0. Thus the left side is 2δε
since only the green region contributes.

Regarding the four terms on the right side of the inequality, the first and third are Θ(ε2),
the second is Θ(δ2), and the fourth is 0. Hence left side = Θ(δε) ≤ Θ(ε2 + δ2) = right side.
The point is that the right side only has terms that are quadratic in δ, ε, while the left side
has “higher-order” terms (at least linear in δ, ε) but those higher-order terms miraculously
cancel out leaving only quadratic terms. The key property for the cancellation is that in
every row and every column, the coefficients sum to 0.5

We proceed to our formal proofs of Lemma 7 and Lemma 8. To avoid division-by-0
technicalities, we assume the relevant quantities are infinitesimally perturbed so none are 0.

Proof of Lemma 7. Define

L := −qs+ qt+ rs− rt = (q − r)(t− s)

to be the left side of the inequality in the statement of Lemma 7, and define

R := I(q, s, t) + I(s, q, r) = q

t+ s
(t− s)2 + s

q + r
(q − r)2

to be the right side except for the factor of 2. The goal is to show that R ≥ L/2. If q ≥ r and
s ≥ t, or if r ≥ q and t ≥ s, then L ≤ 0 ≤ R, so we are done in these cases. Now consider

5 We have not attempted to verify whether an analogue of Lemma 8 holds for every such list of coefficients.



T. Watson 9:11

the case that q ≥ r and t ≥ s. (The remaining case, that r ≥ q and s ≥ t, is symmetric.)
If t ≤ 3s (so s/(t + s) ≥ 1/4) then since q/(q + r) ≥ 1/2, the product of the two terms of
R is ≥ (q − r)2(t − s)2/8, so by AM–GM, R ≥ 2(q − r)(t − s)/

√
8 ≥ L/2. If t ≥ 3s then

t+ s ≤ 2(t− s) so the first term of R is ≥ (q/2(t− s))(t− s)2 = q(t− s)/2 ≥ L/2. J

Proof of Lemma 8. Define

L := −ad+ 2ae− af + 2bd− 4be+ 2bf − cd+ 2ce− cf = (a− 2b+ c)(−d+ 2e− f)

to be the left side of the inequality in the statement of Lemma 8, and define

R := I(a, d, e) + I(d, a, b) + I(c, f, e) + I(f, c, b)

= a

e+ d
(e− d)2 + d

a+ b
(a− b)2 + c

e+ f
(e− f)2 + f

c+ b
(c− b)2

to be the right side except for the factor of 32. The goal is to show that R ≥ L/32. If
a+ c ≥ 2b and d+ f ≥ 2e, or if a+ c ≤ 2b and d+ f ≤ 2e, then L ≤ 0 ≤ R, so we are done
in these cases. Now consider the case that a+ c ≥ 2b and d+ f ≤ 2e. (The remaining case,
that a+ c ≤ 2b and d+ f ≥ 2e, is symmetric.) We consider four subcases; the first two are
just like our argument for Lemma 7, but the other two are a bit more complicated.

c ≤ a and d ≤ f : Then L ≤ 4(a − b)(e − d). If e ≤ 3d (so d/(e + d) ≥ 1/4) then since
a/(a + b) ≥ 1/2 (because b ≤ a follows from a + c ≥ 2b and c ≤ a), the product of the
first two terms of R is ≥ (a − b)2(e − d)2/8, so by AM–GM, the sum of these two terms
is ≥ 2(a − b)(e − d)/

√
8 ≥ L/6. If e ≥ 3d then e + d ≤ 2(e − d) so the first term of R is

≥ (a/2(e− d))(e− d)2 = a(e− d)/2 ≥ (a− b)(e− d)/2 ≥ L/8.

a ≤ c and f ≤ d: Then L ≤ 4(c − b)(e − f). If e ≤ 3f (so f/(e + f) ≥ 1/4) then since
c/(c + b) ≥ 1/2 (because b ≤ c follows from a + c ≥ 2b and a ≤ c), the product of the
last two terms of R is ≥ (c− b)2(e− f)2/8, so by AM–GM, the sum of these two terms is
≥ 2(c − b)(e − f)/

√
8 ≥ L/6. If e ≥ 3f then e + f ≤ 2(e − f) so the third term of R is

≥ (c/2(e− f))(e− f)2 = c(e− f)/2 ≥ (c− b)(e− f)/2 ≥ L/8.

a ≤ c and d ≤ f : Then L ≤ 4(c− b)(e− d). If e ≤ 2f (so f/(e+ d) ≥ 1/3) and c ≤ 5a (so
a/(c+ b) ≥ 1/10) then the product of the first and last terms of R is ≥ (c− b)2(e− d)2/30,
so by AM–GM, the sum of these two terms is ≥ 2(c − b)(e − d)/

√
30 ≥ L/12. If e ≤ 2f

and c ≥ 5a then f ≥ (e − d)/2 and c + b ≤ 4(c − b) (because 6c ≥ 5c + 5a ≥ 10b) so
the last term of R is ≥ (f/4(c − b))(c − b)2 = f(c − b)/4 ≥ (c − b)(e − d)/8 ≥ L/32. If
e ≥ 2f then e + f ≤ 3(e − f) and e − f ≥ e/2 ≥ (e − d)/2 so the third term of R is
≥ (c/3(e− f))(e− f)2 = c(e− f)/3 ≥ c(e− d)/6 ≥ (c− b)(e− d)/6 ≥ L/24.

c ≤ a and f ≤ d: Then L ≤ 4(a− b)(e− f). If e ≤ 2d (so d/(e+ f) ≥ 1/3) and a ≤ 5c (so
c/(a+ b) ≥ 1/10) then the product of the middle two terms of R is ≥ (a− b)2(e− f)2/30,
so by AM–GM, the sum of these two terms is ≥ 2(a − b)(e − f)/

√
30 ≥ L/12. If e ≤ 2d

and a ≥ 5c then d ≥ (e − f)/2 and a + b ≤ 4(a − b) (because 6a ≥ 5a + 5c ≥ 10b) so
the second term of R is ≥ (d/4(a − b))(a − b)2 = d(a − b)/4 ≥ (a − b)(e − f)/8 ≥ L/32.
If e ≥ 2d then e + d ≤ 3(e − d) and e − d ≥ e/2 ≥ (e − f)/2 so the first term of R is
≥ (a/3(e− d))(e− d)2 = a(e− d)/3 ≥ a(e− f)/6 ≥ (a− b)(e− f)/6 ≥ L/24. J
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3 Query Lower Bound for Tribes

The upper bound for Theorem 2 was shown in Section 1.2; we now prove the matching lower
bound.

Suppose for contradiction there is a randomized decision tree, which is a distribution
T over deterministic decision trees that always make at most

√
εm/2 queries, and which

accepts 0-inputs with probability at most 1/2 − ε and 1-inputs with probability at least
1/2 + ε. Consider the following pair of distributions (D0, D1) over 0-inputs and 1-inputs
respectively: To sample from D0, pick i ∈u {1, 2}, j ∈u [m],k ∈u [m] independently and set
zi,j = zi,k = 1 (and the rest of the bits to 0). To sample from D1, pick j ∈u [m],k ∈u [m]
independently and set z1,j = z2,k = 1 (and the rest of the bits to 0).

We claim that for an arbitrary T in the support of T , for each r ∈ {0, 1, 2}, lettingAr be the
set of z’s such that T (z) accepts after having read exactly r 1’s, we have PD1 [Ar]−PD0 [Ar] ≤
ε/4. This yields the following contradiction:

2ε = (1/2 + ε)− (1/2− ε)
≤ Ez∼D1

[
PT∼T [T (z) accepts]

]
− Ez∼D0

[
PT∼T [T (z) accepts]

]
= ET∼T

[
Pz∼D1 [T (z) accepts]− Pz∼D0 [T (z) accepts]

]
= ET∼T

[∑
r

(
PD1 [Ar]− PD0 [Ar]

)]
≤ ε/4 + ε/4 + ε/4

(where the dependence of Ar on T is implicit on the fourth line). To prove the claim, we first
set up some notation. Consider the execution of T when it reads only 0’s until it halts. Let
Si ⊆ [m] (i ∈ {1, 2}) be the coordinates of zi queried on this execution, and let δi := |Si|/m;
note that δ1 + δ2 ≤

√
ε/2. For each q ∈

[
|S1|+ |S2|

]
, let

Bq be the set of z’s that cause T to read q − 1 0’s then a 1,
iq ∈ {1, 2}, hq ∈ [m] be such that ziq,hq is the location of that 1,
Cq ⊆ Bq be the set of z’s that cause T to read q − 1 0’s, then a 1, then only 0’s until it
halts,
Sqi ⊆ [m] (i ∈ {1, 2}) be the coordinates of zi queried on the execution corresponding to
Cq,
δqi := |Sqi |/m (i ∈ {1, 2}); note that δq1 + δq2 ≤

√
ε/2.

Case r = 0: If the execution that reads only 0’s rejects then PD1 [A0] = PD0 [A0] = 0;
otherwise

PD1 [A0]−PD0 [A0] = (1−δ1)(1−δ2)− 1
2 (1−δ1)2− 1

2 (1−δ2)2 = δ1δ2− 1
2 (δ2

1 +δ2
2) ≤ ε/4.

Case r = 1: For each q, assuming for convenience that iq = 1, we have

PD1 [Cq] = P
[
j = hq and k 6∈ Sq2

]
= (1− δq2)/m ≤ 1/m

and

PD0 [Cq] ≥ P[i = 1] · P
[
(j = hq and k 6∈ Sq1) or (k = hq and j 6∈ Sq1)

]
= 1

2 · 2 · (1− δ
q
1)/m

≥ (1−
√
ε/2)/m
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and so PD1 [Cq]− PD0 [Cq] ≤
√
ε/(2m). Letting Q ⊆

[
|S1|+ |S2|

]
be those q’s for which the

execution corresponding to Cq accepts, and noting that A1 =
⋃
q∈Q C

q, we have

PD1 [A1]− PD0 [A1] =
∑
q∈Q

(
PD1 [Cq]− PD0 [Cq]

)
≤ (
√
εm/2) ·

√
ε/(2m) = ε/4.

Case r = 2: We have

Pz∼D1

[
T (z) reads at least one 1

]
= P

[
j ∈ S1 or k ∈ S2

]
≤ δ1 + δ2 ≤

√
ε/2.

For each q, assuming for convenience that iq = 1, we have

Pz∼D1

[
T (z) reads two 1’s

∣∣ z ∈ Bq] = Pz∼D1

[
k ∈ Sq2

∣∣ z ∈ Bq] ≤ δq2 ≤
√
ε/2

(the middle inequality may not be an equality, since prior to reading the first 1, T may have
read some 0’s in z2). Hence

PD1 [A2]− PD0 [A2]
≤ Pz∼D1

[
T (z) reads two 1’s

]
= Pz∼D1

[
T (z) reads at least one 1

]
· Pz∼D1

[
T (z) reads two 1’s

∣∣T (z) reads at least one 1
]

≤ (
√
ε/2) · (

√
ε/2)

= ε/4.

4 Which One is the 1-Input?

We prove Theorem 3 and related results in this section. We state and apply the key lemmas
in Section 4.1, and we prove them in Section 4.2. In the full version, we describe some ways
to reinterpret Theorem 3, and we discuss some related questions.

4.1 Overview

Let us first review some definitions.

Correctness: We say Π is p-correct if for each (X,Y ) in the domain of F , we have
P[Π(X,Y ) = F (X,Y )] ≥ p over the randomness of Π. For a distribution D over the
domain of F , we say Π is (p,D)-correct if P[Π(X,Y ) = F (X,Y )] ≥ p over both the
randomness of Π and XY ∼ D.

Efficiency: We let CC (Π) denote the worst-case communication cost of Π. Letting D′ be a
distribution over the set of all possible inputs to Π (which is a superset of the domain of F ),
define ICD′(Π) := I

(
τ ; X

∣∣Y Rpub)+ I
(
τ ; Y

∣∣XRpub) to be the internal information cost
with respect to XY ∼ D′ (where τ denotes the random transcript and Rpub denotes the
public coins)6.

6 This notation is somewhat different than in Section 2.1, where we found it more convenient to let τ
denote the concatenation of the communication transcript and the public coins.
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Complexity: We can define the following complexity measures. (Note that in this notation,
the subscripts are related to correctness and the superscripts are related to efficiency.)

Rp(F ) := min p-correct Π CC (Π)
Rp,D(F ) := min (p,D)-correct Π CC (Π)

ID
′

p (F ) := inf p-correct Π ICD′(Π)

ID
′

p,D(F ) := inf (p,D)-correct Π ICD′(Π)

I Lemma 9. For every F and balanced distribution D = 1
2D0 + 1

2D1 on the domain of F ,
we have ID0

1/2+ε/2,D(F ) ≤ R1/`+ε(Which` ◦ F `)/`.

I Lemma 10. For every F we have R1/2+ε/4(F ) ≤ R1/`+ε(Which` ◦ F `).

We provide the (very similar) proofs of these two lemmas in Section 4.2. The key idea is
that if we embed a random 1-input of F into a random coordinate and fill the other `− 1
coordinates with random 0-inputs of F , then the protocol for Which` ◦ F ` will find the
embedded 1-input with advantage ε, whereas if we embed a random 0-input in the same
way then the protocol cannot achieve any advantage since the coordinate of the embedding
becomes independent of the `-tuple of 0-inputs given to the protocol. For Lemma 9 we
use a direct sum property for information to get the factor ` decrease in cost; for Lemma
10 we do not get a decrease since there is no available analogous direct sum property for
communication.

Proof of Theorem 3. The upper bound was shown in Section 1.3. Let F := Unambig-Orm◦
3Eqm. As noted in Section 1.4, it suffices to prove the lower bound for Which` ◦ F ` instead
of Which` ◦ Unambig-Inter`m. For b ∈ {0, 1} let Db be the uniform distribution over
F−1(b), and let D := 1

2D0 + 1
2D1. It was shown in [3] that ID0

1/2+ε,D(F ) ≥ Ω(εm);7 the result
was not stated in this way in that paper, but careful inspection of the proof yields it.8 Then
R1/`+ε(Which` ◦ F `) ≥ Ω(ε`m) follows immediately from this and Lemma 9. J

Note that for any communication complexity class C, if F ∈ C then Which2◦F 2 ∈ C∩coC.
Hence for ` = 2 and ε a positive constant, Lemma 10 implies that if C 6⊆ BPP then
C ∩ coC 6⊆ BPP. In particular, taking F = Unambig-Inter (and C = UP), we have a simple
proof of a result of [18, Theorem 2 of the arXiv version], using as a black box the fact that
F 6∈ BPP.

4.2 Proofs
Proof of Lemma 9. Consider an arbitrary (1/` + ε)-correct protocol Π for Which` ◦ F `.
Define a probability space with the following random variables: i ∈u [`], XY is an input to
Π such that XiYi ∼ D and XjYj ∼ D0 for j ∈ [`]r {i} (with the ` coordinates independent
conditioned on i), τ is the communication transcript of Π, and Rpub,Rpriv

A ,Rpriv
B are the

public, Alice’s private, and Bob’s private coins, respectively. Let Π′ be the following protocol
with input interpreted as XiYi.

7 The simplified proof of the main conclusion R1/2+ε(Unambig-Interm) ≥ Ω(εm) given in [12] does not
yield the needed information complexity lower bound.

8 For one thing, the write-up in [3] indicates that the information lower bound argument only works for
protocols that have been “smoothed” in some sense, but actually this assumption is not necessary.
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Publicly sample i, X1,...,i−1, Yi+1,...,`, and Rpub

Alice privately samples Xi+1,...,` (conditioned on the outcome of Yi+1,...,`) and Rpriv
A

Bob privately samples Y1,...,i−1 (conditioned on the outcome of X1,...,i−1) and Rpriv
B

Run Π on the combined input XY with coins Rpub,Rpriv
A ,Rpriv

B
If Π outputs i then output 1, otherwise output 0

For a bit b, let Eb denote the event that F (Xi,Yi) = b. We have

ICD0(Π′) := I
(
τ ; Xi

∣∣Yi, i,X1,...,i−1,Yi+1,...,`,R
pub, E0

)
+ I
(
τ ; Yi

∣∣Xi, i,X1,...,i−1,Yi+1,...,`,R
pub, E0

)
= 1

` ·
∑`
i=1

(
I
(
τ ; Xi

∣∣X1,...,i−1,Yi,...,`,R
pub, E0

)
+ I
(
τ ; Yi

∣∣X1,...,i,Yi+1,...,`,R
pub, E0

))
≤ 1

` · IC
D`

0(Π)
≤ 1

` · CC (Π)

where the inequalities follow by known facts (see [3, Fact 2.3 of the ECCC Revision #1 version]
and [4, Lemma 3.14 of the ECCC Revision #1 version]). We also have P

[
Π′ outputs 1

∣∣E1
]

=
P
[
Π outputs i

∣∣E1
]
≥ 1/`+ε by the correctness of Π (since i =

(
Which`◦F `

)
(X,Y ) assum-

ing E1). We also have P
[
Π′ outputs 1

∣∣E0
]

= P
[
Π outputs i

∣∣E0
]

= 1/` since conditioned
on E0, i is independent of XY . Hence over the randomness of the whole experiment, the
probability Π′ is correct is at least (1/2) · (1/`+ ε) + (1/2) · (1− 1/`) = 1/2 + ε/2. J

Proof of Lemma 10. By the minimax theorem, it suffices to show that for every distribution
D over the domain of F , R1/2+ε/4,D(F ) ≤ R1/`+ε(Which` ◦ F `). If either F−1(0) or F−1(1)
has probability at least 1/2 + ε/4 under D, then a protocol that outputs a constant witnesses
R1/2+ε/4,D(F ) = 0, so we may assume otherwise. For a bit b, let Db be the distribution D
conditioned on F−1(b).

Consider an arbitrary (1/`+ ε)-correct protocol Π for Which` ◦ F `. Define a probability
space with the following random variables: i ∈u [`],XY is an input to Π such thatXiYi ∼ D
and XjYj ∼ D0 for j ∈ [`] r {i} (with the ` coordinates independent conditioned on i), and
Rpub,Rpriv

A ,Rpriv
B are the public, Alice’s private, and Bob’s private coins, respectively. Let

X−iY−i denote XY restricted to coordinates in [`] r {i}. Let Π′ be the following protocol
with input interpreted as XiYi.

Publicly sample i, X−i, Y−i, and Rpub

Alice and Bob privately sample Rpriv
A and Rpriv

B , respectively
Run Π on the combined input XY with coins Rpub,Rpriv

A ,Rpriv
B

If Π outputs i then output 1, otherwise output 0

Note that CC (Π′) ≤ CC (Π). For a bit b, let Eb denote the event that F (Xi,Yi) = b.
We have P

[
Π′ outputs 1

∣∣E1
]

= P
[
Π outputs i

∣∣E1
]
≥ 1/` + ε by the correctness of Π

(since i =
(
Which` ◦ F `

)
(X,Y ) assuming E1). We also have P

[
Π′ outputs 1

∣∣E0
]

=
P
[
Π outputs i

∣∣E0
]

= 1/` since conditioned on E0, i is independent of XY . Hence over the
randomness of the whole experiment, the probability Π′ is correct is at least the minimum of
(1/2 + ε/4) · (1/`+ ε) + (1/2− ε/4) · (1−1/`) and (1/2− ε/4) · (1/`+ ε) + (1/2 + ε/4) · (1−1/`),
both of which are at least 1/2 + ε/4. J
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Abstract
Testing whether a set f of polynomials has an algebraic dependence is a basic problem with several
applications. The polynomials are given as algebraic circuits. Algebraic independence testing
question is wide open over finite fields (Dvir, Gabizon, Wigderson, FOCS’07). Previously, the best
complexity known was NP#P (Mittmann, Saxena, Scheiblechner, Trans.AMS’14). In this work
we put the problem in AM ∩ coAM. In particular, dependence testing is unlikely to be NP-hard
and joins the league of problems of “intermediate” complexity, eg. graph isomorphism & integer
factoring. Our proof method is algebro-geometric– estimating the size of the image/preimage of
the polynomial map f over the finite field. A gap in this size is utilized in the AM protocols.

Next, we study the open question of testing whether every annihilator of f has zero constant
term (Kayal, CCC’09). We give a geometric characterization using Zariski closure of the image
of f ; introducing a new problem called approximate polynomials satisfiability (APS). We show
that APS is NP-hard and, using projective algebraic-geometry ideas, we put APS in PSPACE
(prior best was EXPSPACE via Gröbner basis computation). As an unexpected application of
this to approximative complexity theory we get– over any field, hitting-sets for VP can be verified
in PSPACE. This solves an open problem posed in (Mulmuley, FOCS’12, J.AMS 2017); greatly
mitigating the GCT Chasm (exponentially in terms of space complexity).
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10:2 Algebraic dependencies

1 Introduction

Algebraic dependence is a generalization of linear dependence. Polynomials f1, . . . , fm ∈
F[x1, . . . , xn] are called algebraically dependent over field F if there exists a nonzero polynomial
(called annihilator) A(y1, . . . , ym) ∈ F[y1, . . . , ym] such that A(f1, . . . , fm) = 0. If no A exists,
then the given polynomials are called algebraically independent over F. The transcendence
degree (trdeg) of a set of polynomials is the analog of rank in linear algebra. It is defined as
the maximal number of algebraically independent polynomials in the set. Both algebraic
dependence and linear dependence share combinatorial properties of the matroid structure
[15]. The algebraic matroid examples may not be linear (esp. over Fp) [20].

The simplest examples of algebraically independent polynomials are x1, . . . , xn ∈ F[x1, . . .,
xn]. As an example of algebraically dependent polynomials, we can take f1 = x, f2 = y and
f3 = x2 + y2. Then, y2

1 + y2
2 − y3 is an annihilator. The underlying field is crucial in this

concept. For example, polynomials x+ y and xp + yp are algebraically dependent over Fp,
but algebraically independent over Q.

Thus, the following computational question AD(F) is natural and it is the first problem
we consider in this paper: Given algebraic circuits f1, . . . , fm ∈ F[x1, . . . , xn], test if they are
algebraically dependent. It can be solved in PSPACE using a classical result due to Perron
[35, 36, 11]. Perron proved that given a set of algebraically dependent polynomials, there
exists an annihilator whose degree is upper bounded by the product of the degrees of the
polynomials in the set. This exponential degree bound on the annihilator is tight [22].

Computing the annihilator may be quite hard, but it turns out that the decision version
is easy over zero (or large) characteristic using a classical result known as the Jacobian
criterion [21, 6]. The Jacobian efficiently reduces algebraic dependence testing of f1, . . . , fm
over F to linear dependence testing of the differentials df1, . . . , dfm over F(x1, . . . , xn), where
we view dfi as the vector ( ∂fi

∂x1
, . . . , ∂fi

∂xn
). Placing dfi as the i-th row gives us the Jacobian

matrix J of f1, . . . , fm. If the characteristic of the field is zero (or larger than the product
of the degrees deg(fi)) then the trdeg equals rank(J). It follows from [42] that, with high
probability, rank(J) is equal to the rank of J evaluated at a random point in Fn. This gives
a simple randomized polynomial time algorithm solving AD(F) for certain F.

For fields of positive characteristic, if the polynomials are algebraically dependent, then
their Jacobian matrix is not full rank. But the converse is not true. There are infinitely many
input instances (set of algebraically independent polynomials) for which Jacobian fails. The
failure can be characterized by the notion of ‘inseparable extension’ [34]. For example, xp, yp
are algebraically independent over Fp, yet their Jacobian determinant vanishes. Another
example is, {xp−1y, xyp−1} over Fp for prime p > 2. [31] gave a criterion, called Witt-
Jacobian, that works over fields of prime characteristic p; improving the complexity of
independence testing problem from PSPACE to NP#P. [34] gave another generalization of
Jacobian criterion that is efficient in special cases.

Given that an efficient algorithm to tackle prime characteristic is not in close sight, one
could speculate the problem to be NP-hard or even outside the polynomial hierarchy PH. In
this work we show that: For finite fields, AD(F) is in AM ∩ coAM (Theorem 1). This rules
out the possibility of NP-hardness, under standard complexity theory assumptions [4].

Constant term of the annihilators. We come to the second problem AnnAtZero that we
discuss in this paper: Testing if the constant term of every annihilator, of the set of algebraic
circuits f = {f1, . . . , fm}, is zero. Note that the annihilators of f constitute an ideal of the
polynomial ring F[y1, . . . , ym]; this ideal is principal when trdeg of f is m− 1 [22, Lem.7]. In
this case, we can decide if the constant term of the minimal annihilator is zero in PSPACE,
as the unique annihilator (up to scaling) can be computed in PSPACE.
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If trdeg of f is less than m− 1, the ideal of the annihilators of f is no longer principal.
Although the ideal is finitely generated, finding the generators of this ideal is computationally
very hard. (Eg. using Gröbner basis techniques, we can do it in EXPSPACE [12, Sec.1.2.1].)
In this case, can we decide if all the annihilators of f have constant term zero? We give two
equivalent characterizations of AnnAtZero– one geometric and the other algebraic –using
which we devise a PSPACE algorithm to solve it in all cases (Theorem 2).

Interestingly, there is an algebraic-complexity application of the above algorithm. We give
a PSPACE-explicit construction of a hitting-set of the class VPFq

(Theorem 3). VPFq
consists

of n-variate degree d = nO(1) polynomials, over the field Fq, that can be ‘infinitesimally
approximated’ by size s = nO(1) algebraic circuits. This problem is interesting as natural
questions like explicit construction of the normalization map (in Noether’s Normalization
Lemma NNL) reduce to the construction of a hitting-set of VP [32]; which was previously
known to be only in EXPSPACE [32, 33]. This was recently improved greatly, over the
field C, by [16]. Their proof technique uses real analysis and does not apply to finite fields.
We need to develop purely algebraic concepts to solve the finite field case (namely through
AnnAtZero), which then apply to any field. Moreover, we solve the problem of verifying
whether an arbitrary set of points (of small size) is a hitting-set for VP, which was not solved
in [16] even over the field C.

To further motivate the concept of algebraic dependence, we list a few recent problems in
computer science. The first problem is about constructing an explicit randomness extractor
for sources which are polynomial maps over finite fields. Using Jacobian criterion, [13, 14]
solved the problem for fields with large characteristic. The second application is in the
famous polynomial identity testing (PIT) problem. To efficiently design hitting-sets, for
some interesting models, [6, 2, 26] constructed a family of trdeg-preserving maps. For more
background and applications of algebraic dependence testing, see [34]. The annihilator has
been a key concept to prove the connection between hitting-sets and lower bounds [19], and
in bootstrapping ‘weak’ hitting-sets [3].

1.1 Our results
In this paper, we give Arthur-Merlin protocols & algorithms, with proofs using basic tools
from algebraic geometry. The first theorem we prove is about AD(Fq).

I Theorem 1. Algebraic dependence testing of circuits in Fq[x] is in AM ∩ coAM.

This result vastly improves the current best upper bound known for AD(Fq)– from being
‘outside’ the polynomial hierarchy (namely NP#P [31]) to ‘lower’ than the second-level of
polynomial hierarchy (namely AM ∩ coAM). This rules out the possibility of AD(Fq) being
NP-hard (unless polynomial hierarchy collapses to the second-level [4]). Recall that, for zero
or large characteristic F, AD(F) is in coRP (Section 2). We conjecture such a result for
AD(Fq) too.

Our second result is about the problem AnnAtZero (i.e. testing whether all the annihilators
of given f have constant term zero). A priori it is unclear why it should have complexity
better than EXPSPACE (note: ideal membership is EXPSPACE-complete [30]). Firstly, we
relate to a (new) version of polynomial system satisfiability, over the algebraic closure F:

I Problem 1 (Approximate polynomials satisfiability (APS)). Given algebraic circuits f1, . . . , fm
∈ F[x1, . . . , xn], does there exist β ∈ F(ε)n such that for all i, fi(β) is in the ideal εF[ε]? If
yes, then we say that f := {f1, . . . , fm} is in APS.

CCC 2018
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It is easy to show: Function field F(ε) here can be equivalently replaced by Laurent
polynomials F[ε, ε−1], or, the field F((ε)) of formal Laurent series (use mod εF[ε]). A reason
why these objects appear in algebraic complexity can be found in [8, Sec.5.2] & [29, Sec.5].
They help algebrize the notion of ‘infinitesimal approximation’ (in real analysis think of
ε→ 0 & 1/ε→∞). A notable computational issue involved is that the degree bound of ε
required for β is exponential in the input size [29, Prop.3]; this may again be a “justification”
for APS requiring that much space.

Classically, the exact version of APS has been extremely well-studied– Does there exist
β ∈ Fn such that for all i, fi(β) = 0? This is what Hilbert’s Nullstellensatz (HN) characterizes
and yields an impressive PSPACE algorithm [24, 25]. Note that if system f has an exact
solution, then it is trivially in APS. But the converse is not true. For example, {x, xy− 1} is
in APS, but there is no exact solution in F. To see the former, assign x = ε and y = 1/ε.
Also, the instance {x, x+ 1} is neither in APS nor has an exact solution. Finally, note that
if we restrict β to come from F[ε]n then APS becomes equivalent to exact satisfiability and
HN applies. This can be seen by going modulo εF[ε], as the quotient F[ε]/εF[ε] is F.

Coming back to AnnAtZero, we show that it is equivalent both to a geometric question
and to deciding APS. This gives us, with more work, the following surprising consequence.

I Theorem 2. APS is NP-hard and is in PSPACE.

We apply this to designing hitting-sets and solving NNL (refer [32] for the background).

I Theorem 3. There is a PSPACE algorithm that (given input n, s, r in unary & suitably
large Fq) outputs a set, of points from Fnq of size poly(nsr, log q), that hits all n-variate
degree-r polynomials over Fq that can be infinitesimally approximated by size s circuits.

More applications? The exact polynomials satisfiability question HN (over F) is highly
expressive and, naturally, most computer science problems get expressed that way. We
claim that in a similar spirit, the APS question expresses those computer science problems
that involve ‘infinitesimal approximation’. Since finite fields do not seem to have a natural
topology allowing approximations, algebraic approximations over arbitrary fields is needed.
The latter has been useful in fast matrix multiplication algorithms.

One prominent example of algebraic approximation is the concept of border rank of tensor
polynomials (used in matrix multiplication algorithms and GCT, see [9, 27, 28]). Border
rank computation of a given tensor (over F) can easily be reduced to an APS instance and,
hence, now solved in PSPACE; this matches the complexity of tensor rank itself [40]. From
the point of view of Gröbner basis theory, APS is a problem that seems a priori much harder
than HN. Now that both of them have a PSPACE algorithm, one may wonder whether
it can be brought all the way down to NP or AM? (In fact, HNC is known to be in AM,
conditionally under GRH [24].)

Our methods in the proof of Theorem 2 imply an interesting “degree bound” related
to the (prime) ideal I of annihilators of polynomials f . Namely, I =

√
I≤d, where I≤d

refers to the subideal generated by degree ≤ d polynomials of I, d is the Perron-like bound
(maxi∈[m] deg(fi))k, and k := trdeg(f). This is equivalent to the geometric fact, which we
prove, that the varieties defined by the two ideals I and I≤d are equal (Theorem 18). This
again is an exponential improvement over what one expects to get from the general Gröbner
basis methods; because, the generators of I may well have doubly-exponential degree.

The hitting-set result (Theorem 3) can be applied to compute, in PSPACE, the explicit
system of parameters (esop) of the invariant ring of the variety ∆[det, s], over Fq, with a
given group action [32, Thm.4.9]. Also, we can now construct, in PSPACE, polynomials in
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Fq[x1, . . . , xn] that cannot even be approximated by ‘small’ algebraic circuits. Such results
were previously known only for characteristic zero fields, see [16, Thms.1.1-1.4]. Bringing
this complexity down to P is the longstanding problem of blackbox PIT (& lower bounds),
see [38, 43, 39]. Mulmuley [33] pointed out that small hitting-sets for VP can be designed in
EXPSPACE which is a far worse complexity than that for VP. He called it the GCT Chasm.
We bridge it somewhat, as the proof of Theorem 3 shows that small hitting-sets for VPF can
be designed in PSPACE (like those for VP) for any field F.

In another application, the null-cone problem defined in [10] can be seen as a special case
of APS and using our algorithm, it can be solved in PSPACE. Bürgisser et al. [10] gave an
exponential time algorithm for the above problem (bringing it down from EXPSPACE).

1.2 Proof ideas
Proof idea of Theorem 1. Suppose we are given algebraic circuits f := {f1, . . . , fm}
computing in Fq[x1, . . . , xn]. For the AM and coAM protocols, we consider the following
system of equations over a ‘small’ extension Fq′ :

For b = (b1, . . . , bm) ∈ Fmq′ , define the system of equations fi(x1, . . . , xn) = bi, for i ∈ [m].
We denote the number of solutions of the above system in Fnq′ as Nb. Let f : Fnq′ → Fmq′ be
the polynomial map a 7→ (f1(a), . . . , fm(a)).

AM gap. [Theorem 9] We establish bounds for the number Nf(a), where a is a random
point in Fnq′ . If f1, . . . , fm are independent, we show that Nf(a) is relatively small. Whereas,
if the polynomials are algebraically dependent then Nf(a) is much more.

Assume f are algebraically independent. Wlog (see the full version of [34, Sec.2]) we can
assume that m = n and for all i ∈ [n], {xi, f1, . . . , fn} are algebraically dependent. The first
step is to show that the zeroset defined by the system of equations, for random f(a), has
dimension ≤ 0 with high probability. This is proved using the Perron degree bound on the
annihilator of {xi, f1, . . . , fn}. Next, one can apply an affine version of Bezout’s theorem to
upper bound Nf(a). On the other hand, suppose f are algebraically dependent, say with
annihilator Q. Let Im(f) := f(Fnq′) be the image of f . Since Q vanishes on Im(f), we know
that Im(f) is relatively small, whence we deduce that Nf(a) is large for ‘most’ a’s.

coAM gap. [Theorem 12] We pick a random point b = (b1, . . . , bm) ∈ Fmq′ and bound Nb,
which is the number of solutions of the system defined above. In the dependent case, we
show that Nb = 0 for ‘most’ b’s. But in the independent case, we show that Nb ≥ 1 for
‘many’ (may be not ‘most’!) b’s. The ideas are based on those sketched above.

The two kinds of gaps shown above are based on the set f−1(f(x)) resp. Im(f). Note
that membership in either of these sets is testable in NP (the latter requires nondeterminism).
Based on this and the gaps between the respective cardinalities, we can invoke Lemma 4 and
devise the AM and coAM protocols for AD(Fq′), which also apply to AD(Fq).

Remark– One advantage in our problem is that we could sample a random point in
the set Im(f). In contrast, it is not clear how to sample a random point in the zeroset
Zer(f) := {x ∈ Fnq′ | f(x) = 0}. Thus, we manage to side-step the NP-hardness associated
with most zeroset properties. Eg. computing the dimension of Zer(f) is NP-hard.

Proof idea of Theorem 2. Let algebraic circuits f := {f1, . . . , fm} in F[x1, . . . , xn] be given
over a field F. We want to determine if the constant term of every annihilator for f is zero.
Redefine the polynomial map f : Fn → Fm; a 7→ (f1(a), . . . , fm(a)). For a subset S of an
affine (resp. projective) space, write S for its Zariski closure in that space, i.e. it is the
smallest subset that contains S and equals the zeroset Zer(I) of some polynomial ideal I.
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APS vs AnnAtZero. [Theorem 15] Now, we interpret the problem AnnAtZero in a
geometric way through Lemma 13:

The constant term of every annihilator of f is zero iff the origin point 0 ∈ Im(f).
This has a simple proof using the ideal-variety correspondence [17]. Note that the stronger

condition 0 ∈ Im(f) is equivalent to the existence of a common solution to the equations
fi(x1, . . . , xn) = 0, i = 1, . . . ,m. The latter problem (call it HN for Hilbert’s Nullstellensatz)
is known to be in AM if F = Q and GRH is assumed [24]. However, Im(f) is not necessarily
Zariski closed; equivalently, it may be strictly smaller than Im(f). So, we need new ideas to
test 0 ∈ Im(f).

Next, we observe that although 0 ∈ Im(f) is not equivalent to the existence of a solution
x ∈ Fn to f(x) = 0, it is equivalent to the existence of an “approximate solution” x ∈ F(ε)n,
which is an n-tuple of rational functions in a formal variable ε. The proof idea of this uses
a degree bound on ε due to [29]. We called this problem APS. As AnnAtZero problem is
already known to be NP-hard [22], APS is also NP-hard.

Upper bounding APS. We now know that: Solving APS for f is equivalent to solving
AnnAtZero for f . AnnAtZero was previously known to be in PSPACE in the special case
when the trdeg k of F(f)/F equals m or m − 1, but the general case remained open (best
being EXPSPACE).

In this work we prove that AnnAtZero is in PSPACE even when k < m− 1. Our simple
idea is to reduce the input to a smaller m = k + 1 instance, by choosing new polynomials
g1, . . . , gk+1 that are random linear combinations of fi’s. We show that with high probability,
replacing {f1, . . . , fm} by {g1, . . . , gk+1} preserves YES/NO instances as well as the trdeg.
This gives a randomized poly-time reduction from the case k < m−1 to k = m−1 (Theorem
18). The latter has a standard PSPACE algorithm.

For notational convenience view F as the affine line A. Define V := Im(f) ⊆ Am. Proving
that the above reduction (of m) does preserve YES/NO instances amounts to proving the
following geometric statement: If V does not contain the origin O ∈ Am, then with high
probability, the variety V ′ := π(V ) does not contain the origin O′ ∈ Ak+1 either, where
π : Am → Ak+1 is a random linear map.

As π is picked at random, the kernel W of π is a random linear subspace of Am. We
have O′ 6∈ π(V ) whenever V ∩W = ∅, but this is not sufficient for proving O′ 6∈ π(V ),
since V may “get arbitrarily close to W” in Am and meet W “at infinity”. Inspired by
this observation, we consider projective geometry instead of affine geometry, and prove
that O′ 6∈ V ′ holds as long as the projective closure of V and that of W are disjoint. The
proof uses a construction of a projective subvariety– the join –to characterize π−1(V ′), and
eventually rules out W ⊆ π−1(V ′) (Lemma 19).

Moreover, we show that this holds with high probability if O 6∈ V : by (repeatedly) using
the fact that a generic (=random) hyperplane section reduces the dimension of a variety by
one.

Proof idea of Theorem 3. Define A := Fq and assume wlog q ≥ Ω(sr2) [1]. [19, Thm.4.4]
showed that a hitting-set, of size h := O(s2n2 log q) in Fnq , exists for the class of degree-r
polynomials, in A[x1, . . . , xn], that can be infinitesimally approximated by size-s algebraic
circuits. So, we can search over all possible subsets of size h from Fnq and ‘most’ of them are
hitting-sets.

How do we certify that a candidate set H is a hitting-set? The idea is to use universal
circuits. A universal circuit has n essential variables x = {x1, . . . , xn} and s′ := O(sr4)
auxiliary variables y = {y1, . . . , ys′}. We can fix the auxiliary variables, from A(ε), in such
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a way so that it can output any homogeneous circuit of size-s, approximating a degree-r
polynomial in VPA. Given a universal circuit Ψ, certification of a hitting-set H is based on
the following observation, that follows from the definitions:

Candidate set H =: {v1, . . . ,vh} is a hitting-set iff ∀y ∈ A(ε)s′ , Ψ(y,x) /∈ εA[ε][x] ⇒
∃i ∈ [h], Ψ(y,vi) /∈ εA[ε].

Equivalently: Candidate set H = {v1, . . . ,vh} is not a hitting-set iff ∃y ∈ A(ε)s′ ,
Ψ(y,x) /∈ εA[ε][x] and ∀i ∈ [h], Ψ(y,vi) ∈ εA[ε].

Note that this hitting-set certification is more challenging than the one against polynomials
in VP; because the degree bounds for ε are exponentially high and moreover, we do not know
how to frame the first ‘non-containment’ condition as an APS instance. To translate it to an
APS instance, our key idea is the following.

Pick q ≥ Ω(s′r2) so that a hitting-set exists, in Fnq , that works against polynomials
approximated by the specializations of Ψ. Suppose Ψ(α,x) is not in εA[ε][x], for some
α ∈ A(ε)s′ . This means that we can write it as

∑
−m≤i≤m′ ε

igi(x) with g−m 6= 0 and
m ≥ 0. Clearly, εm ·Ψ(α,x) infinitesimally approximates the nonzero polynomial g−m ∈ A[x].
By the conditions on Ψ, we know that g−m is a homogeneous degree-r polynomial (and
approximative complexity s′). Thus, by [42], there exists a β ∈ Fnq such that g−m(β) =: a
is a nonzero element in A. We can normalize by this and consider a−1εm ·Ψ(y,x), which
evaluates to 1 + εA[ε] at (α, β). Since this normalization factor only affects the auxiliary
variables y, we get another equivalent criterion:

Candidate set H = {v1, . . . ,vh} is not a hitting-set iff ∃y ∈ A(ε)s′ and ∃x ∈ Fnq such
that, Ψ(y,x)− 1 ∈ εA[ε] and ∀i ∈ [h], Ψ(y,vi) ∈ εA[ε].

We reach closer to APS, but how do we implement ∃?x ∈ Fnq (it takes exponential space)?
The idea is to rewrite it, instead using the (r + 1)-th roots of unity Zr+1 ⊂ A, as:

∃x ∈ A(ε)n, ∀i ∈ [n], xr+1
i − 1 ∈ εA[ε]. This gives us a criterion that is an instance of

APS with n + h + 1 input polynomials (Theorem 22). By Theorem 2 it can be done in
PSPACE; finishing the proof. Moreover, this PSPACE algorithm idea is independent of the
field characteristic. (Eg. it can be seen as an alternative to [16] over the complex field.)

2 Preliminaries

Jacobian. Although this work would not need it, we define the classical Jacobian: For
polynomials f = {f1, · · · , fm} in F[x1, · · · , xn], Jacobian is the matrix Jx(f) := (∂xj

fi)m×n,
where ∂xj

fi := ∂fi/∂xj .
Jacobian criterion [21, 6] states: For degree≤ d and trdeg≤ r polynomials f , if char(F) = 0

or char(F) > dr, then trdeg(f) = rankF(x)Jx(f). This yields a randomized poly-time
algorithm [42]. For other fields, Jacobian criterion fails due to inseparability and AD(F) is
open.

AM protocol. Arthur-Merlin class AM is a randomized version of the class NP (see [4]).
Arthur-Merlin protocols, introduced by Babai [5], can be considered as a special type of
interactive proof system in which the randomized poly-time verifier (Arthur) and the all-
powerful prover (Merlin) have only constantly many rounds of exchange. AM contains
interesting problems like determining if two graphs are non-isomorphic. AM ∩ coAM is
the class of decision problems for which both YES and NO answers can be verified by an
AM protocol. It can be thought of as the randomized version of NP ∩ coNP. See [23] for a
few natural algebraic problems in AM ∩ coAM. If such a problem is NP-hard (even under
random reductions) then polynomial hierarchy collapses to the second-level, i.e. PH= Σ2.
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In this work AM protocol will only be used to distinguish whether a set S is ‘small’ or
‘large’. Formally, we refer to the Goldwasser-Sipser Set Lowerbound method:

I Lemma 4. [4, Chap.9] Let m ∈ N be given in binary. Suppose S is a set whose membership
can be tested in nondeterministic polynomial time and its size is promised to be either ≤ m
or ≥ 2m. Then, the problem of deciding whether |S|

?
≥ 2m is in AM.

Geometry. Due to limited space we have moved the geometry preliminaries to Appendix
A. One can also refer to a standard text, eg. [17, 18]. Basically, we need terms about affine
(resp. projective) zerosets and the underlying Zariski topology. The latter gives a way to
‘impose’ geometry even in very discrete situations, eg. finite fields in this work.

3 Algebraic dependence testing: Proof of Theorem 1

Given f1, . . . , fm ∈ Fq[x1, . . . , xn], we want to decide if they are algebraically dependent. For
this problem AD(Fq) we could assume, with some preprocessing, that m = n. For, m > n

means that its a YES instance. If m < n then we could apply a ‘random’ linear map on
the variables to reduce them to m, preserving the YES/NO instances. Also, the trdeg does
not change when we move to the algebraic closure Fq. The details can be found in [34,
Lem.2.7-2.9]. So, we assume the input instance to be f := {f1, . . . , fn} with nonconstant
polynomials.

In the following, let D :=
∏
i∈[n] deg(fi) > 0 and D′ := maxi∈[n] deg(fi) > 0. Let d ∈ N+

and q′ = qd. The value of d will be determined later. Let f : Fnq′ → Fnq′ be the polynomial
map a 7→ (f1(a), . . . , fn(a)). For b = (b1, . . . , bn) ∈ Fnq′ , denote by Nb the size of the preimage
f−1(b) = {x ∈ Fnq′ | f(x) = b}.

Define A := Fq and N b := #{x ∈ An | fi(x) = bi, for all i ∈ [n]} which might be ∞.
Let Q ∈ Fq[y1, . . . , yn] be a nonzero annihilator, of minimal degree, of f1, . . . , fn. If it exists
then deg(Q) ≤ D by Perron’s bound.

3.1 AM protocol
First, we study the independent case.

I Lemma 5 (Dim=0 preimage). Suppose f are independent. Then Nf(a) is finite for all but
at most (nDD′/q′)-fraction of a ∈ Fnq′ .

Proof. For i ∈ [n], let Gi ∈ Fq[z, y1, . . . , yn] be the annihilator of {xi, f1, . . . , fn}. We have
deg(Gi) ≤ D by Perron’s bound. Consider a ∈ Fnq′ such that G′i(z) := Gi(z, f1(a), . . . , fn(a))
∈ Fq[z] is a nonzero polynomial for every i ∈ [n]. We claim that Nf(a) is finite for such a.

To see this, note that for any b = (b1, . . . , bn) ∈ An satisfying the equations fi(b) = fi(a),
i ∈ [n], we have

0 = Gi(bi, f1(b), . . . , fn(b)) = Gi(bi, f1(a), . . . , fn(a)) = G′i(bi), ∀i ∈ [n] .

Hence, each bi is a root of G′i. It follows that Nf(a) ≤
∏
i∈[n] deg(G′i) <∞, as claimed.

It remains to prove that the number of a ∈ Fnq′ satisfying G′i = 0, for some index i ∈ [n],
is bounded by nDD′q′−1 · q′n. Fix i ∈ [n]. Suppose Gi =

∑di

j=0 Gi,jz
j , where di := degz(Gi)

and Gi,j ∈ Fq[y1, . . . , yn], for 0 ≤ j ≤ di. The leading coefficient Gi,di is nonzero. As
f1, . . . , fn are algebraically independent, the polynomial Gi,di

(f1, . . . , fn) ∈ Fq[x1, . . . , xn] is
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also nonzero. Its degree is ≤ D′ deg(Gi,di) ≤ D′ deg(Gi) ≤ DD′. By [42], for all but at most
(DD′/q′)-fraction of a ∈ Fnq′ , we have Gi,di

(f1(a), . . . , fn(a)) 6= 0 which implies

G′i(z) = Gi(z, f1(a), . . . , fn(a)) =
di∑
j=0

Gi,j(f1(a), . . . , fn(a))zj 6= 0 .

The claim now follows from the union bound. J

We need the following affine version of Bézout’s Theorem. Its proof can be found in [41,
Thm.3.1].

I Theorem 6 (Bézout’s). Let g1, . . . , gn ∈ A[x1, . . . , xn]. Then the number of common zeros
of g1, . . . , gn in An is either infinite, or at most

∏
i∈[n] deg(gi).

Combining Lemma 5 with Bézout’s Theorem, we obtain

I Lemma 7 (Small preimage). Suppose f are independent. Then Nf(a) ≤ D for all but at
most (nDD′/q′)-fraction of a ∈ Fnq′ .

Next, we study the dependent case (with an annihilator Q).

I Lemma 8 (Large preimage). Suppose f are dependent. Then for k > 0, we have Nf(a) > k

for all but at most (kD/q′)-fraction of a ∈ Fnq′ .

Proof. Let Im(f) := f(Fnq′) be the image of the map. Note that Q vanishes on all the points
in Im(f). So, |Im(f)| ≤ Dq′n−1 by [42].

Let B := {b ∈ Im(f) : Nb ≤ k} be the “bad” images. We can estimate the bad domain
points as,

#{a ∈ Fnq′ : Nf(a) ≤ k} = #{a ∈ Fnq′ : f(a) ∈ B} ≤ k|B| ≤ k|Im(f)| ≤ kDq′n−1 .

which proves the lemma. J

I Theorem 9 (AM). Testing algebraic dependence of f is in AM.

Proof. Fix q′ = qd > 4nDD′ + 4kD and k := 2D. Note that d will be polynomial in the
input size. For an a ∈ Fnq′ , consider the set f−1(f(a)) := {x ∈ Fnq′ | f(x) = f(a)}.

By Lemmas 7 & 8: When Arthur picks a randomly, with high probability, |f−1(f(a))| =
Nf(a) is more than 2D in the dependent case while ≤ D in the independent case. Note that
an upper bound on

∏
i∈[n] deg(fi) can be deduced from the size of the input circuits for fi’s;

thus, we know D. Moreover, containment in f−1(f(a)) can be tested in P. Thus, by Lemma
4, AD(Fq) is in AM. J

3.2 coAM protocol
We first study the independent case.

I Lemma 10 (Large image). Suppose f are independent. Then Nb > 0 for at least (D−1 −
nD′q′−1)-fraction of b ∈ Fnq′ .

Proof. Let S := {a ∈ Fnq′ : Nf(a) ≤ D}. Then |S| ≥ (1 − nDD′q′−1) · q′n by Lemma 7.
As every b ∈ f(S) has at most D preimages in S under f , we have |f(S)| ≥ |S|/D ≥
(D−1 − nD′q′−1) · q′n. This proves the lemma since Nb > 0 for all b ∈ f(S). J

Next, we study the dependent case.
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I Lemma 11 (Small image). Suppose f are dependent. Then Nb = 0 for all but at most
(D/q′)-fraction of b ∈ Fnq′ .

Proof. By definition: Nb > 0 iff b ∈ Im(f) := f(Fnq′). It was shown in the proof of Lemma 8
that |Im(f)| ≤ Dq′n−1. The lemma follows. J

I Theorem 12 (coAM). Testing algebraic dependence of f is in coAM.

Proof. Fix q′ = qd > D(2D + nD′). Note that d will be polynomial in the input size. For
b ∈ Fnq′ , consider the set f−1(b) := {x ∈ Fnq′ | f(x) = b} of size Nb.

Define S := Im(f). Note that: b ∈ Fnq′ has Nb > 0 iff b ∈ S. Thus, by Lemma 10
(resp. Lemma 11), |S| ≥ (D−1 − nD′q′−1)q′n > 2Dq′n−1 (resp. |S| ≤ Dq′n−1) when f are
independent (resp. dependent). Note that an upper bound on

∏
i∈[n] deg(fi) can be deduced

from the size of the input circuits for fi’s; thus, we know Dq′n−1. Moreover, containment in
S can be tested in NP. Thus, by Lemma 4, AD(Fq) is in coAM. J

Proof of Theorem 1. The statement immediately follows from Theorems 9 & 12. J

4 Approximate polynomials satisfiability: Proof of Theorem 2
Theorem 2 is proved in two parts. First, we show that APS is equivalent to AnnAtZero
problem; which means that it is NP-hard [22]. Next, we utilize the beautiful underlying
geometry to devise a PSPACE algorithm.

4.1 APS is equivalent to AnnAtZero
Let A be the algebraic closure of F. Note that for the given polynomials f := {f1, . . . , fm} in
F[x], there is an annihilator over F with nonzero constant term iff there is an annihilator over
A with nonzero constant term. This is because if Q is an annihilator over A with nonzero
constant term, wlog 1, then by basic linear algebra, the linear system defined by the equation
Q(f) = 0, in terms of the unknown coefficients of Q, would also have a solution in F. Thus,
there is an annihilator over F with constant term 1. This proves that it suffices to solve
AnnAtZero over the algebraically closed field A. This provides us with a better geometry.

Write f : An → Am for the polynomial map sending a point x = (x1, . . . , xn) ∈ An to
(f1(x), . . . , fm(x)) ∈ Am. For a subset S of an affine or projective space, write S for its
Zariski closure in that space. We will use O to denote the origin 0 of an affine space.

The following lemma reinterprets APS in a geometric way.

I Lemma 13 (O in the closure). The constant term of every annihilator for f is zero iff
O ∈ Im(f).

Proof. Note that: Q ∈ A[Y1, . . . , Ym] vanishes on Im(f) iff Q(f) vanishes on An, which
holds iff Q(f) = 0, i.e., Q is an annihilator for f . So Im(f) = V (I), where the ideal
I ⊆ A[Y1, . . . , Ym] consists of the annihilators for f . Also note that {O} = V (m), where m is
the maximal ideal 〈Y1, . . . , Ym〉.

Let us study the condition O ∈ Im(f). By the ideal-variety correspondence, {O} =
V (m) ⊆ Im(f) = V (I) is equivalent to I ⊆ m, i.e., Q mod m = 0 for Q ∈ I. But Q mod m

is just the constant term of the annihilator Q. Hence, we have the equivalence. J

As an interesting corner case, the above lemma proves that whenever f are algebraically
independent, we have Am = Im(f). Eg. f1 = X1 and f2 = X1X2 − 1. Even in the dependent
cases, Im(f) is not necessarily closed in the Zariski topology.
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I Example 14. Let n = 2, m = 3. Consider f1 = f2 = X1 and f3 = X1X2 − 1. The
annihilators are multiples of (Y1 − Y2), which means by Lemma 13 that O ∈ Im(f). But
there is no solution to f1 = f2 = f3 = 0, i.e. O /∈ Im(f).

Approximation. Although O ∈ Im(f) is not equivalent to the existence of a solution x ∈ An
to fi = 0, i ∈ [m], it is equivalent to the existence of an “approximate solution” x ∈ A[ε, ε−1]n,
which is a tuple of Laurent polynomials in a formal variable ε. The formal statement is as
follows. Wlog we assume f to be m nonconstant polynomials.

I Theorem 15 (Approx. wrt ε). O ∈ Im(f) iff there exists x = (x1, . . . , xn) ∈ A(ε)n such
that fi(x) ∈ εA[ε], for all i ∈ [m]. Moreover, when such x exists, it may be chosen such that

xi ∈ ε−DA[ε] ∩ εD
′
A[ε−1] =


D′∑

j=−D
cjε

j : cj ∈ A

 , i ∈ [n],

where D :=
∏
i∈[m] deg(fi) > 0 and D′ := (maxi∈[m] deg(fi)) ·D > 0.

The proof of Theorem 15 is almost the same as that in [29]. First, we recall a tool to
reduce the domain from a variety to a curve, proven in [29].

I Lemma 16. [29, Prop.1] Let V ⊆ An, W ⊆ Am be affine varieties, ϕ : V →W dominant,
and t ∈ W \ ϕ(V ). Then there exists a curve C ⊆ An such that t ∈ ϕ(C) and deg(C) ≤
deg(Γϕ), where Γϕ denotes the graph of ϕ embedded in An × Am.

Next, [29] essentially shows that in the case of a curve one can approximate the preimage
of f by using a single formal variable ε and working in A(ε).

I Lemma 17. [29, Cor. of Prop.3] Let C ⊆ An be an affine curve. Let f : C → Am be
a morphism sending x ∈ C to (f1(x), . . . , fm(x)) ∈ Am, where f1, . . . , fm ∈ A[X1, . . . , Xn].
Let t = (t1, . . . , tm) ∈ f(C). Then there exists p1, . . . , pn ∈ ε− deg(C)A[[ε]] such that
fi(p1, . . . , pn)− ti ∈ εA[[ε]] , for all i ∈ [m].

Finally, we can use the above two lemmas to prove the connection of APS with O ∈ Im(f),
and hence with AnnAtZero (by Lemma 13).

Proof of Theorem 15. First assume that an x, satisfying the conditions in Theorem 15,
exists. Pick such an x. If f are algebraically independent then by Lemma 13 we have that
Am = Im(f) and we are done. So, assume that there is a nonzero annihilator Q for f . We
have Q(f1(x), . . . , fm(x)) = 0 ∈ εA[ε]. On the other hand, as fi(x) ∈ εA[ε], for all i ∈ [m];
we deduce that Q(f1(x), . . . , fm(x)) mod εA[ε] is Q(0), which is the constant term of Q. So
it equals zero. By Lemma 13, we have O ∈ Im(f) and again we are done.

Conversely, assume O ∈ Im(f) and we will prove that x exists. If O ∈ Im(f), then we
can choose x ∈ An and we are done. So assume O ∈ Im(f) \ Im(f). Regard f as a dominant
morphism from An to Im(f). Its graph Γf is cut out in An × Am by Yi − fi(X1, . . . , Xn),
i ∈ [m]. So deg(Γf ) ≤

∏m
i=1 deg(fi) = D by Bézout’s Theorem.

By Lemma 16, there exists a curve C ⊆ An such that O ∈ f(C) and deg(C) ≤ deg(Γf ) ≤
D. Pick such a curve C. Apply Lemma 17 to C, f |C and O, and let p1, . . . , pn ∈
ε− deg(C)A[[ε]] ⊆ ε−DA[[ε]] be as given by the lemma. Then fi(p1, . . . , pn) ∈ εA[[ε]], for
all i ∈ [m].

For i ∈ [n], let xi be the Laurent polynomial obtained from pi by truncating the terms of
degree greater than D′. When evaluating f1, . . . , fm, at (p1, . . . , pn), such truncation does
not affect the coefficient of εk for k ≤ 0 by the choice of D′. So fi(x1, . . . , xn) ∈ εA[ε], for
all i ∈ [m]. J
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Remark– The lower bound −D = −
∏m
i=1 deg(fi) for the least degree of xi in ε can be achieved

up to a factor of 1 + o(1). Consider the polynomials f1 = f2 = X1, f3 = Xd−1
1 X2 − 1,

and fi = Xd
i−2 − Xi−1 for i = 4, . . . ,m, where m = n + 1. Then we are forced to choose

x1 ∈ εA[ε] and xi ∈ ε−(d−1)di−2 ·A[ε−1], for i = 2, . . . , n. So the least degree of xn in ε is at
most −(d− 1)dn−2, while −D = −dn−1.

4.2 Putting APS in PSPACE
Owing to the exponential upper bound on the precision (= degree wrt ε) shown in Theorem
15, one expects to solve APS in EXPSPACE only. Surprisingly, in this section, we give
a PSPACE algorithm. This we do by reducing the general AnnAtZero instance to a very
special instance, that is easy to solve.

Let A be the algebraic closure of the field F. Let f1, . . . , fm ∈ F[X1, . . . , Xn] be given.
Denote by k the trdeg of F(f1, . . . , fm)/F. Computing k can be done in PSPACE using
linear algebra [36, 11]. We assume k < m − 1, since the cases k = m − 1 and k = m are
again easy. In the case k = m, the input instances are always in APS since Im(f) = Am.
And in the case k = m− 1, the ideal of the annihilators is a principal ideal, and hence has a
unique generator (up to scaling). The degree of this generator is at most

∏m
i=1 deg(fi). Thus

checking whether it has a nonzero constant term can be solved in PSPACE by solving an
exponential sized linear system of equations using [11].

We reduce the number of polynomials from m to k + 1 as follows: Fix a finite subset
S ⊆ F, and choose ci,j ∈ S at random for i ∈ [k + 1] and j ∈ [m]. For this to work, we need
a large enough S and F. For i ∈ [k + 1], let gi :=

∑m
j=1 ci,jfj .

Let δ := (k + 1)(maxi∈[m] deg(fi))k/|S|. Our algorithm is immediate once we prove the
following claim.

I Theorem 18 (Random reduction). It holds, with probability ≥ (1− δ), that
(1) the transcendence degree of F(g1, . . . , gk+1)/F equals k, and
(2) the constant term of every annihilator for g1, . . . , gk+1 is zero iff the constant term of

every annihilator for f1, . . . , fm is zero.

First, we reformulate the two items of Theorem 18 in a geometric way, and later we will
analyze the error probability.

For d ∈ N, denote by Ad (resp. Pd) the d-dimensional affine space (resp. projective space)
over A := F. Let f : An → Am (resp. g : An → Ak+1) be the polynomial map sending x to
(f1(x), . . . , fm(x)) (resp. (g1(x), . . . , gk+1(x))). Let O and O′ be the origin of Am and that
of Ak+1 respectively. Define the affine varieties V := Im(f) ⊆ Am and V ′ := Im(g) ⊆ Ak+1.
Then dim V = trdeg f = k.

Let π : Am → Ak+1 be the linear map sending (x1, . . . , xm) to (y1, . . . , yk+1) where
yi =

∑m
j=1 ci,jxj . Then g = π ◦ f and V ′ = π(V ).4 Now (1) of Theorem 18 is equivalent to

dim V ′ = k, and (2) is equivalent to O′ ∈ V ′ iff O ∈ V .

An V = Im(f) Am

V ′ = Im(g) Ak+1

f

g

⊆

π|V π

⊆

4 To see V ′ ⊇ π(V ), note that π−1(V ′) contains Im(f) and is closed, and hence contains V = Im(f).
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We will give sufficient conditions of (1) and (2) in terms of incidence properties. Note that
O ∈ V implies O′ ∈ V ′, since π(O) = O′. Now suppose O 6∈ V . Let W := π−1(O′), which
is a linear subspace of Am. Then O′ 6∈ π(V ) iff V ∩W = ∅. However, V ∩W = ∅ does not
imply O′ 6∈ V ′, as V may “get infinitesimally close to W” without actually meeting W , so
that O′ ∈ π(V ) = V ′. See Example 23 in the appendix.

To overcome this problem, we consider projective geometry instead of affine geometry.
Suppose Am have coordinatesX1, . . . , Xm and Pm have homogeneous coordinatesX0, . . . , Xm.
Regard Am as a dense open subset of Pm via (x1, . . . , xm) 7→ (1, x1, . . . , xm). Then H :=
Pm \ Am ∼= Pm−1 is the hyperplane at infinity, defined by X0 = 0. Denote by Vc (resp. Wc)
the projective closure of V (resp. W ) in Pm. Then V = Vc ∩Am. Let WH := Wc ∩H, which
is a projective subspace of H.

For distinct points P,Q ∈ Pm, write PQ for the projective line passing through them.

I Lemma 19 (Sufficient conditions). We have:
(1) dim V ′ = k, if Vc ∩WH = ∅, and
(2) O′ 6∈ V ′, if Vc ∩Wc = ∅.

Proof. (1): Assume dim V ′ < k. Choose P ∈ π(V ). The dimension of π−1(P )∩V is at least
dim V − dim V ′ ≥ 1 [17, Thm.11.12]. Denote by Y and Z the projective closure of π−1(P )
and that of π−1(P )∩V in Pm respectively. Then Z ⊆ Y ∩Vc. As dim Z = dim π−1(P )∩V ≥ 1
and dim H = m− 1, we have Z ∩H 6= ∅ [17, Prop.11.4].

As π is a linear map, π−1(P ) = Y ∩ Am is a translate of π−1(O′) = W = Wc ∩ Am. It is
well known that two projective subspaces W1,W2 6⊆ H have the same intersection with H iff
W1 ∩Am and W2 ∩Am are translates of each other.5 So, Y ∩H = Wc ∩H = WH . Therefore,
Vc ∩WH = Vc ∩ Y ∩H ⊇ Z ∩H 6= ∅.

(2): Assume to the contrary that Vc∩Wc = ∅ but O′ ∈ V ′. We will derive a contradiction.
As WH ⊆Wc, we have Vc ∩WH = ∅ and hence dim V ′ = k by (1).

Denote by J(Vc,WH) the join of Vc and WH , which is defined to be the union of the
projective lines PQ, where P ∈ Vc and Q ∈WH . It is known that J(Vc,WH), as the join of
two disjoint projective subvarieties, is again a projective subvariety of Pm [17, Example 6.17].
Consider P ∈ Vc and Q ∈WH . If P ∈ H, the line PQ lies in H and does not meet Am. Now
suppose P ∈ Vc \H = V . Then PQ meets OQ at the point Q. So PQ∩Am is a translate of
OQ ∩ Am ⊆ Wc ∩ Am = W .

Conversely, let P ∈ V . Let WP denote the unique translate of W containing P . Let `P
be an affine line contained in WP and passing through P (note that WP is the union of such
lines). Then `P is a translate of an affine line ` ⊆ W . As `P and ` are translates of each
other, their projective closures intersect H at the same point Q. We have Q ∈ ` ∩H ⊆WH .
So `P = PQ ∩ Am ⊆ J(Vc,WH) ∩ Am. We conclude that

J(Vc,WH) ∩ Am =
⋃
P∈V

WP . (1)

We claim that J(Vc,WH) ∩ Am = π−1(V ′). As π is a linear map, Equation (1) implies
J(Vc,WH) ∩ Am ⊆ π−1(V ′). We prove the other direction by comparing dimensions. It is
known that for two disjoint projective subvarieties V1 and V2, dim J(V1, V2) = dim V1 +
dim V2 + 1 [17, Prop.11.37-Ex.11.38]. Therefore,

dim J(Vc,WH) = dim Vc + dim WH + 1 = dim V + dim W = k + dim W .

5 Indeed, Wi ∩ Am is defined by linear equations
∑m

j=1 aj,tXj + a0,t = 0 iff Wi ∩ H is defined by
homogeneous linear equations X0 = 0 and

∑m

j=1 aj,tXj = 0. So the constant terms a0,t do not matter.
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So, dim J(Vc,WH) ∩ Am = k + dim W . On the other hand, we have π−1(V ′) ∼= V ′ ×W .
So dim π−1(V ′) = dim V ′ + dim W = k + dim W . Now J(Vc,WH) ∩ Am and π−1(V ′) are
(irreducible) affine varieties of the same dimension, and one is contained in the other. So
they must be equal. This proves the claim.

As O′ ∈ V ′, we have W = π−1(O′) ⊆ π−1(V ′) =
⋃
P∈V WP . So WP = W for some

P ∈ V , since W is a linear space. But then P ∈ V ∩WP = V ∩W ⊆ Vc ∩Wc, contradicting
the assumption Vc ∩Wc = ∅. J

I Remark. The converse of Lemma 19 (Condition 2) is false; see Example 24 in the appendix.

Error probability. It remains to bound the probability of failure of the conditions Vc∩WH = ∅
and (in the case O 6∈ V ) Vc ∩Wc = ∅ in Lemma 19. We need the following lemma.

I Lemma 20 (Cut by hyperplanes). Let V ⊆ Pm be a projective subvariety of dimension r and
degree d. Let r′ ≥ r+ 1. Choose ci,j ∈ S at random, for i ∈ [r′] and 0 ≤ j ≤ m. Let W ⊆ Pm
be the projective subspace cut out by the equations

∑m
j=0 ci,jXj = 0, i = 1, . . . , r′, where

X0, . . . , Xm are homogeneous coordinates of Pm. Then V ∩W = ∅ holds with probability at
least 1− (r + 1)d/|S|.

Proof. For i ∈ [r′], let Hi ⊆ Pm be the hyperplane defined by
∑m
j=0 ci,jXj = 0. By ignoring

Hi for i > r + 1, we may assume r′ = r + 1. Let V0 := V and Vi := Vi−1 ∩Hi for i ∈ [r′].
It suffices to show that dim Vi = dim Vi−1 − 1 holds with probability at least 1− d/|S|, for
each i ∈ [r′] (the dimension of the empty set is −1 by convention).

Fix i ∈ [r′] and ci′,j , for i′ ∈ [i − 1] and 0 ≤ j ≤ m. So Vi−1 is also fixed. Note
that Vi−1 6= ∅ since taking a hyperplane section reduces the dimension by at most one. If
dim Vi 6= dim Vi−1−1, then dim Vi = dim Vi−1, and Hi contains some irreducible component
of Vi−1 [17, Exercise 11.6]. Let Y be an irreducible component of Vi−1, and fix a point
P ∈ Y . Then Y ⊆ Hi only if P ∈ Hi, which holds only if ci,0, . . . , ci,m satisfy a nonzero
linear equation determined by P . This occurs with probability at most 1/|S| (eg. by fixing
all but one ci,j). We also have deg(Vi−1) ≤ deg(V ) ≤ d, and hence the number of irreducible
components of Vi−1 is bounded by d. By the union bound, Hi contains an irreducible
component of Vi−1 with probability at most d/|S|. J

Proof of Theorem 18. As mentioned above, Theorem 18 is equivalent to showing that, with
probability at least 1 − δ: (1) dim V ′ = k, and (2) O′ ∈ V ′ iff O ∈ V . Note that Wc is
cut out in Pm by the linear equations

∑m
j=1 ci,jXj = 0, i = 1, . . . , k + 1. So WH is cut

out in H ∼= Pm−1 (corresponding to X0 = 0) by the linear equations
∑m
j=1 ci,jXj = 0,

i = 1, . . . , k + 1. We also have deg(Vc ∩H) ≤ deg(Vc) ≤ (maxi∈[m] deg(fi))k (see, e.g., [9,
Thm.8.48]).

Assume O ∈ V . Then O′ ∈ V ′ since π(O) = O′. Applying Lemma 20 to each of
the irreducible components of Vc ∩ H and WH , as subvarieties of H ∼= Pm−1, we see
Vc ∩WH = (Vc ∩H)∩WH = ∅ holds with probability at least 1− k deg(Vc ∩H)/|S| ≥ 1− δ.
So by Lemma 19, dim V ′ = k holds with probability at least 1− δ.

Now assume O 6∈ V . Let πO,H : Vc → H be the projection of Vc from O to H, defined by
P 7→ OP ∩H for P ∈ Vc. It is well defined since O 6∈ Vc. The image πO,H(Vc) is a projective
subvariety of H [17, Thm.3.5]. If Vc ∩Wc contains a point P , then πO,H(Vc) ∩WH contains
πO,H(P ). Conversely, if πO,H(Vc) ∩WH contains a point Q, then there exists P ∈ Vc such
that Q = πO,H(P ), and we have P ∈ OQ ⊆ Wc. We conclude that πO,H(Vc) ∩WH = ∅ iff
Vc ∩Wc = ∅, which implies Vc ∩WH = ∅.
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Note that dim πO,H(Vc) = dim Vc = k, since πO,H(Vc) = J({O}, Vc) ∩ H. We also
have deg(πO,H(Vc)) ≤ deg(Vc) [17, Eg.18.16]. Applying Lemma 20 to πO,H(Vc) and WH ,
as subvarieties of H ∼= Pm−1, we see πO,H(Vc) ∩WH = ∅ holds with probability at least
1− (k + 1) deg(πO,H(Vc))/|S| ≥ 1− δ.

By Lemma 19 and the previous paragraphs, it holds with probability at least 1− δ that
dim V ′ = k and O′ 6∈ V ′. J

Proof of Theorem 2. AnnAtZero is known to be NP-hard [22]. The NP-hardness of APS
follows from Lemma 13 and Theorem 15.

Given an instance f of APS, we can first find the trdeg k. Fix a subset S ⊂ A to be
larger than 2(k + 1)(maxi∈[m] deg(fi))k (which can be scanned using only polynomial-space).
Consider the points ((ci,j | i ∈ [k + 1], j ∈ [m])) ∈ S(k+1)×m; for each such point define
g := {gi :=

∑m
j=1 ci,jfj | i ∈ [k + 1]}. Compute the trdeg of g, and if it is k then solve

AnnAtZero for the instance g. Output NO iff some g failed the AnnAtZero test.
All these steps can be achieved in space polynomial in the input size, using the uniqueness

of the annihilator for g [22, Lem.7], Perron’s degree bound [36] and linear algebra [11]. J

5 Hitting-set for VP: Proof of Theorem 3

Suppose p is a prime. Define A := Fp. We want to find hitting-sets for certain polynomials in
A[x1, . . . , xn]. Fix a p-power q ≥ Ω(sr6), for the given parameters s, r. Assume that p - (r+1).
Also, fix a model for the finite field Fq [1]. We now define the notion of ‘infinitesimally
approximating’ a polynomial by a small circuit.

Approximative closure of VP. [7] A family (fn|n) of polynomials from A[x] is in the class
VPA if there are polynomials fn,i and a function t : N 7→ N such that gn has a poly(n)-size
poly(n)-degree algebraic circuit, over the field A(ε), computing gn(x) = fn(x) + εfn,1(x) +
ε2fn,2(x) + . . .+ εt(n)fn,t(n)(x). That is, gn ≡ fn mod εA[ε][x].

The smallest possible circuit size of gn is called the approximative complexity of fn,
namely size(fn).

It may happen that gn is much easier than fn in terms of traditional circuit complexity.
That possibility makes the definition interesting and opens up a long line of research.

Hitting-set for VPA. Given functions s = s(n) and r = r(n), a finite subset H ⊂ An is
called a hitting-set for degree-r polynomials of approximative complexity s, if for every such
nonzero polynomial f : ∃v ∈ H, f(v) 6= 0.

Explicitness. We are interested in computing such a hitting-set in poly(s, log r, log q)-time.
Before our work, the best result known was EXPSPACE [33, 32]. Heintz and Schnorr [19]

proved that poly(s, log qr)-sized hitting-sets exist aplenty (for degree-r size-s polynomials).

I Lemma 21. [19, Thm.4.4] There exists a hitting-set H ⊂ Fnq of size O(s2n2) (assuming q ≥
Ω(sr2)) that hits all nonzero degree-r n-variate polynomials in A[x] that can be infinitesimally
approximated by size-s algebraic circuits.

Note that for the hitting-set design problem it suffices to focus only on homogeneous
polynomials. They are known to be computable by homogeneous circuits, where each gate
computes a homogeneous polynomial (see [43]).
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Universal circuit. It can simulate any circuit of size-s computing a degree-r homogeneous
polynomial in A(ε)[x1, . . . , xn]. We define the universal circuit Ψ(y,x) as a circuit in n

essential variables x and s′ := O(sr4) auxiliary variables y. The variables y are the ones
that one can specialize in A(ε), to compute a specific polynomial in A(ε)[x1, . . . , xn]. Every
specialization gives a homogeneous degree-r size-s′ polynomial. Moreover, the set of these
polynomials is closed under constant multiples (see [16, Thm.2.2]).

Note that by [19] there is a hitting-set, with m := O(s′2n2) points in Fnq (∵ q ≥ Ω(s′r2)),
for the set of polynomials P approximated by the specializations of Ψ(y,x). A universal
circuit construction can be found in [37, 43]. Using the above notation, we give a criterion
to decide whether a candidate set is a hitting-set.

I Theorem 22 (hs criterion). Set H =: {v1, . . . ,vm} ⊂ Fnq is not a hitting-set for the family
of polynomials P iff there is a satisfying assignment (α, β) ∈ A(ε)s′ × A(ε)n such that:
(1) ∀i ∈ [n], βir+1 − 1 ∈ εA[ε], and
(2) Ψ(α, β)− 1 ∈ εA[ε], and
(3) ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε].

I Remark. The above criterion holds for algebraically closed fields A of any characteristic.
Thus, it reduces those hitting-set verification problems to APS as well.

Proof. First we show that: ∃x ∈ A(ε), xr+1− 1 ∈ εA[ε] implies x ∈ A[[ε]]∩A(ε) (= rational
functions defined at ε = 0).

Recall the formal power series A[[ε]] and its group of units A[[ε]]∗. Note that for any
polynomial a = (

∑
i0≤i≤d aiε

i) with ai0 6= 0, the inverse a−1 = ε−i0 · (
∑
i0≤i≤d aiε

i−i0)−1

is in ε−i0 · A[[ε]]∗. This is just a consequence of the identity (1− ε)−1 =
∑
i≥0 ε

i. In other
words, any rational function a ∈ A(ε) can be written as an element in ε−iA[[ε]]∗, for some
i ≥ 0. Thus, write x as ε−i · (b0 + b1ε+ · · · ) for i ≥ 0 and b0 ∈ A∗. This gives

xr+1 − 1 = ε−i(r+1)(b0 + b1ε+ b2ε
2 + · · · )r+1 − 1 .

For this to be in εA[ε], clearly i has to be 0 (otherwise, ε−i(r+1) remains uncancelled);
implying that x ∈ A[[ε]].

Moreover, we deduce that br+1
0 − 1 = 0. Thus, condition (1) implies that b0 is one of

the (r + 1)-th roots of unity Zr+1 ⊂ A (recall that, since p - (r + 1), |Zr+1| = r + 1). Thus,
x ∈ Zr+1 + εA[[ε]].

[⇒]: Suppose H is not a hitting-set for P. Then, there is a specialization α ∈ A(ε)s′ of
the universal circuit such that Ψ(α,x) computes a polynomial in A[ε][x] \ εA[ε][x], but still
‘fools’ H, i.e.: ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε]. What remains to show is that conditions (1) and
(2) can be satisfied too.

Consider the polynomial g(x) := Ψ(α,x)|ε=0. It is a nonzero polynomial, in A[x] of
degree-r, that ‘fools’ H. By [42], there is a β ∈ Znr+1 such that a := g(β) is in A∗. Clearly,
βr+1
i − 1 = 0, for all i. Consider ψ′ := a−1 · Ψ(α,x). Note that ψ′(β) − 1 ∈ εA[ε], and
ψ′(vi) ∈ εA[ε] for all i. Moreover, the normalized polynomial ψ′(x) can easily be obtained
from the universal circuit Ψ by changing one of the coordinates of α (eg. the incoming wires
of the root of the circuit). This means that the three conditions (1)-(3) can be simultaneously
satisfied by (some) (α′, β) ∈ A(ε)s′ × Znr+1.

[⇐]: Suppose the satisfying assignment is (α, β′) ∈ A(ε)s′ × A(ε)n. As shown before,
condition (1) implies: β′i ∈ Zr+1 + εA[[ε]] for all i ∈ [n]. Let us define βi := β′i|ε=0, for all
i ∈ [n]; they are in Zr+1 ⊂ A. By Condition (3): ∀i ∈ [m], Ψ(α,vi) ∈ εA[ε].
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Previous calculations suggest that Ψ(α,x) is in ε−jA[[ε]][x], for some j ≥ 0. Expand the
polynomial Ψ(α,x), wrt ε, as:

g−j(x)ε−j + · · ·+ ε−2g−2(x) + g−1(x)ε−1 + g0(x) + εg1(x) + ε2g2(x) + . . . .

Let us study Condition (2). If for each 0 ≤ ` ≤ j, polynomial g−`(x) is zero, then
Ψ(α, β′)|ε=0 = 0 contradicting the condition. Thus, we can pick the largest 0 ≤ ` ≤ j such
that the polynomial g−`(x) 6= 0.

Note that the normalized circuit ε` ·Ψ(α,x) equals g−` at ε = 0. This means that g−` ∈ P ,
and it is a nonzero polynomial fooling H. Thus, H cannot be a hitting-set for P and we are
done. J

Proof of Theorem 3. Given a prime p and parameters n, r, s in unary (wlog p - (r + 1)), fix
a field Fq with q ≥ Ω(sr6). Fix the universal circuit Ψ(y,x) with n essential variables x and
s′ := Ω(sr4) auxiliary variables y. Fix m := Ω(s′2n2).

For every subset H =: {v1, . . . ,vm} ⊂ Fnq solve the APS instance described by Conditions
(1)-(3) in Theorem 22. These are (n+m+1) algebraic circuits of degree poly(srn, log p) and a
similar bitsize. Using the algorithm from Theorem 2 it can be solved in poly(srn, log p)-space.

The number of subsets H is qnm. So, in poly(nm log q)-space we can go over all of them.
If APS fails on one of them (say H) then we know that H is a hitting-set for P. Since Ψ is
universal, for homogeneous degree-r size-s polynomials in A[x], we output H as the desired
hitting-set. J

I Remark. One advantage in our method compared to the one in [16] is that we can check
whether any given set of points is a hitting-set for VPA. The method in [16] can not do
this, as it only designed robust hitting sets. Another improvement over [16] is that in our
case the bit-complexity of the coordinates in hitting-set points is O(log rs), whereas the
bit-complexity of the hitting-set points in [16] is poly(n, s, r).

6 Conclusion
Our result on algebraic dependence testing in AM ∩ coAM gives further indication that a
randomized polynomial time algorithm for the problem exists. Studying the following special
case might be helpful to get an idea for designing better algorithms.

Given quadratic polynomials f1, . . . , fn ∈ F2[x1, . . . , xn], test if they are algebraically
dependent in randomized polynomial time [34].

As indicated in this paper, approximate polynomials satisfiability, or equivalently testing
zero-membership in the Zariski closure of the image, may have further applications to
problems in computational algebraic geometry and algebraic complexity.

We know that HN is in AM over fields of characteristic zero, assuming GRH [24]. Can
we solve AnnAtZero (or APS) in AM for fields of characteristic zero assuming GRH [22]?
This would also imply a better hitting-set construction for VP.
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A From Section 2: Algebraic-Geometry

Let A := F be the algebraic closure of a field F. For d ∈ N+, write Ad for the d-dimensional
affine space over A. It is defined to be the set Ad, equipped with the Zariski topology, defined
as follows: A subset S of Ad is closed iff it is the set of common zeros of some subset of
polynomials in A[X1, . . . , Xd]. For other subsets S it makes sense to consider the closure S–
the smallest closed set containing S. Set S is dense in Ad if S = Ad. Complement of closed
sets are called open.

A closed set is called a hypersurface (resp. hyperplane) if it is definable by a single
polynomial (resp. single linear polynomial).

Define A× := A \ {0}. Write Pd for the d-dimensional projective space over A, defined
to be the quotient set (Ad+1 \ {(0, . . . , 0)})/ ∼. Where (x0, . . . , xd) ∼ (y0, . . . , yd) iff there
exists c ∈ A× such that yi = cxi for 0 ≤ i ≤ d. The set Pd is again equipped with the
Zariski topology, where a subset is closed iff it is the set of common zeros of some subset of
homogeneous polynomials in A[X0, . . . , Xd]. We use (d+ 1)-tuples (x0, . . . , xd) to represent
points in Pd.

Closed subsets of Ad or Pd are also called algebraic sets or zerosets. An algebraic set is
irreducible if it cannot be written as the union of finitely many proper algebraic sets. An
irreducible algebraic subset of an affine (resp. projective) space is also called an affine variety
(resp. projective variety). (In some references, varieties are not required to be irreducible,
but in this work we always assume it.) An algebraic set V can be uniquely represented as
the union of finitely many varieties, and these varieties are called the irreducible components
of V .

Affine zerosets (resp. varieties) are in 1-1 correspondence with radical (resp. prime) ideals.
Irreducible decomposition of an affine variety mirrors the factoring of an ideal into primary
ideals. Finally, note that the affine points are in 1-1 correspondence with maximal ideals; it
is a simple reformulation of Hilbert’s Nullstellensatz.

The affine space Ad may be regarded as a subset of Pd via the map (x1, . . . , xd) 7→
(1, x1, . . . , xd). Then the subspace topology of Ad induced from the Zariski topology of Pd is
just the Zariski topology of Ad. The set Pd \ Ad is the projective subspace of Pd defined by
X0 = 0, called the hyperplane at infinity.

For an algebraic subset V of Ad ⊆ Pd, the smallest algebraic subset V ′ of Pd containing
V (i.e. the intersection of all algebraic subsets containing V ) is the projective closure of
V , and we have V ′ ∩ Ad = V . To see this, note that for P = (x1, . . . , xd) ∈ Ad \ V , there
exists a polynomial Q ∈ A[X1, . . . , Xd] of degree D ∈ N not vanishing on P (but vanishing
on V ). Then its homogenization Q′ ∈ A[X0, . . . , Xd], defined by replacing each monomial
M =

∏d
i=1 X

di
i by XD−deg(M)

0
∏d
i=1 X

di
i , does not vanish on (1, x1, . . . , xd). So, (1,x) /∈ V ′.

For distinct points P = (x0, . . . , xd), Q = (y0, . . . , yd) ∈ Pd, write PQ for the projective
line passing through them, i.e., PQ consists of the points (ux0 + vy0, . . . , uxd + vyd), where
(u, v) ∈ A2 \ {(0, 0)}.

The dimension of a variety V is defined to be the largest integer m such that there exists
a chain of varieties ∅ ( V0 ( V1 ( · · · ( Vm = V . More generally, the dimension of an
algebraic set V , denoted by dim V , is the maximal dimension of its irreducible components.
Eg. we have dim Ad = dim Pd = d. The dimension of the empty set is −1 by convention.
One dimensional varieties are called curves.

The degree of a variety V in Ad (resp. Pd) is the number of intersections of V with a
general affine subspace (resp. projective subspace) of dimension d− dim V . More generally,
we define the degree of an algebraic set V , denoted by deg(V ), to be the sum of the degrees
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of its irreducible components. The degree of an algebraic subset of Ad coincides with the
degree of its projective closure in Pd.

Suppose V ⊆ Ad is an algebraic set, defined by polynomials f1, . . . , fk. Let (a1, . . . , ad) ∈
Ad. Then the set {(x1 + a1, . . . , xd + ad) : (x1, . . . , xd) ∈ V } is called a translate of V . It is
also an algebraic set, defined by fi(X1 − a1, . . . , Xd − ad), i = 1, . . . , k.

Let V ⊆ An, W ⊆ Am be affine varieties. A morphism from V to W is a function
f : V →W that is a restriction of a polynomial map An → Am. A morphism f : V →W is
called dominant if Im(f) = W . The preimage of a closed subset under a morphism is closed
(i.e. morphisms are continuous in the Zariski topology).

For a polynomial map f : An → Am and an affine variety V ⊆ An, W := f(V ) is also an
affine variety (i.e., it is irreducible). To see this, assume to the contrary that W is the union
of two proper closed subsets W1 and W2. By the definition of closure, f(V ) is not contained
in either W1 or W2, i.e., it intersects both. Then f−1(W1) ∩ V and f−1(W2) ∩ V are two
proper closed subsets of V , and their union is V . This contradicts the irreducibility of V .

The graph Γf of a morphism f is the set {(x, f(x)) : x ∈ V } ⊆ V ×W ⊆ An ×Am. Here
V ×W = {(x, y) : x ∈ V, y ∈ W} denotes the product of V and W , which is a subvariety
of the (n+m)-dimensional affine space An × Am ∼= An+m. Note the graph Γf is closed in
An ×Am: Suppose f sends x ∈ V to (f1(x), . . . , fm(x)) ∈ Am, where fi ∈ A[X1, . . . , Xn] for
i ∈ [m]. And suppose V is defined by an ideal I ⊆ A[X1, . . . , Xn]. Then Γf is defined by the
ideal of A[X1, . . . , Xn, Y1, . . . , Ym] generated by I and the polynomials Yi − fi(X1, . . . , Xn),
i = 1, . . . ,m.

B From Section 4

I Example 23. Let m = 4, (f1, f2, f3, f4) = (X1, X2, X1X2 − 1, X1 + X2). Then k :=
trdegf = 2. Let (g1, g2, g3) = (f1, f3, f1 + f2 − f4) = (X1, X1X2 − 1, 0). Suppose Am has
coordinates Y1, . . . , Y4 and Ak+1 has coordinates Z1, . . . , Z3.

Then V ⊆ Am is defined by Y1Y2 − Y3 − 1 = 0 and Y1 + Y2 − Y4 = 0, and W is defined
by Y1 = 0, Y3 = 0, and Y2 − Y4 = 0. So V ∩W = ∅. But V ′ ⊆ Ak+1 is the plane Z3 = 0,
which contains the origin.

I Example 24. Consider Example 23 but choose f4 to be X1 +X2 + 1 instead of X1 +X2.
Now we have g3 = 1, V is defined by Y1Y2 − Y3 − 1 = 0 and Y1 + Y2 − Y4 + 1 = 0, and V ′ is
the plane Z3 = 1. So O′ 6∈ V ′.

On the other hand, suppose Pm has coordinates Y0, . . . , Y4. Then Vc ∩H is defined by
Y0 = Y1Y2 = Y1 + Y2 − Y4 = 0, and WH is defined by Y0 = Y1 = Y2 − Y4 = Y3 = 0. So
(0, 0, 1, 0, 1) ∈ Vc ∩WH ⊆ Vc ∩Wc.
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11:2 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

multivariate polynomials, and in some sense, they can be thought of as algebraic analogs
of boolean circuits. Formally, an arithmetic circuit over a field F and a set of variables
X = {x1, x2, . . . , xn} is a directed acyclic graph in which every vertex has in-degree either
zero or two. The vertices of in-degree zero (called leaves) are labeled by variables in X or
elements of F, and the vertices of in-degree two are labeled by either + (called sum gates) or
× (called product gates). A circuit can have one or more vertices of out degree zero, known
as the output gates. The polynomial computed by a vertex in any4 given circuit is naturally
defined in an inductive way: a leaf computes the polynomial which is equal to its label. A
sum gate computes the polynomial which is the sum of the polynomials computed at its
children and a product gate computes the polynomial which is the product of the polynomials
at its children. The polynomials computed by a circuit are the polynomials computed by its
output gates. The size of an arithmetic circuit is the number of vertices in it.

It is not hard to show (see, e.g., [7]) that a random polynomial of degree d = poly(n) in
n variables cannot be computed by an arithmetic circuit of size poly(n) with overwhelmingly
high probability. A fundamental problem in this area of research is to prove a similar
super-polynomial lower bound for an explicit polynomial family. Unfortunately, the problem
continues to remain wide open and the current best lower bound known for general arithmetic
circuits5 is an Ω(n logn) lower bound due to Strassen [37] and Baur and Strassen [5] from
more than three decades ago. The absence of substantial progress on this general question has
led to focus on the question of proving better lower bounds for restricted and more structured
subclasses of arithmetic circuits. Arithmetic formulas [19], non-commutative arithmetic
circuits [26], algebraic branching programs [22], and low depth arithmetic circuits [27, 13, 14,
30, 15, 11, 20, 24, 23] are some such subclasses which have been studied from this perspective.
For an overview of the definition of these models and the state of art for lower bounds for
them, we refer the reader to the surveys of Shpilka and Yehudayoff [35] and Saptharishi [34].

Several of the most important polynomials in algebraic complexity and in mathematics
in general are multilinear. Notable examples include the determinant, the permanent, and
the elementary symmetric polynomials. Therefore, one subclass which has received a lot of
attention in the last two decades and will be the focus of this paper is the class of multilinear
arithmetic circuits.

1.1 Multilinear arithmetic circuits
For an arithmetic circuit Ψ and a vertex v in Ψ, we denote by Xv the set of variables xi such
that there is a directed path from a leaf labeled by xi to v; in this case, we also say that v
depends on xi6. A polynomial P is said to be multilinear if the individual degree of every
variable in P is at most one.

An arithmetic circuit Ψ is said to be syntactically multilinear if for every multiplication
gate v in Ψ with children u and w, the sets of variables Xu and Xw are disjoint. We say that
Ψ is semantically multilinear if the polynomial computed at every vertex is a multilinear
polynomial. Observe that if Ψ is a syntactically multilinear circuit, then it is also semantically
multilinear. However, it is not clear if every semantically multilinear circuit can be efficiently
simulated by a syntactically multilinear circuit.

4 Throughout this paper, we will use the terms gates and vertices interchangeably.
5 In the rest of the paper, when we say a lower bound, we always mean it for an explicit polynomial

family.
6 We remark that this is a syntactic notion of dependency, since it is possible that every monomial with xi

might get canceled in the intermediate computation and might not eventually appear in the polynomial
computed at v.
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A multilinear circuit is a natural model for computing multilinear polynomials, but it is
not necessarily the most efficient one. Indeed, it is remarkable that all the constructions of
polynomial size arithmetic circuits for the determinant [8, 6, 25], which are fundamentally
different from one another, nevertheless share the property of being non-multilinear, namely,
they involve non-multilinear intermediate computations which eventually cancel out. There
are no subexponential-size multilinear circuits known for the determinant, and one may very
well conjecture these do not exist at all.

Multilinear circuits were first studied by Nisan and Wigderson [27]. Subsequently, Raz [29]
defined the notion of multilinear formulas7 and showed that any multilinear formula computing
the determinant or the permanent of an n× n variable matrix must have super-polynomial
size. In a follow up work [28], Raz further strengthed the results in [29] and showed that
there is a family of multilinear polynomials in n variables which can be computed by a
poly(n) size syntactically multilinear arithmetic circuits but require multilinear formulas of
size nΩ(logn).

Building on the ideas and techniques developed in [29], Raz and Yehudayoff [33] showed an
exponential lower bound for syntactically multilinear circuits of constant depth. Interestingly,
they also showed a super-polynomial separation between depth ∆ and depth ∆+1 syntactically
multilinear circuits for constant ∆.

In spite of the aforementioned progress on the question of lower bounds for multilinear
formulas and bounded depth syntactically multilinear circuits, there was no Ω(n1+ε) lower
bounds known for general syntactically multilinear circuits for any constant ε > 0. In fact,
the results in [28] show that the main technical idea underlying the results in [29, 28, 33] is
unlikely to directly give a super-polynomial lower bound for general syntactically multilinear
circuits. However, a weaker super-linear lower bound still seemed conceivable via similar
techniques.

Raz, Shpilka and Yehudayoff [31] showed that this is indeed the case. By a sophisticated
and careful application of the techniques in [29] along with several additional ideas, they
established an Ω

(
n4/3

log2 n

)
lower bound for an explicit n variate polynomial. Since then, this has

remained the best lower bound known for syntactically multilinear circuits. In this paper, we
improve this result by showing an almost quadratic lower bound for syntactically multilinear
circuits for an explicit n variate polynomial. In fact, the family of hard polynomials in this
paper is the same as the one used in [31]. We now formally state our result.

I Theorem 1. There is an explicit family of polynomials {fn}, where fn is an n variate
multilinear polynomial, such that any syntactically multilinear arithmetic circuit computing
fn must have size at least Ω(n2/ log2 n).

For our proof, we follow the strategy in [31]. Our improvement comes from an improvement
in a key lemma in [31] which addresses the following combinatorial problem.

I Question 2. What is the minimal integer m = m(n) for which there is a family of
subsets S1, S2, . . . , Sm ⊆ [n], each Si satisfying 6 logn ≤ |Si| ≤ n−6 logn such that for every
T ⊆ [n], |T | = bn/2c, there exists an i ∈ [m] with |T ∩ Si| ∈ {b|Si|/2c − 3 logn, b|Si|/2c −
3 logn+ 1, . . . , b|Si|/2c+ 3 logn}?

Raz, Shpilka and Yehudayoff [31] showed that m(n) ≥ Ω
(
n1/3/logn

)
. For our proof, we

show that m(n) ≥ Ω (n/logn).

7 For formulas, it is known that syntactic multilinearity and semantically multilinearity are equivalent
(See, e.g., [29]).

CCC 2018
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In addition to its application to the proof of Theorem 1, Question 2 seems to be a natural
problem in extremal combinatorics and might be of independent interest, and special cases
thereof were studied in the combinatorics literature. In the next section, we briefly discuss
the state of the art of this question and state our main technical result about it in Theorem 3.

1.2 Unbalancing Sets
The following question, which is of very similar nature to Question 2, is known as Galvin’s
problem (see [12, 9]): What is the minimal integer m = m(n), for which there exists a family
of subsets S1, . . . , Sm ⊆ [4n], each of size 2n, such that for every subset T ⊆ [4n] of size 2n
there exists some i ∈ [m] such that |T ∩ Si| = n?

It is not hard to show that m(n) ≤ 2n. Indeed, let Si = {i, i+ 1, . . . , i+ 2n− 1}, for
i ∈ {1, 2, . . . , 2n+ 1}, and let αi(T ) = |T ∩ Si| − |([4n] \ T ) ∩ Si|. Then αi(T ) is always
an even integer, α1(T ) = −α2n+1(T ), and αi − αi+1(T ) ∈ {0,±2} if i ≤ 2n. By a discrete
version of the intermediate value theorem, it follows there exists j ∈ [2n] such that αj(T ) = 0,
which implies that exactly n elements of Sj belong to T . Thus, the family {S1, . . . , S2n}
satisfies this property.

As for lower bounds, a counting argument shows that m(n) = Ω(
√
n), since for each fixed

S of size [2n] and random T of size 2n,

Pr[|T ∩ S| = n] =
(2n
n

)
·
(2n
n

)(4n
2n
) = Θ

(
1√
n

)
.

Frankl and Rödl [12] were able to show that m(n) ≥ εn for some ε > 0 if n is odd, and
Enomoto, Frankl, Ito and Nomura [9] proved that m(n) ≥ 2n if n is odd, which implies that
even the constant in the construction given above is optimal. Until this work, the question
was still open for even values of n: in fact, Markert and West (unpublished, see [9]) showed
that for n ∈ {2, 4}, m(n) < 2n.

For our purposes, we need to generalize Galvin’s problem in two ways. The first is to lift
the restriction on the set sizes. The second is to ask how small can the size of the family
F = {S1, . . . , Sm} ⊆ 2[n] be if we merely assume each balanced partition T is “τ -balanced”
on some S ∈ F , namely, if ||T ∩ S| − |S|/2|| ≤ τ for some S (the main case of interest for
us is τ = O(logn)). Of course, since T itself is balanced, very small or very large sets are
always τ -balanced, and thus we impose the (tight) non-triviality condition 2τ ≤ |S| ≤ n− 2τ
for every S ∈ F .

Once again, by defining Si = {i, i+ 1, . . . , i+ n/2− 1} (n is always assumed to be even),
the family F =

{
S1, S1+τ , S1+2τ , ..., S1+bn/(2τ)c·τ

}
gives a construction of size O(n/τ) such

that every balanced partition T is τ -balanced on some S ∈ F .
It is natural to conjecture that, perhaps up to a constant, this construction is optimal.

Indeed, this is what we prove here.

I Theorem 3. Let n be any large enough even number, and let τ ≥ 1 be an integer. Let
S1, . . . , Sm ⊆ [n] be sets such that for all i ∈ [m], 2τ ≤ |Si| ≤ n− 2τ . Further, assume that
for every Y ⊆ [n] of size n/2 there exists i ∈ [m] such that ||Y ∩ Si| − |Si|/2| < τ . Then,
m ≥ Ω(n/τ).

In particular, Theorem 3 proves a linear lower bound m = Ω(n) for the original problem
of Galvin, even when the universe size is of the form 4k for even k.

We remark that the relevance of problems of this form to lower bounds in algebraic
complexity was also observed by Jansen [18] who considered the problem of obtaining a
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lower bound on homogenous syntactically multilinear algebraic branching program (which is
a weaker model than syntactically multilinear circuits), and essentially proposed Theorem 3
as a conjecture. In fact, a special case of this theorem (see Theorem 9), which has a simpler
proof, is already enough to derive the improved lower bounds for syntactically multilinear
circuits.

Alon, Bergmann, Coppersmith and Odlyzko [1] considered a very similar problem of
balancing ±1-vectors: they studied families of vectors F = {v1, . . . , vm} such that vi ∈ {±1}n

for i ∈ [m], which satisfy the properties that for every w ∈ {±1}n (not necessarily balanced),
there exists i ∈ [m] such that | 〈vi, w〉 | ≤ d. They generalized a construction of Knuth [21]
and proved a matching lower bound which together showed that m = dn/(d+ 1)e is both
necessary and sufficient for such a set to exist. Galvin’s problem seems like “the {0, 1}
version” of the same problem, but, to quote from [1], there does not seem to be any simple
dependence between the problems.

1.3 Proof overview
In this section, we discuss the main ideas and give a brief sketch of the proofs of Theorem 1
and Theorem 3. Since our proof heavily depends on the proof in [31] and follows the same
strategy, we start by revisiting the main steps in their proof and noting the key differences
between the proof in [31] and our proof. We also outline the reduction to the combinatorial
problem of unbalancing set families in Question 2.

Proof sketch of [31]
The proof in [31] starts by proving a syntactically multilinear analog of a classical result of
Baur and Strassen [5], where it was shown that if an n variate polynomial f is computable
by an arithmetic circuit Ψ of size s(n), then there is an arithmetic circuit Ψ′ of size at most
5s(n) with n outputs such that the i-th output gate of Ψ′ computes fi = ∂f

∂xi
. Raz, Shpilka

and Yehudayoff show that if Ψ is syntactically multilinear, then the circuit Ψ′ continues to
be syntactically multilinear. Additionally, there is no directed path from a leaf labeled by xi
to the output gate computing fi.8

Once we have this structural result, it would suffice to prove a lower bound on the size of
Ψ′. For brevity, we denote the subcircuit of Ψ′ rooted at the output gate computing fi by Ψ′i.
As a key step of the proof in [31], the authors identify certain sets of vertices U1,U2, . . . ,Un
in Ψ′ with the following properties.

For every i ∈ [n], Ui is a subset of vertices in Ψ′i.
For every i ∈ [n] and v ∈ Ui, the number of j 6= i such that v ∈ Uj is not too large (at
most O(logn)).

Observe that at this point, showing a lower bound of s′(n) on the size of each Ui implies
a lower bound of Ω(ns′(n)/logn) on the size of Ψ′ and hence Ψ. In [31], the authors show
that there is an explicit f such that each Ui must have size at least Ω(n1/3/ logn), thereby
getting a lower bound of Ω(n4/3/ log2 n) on the size of Ψ.

For our proof, we follow precisely this high level strategy. Our improvement in the lower
bound comes from showing that each Ui must be of size at least Ω(n/ logn) and not just
Ω(n1/3/ logn) as shown in [31]. We now elaborate further on the main ideas in this step
in [31] and the differences with the proofs in this paper.

8 See Theorem 15 for a formal statement.
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11:6 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

We start with some intuition into the definition of the sets Ui in [31]. Consider a vertex v
in Ψ′ which depends on at least k variables. Without loss of generality, let these variables be
{x1, x2, . . . , xk}. From item 4 in Theorem 15, we know that the variable xi does not appear
in the subcircuit Ψ′i. Therefore, the vertex v cannot appear in the subcircuits Ψ′1,Ψ′2, . . . ,Ψ′k.
So, if we define the set Ui as the set of vertices in Ψ′i which depend on at least k variables,
then Ui must be disjoint from vertices in at least k of the subcircuits Ψ′1,Ψ′2, . . . ,Ψ′n. Picking
k ≥ n−O(logn) would give us the desired property. So, if we can prove a lower bound on
the size of the set Ui, we would be done. However, the definition of the set Ui so far turns
out to be too general: indeed, it is not even a priori clear that the Ui has any other gates
apart from the output gate of Ψ′i.

As is often the case, the solution to this obstacle is to prove a stronger claim by imposing
additional structure on the set Ui. In [31], the set Ui (called the upper leveled gates in Ψ′i) is
defined as the set of all vertices in Ψ′i which depend on at least n− 6 logn variables and have
a child which depends on more than 6 logn variables and less than n− 6 logn variables. This
additional structure is helpful in proving a lower bound on the size of Ui. We now discuss
this in some more detail.

For every i ∈ [n], let Li be the set of vertices u in Ψ′i, such that 6 logn < |Xu| < n−6 logn,
and u has a parent in Ui. These gates are referred to as lower leveled gates. Observe that
|Ui| ≥ |Li|

2 , since the in-degree of every vertex in ψ′i is at most 2. The key structural property
of the set Li is the following (see Proposition 5.5 in [31]).

I Lemma 4 ([31]). Let i ∈ [n], and let h1, h2, . . . , h` be the polynomials computed by the
gates in Li. Then, there exist multilinear polynomials g1, g2, . . . , g`, g such that

fi =
∑
j∈[`]

gj · hj + g (1)

where
For every j ∈ [`], hj and gj are variable disjoint.
The degree of g is at most O(logn).

Observe that (1) is basically a decomposition of a potentially-hard polynomial fi in terms
of the sum of products of multilinear polynomials in an intermediate number of variables.
The goal is to show that for an appropriate explicit fi, the number of summands on the
right hand side of (1) cannot be too small. A similar scenario also appears in the multilinear
formula lower bounds and bounded depth multilinear formula lower bounds of [29, 28, 33]
(albeit with some key differences). Hence, a natural approach at this point would be to use
the tools in [29, 28, 33], namely the rank of the partial derivative matrix, to attempt to prove
this lower bound. We refer the reader to Section 2.2 for the definitions and properties of the
partial derivative matrix and proceed with the overview. For each j ∈ [`], let the polynomial
hj in Lemma 4 depend on the variables Sj ⊆ X. The key technical step in the rest of the
proof is to show that there is a partition of the set of variables X = {x1, x2, . . . , xn} into Y
and Z such that |Y | = |Z| and for every j ∈ [`], ||Sj ∩ Y | − |Sj ∩ Z|| ≥ Ω(logn). In [31], the
authors show that there is an absolute constant ε > 0 such that if ` ≤ εn1/3/ logn, then there
is an equipartition of X which unbalances all the sets {Sj : j ∈ [`]} by at least Ω(logn). Our
key technical contribution (Theorem 3) in this paper is to show that as long as ` ≤ εn/ logn,
there is an equipartition which unbalances all the Sj ’s by at least Ω(logn). This implies an
Ω(n/ logn) on the size of each set Ui, and thus an Ω(n2/ log2 n) lower bound on the circuit
size.

Before we dive into a more detailed discussion on the overview and main ideas in the
proof of Theorem 3 in the next section, we would like to remark that the lower bound
question in (1) seems to be a trickier question than what is encountered while proving
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multilinear formula lower bounds [29, 28] or bounded depth syntactically multilinear circuit
lower bounds [33]. The main differences are that in the proofs in [29, 28, 33], the sets Sj have
a stronger guarantee on their size (at least nΩ(1) and at most n − nΩ(1)), and each of the
summands on the right has many variable disjoint factors and not just two factors as in (1).
For instance, in the formula lower bound proofs the number of variable disjoint factors in
each summand on the right is Ω(logn), and for constant depth circuit lower bounds it is
nΩ(1). Together, these properties make it possible to show much stronger lower bounds on `.
In particular, it is known that a random equipartition works for these two applications, in
the sense that it unbalances sufficiently many factors in each summand, thereby implying
that the rank of the partial derivative matrix of the polynomial is small. Hence, for an
appropriate9 fi, the number of summands must be large. However, since a set of size O(logn)
is balanced under a random equipartition with probability Ω(1/

√
logn) and the identity

in (1) involves just two variable disjoint factors, taking a random equipartition would not
enable us to prove any meaningful bounds.

Proof sketch of Theorem 3
Recall that our task is, given a small collection of subsets of [n], to find a balanced partition
which is unbalanced on each of the sets. Equivalently, we would like to prove that if F is a
family of subsets such that every balanced partition balances at least one set in F , then |F|
must be large (of course, F must satisfy the conditions in Theorem 3).

We first sketch the proof of a special case (which suffices for the main application here),
when n = 4p and p is a prime. For the sake of simplicity, suppose also that all subsets S ∈ F
are of even size, and assume further that for every subset T ⊆ [n] of size n/2 there exists
S ∈ F such that T completely balances S, namely, |T ∩ S| = |S|/2. One possible approach
to obtain lower bounds on |F| is via an application of the polynomial method as done, for
example, in [1]. Define the following polynomial over, say, the rationals:

f(x1, . . . , xn) =
∏
S∈F

(〈x,1S〉 − |S|/2).

By the assumption on F , the polynomial f evaluates to 0 over all points in {0, 1}n with
Hamming weight exactly n/2. We can also argue, using the assumption on the set sizes in
F , that f is not identically zero, and clearly deg(f) ≤ |F|. Thus, a lower bound on deg(f)
translates to a lower bound on |F|.

This idea, however, seems like a complete nonstarter, since there exists a degree 1 non-zero
polynomial which evaluates to 0 over the middle layer of {0, 1}n, namely,

∑
i xi − n/2.

A very clever solution to this potential obstacle was found by Hegedűs [16]. Suppose
n = 4p for some prime p. The main insight in [16] is to consider the polynomial f over Fp,
and to add the requirement that there exists some z ∈ {0, 1}4p, of Hamming weight exactly
3p, such that f(z) 6= 0. This requirement rules out the trivial example

∑
i xi − n/2, and

Hegedűs was able to show that the degree of any polynomial with these properties must be
at least p = n/4 (see Lemma 5 for the complete statement).

We are thus left with the task of proving that our polynomial evaluates to a non-zero
value over some point z ∈ {0, 1}4p of Hamming weight 3p. This turns out to be not very
hard to show, assuming each set is of size at least, say, 100 logn and at most n− 100 logn,

9 fi is chosen so that the the partial derivative matrix for fi is of full rank for every equipartition.
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11:8 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

by choosing a random such vector z. Indeed, it is not surprising that it is much easier to
directly show that a highly unbalanced partition of [n] (into 3n/4 vs n/4) unbalances all the
sets F .10

As mentioned earlier, the case n = 4p and τ ≥ 100 logn in Theorem 3 is considerably
easier to prove and suffices for the application to circuit lower bounds. Proving this theorem
for every even n and every τ ≥ 1 requires further technical ideas which appear in the full
version of this paper [2].

Even though Lemma 5 seems to be a fundamental statement about polynomials over
finite fields and could conceivably have an elementary proof, the proof in [16] uses more
advanced techniques. It relies on the description of Gröbner basis for ideals of polynomials
in F[x1, x2, . . . , xn] which vanish on all points in {0, 1}n of weight equal to n/2. A complete
description of the reduced Gröbner basis for such ideals was given by Hegedűs and Rónyai [17]
and their proof builds up on a number of earlier partial results [4, 10] on this problem.

To the best of our knowledge, the proof in [16] is the only known proof of Lemma 5, and
giving a self contained elementary proof of it seems to be an interesting question.

Organization of the paper

In the rest of the paper, we set up some notation and discuss some preliminary notions
in Section 2, prove Theorem 3 in Section 3 and complete the proof of Theorem 1 in Section 4.
Throughout the paper we assume, whenever this is needed, that n is sufficiently large, and
make no attempts to optimize the absolute constants.

2 Preliminaries

For n ∈ N, we denote [n] = {1, 2, . . . , n}. For a prime p, we denote by Fp the finite field
with p elements. For two integers i, j with i ≤ j, we denote [i, j] = {a ∈ Z : i ≤ a ≤ j}. The
characteristic vector of a set S ⊆ [n] is denoted by 1S ∈ {0, 1}n.

As is standard,
([n]
k

)
denotes the family {S ⊆ [n] : |S| = k}.

For an even n ∈ N and Y ⊆ [n] such that |Y | = n/2, we call Y a balanced partition of [n],
with the implied meaning that Y partitions [n] evenly into Y and [n] \ Y . The imbalance
of a set S ⊆ [n] under Y is dY (S) := ||Y ∩ S| − |S|/2|. Observe the useful symmetry
dY (S) = dY ([n] \ [S]), which follows from the fact that |Y | = n/2. We say S is τ -unbalanced
under Y if dY (S) ≥ τ .

We use the following lemma from [16].

I Lemma 5 ([16]). Let p be a prime, and let f ∈ Fp[x1, . . . , x4p] be a polynomial. Suppose
that for all Y ∈

([4p]
2p
)
, it holds that f(1Y ) = 0, and that there exists T ⊆ [4p] such that

|T | = 3p and f(1T ) 6= 0. Then deg(f) ≥ p.

2.1 Hypergeometric distribution

For parameters N,M, k, where N ≥M , by H(M,N, k), we denote the distribution of |S ∩ T |,
where S is any fixed subset of [N ] of size M , and T is a uniformly random subset of [N ] of

10 In our case, we need to argue that the imbalance is non-zero modulo p, which adds an extra layer of
complication, although again, one which is not hard to solve.
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size equal to k. Clearly,

Pr[|S ∩ T | = i] =
(
M
i

)(
N−M
k−i

)(
N
k

) .

The expected value of |S ∩ T | under this distribution is equal to kM/N . We need the
following tail bound of hypergeometric distribution for our proof.

I Lemma 6 ([36]). Let N,M, k, and H(M,N, k) be as defined above. Then, for every t

Pr[||S ∩ T | − kM/N | ≥ tk] ≤ e−2t2k .

I Lemma 7 (Hoeffding’s inequality, [3]). Let X1, X2, . . . , Xn be independent random variables
taking values in {0, 1}. Then,

Pr
[∣∣∣∣∣

n∑
i=1

Xi − E[
n∑
i=1

Xi]

∣∣∣∣∣ ≥ t
]
≤ 2 exp(−2t2/n) .

2.2 Partial derivative matrix
For a circuit Ψ, we denote by |Ψ| the size of Ψ, namely, the number of gates in it. For a gate
v, we denote by Xv the set of variables that occur in the subcircuit rooted at v.

Let X = {x1, . . . , xn} be a set of variables, Y ⊆ X (not necessarily of size n/2) and let
Z = X \ Y . For a multilinear polynomial f(X) ∈ F[X], we define the partial derivative
matrix of f with respect to Y,Z, denoted MY,Z(f), as follows: the rows of M are indexed
by multilinear monomials in Y . the columns of M are indexed by multilinear monomials in
Z. The entry which corresponds to (m1,m2) is the coefficient of the monomial m1 ·m2 in f .
We define rankY,Z(f) = rank(MY,Z(f)).

The following properties of the partial derivative matrix are easy to prove and well-
documented (see, e.g., [31]).

I Proposition 8. The following properties hold:
1. For every multilinear polynomial f(X) ∈ F[X], Y ⊆ X and Z = X \ Y , rankY,Z(f) ≤

min
{

2|Y |, 2|Z|
}
.

2. For every two multilinear polynomials f1(X), f2(X) ∈ F[X] and for every partition
X = Y t Z, rankY,Z(f1 + f2) ≤ rankY,Z(f1) + rankY,Z(f2).

3. Let f1 ∈ F[X1] and f2 ∈ F[X2] be multilinear polynomials such that X1 ∩ X2 = ∅.
Let Yi ⊆ Xi and Zi = Xi \ Yi for i ∈ {1, 2}. Set Y = Y1 ∪ Y2, Z = Z1 ∪ Z2. Then
rankY,Z(f1 · f2) = rankY1,Z1(f1) · rankY2,Z2(f2).

4. Let f(X) ∈ F[X] be a multilinear polynomial such that X = Y t Z and |Y | = |Z| = n/2.
Suppose rankY,Z(f) = 2n/2, and let g = ∂f/∂x for some x ∈ X. Then rankY,Z(g) =
2n/2−1.

5. Let f(X) ∈ F[X] be a multilinear polynomial of total degree d. Then for every partition
X = Y t Z such that |Y | = |Z| = n/2, rankY,Z(f) ≤ 2(d+1) log(n/2).

3 Unbalancing sets under a balanced partition

In this section, we prove Theorem 3. We start by proving a special case (see Theorem 9
below) when n equals 4p for some prime p, and τ ≥ Ω(logn). This special case already
suffices for the application to the proof of Theorem 1 (for infinitely many values of n), and
has a somewhat simpler proof. We then move on to prove the case for general n and τ , which
while being similar to the proof of Theorem 9, needs some additional ideas and care.
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11:10 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

3.1 Special case: n = 4p and τ ≥ Ω(logn)
I Theorem 9. Let p be a large enough prime, and let log p ≤ τ ≤ p/1000. Let S1, . . . , Sm ⊆
[4p] be sets such that for all i ∈ [m], 100τ ≤ |Si| ≤ 4p− 100τ . Further, assume that for every
balanced partition Y of [4p] there exists i ∈ [m] such that dY (Si) < τ . Then, m ≥ 1

2 · p/τ .

We start with the following lemma, which shows that a small collection of sets can be
unbalanced (modulo p) by a partition which is very unbalanced.

I Lemma 10. Let p be a large enough prime, and let log p ≤ τ ≤ p/1000. Let S1, . . . , Sm ⊆
[4p] be sets such that for all i ∈ [m], 100τ ≤ |Si| ≤ 2p. Assume further m ≤ p. Then,
there exists T ⊆ [4p], |T | = 3p such that for all i ∈ [m] and for all −τ + 1 ≤ t ≤ τ ,
|Si ∩ T | 6≡ b|Si|/2c+ t mod p.

To prove Lemma 10, we use the following two technical claims. Let µ3/4 denote the
probability distribution on subsets of [4p] obtained by putting each j ∈ [4p] in T with
probability 3/4, independently of all other elements.

I Claim 11. For a random set T ∼ µ3/4, Pr[|T | = 3p] = Θ(1/√p).

Proof. The probability that |T | = 3p is given by
(4p

3p
)
· (3/4)3p · (1/4)p, which is Θ(1/√p),

by Stirling’s approximation. J

I Claim 12. Let log p ≤ τ ≤ p/1000 and let S ⊆ [4p] such that 100τ ≤ |S| ≤ 2p. For a
random set T ∼ µ3/4, the probability that for some integer −τ + 1 ≤ t ≤ τ it holds that
|T ∩ Si| = b|Si|/2c+ t mod p is at most 1/p5.

Proof. Denote s = |S|. Then E[|T ∩ S|] = 3s/4. We say T is bad for S if |T ∩ S| =
bs/2c+ t+ kp for some −τ ≤ t ≤ τ + 1 and k ∈ Z. We claim this in particular implies that
||T ∩ Si| − 3s/4| ≥ s/5. Indeed, since |T ∩ S| is an integer in the interval [0, 2p], and by the
bounds on s, the only cases needed to be analyzed are k = 0,±1.

If |T ∩ S| = bs/2c+ t− p, then clearly |T ∩ S| ≤ bs/2c which implies the statement.
If |T ∩ S| = bs/2c+ t+ p, then, as s ≤ 2p and τ ≤ s/100,

|T ∩ S| − 3s/4 ≥ −s/4− 1 + t+ p ≥ p/2 + t− 1 ≥ s/4 + t− 1 ≥ s/5

(The “−1” accounts for the fact that s/2 might not be an integer).
Finally, if |T ∩ S| = bs/2c+ t, it holds that

|T ∩ S| ≤ s/2 + τ ≤ s/2 + 2s/100,

which again implies the statement.
By Chernoff Bound (see, e.g., [3]), Pr[||T ∩ Si| − 3s/4| ≥ s/5] ≤ 2−|S|/20 ≤ 1/p5, hence

T is bad for S with at most that probability. J

The proof of Lemma 10 is now fairly immediate.

Proof of Lemma 10. Pick T ∼ µ3/4. By Claim 11, |T | = 3p with probability Θ(1/√p).
Recall that T is bad for Si if |T ∩ Si| = b|Si|/2c + t mod p for t ∈ {−τ + 1, . . . , τ}. By
Claim 11, for each Si, T is bad for Si with probability at most 1/p5. Hence, the probability
that there exists i ∈ [m] such that T is bad for Si is at most m/p5 ≤ 1/p4.

It follows that with probability at most 1−Θ(1/√p) + 1/p4 < 1, either |T | 6= 3p or T is
bad for some Si, and hence there exists a selection of T such that |T | = 3p and T is good for
all Si’s. J
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We are now ready to prove Theorem 9.

Proof of Theorem 9. Let S1, . . . , Sm be a collection of sets as stated in the theorem. Since
dY (Sj) = dY ([n] \ Sj), we can assume without loss of generality, by possibly replacing a
set with its complement, that |Sj | ≤ 2p for all j ∈ [m]. We may further assume m ≤ p as
otherwise the statement directly follows. For j ∈ [m], define the following polynomials over
Fp:

Bj(x1, . . . , x4p) =
τ∏

t=−τ+1
(
〈
x,1Sj

〉
− b|Sj |/2c − t),

where x = (x1, . . . , x4p) and 〈u, v〉 =
∑
uivi is the usual inner product. Further, define

f(x1, . . . , x4p) =
m∏
j=1

Bj(x1, . . . , x4p),

as a polynomial over Fp.
By assumption, for every Y ∈

([4p]
2p
)
, f(1Y ) = 0. This follows because

〈
1Y ,1Sj

〉
=

|Y ∩ Sj |, and by assumption, for some j is holds that dY (Sj) < τ , so it must be that
|Y ∩ Sj | − b|Sj |/2c ∈ {−τ + 1, . . . , 0, . . . , τ}, so that Bj(1Y ) = 0.

Furthermore, Lemma 10 guarantees the existence of a set T ∈
([4p]

3p
)
such that f(1T ) 6= 0,

as the set T from Lemma 10 satisfies the property that (
〈
1T ,1Sj

〉
− b|Sj |/2c − t) 6= 0 mod p

for all −τ + 1 ≤ t ≤ τ and for all j ∈ [m].
By Lemma 5, deg(f) ≥ p, and by construction, deg(f) ≤ 2τ ·m, which implies the desired

lower bound on m. J

In the full version of the paper we extend Theorem 9 for a more general range of
parameters, by proving the following.

I Theorem 13. Let n be a large enough even natural number, and let τ ∈ {1, 2, . . . , n/106}
be a parameter. Let S1, S2, . . . , Sm ⊆ [n] be sets such that for each i ∈ [m], 2τ ≤ |Si| ≤ n−2τ .
Furthermore, assume that for every balanced partition Y of [n], there exists an i such that
dY (Si) < τ . Then, m ≥ 1

105 · n/τ .

The proof of Theorem 13 appears in the full version of the paper [2]. We remark that
Theorem 9 suffices for the application to circuit lower bounds.

4 Syntactically Multilinear Arithmetic Circuits

In this section, for the sake of completeness, we review the arguments of Raz, Shpilka and
Yehudayoff [31], and show how Theorem 9 implies a lower bound of Ω(n2/ log2 n). We mostly
refer for [31] for the proofs.

Specifically, we will show the following.

I Theorem 14. Let n be an even integer, and X = {x1, . . . , xn}. Let f(X) ∈ F[X] be a
multilinear polynomial such that for every balanced partition X = Y t Z, rankY,Z(f) = 2n/2.
Let Ψ be a syntactically multilinear circuit computing f . Then |Ψ| = Ω(n2/ log2 n).

The first step in proof of Theorem 14 is to show that if f is computed by a syntactically
mutilinear circuit of size s, then there exists a syntactically multilinear circuit of size O(s)
that computes all the first-order partial derivatives of f , with the additional important
property that for each i, the variable xi does not appear in the subcircuit rooted at the
output gate which computes ∂f/∂xi.
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I Theorem 15 ([31], Theorem 3.1). Let Ψ be a syntactically multilinear circuit over a field
F and the set of variables X = {x1, . . . , xn}. Then, there exists a syntactically multilinear
circuit Ψ′, over F and X, such that:
1. Ψ′ computes all n first-order partial derivatives ∂f/∂xi, i ∈ [n].
2. |Ψ′| ≤ 5|Ψ|.
3. Ψ′ is syntactically multilinear.
4. For every i ∈ [n], xi 6∈ Xvi

, where vi is the gate in Ψ′ computing ∂f/∂xi.
In particular, if v is a gate in Ψ′, then it is connected by a directed path to at most n− |Xv|
output gates.

The proof of Theorem 15 appears in [31], and mostly follows the classical proof of Baur
and Strassen [5] of the analogous result for general circuits, with additional care in order to
guarantee the last two properties.

Next we define two types of gates in a syntactically multilinear arithmetic circuits.

I Definition 16. Let Φ be a syntactically multilinear arithmetic circuit. Define L(Φ, k), the
set of lower-leveled gates in Φ, by

L(Φ, k) = {u : u is a gate in Φ, k < |Xu| < n− k, and u has a parent
v with |Xv| ≥ n− k}.

Define U(Φ, k), the set of upper-leveled gates in Φ, by

U(Φ, k) = {v : v is a gate in Φ, |Xv| ≥ n− k, and u has a child v ∈ L(Φ, k)} .

The following lemma shows that if the set of lower-leveled gates is small, then there exists
a partition X = Y t Z under which the polynomial computed by the circuit is not of full
rank.

I Lemma 17. Let Φ be a syntactically multilinear arithmetic circuit over F and X =
{x1, . . . , xn}, for an even integer n, computing f . Let τ = 3 logn and L = L(Φ, 100τ). If
|L| < n/(105τ), then there exists a partition X = Y t Z such that rankY,Z(f) < 2n/2−1.

We first sketch how Theorem 14 follows from Lemma 17. The proof is identical to the
proof given in [31] with slightly different parameters.

Proof of Theorem 14 assuming Lemma 17. Let Ψ′ be the arithmetic circuit computing
all n first-order partial derivatives of f , given by Theorem 15. Set τ = 3 logn and let
L = L(Ψ′, 100τ) and U = U(Ψ′, 100τ) as in Definition 16.

Denote fi = ∂f/∂xi and let vi be the gate in Ψ′ computing fi, and Ψ′i be the subcircuit
of Ψ′ rooted at vi. Let Li = L(Ψ′i, 100τ). It is not hard to show (see [31]) that Li ⊆ L, and
by Lemma 17 and item 4 in Proposition 8, it follows that |Li| ≥ n/(105τ).

For every gate v in Ψ′ define Cv = {i ∈ [n] : v is a gate in Ψi} to be the set of indices i
such that there exists a directed path from v to the output gate computing fi. For i ∈ [n],
let Ui = {u ∈ U : u is a gate in Ψ′i}, so that

∑
u∈U Cu =

∑
i∈[n] |Ui|.

Since the fan-in of each gate is at most two, |Li| ≤ 2|Ui|, and since every u ∈ U satisfies
|Xu| ≥ n− 100τ , it follows by Theorem 15 that |Cu| ≤ 100τ . Thus, we get

n · n

105τ
≤
∑
i∈[n]

|Li| ≤ 2
∑
i∈[n]

|Ui| = 2
∑
u∈U

Cu ≤ 2|U| · 100τ.

By item 2 in Theorem 15, and τ = 3 logn,

|Ψ| = Ω(|Ψ′|) = Ω(|U|) = Ω
(

n2

log2 n

)
. J
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It remains to prove Lemma 17. As the proof mostly appears in [31], we only sketch the
main steps.

Proof sketch of Lemma 17. Suppose L ≤ n/(105τ). By applying Theorem 13 to the family
of sets {Xv : v ∈ L}, it follows that there exists a balanced partition Y t Z of X such that
Xv is τ -unbalanced for every gate v ∈ L (one could get slightly improved constants in the
case n = 4p by applying Theorem 9).

The proof now proceeds in the exact same manner as the proof of Lemma 5.2 in [31]. In
Proposition 5.5 of [31], it is shown that one can write

f =
∑
i∈[`]

gihi + g,

where L = {v1, . . . , v`}, hi is the polynomial computed at vi, and the set of variables
appearing in gi is disjoint from Xvi .

In Claim 5.7 of [31], it is shown that for every i ∈ [`], rankY,Z(gihi) ≤ 2n/2−τ . This uses
the fact that Xvi

is τ -unbalanced, the upper bound in item 1 in Proposition 8, and item 3 in
the same proposition.

In Proposition 5.8 of [31], it is shown (with the necessary change of parameters) that the
degree of g is at most 200τ .

Thus, by the fact that τ = 3 logn, item 5 and item 2 of Proposition 8, it follows that for
large enough n,

rankY,Z(f) ≤ ` · 2n/2−τ + 2τ
3
< 2n/2−1. J

4.1 An explicit full-rank polynomial
In this section, for the sake of completeness, we give a construction of a polynomial which is
full-rank under any partition of the variables.

I Construction 18 (Full rank polynomial, [31]). Let n be an even integer, and let W =
{ω1, . . . , ωn} and X = {x1, . . . , xn} be sets of variables. For a set B ∈

( [n]
n/2
)
, denote by

i1 < · · · < in/2 the elements of B in increasing order, and by j1 < · · · < jn/2 the elements of
[n] \B in increasing order. Define rB =

∏
`∈B ω`, and gB =

∏
`∈[n/2](xi` + xj`

).
Finally, define

f =
∑

B∈( [n]
n/2)

rBgB .

I Claim 19 ([31]). For f from Construction 18, it holds that for every balanced partition of
X = Y t Z, rankY,Z(f) = 2n/2, where the rank is taken over F(W).

We give a proof which is shorter and simpler than the one given in [31].

Proof of Claim 19. Fix a balanced partition X = Y t Z, and consider the matrix MY,Z(f)
where f is interpreted as a polynomial in f ∈ (F [W])[X] (that is, the rows and columns of
the matrix are indexed by X variables and its entries are polynomials in W). We want to
show that det(MY,Z(f)) ∈ F[W] is a non-zero polynomial. Fix ωi = 1 if i ∈ Y and ωi = 0
otherwise. Under this restriction, f = gY . It is also not hard to see that det(MY,Z(gY )) 6= 0,
since this is a permutation matrix (this also follows from item 3 of Proposition 8). Thus,
det(MY,Z(f)) evaluates to a non-zero value under this setting of the variables W, which
implies it a non-zero polynomial. J
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I Corollary 20. Every syntactically multilinear circuit computing the polynomial f has size
at least Ω(n2/ log2 n).

The polynomial f in Construction 18 is in the class VNP of explicit polynomials, but it is
not known whether there exists a polynomial size multilinear circuit for f .

Raz and Yehudayoff [32] constructed a full-rank polynomial g ∈ F[X,W ′] that has a
syntactically multilinear circuit of size O(n3). Their construction also uses a set of auxiliary
variables W ′ of size O(n3). Thus, if one measures the complexity as a function of |X| ∪ |W ′|,
the quadratic lower bound of Theorem 14 is meaningless, because a lower bound of Ω(n3)
holds trivially. However, we believe that since the rank is taken over F(W ′), it is only fair
to consider computations over F(W ′), where any rational expression in the variables of
W ′ is merely a field constant. Thus, in this setting, an input gate can be labeled by an
arbitrarily complex rational function in the variables of W ′, and the complexity is measured
as a function of |X| alone. In this model the lower bound of Theorem 14 is meaningful, and
furthermore, this example shows that the partial derivative matrix technique cannot prove
an ω(n3) lower bound.
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Abstract
We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits
implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit
complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show
the strongest lower bounds we could desire.

This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a
heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on
general devices. One can view our work as positive news (it suffices to prove weak lower bounds
to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove
strong ones). We leave it to the reader to determine their own level of optimism.
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1 Introduction

Arithmetic circuits are a natural computational model for computing polynomials, which has
been extensively studied in complexity theory. Most of the research is focused on proving
lower bounds. Namely, showing that certain “hard” polynomials (such as the permanent,
which is complete for an arithmetic version of NP [17]) require large arithmetic circuits.
Despite much research, strong lower bounds are only known for restricted families of circuits,
such as circuits of fixed depth, multi-linear circuits, or monotone circuits. For general
airthmetic circuits, the best lower bound known is still the classical result of Baur-Strassen [5]
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who showed that to compute Xn
1 + . . .+Xn

n one needs an arithmetic circuit of size Ω(n logn).
We refer to the recent survey [16] and the references within for details about these many
works.

An interesting restriction of the arithmetic model, which is the focus on this paper, is
that of non-commutative polynomials and correspondingly non-commutative circuits. A
non-commutative polynomial over a field F in variables X1, . . . , Xn, is a linear combination
of monomials, except that here monomials are defined as words over the variables. Otherwise
put, variables do not commute, so the order of variables in a monomial is important. Despite
this severe restriction, the non-commutative setting maintains complexity-theoretic structure:
the permanent is complete for non-commutative arithmetic NP [10] (VNP), and natural
polynomials are complete for non-commutative arithmetic P [3] (VP). The hope is that it
will be easier to prove strong lower bounds against non-commutative circuits, as various
cancellations that occur in standard (commutative) arithmetic circuits crucially depend on
the commutativity of the variables. For example, the n× n determinant can be computed by
a O(n3) arithmetic circuit, but to the best of our knowledge, there is no non-commutative
arithmetic circuit for determinant of size no(n). Moreover if determinant can be computed
by polynomial size non-commutative circuits then V P = V NP [4] 5.

If one restricts attention further to non-commutative formulas, then our understanding is
dramatically better. A fundamental result in this area is a theorem of Nisan [14], who proved
exponential lower bounds on non-commutative formulas. For example, his technique applied
to the n× n permanent (or also the n× n determinant) shows that any non-commutative
formula computing either of them requires size Ω(2n). On the other hand, no lower bounds
for non-commutative circuits are known which are better than these known for standard
commutative circuits. This dichotomy leads to the main problem motivating this paper,
posed by [11]:

Why do we have exponential lower bounds for non-commutative formulas, but only
marginally super-linear lower bounds for non-commutative circuits?

The main message of the this paper is that weak lower bounds for non-commutative circuits
can be “amplified” to arbitrarily large polynomial, or even exponential, lower bounds for
non-commutative circuits. One can view this as positive news (it suffices to prove weak lower
bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it
is to prove strong ones). We leave it to the reader to make their own choice. Below, we state
the formal versions of our main results.

We recall the standard notation that ω is the best known exponent for matrix multiplica-
tion, where the best known upper bounds on it are ω ≤ 2.374 due to [13]. Our first theorem
is that polynomial lower bounds better than Ω(nω/2) for any non-commutative polynomial
in n variables of polynomial degree can be lifted to arbitrary polynomial lower bounds.

I Theorem 1. Let ε > 0. Assume that there exists an explicit non-commutative polynomial
in n variables of degree poly(n), such that any non-commutative circuit computing it requires
size Ω(nω/2+ε).

Then, for any c > 1, there exists another explicit polynomial in m variables of degree
poly(m), such that any non-commutative circuit computing it requires size Ω(mc).

Some authors [11] had suggested that for non-commutative polynomials number of
variables might be not the best parameter. In contrast with the commutative setting, one

5 Formally, one needs to define a non-commutative determinant, by inducing some natural order on the
variables in monomials of the standard commutative permanent.
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can focus on polynomials with a constant number of variables, using the degree as a measure.
The difference comes from the fact that there are 2d different non-commutative monomials
on 2 variables of degree d versus d+ 1 for the commutative case. For this regime, the best
known lower bounds are of the form Ω(log(d)) where d is the degree. Theorem 1 states that
if we have good enough lower bound to start with, we can give a family of polynomials of
complexity Ω(d). We will, however, use number of variables as our measure, as we will be
dealing with constant degree polynomials.

Our second theorem shows that proving lower bounds better than Ω(nω/2) for any
constant degree non-commutative polynomial in n variables can be lifted to exponential lower
bounds. This may help to explain why no super-linear lower bound for a constant-degree
non-commutative polynomial is currently known. The polynomial that we start with in this
case must be explicit, a notion of uniformity described in section 2.

I Theorem 2. Let ε > 0. Assume that there exists an explicit non-commutative polynomial
in n variables of constant degree, such that any non-commutative circuit computing it requires
size Ω(nω/2+ε).

Then, for some c > 0, there exists another explicit polynomial in m variables of degree
poly(m), such that any non-commutative circuit computing it requires size exp(mc).

Here is one way to interpret our results, which we find intriguing: proving any super-linear
lower bound Ω(n1+ε) against non-commutative circuits would imply one of two things: (i) an
arbitrarily large polynomial lower bound (or even better) against non-commutative circuits;
or (ii) a proof that ω > 2, namely, a super-linear lower bound for (standard, commutative)
matrix multiplication.

1.1 Technique
Our main technical result is a lifting theorem, which allows us to amplify lower bounds
against non-commutative circuits, by reducing the number of variables without hurting the
lower bound too much.

Let f be a non-commutative polynomial over variables X1, . . . , Xn. Fix a constant integer
r ≥ 1 and assume that n = mr. Define new variables Yi,j where i = 0, . . . , (r − 1) and
j = 0, . . . , (m− 1). We will encode each Xi as a monomial Y0,a0Y1,a1 . . . Y(r−1),ar−1 , where
a0 . . . ar−1 is the encoding of i in base-m. Let E(f) denote the polynomial obtained by doing
this replacement to each variable in f . Note that E(f) is a polynomial over the rm variables
{Yi,j} of degree deg(E(f)) = r deg(f).

Our main technical lemma (lemma 4) shows that any non-commutative circuit C which
computes E(f) can be transformed to another non-commutative circuit C ′ which computes f .
We think of this as “decoding” the circuit for the encoding E(f) to a circuit for f . Moreover,
the size of C ′ is not much larger than C. The optimal parameters are achieved by taking
r = 3, using fast matrix multiplication; they give that size(C ′) ≤ size(C) · nω/3.

Otherwise put, if f requires arithmetic circuits of size s, then E(f) requires arithmetic
circuits of size s · n−ω/3. However, E(f) has only marginally higher degree and many fewer
variables m = n1/3. Applying this idea iteratively, we make progress as long as s � nω/2.
This implies both of our main theorems (Theorem 1 and Theorem 2).

For our generic technique to go through, we need to “massage” non-commutative circuits
for E(f) so that they can be “decoded” into non-commutative circuits for f . Basically,
we want all the gates in the circuit to compute polynomials over {Yi,j} that are encoding
of polynomials over {Xi}. We accomplish that by several rounds of simplification of the
structure of the circuit. This can be seen as an analog to the homogenization process
performed on algebraic circuits, except that in our case, the process is more delicate.
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12:4 Hardness Amplification for Non-Commutative Arithmetic Circuits

1.2 Related Work
This work parallels that of Hrubeš, Wigderson and Yehudayoff [11]. They showed that if any
explicit degree 4 polynomial has a strong enough super-linear lower bound on width, then
this lower bound can be lifted to an exponential circuit lower bound for a non-commutative
polynomial. We refer the reader to the original paper for the formal definition of width. To
compare these results with ours, note that implicit in [11] is the relationship s

n2 ≤ w(P ) ≤
O(ns), where P is any degree 4 polynomial, w is the “width” of this polynomial, and s is
the minimal size of a circuit computing P . Thus, [11] shows that any super-cubic circuit
lower bound for an explicit polynomial of degree 4 implies exponential circuit lower bounds
for some explicit polynomial.

We show that one can start from circuit lower bounds of the form n
ω
2 against any constant

degree polynomial and lift to exponential circuit lower bounds. Moreover, even lower bounds
against higher degree polynomials can be lifted.

As in [11], we give new structural properties of non-commutative circuits computing
restricted polynomials. The restrictions of [11] force polynomials to form monomials by
selecting each variable from some sets of variables that always appear in a fixed order of
some fixed length. Our restrictions allow the sets of variables to have a periodic ordering,
according to Z/r for some r. This allows our structures to easily generalize to higher degrees.

An encoding of variables similar to our lifting was used previously in [2], as a step in
randomized polynomial identity testing for sparse non-commutative circuits. The work of [3]
uses a similar double-indexed “positional” encoding of monomials, to establish a transfer
theorem from “f is complete for a non-commutative algebraic class” to “decoded(f) is
complete for a commutative algebraic class.”

There has been a great deal of recent interest in understanding why it is hard to prove
lower bounds in the arithmetic setting, even though it is more restricted than the Boolean
setting. Analogs of the Natural Proofs barrier of [15] have been proposed in [7] and [8], and
an unconditional barrier for rank-based methods was just shown by [6]. Our result is most
similar to the “chasm” family of results [1, 12, 9]: they show that one “only” needs to prove
depth-3 lower bounds to prove general super-polynomial lower bounds. We show that, in the
non-commutative case, one “only” needs to prove mildly super-linear lower bounds to prove
super-polynomial lower bounds.

Organization

In section 2, we formally define lifting, state the key “circuit decoding” lemma, and show
how the results follow. In section 3, we prove the decoding lemma by giving new structural
results about non-commutative circuits.

2 Preliminaries

Polynomials and Circuits

Let X = {x1, . . . , xn} be a set of variables and let F be a field. We denote by F〈X〉 the set
of non-commutative polynomials over X with coefficients in F. These polynomials sum over
monomials that are words over X, because multiplication of variables does not commute.
We define circuits computing polynomials from F〈X〉 in the natural way: as directed acyclic
graphs with internal nodes (gates) labeled by +,× and leaves labeled by x ∈ X or field
elements. Each +,× gate has two children, and each × gate has distinguished left and right
children. Denote by AC(f) the arithmetic complexity of a non-commutative polynomial f ,
as the minimal number of gates in a non-commutative circuit computing f .
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Explicitness

It is easy to prove that some polynomials require exponential size circuits. So we restrict
ourselves to the set of explicit polynomials. A polynomial f is explicit if and only if
each of its coefficients can be computed in polynomial time in the description length of a
monomial. Thus, the coefficients of an explicit constant degree polynomial can be computed
in polylogarithmic time.

3 Lifting Polynomials

We define polynomial lifting and give basic properties. Unless otherwise stated, all our
polynomials and circuits are non-commutative. We consider both singly-indexed variables
X = {xi} and doubly-indexed variables Y = {yi,j}. To ease work over Y , define sets Yi
as {yi,j}j∈N, the sets of all y variables with first index i. We use the notation F〈X〉 =
F〈x1, . . . , xn〉 to denote non-commutative polynomials over the X variables, and analogously
for polynomials over the Y variables.

Lifting takes a polynomial over the X variables to a polynomial over the Y variables.
Starting with f ∈ F〈x1, . . . , xn〉, we replace each xi by a product of y variables that encodes
i in base n1/r, rounding up to ensure that n1/r is an integer. To simplify notations, we will
always assume that n = mr for some integer m, so no rounding will be necessary. Since
the y variables do not commute, the resulting polynomial can easily be mapped back to f
by reading “sub-words” of monomials base n1/r to recover which xi a string of y variables
represents. To formalize this below, we use digit(t, i, j) to refer to the jth digit of the base-t
representation of i.

I Definition 3 (Lifting). Let f ∈ F〈X〉. Define Lr(f) ∈ F〈Y 〉 by applying the following map
to each variable of f :

xi →
(r−1)∏
j=0

yj,`j where `j = digit(n1/r, i, j)

This means that Lr(f) will be over rn1/r variables (y0,1, . . . , yr−1,n1/r). If the degree
of f is d, then the degree of Lr(f) is dr. So lifting shrinks the number of variables while
increasing the degree.

Lifting preserves explicitness. Suppose we want to compute a coefficient of Lr(f). Let’s
assume there is an algorithm that takes a description of a monomial of f and outputs the
coefficient on it in time t. Then one can use the same algorithm to compute coefficients of
Lr(f), as the description of a monomial and it’s lifted version is exactly the same.

Our main technical lemma, proved in Section 4, efficiently converts a circuit for the lifted
polynomial L3(f) into a circuit for f . Setting r = 3 is easiest to present, and gives the best
qualitative bounds that we know how to achieve with this technique. So we continue with
this choice of r below.

I Lemma 4 (Circuit Decoding). If there exists an arithmetic circuit of size s computing
L3(f), then there exists a circuit of size O(nω/3s) computing f .

The lifting operation can be iterated. Take a polynomial Lr(f) ∈ F〈Y 〉 and re-number the
Y variables lexicographically to obtain new singly-indexed X variables, and lift the resulting
polynomial again. The result of repeating this process k times on a polynomial f is denoted
Lkr (f). Using the circuit-decoding Lemma 4 we have the following lower-bound amplification
for iterated lifting.
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12:6 Hardness Amplification for Non-Commutative Arithmetic Circuits

I Lemma 5 (Iterated Lifting Amplifies Hardness). Let k ≤ γ log(n) be a positive integer, where
γ > 0 is a sufficiently small positive constant. Suppose f is a polynomial on N = 33/2(31/2n)3k

variables of degree d. Then Lk3(f) is a polynomial on 9n variables of degree 3kd and the
following holds:

AC(Lk3(f)) ≥ AC(f)
Nω/2

If we have a small circuit for Lk3(f) then by applying Lemma 4 iteratively k times we will
end up with a small circuit for f . We require N to be in a particular form to avoid dealing
with rounding. The calculations appear below.

Proof of Lemma 5. Let Nk denote the number of variables of Lk3(f), where one can verify
that N0 = N and Ni+1 = 3N

1
3
i . Our choice for N guarantees that Ni is an integer for all

i = 0, . . . , k. Using Lemma 4 we get

AC(Li+1
3 (f)) ≥ αAC(Li)

N
ω/3
i

,

where α > 0 is some absolute constant. Folding the recursion gives

AC(Lk3(f)) ≥ αkAC(f)
k−1∏
i=0

N
−ω/3
i

We will need to use an explicit expression for Ni = 33/2(3−3/2N)
1

3i .

AC(Lk3(f)) ≥ αkAC(f)(
k−1∏
i=0

33/2(3−3/2N)
1

3i )−ω/3

= αkAC(f)(3 3
4 (2k−3+31−k)N

3
2 (1−3−k))−ω/3

So:

AC(Lk3(f)) ≥ AC(f)
Nω/2

( α
3k
ω N

3k−1
2

3 3
4 (−3+31−k+2k)

)ω/3
If we recall that k ≤ γ log(n) and choose γ small enough we can ensure that:

α−
3k
ω 3 3

4 (−3+31−k+2k) < N
3
2 3−k

As left hand side is 2θ(k) and right hand side is nθ(1). This immediately implies:

AC(Lk3(f)) ≥ AC(f)
Nω/2 J

3.1 Amplifying Lower Bounds via Lifting
Theorem 1 (amplification to any fixed polynomial hardness) is straightforward, by taking k
to be some large constant in Lemma 5 above:

Proof of Theorem 1. Let P = {Pn} be a family of explicit polynomials, where Pn is a
polynomial on n variables, such that ∃α, ε > 0 such that ∀n : Pn is not computable by
arithmetic circuits of size αnω2 +ε. We will define family of polynomials Q = {Qn} to be
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lifted version of P , where again Qn is a polynomial on n variables. Formally, Q9n = Lk3(PN ),
where N = N(n) = 33/2(3 1

2n)3k . It is easy to verify that N is always an integer. For general
n define Qn = Q9bn/9c by adding dummy variables. By Lemma 5:

AC(Qn) ≥ AC(PN )
N

ω
2
≥ αN ε ≥ α33/2ε(31/2n)ε3

k

= nΩ(3k)

For any c > 0 we can take k to be sufficiently large constant and have AC(Qn) > nc.
Furthermore, note that deg(Q9n) = 3k deg(PN ). So if deg(PN ) = O(Na) is polynomial in
N , then deg(Qn) = O(3kna3k). In particular, for any fixed k, deg(Qn) = poly(n) as claimed.
Also Q is explicit as it is a lifted version of P . J

Proof of Theorem 2. The proof is identical to the proof of Theorem 1, except that we
take k = γ logn. Note that as we assume here that Pn all have a constant degree, then
Qn will have degree poly(n) as claimed. As P is an explicit polynomial, Q is also explicit
polynomial. J

4 Structuring Circuits

In this section we obtain a normal form for non-commutative circuits computing certain
restricted types of polynomials. The idea is similar to homogenization: we classify monomials
into “types” and efficiently re-write the circuit in terms of operations on those types. The
proofs share a common structure: we define an operator that splits polynomials into well-
typed monomials. We then pass this operator through the circuit C layer-by-layer, starting
from the output gate. Each time we advance the operator-layer through C, we maintain:
(i) The polynomial computed by C does not change;
(ii) All gates above the operator-layer compute restricted polynomials;
(iii) Not too much additional hardware is introduced;
(iv) At leaf nodes, operators can be eliminated from C.

This process is like a glacial movement during the ice age. An operator slides over the
circuit and then disappears, drastically changing the landscape behind it.

4.1 Monomial & Circuit Types
For non-commutative polynomials, monomials are just words over the variables. So all of
our monomial types will be constraints on the ordering of variables, referring to the “place”
part of a Y variable.

I Definition 6 (Structured Monomials in Y ). For fixed r ∈ N, we define the following subsets
of all monomials over double-indexed variables Y.
r-pinned, M̃r

i,j : monomials m that start with y ∈ Yi, end with y′ ∈ Yj , and obey Z/r
ordering. That is, after each y ∈ Yk appearing in m the next variable is always some
y′ ∈ Y(k+1) mod r.

r-aligned, M̃r : any m ∈ M̃r
0,(r−1).

We do not bound the lengths of pinned or aligned monomials. The counter k indexing
sets of variables Yk may circle around Z/r many times in going from i to j. We classify
circuits and polynomials in the obvious way based on these sets of monomials.

I Definition 7 (Structured Polynomials in Y ). A polynomial p ∈ F〈Y 〉 is r-pinned if ∃i, j
such that every monomial of p is in M̃r

i,j , or r-aligned if every monomial of p is in M̃r.

When r is clear from the context, we shorthand M̃i,j = M̃r
i,j and M̃ = M̃r.
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12:8 Hardness Amplification for Non-Commutative Arithmetic Circuits

I Definition 8 (Structured Circuits in Y ). A circuit C is r-pinned if every gate of C computes
an r-pinned polynomial. Note that each gate could have different start and end indices i, j.
C is r-aligned if every gate of C computes an r-aligned polynomial. An r-aligned circuit
has r-aligned monomials as inputs, not single variables.

Recall that our goal in this section is to build a circuit for f from a circuit for Lr(f). If
we have an r-aligned circuit of size s for Lr(f), this is straightforward. The bottom layer of
an r-aligned circuit is a set of monomials, not variables. Since these monomials are r-aligned,
each one uniquely represents a sequence of natural numbers in base n1/r. Simply replace
each encoded number i with xi and take their product. After this substitution, we have a
circuit that computes f of size O(s).

If some general circuit C computes an aligned polynomial f , we can obtain an aligned
circuit C ′ for f of only slightly larger size. This construction proceeds in two stages: from
general circuits to pinned circuits (lemma 9), then from pinned circuits to aligned circuits
(lemmas 10 and 11).

The circuit decoding for lifted polynomials of Lemma 4 is then immediate, because L(f)
is always an aligned polynomial. We give two constructions: the first is elementary but
inefficient, the second uses fast matrix multiplication to optimize storage of “type information”
about polynomials. The first stage, from general to pinned circuits, is common to both
proofs.

4.2 Operators on Polynomials
To efficiently store polynomials, we will sometimes need to “trim off” extraneous variables
from the ends of each monomial. So we give two new operators on polynomials, ÷L and
÷R, that “divide what they can and discard the remainder.” These operators act on the
left and right of f , respectively. Formally, ÷L and ÷R are defined in terms of two possible
decompositions of a polynomial f :

Right division: Let f = Q× σ+R where Q× σ sums over monomials of f ending with
σ. Define: f ÷R σ = Q.
Left division: Let f = τ ×Q′+R where τ ×Q′ sums over monomials of f starting with
τ . Define: τ ÷L f = Q′.

Because our polynomials are non-commutative, these decompositions are unique. Notice that
in left-division ÷L, the monomial τ is not the object being operated on; it appears on the
left to denote which side of the monomials of f is altered by the operation. Immediately, we
have:

p× q =
∑
a∈Y

(p÷R a)× (a× q) =
∑
a∈Y

(p× a)× (a÷L q)

Finally, we denote byM the set of all possible monomials, and by coeff(f,m) the coefficient
of f on monomial m. When expanding polynomials as sums over monomials, we write the
monomial m as xm or ym, like so:

f(Y ) =
∑
m∈M

coeff(f,m)× ym

4.3 Aligning Circuits
We begin the alignment process by taking a general circuit for a pinned polynomial, and
constructing a pinned circuit. The is similar to homogenization using the more complex set
of monomial types introduced above.
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I Lemma 9 (General to Pinned Circuits). Let C be a general arithmetic circuit of size s
computing an r-pinned polynomial f(Y ). Then there exists an r-pinned arithmetic circuit
C ′ of size r3s computing f .

Proof of Lemma 9. Define ∆i,j to transform f(Y ) into a r-pinned polynomial, by discarding
any coefficients on monomials outside M̃i,j :

∆i,j(p) =
∑

m∈M̃i,j

coeff(p,m)× ym

Let go be the output gate of C. By assumption, go computes an r-pinned polynomial. From
the definition, ∃i, j such that ∆i,j(go) = go. This is our base case. Inductively, let g ∈ C be
such that ∃i, j so ∆i,j(g) = g. We reason by cases on the type of g.

If g = u+ v:

∆i,j(u+ v) = ∆i,j

( ∑
m∈M

(coeff(m,u) + coeff(m, v))ym
)

expand u+ v

=
∑

m∈M̃i,j

(coeff(m,u) + coeff(m, v))ym definition of ∆

=
∑

m∈M̃i,j

coeff(m,u)ym +
∑

m∈M̃i,j

coeff(m, v)ym split the sum

= ∆i,j(u) + ∆i,j(v) definition of ∆

If g = u× v:

∆i,j(u× v) = ∆i,j

( ∑
m`∈M

coeff(m`, u)ym` ×
∑

mr∈M
coeff(mr, v)ymr

)
unroll

= ∆i,j

 ∑
m`∈M
mr∈M

coeff(m`, u)ym` coeff(mr, v)ymr

 distribute

= ∆i,j

 ∑
m`∈M
mr∈M

coeff(m`, u) coeff(mr, v)ym`mr

 commute in F

=
∑

m`,mr∈M
st. m`mr∈M̃i,j

coeff(m`, u) coeff(mr, v)ym`mr definition of ∆

Because m`mr is pinned, we know (1) that m` begins with some y ∈ Yi and mr ends
with some y′ ∈ Yj and (2) that the transition from m` to mr must respect ordering in Z/r.
Formally, we know that ∃t such that m` ∈ Yi . . . Yt and mr ∈ Y(t+1) mod r . . . Yj . So let’s
split the above summation on this index, which is bounded by r because we assumed the
polynomial is r-pinned. To ease legibility below, all indexing arithmetic for monomial sets
M̃ and for the operator ∆ is implicitly carried out in Z/r.
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12:10 Hardness Amplification for Non-Commutative Arithmetic Circuits

g =
∑
t∈Z/r

∑
m`∈M̃i,t

mr∈M̃t+1,j

coeff(m`, u) coeff(mr, v)ym`mr

=
∑
t∈Z/r

 ∑
m`∈M̃i,t

coeff(m`, u)ym`


 ∑
mr∈M̃(t+1),j

coeff(mr, v)ymr

 distribute

=
∑
t∈Z/r

∆i,t(u)×∆t+1,j(v) definition of ∆

The circuit C ′ contains, for every gate g in C, the r2 gates computing ∆i,j(g) for all
i, j ∈ Z/r. Addition gates do not require additional gates; multiplication gates require an
addition a factor of r more gates to compute. So in total if C has s gates then C ′ has at
most r3s gates. J

The pinning lemma proved above enforces an ordering on variables that respects Z/r.
But for circuit decoding, monomials that are aligned and thus represent complete numbers
are required.

We partition pinned monomials into a prefix, body and suffix. The body of a monomial
is the substring between the first variable from Y0 and the last variable from Y(r−1) (it can
be empty). By definition, the length of the body is a multiple of r. This means that the
body uniquely represents a string of natural numbers, which can easily be mapped back to
x-variables.

Then the prefix of a monomial is everything to the left of the body, and the suffix is
everything to the right of the body. We also need to consider monomials of small length,
for which the body is undefined. These parts of a monomial do not yet represent even a
single natural number. But, because the circuit computes an aligned polynomial, we know
that these monomials will eventually becomes part of the body via subsequent multiplication
operations.

4.3.1 Simple Circuit Alignment
The construction below anticipates and brute-forces these possible “completions” of non-body
monomials at each gate of the circuit.

I Lemma 10 (Pinned to Aligned Circuits, Simply). Let C be an r-pinned arithmetic circuit
of size s computing an r-aligned polynomial f(Y ). Then there exists a r-aligned arithmetic
circuit C ′ of size O(sn3r−2) computing f . If C was a monotone circuit, then C ′ is also
monotone.

Proof. First, we define the undesirable sets of monomials. These monomials are all possible
obstructions to alignment that must be computed in terms of aligned polynomials.

Incomplete : I = {ρ | ρ ∈M of length < r}

Prefix : P =
(
∪r−1
i=1M̃i,(r−1)

)
∩ I

Suffix : S =
(
∪r−2
i=0M̃0,i

)
∩ I
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We use these monomial sets to separate the body of a monomial from the prefix and suffix,
which are not perfectly aligned:

Wσ,τ = {(w,m) | w = σmτ where m ∈ M̃, σ ∈ Prefix, and τ ∈ Suffix}

We want all the polynomials computed by C ′ to be aligned, so we can only have monomials
with empty prefix, suffix, and incomplete monomial sets at each gate. But we need the
coefficients associated with these “flawed” polynomials to compute with. This suggests an
operator Γ that will take only parts of the polynomial with a particular suffix and prefix,
multiplying the coefficient on σmτ by the monomial m only, where m is a body monomial.
We will also need to recover coefficients on incomplete monomials, so we let a unary Γ extract
specific coefficients: Γρ(f) = coeff(ρ, f). We could also use the “division” operators above to
express Γ:

Γσ,τ (f) =
∑

(w,m)∈Wσ,τ

coeff(w, f)× ym

= σ ÷L f ÷R τ

If a polynomial f is aligned, then Γ1,1(f) = f and all other operators are 0. That means
that if go is the output gate of the original circuit C, then Γ1,1(go) = go. Inductively, let C
be the pinned circuit computing an aligned polynomial f and suppose g ∈ C. We are going
to show how to push Γ operators one level deeper into the circuit, reasoning by cases on the
form of f .

Suppose g = u + v. Addition does not change the collection of monomials except by
cancellation, so we have the following easy identities, which follow from the same kind of
monomial partitioning used to prove the pinning Lemma 9 above:

∀a, b : Γa,b(g) = Γa,b(u) + Γa,b(v)
∀c : Γc(g) = Γc(u) + Γc(v)

Now suppose g = u × v. First consider how some incomplete monomial c could have a
nonzero coefficient in g; it would have to be the case that two incomplete monomials of u
and v were multiplied together to form c. Therefore:

∀c, Γc(g) =
∑

{d,e∈I | de=c}

Γd(u)Γe(v).

Similarly, we reason by cases on how the monomials of Γa,b(g) could have been formed by
multiplying the monomials of u and v:

Γa,b(g) =
∑

{c∈S, d∈P : |cd|=r}

Γa,c(u)ycdΓd,b(v) // suffix(u) × prefix(v) becomes aligned

+
∑

{c∈S, d∈I : cd=b}

Γa,c(u)Γd(v) // suffix(u) × incomplete(v) becomes b

+
∑

{c∈I, d∈P : cd=a}

Γc(u)Γd,b(v) // incomplete(u) × prefix(v) becomes a

The above formula completely enumerates how the polynomials u and v could multiply
to produce coefficients on monomials with prefix and suffix a, b in g, in terms of Γ applied to
u and v. Thus we have successfully expressed Γa,b(g) in terms of earlier gates.
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Using the formulas above we can push the Γ-operators down one level. Clearly, all gates
above the operator level compute aligned polynomials: we are keeping track of undesirable
monomials in the labels on gates. Finally, observe that all the operators applied to a single
variable or constant are constants. This means we can replace every operator applied to the
input of the circuit by a constant. So after pushing the operators down to the leaves we get
an aligned circuit that computes Γ1,1(go) = f .

All that remains is to estimate the size of the resulting circuit. Each addition gate of
the old circuit was substituted with a circuit of size n2r−2. Each multiplication gate of the
old circuit was substituted with a circuit of size n3r−2. So the size of our aligned circuit
computing f is at most O(sn3r−2). J

4.3.2 Efficient Circuit Alignment
We can get smaller aligned circuits using a more sophisticated technique. Notice that the
construction above enumerates all possible “completions” of non-aligned polynomials to
aligned polynomials at each level. We assigned a gate to each such completion, which fails
to exploit the fact that it is not possible to obtain non-aligned polynomials by arithmetic
operations on aligned polynomials. The construction below does take advantage of these
restrictions to do much less brute-force enumeration of intermediate non-aligned polynomials,
by implicitly representing future completions at each gate. We use matrix multiplication to
organize this more efficient combination of polynomial types, which is why ω appears in the
complexity of the resulting circuit.

We restrict our attention from now on to r = 3. It will simplify the proof and it turns
out that it gives almost optimal results.

I Lemma 11 (Pinned to Aligned Circuits, Efficiently). If there exists a 3-pinned arithmetic
circuit C of size s computing a 3-aligned polynomial f(Y ), then there exists a 3-aligned
circuit of size O(snω) computing f(Y ).

The high level idea of the proof of Lemma 11 is as follows. Let fM denote a matrix of
size n× n that has f as it’s [1, 1] entry and 0 elsewhere. One can measure the arithmetic
circuit complexity of fM in a model where matrices are on the wires of the circuit instead of
scalars. We use this observation to prove the above lemma in two steps:
1. Convert the circuit for f into a circuit for fM over the ring of matrices. (Lemma 13)
2. Convert the circuit for fM back into a circuit for f by replacing each gate with circuits

for matrix addition and matrix multiplication. The resulting circuit is aligned, and
has hardware proportional to the original number of gates times the cost of matrix
multiplication.

The key step is converting a circuit for f into a circuit for fM . As before, we introduce a
mapping Φ to transform the original circuit layer-by-layer. This time, however, it is not an
operator on polynomials: it maps polynomials to matrices. By propagating this Φ through
C, we obtain a circuit for fM . Lemma 12 below states the properties of Φ. We give the full
proof of correctness for our efficient construction of aligned circuits (Lemma 11) at the end
of this section, because it is straightforward once we have Φ.

I Lemma 12 (Polynomial to Matrix). There exists a map Φ that takes a polynomial on 3n
variables to an n× n matrix with polynomial entries satisfying the following conditions:
(i) For all 3-pinned polynomials g all entries of Φ(g) are aligned polynomials.
(ii) If g is a 3-aligned polynomial, then Φ(g)[1, 1] = g and all other entries of Φ(g) are zero.
(iii) If g is a variable or a constant, then the degree of each entry of Φ(g) is at most 3.
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(iv) For all 3-pinned polynomials g, u, v, and arithmetic +,× over the ring of matrices:

g = u+ v ⇒ Φ(g) = Φ(u) + Φ(v)
g = u× v ⇒ Φ(g) = Φ(u)× Φ(v)

One new trick that we are going to use is that we will sometimes not store the suffix
or prefix of the monomial if it is too long. Instead we will store what it can become after
we complete it to an aligned monomial. For example, consider the following polynomial:
y0,iy2,j + y1,i′y2,j′ . Instead of memorizing it this way, one can remember that it will become
y0,iy2,jy3,k + y1,i′y2,j′y3,k after we multiply it by y3,k. By contrast, the simple alignment
procedure stores these completions on both sides of the multiplication, duplicating information
and wasting gates.

Proof of Lemma 12. We need only define the operator Φ for 3-pinned polynomials. Every
3-pinned polynomial g(Y ) is one of 9 types (a, b) ∈ {0, 1, 2} × {0, 1, 2}, based on which
Y -variables start and end all the monomials of f . Denote by Fa,b〈Y 〉 the set of 3-pinned
polynomials of type (a, b). Each entry [i, j] of the matrix Φ(g) will be an arithmetic expression
in terms of g that depends on the “pinning type” of g and the indices [i, j]. Below, we define
functions λ and ρ which select how to transform g from the left and the right, respectively,
in terms of pinning type of g and index of Φ(g). We use below the notation δ(i) = 1 if i = 1
and δ(i) = 0 otherwise.

For g ∈ Fa,b〈Y 〉 define Φ(g)[i, j] = λ(a, i) g ρ(b, j) where:

λ(a, i) =


δ(i)× if a = 0,
y0,i× if a = 1,
y2,i÷L if a = 2

and ρ(b, j) =


×δ(j) if b = 2,
×y2,j if b = 1,
÷Ry0,j if b = 0

We expand the definition of Φ concretely below. This matrix is the outer product of the
λ and ρ operation selection functions “around” g.

Φ(g)[i, j]← entry (a, b) of

 δ(i)× g ÷R y0,j δ(i)× g × y2,j δ(i)× g × δ(j)
y0,i × g ÷R y0,j y0,i × g × y2,j y0,i × g × δ(j)
y2,i ÷L g ÷R y0,j y2,i ÷L g × y2,j y2,i ÷L g × δ(j)


Inspecting the expansion above, properties (i), (ii), and (iii) claimed for Φ are clear. It
remains to show property (iv): that Φ maps arithmetic over 3-pinned polynomials to
arithmetic over the ring of matrices. Reasoning from the definitions of Φ and the division
operators we have the following:

∀c, d ∈ {0, 1, 2} such that d = (c+ 1) mod 3 : p× q =
∑
i∈[n]

p ρ(c, i) × λ(d, i) q

If g, u, v are 3-pinned polynomials then, by additivity of the matrix ring, g = u+ v ⇒ Φ(f) =
Φ(u) + Φ(v). We also need g = u× v ⇒ Φ(f) = Φ(u)× Φ(v) which we prove directly. Let
a, b, c ∈ Z/3 be such that u ∈ Fa,b〈Y 〉 and v ∈ Fb+1,c〈Y 〉. These numbers must exist, since u
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and v multiply to give the 3-pinned polynomial g ∈ Fa,c〈Y 〉. So

(Φ(u)× Φ(v))[i, j] =
∑
k

Φ(u)[i, k]Φ(v)[k, j]

= λ(a, i)
(∑

k

u ρ(b, k) λ(b+ 1, k) v
)
ρ(c, j)

= λ(a, i) u× v ρ(c, j)
= λ(a, i) g ρ(c, j) = Φ(g)[i, j]

The key observation for the derivation above is that ρ(b, k)λ(b+ 1, k) “cancels out” for any
b ∈ Z/3. This is what saves hardware compared to the simple construction: there is no
“garbage” in the middle of the representation to enumerate over. J

We can now push Φ “down” through a pinned circuit to obtain an aligned circuit. We
first need the following lemma, to convert a circuit for f into a circuit for fM over the ring
of matrices.

I Lemma 13 (Pinned Circuit to Matrix Circuit). If there exists a 3-pinned arithmetic circuit
of size s that computes a 3-pinned polynomial f , then there exists a circuit of size O(s) that
computes fM . This circuit uses matrix addition and multiplication as gates, and has matrices
with aligned monomials of degree at most 3 in entries as inputs.

Proof. Suppose that we are given a 3-pinned circuit C for 3-aligned polynomial f . Then, as
Φ(f) = fM we can apply the operator Φ to the output of C and get a circuit for fM . Recall
the properties of Φ guaranteed in Lemma 12. We use property (iv) to push Φ down one level
of C. We will measure the size of this circuit as the number of gates that perform arithmetic
operations, both over polynomials and matrices, which is the same as counting all except
Φ-gates. It is easy to see that when we apply rule (iv) we are not increasing size of the circuit
measured this way.

Eventually we will sink all the Φ-gates to the very bottom. We will have a circuit with
only matrix addition, matrix multiplication and Φ gates, and the last are only applied to the
inputs. By property (iii) we know that Φ applied to the input computes a matrix whose
entries are aligned polynomials of degree at most 3. That means that we can just claim the
outputs of Φ as our new inputs – we are allowed to have matrices with degree 3 aligned
polynomials as inputs in the model of matrix circuits. This removes all the Φ from C, and
the only types of gates left are matrix multiplication and addition. Then our measure of size
is now the same as the number of gates, so we have a new matrix circuit with size exactly
matching that of C. J

Note that it is impossible to obtain non-aligned polynomials by arithmetic operations on
aligned polynomials. Therefore, all matrices computed by the gates in such a circuit would
have aligned polynomials in all entries. We conclude by mapping pinned circuits to aligned
circuits, efficiently.

Proof of Lemma 11. Take a circuit for f , and construct a circuit for fM , using Lemma 13.
Replace each matrix with n2 gates each representing one entry. Replace each matrix addition
and multiplication gate with a circuit on 2n2 inputs that perform the same operations. This
will leave us with a circuit of size O(snω) over aligned monomials of degree at most 3 as
inputs. J
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A Infinitely often vs almost everywhere hardness

In this section we carry out our hardness amplification for polynomials that are sometimes
hard, as opposed to hard everywhere. In the proof of 1 we used the assumption that:

∃α, ε > 0 such that ∀n : Pn is not computable by arithmetic circuits of size αnc+ε

A more natural way to say that some polynomial P requires circuits of size larger then nc
would be:

P 6∈ ASize[nc],

where ASize[f(n)] is set of all sequences of polynomials that can be computed by circuits of
size O(f(n)). The difference between these two definitions is that the first means that the
polynomial is not computable by small circuits everywhere, and the second means that the
polynomial is not computable by small circuits for infinitely many n. While in the proof of
Theorem 1 we used the first definition, we actually only needed that the polynomial is hard
on infinitely many points of the form 3−3/2(3 1

2n)3k for some n and fixed k. This motivates
the notion of infinitely often hardness on a subset, described below:

I Definition 14. ASize[f(n)] is set of all sequences of polynomials that can be computed by
circuits of size O(f(n))

Now we will tweak this definition to describe hardness on subset of integers:

I Definition 15. Let S be a infinite size subset of natural numbers. ASizeS [f(n)] is set of
all sequences of polynomials that can be computed by circuits of size O(f(n)) for all n ∈ S.

I Lemma 16. Let A be a subset of even natural numbers, such that logAn+1
logAn = 1 + o(1),

where An is n-th smallest element of A is ≤ 2nγ for some γ and P is an explicit sequence
of polynomials that is i.o. nc hard for some c. Then for every ε > 0 there is an explicit
sequence of polynomials Q, such that Q is i.o. nc−ε hard on A.

Proof. We construct Q as by setting:

Q2n+1 = Q2n =
n∑
k=1

xn+kPi(x1, x2, . . . , xk)

It is easy to see that Q2n(x1, x2 . . . , xn, 0, 0, . . . , 0, 1, 0, . . . , 0) = Pk(x1, . . . xk) if 1 is set
in the n+ k-th position. This means that:

∀n : AC(Q2n+1) = AC(Q2n) ≥ maxk∈[n]AC(Pk)

Then suppose that AC(Pn) > αnc and let i be the smallest number, such that Ai is
bigger than 2n. Then AC(QAi) > AC(Pn). This implies that AC(QAi) > αnc > αAci−1 >

αA
c

logAi−1
logAi

i > αA
c−o(1)
i . This means that for any ε > 0 there would be infinitely many n ∈ A,

such that AC(Qn) > αnc−ε J

Now we just need to observe that the set A = {x|∃n : x = 3−3/2(3 1
2n)3k} satisfies the

property logAn+1
logAn = 1 + o(1). It is true even if we allow k to be a monotone function of n if

k = O(log(n)), which covers all the range of parameters that we are currently using.

http://dx.doi.org/10.1145/800135.804419
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Abstract
In this paper, we study the question of hardness-randomness tradeoffs for bounded depth arith-
metic circuits. We show that if there is a family of explicit polynomials {fn}, where fn is of
degree O(log2 n/ log2 logn) in n variables such that fn cannot be computed by a depth ∆ arith-
metic circuits of size poly(n), then there is a deterministic sub-exponential time algorithm for
polynomial identity testing of arithmetic circuits of depth ∆− 5.

This is incomparable to a beautiful result of Dvir et al.[SICOMP, 2009], where they showed
that super-polynomial lower bounds for depth ∆ circuits for any explicit family of polynomials (of
potentially high degree) implies sub-exponential time deterministic PIT for depth ∆− 5 circuits
of bounded individual degree. Thus, we remove the “bounded individual degree” condition in the
work of Dvir et al. at the cost of strengthening the hardness assumption to hold for polynomials
of low degree.

The key technical ingredient of our proof is the following property of roots of polynomials
computable by a bounded depth arithmetic circuit : if f(x1, x2, . . . , xn) and P (x1, x2, . . . , xn, y)
are polynomials of degree d and r respectively, such that P can be computed by a circuit of
size s and depth ∆ and P (x1, x2, . . . , xn, f) ≡ 0, then, f can be computed by a circuit of size
poly(n, s, r, dO(

√
d)) and depth ∆ + 3. In comparison, Dvir et al. showed that f can be computed

by a circuit of depth ∆ + 3 and size poly(n, s, r, dt), where t is the degree of P in y. Thus, the
size upper bound in the work of Dvir et al. is non-trivial when t is small but d could be large,
whereas our size upper bound is non-trivial when d is small, but t could be large.
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1 Introduction

Arithmetic circuits are one of the most natural and fundamental models of algebraic com-
putation. Formally, an arithmetic circuit Ψ over a field F and variables ~x = (x1, x2, . . . , xn)
is a directed acyclic graph, with the gates of in-degree zero (called leaves) being labeled by
elements in F and variables in ~x, and the internal nodes being labeled by + (sum gates) or
× (product gates). The vertices of out-degree zero in Ψ are called output gates. The circuit
Ψ computes a polynomial in F[~x] in a natural way : the leaves compute the polynomial
equal to its label. A sum gate computes the polynomial equal to the sum of the polynomials
computed at its children, while a product gate computes the polynomial equal to the product
of the polynomials computed at its children. Arithmetic circuits can be thought of as
algebraic analog of Boolean circuits, and provide a succinct representation of multivariate
polynomials, and are natural objects of study in Algebraic Complexity theory. Two of the
most fundamental problems of interest in this area of research are the following.

Lower Bounds. To show that there are explicit polynomial families which are hard, i.e.
they cannot be computed by arithmetic circuits whose size is polynomial in the number
of variables.
Polynomial Identity Testing (PIT). To design an efficient deterministic algorithm
which takes as input an arithmetic circuit C, and outputs if it is identically zero or not.

It is easy to show by an appropriate counting argument that a random polynomial of degree
d in n variables cannot be computed by an arithmetic circuit of size poly(n, d), but no such
explicit1 polynomial families are known. Similarly, a randomized algorithm for the PIT
question immediately follows from the classical Schwartz-Zippel lemma (see Lemma 15). The
key challenge is to accomplish this task without using randomness.

The progress on these questions for general arithmetic circuits has been painfully slow.
To date, there are no non-trivial2 algorithms for PIT for general arithmetic circuits, while
the best known lower bound, due to Bauer and Strassen [2], is a slightly superlinear lower
bound Ω(n logn), established over three decades ago. In fact, even for the class of bounded
depth arithmetic circuits, no non-trivial deterministic PIT algorithms are known, and the
best lower bounds known are just slightly superlinear [22].

In a very influential work, Kabanets and Impagliazzo [10] showed that the questions of
derandomizing PIT and that of proving lower bounds for arithmetic circuits are equivalent
in some sense. Their result adapts the Hardness vs Randomness framework of Nisan and
Wigderson [18] to the algebraic setting. In their proof, Kabanets and Impagliazzo combine the
use of Nisan-Wigderson generator with Kaltofen’s result that all factors of a low degree (degree
poly(n)) polynomial with poly(n) sized circuit are computable by size poly(n) circuits [12].
They showed that given an explicit family of hard polynomials, one can obtain a non-trivial3
deterministic algorithm for PIT.

The extremely slow progress on the lower bound and PIT questions for general circuits
has led to a lot of attention on understanding these questions for more structured sub-classes
of arithmetic circuits. Arithmetic formula [11], algebraic branching programs [15], multilinear
circuits [21, 25, 24], and constant depth arithmetic circuits [19, 22, 9, 7, 17] are some examples
of such circuit classes. A natural question is to ask if the equivalence of PIT and lower bounds

1 See Definition 10 for a formal definition.
2 Here, non-trivial means anything which is better than the brute force algorithm for general arithmetic

circuits given by the Schwartz-Zippel lemma.
3 Here, non-trivial means subexponential time, or quasipolynomial time, based on the hardness assumption.
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also carries over to these more structured circuit classes. For example, does super-polynomial
lower bounds for arithmetic formulas imply non-trivial deterministic algorithms for PIT for
arithmetic formulas, and vice-versa?

The answers to these questions do not follow directly from the results in [10]; unlike
general arithmetic circuits, none of these sub-classes are known to be closed under factoring,
i.e., given a polynomial P which has a small formula (or bounded depth circuit), it is
not known whether the factors of P also have small formulas (or bounded depth circuits).
Recently, there has been some progress on these questions (see [20, 4]), but in general, these
questions of being closed under factoring for arithmetic formulas and bounded depth circuits
continue to remain open.

1.1 Bounded Depth Circuits
Dvir, Shpilka and Yehudayoff [5] initiated the study of this question of equivalence of PIT
and lower bounds for bounded depth circuits. Dvir et al. observed that a part of the proof
in [10] can be generalized to show that non-trivial PIT for bounded depth circuits implies
lower bounds for such circuits. For the converse, the authors only showed a weaker statement;
they proved that super-polynomial lower bounds for depth ∆ arithmetic circuit implies
non-trivial PIT for depth ∆ − 5 arithmetic circuits with bounded individual degree. The
bounded individual degree condition is a bit unsatisfying, and so, the following question is of
fundamental interest.

I Question 1. Does a super-polynomial lower bound for depth ∆ arithmetic circuits imply
non-trivial deterministic PIT for depth ∆′ arithmetic circuits4? In particular, can we get rid
of the “bounded individual degree” condition from the results in [5]?

In this paper, we partially answer Question 1 in the affirmative. Informally, we prove the
following theorem.

I Theorem 2 (Informal). A super-polynomial lower bound for depth ∆ arithmetic circuits
for an explicit family of low degree polynomials implies non-trivial deterministic PIT for
depth ∆− 5 arithmetic circuits.

Here, by low degree polynomials, we mean polynomials in n variables and degree at most
O(log2 n/ log2 logn). Thus, by strengthening the hardness hypothesis in [5], we remove the
bounded individual degree restriction from the implication. We now formally state our results
and elaborate further how they compare with prior work.

1.2 Our Results
We start by stating our main theorem, which is a formal restatement of Theorem 2.

I Theorem 3. Let ∆ ≥ 6 be a positive integer, and let ε > 0 be any real number. Let {fm}
be a family of explicit polynomials such that fm is an m-variate multilinear polynomial of
degree d = O

(
log2m/log2 logm

)
which cannot be computed by an arithmetic circuit of depth

∆ and size poly(m). Then, there is a deterministic algorithm, which, given as input a circuit
C ∈ C[~x] of size s, depth ∆− 5 and degree D on n variables, runs in time (snD)O(n2ε) and
determines if the polynomial computed by C is identically zero.

4 Here, we think of ∆′ as ∆ − O(1).
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Some remarks on the above theorem statement.
I Remark. Our algorithm works as long as the characteristic of the underlying field is
sufficiently large or zero, but for simplicity, the presentation in this paper just focuses on the
field Q of rational numbers.
I Remark. The bound d ≤ log2m/ log2 logm can be relaxed to d ≤ logk m/ logk logm for
any positive integer k, but we would need lower bounds for depth ∆ + 2k + 2 to be able to
do PIT for depth ∆ circuits. We point this difference out in the proof of Theorem 5, but do
not dwell further on this.
I Remark. The running time of the PIT algorithm gets better as the lower bound gets
stronger. Also, the constraint on the degree of the hard polynomial family can be further
relaxed a bit, at the cost of strengthening the hardness assumption, and increasing the
running time of the resulting PIT algorithm5. We leave it to the interested reader to work
out these details.
I Remark. In general, explicit polynomial families do not have to be multilinear. But,
if we have a hard polynomial which is not multilinear, and has a polynomial degree in
each variable, we can derive from it an explicit hard multilinear polynomial with only a
polynomial deterioration in the hardness parameters. More precisely, replacing xr

i , for r > 1
with yr0

i0
· . . . · yrs

is
. where (r0 . . . rs) is the binary representation of r, gives a new multilinear

polynomial in a slightly larger number of variables. This polynomial is at least as hard as
the original polynomial which can be recovered from it by the substitution yij = x2j

i .
As discussed earlier, Theorem 3 is closely related to the main result in [5]. We now discuss

their similarities and differences.

Comparison with [5]

Degree constraint on the hard polynomial. While Theorem 3 requires that the
hard polynomial on m variables has degree at most O(log2m/ log2 logm), Dvir et al. [5]
did not have a similar constraint.
Individual degree constraint for PIT. In [5], the authors get PIT for low depth
circuits with bounded individual degree, whereas our Theorem 3 does not make any
assumptions on individual degrees in this context.

As we alluded to earlier, the key technical challenge for extending the known hardness-
randomness tradeoffs for general circuits [10] to restricted circuit classes like formulas or
bounded depth circuits comes from the absence of an analog of Kaltofen’s result [12] about
closure under factoring for these restricted classes. More specifically, understanding the
following questions seems necessary for adapting the proof strategy in [10] to other restricted
classes of circuits.

I Question 4. Let P (~x, y) ∈ F[~x, y] be a polynomial of degree r and let f ∈ F[~x] be a
polynomial of degree d such that P (~x, f) ≡ 0. Assuming P can be computed by a low depth
circuit (or arithmetic formula) of size at most s, can f be computed by a low depth circuit
(or arithmetic formula) of size at most poly(s, n, d, r)?

In [5], the authors partially answer this question by showing that under the hypothesis
of Question 4, the polynomial f can be computed by a low depth circuit of size at most

5 If we assume a sub-exponential lower bound, then we can get a quasi-polynomial time PIT. Note that
this is the parameter region used in [5]
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poly(s, r, ddegy(P )). Thus, for the case of polynomials P which have small individual degree
with respect to y, they answer the question in affirmative.

Our main technical observation is the following result, which gives an upper bound on
the low depth circuit complexity of roots of low degree of a multivariate polynomial which
has a small low depth circuit.

I Theorem 5. Let P ∈ F[~x, y] be a polynomial of degree at most r in n+ 1 variables that
can be computed by an arithmetic circuit of size s of depth at most ∆. Let f ∈ F[~x] be a
polynomial of degree at most d such that

P (~x, f) = 0 .

Then, f can be computed by a circuit of depth at most ∆+3 and size at most O((srn)10dO(
√

d)).

1.3 Proof Overview
The proof of Theorem 3 is very much along the lines of the proofs of similar results in [10]
and [5]. In particular, all our technical contributions are confined to the proof of Theorem 5,
which when combined with the standard machinery of Nisan-Wigderson designs yields
Theorem 3. Our proof of Theorem 5 also mirrors the proof of the analogous theorem about
the structure of roots in [5]. We now outline the main steps, and point out the differences
between the proofs.

The first step in the proof is to show that one can use the standard Hensel Lifting to
iteratively obtain better approximations of the root f given a circuit for P (~x, y). More
formally, in the kth step, we start with a polynomial hk which agrees with f on all monomials
of degree at most k, and use it to obtain a polynomial hk+1 which agrees with f on all
monomials of degree at most k + 1. Moreover, the proof shows that if hk has a small circuit,
then hk+1 has a circuit which is only slightly larger than that of hk. This iterative process
starts with the constant term of f , which trivially has a small circuit. Thus, after d iterations,
we have a polynomial hd such that the root f is the sum of the homogeneous components of
hd of degree at most d. This lifting step is exactly the same as that in [5] or in some of the
earlier works on polynomial factorization [3], and is formally stated in Lemma 16.

The key insight of Dvir et al. [5] was that if degy(P ) = t, and C0(~x), C1(~x), . . . , Ct(~x) are
polynomials such that P (~x, y) =

∑t
i=1 Ci(~x)yt, then for every k ∈ {0, 1, . . . , d}, we have a

polynomial Bk of degree at most k such that

hk(~x) = Bk(C0(~x), C1(~x), . . . , Ct(~x)) .

Now, consider the case when t � n (for instance t = O(1)). It follows from standard
interpolation results for low depth circuits (see Lemma 12) that each of the polynomials
Ci(~x) has a circuit of size O(sr) and depth ∆ since P has a polynomial of size s and depth
∆. Thus, hd(~x) can be written as a sum of at most

(
d+t

t

)
= O(dt) monomials if we treat

each Ci as a formal variable. Plugging in the small depth ∆ circuits for each Ci, and
standard interpolation (Lemma 12), it follows that f has a circuit of size poly(s, n, dt) of
depth ∆ +O(1).

Observe that this size bound of poly(s, n, dt) is small only when t is small. For instance,
when t > n, this bound becomes trivial. Our key observation is that independently of t, there
is a set of d + 1 polynomials g0(~x), g1(~x), . . . , gd(~x) of degree at most d, and polynomials
A0, A1, . . . , Ak on d+ 1 variables such that for every k ∈ {0, 1, . . . , d},

hk(~x) = Ak(g0(~x), g1(~x), . . . , gd(~x)) .

CCC 2018
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Moreover, for every k, Ak has degree at most k and is computable by a circuit of size at most
O(d3). This observation essentially decouples the number of generators from the individual
degree of P in y, and is formally stated as Lemma 18. Also, each of these generators gi can be
computed by a circuit of size poly(s, r) and depth ∆. Thus, expressing Ad(z0, z1, . . . , zd) as a
sum of monomials, and then composing this representation with the circuits for g0, g1, . . . , gd

would give us a circuit of size poly(s, n, r, d, 4d) of depth ∆ +O(1). To get a sub-exponential
dependence on d in the size, we do not write Ad(z0, z1, . . . , zd) as

∑∏
circuit of size O(4d),

but instead express it as a
∑∏∑

circuit of size at most dO(
√

d), using the depth reduction
result of [8]6.

One point to note is that just from Kaltofen’s result [12], it follows that f has an arithmetic
circuit7 of size poly(n). Thus, from Theorem 9, it follows that f has a circuit of depth-3 of
size at most nO(

√
d). The key advantage of Theorem 5 over this bound is that the exponential

term is dO(
√

d) and not of the form ndε . For d ≤ log2 n/ log2 logn, dO(
√

d) is bounded by a
polynomial in n and so the final bound is meaningful.

We end this section with a short discussion on the low degree condition in the hypothesis
of Theorem 3.

1.4 The Low Degree Condition
An intriguing question is to understand how restrictive the “low degree” condition in the
hardness assumption of Theorem 3 is. More formally, is the question of proving super-
polynomial lower bounds for constant depth circuits for an explicit polynomial family of low
degree much harder than the question of proving super-polynomial lower bound for constant
depth circuits for an explicit polynomial family of potentially larger degree 8? Currently, we
do not even know quadratic lower bounds for arithmetic circuits of constant depth, and so,
perhaps we are quite far from understanding this question.

It is, however, easy to see that some of the known lower bounds for low depth circuits
carries over to the low degree regime. For instance, the proofs of super-polynomial lower
bounds for homogeneous depth-3 circuits by Nisan and Wigderson [19], super-polynomial
lower bounds for homogeneous depth-4 circuits based on the idea of shifted partial derivatives
(see for example, [9, 13, 7, 17]) and super-linear lower bound due to Raz [22] do not require
the degree of the hard function to be large.

There are some known exceptions to this. For instance, lower bounds for homogeneous
depth-5 circuits over finite fields due to Kumar and Saptharishi [16] are of the form 2Ω(

√
d)

and become trivial if d < log2 n. Another result which distinguishes the low degree and
high degree regime is a separation between homogeneous depth-5 and homogeneous depth-4
circuit [16] which is only known to be true in the low degree regime (degree less than log2 n).

Another result of relevance is a result of Raz [23], which shows that constructing an
explicit family of tensors Tn : [n]d → F, of rank at least nd(1−o(1)) implies super-polynomial
lower bound for arithmetic formulas, provided d ≤ O(logn/ log logn). As far as we know,
we do not know of such connections in the regime of high degree.

One prominent family of lower bound results which do not seem to generalize to this
low degree regime are the super-polynomial lower bounds for multilinear formulas [21], and
multilinear constant depth circuits [25]. In fact, the results in [23] show that super-polynomial

6 See Theorem 9 for a formal statement of this result.
7 Of potentially very large depth.
8 In general, the degree only has to be upper bounded by a polynomial function in the number of variables.
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lower bounds for set multilinear formulas for polynomials of degree at most O(logn/ log logn)
implies super-polynomial lower bounds for general arithmetic formulas.

In the context of polynomial factorization, low degree factors of polynomials with small
circuits have been considered before. For instance, Forbes [6] gave a quasi-polynomial time
deterministic algorithm to test if a given polynomial of constant degree divides a given sparse
polynomial. Extending this result to even testing if a given sparse polynomial divides another
given sparse polynomial remains an open problem.

2 Preliminaries

We start by setting up some notation and stating some basic definitions and results from
prior work which will be used in our proofs.

2.1 Notations

We use boldface letters ~x, ~y, ~z to denote tuples of variables.
For a polynomial P , deg(P ) denotes the total degree of P and degy(P ) denotes the total
degree of P with respect to the variable y.
Throughout this paper, we state and prove our results when the underlying field F is the
field of rational numbers Q, even though all our results hold as long as the field is of
sufficiently large or zero characteristic.
Let P ∈ F[~x] be a polynomial of degree equal to d. For every k ∈ N, Hk [P ] denotes
the homogeneous component of P of degree k. Similarly, H≤k [P ] is defined to be equal∑k

i=0Hi[P ].
For an arithmetic circuit C, we use size(C) to denote the number of wires in C. The
depth of C is the length of the longest path from any output gate to any input gate.
Throughout this paper, we assume that all our circuits are layered with alternating layers
of addition and multiplication gates. Moreover, we always assume that the top layer is
of addition gates. For instance, a depth-3 circuit is of the form

∑∏∑
and a depth-4

circuit is of the form
∑∏∑∏

.

2.2 Derivatives

We start by defining derivatives of a polynomial. For the ease of presentation, we work with
the notion of the slightly non-standard notion of Hasse derivatives even though we work
with fields of characteristic zero.

I Definition 6 (Derivatives). Let F be any field and let P (y) ∈ F[y] be a polynomial. Then
for every k ∈ N, the partial derivative of P of order k with respect to y denoted by ∂kP (y)

∂yk or
P (k)(y) is defined as the coefficient of zk in the polynomial P (y + z).

We also use P ′(y) and P ′′(y) to denote the first and second order derivatives of P respectively.
An immediate consequence of this definition is the following lemma.

I Lemma 7 (Taylor’s expansion). Let P (y) ∈ F[y] be a polynomial of degree d. Then,

P (y + z) = P (y) + z · P ′(y) + z2 · P (2)(y) + · · ·+ zd · P (d)(y) .

CCC 2018
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2.3 Depth Reductions
We will use the following depth reduction theorems as a blackbox for our proofs.

I Theorem 8 (Depth reduction to depth-2k [1, 14, 28]). Let k be a positive integer and F
be any field. If P (~x) ∈ F[~x] is an n-variate polynomial of degree d that be computed by an
arithmetic circuit Ψ of size at most s, then P can be computed by a depth 2k circuit of size
at most (snd)O(d1/k).

Invoked with k = 2 the above theorem gives a circuit of depth 4 for the polynomial P of size
sO(
√

d). The next depth reduction result gives a further reduction to depth-3, as long as the
field is of characteristic zero, and will be useful for our proof.

I Theorem 9 (Depth reduction to depth-3 [8]). Let P (~x) ∈ Q[~x] be an n-variate polynomial
of degree d that can be computed by an arithmetic circuit Ψ of size at most s. Then, P can
be computed by a

∑∏∑
circuit of size at most (snd)O(

√
d).

2.4 Explicit Polynomials
I Definition 10 ([5]). Let {fm} be a family of multilinear polynomials such that fm ∈
F[x1, x2, . . . , xm] for every m. Then, the family {fm} is said to be explicit if the following
two conditions hold.

All the coefficients of fm have bit complexity polynomial in m.
There is an algorithm which on input m outputs the list of all 2m coeffcients of fm in
time 2O(m).

2.5 Extracting Homogeneous Components
For our proofs, we will also rely on the following classical result of Strassen, which shows
that if a polynomial P has a small circuit, then all its low degree homogeneous components
also have small circuits.

I Theorem 11 (Homogenization). Let F be any field, and let Ψ ∈ F[~x] be an arithmetic
circuit of size at most s. Then, for every k ∈ N, there is a homogeneous circuit Ψk of formal
degree at most k and size at most O(k2s), such that

Ψk = Hk [Ψ] .

Theorem 11 gives us a way of extracting homogeneous components of the polynomial
computed by a given circuit. One drawback of Theorem 11 is that the depth of Ψk could be
much larger than the depth of Ψ. Thus, given a low depth circuit (and hence, unbounded
in-degree circuit) for a polynomial P , it is not clear if the homogeneous components of P
also have small low depth circuits. The following standard trick implies this observation, and
would be useful for our proof.

I Lemma 12 (Interpolation). Let F be any field with at least d+ 1 elements. Let P (~x, y) ∈
F[~x, y] be a polynomial of degree at most d. Let C0(~x), C1(~x), . . . , Cd(~x) ∈ F[~x] be polynomials
such that P (~x, y) =

∑d
j=0 y

j · Cj(~x). Then, if P (~x, y) has a circuit of size at most s and
depth at most ∆, then for every j ∈ {0, 1, . . . , d}, Cj(~x) has a circuit of size at most O(sd)
and depth ∆.

We refer the reader to excellent surveys of Shpilka and Yehudayoff [27] and Saptharishi [26]
for a proof of these results.
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2.6 Hitting Sets
I Definition 13. A set of points P is said to be a hitting set for a class C of circuits, if for
every C ∈ C which is not identically zero, there is an ~a ∈ P such that C(~a) 6= 0.

Clearly, deterministic and efficient construction of a hitting set of small size for a class C
of circuits immediately implies a deterministic PIT algorithm for C. PIT algorithms designed
in this way are also blackbox, in the sense that they do not have to look inside into the
wiring of the circuit to decide if it computes a polynomial which is identically zero. The PIT
algorithms in this paper are all blackbox in this sense.

2.7 Nisan-Wigderson Designs
We state the following well known result of Nisan and Wigderson [18] on the explicit
construction of combinatorial designs.

I Theorem 14 ([18]). Let n,m be positive integers such that n < 2m. Then, there is a
family of subsets S1, S2, . . . , Sn ⊆ [`] with the following properties.

For each i ∈ [n], |Si| = m.
For each i, j ∈ [n], such that i 6= j, |Si ∩ Sj | ≤ logn.
` = O( m2

log n ).
Moreover, such a family of sets can be constructed via a deterministic algorithm in time
poly(n, 2`).

2.8 Schwartz-Zippel Lemma
We now state the well known Schwartz-Zippel lemma.

I Lemma 15 (Schwartz-Zippel). Let F be a field, and let P ∈ F[~x] be a non-zero polynomial
of degree (at most) d in n variables. Then, for any finite set S ⊂ F we have

|{~a ∈ Sn : P (~a) = 0}| ≤ d|S|n−1
.

In particular, if |S| ≥ d+ 1, then there exists some ~a ∈ Sn satisfying P (~a) 6= 0. This gives
us a brute force deterministic algorithm, running in time (d+ 1)n, to test if an arithmetic
circuit computing a polynomial of degree at most d in n variables is identically zero.

3 Low Degree Roots of Polynomials with Shallow Circuits

In this section, we prove Theorem 5, which is also our main technical result. We start with
the following lemma, which gives us a way of approximating the root of a polynomial to
higher and higher accuracy, in an iterative manner. The lemma is a standard example of
Hensel Lifting (in fact, sloppy Hensel Lifting), which appears in many of prior works in this
area including [5]. The statement and the proof below, are from the work of Dvir et al [5].

I Lemma 16 (Hensel Lifting [5]). Let P ∈ F[~x, y] and f ∈ F[~x] be polynomials such that
P (~x, f) = 0 and H0

[
∂P
∂y (~x, f(~x))

]
= δ 6= 0. Let i ∈ {1, 2, . . . ,deg(f)} be any number. If

h ∈ F[~x] is a polynomial such that H≤i−1[f ] = H≤i−1[h], then

H≤i [f ] = H≤i

[
h− P (~x, h)

δ

]
.

CCC 2018
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Proof. For the rest of the proof, we think of P (~x, y) as an element of F[~x][y]. Henceforth, we
drop the variables ~x everywhere, and think of P as a univariate in y. Thus, P (y) = P (~x, y).
For brevity, we denote Hj [f ] by fj for every j ∈ N.

From the hypothesis, we know that P (f) = 0. Therefore, H≤i(P (f)) = H≤i−1 [P (f)] = 0.
Moreover, since H≤i−1[h] = H≤i−1[f ], we get that H≤i−1 [P (f)] = H≤i−1 [P (h)] = 0. So,
we have

0 = H≤i [P (f)]
= H≤i [P (h+ (fi − hi))]

Now, by using Lemma 7, we get the following equality.

0 = H≤i

[
P (h) + P ′(h) · (fi − hi) + P ′′(h) · (fi − h1)2 + . . .+ P (r)(h) · (fi − h1)r

]
= H≤i [P (h)] +H≤i [P ′(h) · (fi − hi)] + . . .+H≤i

[
P (r)(h) · (fi − hi)r

]

Here, r denotes the degree of P . Since every monomial in fi − hi has degree equal to i,
any term in the above summand which is divisible by (fi − hi)2 does not contribute any
monomial of degree at most i. Thus, we have the following.

0 = H≤i [P (h)] +H≤i [P ′(h) · (fi − hi)]
= H≤i [P (h)] +H0 [P ′(h)] · (fi − hi) .

Now, we know that H0 [P ′(h))] = H0 [P ′(f)] = δ 6= 0. Thus,

fi = hi −
Hi [P (h)]

δ
.

Since H≤i−1[P (h)] is identically zero, we get,

H≤i [f ] = H≤i

[
h− P (h)

δ

]
. J

For our proof, we shall look at the structure of the outcome of the lifting operation in
Lemma 16 more closely. Before proceeding further, we need the following crucial lemma.

I Lemma 17. Let P (~x, y) ∈ F[~x, y] be a polynomial of degree at most r, let α ∈ F be a field
element and d ∈ N be a positive integer. Let G′(P, α, d) be the set of polynomials defined as
follows.

G′(P, α, d) =
{
H≤d

[
∂jP

∂yj
(~x, α)

]
−H0

[
∂jP

∂yj
(~x, α)

]
: j ∈ {0, 1, 2, . . . , d}

}
.

Let G(P, α, d) be the subset of G′(P, α, d) consisting of all non-zero polynomials. Then, the
following statements are true.

For every g ∈ G(P, α, d), the degree of every non-zero monomial in g is at least 1 and at
most d.
|G| ≤ d+ 1.
If P has a circuit of size at most s and depth ∆, then every g ∈ G(P, α, d) has a circuit
of size at most O(sr3d2) and depth ∆.
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I Remark. G′ contains the non-constant part of the partial derivatives of P at α up to order
d. Note that G′ may contain the zero polynomial, but G is the subset of G′ without the zero
polynomial.

Proof. The first two items follow immediately from the definition of G(P, α, d). We focus on
the proof of the third item. Let C0(~x), C1(~x), . . . , Cr(~x) be polynomials such that

P (~x, y) =
r∑

i=0
Ci(~x) · yi .

Now, for any j ∈ {0, 1, 2, . . . , d}, by Definition 6, ∂jP
∂yj (~x, y) is the coefficient of zj in P (~x, y+z).

Moreover,

P (~x, y + z) =
r∑

i=0
Ci(~x) · (y + z)i ,

=
r∑

i=0
Ci(~x) ·

 i∑
j=0

(
i

j

)
zjyi−j

 ,

=
r∑

j=0

 r∑
i=j

(
i

j

)
Ci(~x) · yi−j

 · zj .

Thus, for every j ∈ {0, 1, . . . , d}, the coefficient of zj in P (~x, y+z) is given by
∑r

i=j

(
i
j

)
Ci(~x) ·

yi−j . From Lemma 12, we know that each Ci(~x) has a circuit of depth ∆ and size at most
O(sr). Thus, we can obtain a circuit for

(
i
j

)
Ci(~x) · yi−j by adding an additional layer of

× gates on top of the circuit for Ci(~x). This increases the size by a multiplicative factor
of r, and the depth by 1. However, observe that this increase in depth is not necessary.
Since, an expression of the form yi · (

∑
a

∏
b Qa,b) can be simplified to

∑
a y

i · (
∏

b Qa,b).
Thus, the multiplication by yi can be absorbed in the product layer below the topmost
layer of the circuits for Ci(~x), and this does not incur any additional increase in size. Thus,
the polynomials ∂jP

∂yj (~x, y), and hence ∂jP
∂yj (~x, α) have a circuit of size at most O(sr3) and

depth at most ∆. To compute the homogeneous components of these polynomials, which are
essentially the elements of G(P, α, d), we just use Lemma 12. This increases the size by a
factor of at most O(d2) while keeping the depth the same. J

We now state our key technical observation.

I Lemma 18. Let P ∈ F[~x, y] and f ∈ F[~x] be polynomials of degree r and d respectively such
that P (~x, f) = 0 and H0

[
∂P
∂y (~x, f(~x))

]
= δ 6= 0. Let the polynomials in the set G(P,H0[f ], d)

be denoted by g0, g1, . . . , gd. Then, for every i ∈ {1, 2, . . . , d}, there is a polynomial Ai(~z) in
d+ 1 variables such that the following are true.
H≤i [f ] = H≤i [Ai (g0, g1, . . . , gd)], and
Ai(~z) is computable by a circuit of size at most 10d2i.

This is the analog of the main technical lemma in [5], which we state below.

I Lemma 19 ([5]). Let P ∈ F[~x, y] and f ∈ F[~x] be polynomials of degree r and d respectively
such that P (~x, f) = 0 and H0

[
∂P
∂y (~x, f(~x))

]
= δ 6= 0. Let P (~x, y) =

∑k
i=0 Ci(~x) · yi. Then,

for every i ∈ {1, 2, . . . ,deg(f)}, there is a polynomial Ai(~z) in k + 1 variables such that,

H≤i [f ] = H≤i [Ai (C0, C1, . . . , Ck)] .

CCC 2018
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The difference between these lemmas is that in [5], it is shown that there is a set of
polynomials of size at most degy(P ) + 1 which generate every homogeneous component of the
root f . Thus, in the regime of bounded individual degree, the size of this generating set is
very small. However, when degy(P ) ≥ n, Lemma 19 does not say anything non-trivial since
f can be trivially written as a polynomial in the n original variables. In contrast, Lemma 18
continues to say something non-trivial, as long as d << n, regardless of the value of degy(P ).
We now proceed with the proof.

Proof of Lemma 18. For the rest of the proof, we think of P (~x, y) as an element of F[~x][y].
So, we drop the variables ~x everywhere, and think of P as a univariate in y. Thus, P (y) =
P (~x, y). For brevity, we denote Hj [f ] by fj for every j ∈ N. We also use G for G(P, f0, d).
The proof will be by induction on i and crucially use Lemma 16.

Base case. We first prove the lemma for i = 1. We invoke Lemma 16 with i = 1 and
h = f0. We get that

H≤1[f ] = H≤1

[
f0 −

P (f0)
δ

]
.

The proof follows by observing that f0, δ are constants and H1 [P (f0)] = H1 [g0] where
g0 = H≤d [P (f0)]−H0 [P (f0)] ∈ G.
Induction step. We assume that the claim in the lemma holds up to homogeneous
components of degree at most i − 1, and argue that it holds for H≤i[f ]. We invoke
Lemma 16 with h = Ai−1(g0, g1, . . . , gd), which exists by the induction hypothesis.

H≤i [f ] = H≤i

[
h− P (h)

δ

]
.

Recall that H0(h) = H0(f). Thus, h = f0 + h̃, where every monomial in h̃ has degree at
least 1. By Lemma 7,

P (f0 + h̃) = P (f0) + P ′(f0) · h̃+ · · ·+ P (r)(f0) · h̃r .

Thus, as h̃ has degree at least 1, we have

H≤i [f ] = H≤i

[
h− 1

δ
·
(
P (f0) + P ′(f0) · h̃+ · · ·+ P (r)(f0) · h̃r

)]
,

= H≤i

[
h− 1

δ
·
(
P (f0) + P ′(f0) · h̃+ · · ·+ P (i)(f0) · h̃i

)]
.

Since we are only interested in i ≤ d, the following equality is also true.

H≤i [f ]

= H≤i

[
h− 1

δ
·
(
H≤d [P (f0)] +H≤d [P ′(f0)] · h̃+ · · ·+H≤d

[
P (i)(f0)

]
· h̃i
)]

.

Observe that for every j ∈ {0, 1, . . . , d}, H≤d

[
P (j)(f0)

]
is an affine form in the elements of

G9. For every j ∈ {0, 1, 2, . . . , i}, let `j(~z) be an affine form such that `j(g0, g1, . . . , gd) =

9 In fact, they are an affine form in one variable.
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H≤d

[
P (j)(f0)

]
. Now, we define Ai(~z) as

Ai(~z) ≡ Ai−1(~z)− 1
δ

(
`0(~z) + `1(~z) · (Ai−1(~z)− f0) + · · ·+ `i(~z) · (Ai−1(~z)− f0)i

)
.

The first item in the statement of the lemma is true, just by the definition of Ai(~z) above.
We now argue about the circuit size of Ai(~z). Each affine form `i(~z) can be computed by
a circuit of size at most O(d). Thus, given a circuit of Ai−1(~z), we can obtain a circuit
for Ai(~z) by adding at most 10d2 additional gates. Thus, Ai(~z) can be computed by a
circuit of size at most 10d2(i− 1) + 10d2 = 10d2i gates. J

We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. The first step is to massage the circuit for P so that the hypothesis of
Lemma 18 holds. We will have to keep track of the size and depth blow ups incurred in the
process. We begin by ensuring that f is a root of multiplicity 1 of some polynomial related
to P .

Reducing multiplicity of the root f

Let P (~x, y) =
∑r

i=0 y
iCi(~x). Let m ≥ 1 be the multiplicity of f as a root of P (~x, y). Thus,

∂jP
∂yj (~x, f) = 0 for j ∈ {0, 1, 2, . . . ,m− 1}, but ∂mP

∂ym (~x, f) 6= 0. The idea is to just work with
the polynomial P̃ = ∂m−1P

∂ym−1 (~x, y) for the rest of the proof. Clearly, f is a root of multiplicity
exactly 1 of P̃ . We only need to ensure that P̃ can also be computed by a small low depth
circuit. This follows from the proof of the third item in Lemma 17, where we argued that
∂jP
∂yj (~x, y) has a depth ∆ circuit of size O(sr3).

Translating the origin

From the step above, we can assume without loss of generality that ∂P
∂y (~x, f) 6= 0. Thus,

there is a point ~a ∈ Fn such that ∂P
∂y (~a, f(~a)) 6= 0. By translating the origin, we will assume

that ∂P
∂y (0, f(0)) 6= 0. This increases the depth of the circuit by at most 1, as it could involve

replacing every variable xi by xi + ai, and the size by at most a factor n.

Degree of Ad

From Lemma 18, we know that the polynomial Ad(~z) has a circuit of size at most O(d3).
To obtain a circuit for f , we first prune away all the homogeneous components of Ad(~z) of
degree larger than d. Recall that by definition, every polynomial gi ∈ G has degree at least 1,
and that f = H≤d [Ad(g1, g2, . . . , gd)]. Thus, any monomial of degree strictly greater than d
in Ad(~z) contributes no monomial of degree at most d in the variables ~x in the composed
polynomial Ad(g1, g2, . . . , gd), and hence does not contribute anything to the computation of
f . So, we can confine ourselves to working with the homogeneous components of Ad(~z) of
degree at most d.

By Theorem 11, we know that given a circuit for Ad(~z), we can construct a circuit for
Hi [Ad(~z)] by increasing the size of the circuit by a multiplicative factor of at most O(i2).
Thus, H≤d[Ad(~z)] can be computed by a circuit of size at most O(d3)× size(Ad(~z)). Thus,
for the rest of this argument, we will assume that Ad(~z) has a circuit of size at most O(d6)
and degree at most d, and

f = H≤d [Ad(g1, g2, . . . , gd)] .
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Circuit for Ad(~z) of small depth

Given that Ad(~z) has a circuit of size O(d6) and degree at most d, by Theorem 9, we know
that Ad(~z) can be computed by a

∑∏∑
circuit Ψ of size at most dO(

√
d)10. Similar results

follow from the application of Theorem 8.

Circuit for f of small depth

Composing the
∑∏∑

circuit Ψ for Ad(~z) with the circuits of g1, g2, . . . , gd ∈ G, we get a
circuit Ψ′ with the following properties.

The size of Ψ′ is at most (srn)10 · dO(
√

d)).
The depth of Ψ′ is at most ∆ + 3. This follows by combining the bottom

∑
layer of the∑∏∑

circuit for Ad(~z) with the top
∑

layer of the circuits for gi ∈ G.
The degree of Ψ′ is at most d2. This is true because the degree of Ad(~z) is at most d (as
argued earlier in this proof), and the degree of every polynomial in G is at most d (first
item in Lemma 17).
f = H≤d [Ψ′(~x)].

To obtain a circuit for f , we apply Lemma 12 to Ψ′. This increases the size of Ψ′ by a
multiplicative factor of at most O(d2), while the depth remains the same. This completes
the proof of the theorem. J

4 Deterministic Identity Testing using Hard Polynomials

In this section, we use Theorem 5 to show that given a family of polynomials which are
hard for depth ∆ circuits, we can do deterministic identity testing for ∆ − 5 circuits in
subexponential time. Since the content of this part are very similar to the proofs of similar
statements in [10] and [5], we only outline the differences in the proofs (if any), and refer the
reader to [5] for details. We start with the following lemma, which is the analog of Lemma
4.1 in [5].

I Lemma 20 (Analog of Lemma 4.1 in [5]). Let q(~x) ∈ F[~x] be a (non-zero) polynomial
of degree D in n variables, which can be computed by a circuit of size s and depth ∆.
Let m > logn be an integer and let S1, S2, . . . , Sn ⊆ [`] be given by Theorem 14, so that
` = O(m2/ logn), |Si| = m, and |Si ∩ Sj | ≤ logn. For a multilinear polynomial f ∈
F[z1, z2, . . . , zm] of degree d, put

Q(~y) = Q(y1, y2, . . . , y`) := q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn
)) .

If Q(~y) ≡ 0, then f(~z) can be computed by an arithmetic circuit of size O((snD)12dO(
√

d))
and depth at most ∆ + 5.

Note that the bound on the size of f remains non-trivial as long as d << m, while the
individual degree of q is allowed to be unbounded, whereas the bound in [5] becomes trivial
once degy(q) is larger than m.

10 Instead of Theorem 9, one could use Theorem 8 to get a better size bound than dO(
√

d) at the cost of
increasing its depth appropriately. Also, see Remark 1.2. Also, this is one place where the underlying
field plays a role, since Theorem 9 is not known to be true over general fields.
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Proof Sketch. The proof is along the lines of the proof of Lemma 4.1 in [5]. We now give a
sketch of the details. We first define the hybrid polynomials Q0(~x, ~y), Q1(~x, ~y), . . . , Qn(~x, ~y)
as follows.

Qj(~x, ~y) = q
(
f(~y|S1), f(~y|S2), . . . , f(~y|Sj ), xj+1, xj+2, . . . , xn

)
.

We know that Q0(~x, ~y) is non-zero, whereas Qn(~x, ~y) is identically zero. Thus, there is
an i ∈ {0, 1, . . . , n} such that Qi(~x, ~y) 6≡ 0 and Qi+1(~x, ~y) ≡ 0. We now fix the variables
xi+2, xi+3, . . . , xn and the variables {yj : j /∈ Si+1} to field constants while maintaining the
non-zeroness of Qi. This can be done via Lemma 15. Thus, we have a polynomial q̃ by fixing
the aforementioned variables such that the following two conditions hold.

q̃
(
f(~y|S1∩Si+1), f(~y|S2∩Si+1), . . . , f(~y|Si∩Si+1), xi+1

)
6≡ 0 .

q̃
(
f(~y|S1∩Si+1), f(~y|S2∩Si+1), . . . , f(~y|Si∩Si+1), f(~y|Si+1)

)
≡ 0 .

Let A0(~y|Si+1 , xi+1) denote the polynomial

q̃
(
f(~y|S1∩Si+1), f(~y|S2∩Si+1), . . . , f(~y|Si∩Si+1), xi+1

)
.

The above two conditions imply that f(~y|Si+1) is a root of the polynomial A0(~y|Si+1 , xi+1) ∈
F[~y|Si+1 ][xi+1], viewed as a polynomial in xi+1. Moreover, A0(~y|Si+1 , xi+1) has a circuit of
size at most O(sn) and depth at most ∆ + 2. This follows from the fact that f(~y|S1∩Si+1) is a
multilinear polynomial in logn variables, and can thus be computed by a

∑∏
circuit of size

at most n. We simply replace the variables x1, x2, . . . , xi in the circuit for q by these
∑∏

circuits to obtain a circuit for A0. The degree of A0 is at most D logn. Finally, Theorem 5
implies that f(~y|Si+1) can be computed by a circuit of size at most O(poly(s, n,D)dO(

√
d))

and depth at most ∆ + 5, thus completing the proof. J

We now sketch the proof of Theorem 3.

Proof Sketch. Once again, the proof follows the proof of Theorems 1 and 2 in [5]. Let
{fm} be a family of explicit multilinear polynomials such that fm has m variables, degree

d ≤ O

((
log m

log log m

)2
)
, such that fm cannot be computed by a circuit of depth ∆ and size

poly(m). Let ε ∈ (0, 0.49) be an arbitrary constant, and set m := nε, and f = fm.
Given as input a circuit C ∈ F[~x] of size s, depth ∆ − 5 and degree D on n variables,

let q ∈ F[~x] be the polynomial computed by C. The goal here is to determine whether q
is nonzero. From the equivalence of black-box PIT and hitting set, it suffices to construct
hitting set for circuit class of the above properties.

We construct a design S1, S2, . . . , Sn ⊆ [`] using Theorem 14 where each set Si has size m,
` = O(m2/ logn) ≤ n2ε < n0.98 and |Si ∩ Sj | ≤ logn. This can be done in deterministic
time 2O(n2ε).
We pick a subset T of the field F of size Dd + 1 and evaluate the polynomial
q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn

)) on all points of T `. H = {(f(~y|S1), f(~y|S2), . . . , f(~y|Sn
))

| ~y ∈ T `} is then our candidate hitting set of size (Dd+ 1)` = nO(n2ε) < nO(n0.98). Note
that the set can be constructed deterministically in time md · nO(n2ε) = nO(n2ε).

We now argue about the correctness, i.e., q does not vanish on the hitting set if and only if q
is not identically zero. Observe that if the polynomial q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn)) is not
identically zero, then it has degree at most Dd and hence by Lemma 15, q does not vanish
on the set H. Else, q (f(~y|S1), f(~y|S2), . . . , f(~y|Sn)) ≡ 0. But then, by Lemma 20, we get
that f can be computed by a circuit of depth ∆ and size at most O

(
poly(s, n,D)dO(

√
d)
)
.

CCC 2018
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If s,D are poly(n), then this bound is poly(m) which contradicts the assumed hardness of
f = fm for circuits of depth ∆. This shows that H is a hitting set for the desired circuit
class and completes the proof. J
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Abstract
In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which
we are given sets A and B of vectors, and the goal is to find a ∈ A and b ∈ B maximizing inner
product a · b. Max-IP is very basic and serves as the base problem in the recent breakthrough of
[Abboud et al., FOCS 2017] on hardness of approximation for polynomial-time problems. It is
also used (implicitly) in the argument for hardness of exact `2-Furthest Pair (and other important
problems in computational geometry) in poly-log-log dimensions in [Williams, SODA 2018]. We
have three main results regarding this problem.

Characterization of Multiplicative Approximation. First, we study the best mul-
tiplicative approximation ratio for Boolean Max-IP in sub-quadratic time. We show that,
for Max-IP with two sets of n vectors from {0, 1}d, there is an n2−Ω(1) time (d/ logn)Ω(1)-
multiplicative-approximating algorithm, and we show this is conditionally optimal, as such
a (d/ logn)o(1)-approximating algorithm would refute SETH. Similar characterization is also
achieved for additive approximation for Max-IP.
2O(log∗ n)-dimensional Hardness for Exact Max-IP Over The Integers. Second, we
revisit the hardness of solving Max-IP exactly for vectors with integer entries. We show that,
under SETH, for Max-IP with sets of n vectors from Zd for some d = 2O(log∗ n), every exact
algorithm requires n2−o(1) time. With the reduction from [Williams, SODA 2018], it follows
that `2-Furthest Pair and Bichromatic `2-Closest Pair in 2O(log∗ n) dimensions require n2−o(1)

time.
Connection with NP·UPP Communication Protocols. Last, We establish a connection
between conditional lower bounds for exact Max-IP with integer entries and NP ·UPP commu-
nication protocols for Set-Disjointness, parallel to the connection between conditional lower
bounds for approximating Max-IP and MA communication protocols for Set-Disjointness.

The lower bound in our first result is a direct corollary of the new MA protocol for Set-
Disjointness introduced in [Rubinstein, STOC 2018], and our algorithms utilize the polynomial
method and simple random sampling. Our second result follows from a new dimensionality self
reduction from the Orthogonal Vectors problem for n vectors from {0, 1}d to n vectors from Z`

where ` = 2O(log∗ d), dramatically improving the previous reduction in [Williams, SODA 2018].
The key technical ingredient is a recursive application of Chinese Remainder Theorem.

As a side product, we obtain an MA communication protocol for Set-Disjointness with com-
plexity O

(√
n logn log logn

)
, slightly improving the O

(√
n logn

)
bound [Aaronson and Wig-

derson, TOCT 2009], and approaching the Ω(
√
n) lower bound [Klauck, CCC 2003].

Moreover, we show that (under SETH) one can apply the O(
√
n) BQP communication pro-

tocol for Set-Disjointness to prove near-optimal hardness for approximation to Max-IP with vec-
tors in {−1, 1}d. This answers a question from [Abboud et al., FOCS 2017] in the affirmative.
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1 Introduction

We study the following fundamental problem from similarity search and statistics, which
asks to find the most correlated pair in a dataset:

I Definition 1.1 (Bichromatic Maximum Inner Product (Max-IP)). For n, d ∈ N, the Max-IPn,d
problem is defined as: given two sets A,B of vectors from {0, 1}d compute

OPT(A,B) := max
a∈A,b∈B

a · b.

We use Z-Max-IPn,d (R-Max-IPn,d) to denote the same problem, but with A,B being sets
of vectors from Zd (Rd).

Hardness of Approximation Max-IP
A natural brute-force algorithm solves Max-IP in O(n2 · d)-time. Assuming SETH2, there is
no n2−Ω(1)-time algorithm for Max-IPn,d when d = ω(logn) [70].

Despite being one of the most central problems in similarity search and having numerous
applications [47, 15, 61, 62, 65, 17, 16, 18, 57, 66, 68, 14, 49, 12, 67, 32, 31], until recently it
was unclear whether there could be a near-linear time, 1.1-approximating algorithm, before
the recent breakthrough of Abboud, Rubinstein and Williams [5].3

In [5], a framework for proving inapproximability results for problems in P is established
(the distributed PCP framework), from which it follows:

I Theorem 1.2 ([5]). Assuming SETH, there is no 2(logn)1−o(1)
-multiplicative-approximating

n2−Ω(1)-time algorithm for Max-IPn,no(1) .

Theorem 1.2 is an exciting breakthrough for hardness of approximation in P, implying
other important inapproximability results for a host of problems including Bichromatic LCS
Closest Pair Over Permutations, Approximate Regular Expression Matching, and Diameter
in Product Metrics [5]. However, we still do not have a complete understanding of the
approximation hardness of Max-IP yet. For instance, consider the following two concrete
questions:

2 SETH (Strong Exponential Time Hypothesis) states that for every ε > 0 there is a k such that k-SAT
cannot be solved in O((2− ε)n) time [46].

3 see [5] for a thorough discussion on the state of affairs on hardness of approximation in P before their
work
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I Question 1. Is there a (logn)-multiplicative-approximating n2−Ω(1)-time algorithm for
Max-IPn,log2 n? What about a 2-multiplicative-approximating algorithm for Max-IPn,log2 n?

I Question 2. Is there a (d/ logn)-additive-approximating n2−Ω(1)-time algorithm for
Max-IPn,d?

We note that the lower bound from [5] cannot answer Question 1. Tracing the details of
their proofs, one can see that it only shows approximation hardness for dimension d = logω(1) n.
Question 2 concerning additive approximation is not addressed at all by [5]. Given the
importance of Max-IP, it is interesting to ask:

For what ratios r do n2−Ω(1)-time r-approximation algorithms exist for Max-IP?

Does the best-possible approximation ratio (in n2−Ω(1) time) relate to the dimensionality,
in some way?

In an important recent work, Rubinstein [64] improved the distributed PCP construction
in a very crucial way, from which one can derive more refined lower bounds on approximating
Max-IP. Building on its technique, in this paper we provide full characterizations, determining
essentially optimal multiplicative approximations and additive approximations to Max-IP,
under SETH.

Hardness of Exact Z-Max-IP
Recall that from [70], there is no n2−Ω(1)-time algorithm for exact Boolean Max-IPn,ω(logn).
Since in real life applications of similarity search, one often deals with real-valued data
instead of just Boolean data, it is natural to ask about Z-Max-IP (which is certainly a special
case of R-Max-IP): what is the maximum d such that Z-Max-IPn,d can be solved exactly in
n2−Ω(1) time?

Besides being interesting in its own right, there are also reductions from Z-Max-IP to
`2-Furthest Pair and Bichromatic `2-Closest Pair. Hence, lower bounds for Z-Max-IP imply
lower bounds for these two famous problems in computational geometry (see [72] for a
discussion on this topic).

Prior to our work, it was implicitly shown in [72] that:

I Theorem 1.3 ([72]). There is no n2−Ω(1)-time algorithm for Z-Max-IPn,ω((log logn)2) with
vectors of O(logn)-bit entries, assuming SETH.

However, the best known algorithm for Z-Max-IP runs in n2−Θ(1/d) time [55, 11, 74]4,
hence there is still a gap between the lower bound and the best known upper bounds. To
confirm these algorithms are in fact optimal, we would like to prove a lower bound with ω(1)
dimensions.

In this paper, we significantly strength the previous lower bound from ω((log logn)2)
dimensions to 2O(log∗ n) dimensions (2O(log∗ n) is an extremely slow-growing function, see
preliminaries for its formal definition).

4 [11, 74] are for `2-Furthest Pair or Bichromatic `2-Closest Pair. They also work for Z-Max-IP as there
are reductions from Z-Max-IP to these two problems, see [72] or Lemma 4.5 and Lemma 4.6.

CCC 2018
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Fine-Grained Complexity and Communication Complexity
One intriguing aspect of the distributed PCP framework is that it makes use of the Õ(

√
n)

MA communication protocol for Set-Disjointness [1]. Several follow-up works [50, 64] explored
this connection further, and settled the hardness of approximation to several fundamental
problems (under SETH).

Given the success of the interplay between these two seemingly unrelated fields, it is
natural to seek more results from it. In particular, it is asked in [5] whether the O(

√
n) BQP

communication protocol for Set-Disjointness can be utilized.
In this paper, we answer the question affirmatively by showing that BQP communication

protocol implies hardness for approximation to {−1, 1}-Max-IP5. Moreover, we also establish
a connection between Z-Max-IP lower bounds and NP · UPP communication protocols for
Set-Disjointness, which suggests a new perspective on our results on Z-Max-IP.

1.1 Our Results
We use OVn,d to denote the Orthogonal Vectors problem: given two sets of vectors A,B
each consisting of n vectors from {0, 1}d, determine whether there are a ∈ A and b ∈ B such
that a · b = 0.6 Similarly, we use Z-OVn,d to denote the same problem except for that A,B
consists of vectors from Zd (which is also called Hopcroft’s problem).

All our results are based on the following widely used conjecture about OV:

I Conjecture 1.4 (Orthogonal Vectors Conjecture (OVC) [70, 7]). For every ε > 0, there
exists a c ≥ 1 such that OVn,d requires n2−ε time when d = c logn.

OVC is a plausible conjecture as it is implied by the popular Strong Exponential Time
Hypothesis [46, 29] on the time complexity of solving k-SAT [70, 73].

Characterizations of Hardness of Approximate Max-IP
The first main result of our paper characterizes when there is a truly sub-quadratic time
(n2−Ω(1) time, for some universal constant hidden in the big-Ω) t-multiplicative-approximating
algorithm for Max-IP, and characterizes the best-possible additive approximations as well.
We begin with formal definitions of these two standard types of approximation:

We say an algorithm A for Max-IPn,d (Z-Max-IPn,d) is t-multiplicative-approximating, if
for all A,B, A outputs a value ÕPT(A,B) ∈ [OPT(A,B),OPT(A,B) · t].
We say an algorithm A for Max-IPn,d (Z-Max-IPn,d) is t-additive-approximating, if for all
A,B, A outputs a value ÕPT(A,B) such that |ÕPT(A,B)− OPT(A,B)| ≤ t.
To avoid ambiguity, we call an algorithm computing OPT(A,B) exactly an exact algorithm
for Max-IPn,d (Z-Max-IPn,d).

Multiplicative Approximations for Max-IP. In the multiplicative case, our characterization
(formally stated below) basically says that there is a t-multiplicative-approximating n2−Ω(1)-
time algorithm for Max-IPn,d if and only if t = (d/ logn)Ω(1). Note that in the following
theorem we require d = ω(logn), since in the case of d = O(logn), there are n2−ε-time
algorithms for exact Max-IPn,d [14, 13].

5 That is, Max-IP with sets A and B being n vectors from {−1, 1}d.
6 Here we use the bichromatic version of OV instead of the monochromatic one for convenience, as they
are equivalent.
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I Theorem 1.5. Letting ω(logn) < d < no(1) and t ≥ 2,7 the following holds:

1. There is an n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ logn)Ω(1)
,

and under SETH (or OVC), there is no n2−Ω(1)-time t-multiplicative-approximating
algorithm for Max-IPn,d if

t = (d/ logn)o(1)
.

2. Moreover, let ε = min
(

log t
log(d/ logn) , 1

)
. There are t-multiplicative-approximating de-

terministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1
ε−1+ 0.31

2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1
ε−1+ 0.17

2 · polylog(n)
)

= O
(
n2−Ω(ε) · polylog(n)

)
.

I Remark 1.6. The first algorithm is slightly faster, but only sub-quadratic when ε = Ω(1),
while the second algorithm still gets a non-trivial speed up over the brute force algorithm as
long as ε = ω(log logn/ logn).

We remark here that the above algorithms indeed work for the case where the sets
consisting of non-negative reals (i.e., R+-Max-IP):

I Corollary 1.7. Assume ω(logn) < d < no(1) and let ε = min( log t
log(d/ logn) , 1). There is a

t-multiplicative-approximating deterministic algorithm for R+-Max-IPn,d running in time

O
(
n2−Ω(ε) · polylog(n)

)
.

The lower bound is a direct corollary of the new improved MA protocols for Set-Disjointness
from [64], which is based on Algebraic Geometry codes. Together with the framework of [5],
that MA-protocol implies a reduction from OV to approximating Max-IP.

Our upper bounds are application of the polynomial method [71, 9]: defining appropriate
sparse polynomials for approximating Max-IP on small groups of vectors, and use fast matrix
multiplication to speed up the evaluation of these polynomials on many pairs of points.

Via the known reduction from Max-IP to LCS-Pair in [5], we also obtain a more refined
lower bound for approximating the LCS Closest Pair problem (defined below).

I Definition 1.8 (LCS Closest Pair). The LCS-Closest-Pairn,d problem is: given two sets A,B
of n strings from Σd (Σ is a finite alphabet), determine

max
a∈A,b∈B

LCS(a, b),

where LCS(a, b) is the length of the longest common subsequence of strings a and b.

I Corollary 1.9 (Improved Inapproximability for LCS-Closest-Pair). Assuming SETH (or
OVC), for every t ≥ 2, t-multiplicative-approximating LCS-Closest-Pairn,d requires n2−o(1)

time, if d = tω(1) · log5 n.

7 Note that t and d are both functions of n, we assume they are computable in no(1) time throughout
this paper for simplicity.
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Additive Approximations for Max-IP. Our characterization for additive approximations to
Max-IP says that there is a t-additive-approximating n2−Ω(1)-time algorithm for Max-IPn,d if
and only if t = Ω(d).

I Theorem 1.10. Letting ω(logn) < d < no(1) and 0 ≤ t ≤ d, the following holds:

1. There is an n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d if

t = Ω(d),

and under SETH (or OVC), there is no n2−Ω(1)-time t-additive-approximating algorithm
for Max-IPn,d if

t = o(d).

2. Moreover, letting ε = t

d
, there is a randomized

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating algorithm for Max-IPn,d when ε� log6 logn/ log3 n.

The lower bound above is already established in [64], while the upper bound works by
reducing the problem to the d = O(logn) case via random-sampling coordinates, and solving
the reduced problem via known methods [14, 13].
I Remark 1.11. We want to remark here that the lower bounds for approximating Max-IP are
direct corollaries of the new MA protocols for Set-Disjointness in [64]. Our main contribution
is providing the complementary upper bounds to show that these lower bounds are indeed
tight assuming SETH.

All-Pair-Max-IP. Finally, we remark that our algorithms (with slight adaptions) also work
for the following stronger problem8: All-Pair-Max-IPn,d, in which we are given two sets A and
B of n vectors from {0, 1}d, and for each x ∈ A we must compute OPT(x,B) := max

y∈B
x · y.

An algorithm is t-multiplicative-approximating (additive-approximating) for All-Pair-Max-IP
if for all OPT(x,B)’s, it computes corresponding approximating answers.

I Corollary 1.12. Suppose ω(logn) < d < no(1), and let

εM := min
(

log t
log(d/ logn) , 1

)
and εA := min(t, d)

d
.

There is an n2−Ω(εM ) polylog(n) time t-multiplicative-approximating algorithm and an
n2−Ω(ε1/3

A
/ log ε−1

A
) time t-additive-approximating algorithm for All-Pair-Max-IPn,d, when εA �

log6 logn/ log3 n.

8 Since All-Pair-Max-IP is stronger than Max-IP, lower bounds for Max-IP automatically apply for
All-Pair-Max-IP.
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BQP Communication Protocols and Approximate {-1,1}-Max-IP.
Making use of the O(

√
n)-degree approximate polynomial for OR [27, 36], we also give a

completely different proof for the hardness of multiplicative approximation to {−1, 1}-Max-IP.
Lower bound from that approach is inferior to Theorem 1.5: in particular, it cannot achieve
a characterization.

It is asked in [5] that whether we can make use of the O(
√
n) BQP communication

protocol for Set-Disjointness [28] to prove conditional lower bounds. Indeed, that quantum
communication protocol is based on the O(

√
n)-time quantum query algorithm for OR

(Grover’s algorithm [42]), which induces the needed approximate polynomial for OR. Hence,
the following theorem in some sense answers their question in the affirmative:

I Theorem 1.13 (Informal). Assuming SETH (or OVC), there is no n2−Ω(1) time no(1)-
multiplicative-approximating algorithm for {−1, 1}-Max-IPn,no(1) .

The full statement can be found in Theorem C.1 and Theorem C.2.

Hardness of Exact Z-Max-IP in 2O(log∗ n) Dimensions
Now we turn to discuss our results on Z-Max-IP. We show that Z-Max-IP is hard to solve in
n2−Ω(1) time, even with 2O(log∗ n)-dimensional vectors:

I Theorem 1.14. Assuming SETH (or OVC), there is a constant c such that any exact
algorithm for Z-Max-IPn,d for d = clog∗ n dimensions requires n2−o(1) time, with vectors of
O(logn)-bit entries.

As direct corollaries of the above theorem, using reductions implicit in [72], we also
conclude hardness for `2-Furthest Pair and Bichromatic `2-Closest Pair under SETH (or
OVC) in 2O(log∗ n) dimensions.

I Theorem 1.15 (Hardness of `2-Furthest Pair in clog∗ n Dimensions). Assuming SETH (or
OVC), there is a constant c such that `2-Furthest Pair in clog∗ n dimensions requires n2−o(1)

time, with vectors of O(logn)-bit entries.

I Theorem 1.16 (Hardness of Bichromatic `2-Closest Pair in clog∗ n Dimensions). Assuming
SETH (or OVC), there is a constant c such that Bichromatic `2-Closest Pair in clog∗ n

dimensions requires n2−o(1) time, with vectors of O(logn)-bit entries.

The above lower bounds on `2-Furthest Pair and Bichromatic `2-Closest Pair are in
sharp contrast with the case of `2-Closest Pair, which can be solved in 2O(d) · n logO(1) n

time [23, 51, 37].

Improved Dimensionality Reduction for OV and Hopcroft’s Problem
Our hardness of Z-Max-IP is established by a reduction from Hopcroft’s problem, whose
hardness is in turn derived from the following significantly improved dimensionality reduction
for OV.

I Lemma 1.17 (Improved Dimensionality Reduction for OV). Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

reduction from OVn,d to `O(6log∗ d·(d/`)) instances of Z-OVn,`+1, with vectors of entries with
bit-length O

(
d/` · log ` · 6log∗ d

)
.
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Comparison with [72]. Comparing to the old construction in [72], our reduction here is
more efficient when ` is much smaller than d (which is the case we care about). That is,

in [72], OVn,d can be reduced to dd/` instances of Z-OVn,`+1, while we get
{
`6

log∗ d
}d/`

instances in our improved one. So, for example, when ` = 7log∗ d, the old reduction yields
dd/7

log∗ d
= nω(1) instances (recall that d = c logn for an arbitrary constant c), while our

improved one yields only no(1) instances, each with 2O(log∗ n) dimensions.
From Lemma 1.17, the following theorem follows in the same way as in [72].

I Theorem 1.18 (Hardness of Hopcroft’s Problem in clog∗ n Dimensions). Assuming SETH
(or OVC), there is a constant c such that Z-OVn,clog∗ n with vectors of O(logn)-bit entries
requires n2−o(1) time.

Connection between Z-Max-IP Lower Bounds and NP · UPP
Communication Protocols
We also show a new connection between Z-Max-IP and a special type of communication
protocol. Let us first recall the Set-Disjointness problem:

I Definition 1.19 (Set-Disjointness). Let n ∈ N, in Set-Disjointness (DISJn), Alice holds a
vector X ∈ {0, 1}n, Bob holds a vector Y ∈ {0, 1}n, and they want to determine whether
X · Y = 0.

In [5], the hardness of approximating Max-IP is established via a connection to MA com-
munication protocols (in particular, a fast MA communication protocol for Set-Disjointness).
Our lower bound for (exact) Z-Max-IP can also be connected to similar NP · UPP protocols
(note that MA = NP · promiseBPP).

Formally, we define NP · UPP protocols as follows:

I Definition 1.20. For a problem Π with inputs x, y of length n (Alice holds x and Bob
holds y), we say a communication protocol is an (m, `)-efficient NP · UPP communication
protocol if the following holds:

There are three parties Alice, Bob and Merlin in the protocol.
Merlin sends Alice and Bob an advice string z of length m, which is a function of x and y.
Given y and z, Bob sends Alice ` bits, and Alice decides to accept or not.9 They have an
unlimited supply of private random coins (not public, which is important) during their
conversation. The following conditions hold:

If Π(x, y) = 1, then there is an advice z from Merlin such that Alice accepts with
probability ≥ 1/2.
Otherwise, for all possible advice strings from Merlin, Alice accepts with probability
< 1/2.

Moreover, we say the protocol is (m, `)-computational-efficient, if in addition the probab-
ility distributions of both Alice and Bob’s behavior can be computed in poly(n) time given
their input and the advice.

Our new reduction from OV to Max-IP actually implies a super-efficient NP ·UPP protocol
for Set-Disjointness.

9 In UPP, actually one-way communication is equivalent to the seemingly more powerful one in which
they communicate [60].



L. Chen 14:9

I Theorem 1.21. For all 1 ≤ α ≤ n, there is an(
α · 6log∗ n · (n/2α), O(α)

)
-computational-efficient

NP · UPP communication protocol for DISJn.

For example, when α = 3 log∗ n, Theorem 1.21 implies there is an O(o(n), O(log∗ n))-
computational-efficient NP ·UPP communication protocol for DISJn. Moreover, we show that
if the protocol of Theorem 1.21 can be improved a little bit (like removing the 6log∗ n term),
we would obtain the desired hardness for Z-Max-IP in ω(1)-dimensions.

I Theorem 1.22. Assuming SETH (or OVC), if there is an increasing and unbounded
function f such that for all 1 ≤ α ≤ n, there is an

(n/f(α), α) -computational-efficient

NP · UPP communication protocol for DISJn, then Z-Max-IPn,ω(1) requires n2−o(1) time with
vectors of polylog(n)-bit entries. The same holds for `2-Furthest Pair and Bichromatic
`2-Closest Pair.

Improved MA Protocols for Set-Disjointness
Finally, we also obtain a new MA protocol for Set-Disjointness, which improves on the
previous O(

√
n logn) protocol in [1], and is closer to the Ω(

√
n) lower bound by [52]. Like

the protocol in [1], our new protocol also works for the following slightly harder problem
Inner Product.

I Definition 1.23 (Inner Product). Let n ∈ N, in Inner Product (IPn), Alice holds a vector
X ∈ {0, 1}n, Bob holds a vector Y ∈ {0, 1}n, and they want to compute X · Y .

I Theorem 1.24. There is an MA protocol for DISJn and IPn with communication complexity

O
(√

n logn log logn
)
.

In [64], the author asked whether the MA communication complexity of DISJ (IP) is
Θ(
√
n) or Θ(

√
n logn), and suggested that Ω(n logn) may be necessary for IP. Our result

makes progress on that question by showing that the true complexity lies between Θ(
√
n)

and Θ(
√
n logn log logn).

1.2 Intuition for Dimensionality Self Reduction for OV
The 2O(log∗ n) factor in Lemma 1.17 is not common in theoretical computer science10, and
our new reduction for OV is considerably more complicated than the polynomial-based
construction from [72]. Hence, it is worth discussing the intuition behind Lemma 1.17, and
the reason why we get a factor of 2O(log∗ n).

10Other examples include an O
(
2O(log∗ n)n4/3) time algorithm for Z-OVn,3 [56], O

(
2O(log∗ n)n log n

)
time

algorithms (Fürer’s algorithm with its modifications) for Fast Integer Multiplication [38, 34, 43] and an
old O(nd/22O(log∗ n)) time algorithm for Klee’s measure problem [30].

CCC 2018
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A Direct Chinese Remainder Theorem Based Approach. We first discuss a direct re-
duction based on the Chinese Remainder Theorem (CRT) (see Theorem 2.5 for a formal
definition). CRT says that given a collection of primes q1, . . . , qb, and a collection of integers
r1, . . . , rb, there exists a unique integer t = CRR({ri}; {qi}) such that t ≡ ri (mod qi) for
each i ∈ [b] (CRR stands for Chinese Remainder Representation).

Now, let b, ` ∈ N, suppose we would like to have a dimensionality reduction ϕ from
{0, 1}b·` to Z`. We can partition an input x ∈ {0, 1}b·` into ` blocks, each of length b, and
represent each block via CRT: that is, for a block z ∈ {0, 1}b, we map it into a single integer
ϕblock(z) := CRR({zi}; {qi}), and the concatenations of ϕblock over all blocks of x is ϕ(x) ∈ Z`.

The key idea here is that, for z, z′ ∈ {0, 1}b, ϕblock(z) · ϕblock(z′) (mod qi) is simply
zi · z′i. That is, the multiplication between two integers ϕblock(z) · ϕblock(z′) simulates the
coordinate-wise multiplication between two vectors z and z′!

Therefore, if we make all primes qi larger than `, we can in fact determine x · y from
ϕ(x) · ϕ(y), by looking at ϕ(x) · ϕ(y) (mod qi) for each i. That is,

x · y = 0⇔ ϕ(x) · ϕ(y) ≡ 0 (mod qi) for all i.

Hence, let V be the set of all integer 0 ≤ v ≤ ` ·

(
b∏
i=1

qi

)2

that v ≡ 0 (mod qi) for all

i ∈ [b], we have

x · y = 0⇔ ϕ(x) · ϕ(y) ∈ V.

The reduction is completed by enumerating all integers v ∈ V , and appending corres-
ponding values to make ϕA(x) = [ϕ(x),−1] and ϕB(y) = [ϕ(y), v] (this step is from [72]).

Note that a nice property for ϕ is that each ϕ(x)i only depends on the i-th block of x,
and the mapping is the same on each block (ϕblock); we call this the block mapping property.

Analysis of the Direct Reduction. To continue building intuition, let us analyze the above

reduction. The size of V is the number of Z-OVn,`+1 instances we create, and |V | ≥
b∏
i=1

qi.

These primes qi have to be all distinct, and it follows that
b∏
i=1

qi is bΘ(b). Since we want to

create at most no(1) instances (or nε for arbitrarily small ε), we need to set b ≤ logn/ log logn.
Moreover, to base our hardness on OVC which deals with c logn-dimensional vectors, we need
to set b · ` = d = c · logn for an arbitrary constant c. Therefore, we must have ` ≥ log logn,
and the above reduction only obtains the same hardness result as [72].

Key Observation: “Most Space Modulo qi” is Actually Wasted. To improve the above
reduction, we need to make |V | smaller. Our key observation about ϕ is that, for the primes
qi’s, they are mostly larger than b� `, but ϕ(x) · ϕ(y) ∈ {0, 1, . . . , `} (mod qi) for all these
qi’s. Hence, “most space modulo qi” is actually wasted.

Make More “Efficient” Use of the “Space”: Recursive Reduction. Based on the previous
observation, we want to use the “space modulo qi” more efficiently. It is natural to consider
a recursive reduction. We will require all our primes qi’s to be larger than b. Let bmicro
be a very small integer compared to b, and let ψ : {0, 1}bmicro·` → Z` with a set Vψ and a
block mapping ψblock be a similar reduction on a much smaller input: for x, y ∈ {0, 1}bmicro·`,
x · y = 0⇔ ψ(x) · ψ(y) ∈ Vψ. We also require here that ψ(x) · ψ(y) ≤ b for all x and y.
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For an input x ∈ {0, 1}b·` and a block z ∈ {0, 1}b of x, our key idea is to partition z again
into b/bmicro “micro” blocks each of size bmicro. And for a block z in x, let z1, . . . , zb/bmicro be its
b/bmicro micro blocks, we map z into an integer ϕblock(z) := CRR({ψblock(zi)}b/bmicro

i=1 ; {qi}b/bmicro
i=1 ).

Now, given two blocks z, z′ ∈ {0, 1}b, we can see that

ϕblock(z) · ϕblock(z′) ≡ ψblock(zi) · ψblock(z′i) (mod qi).

That is, ϕ(x) · ϕ(y) (mod qi) in fact is equal to ψ(x[i]) · ψ(y[i]), where x[i] is the concat-
enation of the i-th micro blocks of x in each block, and y[i] is defined similarly. Hence, we
can determine whether x[i] · y[i] = 0 from ϕ(x) · ϕ(y) (mod qi) for all i, and therefore also
determine whether x · y = 0 from ϕ(x) · ϕ(y).

We can now observe that |V | ≤ bΘ(b/bmicro), smaller than before; thus we get an improve-
ment, depending on how large can bmicro be. Clearly, the reduction ψ can also be constructed
from even smaller reductions, and after recursing Θ(log∗ n) times, we can switch to the direct
construction discussed before. By a straightforward (but tedious) calculation, we can derive
Lemma 1.17.

High-Level Explanation on the 2O(log∗ n) Factor. Ideally, we want to have a reduction
from OV to Z-OV with only `O(b) instances, in other words, we want |V | = `O(b). The reason
we need to pay an extra 2O(log∗ n) factor in the exponent is as follows:

In our reduction, |V | is at least
b/bmicro∏
i=1

qi, which is also the bound on each coordinate

of the reduction: ψ(x)i equals to a CRR encoding of a vector with {qi}b/bmicro
i=1 , whose value

can be as large as
b/bmicro∏
i=1

qi − 1. That is, all we want is to control the upper bound on the

coordinates of the reduction.
Suppose we are constructing an “outer” reduction ϕ : {0, 1}b·` → Z` from the “micro”

reduction ψ : {0, 1}bmicro·` → Z` with coordinate upper bound Lψ (ψ(x)i ≤ Lψ), and let
Lψ = `κ·bmicro (that is, κ is the extra factor comparing to the ideal case). Recall that we have
to ensure qi > ψ(x) · ψ(y) to make our construction work, and therefore we have to set qi
larger than L2

ψ.

Then the coordinate upper bound for ϕ becomes Lϕ =
b/bmicro∏
i=1

qi ≥ (Lψ)2·b/bmicro = `2κ·b.

Therefore, we can see that after one recursion, the “extra factor” κ at least doubles. Since
our recursion proceeds in Θ(log∗ n) rounds, we have to pay an extra 2O(log∗ n) factor on the
exponent.

1.3 Related Works
SETH-based Conditional Lower Bound. SETH is one of the most fruitful conjectures in
the Fine-Grained Complexity. There are numerous conditional lower bounds based on it for
problems in P among different areas, including: dynamic data structures [58, 6, 10, 44, 53,
3, 45, 41], computational geometry [25, 72, 35], pattern matching [7, 21, 22, 26, 24], graph
algorithms [63, 40, 8, 54]. See [69] for a very recent survey on SETH-based lower bounds
(and more).

Communication Complexity and Conditional Hardness. The connection between commu-
nication protocols (in various model) for Set-Disjointness and SETH dates back at least
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to [59], in which it is shown that a sub-linear, computational efficient protocol for 3-party
Number-On-Forehead Set-Disjointness problem would refute SETH. And it is worth mention-
ing that [4]’s result builds on the Õ(logn) IP communication protocol for Set-Disjointness
in [1].

Distributed PCP. Using Algebraic Geometry codes, [64] obtains a better MA protocol,
which in turn improves the efficiency of the previous distributed PCP construction of [5].
He then shows the n2−o(1) time hardness for 1 + o(1)-approximation to Bichromatic Closest
Pair and o(d)-additive approximation to Max-IPn,d with this new technique.

[50] use the Distributed PCP framework to derive inapproximability results for k-
Dominating Set under various assumptions. In particular, building on the techniques of [64],
it is shown that under SETH, k-Dominating Set has no (logn)1/ poly(k,e(ε)) approximation in
nk−ε time11.

Hardness of Approximation in P. Making use of Chebychev embeddings, [12] prove a

2
Ω
( √

logn
log logn

)
inapproximability lower bound on {−1, 1}-Max-IP.12 [2] take an approach

different from Distributed PCP, and shows that under certain complexity assumptions, LCS
does not have a deterministic 1 + o(1)-approximation in n2−ε time. They also establish a
connection with circuit lower bounds and show that the existence of such a deterministic
algorithm implies ENP does not have non-uniform linear-size Valiant Series Parallel circuits.
In [4], it is improved to that any constant factor approximation deterministic algorithm for
LCS in n2−ε time implies that ENP does not have non-uniform linear-size NC1 circuits. See [5]
for more related results in hardness of approximation in P.

Organization of the Paper
In Section 2, we introduce the needed preliminaries for this paper. In Section 3, we prove
our characterizations for approximating Max-IP and other related results. In Section 4, we
prove 2O(log∗ n) dimensional hardness for Z-Max-IP and other related problems. In Section 5,
we establish the connection between NP · UPP communication protocols and SETH-based
lower bounds for exact Z-Max-IP. In Section 6, we present the O

(√
n logn log logn

)
MA

protocol for Set-Disjointness.

2 Preliminaries

We begin by introducing some notation. For an integer d, we use [d] to denote the set of
integers from 1 to d. For a vector u, we use ui to denote the i-th element of u.

We use log(x) to denote the logarithm of x with respect to base 2 with ceiling as
appropriate, and ln(x) to denote the natural logarithm of x.

In our arguments, we use the iterated logarithm function log∗(n), which is defined
recursively as follows:

log∗(n) :=
{

0 n ≤ 1;
log∗(logn) + 1 n > 1.

11where e : R+ → N is some function
12which is improved by Theorem 1.13
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2.1 Fast Rectangular Matrix Multiplication
Similar to previous algorithms using the polynomial method, our algorithms make use of the
algorithms for fast rectangular matrix multiplication.

I Theorem 2.1 ([39]). There is an N2+o(1) time algorithm for multiplying two matrices A
and B with size N ×Nα and Nα ×N , where α > 0.31389.

I Theorem 2.2 ([33]). There is an N2 · polylog(N) time algorithm for multiplying two
matrices A and B with size N ×Nα and Nα ×N , where α > 0.172.

2.2 Number Theory
Here we recall some facts from number theory. In our reduction from OV to Z-OV, we will
apply the famous prime number theorem, which supplies a good estimate of the number of
primes smaller than a certain number. See e.g. [19] for a reference on this.

I Theorem 2.3 (Prime Number Theorem). Let π(n) be the number of primes ≤ n, then we
have

lim
n→∞

π(n)
n/ lnn = 1.

From a simple calculation, we obtain:

I Lemma 2.4. There are 10n distinct primes in [n+ 1, n2] for a large enough n.

Proof. For a large enough n, from the prime number theorem, the number of primes in
[n+ 1, n2] is equal to

π(n2)− π(n) ∼ n2/2 lnn− n/ lnn� 10n. J

Next we recall the Chinese remainder theorem, and Chinese remainder representation.

I Theorem 2.5. Given d pairwise co-prime integers q1, q2, . . . , qd, and d integers r1, r2, . . . , rd,

there is exactly one integer 0 ≤ t <
d∏
i=1

qi such that

t ≡ ri (mod qi) for all i ∈ [d].

We call this t the Chinese remainder representation (or the CRR encoding) of the ri’s (with
respect to these qi’s). We also denote

t = CRR({ri}; {qi})

for convenience. We sometimes omit the sequence {qi} for simplicity, when it is clear from
the context.

Moreover, t can be computed in polynomial time with respect to the total bits of all the
given integers.

2.3 Communication Complexity
In our paper we will make use of a certain kind of MA protocol, we call them (m, r, `, s)-efficient
protocols13.

13Our notations here are adopted from [50]. They also defined similar k-party communication protocols,
while we only discuss 2-party protocols in this paper.
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I Definition 2.6. We say an MA Protocol is (m, r, `, s)-efficient for a communication problem,
if in the protocol:

There are three parties Alice, Bob and Merlin in the protocol, Alice holds input x and
Bob holds input y.
Merlin sends an advice string z of length m to Alice, which is a function of x and y.
Alice and Bob jointly toss r coins to obtain a random string w of length r.
Given y and w, Bob sends Alice a message of length `.
After that, Alice decides whether to accept or not.

When the answer is yes, Merlin has exactly one advice such that Alice always accept.
When the answer is no, or Merlin sends the wrong advice, Alice accepts with probability
at most s.

2.4 Derandomization
We make use of expander graphs to reduce the amount of random coins needed in one of our
communication protocols. We abstract the following result for our use here.

I Theorem 2.7 (see e.g. Theorem 21.12 and Theorem 21.19 in [20]). Let m be an integer,
and set B ⊆ [m]. Suppose |B| ≥ m/2. There is a universal constant c1 such that for all
ε < 1/2, there is a poly(logm, log ε−1)-time computable function F : {0, 1}logm+c1·log ε−1

→
[m]c1·log ε−1

, such that

Pr
w∈{0,1}logm+c1·log ε−1

[a /∈ B for all a ∈ F(w)] ≤ ε,

here a ∈ F(w) means a is one of the element in the sequence F(w).

3 Hardness of Approximate Max-IP

In this section we prove our characterizations of approximating Max-IP.

3.1 The Multiplicative Case
We begin with the proof of Theorem 1.5. We recap it here for convenience.

Reminder of Theorem 1.5 Letting ω(logn) < d < no(1) and t ≥ 2, the following holds:

1. There is an n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ logn)Ω(1)
,

and under SETH (or OVC), there is no n2−Ω(1)-time t-multiplicative-approximating
algorithm for Max-IPn,d if

t = (d/ logn)o(1)
.

2. Moreover, let ε = min
(

log t
log(d/ logn) , 1

)
. There are t-multiplicative-approximating de-

terministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1
ε−1+ 0.31

2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1
ε−1+ 0.17

2 · polylog(n)
)

= O
(
n2−Ω(ε) · polylog(n)

)
.



L. Chen 14:15

In Lemma 3.2, we construct the desired approximate algorithm and in Corollary 3.4 we
prove the lower bound.

The Algorithm
First we need the following simple lemma, which says that the k-th root of the sum of the
k-th powers of non-negative reals gives a good approximation to their maximum.

I Lemma 3.1. Let S be a set of non-negative real numbers, k be an integer, and xmax :=
max
x∈S

x. We have

(∑
x∈S

xk

)1/k

∈
[
xmax, xmax · |S|1/k

]
.

Proof. Since(∑
x∈S

xk

)
∈
[
xkmax, |S| · xkmax

]
,

the lemma follows directly by taking the k-th root of both sides. J

I Lemma 3.2. Assuming ω(logn) < d < no(1) and letting ε = min
(

log t
log(d/ logn) , 1

)
, there

are t-multiplicative-approximating deterministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1
ε−1+ 0.31

2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1
ε−1+ 0.17

2 · polylog(n)
)

= O
(
n2−Ω(ε) · polylog(n)

)
.

Proof. Let d = c · logn. From the assumption, we have c = ω(1), and ε = min
(

log t
log c , 1

)
.

When log t > log c, we simply use a c-multiplicative-approximating algorithm instead, hence
in the following we assume log t ≤ log c. We begin with the first algorithm here.

Construction and Analysis of the Power of Sum Polynomial Pr(z). Let r be a parameter
to be specified later and z be a vector from {0, 1}d, consider the following polynomial

Pr(z) :=
(

d∑
i=1

zi

)r
.

Observe that since each zi takes value in {0, 1}, we have zki = zi for k ≥ 2. Therefore, by
expanding out the polynomial and replacing all zki with k ≥ 2 by zi, we can write Pr(z) as

Pr(z) =
∑

S⊆[d],|S|≤r

cS · zS .

In which zS :=
∏
i∈S

zi, and the cS ’s are the corresponding coefficients. Note that Pr(z)

has

m :=
r∑

k=0

(
d

k

)
≤
(
ed

r

)r

CCC 2018



14:16 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

terms.
Then consider Pr(x, y) := Pr(x1 · y1, x2 · y2, . . . , xd · yd), plugging in zi := xi · yi, it can

be written as

Pr(x, y) :=
∑

S⊆[d],|S|≤r

cS · xS · yS ,

where xS :=
∏
i∈S

xi, and yS is defined similarly.

Construction and Analysis of the Batch Evaluation Polynomial Pr(X, Y ). Now, let X
and Y be two sets of b = tr/2 vectors from {0, 1}d, we define

Pr(X,Y ) :=
∑

x∈X,y∈Y
Pr(x, y) =

∑
x∈X,y∈Y

(x · y)r.

By Lemma 3.1, we have

Pr(X,Y )1/r ∈ [OPT(X,Y ),OPT(X,Y ) · t] ,

recall that OPT(X,Y ) := max
x∈X,y∈Y

x · y.

Embedding into Rectangle Matrix Multiplication. Now, for x, y ∈ {0, 1}d, we define the
mapping φx(x) as

φx(x) := (cS1 · xS1 , cS2 · xS2 , . . . , cSm · xSm)

and

φy(y) := (yS1 , yS2 , . . . , ySm) ,

where S1, S2, . . . , Sm is an enumeration of all sets S ⊆ [d] and |S| ≤ r.
From the definition, it follows that

φx(x) · φy(y) = Pr(x, y)

for every x, y ∈ {0, 1}d.
Then for each X and Y , we map them into m-dimensional vectors φX(X) and φY (Y )

simply by a summation:

φX(X) :=
∑
x∈X

φx(x) and ΦY (Y ) :=
∑
y∈Y

φy(y).

We can see

φX(X) · φY (Y ) =
∑
x∈X

φx(x) ·
∑
y∈Y

φy(y) =
∑
x∈X

∑
y∈Y

Pr(x, y) = Pr(X,Y ).

Given two sets A,B of n vectors from {0, 1}d, we split A into n/b sets A1, A2, . . . , An/b
of size b, and split B in the same way as well. Then we construct a matrix MA(MB) of size
n/b×m, such that the i-th row of MA(MB) is the vector ΦX(Ai)(ΦY (Bi)). After that, the
evaluation of Pr(Ai, Bj) for all i, j ∈ [n/b] can be reduced to compute the matrix product
MA ·MT

B . After knowing all Pr(Ai, Bj)’s, we simply compute the maximum of them, whose
r-th root gives us a t-multiplicative-approximating answer of the original problem.
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Analysis of the Running Time. Finally, we are going to specify the parameter r and
analyze the time complexity. In order to utilize the fast matrix multiplication algorithm
from Theorem 2.1, we need to have

m ≤ (n/b)0.313,

then our running time is simply (n/b)2+o(1) = n2+o(1)/b2.
We are going to set r = k · logn/ log c, and our choice of k will satisfy k = Θ(1). We have

m ≤
(
e · d
r

)r
≤
(

c logn · e
k · logn/ log c

)k·logn/ log c
,

and therefore

logm ≤ k · logn
[
log c log c

k
+ 1
]/

log c.

Since c = ω(1) and k = Θ(1), we have

logm ≤ (1 + o(1)) · k logn = k logn+ o(logn).

Plugging in, we have

m ≤ (n/b)0.313

⇐= logm ≤ 0.313 · (logn− log b)
⇐= k logn ≤ 0.31 · (logn− log b)

⇐= 0.31 · (r/2) · log t+ k logn ≤ 0.31 logn (b = tr/2)

⇐= logn
log c · k · log t · 0.31

2 + k logn ≤ 0.31 logn (r = k · logn/ log c)

⇐= k ·
{

1 + log t
log c ·

0.31
2

}
≤ 0.31

⇐= k = 0.31
1 + log t

log c ·
0.31

2
= 0.31

1 + 0.31
2 · ε

.

Note since ε ∈ [0, 1], k is indeed Θ(1).
Finally, with our choice of k specified, our running time is n2+o(1)/b2 = n2+o(1)/tr.
By a simple calculation,

log tr = r · log t
= k · logn/ log c · log t

= logn ·
{

log t
log c ·

0.31
1 + 0.31

2 · ε

}
= logn · 0.31ε

1 + 0.31
2 · ε

= logn · 0.31
ε−1 + 0.31

2
.

Hence, our running time is

n2+o(1)/tr = n
2+o(1)− 0.31

ε−1+ 0.31
2

as stated.
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The Second Algorithm. The second algorithm follows exactly the same except for that we
apply Theorem 2.2 instead, hence the constant 0.31 is replaced by 0.17. J

Generalization to Non-negative Real Case
Note that Lemma 3.1 indeed works for a set of non-negative reals, we can observe that the
above algorithm in fact works for R+-Max-IPn,d (which is the same as Max-IP except for that
the sets consisting of non-negative reals):14

Reminder of Corollary 1.7 Assume ω(logn) < d < no(1) and let ε = min( log t
log(d/ logn) , 1).

There is a t-multiplicative-approximating deterministic algorithm for R+-Max-IPn,d running
in time

O
(
n2−Ω(ε) · polylog(n)

)
.

Proof Sketch. We can just use the same algorithm in Lemma 3.2, the only difference is
on the analysis of the number of terms in Pr(z): since z is no longer Boolean, Pr(z) is no

longer multi-linear, and we need to switch to a general upper bound
(
d+ r

r

)
on the number

of terms for r-degree polynomials of d variables. This corollary then follows by a similar
calculation as in Lemma 3.2. J

The Lower Bound
The lower bound follows directly from the new MA protocol for Set-Disjointness in [64]. We
present an explicit proof here for completeness.

To prove the lower bound, we need the following reduction from OV to t-multiplicative-
approximating Max-IP.

I Lemma 3.3 (Implicit in Theorem 4.1 of [64]). There is a universal constant c1 such that,
for every integer c, reals ε ∈ (0, 1] and τ ≥ 2, OVn,c logn can be reduced to nε Max-IPn,d
instances (Ai, Bi) for i ∈ [nε], such that:

d = τpoly(c/ε) · logn.
Letting T = c logn · τ c1 , if there is a ∈ A and b ∈ B such that a · b = 0, then there exists
an i such that OPT(Ai, Bi) ≥ T .
Otherwise, for all i we must have OPT(Ai, Bi) ≤ T/τ .

The reduction above follows directly from the new MA communication protocols in [64]
together with the use of expander graphs to reduce the amount of random coins. A proof for
the lemma above can be found in Appendix D.

Now we are ready to show the lower bound on t-multiplicative-approximating Max-IP.

I Corollary 3.4. Assuming SETH (or OVC), and letting d = ω(logn) and t ≥ 2. There is
no n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ logn)o(1)
.

14 In the following we assume a real RAM model of computation for simplicity.
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Proof. Let c = d/ logn, then t = co(1) (recall that t and d are two functions of n).
Suppose for contradiction that there is an n2−ε′ time t(n)-multiplicative-approximating

algorithm A for Max-IP(n, d) for some ε′ > 0.
Let ε = ε′/2. Now, for every constant c2, we apply the reduction in Lemma 3.3 with

τ = t to reduce an OVn,c2 logn instance to nε

Max-IPn,tpoly(c2/ε)·logn ≡ Max-IPn,tO(1)·logn

instances. Since t = co(1), which means for sufficiently large n, tO(1) · logn = co(1) · logn =
o(d), and it in turn implies that for sufficiently large n, nε calls to A are enough to solve the
OVn,c2 logn instance.

Therefore, we can solve OVn,c2 logn in n2−ε′ · nε = n2−ε time for all constant c2. Contra-
diction to OVC. J

Finally, the correctness of Theorem 1.5 follows directly from Lemma 3.2 and Corollary 3.4.

3.2 The Additive Case
In this subsection we prove Theorem 1.10. We first recap it here for convenience.

Reminder of Theorem 1.10 Letting ω(logn) < d < no(1) and 0 ≤ t ≤ d, the following holds:

1. There is an n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d if

t = Ω(d),

and under SETH (or OVC), there is no n2−Ω(1)-time t-additive-approximating algorithm
for Max-IPn,d if

t = o(d).

2. Moreover, letting ε = t

d
, there is a randomized

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating algorithm for Max-IPn,d when ε� log6 logn/ log3 n.

We proceed similarly as in the multiplicative case by establishing the algorithm first.

The Algorithm
The algorithm is actually very easy, we simply apply the following algorithm from [13].

I Lemma 3.5 (Implicit in Theorem 5.1 in [13]). Assuming ε� log6 log(d logn)/ log3 n, there
is an

n2−Ω
(
ε1/3/ log( d

ε logn )
)

time ε · d-additive-approximating randomized algorithm for Max-IPn,d.

I Lemma 3.6. Let ε = min(t, d)
d

, there is a randomized

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating algorithm for Max-IPn,d when ε� log6 logn/ log3 n.
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Proof. When t > d the problem becomes trivial, so we can assume t ≤ d, and now t = ε · d.
Let ε1 = ε/2 and c1 be a constant to be specified later. Given an Max-IPn,d instance with

two sets A and B of vectors from {0, 1}d, we create another Max-IPn,d1 instance with sets Ã,
B̃ and d1 = c1 · ε−2

1 · logn as follows:
Pick d1 uniform random indices i1, i2, i3, . . . , id1 ∈ [d], each ik is an independent uniform
random number in [d].
Then we construct Ã from A by reducing each a ∈ A into ã = (ai1 , ai2 , . . . , aid1

) ∈ {0, 1}d1

and B̃ from B in the same way.

Note for each a ∈ A and b ∈ B, by a Chernoff bound, we have

Pr
[∣∣∣∣ ã · b̃d1

− a · b
d

∣∣∣∣ ≥ ε1

]
< 2e−2d1ε

2
1 = 2n−2·c1 .

By setting c1 = 2, the above probability is smaller than 1/n3.
Hence, by a simple union bound, with probability at least 1− 1/n, we have∣∣∣∣∣ ã · b̃d1

− a · b
d

∣∣∣∣∣ ≤ ε1

for all a ∈ A and b ∈ B. Hence, it means that this reduction only changes the “relative

inner product”(a · b
d

or ã · b̃
d1

) of each pair by at most ε1. Hence, the maximum of the “relative

inner product” also changes by at most ε1, and we have |OPT(A,B)/d−OPT(Ã, B̃)/d1| ≤ ε1.
Then we apply the algorithm in Lemma 3.5 on the instance with sets Ã and B̃ with error

ε = ε1 to obtain an estimate Õ, and our final answer is simply Õ

d1
· d.

From the guarantee from Lemma 3.5, we have |OPT(Ã, B̃)/d1− Õ/d1| ≤ ε1, and therefore
we have |OPT(A,B)/d − Õ/d1| ≤ 2ε1 = ε, from which the correctness of our algorithm
follows directly.

For the running time, note that the reduction part runs in linear time O(n · d), and the
rest takes

n2−Ω
(
ε1/3/ log( d1

ε1 logn )
)

= n2−Ω(ε1/3/ log ε−1)

time. J

The Lower Bound
The lower bound is already established in [64], we show it follows from Lemma 3.3 here for
completeness.

I Lemma 3.7 (Theorem 4.1 of [64]). Assuming SETH (or OVC), and letting d = ω(logn) and
t > 0, there is no n2−Ω(1)-time t-additive-approximating randomized algorithm for Max-IPn,d
if

t = o(d).

Proof. Recall that t and d are all functions of n. Suppose for contradiction that there is an
n2−ε′ time t(n)-additive-approximating algorithm A for Max-IP(n, d) for some ε′ > 0.
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Let ε = ε′/2. Now, for every constant c2, we apply the reduction in Lemma 3.3 with
τ = 2 to reduce an OVn,c2 logn instance to nε

Max-IPn,2poly(c2/ε)·logn ≡ Max-IPn,d1 where d1 = O(1) · logn

instances. In addition, from Lemma 3.3, to solve the OVc2 logn instance, we only need to

distinguish an additive gap of T2 = Ω(logn) = Ω(d1) for these Max-IP instances obtained via
the reduction.

This can be solved, via nε calls to A as follows: for each Max-IPn,d1 instance I we get,
since d = ω(logn), which means for a sufficiently large n, d1 = O(logn) � d, and we can
duplicate each coordinate d/d1 times (for simplicity we assume d1|d here), to obtain an
Max-IPn,d instance Inew, such that OPT(Inew) = d/d1 · OPT(I). Then A can be used to

estimate OPT(Inew) within an additive error t = o(d). Scaling its estimate by d1

d
, it can also

be used to estimate OPT(I) within an additive error o(d1) = o(logn) ≤ T/2 for sufficiently
large n.

Therefore, we can solve OVn,c2 logn in n2−ε′ · nε = n2−ε time for all constant c2. Contra-
diction to OVC. J

Finally, the correctness of Theorem 1.10 follows directly from Lemma 3.6 and Lemma 3.7.

3.3 Adaption for All-Pair-Max-IP
Now we sketch the adaption for our algorithms to work for the All-Pair-Max-IP problem.

Reminder of Corollary 1.12 Suppose ω(logn) < d < no(1), and let

εM := min
(

log t
log(d/ logn) , 1

)
and εA := min(t, d)

d
.

There is an n2−Ω(εM ) polylog(n) time t-multiplicative-approximating algorithm and an
n2−Ω(ε1/3

A
/ log ε−1

A
) time t-additive-approximating algorithm for All-Pair-Max-IPn,d, when εA �

log6 logn/ log3 n.

Proof Sketch. Note that the algorithm in Lemma 3.5 from [13] actually works for the
All-Pair-Max-IPn,d. Hence, we can simply apply that algorithm after the coordinate sampling
phase, and obtain a t-additive-approximating algorithm for All-Pair-Max-IPn,d.

For t-multiplicative-approximating algorithm, suppose we are given with two sets A and
B of n vectors from {0, 1}d. Instead of partitioning both of them into n/b subsets Ai’s and
Bi’s (the notations used here are the same as in the proof of Lemma 3.2), we only partition
B into n/b subsets B1, B2, . . . , Bn/b of size b, and calculate Pr(x,Bi) :=

∑
y∈Bi

Pr(x, y) for

all x ∈ A and i ∈ [n/b] using similar reduction to rectangle matrix multiplication as in
Lemma 3.2. By a similar analysis, these can be done in n2−Ω(εM ) · polylog(n) time, and with
these informations we can compute the t-multiplicative-approximating answers for the given
All-Pair-Max-IPn,d instance. J

3.4 Improved Hardness for LCS-Closest Pair Problem
We finish this section with the proof of Corollary 1.9. First we abstract the reduction from
Max-IP to LCS-Closest-Pair in [5] here.
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OVn,c logn Z-OVn,2O(log∗ n) Z-Max-IPn,2O(log∗ n)

`2-furthestn,2O(log∗ n)

Bichrom.-`2-closestn,2O(log∗ n)

Figure 1 A diagram for all reductions in this section.

I Lemma 3.8 (Implicit in Theorem 1.6 in [5]). For big enough t and n, t-multiplicative-
approximating Max-IPn,d reduces to t/2-multiplicative-approximating LCS-Closest-Pairn,d1 ,
where d1 = O(d3 log2 n).

Now we are ready to prove Corollary 1.9 (restated below for convenience).

Reminder of Corollary 1.9 Assuming SETH (or OVC), for every t ≥ 2, t-multiplicative-
approximating LCS-Closest-Pairn,d requires n2−o(1) time, if d = tω(1) · log5 n.

Proof. From Corollary 3.4, assuming SETH (or OVC), for every t ≥ 2, we have that 2t-
multiplicative-approximating Max-IPn,d requires n2−o(1) time if d = tω(1) · logn. Then from
Lemma 3.8, t-multiplicative-approximating LCS-Closest-Pairn,d1 for d1 = O(d3 log2 n) =
tω(1) · log5 n requires n2−o(1) time. J

4 Hardness of Exact Z-Max-IP, Hopcroft’s Problem and More

In this section we show hardness of Hopcroft’s problem, exact Z-Max-IP, `2-Furthest Pair
and Bichromatic `2-Closest Pair. Essentially our results follow from the framework of [72],
in which it is shown that hardness of Hopcroft’s problem implies hardness of other three
problems, and is implied by dimensionality reduction for OV.

The Organization of this Section
In Section 4.1, we prove the improved dimensionality reduction for OV. In Section 4.2, we
establish the hardness of Hopcroft’s problem in 2O(log∗ n) dimensions with the improved
reduction. In Section 4.3, we show Hopcroft’s problem can be reduced to Z-Max-IP and thus
establish the hardness for the later one. In Section 4.4, we show Z-Max-IP can be reduced to
`2-Furthest Pair and Bichromatic `2-Closest Pair, therefore the hardness for the later two
problems follow. See Figure 1 for a diagram of all reductions covered in this section.

The reduction in last three subsections are all from [72] (either explicit or implicit), we
make them explicit here for our ease of exposition and for making the paper self-contained.

4.1 Improved Dimensionality Reduction for OV
We begin with the improved dimensionality reduction for OV. The following theorem is one
of the technical cores of this paper, which makes use of the CRR encoding (see Theorem 2.5)
recursively.
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I Theorem 4.1. Let b, ` be two sufficiently large integers. There is a reduction ψb,` :
{0, 1}b·` → Z` and a set Vb,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

x · y = 0⇔ ψb,`(x) · ψb,`(y) ∈ Vb,`

and

0 ≤ ψb,`(x)i < `6
log∗(b)·b

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and
the set Vb,` can be constructed in O

(
`O(6log∗(b)·b) · poly(b · `)

)
time.

I Remark 4.2. We didn’t make much effort to minimize the base 6 above to keep the
calculation clean, it can be replaced by any constant > 2 with a tighter calculation.

Proof. We are going to construct our reduction in a recursive way. ` will be the same
throughout the proof, hence in the following we use ψb (Vb) instead of ψb,` (Vb,`) for
simplicity.

Direct CRR for small b:

When b < `, we use a direct Chinese remainder representation of numbers. We pick b primes
q1, q2, . . . , qb in [`+ 1, `2], and use them for our CRR encoding.

Let x ∈ {0, 1}b·`, we partition it into ` equal size groups, and use xi to denote the i-th
group, which is the sub-vector of x from the ((i− 1) · b+ 1)-th bit to the (i · b)-th bit.

Then we define ψb(x) as

ψb(x) :=
(

CRR
({
x1
j

}b
j=1

)
,CRR

({
x2
j

}b
j=1

)
, . . . ,CRR

({
x`j
}b
j=1

))
.

That is, the i-th coordinate of ψb(x) is the CRR encoding of the i-th sub-vector xi with
respect to the primes qj ’s.

Now, for x, y ∈ {0, 1}b·`, note that for j ∈ [b],

ψb(x) · ψb(y) (mod qj)

≡
∑̀
i=1

CRR
({
xij
}b
j=1

)
· CRR

({
yij
}b
j=1

)
(mod qj)

≡
∑̀
i=1

xij · yij (mod qj).

Since the sum
∑̀
i=1

xij · yij is in [0, `], and qj > `, we can see

∑̀
i=1

xij · yij = 0⇔ ψb(x) · ψb(y) ≡ 0 (mod qj).

Therefore, x · y =
b∑
j=1

∑̀
i=1

xij · yij = 0 is equivalent to that

ψb(x) · ψb(y) ≡ 0 (mod qj)
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for every j ∈ [b].

Finally, we have 0 ≤ ψb(x)i <
b∏
j=1

pj < `2·b ≤ `6
log∗(b)·b. Therefore

ψb(x) · ψb(y) < `6
log∗(b)·2b+1,

and we can set Vb to be the set of all integers in [0, `6
log∗(b)·2b+1] that is 0 modulo all the pj ’s,

and it is easy to see that

x · y ⇔ ψb(x) · ψb(y) ∈ Vb

for all x, y ∈ {0, 1}b·`.

Recursive Construction for larger b:

When b ≥ `, suppose the theorem holds for all b′ < b. Let bmicro be the number such that
(we ignore the rounding issue here and pretend that bmicro is an integer for simplicity),

`6
log∗(bmicro)·bmicro = b.

Then we pick b/bmicro primes p1, p2, . . . , pb/bmicro in [(b2`), (b2`)2], and use them as our
reference primes in the CRR encodings.

Let x ∈ {0, 1}b·`, as before, we partition x into ` equal size sub-vectors x1, x2, . . . , x`,
where xi consists of the ((i− 1) · b+ 1)-th bit of x to the (i · b)-th bit of x. Then we partition
each xi again into b/bmicro micro groups, each of size bmicro. We use xi,j to denote the j-th
micro group of xi after the partition.

Now, we use x[j] to denote the concatenation of the vectors x1,j , x2,j , . . . , x`,j . That
is, x[j] is the concatenation of the j-th micro group in each of the ` groups. Note that
x[j] ∈ {0, 1}bmicro·`, and can be seen as a smaller instance, on which we can apply ψbmicro .

Our recursive construction then goes in two steps. In the first step, we make use of ψbmicro ,
and transform each bmicro-size micro group into a single number in [0, b). This step transforms
x from a vector in {0, 1}b·` into a vector S(x) in Z(b/bmicro)·`. And in the second step, we use
a similar CRR encoding as in the base case to encode S(x), to get our final reduced vector
in Z`.

S(x) is simply

S(x) :=
(
ψbmicro(x[1])1, ψbmicro(x[2])1, . . . , ψbmicro(x[b/bmicro])1,

ψbmicro(x[1])2, ψbmicro(x[2])2, . . . , ψbmicro(x[b/bmicro])2,

. . . , . . . , . . .

ψbmicro(x[1])`, ψbmicro(x[2])`, . . . , ψbmicro(x[b/bmicro])`
)
.

That is, we apply ψbmicro on all the x[j]’s, and shrink all the corresponding micro-groups
in x into integers. Again, we partition S into ` equal size groups S1, S2, . . . , S`.

Then we define ψb(x) as

ψb(x) :=
(

CRR
({
S1
j

}b/bmicro

j=1

)
,CRR

({
S2
j

}b/bmicro

j=1

)
, . . . ,CRR

({
S`j
}b/bmicro

j=1

))
.

In other words, the i-th coordinate of ψb(x) is the CRR representation of the number
sequence Si, with respect to our primes {qj}b/bmicro

j=1 .
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Now, note that for x, y ∈ {0, 1}b·`, x · y = 0 is equivalent to x[j] · y[j] = 0 for every
j ∈ [b/bmicro], which is further equivalent to

ψbmicro(x[j]) · ψbmicro(y[j]) ∈ Vbmicro

for all j ∈ [b/bmicro], by our assumption on ψbmicro .
Since 0 ≤ ψbmicro(x[j])i, ψbmicro(y[j])i < b for all x, y ∈ {0, 1}b·`, i ∈ [`] and j ∈ [b/bmicro], we

also have ψbmicro(x[j]) · ψbmicro(y[j]) < b2 · `, therefore we can assume that Vbmicro ⊆ [0, b2`).
For all x, y ∈ {0, 1}b·` and j ∈ [b/bmicro], we have

ψb(x) · ψb(y)

≡
∑̀
i=1

CRR
({
S(x)ij

}b/bmicro

j=1

)
· CRR

({
S(y)ij

}b/bmicro

j=1

)
(mod pj)

≡
∑̀
i=1

S(x)ij · S(y)ij (mod pj)

≡
∑̀
i=1

ψbmicro(x[j])i · ψbmicro(y[j])i (mod pj)

≡ψbmicro(x[j]) · ψbmicro(y[j]) (mod pj).

Since pj ≥ b2 · `, we can determine ψbmicro(x[j]) · ψbmicro(y[j]) from ψb(x) · ψb(y) by taking
modulo pj . Therefore,

x · y = 0

is equivalent to

(ψb(x) · ψb(y) mod pj) ∈ Vbmicro ,

for every j ∈ [b/bmicro].
Finally, recall that we have

`6
log∗(bmicro)·bmicro = b.

Taking logarithm of both sides, we have

6log∗(bmicro) · bmicro · log ` = log b.

Then we can upper bound ψb(x)i by

ψb(x)i <
b/bmicro∏
j=1

pj

< (b2`)2·(b/bmicro) (b ≥ `.)

≤ 26·b/bmicro·log b

≤ 26·b/bmicro·6log∗(bmicro)·bmicro·log `

≤ `6·6
log∗(bmicro)·b

≤ `6
log∗(b)·b (bmicro ≤ log b, log∗(bmicro) + 1 ≤ log∗(log b) + 1 = log∗(b).)
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Therefore, we can set Vb as the set of integer t in [0, `6
log∗(b)·2b+1) such that

(t mod pj) ∈ Vbmicro

for every j ∈ [b/bmicro]. And it is easy to see this Vb satisfies our requirement.
Finally, it is easy to see that the straightforward way of constructing ψb(x) takes O(poly(b·

`)) time, and we can construct Vb by enumerating all possible values of ψb(x) · ψb(y) and
check each of them in O(poly(b · `)) time. Since there are at most `O(6log∗(b)·b) such values,
Vb can be constructed in

O
(
`O(6log∗(b)·b) · poly(b · `)

)
time, which completes the proof. J

Now we prove Lemma 1.17, we recap its statement here for convenience.

Reminder of Lemma 1.17 Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

reduction from OVn,d to `O(6log∗ d·(d/`)) instances of Z-OVn,`+1, with vectors of entries with
bit-length O

(
d/` · log ` · 6log∗ d

)
.

Proof. The proof is exactly the same as the proof for Lemma 1.1 in [72] with different
parameters, we recap it here for convenience.

Given two sets A′ and B′ of n vectors from {0, 1}d, we apply ψd/`,` to each of the
vectors in A′ (B′) to obtain a set A (B) of vectors from Z`. From Theorem 4.1, there is
a (u, v) ∈ A′ × B′ such that u · v = 0 if and only if there is a (u, v) ∈ A × B such that
u · v ∈ Vd/`,`.

Now, for each element t ∈ Vd/`,`, we are going to construct two sets At and Bt of vectors
from Z`+1 such that there is a (u, v) ∈ A × B with u · v = t if and only if there is a
(u, v) ∈ At×Bt with u · v = 0. We construct a set At as a collection of all vectors uA = [u, 1]
for u ∈ A, and a set Bt as a collection of all vectors vB = [v,−t] for v ∈ B. It is easy to
verify this reduction has the properties we want.

Note that there are at most `O(6log∗ d·(d/`)) numbers in Vd/`,`, so we have such a number
of Z-OVn,`+1 instances. And from Theorem 4.1, the reduction takes

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
time.

Finally, the bit-length of reduced vectors is bounded by

log
(
`O(6log∗ d·(d/`))

)
= O

(
d/` · log ` · 6log∗ d

)
,

which completes the proof. J
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A Transformation from Nonuniform Construction to Uniform
Construction
The proof for Theorem 4.1 works recursively. In one recursive step, we reduce the construction
of ψb,` to the construction of ψbmicro,`, where bmicro ≤ log b. Applying this reduction log∗ n
times, we get a sufficiently small instance that we can switch to a direct CRR construction.

An interesting observation here is that after applying the reduction only thrice, the block
length parameter becomes b′ ≤ log log log b, which is so small that we can actually use brute
force to find the “optimal” construction ψb′,` in bo(1) time instead of recursing deeper. Hence,
to find a construction better than Theorem 4.1, we only need to prove the existence of such
a construction. See Appendix B for details.

4.2 Improved Hardness for Hopcroft’s Problem
In this subsection we are going to prove Theorem 1.18 using our new dimensionality reduction
Lemma 1.17, we recap its statement here for completeness.

Reminder of Theorem 1.18 [Hardness of Hopcroft’s Problem in clog∗ n Dimension] Assuming
SETH (or OVC), there is a constant c such that Z-OVn,clog∗ n with vectors of O(logn)-bit
entries requires n2−o(1) time.

Proof. The proof here follows roughly the same as the proof for Theorem 1.1 in [72].
Let c be an arbitrary constant and d := c · logn. We show that an oracle solving Z-OVn,`+1

where ` = 7log∗ n in O(n2−δ) time for some δ > 0 can be used to construct an O(n2−δ+o(1))
time algorithm for OVn,d, and therefore contradicts the OVC.

We simply invoke Lemma 1.17, note that we have

log
{
`
O
(

6log∗ d·(d/`)
)}

= log ` ·O
(

6log∗ d · (d/`)
)

= O
(

log∗ n · 6log∗ n · c · logn/7log∗ n
)

= O
(

log∗ n · (6/7)log∗ n · c · logn
)

= o(logn).

Therefore, the reduction takes O(n · `O
(

6log∗ d·(d/`)
)
· poly(d)) = n1+o(1) time, and an OVn,d

instance is reduced to no(1) instances of Z-OVn,`+1, and the reduced vectors have bit length
o(logn) as calculated above. We simply solve all these no(1) instances using our oracle, and
this gives us an O(n2−δ+o(1)) time algorithm for OVn,d, which completes the proof. J

4.3 Hardness for Z-Max-IP
Now we move to hardness of exact Z-Max-IP.

I Theorem 4.3 (Implicit in Theorem 1.2 [72]). There is an O(poly(d) · n)-time algorithm
which reduces a Z-OVn,d instance into a Z-Max-IPn,d2 instance.

Proof. We remark here that this reduction is implicitly used in the proof of Theorem 1.2
in [72], we abstract it here only for our exposition.
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Given a Z-OVn,d instance with sets A,B. Consider the following polynomial P (x, y),
where x, y ∈ Zd.

P (x, y) = −(x · y)2 =
∑
i,j∈[d]

−(xi · yi) · (xj · yj) =
∑
i,j∈[d]

−(xi · xj) · (yi · yj).

It is easy to see that whether there is a (x, y) ∈ A×B such that x · y = 0 is equivalent to
whether the maximum value of P (x, y) is 0.

Now, for each x ∈ A and y ∈ B, we identify [d2] with [d]× [d] and construct x̃, ỹ ∈ Zd
2

such that

x̃(i,j) = xi · xj and ỹ(i,j) = −yi · yj .

Then we have x̃ · ỹ = P (x, y). Hence, let Ã be the set of all these x̃’s, and B̃ be the set of
all these ỹ’s, whether there is a (x, y) ∈ A×B such that x · y = 0 is equivalent to whether
OPT(Ã, B̃) = 0, and our reduction is completed.

J

Now, Theorem 1.14 (restated below) is just a simple corollary of Theorem 4.3 and
Theorem 1.18.

Reminder of Theorem 1.14 Assuming SETH (or OVC), there is a constant c such that
every exact algorithm for Z-Max-IPn,d for d = clog∗ n dimensions requires n2−o(1) time, with
vectors of O(logn)-bit entries.

A Dimensionality Reduction for Max-IP
The reduction ψb,` from Theorem 4.1 actually does more: for x, y ∈ {0, 1}b·`, from ψb,`(x) ·
ψb,`(y) we can in fact determine the inner product x · y itself, not only whether x · y = 0.

Starting from this observation, together with Theorem 4.3, we can in fact derive a similar
dimensionality self reduction from Max-IP to Z-Max-IP, we deter its proof to Appendix A.

I Corollary 4.4. Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

reduction from Max-IPn,d to d · `O(6log∗ d·(d/`)) instances of Z-Max-IPn,(`+1)2 , with vectors of
entries with bit-length O

(
d/` · log ` · 6log∗ d

)
.

4.4 Hardness for `2-Furthest Pair and Bichromatic `2-Closest Pair
We finish the whole section with the proof of hardness of `2-Furthest Pair and Bichromatic
`2-Closest Pair. The two reductions below are slight adaptations of the ones in the proofs of
Theorem 1.2 and Corollary 2.1 in [72].

I Lemma 4.5. Assuming d = no(1), there is an O(poly(d) · n)-time algorithm which reduces
a Z-Max-IPn,d instance into an instance of `2-Furthest Pair on 2n points in Rd+2. Moreover,
if the Z-Max-IP instance consists of vectors of O(logn)-bit entries, so does the `2-Furthest
Pair instance.
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Proof. Let A,B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer such
that all vectors from A and B consist of (k · logn)-bit entries.

Let W be nC·k where C is a large enough constant. Given x ∈ A and y ∈ B, we construct
point

x̃ =
(
x,
√
W − ‖x‖2, 0

)
and ỹ =

(
−y, 0,

√
W − ‖y‖2

)
,

that is, appending two corresponding values into the end of vectors x and −y.
Now, we can see that for x1, x2 ∈ A, the squared distance between their reduced points is

‖x̃1 − x̃2‖2 = ‖x1 − x2‖2 ≤ 4 · d · n2k.

Similarly we have

‖ỹ1 − ỹ2‖2 ≤ 4 · d · n2k

for y1, y2 ∈ B.
Next, for x ∈ A and y ∈ B, we have

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2 · x̃ · ỹ = 2 ·W + 2 · (x · y) ≥ 2 ·W − d · n2k � 4 · d · n2k,

the last inequality holds when we set C to be 5.
Putting everything together, we can see the `2-furthest pair among all points x̃’s and ỹ’s

must be a pair of x̃ and ỹ with x ∈ A and y ∈ B. And maximizing ‖x̃ − ỹ‖ is equivalent
to maximize x · y, which proves the correctness of our reduction. Furthermore, when k is
a constant, the reduced instance clearly only needs vectors with O(k) · logn = O(logn)-bit
entries. J

I Lemma 4.6. Assuming d = no(1), there is an O(poly(d) · n)-time algorithm which reduces
a Z-Max-IPn,d instance into an instance of Bichromatic `2-Closest Pair on 2n points in Rd+2.
Moreover, if the Z-Max-IP instance consists of vectors of O(logn)-bit entries, so does the
Bichromatic `2-Closest Pair instance.

Proof. Let A,B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer such
that all vectors from A and B consist of (k · logn)-bit entries.

Let W be nC·k where C is a large enough constant. Given x ∈ A and y ∈ B, we construct
point

x̃ =
(
x,
√
W − ‖x‖2, 0

)
and ỹ =

(
y, 0,

√
W − ‖y‖2

)
,

that is, appending two corresponding values into the end of vectors x and −y. And our
reduced instance is to find the closest point between the set Ã (consisting of all these x̃ where
x ∈ A) and the set B̃ (consisting of all these ỹ where y ∈ B).

Next, for x ∈ A and y ∈ B, we have

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2 · x̃ · ỹ = 2 ·W − 2 · (x · y) ≥ 2 ·W − d · n2k � 4 · d · n2k,

the last inequality holds when we set C to be 5.
Hence minimizing ‖x̃− ỹ‖ where x ∈ A and y ∈ B is equivalent to maximize x · y, which

proves the correctness of our reduction. Furthermore, when k is a constant, the reduced
instance clearly only needs vectors with O(k) · logn = O(logn)-bit entries. J
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Now Theorem 1.15 and Theorem 1.16 (restated below) are simple corollaries of Lemma 4.5,
Lemma 4.6 and Theorem 1.14.

Reminder of Theorem 1.15 [Hardness of `2-Furthest Pair in clog∗ n Dimension] Assuming
SETH (or OVC), there is a constant c such that `2-Furthest Pair in clog∗ n dimensions
requires n2−o(1) time, with vectors of O(logn)-bit entries.

Reminder of Theorem 1.16 [Hardness of Bichromatic `2-closest Pair in clog∗ n Dimension]
Assuming SETH (or OVC), there is a constant c such that Bichromatic `2-Closest Pair in
clog∗ n dimensions requires n2−o(1) time, with vectors of O(logn)-bit entries.

5 NP · UPP communication protocol and Exact Hardness for
Z-Max-IP

We note that the inapproximability results for (Boolean) Max-IP is established via a connection
to the MA communication complexity protocol of Set-Disjointness [5]. In the light of this, in
this section we view our reduction from OV to Z-Max-IP (Lemma 1.17 and Theorem 4.3) in
the perspective of communication complexity.

We observe that in fact, our reduction can be understood as an NP ·UPP communication
protocol for Set Disjointness. Moreover, we show that if we can get a slightly better NP ·UPP
communication protocol for Set-Disjointness, then we would be able to prove Z-Max-IP is
hard even for ω(1) dimensions (and also `2-Furthest Pair and Bichromatic `2-Closest Pair).

5.1 NP · UPP Communication Protocol for Set-Disjointness
First, we rephrase the results of Lemma 1.17 and Theorem 4.3 in a more convenience way
for our use here.

I Lemma 5.1 (Rephrasing of Lemma 1.17 and Theorem 4.3). Let 1 ≤ ` ≤ d, and m =
`O(6log∗ d·(d/`)). There exists a family of functions

ψiAlice, ψ
i
Bob : {0, 1}d → R(`+1)2

for i ∈ [m] such that:
when x · y = 0, there is an i such that ψiAlice(x) · ψiBob(y) ≥ 0;
when x · y > 0, for all i ψiAlice(x) · ψiBob(y) < 0;
all ψiAlice(x) and ψiBob(y) can be computed in poly(d) time.

We also need the standard connection between UPP communication protocols and sign-
rank [60] (see also Chapter 4.11 of [48]).

I Lemma 5.2 (Equivalence of sign-rank and UPP communication protocol [60]). The following
statements are equivalent:

There is a d-cost UPP communication protocol for a problem F : X × Y → {0, 1}, where
X and Y are input sets of Alice and Bob respectively.
There are mappings ψX : X → R2d and ψY : Y → R2d such that for all (x, y) ∈ X × Y:

if F (x, y) = 1, ψX (x) · ψY(y) ≥ 0;
otherwise, ψX (x) · ψY(y) < 0.
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From the above lemmas, we immediately get the needed communication protocol and
prove Theorem 1.21 (restated below for convenience).

Reminder of Theorem 1.21 For all 1 ≤ α ≤ n, there is an(
α · 6log∗ n · (n/2α), O(α)

)
-computational-efficient

NP · UPP communication protocol for DISJn.

Proof Sketch. We set α = log ` here. Given the function families {ψiAlice}, {ψiBob} from
Lemma 5.1, Merlin just sends the index i ∈ [m] and the rest follows from Lemma 5.2. J

5.2 Slightly Better Protocols Imply Hardness in ω(1) Dimensions
Finally, we show that if we have a slightly better NP ·UPP protocol for Set-Disjointness, then
we can show Z-Max-IP requires n2−o(1) time even for ω(1) dimensions (and so do `2-Furthest
Pair and Bichromatic `2-Closest Pair). We restate Theorem 1.22 here for convenience.

Reminder of Theorem 1.22 Assuming SETH (or OVC), if there is an increasing and
unbounded function f such that for all 1 ≤ α ≤ n, there is a

(n/f(α), α) -computational-efficient

NP · UPP communication protocol for DISJn, then Z-Max-IPn,ω(1) requires n2−o(1) time with
vectors of polylog(n)-bit entries. The same holds for `2-Furthest Pair and Bichromatic
`2-Closest Pair.

Proof. Suppose otherwise, there is an algorithm A for Z-Max-IPn,d running in n2−ε1 time
for all constant d and for a constant ε1 > 0 (note for the sake of Lemma 4.5 and Lemma 4.6,
we only need to consider Z-Max-IP here).

Now, let c be an arbitrary constant, we are going to construct an algorithm for OVn,c logn
in n2−Ω(1) time, which contradicts OVC.

Let ε = ε1/2, and α be the first number such that c/f(α) < ε, note that α is also a
constant. Consider the (c logn/f(α), α)-computational-efficient NP · UPP protocol Π for
DISJc logn, and let A,B be the two sets in the OVn,c logn instance. Our algorithm via
reduction works as follows:

There are 2α possible messages in {0, 1}α, let m1,m2, . . . ,m2α be an enumeration of
them.
We first enumerate all possible advice strings from Merlin in Π, there are 2c logn/f(α) ≤
2ε·logn = nε such strings, let φ ∈ {0, 1}ε·logn be such an advice string.

For each x ∈ A, let ψAlice(x) ∈ R2α be the probabilities that Alice accepts each message
from Bob. That is, ψAlice(x)i is the probability that Alice accepts the message mi,
given its input x and the advice φ.
Similarly, for each y ∈ B, let ψBob(y) ∈ R2α be the probabilities that Bob sends each
message. That is, ψBob(y)i is the probability that Bob sends the message mi, give its
input y and the advice φ.
Then, for each x ∈ A and y ∈ B, ψAlice(x) · ψBob(y) is precisely the probability that
Alice accepts at the end when Alice and Bob holds x and y correspondingly and the
advice is φ. Now we let Aφ be the set of all the ψAlice(x)’s, and Bφ be the set of all
the ψBob(y)’s.
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If there is a φ such that OPT(Aφ, Bφ) ≥ 1/2, then we output yes, and otherwise output
no.

From the definition of Π, it is straightforward to see that the above algorithm solves
OVn,c·logn. Moreover, notice that from the computational-efficient property of Π, the
reduction itself works in n1+ε · polylog(n) time, and all the vectors in Aφ’s and Bφ’s have
at most polylog(n) bit precision, which means OPT(Aφ, Bφ) can be solved by a call to
Z-Max-IPn,2α with vectors of polylog(n)-bit entries.

Hence, the final running time for the above algorithm is bounded by nε · n2−ε1 = n2−ε

(2α is still a constant), which contradicts the OVC. J

6 Improved MA Protocols

In this section we prove Theorem 1.24 (restated below for convenience).

Reminder of Theorem 1.24 There is an MA protocol for DISJn and IPn with communication
complexity

O
(√

n logn log logn
)
.

To prove Theorem 1.24, we need the following intermediate problem.

I Definition 6.1 (The Inner Product Modulo p Problem (IPpn)). Let p and n be two positive
integers, in IPpn, Alice and Bob are given two vectors X and Y in {0, 1}n, and they want to
compute X · Y (mod p).

Note that IPn and IPpn are not Boolean functions, so we need to generalize the definition
of an MA protocol. In an MA protocol for IPn, Merlin sends the answer directly to Alice
together with a proof to convince Alice and Bob. The correctness condition becomes that for
the right answer X · Y , Merlin has a proof such that Alice and Bob will accept with high
probability (like 2/3). And the soundness condition becomes that for the wrong answers,
every proof from Merlin will be rejected with high probability.

We are going to use the following MA protocol for IPpn, which is a slight adaption from
the protocol in [64].

I Lemma 6.2 (Implicit in Theorem 3.1 of [64]). For a sufficiently large prime q and integers
T and n, there is an(

O (n/T · log q) , logn+O(1), O (T · log q) , 1/2
)
-efficient

MA protocol for IPqn.

Proof Sketch. The only adaption is that we just use the field Fq2 with respect to the given
prime q. (In the original protocol it is required that q ≥ T .) J

Now we ready to prove Theorem 1.24.

Proof of Theorem 1.24. Since a IPn protocol trivially implies a DISJn protocol, we only
need to consider IPn in the following.

Now, let x be the number such that xx = n, for convenience we are going to pretend
that x is an integer. It is easy to see that x = Θ(logn/ log logn). Then we pick 10x



L. Chen 14:33

distinct primes p1, p2, . . . , p10x in [x+ 1, x2] (we can assume that n is large enough to make
x satisfy the requirement of Lemma 2.4). Let T be a parameter, we use Πpi to denote the(
O (n/T · log pi) , logn+O(1), O (T · log pi) , 1/2

)
-efficient MA protocol for IPpin .

Our protocol for IPn works as follows:
Merlin sends Alice all the advice strings from the protocols Πp1 ,Πp2 , . . . ,Πp10x , together
with a presumed inner product 0 ≤ z ≤ n.
Note that Πpi contains the presumed value of X · Y (mod pi), Alice first checks whether
z is consistent with all these Πpi ’s, and rejects immediately if it does not.
Alice and Bob jointly toss O(log(10x)) coins, to pick a uniform random number i? ∈ [10x],
and then they simulate Πpi? . That is, they pretend they are the Alice and Bob in the
protocol Πpi? with the advice from Merlin in Πpi? (which Alice does have).

Correctness. Let X,Y ∈ {0, 1}n be the vectors of Alice and Bob. If X · Y = z, then by the
definition of these protocols Πpi ’s, Alice always accepts with the correct advice from Merlin.

Otherwise, let d = X · Y 6= z, we are going to analyze the probability that we pick a
“good” pi? such that pi? does not divide |d− z|. Since pi > x for all pi’s and xx > n ≥ |d− z|,
|d− z| cannot be a multiplier of more than x primes in pi’s.

Therefore, with probability at least 0.9, our pick of pi? is good. And in this case, from
the definition of the protocols Πpi ’s, Alice and Bob would reject afterward with probability
at least 1/2, as d (mod pi?) differs from z (mod pi?). In summary, when X · Y 6= z, Alice
rejects with probability at least 0.9/2 = 0.45, which finishes the proof for the correctness.

Complexity. Now, note that the total advice length is

O

(
n/T ·

10x∑
i=1

log pi

)
= O

(
n/T · log

10x∏
i=1

x2

)
= O

(
n/T · log x20x) = O (n/T · logn) .

And the communication complexity between Alice and Bob is bounded by

O
(
T · log x2) = O (T · log logn) .

Setting T =
√
n logn/ log logn balances the above two quantities, and we obtain the

needed MA-protocol for DISJn. J

7 Future Works

We end our paper by discussing a few interesting research directions.
1. The most important open question from this paper is that can we further improve the

dimensionality reduction for OV? It is certainly weird to consider 2O(log∗ n) to be the right
answer for the limit of the dimensionality reduction. This term seems more like a product
of the nature of our recursive construction and not the problem itself. We conjecture that
there should be an ω(1) dimensional reduction with a more direct construction.
One possible direction is to combine the original polynomial-based construction from [72]
together with our new number theoretical one. These two approaches seem completely
different, hence a clever combination of them may solve our problem.

2. In order to prove ω(1) dimensional hardness for `2-Furthest Pair and Bichromatic `2-
Closest Pair, we can also bypass the OV dimensionality reduction things by proving
ω(1) dimensional hardness for Z-Max-IP directly. One possible way to approach this
question is to start from the NP ·UPP communication protocol connection as in Section 5
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(apply Theorem 1.22), and (potentially) draw some connections from some known UPP
communication protocols.

3. We have seen an efficient reduction from Z-OV to Z-Max-IP which only blows up the
dimension quadratically, is there a similar reduction from Z-Max-IP back to Z-OV? Are
Z-Max-IP and Z-OV equivalent?

4. By making use of the new AG-code based MA protocols, we can shave a Õ(
√

logn)
factor from the communication complexity, can we obtain an O(

√
n) MA communication

protocol matching the lower bound for DISJn? It seems new ideas are required.
Since our MA protocol works for both DISJ and IP, and IP does seems to be a harder
problem. It may be better to find an MA protocol only works for DISJ. It is worth noting
that an O(

√
n) AMA communication protocol for DISJ is given by [64], which doesn’t

work for IP.
5. Can the dependence on ε in the algorithms from Theorem 1.5 be further improved? Is it

possible to apply ideas in the n2−1/Ω̃(
√
c) algorithm for Max-IPn,c logn from [13]?

6. For the complexity of 2-multiplicative-approximation to Max-IPn,c logn, Theorem 1.5
implies that there is an algorithm running in n2−1/O(log c) time, the same as the best
algorithm for OVn,c logn [9]. Is this just a coincidence? Or are there some connections
between these two problems?

7. We obtain a connection between hardness of Z-Max-IP and NP · UPP communication
protocols for Set-Disjointness. Can we get similar connections from other NP · C type
communication protocols for Set-Disjointness? Some candidates include NP · SBP and
NP · promiseBQP (QCMA).
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A A Dimensionality Reduction for Max-IP

In fact, tracing the proof of Theorem 4.1, we observe that it is possible to compute the inner
product x · y itself from ψb,`(x) · ψb,`(y), that is:

I Corollary A.1. Let b, ` be two sufficiently large integers. There is a reduction ψb,` :
{0, 1}b·` → Z` and b · `+ 1 sets V 0

b,`, V
1
b,`, . . . , V

b·`
b,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

x · y = k ⇔ ψb,`(x) · ψb,`(y) ∈ V kb,` for all 0 ≤ k ≤ b · `,

and

0 ≤ ψb,`(x)i < `6
log∗(b)·b

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and
the sets V kb,`’s can be constructed in O

(
`O(6log∗(b)·b) · poly(b · `)

)
time.

Together with Theorem 4.3, it proves Corollary 4.4 (restated below).

Reminder of Corollary 4.4 Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time
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reduction from Max-IPn,d to d · `O(6log∗ d·(d/`)) instances of Z-Max-IPn,(`+1)2 , with vectors of
entries with bit-length O

(
d/` · log ` · 6log∗ d

)
.

Proof Sketch. Let b = d/` (assume ` divides d here for simplicity), A and B be the sets in
the given Max-IPn,d instance, we proceed similarly as the case for OV.

We first enumerate a number k from 0 to d, for each k we construct the set V kb,` as
specified in Corollary A.1. Then there is (x, y) ∈ A × B such that x · y = k if and only if
there is (x, y) ∈ A×B such that ψb,`(x) ·ψb,`(y) ∈ V kb,`. Using exactly the same reduction as
in Lemma 1.17, we can in turn reduce this into `O(6log∗(b)·b) instances of Z-OVn,`+1.

Applying Theorem 4.3, with evaluation of (d+ 1) · `O(6log∗(b)·b) Z-Max-IPn,(`+1)2 instances,
we can determine whether there is (x, y) ∈ A×B such that x · y = k for every k, from which
we can compute the answer to the Max-IPn,d instance. J

B Nonuniform to Uniform Transformation for Dimensionality
Reduction for OV

In this section we discuss the transformation from nonuniform construction to uniform one for
dimensionality reduction for OV. In order to state our result formally, we need to introduce
some definitions.

I Definition B.1 (Nonuniform Reduction). Let b, `, κ ∈ N. We say a function ϕ : {0, 1}b·` →
Z` together with a set V ⊆ Z is a (b, `, κ)-reduction, if the following holds:

For every x, y ∈ {0, 1}b·`,

x · y = 0⇔ ϕ(x) · ϕ(y) ∈ V.

For every x and i ∈ [`],

0 ≤ ϕ(x)i < `κ·b.

Similarly, let τ be an increasing function, we say a function family {ϕb,`}b,` together
with a set family {Vb,`}b,` is a τ -reduction family, if for every b and `, (ϕb,`, Vb,`) is a
(b, `, τ(b))-reduction.

Moreover, if for all b and all ` ≤ log log log b, there is an algorithm A which com-
putes ϕb,`(x) in poly(b) time given b, ` and x ∈ {0, 1}b·`, and constructs the set Vb,` in
O
(
`O(τ(b)·b) · poly(b)

)
time given b and `, then we call (ϕb,`, Vb,`) a uniform-τ -reduction

family.

I Remark B.2. The reason we assume ` to be small is that in our applications we only care
about very small `, and that greatly simplifies the notation. From Theorem 4.1, there is
a uniform-

(
6log∗ b

)
-reduction family, and a better uniform-reduction family implies better

hardness for Z-OV and other related problems as well (Lemma 1.17, Theorem 4.3, Lemma 4.6
and Lemma 4.5).

Now we are ready to state our nonuniform to uniform transformation result formally.

I Theorem B.3. Letting τ be an increasing function such that τ(n) = O(log log logn) and
supposing there is a τ -reduction family, then there is a uniform-O(τ)-reduction family.
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Proof Sketch. The construction in Theorem 4.1 is recursive, it constructs the reduction ψb,`
from a much smaller reduction ψbmicro,`, where bmicro ≤ log b. In the original construction, it
takes log∗ b recursions to make the problem sufficiently small so that a direct construction
can be used. Here we only apply the reduction thrice. First let us abstract the following
lemma from the proof of Theorem 4.1.

I Lemma B.4 (Implicit in Theorem 4.1). Letting b, `, bmicro, κ ∈ N and supposing `κ·bmicro = b

and there is a (bmicro, `, κ)-reduction (ϕ, V ′), the following holds:

There is a (b, `, 6 · κ)-reduction (ψ, V ).
Given (ϕ, V ′), for all x ∈ {0, 1}b·`, ψ(x) can be computed in poly(b · `), and V can be
constructed in O

(
`O(κ·b) · poly(b · `)

)
time.

Now, let b, ` ∈ N, we are going to construct our reduction as follows.
Let b1 be the number such that

`τ(b)·62·b1 = b,

and similarly we set b2 and b3 so that

`τ(b)·6·b2 = b1 and `τ(b)·b3 = b2.

We can calculate from above that b3 ≤ log log log b.
From the assumption that there is a τ -reduction, there is a (b3, `, τ(b3))-reduction

(ϕb3,`, Vb3,`), which is also a (b3, `, τ(b))-reduction, as τ is increasing. Note that we can
assume ` ≤ log log log b and τ(b) ≤ log log log b from assumption. Now we simply use a brute
force algorithm to find (ϕb3,`, Vb3,`). There are

`τ(b)·b3·`·2b3·` = bo(1)

possible functions from {0, 1}b3·` → {0, . . . `τ(b3)·b3 − 1}`. Given such a function ϕ, one can
check in poly(2b3·`) = bo(1) time that whether one can construct a corresponding set V to
obtain our (b3, `, τ(b))-reduction.

Applying Lemma B.4 thrice, one obtain a (b, `, O(τ(b)))-reduction (ψ, V ). And since
ϕb3,` can be found in bo(1) time, together with Lemma B.4, we obtain a uniform-τ -reduction
family. J

Finally, we give a direct corollary of Theorem B.3 that the existence of an O(1)-reduction
family implies hardness of Z-OV, Z-Max-IP, `2-Furthest Pair and Bichromatic `2-Closest Pair
in ω(1) dimensions.

I Corollary B.5. If there is an O(1)-reduction family, then for every ε > 0, there exists
a c ≥ 1 such that Z-OV, Z-Max-IP, `2-Furthest Pair and Bichromatic `2-Closest Pair in c
dimensions with O(logn)-bit entries require n2−ε time.

Proof Sketch. Note that since its hardness implies the harnesses of other three, we only
need to consider Z-OV here.

From Theorem B.3 and the assumption, there exists a uniform-O(1)-reduction. Proceeding
similar as in Lemma 1.17 with the uniform-O(1)-reduction, we obtain a better dimensionality
self reduction from OV to Z-OV. Then exactly the same argument as in Theorem 1.18 with
different parameters gives us the lower bound required. J
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C Hardness of Approximate {-1,1}-Max-IP via Approximate
Polynomial for OR

We first show that making use of the O(
√
n)-degree approximate polynomial for OR [27, 36],

OV can be reduced to approximating {−1, 1}-Max-IP.

I Theorem C.1. Letting ε ∈ (0, 1), there is an algorithm reducing an OVn,d instance with
sets A,B to a {−1, 1}-Max-IPn,d1 instance with sets Ã and B̃, such that:

d1 =
(

d

≤ O
(√

d log 1/ε
))3

· 2O
(√

d log 1/ε
)
· ε−1, in which the notation

(
n

≤ m

)
denotes

m∑
i=0

(
n

i

)
.

There is an integer T > ε−1 such that if there is an (a, b) ∈ A × B such that a · b = 0,
then OPT(Ã, B̃) ≥ T .
Otherwise, |OPT(Ã, B̃)| ≤ T · ε.
Moreover, the reduction takes n · poly(d1) time.

We remark here that the above reduction fails to achieve a characterization: setting
ε = 1/2 and d = c logn for an arbitrary constant c, we have d1 = 2Õ(

√
logn), much larger

than logn. Another interesting difference between the above theorem and Lemma 3.3 (the
reduction from OV to approximating Max-IP) is that Lemma 3.3 reduces one OV instance
to many Max-IP instances, while the above reduction only reduces it to one {−1, 1}-Max-IP
instance.

Proof of Theorem C.1.
Construction and Analysis of Polynomial Pε(z). By [27, 36], there is a polynomial

Pε : {0, 1}d → R such that:
Pε is of degree D = O

(√
d log 1/ε

)
.

For every z ∈ {0, 1}d, Pε(z) ∈ [0, 1].
Given z ∈ {0, 1}d, if OR(z) = 0, then Pε(z) ≥ 1− ε, otherwise Pε(z) ≤ ε.
Pε can be constructed in time polynomial in its description size.

Now, let us analyze Pε further. For a set S ⊆ [d], let χS : {0, 1}d → R be χS(z) :=∏
i∈S

(−1)zi . Then we can write Pε as:

Pε :=
∑

S⊆[d],|S|≤D

χS · 〈χS , Pε〉,

where 〈χS , Pε〉 is the inner product of χS and Pε, defined as 〈χS , Pε〉 := Ex∈{0,1}dχS(x)·Pε(x).
Let cS = 〈χS , Pε〉, from the definition it is easy to see that cS ∈ [−1, 1].

Discretization of Polynomial Pε. Note that Pε(z) has real coefficients, we need to turn
it into another polynomial with integer coefficients first.

Let M :=
(

d

≤ D

)
, consider the following polynomial P̂ε:

P̂ε :=
∑

S⊆[d],|S|≤D

bcS · 2M/εc · χS .
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We can see that |P̂ε(z)/(2M/ε) − Pε(z)| ≤ ε for every z ∈ {0, 1}d, and we let ĉS :=
bcS ·M · 2/εc for convenience.

Simplification of Polynomial P̂ε. P̂ε(z) is expressed over the basis χS ’s, we need to turn
it into a polynomial over standard basis.

For each S ⊆ [d], consider χS , it can also be written as:

χS(z) =
∏
i∈S

(−1)zi :=
∏
i∈S

(1− 2zi) =
∑
T⊆S

(−2)|T |zT ,

where zT :=
∏
i∈T

zi. Plugging it into the expression of P̂ε, we have

P̂ε(z) :=
∑

T⊆[d],|T |≤D

 ∑
S⊆[d],|S|≤D,T⊆S

ĉS

 · (−2)|T |zT .

Set

c̃T :=

 ∑
S⊆[d],|S|≤D,T⊆S

ĉS

 · (−2)|T |,

the above simplifies to

P̂ε(z) :=
∑

T⊆[d],|T |≤D

c̃T · zT .

Properties of Polynomial P̂ε. Let us summarize some properties of P̂ε for now. First we
need a bound on |c̃T |, we can see |ĉS | ≤M · 2/ε, and by a simple calculation we have

|c̃T | ≤M2 · 2D · 2/ε.

Let B = M2 · 2D · 2/ε for convenience. For x, y ∈ {0, 1}d, consider P̂ε(x, y) :=
P̂ε(x1y1, x2y2, . . . , xdyd) (that is, plugging in zi = xiyi), we have

P̂ε(x, y) :=
∑

T⊆[d],|T |≤D

c̃T · xT · yT ,

where xT :=
∏
i∈T

xi and yT is defined similarly. Moreover, we have

If x · y = 0, then P̂ε(x, y) ≥ (2M/ε) · (1− 2ε).
If x · y 6= 0, then |P̂ε(x, y)| ≤ (2M/ε) · 2ε.

The Reduction. Now, let us construct the reduction, we begin with some notations. For
two vectors a, b, we use a ◦ b to denote their concatenation. For a vector a and a real x,
we use a · x to denote the vector resulting from multiplying each coordinate of a by x. Let
sgn(x) be the sign function that outputs 1 when x > 0, −1 when x < 0, and 0 when x = 0.
For x ∈ {−B,−B + 1, . . . , B}, we use ex ∈ {−1, 0, 1}B to denote the vector whose first |x|
elements are sgn(x) and the rest are zeros. We also use 1 to denote the all-1 vector with
length B.

Let T1, T2, . . . , TM be an enumeration of all subsets T ⊆ [d] such that |T | ≤ D, we define

ϕx(x) := ◦Mi=1(ec̃Ti · xTi) and ϕy(y) := ◦Mi=1(1 · yTi).
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And we have

ϕx(x) · ϕy(y) =
M∑
i=1

(ec̃Ti · 1) · (xTi · yTi) =
M∑
i=1

c̃Ti · xTi · yTi = P̂ε(x, y).

To move from {−1, 0, 1} to {−1, 1}, we use the following carefully designed reductions
ψx, ψy : {−1, 0, 1} → {−1, 1}2, such that

ψx(−1) = ψy(−1) = (−1,−1), ψx(0) = (−1, 1),

ψy(0) := (1,−1), and ψx(1) = ψy(1) = (1, 1).

It is easy to check that for x, y ∈ {−1, 0, 1}, we have ψx(x) · ψy(y) = 2 · (x · y).
Hence, composing the above two reductions, we get our desired reductions φx = ψ⊗(B·M)

x ◦
ϕx and φy = ψ⊗(B·M)

y ◦ ϕy such that for x, y ∈ {0, 1}d, φx(x), φy(y) ∈ {−1, 1}2B·M and
φx(x) · φy(y) = 2 · P̂ε(x, y).

Finally, given an OVn,d instance with two sets A and B, we construct two sets Ã and B̃,
such that Ã consists of all φx(x)’s for x ∈ A, and B̃ consists of all φy(y)’s for y ∈ B.

Then we can see Ã and B̃ consist of n vectors from {−1, 1}d1 , where

d1 = 2B ·M = M3 · 2D · 2/ε =
(

d

≤ O
(√

d log 1/ε
))3

· 2O
(√

d log 1/ε
)
· ε−1

as stated.
It is not hard to see the above reduction takes n · poly(d1) time. Moreover, if there

is a (x, y) ∈ A × B such that x · y = 0, then OPT(Ã, B̃) ≥ (4M/ε) · (1 − 2ε), otherwise,
OPT(Ã, B̃) ≤ (4M/ε) · 2ε. Setting ε above to be 1/3 times the ε in the statement finishes
the proof. J

With Theorem C.1, we are ready to prove our hardness results on {−1, 1}-Max-IP.

I Theorem C.2. Assume SETH (or OVC). Letting α : N→ R be any function of n such that
α(n) = no(1), there is another function β satisfying β(n) = no(1) and an integer T > α (β
and T depend on α), such that there is no n2−Ω(1)-time algorithm for {−1, 1}-Max-IPn,β(n)
distinguishing the following two cases:

OPT(A,B) ≥ T (A and B are the sets in the {−1, 1}-Max-IP instance).
|OPT(A,B)| ≤ T/α(n).

Proof. Letting α = no(1) and k = logα/ logn, we have k = o(1). Setting d = c logn where c
is an arbitrary constant and ε = α−1 in Theorem C.1, we have that an OVc logn reduces to a
certain α(n)-approximation to a {−1, 1}-Max-IPn,d1 instance with sets A and B, where

d1 =
(

c logn
≤ O(

√
ck logn)

)3
·2O(

√
ck logn) ≤

(√
c√
k

)O(
√
ck logn)

·2O(
√
ck logn) = nO(log(c/k)·

√
ck).

Now set β = nk
1/3

and T be the integer specified by Theorem C.1, since k = o(1), β =
no(1). Suppose otherwise there is an n2−Ω(1)-time algorithm for distinguishing whether
OPT(A,B) ≥ T or |OPT(A,B)| ≤ T/α(n). Then for any constant c, O(log(c/k)

√
ck) ≤ k1/3

for sufficiently large n, which means d1 ≤ β(n) for a sufficiently large n, and there is an
n2−Ω(1)-time algorithm for OVc logn by Theorem C.1, contradiction to OVC. J
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D A Proof of Lemma 3.3

Finally, we present a proof of Lemma 3.3, which is implicit in [64].
We need the following efficient MA protocol for Set-Disjointness from [64], which is also

used in [50].15

I Lemma D.1 (Theorem 3.2 of [64]). For every α and m, there is an
(m/α, log2m,poly(α), 1/2)-efficient MA protocol for DISJm.

We want to reduce the error probability while keeping the number of total random coins
relatively low. To achieves this, we can use an expander graph (Theorem 2.7) to prove the
following theorem.

I Lemma D.2. For every α, m and ε < 1/2, there is an (m/α, log2m+O(log ε−1),poly(α) ·
log ε−1, ε)-efficient MA protocol for DISJm.

Proof. Let c1 and F : {0, 1}logm+c1·log ε−1
→ [m]c1·log ε−1

be the corresponding constant and
function as in Theorem 2.7, and let Π denote the (m/α, log2m, poly(α), 1/2)-efficient MA
protocol for DISJm in Lemma D.1. Set q = c1 · log ε−1 and our new protocol Πnew works as
follows:

Merlin still sends the same advice to Alice as in Π.
Alice and Bob jointly toss r = logm+ q coins to get a string w ∈ {0, 1}r. Then we let
w1, w2, . . . , wq be the sequence corresponding to F(w), each of them can be interpreted
as logm bits.
Bob sends Alice q messages, the i-th message mi corresponds to Bob’s message in Π when
the random bits is wi.
After that, Alice decides whether to accept or not as follows:

If for every i ∈ [q], Alice would accept Bob’s message mi with random bits wi in Π,
then Alice accepts.
Otherwise, Alice rejects.

It is easy to verify that the advice length, message length and number of random coins
satisfy our requirements.

For the error probability, note that when these two sets are disjoint, the same advice in
Π leads to acceptance of Alice. Otherwise, suppose the advice from Merlin is either wrong
or these two sets are intersecting, then half of the random bits in {0, 1}logm leads to the
rejection of Alice in Π. Hence, from Theorem 2.7, with probability at least 1− ε, at least one
of the random bits wi’s would lead to the rejection of Alice, which completes the proof. J

Finally, we prove Lemma 3.3 (restated below).

Reminder of Lemma 3.3 There is a universal constant c1 such that, for every integer c,
reals ε ∈ (0, 1] and τ ≥ 2, OVn,c logn can be reduced to nε Max-IPn,d instances (Ai, Bi) for
i ∈ [nε], such that:

d = τpoly(c/ε) · logn.
Letting T = c logn · τ c1 , if there is a ∈ A and b ∈ B such that a · b = 0, then there exists
an i such that OPT(Ai, Bi) ≥ T .
Otherwise, for all i we must have OPT(Ai, Bi) ≤ T/τ .

15The protocol in [50] also works for the k-party number-in-hand model.
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Proof. The reduction follows exactly the same as in [5], we recap here for completeness.
Set α = c/ε,m = c·logn and ε = 1/τ , and let Π be the (m/α, log2m+O(log ε−1),poly(α)·

log ε−1, ε)-efficient MA protocol for Set-Disjointness as in Lemma D.2.
Now, we first enumerate all of 2m/α = 2ε·logn = nε possible advice strings, and create an

Max-IP instance for each of the advice strings.
For a fix advice ψ ∈ {0, 1}ε·logn, we create an Max-IP instance with sets Aψ and Bψ as

follows. We use a ◦ b to denote the concatenation of the strings a and b.
Let r = log2m + c1 · log ε−1, where c1 is the constant hidden in the big O notation in

Lemma D.2, and ` = poly(α) · log ε−1. Let m1,m2, . . . ,m2` be an enumeration of all strings
in {0, 1}`.

For each a ∈ A, and for each string w ∈ {0, 1}r, we create a vector aw ∈ {0, 1}2
`

, such
that awi indicates that given advice ψ and randomness w, whether Alice accepts message
mi or not (1 for acceptance, 0 for rejection). Let the concatenation of all these aw’s be
aψ. Then Aψ is the set of all these aψ’s for a ∈ A.
For each b ∈ B, and for each string w ∈ {0, 1}r, we create a vector bw ∈ {0, 1}2

`

, such
that bwi = 1 if Bob sends the message mi given advice ψ and randomness w, and = 0
otherwise. Let the concatenation of all these bw’s be bψ. Then Bψ is the set of all these
bψ’s for b ∈ B.

We can see that for a ∈ A and b ∈ B, aψ · bψ is precisely the number of random coins
leading Alice to accept the message from Bob given advice ψ when Alice and Bob holds
a and b correspondingly. Therefore, let T = 2r = c logn · τ c1 , from the properties of the
protocol Π, we can see that:

If there is a ∈ A and b ∈ B such that a · b = 0, then there is ψ ∈ {0, 1}ε·logn such that
aψ · bψ ≥ T .
Otherwise, for all a ∈ A, b ∈ B and advice ψ{0, 1}ε·logn, aψ · bψ ≤ T/τ .

And this completes the proof. J
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Abstract
In this work, we study time/space trade-offs for function composition. We prove asymptotic-
ally optimal lower bounds for function composition in the setting of nondeterministic read once
branching programs, for the syntactic model as well as the stronger semantic model of read-once
nondeterministic computation. We prove that such branching programs for solving the tree eval-
uation problem over an alphabet of size k requires size roughly kΩ(h), i.e space Ω(h log k). Our
lower bound nearly matches the natural upper bound which follows the best strategy for black-
white pebbling the underlying tree. While previous super-polynomial lower bounds have been
proven for read-once nondeterministic branching programs (for both the syntactic as well as the
semantic models), we give the first lower bounds for iterated function composition, and in these
models our lower bounds are near optimal.
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1 Introduction

One of the most promising approaches to proving major separations in complexity theory
is to understand the complexity of function composition. Given two Boolean functions,
f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}, their composition is the function f ◦ g :
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15:2 Hardness of Function Composition for Semantic Read once Branching Programs

The complexity of function composition is one of the most tantalizing and basic problems
in complexity theory, and has been studied in a variety of models. There are very few
setting where function composition can be computed with substantially less resources than
first computing each instance of g, followed by computing f on the outputs of the g’s.
Indeed, lower bounds for function composition are known to resolve several longstanding
open problems in complexity theory.

The most famous conjecture about function composition in complexity theory is the
Karchmer-Raz-Wigderson (KRW) conjecture [25], asserting that the minimum Boolean
circuit depth for computing f ◦ g for nontrivial functions f and g is the minimum depth of
computing f plus the minimum depth of computing g. Karchmer, Raz and Wigderson show
that repeated applications of this conjecture implies super-logarithmic lower bounds on the
depth complexity of an explicit function, thus resolving a major open problem in complexity
theory (separating P from NC1). In particular, The tree evaluation problem defines iterated
function composition with parameters d and h as follows. The input is an ordered d-ary
tree of depth h+ 1. Each of the dh leaf nodes of the tree is labelled with an input bit, and
each non-leaf node of the tree is labelled by a 2d Boolean vector, which is the truth table of
a Boolean function from {0, 1}d → {0, 1}. This induces a 0/1 value for each intermediate
node in the tree in the natural way: for a node v with corresponding function fv, we label v
with fv applied to bits that label the children of v. The output is the value of the root node.
The basic idea is to apply h = O(logn/ log logn) compositions of a random d = logn-ary
function f : {0, 1}logn → {0, 1} to obtain a new function over O(n2) bits that is computable
in polynomial time but that requires depth Ω(log2 n) (ignoring lower order terms).

In communication complexity, lower bounds for function composition have been suc-
cessful for solving several open problems. For example, lifting theorems in communication
complexity reduce lower bounds in communication complexity to query complexity lower
bounds, via function composition. Raz and McKenzie [33] proved a general lifting theorem
for deterministic communication complexity, which implies a separation of NCi from P

for all i > 1. Subsequent lifting theorems (proving hardness of function composition for
other communication models) have resolved open problems in game theory, proof complexity,
extension complexity, and communication complexity [20, 8, 26, 28, 12].

The complexity of function composition for space-bounded computation has also been
studied since the 1960’s. The classical result of Nečiporuk [31] proves Ω(n2/ log2 n) size
lower bounds for deterministic branching programs for function composition1. Subsequently,
Pudlak observed that Nečiporuk’s method can be extended to prove Ω(n3/2/ logn) size lower
bounds for nondeterministic branching programs. These classical results are still the best
unrestricted branching program size lower bounds known, and it is a longstanding open
problem to break this barrier. Furthermore, its known that Nečiporuk method cannot fetch
lower bounds better than those mentioned above for both deterministic and non-deterministic
branching programs[23, 4].

In this work, we study time/space tradeoffs for function composition. We prove asymptot-
ically optimal lower bounds for function composition in the setting of nondeterministic read
once branching programs, for the syntactic model as well as the stronger semantic model of
read-once nondeterministic computation. We prove that such branching programs for solving

1 While Nečiporuk’s result is not usually stated this way, it can be seen as a lower bound for function
composition. We present this alternative proof in section B in the Appendix.
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the tree evaluation problem over an alphabet of size k requires size roughly kΩ(h), i.e space
Ω(h log k). Our lower bound nearly matches the natural upper bound which follows the best
strategy for black-white pebbling [10] the underlying tree. While previous super-polynomial
lower bounds have been proven for read-once nondeterministic branching programs (for both
the syntactic as well as the semantic models), we give the first lower bounds for iterated
function composition, and in these models our lower bounds are near optimal.

1.1 History and Related Work

1.1.1 Function Composition and Direct Sum Conjectures
Karchmer, Raz and Wigderson [25] resolved their conjecture in the context of monotone
circuit depth. In an attempt to prove the conjecture in the non-monotone case, they
proposed an intermediate conjecture, known as the universal relation composition conjecture.
This intermediate conjecture was proven by Edmonds et.al [15] using novel information-
theoretic techniques. More recently some important steps have been taken towards replacing
the universal relation by a function using information complexity[19] and communication
complexity techniques [14]. Dinur and Meir[14] prove a "composition theorem" for f ◦ g
where g is the parity function, and obtain an alternative proof of cubic formula size lower
bounds as a corollary. The cubic formula size lower bound was originally proven by Håstad
[34] and more recently by Tal [35].

1.1.2 Time-Space Tradeoffs
In the uniform setting, time-space tradeoffs for SAT were achieved in a series of papers
[16, 29, 17, 18]. Fortnow-Lipton-Viglas-Van Melkebeek [18] shows that any algorithm for SAT
running in space no(1) requires time at least Ω(nφ−ε) where φ is the golden ratio ((

√
5 + 1)/2)

and ε > 0. Subsequent works [36, 13] improved the time lower bound to greater than n1.759.
The state of the art time/space tradeoffs for branching programs were proven in the

remarkable papers by Ajtai [1] and Beame-et-al [3]. In the first paper, Ajtai exhibited a
polynomial-time computable Boolean function such that any sub-exponential size determin-
istic branching program requires superlinear length. This result was significantly improved
and extended by Beame-et-al who showed that any sub-exponential size randomized branching
program requires length Ω(n logn

log logn ).
Lower bounds for nondeterministic branching programs have been more difficult to obtain.

Length-restricted nondeterministic branching programs come in two flavors: syntactic and
semantic. A length l syntactic model requires that every path in the branching program
has length at most l, and similarly a read-c syntactic model requires that every path in the
branching program reads every variable at most c times. In the less restricted semantic
model, the read-c requirement is only for consistent accepting paths from the source to the
1-node; that is, accepting paths along which no two tests xi = d1 and xi = d2, d1 6= d2 are
made. Thus for a nondeterministic read-c semantic branching program, the overall length of
the program can be unbounded.

Note that any syntactic read-once branching program is also a semantic read-once
branching program, but the opposite direction does not hold. In fact, Jukna [22] proved
that semantic read-once branching programs are exponentially more powerful than syntactic
read-once branching programs, via the “Exact Perfect Matching"(EPM) problem. The input
is a (Boolean) matrix A, and A is accepted if and only if every row and column of A has
exactly one 1 and rest of the entries are 0’s i.e if it’s a permutation matrix. Jukna gave a
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15:4 Hardness of Function Composition for Semantic Read once Branching Programs

polynomial-size semantic read-once branching program for EPM, while it was known that
syntactic read-once branching programs require exponential size [27, 24].

Lower bounds for syntactic read-c (nondeterministic) branching programs have been
known for some time [32, 6]. However, for semantic nondeterministic branching programs,
even for read-once, no lower bounds are known for polynomial time computable functions
for the boolean, k = 2 case. Nevertheless exponential lower bounds for semantic read-c
(nondeterministic) k-way branching programs, where k ≥ 23c+10 were shown by Jukna[21].
More recently [11] obtain exponential size lower bounds for semantic read-once nondetermin-
istic branching programs for k = 3, leaving only the boolean case open. Liu [30] proved
near optimal size lower bounds for deterministic read once branching programs for function
composition.

The rest of the paper is organized as follows. In Section 2 we give the formal definitions,
present the natural upper bound and state our main result. In Section 3 we give the intuition
and proof outline. Sections 4,5 and 6 are devoted to individual parts of the proof.

2 Definitions and Statement of Results

I Definition 1. Let f : [k]n → {0, 1} be a boolean valued function whose input variables are
x1, . . . , xn where xi ∈ [k]. A k-way nondeterministic branching program for f is an
acyclic directed graph G with a distinguished source node qstart and sink node (the accept
node) qaccept. We refer to the nodes as states. Each non-sink state is labeled with some input
variable xi, and each edge directed out of a state is labelled with a value b ∈ [k] for xi. For
each input ~ξ ∈ [k]n, the branching program accepts ~ξ if and only if there exists at least one
path starting at qstart leading to the accepting state qaccept, and such that all labels along
this path are consistent with ~ξ. The size of a branching program is the number of states in
the graph. A nondeterministic branching program is semantic read-once if for every path
from qstart to qaccept that is consistent with some input, each variable occurs at most once
along the path.

Syntactic read-once branching programs are a more restricted model where no path can
read a variable more than once; in the semantic read-once case, variables may be read more
than once, but each accepting path may only query each variable once.
I Definition 2. The (ternary) height h tree evaluation problem Tree~F , has an underlying
3-ary tree of height h with n = 3h−1 leaves. Each leaf is labelled by a corresponding variable
in x1, . . . , xn. (Note that a tree with a single node has height 1.) Each internal node v is
labeled with a function F : [k]3 → [k], where ~F denotes the vector of these functions. The
input ~ξ ∈ [k]n gives a value in [k] to the leaf variables ~x. This induces a value for each
internal node in the natural way, and the output Tree~F (~ξ) is the labeling of the root. In the
boolean version, the input ~ξ is accepted if and only if Tree~F (~ξ) ∈ [k1−ε] where ε ∈ (0, 1) is a
parameter.

The most natural way to solve the tree evaluation problem is to evaluate the vertices
of the tree, via a strategy that mimics the optimal black-white pebbling of the underlying
tree. In the next section, we review this upper bound, and show that it corresponds to a
nondeterministic semantic read-once branching program of size Θ(kh+1). Our main result
gives a nearly matching lower bound (when k is sufficiently large compared to h).
I Theorem 3. For any h, and k sufficiently large (k > 242h) , there exists ε and ~F such
that any k-ary nondeterministic semantic read-once branching program for Tree~F requires

size Ω
(

k
log k

)h
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We prove the lower bound for the decision version of the tree evaluation problem, with
ε chosen to be 9h

log k . Secondly, we actually show(See appendix C) that the lower bound
holds for almost all ~F , whenever each F is independently chosen to be a random 4-invertible
function:

I Definition 4. A function F : [k]3 → [k] is 4-invertible if whenever the output value and
two of its inputs from {a, b, c} are known, then the third input can be determined up to a set
of four values. That is, for each pair of values (a, b) ∈ [k]2, the mapping F (a, b, ∗) : [k]→ [k]
is at most 4-to-1, and likewise for pairs (b, c) and (a, c).

We expect that the lower bound should still hold even if every function in ~F is fixed
to be a particular function with nice properties, although we are not able to prove this at
present. In particular, we conjecture that the lower bound still holds where for every v,
Fv(a, b, c) = a3 + b3 + c3 over the field [k]. On the other hand, if we take an associative
function such as Fv(a, b, c) = a3 · b3 · c3 again over the field [k], then there is a very small
branching program, since we can compute the root value by reading the elements one at a
time and remembering the product so far. One thing that makes proving the lower bound
difficult is not being able to properly isolate or take advantage of the differences between
these functions over a finite field. For the rest of the paper, we will refer to nondeterministic
semantic read-once branching programs as simply branching programs.

2.1 Black/White pebbling, A natural upper bound
In order to get some intuition, we first review the matching upper bound. As mentioned
earlier, the upper bound mimics the optimal black/white pebbling strategy for a tree [9]. A
black pebble placement on a node v corresponds to remembering the value in [k] labelling
that node, and a white pebble on v corresponds to nondeterministically guessing v’s value
(which must later be verified.) The goal is to start with no pebbles on the tree, and end up
with one black pebble on the root (and no other pebbles). The legal moves in a black/white
pebbling game are:
1. A black pebble can be placed at any leaf.
2. If all children of node v are pebbled (black or white), place a black pebble at v and

remove any black pebbles at the children. (When all children are pebbled, a black pebble
on a child of v can be slid to v.)

3. Remove a black pebble at any time.
4. A white pebble can be placed at any node at any time.
5. A white pebble can be removed from v if v is a leaf or if all of v’s children are pebbled.

(When all children but one are pebbled, the white pebble on v can be slid to the unpebbled
child.)

I Lemma 5. Black pebbling the root of a d-ary tree of height h can be done with (d−1)(h−1)+1
pebbles. With both black and white pebbles, only d 1

2 (d− 1)h+ 1e pebbles are needed.

Proof. We will assume that d is odd; the case of d even is similar. With only black pebbles,
recursively pebble d− 1 of the d children of the root. Then use d− 1 pebbles to remember
these values as you use (d− 1)(h− 2) + 1 more pebbles to pebble its dth child for a total of
(d− 1) + (d− 1)(h− 2) + 1 = (d− 1)(h− 1) + 1 pebbles. Then pebble the root.

Now suppose white pebbles are also allowed (see Figure 1). Recursively pebble 1
2 (d−1)+1

of the d children of the root. Then use 1
2 (d− 1) pebbles to remember these values as you use

d 1
2 (d− 1)(h− 1) + 1e more pebbles to pebble its next child for a total of 1

2 (d− 1) + 1
2 (d−
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15:6 Hardness of Function Composition for Semantic Read once Branching Programs

1

2 3 4 5 6

Figure 1 This figure describes a black/white pebbling for a d-ary tree T of height h at d=5. We
start by pebbling the height h-1 subtrees rooted at nodes 2,3 and 4. Then we proceed to the second
half of children and guess the value that subtrees at node 5 and 6 would evaluate to. Now we can
pebble the root node 1 and remove the black pebbles. The white pebble or guess at node 5 can now
be verified and then the same is done subsequently for node 6.

1)(h − 1) + 1 = 1
2 (d − 1)h + 1 pebbles. Then use white pebbles to pebble the remaining

1
2 (d−1) children of the root. Pebble the root and pick up the black pebbles from the children.
Replacing the first of these whites requires 1

2 (d− 1)(h− 1) + 1 in addition to the 1
2 (d− 1)

white ones, again for a total of 1
2 (d− 1)h+ 1. Note as a base case, when h = 2 and there is a

root with d children, d pebbles are needed, no matter what the color. J

I Lemma 6. A pebbling procedure with p black or white pebbles (and t time) translates to a
layered nondeterministic branching program with tkp states. If only black pebbles are used,
the branching program is deterministic.

Proof. On input ~ξ the branching program moves through a sequence of states β1, β2, .., βt
where the state βt′ corresponds to the pebbling configuration at time t′. Each layer of the
branching program will have kp states one for each possible assignment of values in [k] to
each of the pebbles. If a black pebble is placed on a leaf during the pebbling procedure, then
the branching program queries this leaf. If all of the children of node v are pebbled, then
the branching program knows their values v1, v2 and v3 and hence can compute the value
fv(v1, v2, v3) of the node. Remembering this new value corresponds to placing a black pebble
at v. Removing a black pebble corresponds to the branching program forgetting this computed
value. If a white pebble is placed at v, then the branching program nondeterministically
guesses the required value for this node. This white pebble cannot be removed until this
value has been verified to be fv(v1, v2, v3) using the values of its children that were either
computed (black pebble) or also guessed (white). J

Observe that when we transform the black/white pebbling algorithm in Lemma 5 using
the translation procedure presented in Lemma 6 we obtain a syntactic read once branching
program.

3 Proof Overview

The crux of the proof is a compression argument, showing that from a small branching
program, we can encode the information for a function label at a single special vertex of
the ternary input tree more efficiently than is information-theoretically possible, thereby
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obtaining a contradiction. We accomplish this by looking at the inputs read before and
after any state q in the branching program on a particular accepting computation path,
and finding one particular state q that has an associated "nice" collection of inputs. As in
earlier papers, we prove that this nice collection of inputs forms an embedded rectangle. An
embedded rectangle (formally defined in Definition 8) is a subset of inputs, all of which are
accepted and all of which pass through a special state q in the branching program. These
inputs form a combintorial rectangle but where some of the input coordinates can be fixed.
However, unlike earlier results, our embedded rectangle is required to have a very specific
structure, in order to get a simple and short encoding of a function label. Below are more
details about this specific structure and how we obtain it.

For each accepting input, we consider its accepting computation path in the branching
program. This computation path, P , induces a permutation Π on the leaf variables of the
ternary tree, defined by the order in which the leaf variables to the ternary tree are queried
along the accepting computational path P . In Lemma 12 we prove that for each accepting
input, there is a special state q along the computation path querying a special leaf variable lq,
such that many of the other leaf variables are read before q and many are read after q along
this path. More specifically, let us visualize the ternary tree for this input, with the path
from the root to the special leaf variable lq going down the middle of the tree. 2 We show
that the subtrees hanging off the left of this path (which we call the "red" subtrees) each
contain many leaf variables that have been read before reaching state q, and the subtrees
hanging off the right of this path (the "white" subtrees) each contain many leaf variables
that are read after reaching state q.

Using Lemma 12, by averaging (over all accepting inputs, permutations and states), we
prove in Lemma 9 that there exists an embedded rectangle with the following properties: we
can find a single state q (which queries leaf variable lq), a single set of "red" leaf variables, and
a single set of "white" leaf variables such that for a large collection of accepting inputs, they
all pass through state q, and the set of red leaf variables are in one-to-one correspondence
with the left subtrees, and the white leaf variables are in one-to-one corresponds with the
right subtrees. (See Figure 2.)

From there, in Lemma 15, we further refine our embedded rectangle, by identifying
a special internal node v∗ in the ternary tree, such that we can encode the function Fv∗
associated with v∗ too succinctly. The reason we get compression is because the branching
program is read-once, so the only way to transmit the information about the values of
the red variables is via the state q we are passing through. Similarly the only way to
nondeterministically guess information about the values of the white variables is also via
the same state q. Since there are only s << kh states, focusing on one particularly popular
special node q amongst accepting inputs allows us to show that there is one node v∗ in the
ternary tree, that has a single red variable x (in the left subtree of v∗) and a single white
variable y (in the right subtree) that can each take on about r values.

If all of the internal functions ~F of the ternary tree are invertible, then these r distinct
values for the red variable x produce r distinct values as they propagate up the tree to v∗.
Similarly the r distinct values for the white variable y produce this many distinct values
as they propagate up the tree to v∗. Fixing the middle input to Fv∗ , this gives rise to r2

distinct inputs to Fv∗ : the left input to Fv∗ runs over r distinct values (corresponding to the
r values for x that propagate up the tree), and the right input runs over r distinct values

2 Note that the computation path P is a sequence of states in the branching program, whereas a path in
the ternary tree is defined on the input tree.
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15:8 Hardness of Function Composition for Semantic Read once Branching Programs

(corresponding to the r values for y that propagate up the tree). Since Tree~F is a decision
problem, each input is accepted if and only if the value of the root is in the restricted set
[k1−ε]. Again if the internal functions are invertible, the size of this set would be retained as
it propagates down the tree from the root to v∗. Thus the embedded rectangle enables us to
encode the function Fv∗ on these r2 inputs much more succinctly than should be possible
as follows. First, the label L will specify the r2 special inputs to Fv∗ . What is key about
an r-by-r square is that though its area consists of r2 values, the length of its two sides is
only r << r2. This allows us to specify L using only O(r log k) bits. Secondly, the r2 output
values of Fv∗ on these r2 special inputs can be communicated with only r2 log(k1−ε) bits
instead of the usual r2 log(k) bits (since as we argued above, the output is restricted to a
set of size k1−ε rather than to a set of size k.) The details of the compression argument are
given in Section 6.

Some complications arise when trying to carry out the above proof outline, making the
actual proof more intricate. First, the compression argument requires that each ~F has a lot
of accepting instances, so we need to show that most random ~F have this property. The
more serious complication is the fact that we cannot easily count over random invertible
functions, so instead we use functions that are almost invertible. More specifically ~F is a
vector of 4-invertible functions which means that for each F ∈ ~F , knowing two of the inputs
to F and the output value, there are at most four consistent values for the third input. We
use a novel argument that allows us to count over 4-invertible functions (Section 6). Our
compression argument sketched above is then adapted to handle the case of 4-invertible
functions with a small quantitative loss. Namely when going down the path P to determine
the constraints on the output of Fi∗ on an input (ai, bj , ci,j) ∈ R, the number of allowable
values for Fi∗(ai, bj , ci,j) will be k1−ε at the root vertex, and by 4-invertibility, we will gain
a factor of four for each subsequent function along the path. Since the path height is very
small relative to r this will still give us adequate compression.

4 Most ~F have a lot of accepting instances

Let Syes = {~ξ | Tree~F (~ξ) ∈ [k1−ε]}. That is, Syes is the set of accepting inputs to Tree~F .
Let Bad(~F ) be the event that the size of Syes is significantly smaller than expected – in
particular |SY es| ≤ 1

6kε · k
n. Let F be the uniform distribution over 4-invertible functions,

and let ~F be the uniform distribution over vectors of 4-invertible functions (one for each
non-leaf vertex in the tree). Lemma 7 proves that Pr~F [Bad(~F )] is exponentially small, where
~F is sampled from ~F .

I Lemma 7. For k > 242h and ε = 9h
log k , Pr~F [Bad(~F )] ≤ 1

10 .

See section A in the Appendix for the proof. The above probability is in fact much
smaller but the above bound suffices for our purpose.

5 Finding an Embedded Rectangle

This section proves that the accepted instances of Tree~F solvable by a small branching
program contain a large embedded rectangle whenever Bad(~F ) does not occur.

Parameters. The number of variables is n = 3h−1 and each variable is from [k]. In what

follows we will fix r = 26h

ε and ε = 9h
log k . The lower bound will hold for s ≤

(
k

n26 log k

)h
. For

k sufficiently large (k > 242h), the lower bound is Ω(k/ log k)h.
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I Definition 8. For π ⊂ {1, . . . , n}, let xπ denote the set of variables {xi | i ∈ π}. An
embedded rectangle [2, 21] is defined by a 5-tuple (πred, πwhite, A,B, ~w), where:
(i) πred, πwhite are disjoint subsets of {1, . . . , n},
(ii) A ⊆ [k]|πred| is a set of assignments to xπred and B ⊆ [k]|πwhite| is a set of assignments

to xπwhite ;
(iii) ~w ∈ [k]n−|πred|−|πwhite| is a fixed assignment to the remaining variables.
The assignments defined by the rectangle are all assignments (~α, ~β, ~w) where xπred = ~α,
xπwhite = ~β and the rest of the variables are assigned ~w, where ~α ∈ A and ~β ∈ B.

5.1 Finding a rectangle over the leaves
In this section, we prove the following lemma, that shows the existence of a large embedded
rectangle of accepting instances if the branching program solving Tree~F is small.

I Lemma 9. Let B be a size s nondeterministic, semantic read-once BP over {x1, . . . , xn}
solving Tree~F for some ~F such that ¬Bad(~F ) holds. Let s be chosen as above. Then there
exists an embedded rectangle (πred, πwhite, A,B, ~w) such that:
1. |πred| = |πwhite| = h,
2. |A| × |B| ≥ k2h−ε

s23h2 ,
3. B accepts all inputs in the embedded rectangle.

In order to prove the above Lemma, we will need the following definitions.

I Definition 10. Let ~ξ be an accepting input, and let Comp~ξ be an accepting computation
path for ~ξ. Since every variable is read exactly once, Comp~ξ defines a permutation Π of
{1, . . . , n}. If q is a state that Comp~ξ passes through at time t ∈ [n], the pair (Π, q) partitions
the variables x1, . . . , xn into two sets, Red(Π, q) = {xi | Π(i) ≤ t} and White(Π, q) =
{xj | Π(j) > t}. Intuitively, since the branching program reads the variables in the order
given by Π (on input ~ξ), then Red(Π, q) are the variables that are read at or before reaching
state q, and White(Π, q) are the variables that are read after reaching state q.

I Definition 11. A labelled path P down the ternary tree is a sequence of vertices vh, . . . , v1
that forms a path from the root to a leaf of the ternary input tree. For each vertex vj of height
j along the path, its three subtrees are labelled as follows: one of its subtrees is labelled red
and is referred to as Redtree(vj), another is labelled white and is referred to asWhitetree(vj)
and lastly, Thirdtree(vj) refers to the subtree with root vj−1 that continues along the path
P . The root of Redtree(vj) will be called redchild(vj), the root of Whitetree(vj) will be
called whitechild(vj), and the root of Thirdtree(vj) will be called thirdchild(vj).

I Lemma 12. Let ~ξ be an accepting input with computation path Comp~ξ, where the ordering
of variables read along Comp~ξ is given by permutation Π of {1, . . . , n}. Then there exists a
state q and a labelled path P = vh, . . . , v1 in the ternary tree such that for all vj in the path,
2 ≤ j ≤ h Redtree(vj) contains greater than 2j−2 variables in Red(Π, q) and Whitetree(vj)
contains greater than 2j−2 variables in White(Π, q).

Proof. We will prove the above lemma by (downwards) induction on the path length. At
step j, 2 ≤ j ≤ h, we will have constructed a labelled partial path vh, vh−1, . . . , vj , an interval
[t0(j), t1(j)], and a partial coloring of the variables such that the following properties hold:
1. All variables xi such that Π(xi) ≤ t0(j) will be Red and all variables xi such that

Π(xi) ≥ t1(j) will be White. (The remaining variables that are read between time step
t0(j) and t1(j) are still uncolored.)
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2. For each vj′ , j < j′ ≤ h, Redtree(vj′) contains greater than 2j′−2 red variables, and
Whitetree(vj′) contains greater than 2j′−2 white variables.

3. The subtree of vj that continues the path, Thirdtree(vj), has at most 2j−2 red variables
and at most 2j−2 white variables.

While we construct our labelled path with the above properties it is worth mentioning
that t0(j) ≤ t1(j) always since all red variables come before white variables. Initially j = h,
the path is empty, t0[h] = 1 and t1[h] = n. Thus the size of the interval is n = 3h−1 and since
no variables have been assigned to be red or white, the above properties trivially hold. For
the inductive step, assume that we have constructed the partial path vh, . . . , vj+1. By the
inductive hypothesis, the tree rooted at vj+1 contains at most 2j−1 red variables and at most
2j−1 white variables. Thus at most one subtree of vj+1 can contain greater than 2j−2 red
variables. If one subtree of vj+1 does contain greater than 2j−2 red variables, then let this
be Redtree(vj+1). Otherwise, increase t0[j + 1] until one of vj+1’s three subtrees contains
(for the first time) more than 2j−2 red variables and let this subtree be Redtree(vj+1). Since
each of vj+1’s three subtrees has 3j−1 leaves and at most 2j−1 white variables, there are at
least 3j−1 − 2j−1 ≥ 2j−2 variables remaining in each subtree that are either uncolored or
colored red, and thus the process is well-defined.

Next we work with the remaining two subtrees of vj+1 in order to define Whitetree(vj+1).
Again by the inductive hypothesis, the tree rooted at vj+1 contains at most 2j−1 white
variables, and thus as most one subtree of the remaining two can contain greater than 2j−2

white variables. If one is found, then designate it asWhitetree(vj+1), and otherwise, decrease
t1[j + 1] until one of vj+1’s remaining two subtrees contains (for the first time) 2j−2 white
variables and designate it as Whitetree(vj+1). Again since each subtree has 3j−1 leaves and
at most 2j−1 red variables, there are at least 3j−1 − 2j−1 ≥ 2j−2 variables remaining in each
of the two subtrees that are uncolored or colored white and thus the process is well-defined.

Let the remaining subtree of vj+1 be Thirdtree(vj+1) and let the next vertex vj in
our path be thirdchild(vj+1). By construction Thirdtree(vj+1) contains at most 2j−2 red
variables and at most this same number of white variables. For the base case j = 2, by
induction we will have reached a vertex v2 with 3 child vertices, where at most one is colored
red and at most one is colored white and thus the size of the interval [t0[2], t1[2]] is between
one and three. Increase t0 and then decrease t1 so that v2 has exactly one red vertex and two
white vertices and let q be the state that Comp~ξ passes through as it reads the red child. J

Proof of Lemma 9. Consider a nondeterministic semantic read-once branching program
B for Tree~F . For each accepting input ~ξ, fix one accepting path Comp~ξ in the branching
program. Each of the n variables must be read in this path exactly once, and thus it defines
a permutation Π~ξ of the n variables. Apply Lemma 12 for ~ξ (and corresponding permutation
Π~ξ) to obtain an associated labelled path Pξ and state qξ. Do this for all accepting inputs,
and pick the pair P , q that occurs the most frequently. There are at most s possible values
for q and at most 6h−1 possible labelled paths: n = 3h−1 ending leaves of the path and
then for each of the h vertices vh′ along this path, we specify which of its subtrees are Red
and White, for another 2h−1 choices. Let S be those accepting inputs that give rise to the
popular pair P, q. Since there are at least |SY es| > 1

6kε · k
n accepting inputs, S is of size at

least
( 1

6hskε
)
kn.

Next we will select one common red variable in each of the h Red subtrees, and one
common white variable in each of the h White subtrees. Denoting the vertices of P by
vh, vh−1, . . . , v1, we will select the Red and White variables iteratively for j = h, h− 1, . . . , 1
as follows. Starting at Redtree(vj): for each ~ξ ∈ S, by Lemma 12 at least 2j−2 of its 3j−1
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variables are red, and thus there is one variable that is red in at least a 2j−2

3j−1 fraction of S.
Choose this variable, and update S to contain only those inputs in S where this variable is
red. (That is, ~ξ ∈ S will stay in S if and only if the variable is read by Comp~ξ before reaching
state q.) Do the same thing for Whitetree(vj). At the end, we will have selected for each
j one variable that is red in Redtree(vj), and one variable that is white in Whitetree(vj),
and a set of inputs S such that all h of the selected red variables (one per subtree) are
read before reaching q and all h of the selected white variables are read after reaching q.
Let πred be vector of h indices corresponding to these h red variables, where πred,j is the
index of the common red variable in Redtree(vj). and let πwhite be the vector of h indices
corresponding to these h white variables, where πwhite,j is the index of the common white
variable in Whitetree(vj). The size of S after this process will be reduced by a factor of

Πj∈[2,...,h]

(
2j−2

3j−1

)2

≥ 2−2h · 1.5−h
2
.

Our final pruning of S is to fix a partial assignment, ~w, to the remaining n−2h variables
that have not been identified as red or white. There are kn−2h choices here. Once again
choose the most popular one. Overall, for h ≥ 2 this gives

|S| ≥ 1
kε6h22h1.5h2skn−2h k

n ≥ k2h−ε

s1.5h2+8h ≥
k2h−ε

s23h2 .

Let Sred ⊆ [k]πred be the projection of S onto the coordinates of πred, the red variables
and let Swhite ∈ [k]πwhite be the projection of S onto the coordinates of πwhite, the white
variables. Let all the other variables be set according to the vector ~w. It is clear that
this gives an embedded rectangle, (πred, πwhite, Sred, Swhite, ~w). We want to show that all
assignments in the rectangle are accepted by B. To see this, consider an assignment ~α~β ~w
in the embedded rectangle, where ~α ∈ Sred is an assignment to xπred , and ~β ∈ Swhite is an
assignment to xπwhite , and ~w is an assignment to the remaining variables. By definition ~α is
in the projection of S onto πred, and thus there must be an assignment ~α~β′ ~w ∈ S. Similarly,
there must be an assignment ~α′~β ~w ∈ S. Since these assignments are in S, the computation
paths on each of them goes through q, and all variables xπred are read before reaching q,
and all variables xπwhite are read after q. We want to show that ~α~β ~w is also an accepting
input (in S). To see this, we follow the first half of the computation path of ~α~β′ ~w until we
reach q, and then we follow the second half of the computation path of ~α′~β ~w after q. In this
new spliced computation path, the variables xπred are all read (and have value ~α) prior to
reaching q, and the variables xπwhite are all read after reaching q (and have value ~β), and
since all other variables have the same values on all paths, the new spliced computation
path must be consistent and must be accepting. Therefore the input ~α~β ~w is in S and is an
accepting input. J

5.2 Refining the Rectangle
In this section, we refine the embedded rectangle given above, so that it will be a square
r-by-r rectangle.

I Definition 13. Let B be a branching program for Tree~F for some ~F such that ¬Bad(~F )
holds , and let (πred, πwhite, Sred, Swhite, ~w) be the embedded rectangle guaranteed by Lemma
9. We recall the notation/concepts from the proof of Lemma 9:
1. Let P = vh, . . . , v1 be the common labelled path in the ternary tree, where Redtree(vi),

Whitetree(vi) denotes the Red and White subtrees of vi.
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2. Let q be the common state in the branching program;
3. Let πred, πwhite be the indices of the red/white variables (h red variables altogether, one

per Red subtree, and h white variables altogether, one per White subtree);
4. For all (accepting) inputs in the rectangle, all of the variables xπred are read before q,

and all variables xπwhite are read after q.

We will now define a special kind of embedded rectangle that isolates a particular vertex
v along the path P (which corresponds to a particular function Fv).

I Definition 14. Let P = vh, . . . , v1 be the labelled path in the ternary tree, and let
r = 26h/ε. Let vi∗ be a special vertex in the path P , where πred,i∗ is the index of the red
variable in Redtree(vi∗), and πwhite,i∗ is the index of the white variable in Whitetree(vi∗).
An embedded rectangle (πred, πwhite, A,B, ~w) is special for vi∗ if:
1. |A| = |B| = r;
2. The projection of A onto xπred,i∗ has size r, and the projection of B onto xπwhite,i∗ has

size r. In other words, no two elements of A agree on the value taken by xπred,i∗ and
likewise, no two elements of B agree on the value taken by xπwhite,i∗ .

I Lemma 15. Let B be a size s branching program for Tree~F for some ~F such that ¬Bad(~F )
holds. Then (for our choice of parameters) there is an i∗ ∈ [h] and an embedded rectangle
that is special for vi∗.

Proof. Let B be a size s branching program for Tree~F and let (πred, πwhite, Sred, Swhite, ~w)
be the embedded rectangle guaranteed by Lemma 9. For each j ∈ [h], call vj red-good if
|Proj(Sred, πred,j)| ≥ r. That is, vj is red-good if Sred projected to the red variable in
Redtree(vj) has size at least r. Similarly, j is white-good if |Proj(Swhite, πwhite,j)| ≥ r.

If there are lred vertices that are red-good, then it is not hard to see that |Sred| ≤
(r−1)h−lredklred . To see this, every vj that is not red-good can take on at most r−1 values, and
the red-good ones could take on at most k values. If we similarly define lwhite to be the number
of vertices that are white-good, then similarly we have, |Swhite| ≤ (r − 1)h−lwhiteklwhite .

We want to show that there must exist an i∗ such that vi∗ is both red-good and white-good.
If not, then lred + lwhite ≤ h, and therefore |Sred × Swhite| ≤ (r − 1)hkh < rhkh. But on the
other hand, Lemma 9 dictates that |Sred × Swhite| ≥ k2h−ε

s23h2 . This is a contradiction since by

our choice of parameters (r = 26h/ε, ε = 9h/ log k, s ≤
(

k
n26 log k

)h
, n = 3h−1) we have:

k2h−ε

s23h2 ≥ k2h−ε

23h2 ·
(

326(h−1) log k
k

)h
≥ kh−ε210h2

(log k)h

= kh210h2
(

log k
29

)h
since ε= 9h

log k ,

= kh
210h2

29h

(
2h log 9h

εh

)
≥ kh26h2

εh
= rhkh since 4h+log(9h)−9>0, ∀ h≥2

Let i∗ ∈ [h] denote the index such that vertex vi∗ along the path P is both red-good
and white-good. Thus Redtree(vi∗) contains the red variable indexed by πred,i∗, and the
projection of Sred to xπred,i∗ has size at least r. Prune Sred to contain r assignments to
xπred , where we have exactly one assignment for each of the r distinct values for xπred,i∗ .
In other words, while retaining r distinct assignments to xπred,i∗ remove all but one of the
assignments in Sred consistent with the value taken by xπred,i∗ . Similarly, Whitetree(vi∗)
contains the white variable indexed by πwhite,i∗, and the projection of Swhite to xπwhite,i∗
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has size at least r. Prune Swhite to contain r assignments to xπwhite , where we have exactly
one assignment for each of the r distinct values for xπwhite,i∗ . Because the pruned sets Sred
and Swhite will be important for our encoding, the following definition describes these sets
more explicitly.

I Definition 16. The (pruned) assignments in Sred consist of r partial assignment to xπred .
Each such assignment gives a distinct value for xπred,i∗ , with the values for the rest of the
variables in xπred being completely determined by these. Let ~αi, i ∈ [r] denote the partial
assignments in Sred. That is, for each i ∈ [r], ~αi = α1

i , . . . α
h
i is a vector of h values given to

redchild(vi) for all i ∈ [h]. Viewing the vectors ~αi, i ∈ [r] as an r-by-h matrix, the entries
in column i∗ ( ~αi∗) run over the r distinct values given to xπred . Similarly, Swhite consists
of r partial assignments to xπwhite . Let ~βi, i ∈ [r] denote the partial assignments in Swhite.
That is, for each i ∈ [r], ~βi = β1

i , . . . , β
h
i is a vector of h values given to whitechild(vi) for

all i ∈ [h]. Viewed as an r-by-h matrix, the entries in column i∗ ( ~βi∗) run over the r distinct
values given to xπwhite .

It is clear from our construction that (πred, πwhite, Sred, Swhite, ~w) is an embedded rect-
angle that is accepted by B and that is special for vi∗. J

6 The Encoding

In this section, ~F is a vector of functions, one function each for each non-leaf vertex of the
ternary tree, where each F in ~F is a 4-invertible function from [k]3 to [k]. Let F denote the
uniform distribution on 4-invertible functions. Let H(F) refer to the entropy of F . Assume
that for each ~F where every constituent function is 4-invertible, we have a size s branching
program, B~F for Tree~F .

Our goal is to communicate a random ~F using less bits than is information-theoretically
possible (under the assumption of a small branching program for Tree~F ). If Bad(~F ) is true,
then we simply communicate ~F using the full H(F) bits that describe a uniformly random
4-invertible function at all the internal nodes of the tree. This requires H( ~F) = (number of
internal nodes)×H(F) bits. If Bad(~F ) is false, using Lemma 15, from B~F , we will define a
vector of information, L~F , which we call a label that will allow us to encode ~F with fewer
bits than is possible on average to get a contradiction. The following lemma describes how
one can come up with L~F .

I Lemma 17. Let ~F be such that Bad(~F ) is false, and assume that Tree~F has a small
branching program B~F . Then there exists a vector L~F that can be specified with at most
4hr log k = O(hr log k) bits such that given ~F−∗ : the knowledge of all functions in ~F except
for F∗ at one special node, L~F can be used to infer r′2 inputs (ai, bj , ci,j) ∈ [k]3, i, j ∈ [r′] in
the domain of function F∗, where r′ = r

4i∗ and i∗ is the height of node of F∗ and corresponding
to these inputs one can infer r′2 sets of outputs C(i, j) ⊂ [k], i, j ∈ [r′], specifying a small
set of values such that F∗(ai, bj , ci,j) ∈ C(i, j). Moreover,

PrF∼F [∀i, j ∈ [r′]F (ai, bj , ci,j) ∈ C(i, j)] ≤ k−
7

9·24h εr
2
.

Proof. By Lemmas 9 and 15, there is a path P , a vertex vi∗ ∈ P and an embedded rectangle
(πred, πwhite, Sred, Swhite, ~w) that is special for vi∗.

The vector L~F will consist of:
(0) a description of ~w;
(1) a description of the labelled path P ;
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A white subtree has at least one
white leaf node

h− 2

A red subtree has at least one
red leaf node

h− 2

Figure 2 This figure depicts a label L~F associated with a problem instance Tree~F obtained as a
consequence of having a small branching program B~F . A label as guaranteed by lemma 17 consists
of a labelled path P reaching a leaf node, a special vertex vi∗ along the path and a vector of r values
each: ~α and ~β respectively for the red and white sub trees at each node along the path. (We use
blue for white here).

(2) the index i∗ of the special vertex along the path;
(3) a vector < ~α1, . . . , ~αr > of r assignments as described in Definition 16.
(4) the vector < ~β1, . . . , ~βr > of r assignments as described in Definition 16.
Figure 2 depicts a labelling that is induced by a small branching program. We first check
that the length of L~F is O(hr log k). The length of (0) is n log k = 3h−1 log k. The length of
(1) is h log 6, since there are 6h labelled paths (3h−1 different paths, and 2h choices for the
labels). The length of (2) is log h. The length of (3) is hr log k, and similarly the length of
(4) is hr log k. Thus the total length is at most 4hr log k.

Given the vector L~F , the special function F∗ will be the function associated with the
vertex vi∗. For each i, j ∈ [r], the corresponding input values (ai, bj , ci,j) for F∗ are obtained
by a bottom-up evaluation of the subtree rooted at vi∗ as follows. First, using L~F parts (3)
and (4) we extract values for all red and white children of vertices in the path below vi∗.
Secondly, using L~F part (0) we extract from ~w values for all other leaf vertices of the subtree
rooted at vi∗. Now using the knowledge of all internal functions corresponding to nodes below
vi∗ (given in ~F−∗), we can evaluate the subtree rooted at vi∗ in a bottom-up fashion in order
to determine the values (ai, bj , ci,j) for redchild(vi∗), whitechild(vi∗) and thirdchild(vi∗).
Clearly, the value ci,j of thirdchild(vi∗) depends on both i, j since both red and white children
appear downstream to this node unlike say redchild(vi∗) or whitechild(vi∗).

Note that when we evaluate redchild(vi∗), whitechild(vi∗) and thirdchild(vi∗) for each
pair of i, j ∈ [r] since all of the functions in ~F are 4-invertible, we are guaranteed that
there will be at least r′ = r

4i∗ distinct values taken by redchild(vi∗) and similarly r′ = r
4i∗

distinct values taken by whitechild(vi∗) resulting in at least r′2 distinct inputs (ai, bj , ci,j)
with i, j ∈ [r′] in the domain of F∗.
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A

B

A,B ⊂ [k] |A| = |B| = r′ |{(ai, bj , ci,j)|ai ∈ A, bj ∈ B}| = r′2

Figure 3 A subset in the input domain of Fv∗ with product structure in two coordinates and
over which the possible values taken by Fv∗ has low entropy.

We will now describe how to obtain the sets C(i, j) ⊂ [k], i, j ∈ [r′], using L~F and the
functions ~F−∗. Fix an input (ai, bj , ci,j). We want to determine the set C(i, j) of possible
values for F∗(ai, bj , ci,j). Recall that for each i, j ∈ [r′], we know the value given to all inputs
of the ternary tree. We want to work our way down the path P , starting at the root vertex
vh in order to determine C(i, j). If the functions in ~F were all invertible, then knowing that
(ai, bj , ci,j) is a yes input, this limits the number of possible values of the root vertex to the
set C(i, j)h = [k1−ε]. Working down the path, since we know the values of the red child and
white child of vh, this in turn gives us another set of at most k1−ε values, C(i, j)h−1 that
vh−1 can have. We continue in this way down the path until we arrive at a set of at most
k1−ε values, C(i, j) that vi∗ can take on.

However we are not working with invertible functions, but instead with 4-invertible
functions. This can be handled by a simple modification of the above argument. Again we
start at the root of the path vh. As before, we know the values associated with the root is
the set C(i, j)h = [k1−ε]. At vertex vh′ , we define the set C(i, j)h′ based on the previous
set C(i, j)h′+1. For a particular value z ∈ C(i, j)h′+1, we know the value of redchild(vh′),
and whitechild(vh′). This gives us values z, a, b. By the definition of Fvh′ being 4-invertible,
there are at most 4 values of c such that z = Fvh′ (a, b, c). Thus we know the four possible
values of c that can lead to z at a, b. Running over all z’s in C(i, j)h′+1 defines the set
C(i, j)h′ which has size at most four times the size of C(i, j)h′+1. Thus, the size of C(i, j)i∗
is at most 4h−i∗k1−ε. We set C(i, j) equal to C(i, j)i∗.

Let F be the uniform distribution over all 4-invertible functions from [k]3 to [k]. Let
E denote the event that for every (i, j), F (ai, bj , ci,j) ∈ C(i, j). It is left to show that
PrF∼F [E] ≤ k− 7

9 εr
22−4h . Let F ′ be the uniform distribution over all functions from [k]3 to

[k/4]. Lemma 18 below shows that PrF∼F [E] ≤ PrF ′∼F ′ [E]. Thus we have:

PrF∼F [E] ≤ PrF ′∼F ′ [E] =
(
|C(i, j)|
k/4

)(r′)2

≤
(
4 · 4h−i∗ · k−ε

)(r/4i∗)2

≤ k−
7

9·24h εr
2
. J

Proof. (of Theorem 3) We are now ready to complete the proof of our main theorem. Let
~F be the uniform distribution over vectors ~F of all 4-invertible functions from [k]3 to [k].
We prove the theorem by showing that if for every ~F , if Tree~F has a size s branching

program where s ≤
(

k
n26 log k

)h
, then the expected number of bits required for encoding an

~F sampled from the distribution ~F is less than the minimum number of bits required, which
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is 3h−1H(F), giving us the contradiction. Given ~F , the encoding is as follows.
(1) If ~F ∈ Bad(~F ), encode each function using H(F) bits, thus using 3h−1H(F) bits over

all the internal functions.
(2) If ~F /∈ Bad(~F ), encode as follows.

(2a) The first part is the description of L~F .
(2b) The second part is an optimal encoding of all of ~F except for F∗.
(2c) The third part is an optimal encoding of F∗. Recall that F∗ is an element from

the (uniform) distribution (F | E) where E denotes the event that for every (i, j),
F (ai, bj , ci,j) ∈ C(i, j).

Using this encoding, the decoding procedure is as follows. Whenever Bad(~F ) holds,
we use the information in (1) in order to recover ~F . Otherwise, if ¬Bad(~F ) holds3, we
proceed as follows. First we use the label L~F from (2a) in order to determine vi∗. Then
we use label L~F from (2a) along with information about the rest of the functions from (2b)
to find the special (r′)2 inputs (ai, bj , ci,j), i, j ∈ [r′] to the function F∗. We also use the
label L~F from (2a) and information from (2b) to determine the sets C(i, j) ⊂ [k] such that
F∗(ai, bj , ci,j) ∈ C(i, j) for all i, j ∈ [r′]. We can then determine using the information from
(2c) the values F∗(ai, bj , ci,j) for all i, j ∈ [r′] (and also the remaining inputs in [k]3).

We want to compare the savings of this encoding over the optimal one that uses H( ~F)
bits. Let p = PrF∼F [E]. Then 1/p is equal to the number of 4-invertible functions divided
by the number of 4-invertible functions satisfying E. Thus, when ¬Bad(~F ) holds, the savings
of our encoding in bits is log(1/p)− |L~F |, and therefore the overall savings in bits is

(1− pBad)[log(1/p)− |L~F |] ≥ (1− pBad)
[ 7

9·24h εr
2 log k − 4hr log k

]
=
[ 7

9·24h εr
2 − 4hr

]
(1− pBad) log k

since by Lemma 17, |L~F | ≤ 4hr log k and p ≤ k− 7
9 εr

22−4h .
In the expression

[ 7
9·24h εr

2 − 4hr
]
, the quadratic dependence on r in the first term whereas

only a linear dependence in the second allows us to choose r = 26h

ε , large enough so that
we make savings. At r = 26h

ε ,
[ 7

9·24h εr
2 − 4hr

]
= r

[ 7
9·24h 26h − 4h

]
> r ∀h ≥ 1. Also, by

Lemma 7 we know pBad ≤ 1
10 and since k ≥ 242h this implies (1− pBad) log k > 1. Thus our

savings is greater than r bits, giving a contradiction. J

I Lemma 18. Let F be the uniform distribution over all 4-invertible functions from [k]3 to
[k] and let F ′ be the uniform distribution over all functions from [k]3 to [k/4]. Fix r2 inputs
τi, i ∈ [r2], and let Ci be a corresponding subset of [k], such that ∪iCi ⊆ [k/4]. E be the
event that for all i, F (τi) ∈ Ci. Then PrF∼F [E] ≤ PrF ′∼F ′ [E].

Proof. Before we proceed with the proof, wish to mention that when we use this lemma in the
proof of Lemma 17 the sets Ci involved need not be such that ∪iCi ⊆ [k/4]. However, since
| ∪iCi| ≤ k/4, one can simply consider an alternative range of size k/4 that contains ∪iCi for
functions in F ′ instead of [k/4] to arrive at the same upperbound estimate on PrF∼F [E]. So
we assume here in the hypothesis just for the ease of exposition that ∪iCi ⊆ [k/4]. Proceeding
with the proof, let Ei denote the event that F (τi) ∈ Ci, and let E<i denote the event that
for all j < i, F (τj) ∈ Cj . Then PrF∼F [E] =

∏
i PrF∼F [Ei | E<i]. We will show that for any

i, PrF∼F [Ei | E<i] ≤ PrF ′∼F ′ [Ei]. Let σ specify the values of F for all tuples except for

3 Astute reader might have observed that inorder to recognize if Bad(~F ) holds or not one needs to convey
information, albeit just 1 bit. We end up saving a lot more so we ignore it.
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τi. Then PrF∼F [Ei | E<i] ≤ maxσPrF∼F [Ei | σ]. That is, the true probability is at most
the probability where we fix all values except for the value of F on τi to the worst possible
scenario.

We want to show that this probability only increases when the distribution switches from
F to F ′. But then note that under the distribution F ′, the values σ do not change the
probability. Thus we want to show: PrF∼F [Ei | σ] ≤ PrF ′∼F ′ [Ei | σ] ≤ PrF ′∼F ′ [Ei].

To prove the first inequality, note that σ specifies all but one of the [k]3 inputs to F . We
visualize this as a k-by-k-by-k cube, where all entries (x, y, z) are filled in with a value in
[k] except for the one entry corresponding to τi. We want to get an upper bound on how
many values we can choose for this last entry and still have a 4-invertible function. When
choosing this last value, in order for F to be 4-invertible, we cannot choose one of the at
most k/4 values that already appears four times along the “x" dimension, or one of the at
most k/4 values that already appears four times in the “y" dimension, or k/4 times in the
“z" dimension. This rules out at most 3k/4 values, leaving at least k/4 possible values. Thus
there is a set of at least k/4 values that can legally be filled in for F (τi) (even under the
worst possible σ), and because F is uniform on such functions, these completions all have
the same probability. The event Ei is when F (τi) is chosen to be in Ci. This probability is
at most that for the distribution F ′ on all functions from [k]3 to [k/4]. J

7 Conclusion

It is open to prove lower bounds for function composition for the case of Boolean non-
deterministic semantic read-once branching programs. In fact, it is open to prove lower
bounds for the Boolean case for any explicit function. Another longstanding open problem
is to break the Nečiporuk barrier of n2/ log2 n for deterministic branching programs, and
n3/2/ logn for nondeterministic branching programs. When g is the parity function, this
bound is optimal. Lower bounds for f ◦ g for g equal to the element distinctness function (or
even for the majority function) would be a significant breakthrough.
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A Proofs

Proof of lemma 7: For k > 242h and ε = 9h
log k , Pr~F [Bad(~F )] ≤ 1

10 .

Proof. We will choose a random ~F somewhat indirectly as follows. First, we sample a random
vector ~F ∈ ~F . Secondly, we choose a random permutation Π of the values [k], and let Π(~F )
be the same as ~F except that the root values have been permuted by Π. (This requires only
changing the outputs of the function at the root.) Note that this distribution on ~F is identical
to the uniform distribution over ~F . It follows that Pr~F [Bad(~F )] = Pr〈~F ,Π〉[Bad(Π(~F ))]. We

will consider the worst case value of ~F in order to bound the above probability. Observe that

Pr
〈~F ,Π〉

[Bad(Π(~F ))] ≤ Max~F Pr
Π

[Bad(Π(~F )) | ~F ].

Fix such a worst case ~F . For this ~F , for each value v ∈ [k] let qv denote the fraction of leaf
values ~ξ that give value v at the root. Note

∑
v qv = 1 and Avgv qv = 1

k .
Because the permutation Π is randomly chosen, Π−1([k1−ε]) is a random subset of [k] of

size k1−ε. Therefore via linearity of expectation,

Exp

(
|Syes|
|{~ξ}|

)
= Exp

 ∑
v∈Π−1([k1−ε])

qv

 = k1−ε

k
= k−ε.
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We want to bound the probability that the size of Syes is significantly smaller than its
expected value of k1−ε. But first, the lemma below proves that 0 ≤ qv ≤ 4h−1

k .

I Lemma 19. ∀v ∈ [k], qv ≤ 4h−1

k
.

Proof. Fix ~F . Fix all of the leaf values as in ~ξ, except for the left most leaf. Working down
from the root, for any value v at the root one can see that there are at most 4h−1 values
in [k] for this left most leaf that can lead to value v at the root of ~F . This is because each
internal function is 4-invertible and for any fixed value of an internal node, given the value
of two of its children(subtree evaluations) there are at most 4 possible values the other child
can take. J

We select a uniformly random set of size k1−ε to be mapped to [k1−ε] as follows. Flip a
biased coin for each point ‘v’ in [k] to be selected with probability k−ε. Given a vector of
qv describing the fraction of inputs that map to v, let Qv be a vector of random variables
associated with corresponding coin flips with each of them taking value qv with probability
k−ε and 0 with the remaining 1− k−ε. The expected number of points selected is k1−ε. The
experiment repeats until the number of points selected is within some standard deviations
say c.k 1−ε

2 of the mean k1−ε. Let’s first analyze the number of inputs selected corresponding
to the points selected in the process without the size requirement on number of points.

We are interested in the fraction of inputs that get to be Yes inputs as a result of being
selected during the coin flipping process. Let QY es =

∑
v Qv. So

E[QY es] =
∑
v

E[Qv] =
∑
v

qvk
−ε = k−ε. (1)

In this experiment Qv are independent (but not necessarily identically distributed) non-
negative random variables. Consequently QY es obeys the following concentration bound[7]
around its mean

Prob [ (E[QY es]−
∑
v

Qv) ≥ t ] ≤ e

(
−t2

2
∑

v
E[Q2

v ]

)
(2)

Since by the regularity property from Lemma 19 we have qv ≤ 4h−1

k
for all v ∈ [k]

∑
v

E[Qv2] =
∑
v

qv
2k−ε = k−ε

∑
v

qv
2 ≤ k−ε

∑
v

(
4h−1

k

)2

= k−εk ·
(

4h−1

k

)2

= 42h−2

k1+ε

=⇒ Prob [ (E[QY es]−QY es) ≥ t ] ≤ e

(
−t2

2
∑

v
E[Q2

v ]

)
≤ e

(
−t2

2
(

42h−2
k1+ε

))
= e

−t2k1+ε

2·42h−2

Consequently,

Prob [QY es ≤ E[QY es]− t ] ≤ e
−t2k1+ε

2.42h−2 (3)

Set t = 1
2kε for the event Bad′ = [QY es ≤ E[QY es]− t ] = [QY es ≤ 1

2kε ].

pBad′ = Prob

[
QY es ≤

1
2kε

]
≤ e

−k1−ε

8.42h−2 (4)

Now consider the following transformed process in which the experiment repeats until
number of points selected is within some fixed deviation g from the mean. Let the set of
points be A. Depending on the count of number of points in A selected, if the count falls
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below k1−ε a few more points are uniformly randomly selected from [k] \A to obtain a set
of size k1−ε and likewise if the number is larger than k1−ε the required number of points
are uniformly randomly discarded from the set. Clearly, this process doesn’t discriminate
against any point in [k] and so generates a uniformly random subset of size exactly k1−ε from
[k]. Let call this set A′′ , it shall be our final set of size k1−ε. Let pBad be the probability
that the fraction of inputs associated with the set of points in A′′ is less than 1

6kε . For the
intermediate set A let U be the event [k1−ε − g ≤ |A| ≤ k1−ε + g]. Then,

Prob [Bad′ | U ] = Prob(Bad′ ∩ U)
Prob(U) ≤ Prob(Bad′)

Prob(U) (5)

Since |A| is binomially distributed with (n, p) = (k, k−ε), seen as a sum of independent
non-negative random variables, for a deviation g ≈ 2k 1−ε

2 we have the following concentration
guaranteed by (2)

Prob(U) = Prob
[
k1−ε − 2k

1−ε
2 ≤ |A| ≤ k1−ε + 2k

1−ε
2

]
≥ 0.8 (6)

By (4) it follows that Prob(Bad′) ≤ e
−k1−ε

8.42h−2 and together with (6) and (5) this implies

Prob [Bad′ | U ] ≤ 5
4e

−k1−ε

8.42h−2 (7)

the chance that SAY es is small is exponentially small. Now consider the transformation of A to
A′′. Note that whenever new points are added to A or some points in A are discarded so as
to obtain A′′ i.e a uniformly random choice of a set of exact size k1−ε the change from SAY es
to SA′′Y es is at most g.maxv qv. But by regularity property given by Lemma 19, qv ≤ 4h

k . So∣∣∣|SA′′Y es| − |SAY es|
∣∣∣ ≤ g. 4

h

k ≈ k
1−ε

2 4h
k = 4h

k
1−ε

2 +ε
=
(

4h

k
1−ε

2

)
1
kε ≤

1
3kε for k > 242h at ε = 9h

log k .

The resulting set A′′ will then always have size at least 1
2kε −

1
3kε = 1

6kε whenever QAY es > 1
2kε .

This implies pBad = Prob
[
QA

′′

Y es ≤ 1
6kε

]
≤ Prob

[
QAY es ≤ 1

2kε
]

= Prob [Bad′ | U ] and hence

≤ 5
4e
−k1−ε

8.42h−2 .

For k > 242h and ε = 9h
log k it can be seen that pBad ≤ 5

4e
−k1−ε

8.42h−2 ≤ 5
4 ( 1
e

242h−9h
24h−1 ) ≤ 1

228h ≤
1
10 , ∀h ≥ 1. J

B Nečiporuk via Function Composition

Consider the composition of two boolean functions f : {0, 1}a → 0, 1 and g : {0, 1}b → {0, 1}.
Let f be a hard function in the sense that any non-deterministic branching program computing
f requires size at least 2a/2. Such functions are guaranteed to exist by a simple counting
argument. Fix g to be any function such that it does not take a constant value when all but
any one of its b input bits are set.

I Lemma 20. Any non-deterministic branching program solving f ◦ g has size at least b2a/2.

Proof. Let there be a non-deterministic branching program solving f ◦ g of size s. For each
of the a copies of g in the composition f ◦ g pick the least queried input bit from amongst
each group of b input bits that correspond to a single copy of g, then set all remaining b− 1
variables in this input group to any value and reconnect the outgoing edges amongst the
remaining states appropriately. The resulting collapsed branching program has size at most
s
b . But recall that g has the property that fixing b − 1 of its input bits doesn’t make the
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function a constant. Thus the resulting collapsed branching program has to have size at
least that required for computing f , that is 2a/2. Therefore the original non-deterministic
branching program must have size at least s ≥ b2a/2. J

Let g = ⊕ be the parity function on b bits. The input to f ◦ ⊕ is the description of f ,
plus a vector of ab bits (the input to f ◦ ⊕). The input length is 2a + ab. Setting a = logn
and b = n

logn , the input length is 2n. By the above lemma, the size of a branching program

required to solve the composition f ◦ ⊕ is at least b2a/2 =
(

n
logn

)(
2

logn
2

)
= n3/2

logn . This
lower bound is also known to be the best achievable by Nečiporuk as shown by Beame and
McKenzie in [5].

By essentially similar means an Ω
(

n2

log2 n

)
lower bound can be shown for deterministic

branching programs. Consider deterministic branching programs solving f ◦ g where f is now
a hard function in the sense that any deterministic branching program computing f requires
size at least 2a

a (once again such functions are guaranteed to exist by counting argument).
Just as before, fix g = ⊕ to be the parity function (or any function that is not constant
when all but any one of its input bits are set.) A similar argument shows that any branching
program solving f ◦ ⊕ requires size at least b 2a

a . Set a = logn and b = n
logn to obtain an

Ω
(

n2

log2 n

)
lower bound.

C The lower bound holds for most ~F

We now argue that for most vectors of 4-invertible functions ~F , Tree~F does not have a small
branching program. We show that the probability that a uniformly randomly chosen ~F

has a small branching program is at most pBad + 1
2r ≤

1
227h . First, let #L = 2|L~F | be the

total number of labels. Recall that |L~F | is the number of bits needed to encode a label and
that the number of bits saved in our alternate encoding from the proof of Theorem 3 is
(1− pBad)[log(1/p)− |L~F |] = (1− pBad) log

(
1

p·#L

)
.

Note that for a uniformly randomly chosen ~F the probability that it has a small branching
program is at most the chance that Bad(~F ) holds plus the chance that Bad(~F ) doesn’t hold
and there exists a label L that is consistent with ~F (in other words a label obtained via
lemma 17 as a guaranteed consequence of ~F having a small branching program).

Pr~F [∃ a small BP solving Tree~F ]
≤ Pr~F [Bad(~F ) ∪ [¬Bad(~F ) ∩ ∃ a label L consistent with ~F ]
≤ pBad + Pr~F [¬Bad(~F ) ∩ [∃ a label L that is consistent with ~F ]] (by Union bound)
≤ pBad + Pr~F [∃ a label L that is consistent with ~F ] (since

P (A ∩B) ≤ min{P (A), P (B)})
≤ pBad + #L ·maxL Pr~F [ label L is consistent with ~F ] (by Union bound)
≤ pBad + p.#L

We have shown in the proof of theorem 3 that the number of bits saved in our alternate
encoding is is at least r. So,
(1− pBad) log( 1

p·#L ) ≥ r =⇒ 1
p·#L ≥ 2r/(1−pBad) ≥ 2r =⇒ p ·#L ≤ 1

2r .
Consequently it follows that:

Pr~F [∃ a small BP solving Tree~F ] ≤ pBad + 1
2r

Now note that the proof of Lemma 7 (see Appendix A) actually shows that pBad ≤ 2−28h.
As a result, Pr~F [∃ a small BP solving Tree~F ] ≤ 1

228h + 1
2r ≤

1
227h . (the last inequality

follows since r = 26h

ε = 26h log k
9h ≥ 26h+2). Thus we can conclude that most vectors of

4-invertible functions in fact do not have small branching programs.
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1 Introduction

An Ordered Binary Decision Diagram (OBDD) is a branching program such that variables
are queried in the same order on every path from the source to a sink. OBDDs were
defined by Bryant [3] and have been shown to be useful in a variety of domains, such as
hardware verification, model checking, and other CAD applications [4, 15]. Perhaps their
most important property is that it is possible to carry out operations on OBDDs efficiently,
including Boolean operations, projection, and testing satisfiability.

OBDDs have been used for several approaches to SAT-solving [17, 22]. The first such
algorithms [22] worked by computing an OBDD for bigger and bigger subformulas of the
input formula until obtaining an OBDD for the entire input formula, and then testing the
resulting OBDD for satisfiability. A more attractive algorithm, called symbolic quantifier
elimination, was proposed by Pan and Vardi [17]. Symbolic quantifier elimination loads
clauses of the input formula into the current OBDD one by one and applies projection by a
variables which do not appear in the remaining clauses. In contrast with DPLL algorithms,
symbolic quantifier elimination can solve Tseitin formulas [11] and the pigeonhole principle [6]
in polynomial time.

Atserias-Kolaitis-Vardi [1] defined a proof system based on OBDDs for proving unsatis-
fiability of CNFs, which is now called OBDD(∧,weakening). An OBDD(∧,weakening) proof
is a sequence of π-OBDDs with the ordering π of the variables held fixed. The initial lines
are π-OBDDs expressing the input clauses; the final line is the constant false. Each step of
the proof applies one of the two rules:
Join (or ∧): A conjunction of any two previously derived π-OBDDs is inferred;
Weakening: A π-OBDD is inferred that is semantically implied by some earlier derived

π-OBDD.
The correctness of a proof step can be checked in polynomial time; in particular, checking if
D1 is a weakening of D2 can done by verifying that D2 ∧ ¬D1 is unsatisfiable.

The paper [1] showed that Cutting Planes with unary coefficients (CP∗) is simulated
by OBDD(∧,weakening). This was proved by showing that any linear inequality has a
short π-OBDD representation (under any ordering π) and that addition of two inequalities
may be simulated by join and weakening. Hence, OBDD(∧,weakening) is strictly stronger
than resolution; however, Segerlind [19] showed that tree-like OBDD(∧,weakening) does
not simulate (dag-like) resolution. Additionally, [1] showed that any unsatisfiable system of
linear equation modulo two has a short refutation in OBDD(∧,weakening), while it is open,
whether linear systems have short CP refutations. It is still open whether CP is strictly
stronger than CP∗, and correspondingly it is open whether OBDD(∧,weakening) simulates
CP.

Krajíček [14] proved the first exponential lower bound for OBDD(∧,weakening). His
lower bound consisted of two parts.
1. If a function f is computed by a π-OBDD D, the communication complexity of f under a

partition Π0,Π1 of the variables where the variables in Π0 precede (in the sense of π) the
variables from Π1 is at most dlog |D|e+1. Since every proof system that operates with proof
lines with small communication complexity admits monotone feasible interpolation [13],
there is an ordering π of the variables so that any π-OBDD(∧,weakening) proof of the
Clique-Coloring principle has exponential size. (This was already proven by Atserias et
al. [1]).

2. Formulas which are hard for OBDD(∧,weakening) in some order can be transformed
into formulas that are hard for OBDD(∧,weakening) in all orders. This transformation
behaves well for constant width formulas.
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In the paper we use another transformation due to Segerlind [19]; we use it to prove
Lemma 1 and Theorem 10. This transformation behaves well for formulas which grow
polynomially under “orification”.

Theorem 8, proved in Section 6, gives short (polynomial size) OBDD(∧,weakening)
proofs of the Clique-Coloring principle. Since any CP proof of the Clique-Coloring principle
has exponential size [18], it follows that CP does not simulate OBDD(∧,weakening) and
moreover, that OBDD(∧,weakening) is strictly stronger than CP∗. The existence of the
small proofs of the Clique-Coloring principle implies that OBDD(∧,weakening) does not
have the feasible interpolation property. This is very curious, because the monotone feasible
interpolation property nonetheless helps to prove lower bounds for this system.

Our short proofs of the Clique-Coloring principles are based on Grigoriev et. al [9], who
gave short proofs of Clique-Coloring in LS4, a proof system that uses inequalities of degree 4.
Unfortunately, even inequalities of degree 2 do not have short OBDD representation, in
contrast to inequalities of degree 1. Nevertheless, the proof of [9] may be simulated in
OBDD(∧,weakening) in some order over the variables.

An interesting subsystem of OBDD(∧,weakening) is the system OBDD(∧) that uses only
the join rule; this system is connected with early OBDD algorithms for SAT-solving [22].
Tveretina et al. [21] proved that PHPn+1

n is hard for OBDD(∧). Grut and Zantema [10]
showed that there is an unsatisfiable formula (not in CNF) such that it has an efficient
construction in OBDDs and any resolution proof of its Tseitin transformation has exponential
size. Because of the different translations, the question of an actual separation between
OBDD(∧) and resolution was left open. In Corollary 12 and Lemma 13, we improve their
result by giving CNF formulas which have polynomial size OBDD(∧) proofs but require
superpolynomial (actually, quasipolynomial size) resolution proofs.

Järvisalo [12] claimed an exponential separation between tree-like resolution proofs and
(dag-like) OBDD(∧) proofs. Unfortunately, as is discussed in Section 5, the proof for the
last claim was erroneous. We correct the proof and establish an even stronger result: the
proof of Theorem 32 shows that there is a formula ψn such that in some order π any tree-like
π-OBDD(∧,weakening) proof of ψn has exponential size, but there is a short OBDD(∧)
proof of ψn in another order. Note that tree-like π-OBDD(∧,weakening) simulates tree-like
resolution for any order π.

So far, we have only discussed OBDD proof systems for which proofs consists of π-OBDDs
in the same fixed order π. This constraint is somewhat artificial since there is an algorithm
to transforms an OBDD in one order into an OBDD in another order which runs in time
polynomially bounded by the combined sizes of the input and output OBDDs. Accordingly,
Itsykson et al. [11] introduced the proof system OBDD(∧, reordering). This system includes
a reordering rule which allows changing an OBDD to a different variable ordering. It
also includes the join (∧) rule, but with the condition that the two conjoined OBDDs use
the same variable ordering. They showed that OBDD(∧, reordering) does not have short
proofs of PHPn+1

n or of Tseitin formulas based on expanders. Additionally, they showed that
OBDD(∧, reordering) is strictly stronger than OBDD(∧). In Theorem 10, we resolve an open
question of [11] by showing that OBDD(∧,weakening, reordering) is strictly stronger than
OBDD(∧,weakening).

Theorem 24 constructs formulas that have tree-like OBDD(∧, reordering) proofs of small
size but require superpolynomially larger size (dag-like) OBDD(∧,weakening) proofs. The
proof uses a result of [7] and formulas that have short OBDD(∧) refutations but require
superpolynomial size resolution proofs. This method also allows constructing formulas
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Res

CP∗

CP

OBDD(∧)
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Figure 1 C1 −→ C2 denotes C1 p-simulates C2, and C1 99K C2 denotes C1 does not p-simulate
C2. The results are for the dag-like versions of the systems. New results are labelled with the
relevant theorem. All the separations on the picture are exponential, except the two separations
labeled by “q.p” for “quasipolynomial”.

that are hard for CP but easy for OBDD(∧), see Theorem 23. In Theorem 32, we give
CNF formulas which have polynomial size tree-like OBDD(∧, reordering) proofs but require
exponential size for tree-like OBDD(∧,weakening) proofs.

A summary of the (non-)simulation results for dag-like systems is shown in Figure 1.
There are still a few questions left open about the systems shown there. First, it is
a long-standing open problem whether CP∗ simulates CP. Second, it is open whether
OBDD(∧,weakening) simulates CP. Third, we do not know whether resolution is simu-
lated by OBDD(∧, reordering). In fact, we do not know whether resolution is simulated
by OBDD(∧). A couple of earlier papers have claimed that resolution is not simulated by
OBDD(∧), see Theorem 5 of [21] and Corollary 4 of [12], but we have been unable to verify
their proofs.1

All the other missing arrows in Figure 1 follow from the arrows shown. For instance,
OBDD(∧) does not simulate CP∗, since OBDD(∧, reordering) does not simulate CP∗.

1 The difficult point in the proofs is in Lemma 8 of [21] and in Lemma 4 of [12]. In the former, it is
shown that two distinct nodes in an OBDD B(F,≺) correspond to two distinct nodes in another OBDD
B(F ∪G,≺); however, it does not follow from this that n distinct nodes in B(F,≺) correspond to n
distinct nodes in B(F ∪ G,≺). A similar technique is implicitly used in the latter paper, and it is
possible to give a counterexample to Lemma 4 of [12].
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Further research

Segerlind showed [19] that dag-like resolution does not polynomially simulate tree-like
OBDD(∧,weakening), hence dag-like OBDD(∧,weakening) is strictly stronger than tree-
like OBDD(∧,weakening). It is open whether OBDD(∧), OBDD(∧, reordering) and
OBDD(∧,weakening, reordering) are simulated by their tree-like versions.

It is interesting open question, whether resolution quasipolynomially simulates OBDD(∧).
Any improving of our separation will automatically improve separations between CP vs.
OBDD(∧) and OBDD(∧,weakening) vs. OBDD(∧, reordering).

The major open question is to prove a superpolynomial lower bound on the size of
OBDD(∧,weakening, reordering) refutations.

2 Preliminaries

2.1 Ordered Binary Decision Diagrams
An ordered binary decision diagram (OBDD) is used to represent a Boolean function [3]. Let
Γ = {x1, . . . , xn} be a set of propositional variables. A binary decision diagram (BDD) is a
directed acyclic graph with one source. Each vertex of the graph is labeled by a variable
from Γ or by a constant 0 or 1. If a vertex is labeled by a constant, then it is a sink (has
out-degree 0). If a vertex is labeled by a variable, then it has exactly two outgoing edges:
one edge is labeled by 0 and the other edge is labeled by 1. Every binary decision diagram
defines a Boolean function {0, 1}n → {0, 1}. The value of the function for given values of
x1, . . . , xn is computed as follows: we start a path at the source and at every step follow the
edge that corresponds to the value of the variable labelling the current vertex. Every such
path reaches a sink, which is labelled either 0 or 1: this constant is the value of the function.

Let π be a permutation of the set [n] = {1, . . . , n}. A π-ordered binary decision diagram
(π-OBDD) is a binary decision diagram such that on every path from the source to a sink
every variable has at most one occurrence and the variable xπ(i) can not appear before
xπ(j) if i > j. An ordered binary decision diagram (OBDD) is a π-ordered binary decision
diagram for some permutation π. By convention, every OBDD is associated with a single
fixed permutation π. This π puts a total order on all the variables, even if the OBDD does
not query all variables.

OBDDs have a number of nice properties. Size of an OBDD is the number of vertices in it,
and for a fixed ordering π of variables, every Boolean function has a unique minimal π-OBDD.
Furthermore, the minimal π-OBDD of a function f may be constructed in polynomial time
from any π-OBDD for the same f . There are also polynomial-time algorithms which act
on π-OBDDs and efficiently perform the operations of conjunction, negation, disjunction,
and projection [16]. (Projection is the operation that maps a π-OBDD D computing
the Boolean function f(x, y1, . . . , yn) to a π-OBDD D′ computing the Boolean function
∃x f(x, y1, . . . , yn).) In addition, there is an algorithm running in time polynomial in
the combined sizes of the input and the output which takes as input a π-OBDD D and a
permutation ρ, and returns the minimal ρ-OBDD that represents the same function as D [16].

2.2 Proof Systems

2.2.1 Resolution
For an unsatisfiable CNF formula ϕ, a resolution refutation of ϕ (often called a “resolution
proof”) is a sequence of clauses with the following properties: the last clause is an empty
clause; and every clause is either a clause of the initial formula ϕ, or can be obtained from
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previous ones by the resolution rule. The resolution rule allows inferring a clause (B ∨ C)
from clauses (x∨B) and (¬x∨C). The size of a resolution refutation is the number of clauses
in it. It is well known that the resolution proof system is sound and complete. Soundness
means that if a formula has a resolution refutation then it is unsatisfiable. Completeness
means that every unsatisfiable CNF formula has a resolution refutation. If every clause is
used as a premise of the inference rule at most once, then the proof is tree-like.

2.2.2 Cutting Planes

Before we give a definition of this proof system let us define the translation of clauses into
linear inequalities by the following rule: if C =

n∨
i=1

xbii , then L(C) is the following inequality
n∑
i=1

(−1)1−bixi ≥ 1−
n∑
i=1

(1− bi) where x0 denotes ¬x and x1 denotes x. For an unsatisfiable

CNF formula ϕ over the variables x1, . . . , xn, a Cutting Planes refutation of ϕ is a sequence
of inequalities I1, . . . , It of the type

n∑
i=1

aixi ≥ c (where ai, c ∈ Z) such that It is an inequality

0 ≥ 1 and every inequality Ij either is L(C) where C is some clause of the initial formula ϕ
or can be obtained from previous inequalities by the following rules:

Linear Combination: Ij is an inequality
n∑
i=1

(α·ai+β ·bi)xi ≥ αc+βd where for some α, β > 0

and 1 ≤ k, ` < j, Ik is an inequality
n∑
i=1

aixi ≥ c and I` is an inequality
n∑
i=1

bixi ≥ d;

Division: Ij is an inequality
n∑
i=1

aixi ≥ dc/de, where for some k < j, Ik is an inequality
n∑
i=1

daixi ≥ c.

The size of such a refutation is the number of inequalities.
Additionally, we say that an unsatisfiable CNF formula ϕ has CP∗ refutation of size S

iff there is a CP refutation of ϕ such that the sum of absolute values of coefficients in the
inequalities in this proof is at most S.2

We say that an unsatisfiable CNF formula ϕ has a semantic CP refutation (semantic CP∗

refutation) of size S if there is a CP refutation of ϕ of size S such that instead of these rules
we allow deriving any semantic implication of at most two previously derived inequalities.
Note that semantic CP (semantic CP∗) is not a Cook–Reckhow proof system since it is
NP-hard to check the correctness of the semantic rule. A proof is tree-like if every inequality
is used as a premise of an inference at most once.

2.2.3 OBDD-based Proof Systems

Let ϕ be an unsatisfiable CNF formula. An OBDD proof of ϕ is a sequence D1, D2, . . . , Dt of
OBDDs and permutations π1, . . . , πt such that Dt is a πt-OBDD that represents the constant
false function, and such that each Di is either a πi-OBDD which represents a clause of ϕ or
can be obtained from previous OBDDs by one of the following inference rules:
Join (or ∧): Di represents the Boolean function Dk ∧D` for 1 ≤ `, k < i, where Di, Dk, D`

have the same order πi = πk = π`;

2 Many authors define CP∗ differently, by bounding the coefficients by a polynomial of the size of the
formula. All the results for CP∗ stated in the present paper hold under both definitions.
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Weakening: there exists a 1 ≤ j < i such that Di and Dj have the same order πi = πj , and
Dj semantically implies Di. The latter means that every assignment that satisfies Dj

also satisfies Di;
Reordering: Di is a πi-OBDD that is equivalent to a πj-OBDD Dj with 1 ≤ j < i.
Note that although we use terminology “OBDD proof”, it is actually a refutation of ϕ. By
the discussion in the previous section, there is a polynomial time algorithm which recognizes
whether a given D1, . . . , Dt and π1, . . . , πt is a valid OBDD proof of a given ϕ. The size of

this proof is equal to
t∑
i=1
|Di|.

We use several different OBDD proof systems with different sets of allowed rules. For
example, the OBDD(∧,weakening) proof system uses conjunction and weakening rules; hence,
all OBDDs in such a proof have the same order π. We use the notation π-OBDD(∧) proof
and π-OBDD(∧,weakening) proof to explicitly indicate the ordering. If every Di is used as
a premise of the inference rule at most once, then the proof is tree-like.

3 OBDD(∧, weakening, reordering) is Strictly Stronger Than
OBDD(∧, weakening)

This section constructs formulas which are easy for OBDD(∧,weakening, reordering) and
hard for OBDD(∧,weakening). For this, we construct a transformation T = T (ϕ) such that

If a formula ϕ is hard for π-OBDD(∧,weakening) for some order π, then T (ϕ) is hard
for OBDD(∧,weakening); i.e., T (ϕ) is hard for any order.
If a formula ϕ is easy for π-OBDD(∧,weakening) for some order π, then T (ϕ) is easy
OBDD(∧,weakening, reordering).

Then we construct a formula ϕ such that there are two orders π1 and π2 such that ϕ is hard
for π1-OBDD(∧,weakening) but easy for π2-OBDD(∧,weakening). As a corollary, we get
that T (ϕ) separates OBDD(∧,weakening, reordering) and OBDD(∧,weakening).

We will apply this transformation to a formula ϕ expressing the Clique-Coloring principle
(Clique-Coloringn,m) that any (m − 1)-colorable graph on n vertices does not contain
a clique of size m for m ≈

√
n. Atserias, Kolaitis, and Vardi [1] proved (see also Kra-

jíček [14]) that Clique-Coloringn,m is hard for π-OBDD(∧,weakening) for some order π.
However, in Section 6 we show that there is an order π such that Clique-Coloringn,m has
a π-OBDD(∧,weakening) proof of size polynomially bounded by n and m.

3.1 Construction of T
The transformation T is the same as a construction of Segerlind [19]. We develop the
definition of T in stages. As a first approximation, we define how to transform a formula
ϕ(x1, . . . , xn) into a formula permSn(ϕ)(z1, . . . , z`, x1, . . . , xn) where ` = dlog(n!)e. Fix an
injective map rep : Sn → {0, 1}` that maps the set of permutations of [n] into binary strings
of length `. The formula permSn(ϕ) is defined by:

permSn(ϕ)(z1, . . . , z`, x1, . . . , xn) =
∧
σ∈Sn

[(∧̀
i=1

zi = rep(σ)i

)
→ ϕ

(
xσ(1), . . . , xσ(n)

)]
∧

∧
t∈{0,1}`\rep(Sn)

¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧ z` = t`).

Note that it is easy to convert permSn(ϕ) into a formula in CNF. We just add to
each clause of ϕ(xσ(1), . . . , xσ(n)) the literals z1−rep(σ)1

1 , z
1−rep(σ)2
1 , . . . , z

1−rep(σ)`
` , where z0

i
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denotes ¬zi, and z1
i denotes zi, and also add the clauses ¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧

z` = t`). It is easy to see that the formula permSn(ϕ) is unsatisfiable since if a substitution
to variables z1, z2, . . . , z` does not correspond to a representation of some permutation,
then this substitution falsifies the constraint ¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧ z` = t`) and
if a substitution to the variables z1, z2, . . . , z` corresponds to a permutation σ, then the

formula
( ∧̀
i=1

zi = rep(σ)i
)
→ ϕ(xσ(1), . . . , xσ(n)) is falsified by this substitution, since ϕ is

unsatisfiable.
Applying the partial substitution zi := rep(σ)i for all i to permSn(ϕ)(z1, . . . , z`, x1, . . . , xn)

yields the formula ϕ(xσ(1), . . . , xσ(n)). This implies that if ϕ requires a
π-OBDD(∧,weakening) proof of size S for some order π, then permSn(ϕ) requires an
OBDD(∧,weakening) proof of size S in any order. Indeed, let τ be an order on the vari-
ables z1, z2, . . . , z`, x1, x2, . . . , xn and let σ be the order on the variables x1, . . . , xn induced
by τ . The substitution z1z2 . . . z` := rep(πσ−1) transforms a τ -OBDD(∧,weakening) proof
of permSn(ϕ) to a π-OBDD(∧,weakening) proof of ϕ with no increase in size. Hence the
size of the minimal OBDD(∧,weakening) proof of permSn(ϕ) is at least S.

The problem with the transformation permSn is that permSn(ϕ) can be exponentially
big. So the next idea for a transformation is to consider a small “good” set of permutations
Π ⊆ Sn instead of all of Sn. Letting ` = dlog |Π|e and letting rep now be some injective map
rep : Π→ {0, 1}`, we define analogously

permΠ(ϕ)(z1, . . . , z`, x1, . . . , xn) =
∧
σ∈Π

[(∧̀
i=1

zi = rep(σ)i

)
→ ϕ

(
xσ(1), . . . , xσ(n)

)]
∧

∧
t∈{0,1}`\rep(Π)

¬(z1 = t1 ∧ z2 = t2 ∧ · · · ∧ z` = t`).

The problem with this is that it is possible that πσ−1 does not belong to Π.
To solve this problem we orify variables: each variable xi is replaced by the disjunction ofm

fresh variables yi,1, . . . yi,m; i.e., instead of ϕ(x1, x2, . . . , xn) we consider ϕ∨m(y1,1, . . . , yn,m) =

ϕ

(
m∨
j=1

y1,j , . . . ,
m∨
j=1

yn,j

)
. Now let Π ⊆ Smn and consider permΠ(ϕ∨m). As in previous case

we want to substitute variables to a proof of permΠ(ϕ∨m) in some order and get a proof
of ϕ in order π. However, in this case we substitute not only for the variables z1, . . . , z`,
but also for each k ∈ [n] we substitute zero for all variables yk,i except one. This increases
the number of different permutations of the variables x1, . . . , xn that we can obtain. The
only problem with this transformation is that for some formulas ϕ, size of ϕ∨m may be
exponentially bigger than size of ϕ. However, if each clause of ϕ there is only O(1) negated
literals, then size of ϕ∨m will be polynomially bounded.

Our “good” set of permutations is a set of pairwise independent permutations. Let
t = dlog(n)e and N = 2t, and F be the field GF(N). Define Πn to be the set of all mappings
given by x 7→ ax+ b with a, b ∈ F and a 6= 0. Elements of Πn may be represented by binary
strings of length ` = 2t such that the first t bits are not all zero. Note that Πn ⊆ SN so
we have to add new variables, xn+1, . . . , xN and assume that ϕ does not depend on them.
Then define

perm(ϕ)(z1, . . . , z`, x1, . . . , xN ) =
∧
σ∈Πn

[(∧̀
i=1

zi = rep(σ)i

)
→ ϕ(xσ(1), . . . , xσ(N))

]
∧

t∨
i=1

zi.
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Now we can define the transformation T . Let ϕ be a formula on n variables and m be
the least integer such that 2n3

m + n2

mn−1 < 1, so m = O(n3). Then T (ϕ) = perm(ϕ∨m). The
first property of T given at the beginning of Section 2.2 was established by Segerlind [19]:

I Lemma 1 ([19]). Let ϕ be an unsatisfiable formula in CNF on the variables x1, . . . , xn.
Suppose there is an OBDD(∧,weakening) proof (respectively, an OBDD(∧) proof) of the for-
mula T (ϕ) of size S. Then for every order π on x1, . . . , xn there is a π-OBDD(∧,weakening)
proof (respectively, a π-OBDD(∧) proof) of ϕ of size at most S.

The idea of the proof of lemma is as follows. Suppose τ ∈ Πn is an order on
z1, . . . , z`, x1, . . . , xN , and let π be an order on x1, . . . , xn. Then there are j1, . . . , jn such
the order τ restricted to y1,j1 , . . . , yn,jn is the same as the order π on x1, . . . , xn. Replacing
the variables zi with the constants rep(τ)i, renaming the variables yi,ji to xi, and replacing
all other variables yi,j with 0 thus transforms the OBDD(∧,weakening) or OBDD(∧) proof
of T (ϕ) into a proof of ϕ. For details, consult Segerlind [19].

The second property of T states that if ϕ is easy for OBDD(∧,weakening) in some
order, then T (ϕ) is easy for OBDD(∧,weakening, reordering). Its proof consists of two
parts: First, Lemma 2 shows that if ϕ is easy for OBDD(∧,weakening), then perm(ϕ)
is easy for OBDD(∧,weakening, reordering); then Section 3.2 shows that if ϕ is easy for
OBDD(∧,weakening), then ϕ∨m is easy for OBDD(∧,weakening).

I Lemma 2. Let ϕn(x1, x2, . . . , xn) be a family of unsatisfiable formulas such that for each n,
there is an order τ so that ϕn has a τ -OBDD(∧,weakening) proof P1 of size t(n). Then the
formula perm(ϕn) has an OBDD(∧,weakening, reordering) proof P2 of size t(n)poly(n). If
P1 is tree-like, then so is P2. In addition, if P1 does not use the weakening rule, then neither
does P2.

Proof. Suppose P1 is a τ -OBDD(∧,weakening) proof of ϕn(x1, x2, . . . , xn) of size t(n) using
the order τ on x1, x2, . . . , xn. We describe an OBDD(∧,weakening, reordering) proof P2 of
perm(ϕn). For σ a permutation in Πn, let µσ be the order on z1, z2, . . . , z`, x1, x2, . . . , xn
such that x1, x2, . . . , xn are ordered by τσ−1 and follow the variables z1, z2, . . . , z`. In other
words, µσ orders variables as follows: z1, z2, . . . , z`, xτσ−1(1), xτσ−1(2), . . . , xτσ−1(n).

For σ ∈ Πn, it is easy to transform the proof P1 into a µσ-OBDD(∧) derivation P1,σ of a
diagram that represents ¬

(∧`
i=1 zi = rep(σ)i

)
from the CNF formula

(∧`
i=1 zi = rep(σ)i

)
→

ϕn(xσ(1), . . . , xσ(n)). Namely each diagram D of P1 is replaced by the diagram Dσ ∨
¬
(∧`

i=1 zi = rep(σ)i
)
, where Dσ is D with the variables xi permuted according to σ. Since

the variables z1, z2, . . . , z` precede the variables x1, . . . xn in the order µσ, each diagram
Dσ ∨ ¬

(∧`
i=1 zi = rep(σ)i

)
has size |D|+O(`), where |D| is the size of D. Hence, |P1,σ| is

t(n) · (1 +O(`)).
For σ ∈ Πn, the hypotheses of P1,σ are clauses of perm(ϕn). Therefore combin-

ing the derivations P1,σ gives immediately a derivation of the diagrams which represent

¬
(∧`

i=1 zi = rep(σ)i
)
for σ ∈ Πn and a diagram encoding

∨̀
i=1

zi. Formally, these diagrams

use different orders µσ but these differ only in how they order the variables x1, . . . , xn that do
not occur in the derived diagrams. Thus, the reordering rule can be used to change the orders
in all of these diagrams to some “standard” one, without changing the diagrams. Repeatedly
applying the conjunction rule to these diagrams yields the constant false diagram since
z1z2 . . . z` is equal to rep(σ) for some σ ∈ Πn or z1 = z2 = · · · = zt = 0. All intermediate
diagrams use only ` variables and thus have size at most O(2`). The overall size of the
proof P2 is |Πn| · t(n)(1 +O(`)) +O(2`|Πn|) = t(n)poly(n) since ` = 2t = 2dlogne.

The construction preserves the tree-like property, and whether the weakening rule is used,
so Lemma 2 is proved. J
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3.2 Complexity of Composition
We now prove that if ϕ has a small OBDD(∧,weakening) proof, then ϕ∨m has a small
OBDD(∧,weakening) proof. In fact, we prove more a general statement. Let ϕ be a CNF
formula with n variables, and g : {0, 1}k → {0, 1} be a Boolean function. Then ϕ ◦ g denotes
a CNF formula on kn variables that represents ϕ(g(~x1), g(~x2), . . . , g(~xn)), where ~xi denotes
a vector of k new variables. ϕ ◦ g is constructed by applying the substitution to every clause
C of ϕ and converting the resulting function C ◦ g to CNF in some fixed way.

We need the following technical definition. Consider a CNF formula ϕ =
m∧
i=1

Ci. We say

ϕ is S-constructible with respect to (w.r.t.) the order π if there is a binary tree with vertices
labeled by π-OBDDs such that: (1) the root is labeled by a π-OBDD representation of ϕ,
(2) the tree contains m leaves labeled by π-OBDD representations of the clauses Ci, each
clause appears in exactly one leaf, (3) each vertex is labelled by a π-OBDD that represents
the conjunction of labels of its children, and (4) the size of each label is at most S.
I Remark. If ϕ is S-constructible CNF w.r.t. the order π, then there is a tree-like π-OBDD(∧)
derivation of size (2m− 1)S of a π-OBDD that represents ϕ from the clauses of ϕ.

I Proposition 3. Let F = G1 ∨ G2, where G1 and G2 are Boolean functions that depend
on disjoint sets of variables. If the variables of G1 precede variables of G2 in the order π,
then the smallest size of a π-OBDD representation of F is at most the sum of sizes of the
smallest π-OBDD representations of G1 and G2.

Proof. This is obvious. The π-OBDD for F can be obtained by the identifying the source of
the π-OBDD for G2 with the sink of the π-OBDD for G1 labeled by 0. J

I Lemma 4. Let F1, F2, . . . , Fk be CNF formulas with disjoint sets of variables, where
Fj =

∧
i∈Ij

Ci for all j ∈ [k]. Let π1, . . . , πk be orders such that each Fj is S-constructible

w.r.t. πj . Define the order π to order the variables of each Fi according to πi and so that all
the variables of Fi precede all the variables of Fi+1. Let F be the CNF representation of the

function F1 ∨ F2 ∨ · · · ∨ Fk, namely, F =
∧

i1∈I1,...,ik∈Ik

k∨
j=1

Cij . Then F is kS-constructible

w.r.t. π.

Proof. We prove this lemma by induction on k. The basis case is trivial: if k = 1, then
F = F1, hence F is S-constructible. For the induction hypothesis, let G = F1∨F2∨· · ·∨Fk−1.
By the induction hypothesis G is (k−1)S-constructible w.r.t. π. For each clause D of G and
each i ∈ Ik, the clause D ∨ Ci is a clause of F . The formula Fk is S-constructible w.r.t. π
by a tree Tk with |Ik| leaves which are labeled by Ci for i ∈ I`. We wish to replace each
leaf of Tk labelled with a Ci with a tree for G ∨ Ci. Since G is (k−1)S-constructible and
since the variables of Ci are disjoint from those of G, Proposition 3 implies that G ∨ Ci is
kS-constructible w.r.t. π, since we can incorporate the clause Ci into all clauses of the tree
giving the (k − 1)S-constructibility of G. In addition, replace all the diagrams D labelling
vertices in the tree Tk by D ∨ G; by Proposition 3 the size of the updated diagrams is at
most kS. This gives a tree witnessing the kS-constructibility of F1 ∨ · · · ∨ Fk as desired. J

I Theorem 5. Let π be an order on z1, . . . , zm. Let f and g be Boolean functions of
z1, . . . , zm such that f = ¬g and that both f and g have S-constructible CNF representations
w.r.t. π. If ϕ(x1, . . . , xn) is a CNF formula that has an OBDD(∧,weakening) proof of size
L, then ϕ ◦ g has an OBDD(∧,weakening) proof of size poly(|ϕ ◦ g|, S, L).

The statement is also true for OBDD(∧), tree-like OBDD(∧), and tree-like
OBDD(∧,weakening).
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The basic idea of Theorem 5 is that each line of a proof of ϕ can be composed with g to
form a proof of ϕ ◦ g; Lemma 4 is used to handle initial clauses.

Proof. Let ϕ have an OBDD(∧,weakening) proof of size L using the order σ on x1, . . . , xn.
Define the order τ on the variables zi,j as follows. The variables are grouped into blocks,
the i-th block is zi,1, . . . , zi,m. The blocks are ordered according to σ so all variables of
block i precede those of block j iff xi precedes xj according to σ. Within the i-th block,
the variables zi,1, . . . , zi,m are ordered according to the order π. We construct the desired
OBDD(∧,weakening) proof using the order τ .

Lemma 4 implies that, for any clause C, the CNF C ◦ g is S|C|-constructible in order τ .
Note that we need that both g and ¬g are S-constructible to apply Lemma 4, since variables
can appear both positively and negatively in C.

Consider the following τ -OBDD(∧,weakening) proof of ϕ ◦ g: First we create τ -OBDDs
that represent the functions C ◦ g for each clause C of the formula ϕ. Then we repeat the
OBDD(∧,weakening) proof for ϕ, but we do it for ϕ ◦ g. Each a diagram D from the proof
of ϕ is replaced by a diagram for D ◦ g. It is not hard to see that the definition of τ allows us
to replace a splitting over a variable xi in the diagram D by a subdiagram splitting over the
value of the function g(~zi), where ~zi is the vector of the variables zi,1, . . . , zi,m. This increases
the proof size by at most a factor of S. The resulting proof is a correct OBDD(∧,weakening)
proof and its size is at most L · S + |ϕ ◦ g| · S. J

The clause
m∨
i=1

yi and the CNF
m∧
i=1
¬yi are both m-constructible, thus we obtain:

I Corollary 6. If there is a short OBDD(∧,weakening) proof (tree-like OBDD(∧) proof) of
a formula ϕ, then there is a short OBDD(∧,weakening) proof (tree-like OBDD(∧) proof) of
the formula ϕ∨m.

3.3 Separation
We have shown that if a formula ϕ is hard for OBDD(∧,weakening) in one order, but is easy
for OBDD(∧,weakening) in another, then T (ϕ) is hard for OBDD(∧,weakening) but it is
easy for OBDD(∧,weakening, reordering). We will prove this holds for ϕ the Clique-Coloring
principle.

I Definition 7. The Clique-Coloring principle is a formula encoding the statement that it is
impossible that a graph both is (m−1)-colorable and has a m-clique. The Clique-Coloring
principle uses the variables {pi,j}i 6=j∈[n], {ri,l}i∈[n],l∈[m−1], and {qk,i}k∈[m],i∈[n]. Informally
pi,j = 1 if there is an edge between vertices i and j, ri,l = 1 if vertex i has color l, and
qk,i = 1 if vertex i is the k-th vertex in the clique.

More formally, the Clique-Coloring principle is the conjunction of the following statements
written as clauses. For technical reasons we also express the clauses as inequalities with
integer coefficients:

1.
n∨
i=1

qk,i (
n∑
i=1

qk,i ≥ 1) for any k ∈ [m]. This states that the clique has a vertex with

number k.
2. ¬qk,i ∨¬qk′,j ∨ pi,j (qk,i + qk′,j ≤ pi,j + 1) for all i 6= j ∈ [n] and k 6= k′ ∈ [m]. This states

that there is an edge between the i-th and j-th vertices of the clique.
3. ¬qk,i ∨ ¬qk,j (qk,i + qk,j ≤ 1) for any k ∈ [m] and i 6= j ∈ [n]. This states that at most

one element in the clique with number k.
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4. ¬qk,i ∨ ¬qk′,i (qk,i + qk′,i ≤ 1) for all i ∈ [n] and k 6= k′ ∈ [m]. This states that the n
vertices in clique are distinct.

5.
m−1∨
l=1

ri,l (
m−1∑
l=1

ri,l ≥ 1) for all i ∈ [n]. This states that the i-th vertex has a color.

6. ¬pi,j ∨ ¬ri,l ∨ ¬rj,l (pi,j + ri,l + rj,l ≤ 2) for all i 6= j and l. This states that if vertices
i and j have the same color l, there there is no edge between them.

Clique-Coloringn,m denotes the Clique-Coloring principle for n and m. This formula has
size polynomially bounded by m and n.

Note that, usually Clique-Coloring principle is defined without constraints 3. We prove
the next theorem in Section 6.

I Theorem 8. There is an OBDD(∧,weakening) proof of the Clique-Coloringn,m principle
of size polynomial in n and m.

An exponential lower bound on the size of proofs of the formula Clique-Coloringn,m
has been given by Atserias–Kolaitis–Vardi and by Krajíček. Their proofs hold even with the
addition of the constraints 3.

I Theorem 9 ([1, 14]). There is an order π such that any OBDD(∧,weakening) proof of
Clique-Coloringn,√n has size at least 2n1/5 .

These two theorems let us separate the OBDD(∧,weakening, reordering) and
OBDD(∧,weakening) proof systems.

I Theorem 10. There are a family of CNF formulas ϕn and a constant c > 0 such that:
ϕn has size poly(n);
there is an OBDD(∧,weakening, reordering) proof of ϕn of size poly(n);
any OBDD(∧,weakening) proof of ϕn has size Ω(2nc).

Proof. Let us consider ψn = Clique-Coloringn,√n. By Theorem 9 there is an order π such
that any π-OBDD(∧,weakening) proof of the formula ψn has size at least 2nε . Since all clauses
of Clique-Coloringn,√n that contain a negation have constant width, the CNF encoding of
Clique-Coloring∨m

n,
√
n
has size poly(n,m). By Lemma 1, any OBDD(∧,weakening) proof of

the formula T (ψn) has size 2nε . In the definition of T (ψn), we choose m that is polynomially
bounded in the number of variables in Clique-Coloringn,√n. Hence, by Theorem 8 and
Theorem 5, there is an OBDD(∧,weakening) proof of ψ∨mn of size polynomial in n. As a result,
by Lemma 2, there is an OBDD(∧,weakening, reordering) proof of T (ψn) = perm(ψ∨mn ) of
size poly(n,m). Thus, we can use the formula T (ψn) as ϕn. J

4 Quasipolynomial Separations for Dag-like Case

4.1 Resolution Does Not Polynomially Simulate OBDD(∧)
In this section we prove that resolution does not polynomially simulate OBDD(∧). After
that we will apply to this result a lifting technique recently developed by Garg et al. [7] and
get as a corollary that Cutting Planes does not polynomially simulate OBDD(∧), and that
OBDD(∧,weakening) does not polynomially simulate OBDD(∧, reordering).

A Tseitin formula TSG,c is based on an undirected graph G(V,E) and a labelling function
c : V → {0, 1}. In this formula for every edge e ∈ E there is the corresponding propos-
itional variable pe. For every vertex v ∈ V we write down a formula in CNF encoding



Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov 16:13

∑
u∈V :(u,v)∈E,u 6=v

p(u,v) ≡ c(v) (mod 2). The conjunction of the formulas described above is

called a Tseitin formula. If
∑
v∈U

c(v) ≡ 1 (mod 2) for some connected component U ⊆ V ,

then the Tseitin formula is unsatisfiable. Indeed, if we sum up (modulo 2) all equalities
corresponding to the vertices from U we get 0 ≡ 1 (mod 2) since each variable has exactly
2 occurrences. If

∑
v∈U

c(v) ≡ 0 (mod 2) for every connected component U , then the Tseitin

formula is satisfiable ([23, Lemma 4.1]).
Tseitin formulas based on constant degree expanders are known to be hard for resolu-

tion [23]. Itsykson et al. [11] showed that they are also hard for OBDD(∧, reordering) by
giving a 2Ω(|V |) lower bound. There are, of course, resolution refutations of size O(2|E|)
since there are |E| many variables. Accordingly, we consider Tseitin formulas based on the
complete graph Klogn on blognc vertices, so as to have |V | = o(|E|).

By the definition of a Tseitin formula, TSKlogn ,c
is a system of blognc linear equations

and every equation depends on blognc − 1 variables. Hence, TSKlogn ,c
is a (blognc − 1)-CNF

formula with O(log2 n) variables and O(n logn) clauses.

I Lemma 11. Let F be a canonical CNF representation of an unsatisfiable linear system A

over F2 that contains m equations and n variables. Then for every order of variables, F has
a tree-like OBDD(∧) proof of size at most 8m|F |2 +mn2m + 2m.

Proof. First of all, for every linear equation of A we deduce an OBDD representing this
equation. Assume that a linear equation contains r variables, then its canonical CNF
representation contains 2r−1 clauses, hence |F | ≥ 2r−1. We deduce an OBDD representation
of the equation by joining all the clauses that represent this equation. The conjunction of
several clauses that represent the equation is a Boolean function from r variables, hence
it has an OBDD representation of size at most 2r+1 + 1 (this is the size of an OBDD that
corresponds to the complete decision tree). Hence, the size of the derivation is at most 8|F |2.
And the size of the derivation of all OBDDs for all equations is at most 8m|F |2.

Finally, we join all OBDDs representing linear equations one by one and we get the
constant false OBDD. The size of the described derivation may be estimated using the
following claim.

I Claim. For any order over the variables there is an OBDD of size at most n2m + 2 that
represents the system of m linear equations over F2 with n variables.

Let us fix some order on the variables. The described OBDD will have n levels. Nodes
on the i-th level are labeled with i-th variable in the chosen order.

Assume that we already tested the values of the first i− 1 variables. For every equation
we compute the sum modulo 2 of the values of these i−1 variables that occur in the equation.
So we will have a vector of m parities. The i-th level of the OBDD contains 2m nodes
corresponding to all the possible values of the vector of parities that we get after the reading
of the first i− 1 edges. Each node on the i-th level has two outgoing edges to nodes on the
(i+ 1)-th level corresponding to the way how values of variables change the partial sum. The
node on the first level corresponding to all zero values of parities is the source of the OBDD
(all nodes that are not reachable from the source should be removed). Outgoing edges for
every node on the last level lead to a sink labelled 1 or 0 depending whether or not all the
equations are satisfied. This proves the claim, and hence Lemma 11. J

I Corollary 12. If TSKlogn ,c
is unsatisfiable Tseitin formula, then there is a tree-like OBDD(∧)

proof of TSKlogn ,c
of size at most poly(n).
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I Lemma 13. Every resolution proof of TSKlogn ,c
has size at least 2Ω(log2 n).

The proof of Lemma 13 is based on the width based lower bound by Ben-Sasson and
Wigderson [2]. The width of a clause is the number of literals in it. For a CNF formula ϕ, the
width w(ϕ) of ϕ is the maximum width of its clauses. The width of a resolution refutation is
a width of the largest used clause. w(` ϕ) denotes the minimum width of any resolution
proof of ϕ.

I Theorem 14 ([2]). The size of the shortest resolution refutation of any CNF formula ϕ
with n variables is at least 2Ω((w(`ϕ)−w(ϕ))2/n).

I Theorem 15 ([2]). The minimal width of a resolution proof of a Tseitin formula based on
a graph G(V,E) is at least e(G), where e(G) is the minimal number of edges between U and
V \ U over all set of vertices U of size between |V |/3 and 2|V |/3.

I Corollary 16. If TSKlogn,c is an unsatisfiable Tseitin formula, then w(` TSKlogn,c) =
Ω(log2 n).

Proof. It is straightforward that e(Klogn) = Ω(log2 n). So by Theorem 13, w(` TSKlogn,c) =
Ω(log2 n). J

Proof of Lemma 13. It is easy to see that w(TSKlogn,c) = O(logn) and TSKlogn,f contains
O(log2 n) variables. Thus, by Theorem 14 and by Corollary 16, size of the shortest resolution
proof of TSKlogn,f is at least 2Ω(log2 n). J

Corollary 12 and Lemma 13 give a superpolynomial separation between resolution and
tree-like OBDD(∧). The next sections describe how to lift this to separate cutting planes
and tree-like OBDD(∧).

4.2 Lifting from Resolution Width
This subsection briefly describes the results by Garg et al. [7] that allows maping formulas
with large resolution width to formulas that are hard for several stronger proof systems.

Let G be a family of functions {0, 1}n → {0, 1} and ϕ be an unsatisfiable formula over n
variables. The G-refutation of ϕ is a directed acyclic graph of fan-out at most 2 with each
node v labeled by a function gv ∈ G such that the following constraints are satisfied.

Source: There is a distinguished source node r with fan-in 0, and gr is constant 0 function.
Non-sinks: For each non-sink node v with children u1 and u2, we have g−1

v (0) ⊆ g−1
u1

(0) ∪
g−1
u2

(0). And if v has only one child u, then g−1
v (0) ⊆ g−1

u (0).
Sinks: Each sink node v is labeled by a clause C of ϕ such that g−1

v (0) ⊆ C−1(0) (i.e. every
assignment that satisfies C also satisfies gv).

The size of a G-refutation is the size of the graph.
The notion of G-refutation extends several proof systems including resolution (if functions

from G are represented by clauses), Cutting Planes (if functions from G are represented
by linear inequalities) and OBDD(∧,weakening) (if functions from G are represented by
OBDDs). G-refutations are commonly called “semantic refutations”.

Let Π = (X,Y ) be a partition of [n] into two disjoint parts. We say that G is Π-
rectangular if for every function g ∈ G, the set g−1(0) is a rectangle, i.e. g−1(0) = A× B,
where A ⊆ {0, 1}X and B ⊆ {0, 1}Y . We say that G has Π-communication complexity at
most c iff for every g ∈ G the communication complexity of g with respect to the partition Π
is at most c. Notice that if G is Π-rectangular, then it has Π-communication complexity at
most 2.
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I Lemma 17 ([20]). Let ϕ be an unsatisfiable CNF formula with n variables and Π = (X,Y )
be a partition of [n] into two disjoint parts. Assume that π has a G-refutation of size S and
G has Π-communication complexity at most c. Then there is a Π-rectangular set G′ such that
ϕ has a G′-refutation of size at most 23cS.

Notice that the set of all clauses is Π-rectangular for every partition Π. The set of
π-OBDDs of size S has Π-communication complexity logS + 1 for partitions Π = (X,Y )
where the variables of X precede the variables of Y in the order π.

In order to capture Cutting Planes we say that G is Π-triangular if for every g ∈ G there
are functions a : {0, 1}X → R and b : {0, 1}Y → R such that g−1(0) = {x ∈ {0, 1}X , y ∈
{0, 1}y | a(x) < b(y)}. Note that the set of all linear inequalities with integer coefficients
over Boolean variables is Π-triangular for every partition Π.

Let Indm : {0, 1}blogmc × {0, 1}m → {0, 1} be a Boolean function such that
Indm(z1, . . . , zblogmc, y1, . . . , ym) = yb, where b is the integer with binary representation
z1 . . . zblogmc.

I Theorem 18 ([7]). Let ϕ be an unsatisfiable CNF formula ϕ with n variables. Let m = nδ,
where δ is some global constant. Let Π = (X,Y ) be the following partition of variables of
ϕ ◦ Indm: all z-variables go to X, all y-variables go to Y . If G is Π-rectangular or G is
Π-triangular, then every G-refutation of ϕ ◦ Indm has size at least nΩ(w(`ϕ)).

I Corollary 19. Under the conditions of Theorem 18, if G has Π-communication complexity
at most c, then every G-refutation of ϕ ◦ Indm has size at least 2−3cnΩ(w(`ϕ)).

Proof. By Lemma 17, if there is a G-refutation of ϕ ◦ Indm of size S, there exists a G′-
refutation of ϕ ◦ Indm of size at most 23cS such that G′ is Π-rectangular. By Theorem 18,
23cS ≥ nΩ(w(`ϕ)), hence S ≥ 2−3cnΩ(w(`ϕ)). J

I Corollary 20. Under the conditions of Theorem 18, every Cutting Planes proof of ϕ ◦ Indm
has size at least nΩ(w(`ϕ)).

Proof. The statement follows from Theorem 18, since the set of linear inequalities is Π-
triangular for every partition Π. J

4.3 Cutting Planes Does Not Polynomially Simulates OBDD(∧)
I Lemma 21. Both functions Indm and ¬Indm have poly(m)-constructible CNF representa-
tions.

Proof. Let us consider the following formula for Indm,
m∧
i=1

(bin(z1, . . . , zblogmc) = i)→ yi,

where bin(z1, . . . , zblogmc) = i is the conjunction of literals stating that z1, . . . , zblogmc is

the binary representation of i. For ` ∈ [m], let ϕ` be the formula
∧̀
i=1

(bin(z1, . . . , zblogmc) =

i) → yi, and let ϕm = Indm. We claim that for all ` ∈ [m] the formula ϕ` has an OBDD
representation of size poly(m) in the order z1, . . . , zblogmc, y1, . . . , ym. Indeed, such an OBDD
has the following structure: it starts with the complete decision tree over all the variables zi;
consider a leaf of this decision tree that corresponds to a number i. If i ≤ `, then we add to
this leaf a node of OBDD labeled with yi and the outgoing edge labeled with 0 going to the
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0-sink and the outgoing edge labeled with 1 going to the 1-sink. If i > `, then we identify
this leaf with 1-sink. Hence, there is a poly(m)-constructible CNF representation of Indm.

The same argument works also for ¬Indm, since ¬Indm(z1, . . . , zblogmc, y1, y2, . . . , ym) =
Indm(z1, . . . , zblogmc,¬y1,¬y2, . . . ,¬ym). J

I Lemma 22. The formula TSKlogn ,c
◦ Indm has at most mO(logn) clauses of size

O(logn logm) and O(m log2 n) variables.

Proof. Each clause of TSKlogn ,c
consists of dlogne−1 literals and by Lemma 21 there is CNF

representations of Indm and ¬Indm with m clauses. Hence, for each clause C of TSKlogn ,c
,

the formula C ◦ Indm has mdlogne−1 clauses each of length (dlogne − 1)(blogmc+ 1). J

I Theorem 23. Let TSKlogn ,c
be unsatisfiable Tseitin formula based on a complete graph

Klogn on blognc vertices.
Let m = (logn)2δ, where δ is the constant from Theorem 18. Then

1. TSKlogn ,c
◦ Indm has a tree-like OBDD(∧) proof of size (logn)O(logn) and

2. every Cutting Planes proof of TSKlogn ,c
◦ Indm has size at least (logn)Ω(log2 n).

Proof.
1. By Lemma 21, both Indm and ¬Indm are poly(m)-constructible. By Corollary 12, there

is a tree-like OBDD(∧) refutation of TSKlogn ,c
of size poly(n). By Lemma 22, the size of

the formula TSKlogn ,c
◦ Indm is at most mO(logn). Hence, by Theorem 5, there is a tree-

like OBDD(∧) refutation of TSKlogn ,c
◦ Indm of size poly(poly(n),mO(logn), poly(n)) =

(logn)O(logn).
2. By Corollary 16, w(` TSKlogn,c) = Ω(log2 n). Hence, by Corollary 20, every Cutting

Planes proof of TSKlogn,c ◦ Indm has size at least (log2 n)Ω(log2 n) = (logn)Ω(log2 n). J

4.4 OBDD(∧, weakening) Does Not Polynomially Simulate
OBDD(∧, reordering)

I Theorem 24. There is a family of formulas ϕn such that:
the size of ϕn is (logn)O(logn log logn) and number of variables in ϕn is poly(logn);
there is a tree-like OBDD(∧, reordering) proof of ϕn of size (logn)O(logn log logn);
every OBDD(∧,weakening) proof of ϕn has size at least (logn)Ω(log2 n).

I Lemma 25. Let TSKlogn,c be an unsatisfiable Tseitin formula. Let m = (logn)2δ, where δ
is the constant from Theorem 18.

There is a family of orders {πn}n∈N over the variables of the formulas TSKlogn,c◦Indm such
that every πn-OBDD(∧,weakening) proof of TSKlogn,c ◦ Indm has size at least (logn)Ω(log2 n).

Proof. Let πn be an order on variables of TSKlogn,c ◦ Indm, where all z-variables precedes all
y-variables. Consider some πn-OBDD(∧,weakening) proof of TSKlogn,c ◦ Indm; let S denote
its total size. Hence, the number of proof lines and sizes of all OBDDs are at most S. Consider
a partition Π = (X,Y ) of the variables of TSKlogn,c◦Indm such that X contains all z-variables
and Y contains all y-variables. The communication complexity of computing an OBDD of size
S w.r.t. the partition Π is at most logS + 1. Therefore, the πn-OBDD(∧,weakening) proof
can be viewed as a G-refutation, where G has Π-communication complexity at most logS + 1.
Hence, by Corollary 19, S ≥ 2−3 logS−3(log2 n)Ω(log2 n). Thus, S ≥ (log2 n)Ω(log2 n) =
(logn)Ω(log2 n). J
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Proof of Theorem 24. Let TSKlogn,c be an unsatisfiable Tseitin formula. Let m = (logn)2δ,
where δ is the constant from Theorem 18.

Let us consider ϕn = T (TSKlogn,c ◦ Indm), where T is the transformation defined in
Section 3.1. By Corollary 12, there is a tree-like OBDD(∧) proof of TSKlogn,c of size
poly(n). By Lemma 22, TSKlogn,c ◦ Indm has lognO(logn) clauses of size O(logn log logn)
and poly(logn) variables By Lemma 21, Indm is poly(m)-constructible; hence, by Theorem 5,
there is a tree-like OBDD(∧) proof of TSKlogn,c ◦ Indm of size lognO(logn).

Recall that ϕn = T (TSKlogn,c ◦ Indm) = perm((TSKlogn,c ◦ Indm)∨k), where k =
poly(logn).

The formula (TSKlogn,c ◦ Indm)∨k has size (logn)O(logn log logn); by Theorem 5 there is a
tree-like OBDD(∧) proof of (TSKlogn,c ◦ Indm)∨k of size (logn)O(logn log logn).

Thus, by Lemma 2, there is a tree-like OBDD(∧, reordering) proof of T (TSKlogn,c ◦ Indm)
of size (logn)O(logn log logn).

Note that, by Lemma 25 and Lemma 1, every OBDD(∧,weakening) proof of T (TSKlogn,c◦
Indm) has size at least (log2 n)Ω(log2 n) = (logn)Ω(log2 n). J

5 Exponential Separations for Tree-like Case

In this section we exhibit a formula which is hard for tree-like OBDD(∧,weakening) and
easy for tree-like OBDD(∧, reordering) in another order. An example of such a formula can
be obtained from a construction of Göös and Pitassi [8]. We use a pebbling contradiction as
the base of our example.

I Definition 26. Let G be a directed acyclic graph with one sink t. The CNF formula PebG
(pebbling contradiction for a graph G), uses a variable xv for each vertex v of G and has the
following clauses:
¬xt;

for each vertex v, the clause xv ∨
d∨
i=1
¬xpi where p1, . . . , pd are all the immediate prede-

cessors of v (d = 0 if v is a source).

It is not hard to see that PebG has short tree-like OBDD(∧) proofs:

I Theorem 27. For any directed acyclic graph G(V,E) with n vertices and maximum
in-degree d there is a tree-like OBDD(∧) proof of PebG of size poly(n).

Proof. For a vertex v ∈ V , we let pv,1, . . . , pv,lv be the immediate predecessors of v. For
any set S ⊆ V such that if v ∈ S, then pv,1, . . . , pv,lv are also in S (we call such a set

closed under predecessors), the formula
∧
v∈S

(
xv ∨

lv∨
i=1
¬xpv,i

)
is equivalent to

∧
v∈S

xv. Thus∧
v∈S

(
xv ∨

lv∨
i=1
¬xpv,i

)
has an OBDD representation of size poly(n, d).

Let v1, . . . , vn be a topological ordering of vertices of G. Consider an order π and a se-

quence D1, . . . , Dn+1 of π-OBDDs such that Di represents the formula
i∧

j=1

(
xvi∨

lvi∨
k=1
¬xpvi,k

)
for all 1 ≤ i ≤ n and Dn+1 is the constant false diagram. We claim that, together
with π-OBDDs representing the initial clauses, D1, . . . , Dn+1 is an OBDD(∧) refutation
of PebG of total size O(n2). Indeed, since for all i ∈ [n] the set {v1, v2, . . . , vi} is closed

under predecessors, Di =
i∧

j=1
xvi has size 2i + 2. It is easy to see that Di+1 is equal to

Di ∧
(
xvi+1 ∨

lvi+1∨
i=1
¬xpvi+1,i

)
. J
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I Corollary 28 (Lemma 2, [12]). For any directed acyclic graph G(V,E) with n vertices and
maximum in-degree d there is a tree-like OBDD(∧) proof of Peb∨2

G of size poly(n, 2d).

Proof. Since PebG is a formula in (d + 1)-CNF, size of the formula Peb∨2
G is at most

O(|PebG|2d). The Corollary follows from Theorem 27 and Theorem 5. J

Corollary 28 was presented earlier as [12, Lemma 2], however, there was a flaw in previous
proof. The proof of [12, Lemma 2] was based on the following statement ([12, Lemma 1]):
Let G be a dag on n nodes, and j be a node in G with parents i1, . . . , ik where k = O(logn).
Consider the clauses (xi1,0 ∨xi1,1), . . . , (xik,0 ∨xik,1) and (¬xi1,a1 ∨ · · · ∨¬xik,ak ∨xj,0 ∨xj,1)
for all (a1, . . . , ak) ∈ {0, 1}k. For any variable order π, there is a polynomial-size π-OBDD(∧)
derivation of xj,0∨xj,1 from these clauses. However, [12, Lemma 1] is incorrect, for example for
k = 1 it claims that it is possible to derive (a∨ b) from A = {(¬x∨a∨ b), (¬y∨a∨ b), (x∨y)}
in OBDD(∧). Assume that (a ∨ b) is the conjunction of clauses from B ⊆ A. Notice
that (x ∨ y) 6∈ B, since otherwise it would be possible to satisfy (a ∨ b) by substitution
x := 0, y := 0. It is easy to see that B can not be empty, hence B is non empty subset of
{(¬x ∨ a ∨ b), (¬y ∨ a ∨ b)}. In this case it should be possible to satisfy a ∨ b by substitution
x := 0, y := 0. Thus, [12, Lemma 1] is incorrect.

Järvisalo [12] used Corollary 28 in order to give a family of formulas that are easy
for OBDD(∧) but hard for tree-like Resolution. The lower bound was proved by Buresh-
Oppenheim and Pitassi [5], who proved that there is a family of graphs {Gn}n∈N with n
vertices and maximum in-degree 2 such that any tree-like resolution proof of ϕn = Peb∨2

Gn

has size at least 2Ω(n/ log(n)).
Let ϕ(x1, . . . , xn, y1, . . . , yn) =

m∧
i=1

Ci(x1, . . . , xn, y1, . . . , yn). The relation Searchϕ ⊆

{0, 1}n × {0, 1}n × [m] is defined by

(x, y, i) ∈ Searchϕ iff Ci(x1, . . . , xn, y1, . . . , yn) = 0.

Consider the following communication game: Alice knows values of variables x1, x2, . . . , xn
and Bob knows variables y1, y2, . . . , yn. The goal of the communication game is to compute
some i ∈ [m] such that (x1, . . . , xn, y1, . . . , yn, i) ∈ Searchϕ.

Göös and Pitassi [8] proved the following theorem:

I Theorem 29 ([8]). There are a family of directed acyclic graphs {Gn}n∈N with constant
degree such that Gn has n vertices, and a CNF formula g on variables x1, x2, y1, y2 such
that the deterministic communication complexity of SearchPebGn◦g is at least Ω(

√
n) if Alice

knows variables {x1,1, x1,2, . . . , xn,1, xn,2} and Bob knows variables {y1,1, y1,2, . . . , yn,1, yn,2}.

In fact Theorem 29 is true even for randomized communication complexity, but the
deterministic version is enough for our applications.

I Lemma 30. Let a function f be computed by a π-OBDD D, the communication complexity
of f under a partition Π0,Π1 of the variables where the variables in Π0 precede (in the sense
of π) the variables from Π1 is at most dlog |D|e+ 1.

Proof. Alice starts the computation of f according D using her variables. Finally Alice
reaches vertex v of D reading all her variables. Alice sends to Bob number of the vertex v, it
has at most dlog |D|e bits. Bob continues computing f starting from v using his variables
and sends the result of the computation (it is 1 bit) to Alice. J

I Theorem 31. Let ϕ(x1, . . . , xn, y1, . . . , yn) be an unsatisfiable CNF formula. Suppose the
the communication complexity of the relation Searchϕ is equal to t if Alice knows the values
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of variables xi and Bob knows the variables yi. Let π be an ordering of the variables of ϕ such
that variables xi precede variables yi. Then the size of any tree-like π-OBDD(∧,weakening)
refutation of ϕ is at least 2O(

√
t).

Proof. Consider a tree-like π-OBDD(∧,weakening) proof D1, . . . , D` of the formula ϕ of
size S. Based on this proof we construct a communication protocol for Searchϕ of complexity
at most O(log2 S). The protocol consists of ` = O(logS) steps. At each step we consider
some tree Ti that is known by both players. The inner vertices of the tree are labelled with
π-OBDDs and the leaves are labelled with clauses of ϕ or with trivially satisfied clauses. In
the first step, the tree T1 is the tree of our tree-like proof. Ti ⊆ Ti−1. At each step, the two
players know that the clause at the root of Ti is falsified by the input assignment, and that
there exists some clause at a leaf of Ti that is falsified. In the end, the tree T` consists of a
single vertex; hence it provides clause of ϕ. that is falsified by the input assignment.

Now we describe how we obtain the tree Ti+1 from the tree Ti. Let v be a vertex of tree
Ti such that a subtree T ′ with root v satisfies the following condition: 1

3 |Ti| ≤ |T
′| ≤ 2

3 |Ti|
(such a vertex v players can find without communication). Let D be the OBDD labelling v;
if the input assignment evaluates diagram D to zero, then Ti+1 equals T ′. The players can
evaluate the π-OBDD D on the input assignment with at most dlog |D|+ 1e ≤ 2 logS bits
of communication by Lemma 30. Otherwise, Ti+1 := Ti \ T ′.

It is easy to see that if the value of D equals zero then there is a leaf with falsified clause
in the tree T ′. Otherwise there is a leaf with falsified clause in the tree Ti \ T ′. Also, at each
step the players use at most 2 log(S) bits of communication and there are at most O(log(S))
steps (since |Ti| ≤ 2

3 |Ti+1|). Hence, the players use at most O(log2 S) bits of communication.
Therefore S = 2Ω(

√
t). J

As a result we obtain the following separation.

I Theorem 32. There are a family of formulas ϕn in CNF and a constant c > 0 such that:
size of ϕn and number of variables in ϕn are polynomially bounded by n;
there is a tree-like OBDD(∧, reordering) proof of ϕn of size polynomial in n;
any tree-like OBDD(∧,weakening) proof of ϕn has size at least 2Ω(n1/4).

Proof. Let g be a CNF formula on the variables x1, x2, y1, y2 and let {Gn}n∈N be a family of
graphs so that Theorem 29 holds. Consider the formula ψn = PebGn ◦ g. By Theorem 29 and
Theorem 31 there exists an order π such that the size of every tree-like π-OBDD(∧,weakening)
refutation of ψn has size at least 2O(n1/4). By Lemma 1 any tree-like OBDD(∧,weakening)
proof of the formula ϕn := T (ψn) has size 2Ω(n1/4).

By Theorems 27 and 5, ψn has a tree-like OBDD(∧) proof of size poly(n). Then, by
Lemma 2, there is a OBDD(∧, reordering) proof of T (ψn) of size poly(n). J

6 Clique-Coloring is Easy for OBDD(∧, weakening)

In this section we prove Theorem 8. Let π be the following order on the variables of
Clique-Coloringn,m:

p1,1, . . . , pn,n, q1,1, . . . , qm,1, r1,1, . . . , r1,m,

q1,2 . . . , qm,2, r2,1, . . . , r2,m, . . . , q1,n, . . . , qm,n, rn,1 . . . , rn,m.

This order places at the beginning the variables encoding a graph, after them the variables
encoding the number of the first vertex in clique, after them the variables encoding the color
of the first vertex and so on. All OBDDs used in this section are π-OBDDs.
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I Lemma 33. For any integer constants c, cq, cr, and sets I ⊆ [n], K ⊆ [m], and L ⊆ [m−1]
the inequality∑

i∈I

(∑
k∈K

qk,i − cq
)(∑

l∈L

ri,l − cr
)
≥ c (1)

has a π-OBDD representation of size polynomial in cr, cq, m, and n.

Proof. The order π was picked to make it convenient to evaluate the left hand side of (1)
with a π-OBDD. The OBDD is constructed in levels, one level per variable. Each level
has vertices corresponding to the values of partial sums used to compute the left hand side
of (1). Specifically, let Qi,k =

∑
k′∈K,k′≤k

(qk′,i − cq), let Ri,l =
∑

l′∈L,l′≤l
(ri,l′ − cr), and let

Si =
∑

i′∈I,i′<i
Qi,m+1Ri,m. Note S1+max(I) equals the left hand side of (1).

The vertices of the OBDD at the level corresponding to a variable qk,i encode the values
of Si and Qi,k. The vertices at the level corresponding to a variable ri,l encode the values of
Si, Qi,m+1, and Ri,l. The number of possible values at each level is polynomially bounded
by cr, cq,m, n. To finalize the π-OBDD for evaluating (1), the vertices in the final level that
correspond to a value ≥ c are sinks labeled with 1, and the remaining vertices in the final
level are sinks with label 0. J

Proof of Theorem 8. The idea of the proof is to first derive a π-OBDD which represents the
inequality

∑
k,i,l

qk,iri,l ≥ m, stating that every vertex of clique is colored, and second to derive

a π-OBDD which represents the inequality
∑
k,i,l

qk,iri,l ≤ m− 1 stating roughly that there is

at most one vertex per color. Combining this these with conjunction derives a contradiction.

1. We first describe the derivation of the OBDD representing
∑
k,i,l

qk,iri,l ≥ m. For i ∈ [n],

the derivation starts with an OBDD representing the inequality
m−1∑
l=1

ri,l ≥ 1; note that

Clique-Coloringn,m has such a clause. For each k ∈ m, using the weakening rule (in
fact multiplying the inequality by qk,i) gives an OBDD that represents the inequality

m−1∑
l=1

qk,iri,l ≥ qk,i. (2)

Since this is equivalent to qk,i
m−1∑
l=1

(ri,l − 1) ≥ 0, Lemma 33 implies that the OBDD

representing (2) has polynomial size. Summing the inequalities (2) for all i ∈ [n] gives

n∑
i=1

m−1∑
l=1

qk,iri,l ≥
n∑
i=1

qk,i. (3)

To derive an OBDD representation of the inequality (3) for a fixed value of k, we add
the inequalities (2) for i ∈ [n] one by one. The addition of two inequalities may be
expressed by a conjunction followed by a weakening rule. The intermediate inequalities

can be expressed as
u∑
i=1

qk,i
m−1∑
l=1

(ri,l − 1) ≥ 0; hence by Lemma 33, they have OBDD

representations of size poly(n,m). This allows the derivation of polynomial size OBDDs
representing (3) for each k.
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The inequality
n∑
i=1

qk,i ≥ 1 is expressed by a clause of Clique-Coloringn,m; combining

this with the inequality (3) using the conjunction and weakening rules gives an OBDD
representing

n∑
i=1

m−1∑
l=1

qk,iri,l ≥ 1. (4)

The size of an OBDD representation of (4) is polynomially bounded, again by Lemma 33.
Finally, to get the desired inequality

∑
k,i,l

qk,iri,l ≥ m we sum the inequalities (4) for all

k ∈ [m]. As in the previous cases, we do this iteratively, combining the inequalities (4)
one by one with the conjunction and weakening rules. The intermediate OBDDs are∑
k<u

∑
i,l

qk,iri,l ≥ u and are polynomially bounded by Lemma 33.

2. The second part derives an OBDD representation of the inequality
∑
k,i,l

qk,iri,l ≤ m− 1.

If we derive
m∑
k=1

n∑
i=1

qk,iri,l ≤ 1 (5)

for each l ∈ [m − 1] and sum them as we do earlier we get the desired inequality. All
intermediate inequalities have small OBDD representations by Lemma 33.
For each l, the inequality (5) will be derived from the inequalities (6) and (9) as described
below. For k ∈ [m], we derive (an OBDD representing) the inequality (6)

n∑
i=1

qk,iri,l ≤ 1. (6)

stating that there is at most one vertex with number k in clique which has color l. The
inequality (6) follows by weakening from the inequality

n∑
i=1

qk,i ≤ 1. (7)

To derive (7), we derive inequalities
u∑
i=1

qk,i ≤ 1 for all u ∈ [n]. For u = n this inequality

is the same as (7). For u = 1 this inequality is the constant true statement. For u+ 1 it
is a weakening of the conjunction of

u∑
i=1

qk,i ≤ 1 and

u∧
i=1

(qk,i + qk,u+1 ≤ 1). (8)

Each inequality qk,i + qk,u+1 ≤ 1 is a clause of Clique-Coloringn,m but we need to check
that their u-fold conjunctions (8) have polynomial size OBDD derivations. For this, we

iteratively derive
t∧
i=1

(qk,i + qk,u+1 ≤ 1) for all t ∈ [u]. For each t, this inequality has

a small OBDD representation since it is equivalent to
(

t∨
i=1

qk,i

)
→ ¬qk,u+1; the latter

clearly has a polynomial size OBDD representation. Thus there are short refutations of
constraints (8) and as a result, of inequalities (7) and (6).
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To derive (5), we also need

n∑
i=1

qk,iri,l +
n∑
i=1

qk′,iri,l ≤ 1 (9)

for all k 6= k′ ∈ [m]. Before deriving inequality (9) we show how to derive (5) from (6)
and (9). This derivation is similar to derivation of (7) but it is slightly more complicated
to show that all intermediate inequalities have polynomial size OBDD representations.
To derive (5), we derive successively the inequalities

u∑
k=1

n∑
i=1

qk,iri,l ≤ 1. (10)

for all u ∈ [n]. Each inequality (10) has a polynomial size OBDD representation by
Lemma 33. For u = 1, (10) is the same as (6). Let us show how to derive inequality (10)
for u+ 1 from the inequality (10) for u. For this, it suffices to derive the inequality

u∧
k=1

(
n∑
i=1

qk,iri,l +
n∑
i=1

qu+1,iri,l ≤ 1
)

(11)

and then use the conjunction and weakening rules. Each inequality from the conjunction
is an instance of inequality (9). We must show the conjunction (11) has a small derivation.

To derive (11), we iteratively derive
t∧

k=1

(
n∑
i=1

qk,iri,l +
n∑
i=1

qu+1,iri,l ≤ 1
)

for all t ∈ [u].

This conjunction is equal to
t∨

k=1

n∨
i=1

qk,i ∧ ri,l → ¬
n∨
i=1

qu+1,i ∧ ri,l. Hence it has a small

OBDD representation by the choice of π.
We conclude the proof of Theorem 8 by proving the inequality (9) for k and k′. For this
we will first derive the inequalities

t∑
i=1

qk,iri,l = 0 ∨
t∑
i=1

qk′,iri,l = 0 ∨

∨
i∈[t]

(
qk,iri,l = qk′,iri,l = 1 ∧

∧
j∈[n]\{i}

(qk,jrj,l = qk′,jrj,l = 0)
)

(12)

for all t ∈ [n]. The inequality (12) for t = n and the conjunction
n∧
i=1
¬qk,i ∨¬qk′,i implies

n∑
i=1

qk,iri,l = 0 ∨
n∑
i=1

qk′,iri,l = 0. (13)

Each clause in the conjunction
n∧
i=1
¬qk,i ∨ ¬qk′,i is a clause of Clique-Coloringn,m. The

conjunction derived iteratively using the conjunction and weakening rules; all intermediate
constraints have polynomial sized π-OBDD representations since π orders the variables
qk,i first by i and second by k.
The constraint (13) and the two inequalities (6) for k, l and for k′, l imply (9). The
constraint (12) is derived from the inequalities

qk,iri,l + qk′,jrj,l ≤ 1 (14)
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for i 6= j ∈ [n].
The inequality (12) is equivalent to the conjunction of inequalities (14) for all i 6= j ∈ [t],
and it is clear that these have polynomial size π-OBDD representations. We show there
is a small OBDD derivation of this conjunction, that is, of (12), by deriving it for
successive values of t. For t = 0, (12) the constant true statement. We claim there
is a short derivation of (12) for t = u + 1 from (12) for t = u. Indeed, (14) together
with (12) for t = u implies

∧u
i=1 (qk,iri,l + qk′,u+1ru+1,l ≤ 1). It is easy to see that this

latter inequality has a small OBDD representation since it is equivalent to the constraint( u∨
i=1

qk,iri,l = 1
)
→ qk′,u+1ru+1,l = 0.

Now the only thing left to derive is the inequality (14). Clique-Coloringn,m contains
the clauses ¬qk,i ∨ ¬qk′,j ∨ pi,j and ¬pi,j ∨ ¬ri,l ∨ ¬rj,l. From these, we can derive (14)
using the conjunction rule and the weakening rules. J
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Abstract
Non-signaling strategies are collections of distributions with certain non-local correlations. They
have been studied in Physics as a strict generalization of quantum strategies to understand the
power and limitations of Nature’s apparent non-locality. Recently, they have received attention
in Theoretical Computer Science due to connections to Complexity and Cryptography.

We initiate the study of Property Testing against non-signaling strategies, focusing first on
the classical problem of linearity testing (Blum, Luby, and Rubinfeld; JCSS 1993). We prove
that any non-signaling strategy that passes the linearity test with high probability must be close
to a quasi-distribution over linear functions.

Quasi-distributions generalize the notion of probability distributions over global objects (such
as functions) by allowing negative probabilities, while at the same time requiring that “local
views” follow standard distributions (with non-negative probabilities). Quasi-distributions arise
naturally in the study of Quantum Mechanics as a tool to describe various non-local phenomena.

Our analysis of the linearity test relies on Fourier analytic techniques applied to quasi-
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1 Introduction

Property Testing studies sublinear-time algorithms for approximate decision problems. A
tester is an algorithm that receives oracle access to an input, samples a small number of
locations, queries the input at these locations, and then decides whether to accept or reject.
If the input has a certain property, the tester must accept with high probability; if instead
the input is far from all inputs having this property, then the tester must reject with high
probability.

Seminal works in Property Testing include those of Blum, Luby, and Rubinfeld [15],
who studied the problem of deciding whether the input is the evaluation table of a linear
function or is far from any such table, and of Rubinfeld and Sudan [45], who studied the
analogous problem for low-degree functions. Property Testing for general decision problems
was introduced in the foundational work of Goldreich, Goldwasser, and Ron [26].

We initiate the study of Property Testing when the input is a non-signaling strategy
[35, 43, 40, 41], which means that the input belongs to a certain class of probabilistic oracles
that answer a tester’s queries by sampling from a distribution that may depend on all queries.
This setting stands in stark contrast to the standard one, where each query’s answer is
fixed before queries are sampled. We provide a first analysis of linearity testing against
non-signaling strategies, establishing general statements and techniques about non-signaling
strategies along the way.

Non-signaling strategies have been studied in Physics for over 30 years as a strict
generalization of quantum strategies, in order to understand the power and limitations
of Nature’s apparent non-locality.1 Informally, Quantum Mechanics is a very accurate
description of Nature but it may also be an incomplete one: it has not been successfully
combined with General Relativity to get a quantum theory of gravity. Nevertheless, there is
wide agreement that Nature forbids instantaneous communication despite its apparent non-
locality, so this non-signaling property must be part of any ultimate theory of Nature. Non-
signaling strategies exactly capture this minimal requirement, thus (purportedly) capturing
any physically-realizable strategy.

Non-signaling strategies also have strong connections to Complexity Theory and Cryp-
tography. Property Testing against non-signaling strategies is likely to strengthen these
connections (see Section 4 for details), and thus we believe that it should be explicitly studied.

1.1 Linearity testing
A boolean function f : {0, 1}n → {0, 1} is linear if f(x)+f(y) = f(x+y) for all x, y ∈ {0, 1}n,
where bits are added modulo two and vectors are added component-wise. The problem of
linearity testing is to decide whether a given arbitrary boolean function f : {0, 1}n → {0, 1}
is linear or is far from all linear functions. Blum, Luby, and Rubinfeld [15] suggest a very
simple 3-query tester: sample uniform and independent x, y ∈ {0, 1}n, and check that
f(x) + f(y) = f(x+ y). Perhaps surprisingly, analyzing this tester is far from simple, and a
tight characterization of its acceptance probability is still an open problem. Nevertheless,
upper and lower bounds on the acceptance probability are known, which is sufficient for
applications. Bellare, Coppersmith, Håstad, Kiwi, and Sudan [12] have shown that the
acceptance probability is at most 1−∆(f), where ∆(f) is the fractional Hamming distance

1 “Non-locality” refers to correlations in Nature that appear non-local when interpreted using classical
physics.
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of f to the closest linear function. Many other works have studied this problem and closely
related ones [50, 13, 14, 21]. Finally, Ito and Vidick [30, 52] analyzed linearity testing
against quantum strategies. Fixed functions and quantum strategies are both special cases
of non-signaling strategies, the subject of this work.

1.2 Non-signaling strategies
A non-signaling strategy is a collection of distributions, one per set of queries, that jointly
satisfy certain restrictions. There are two distinct definitions, corresponding to whether the
strategy is meant to represent a function or players in a game. Throughout most of this
paper, we consider non-signaling functions, because the functional view fits better the setting
of Property Testing; nevertheless, we also consider non-signaling players, and show that our
results about non-signaling functions imply corresponding results about non-signaling players
(see full version for details).

A k-non-signaling function F extends the notion of a function f : {0, 1}n → {0, 1} as
follows: it is a collection {FS}S⊆{0,1}n,|S|≤k where each FS is a distribution over functions
fS : S → {0, 1} and, for every two subsets S and T each of size at most k, the restrictions of
FS and FT to S ∩T are equal as distributions. We sometimes write “F(S) = ~b”, for a subset
S ⊆ {0, 1}n and string ~b ∈ {0, 1}S , to denote the event that the function sampled from FS
equals ~b.

Observe that, given any k ∈ {1, . . . , 2n}, every function f : {0, 1}n → {0, 1} naturally
induces a k-non-signaling function F = {FS}S⊆{0,1}n,|S|≤k, namely the one where each FS
equals the constant distribution that outputs the restriction of f to S with probability 1.
More generally, every distribution over functions induces a corresponding k-non-signaling
function in a similar way.

However, the set of non-signaling functions is richer, because consistency between local
distributions need not imply a global distribution, as the following example shows. For n = 2
and k = 2, consider the non-signaling function {FS}S⊆{0,1}2,|S|≤2 defined as follows: F{00,11}

is uniform over the two functions
{ 00→ 0

11→ 1 , 00→ 1
11→ 0

}
and, for every {x, y} 6= {00, 11}, F{x,y}

is uniform over
{ x→ 0

y → 0 , x→ 1
y → 1

}
. No distribution over functions can explain the above

strategy, as any f in the support of such a distribution would have to satisfy f(00) 6= f(11)
and f(x) = f(y) for every {x, y} ⊆ {0, 1}2 \ {00, 11}, which is impossible.

1.3 The problem and challenges
We study linearity testing against non-signaling functions, which is the following problem.

I Question 1.1 (informal). Let F = {FS}S⊆{0,1}n,|S|≤k be a k-non-signaling function.
Suppose that with probability at least 1 − ε (for sufficiently small ε ≥ 0) it holds that
f(x) + f(y) = f(x+ y), where x and y are sampled uniformly and independently from {0, 1}n
and f : {x, y, x + y} → {0, 1} is sampled from the distribution F{x,y,x+y}. Can we deduce
any global properties about F?

In order to build intuition about this question, we temporarily put aside the case when
ε > 0, and focus on the case ε = 0, which already turns out to be quite subtle. In other
words, let us assume for now that for every x, y ∈ {0, 1}n and every f in the support of
F{x,y,x+y} it holds that f(x) + f(y) = f(x + y). What global properties, if any, can we
deduce about F?

Ideally, we would like to characterize the set of all non-signaling functions that pass the
linearity test with probability 1 and say that this set is related to linear functions. If F

CCC 2018



17:4 Testing Linearity against Non-Signaling Strategies

is restricted to answer according to a single fixed function f : {0, 1}n → {0, 1} (as in the
standard setting) then f passing the linearity test with probability 1 is equivalent to f being
linear by definition. On the other extreme, if F is allowed to answer queries arbitrarily
without any non-signaling property then no interesting conclusion is possible. The case of F
being a non-signaling function sits somewhere in between these two extremes: F is neither a
fixed function nor completely arbitrary. We present two examples to highlight the challenges
that arise when seeking an answer.

I Example 1.2. Consider the following 3-non-signaling function F = {FS}S⊆{0,1}n,|S|≤3.
For every subset {x, y, x + y} ⊆ {0, 1}n \ {0n}, the random variable f ← F{x,y,x+y} is
such that (f(x), f(y), f(x+ y)) is uniform over {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}; for every
subset {x, y, z} ⊆ {0, 1}n \ {0n} with z 6= x+ y, the random variable f ← F{x,y,z} is such
that (f(x), f(y), f(z)) is uniform over {0, 1}3. For every set S ⊆ {0, 1}n containing 0n, F
samples f ← FS\{0n}, and outputs the function g where g(x) = f(x) for x ∈ S \ {0n} and
g(0n) = 0. Note that F is 3-non-signaling because for every S ⊆ {0, 1}n \ {0n} with |S| = 3
the restriction of FS to any two coordinates {x, y} ⊆ S induces a uniformly boolean random
function over f : {x, y} → {0, 1}. In particular, for distinct x, y ∈ {0, 1}n \ {0n} it holds that
F{0n,x,y} outputs 0 on 0n, and random bits on x and y.

Clearly, F passes the linearity test with probability 1. Observe that we can alternatively
describe its answers according to the following procedure: upon receiving a subset S ⊆ {0, 1}n,
F samples a uniformly random linear function f : {0, 1}n → {0, 1} (independent of S) and
returns the restriction of f to S. We can thus explain F via the uniform distribution over
linear functions.

Generalizing from the above example, any non-signaling function that is induced by
sampling a linear function from any distribution (not just the uniform one) and answering
accordingly will pass the linearity test with probability 1. Note that a distribution over linear
functions is given by non-negative real numbers (pα)α∈{0,1}n such that

∑
α∈{0,1}n pα = 1,

where pα is the probability of sampling the function 〈α, ·〉. If F answers according to
(pα)α∈{0,1}n , then Pr[F(x) = b] =

∑
α:〈α,x〉=b pα for every x ∈ {0, 1}n and b ∈ {0, 1}; a

similar formula holds for more inputs.
The above discussion suggests a natural conjecture: every non-signaling function that

passes the linearity test with probability 1 can be explained by some distribution over linear
functions. In fact, this conjecture is true if the non-signaling strategy is restricted to be a
quantum strategy [30, 52]. But the set of non-signaling strategies is strictly larger. Below we
show that, perhaps surprisingly, these additional strategies make this conjecture false.

I Example 1.3. Consider the following 3-non-signaling function F = {FS}S⊆{0,1}n,|S|≤3.
For every subset {x, y, x+ y} ⊆ {0, 1}n \ {0n}, F{x,y,x+y} is the following distribution

Pr
f←F{x,y,x+y}

[f(x, y, x + y) = (a1, a2, a3)] =

{
1/7 if (a1, a2, a3) = (0, 0, 0)
2/7 if (a1, a2, a3) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

for every subset {x, y, z} ⊆ {0, 1}n\{0n} with z 6= x+y, F{x,y,z} is the following distribution

Pr
f←F{x,y,z}

[f(x, y, z) = (a1, a2, a3)] =
{

0 if (a1, a2, a3) = (0, 0, 0)
1/7 if (a1, a2, a3) 6= (0, 0, 0)

.

If an input set S contains 0n, FS assigns 0n to 0 and answers the rest according to FS\{0n}.
Note that F is 3-non-signaling because for distinct and non-zero x and y, the distribution of
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F{x,y} is

Pr
f←F{x,y}

[f(x, y) = (a1, a2)] =
{

1/7 if (a1, a2) = (0, 0)
2/7 if (a1, a2) 6= (0, 0)

.

In particular, for distinct and non-zero x and y, the distribution of F{x,y,0n} is

Pr
f←F{x,y,0n}

[f(x, y, 0n) = (a1, a2, 0)] =
{

1/7 if (a1, a2) = (0, 0)
2/7 if (a1, a2) ∈ {(1, 0), (0, 1), (1, 1)}

.

Observe that F passes the linearity test with probability 1. However, unlike before,
a distribution over linear functions that explains F does not exist. Namely, there is no
probability vector (pα)α∈{0,1}n with non-negative entries and

∑
α∈{0,1}n pα = 1 such that

Pr[F(x) = b] =
∑
α:〈α,x〉=b pα for all x ∈ {0, 1}n and b ∈ {0, 1}. In fact, when trying to solve

this linear system of equations with (pα)α∈{0,1}n as the variables, we obtain a solution vector
in which some of the entries are negative.

The above example is problematic because it seems to suggest that a clean characterization
of the set of all non-signaling functions passing the linearity test does not exist. Indeed, it
shows that this set is strictly richer than the set of all distributions over linear functions.

1.4 Negative probabilities and quasi-distributions
In order to resolve the difficulty encountered in Example 1.3, we embrace negative probabilities
(and probabilities greater than 1), and consider the notion of a quasi-distribution over boolean
functions.

I Definition 1.4 (informal). A quasi-distribution is defined as a vector of real numbers
Q = {qf}f : {0,1}n→{0,1} such that

∑
f : {0,1}n→{0,1} qf = 1. Similarly, a quasi-distribution

over linear functions is a quasi-distribution Q = {qf}f : {0,1}n→{0,1} such that qf = 0 for
all f that are not linear functions; in this case, we also allow ourselves to represent the
quasi-distribution by a vector (qα)α∈{0,1}n , where each qα is associated with the linear
function 〈α, ·〉.

A function f in a quasi-distribution Q = {qf}f is thus “sampled” with “probability” qf ,
which means that for every subset S ⊆ {0, 1}n and string ~b ∈ {0, 1}S the event “Q(S) = ~b”
has quasi-probability given by P̃r[Q(S) = ~b ] :=

∑
f s.t. f(S)=~b qf .

This may seem nonsensical, because quasi-probabilities are not restricted to be in [0, 1].
But this shall soon make sense. In the words of Paul Dirac [22, p.8]: “Negative energies
and probabilities should not be considered as nonsense. They are well-defined concepts
mathematically, like a negative sum of money, since the equations which express the important
properties of energies and probabilities can still be used when they are negative. Thus negative
energies and probabilities should be considered simply as things which do not appear in
experimental results.”

This viewpoint, which plays a central role in our work, is borrowed from Physics, where
it is used to describe many physical phenomena [22, 25], including non-signaling ones [2].

While the non-signaling function F in Example 1.3 cannot be explained by any distribution
over linear functions, it can be explained by a quasi-distribution over linear functions.
Concretely, letting qα represent the probability of “sampling” the function 〈α, ·〉, we solve
the following system of linear equations in the variables (qα)α∈{0,1}n :∑

α∈{0,1}n

qα = 1 and ∀x ∈ {0, 1}n ∀ b ∈ {0, 1}
∑

α:〈α,x〉=b

qα = Pr[F(x) = b] .
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The solution to this system is q~0 = 1− 8
7

2n−1
2n < 0 and qα = 8

7 ·
1

2n for all α 6= ~0. We stress that
the solution has a negative entry. One can then verify that the quasi-distribution obtained
above not only matches F on events involving one input (which is by construction) but also
on events involving two inputs: Pr[F(x1) = b1 , F(x2) = b2] =

∑
α:〈α,x1〉=b1 , 〈α,x2〉=b2

qα for
all x1, x2 ∈ {0, 1}n and b1, b2 ∈ {0, 1}. Similarly, the same holds for events involving three
inputs.

Crucially, the quasi-probabilities of events that involve a small enough set of inputs
“magically” add up to non-negative probabilities because, in particular, they describe distri-
butions of F . In other words, like in Dirac’s observation above, the negative probabilities
“do not appear in experimental results”; in our case the experiment is querying F , and a
quasi-distribution is merely a convenient mathematical abstraction to describe it.

The foregoing considerations directly lead to the following observation.

IObservation 1.5. If Q = (qf )f : {0,1}n→{0,1} is a quasi-distribution that induces a probability
distribution on every event of at most k inputs, then Q induces a k-non-signaling function.

Furthermore, if Q is supported on linear functions only, then the corresponding k-non-
signaling function passes the linearity test with probability 1.

The first part of the observation suggests using k as a measure of a quasi-distribution’s
locality: we say that a quasi-distribution Q = (qf )f is k-local if for every k inputs x1, . . . , xk ∈
{0, 1}n and k outputs b1, . . . , bk ∈ {0, 1} it holds that

∑
f :f(x1)=b1,...,f(xk)=bk

qf ≥ 0. Thus
Q behaves like a collection of (standard) distributions on all events that involve at most k
inputs and, moreover, these distributions jointly satisfy the k-non-signaling property.

The second part of the observation shows the existence of a class of non-signaling functions
that pass the linearity test with probability 1 that is much richer than the class of distribution
over linear functions. Are there any other types of non-signaling functions that pass the
linearity test with probability 1, or are these all of them? Moreover, how does this answer
change when we merely require that a non-signaling function pass the linearity test with
probability at least 1− ε? We now discuss our results, which will provide answers to these
questions.

2 Our results

Quasi-distributions arose rather naturally when reasoning about non-signaling functions.
First, we show that this is not a coincidence by proving that the two notions are equivalent.

I Theorem 2.1 (informal). Local quasi-distributions and non-signaling functions are equiva-
lent:
1. every k-local quasi-distribution induces a corresponding k-non-signaling function; con-

versely,
2. every k-non-signaling function has a k-local quasi-distribution that describes it. (In fact,

this quasi-distribution is not unique: the set of all such quasi-distributions is an affine
subspace.)

See Section 8 (specifically, Theorem 8.1 and Theorem 8.2) for precise statements of the two
items.

The first item is just Observation 1.5. The second item is proved via Fourier analytic
techniques applied to a quasi-probability vector. Informally, the Fourier coefficients of
quasi-probability vectors are indexed by subsets of {0, 1}n, and can be grouped into levels
according to their size. We prove that the only coefficients that matter for the k-non-signaling
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function are those in the levels for sizes at most k, while all others change the weights in the
quasi-probability vector but do not affect the induced k-non-signaling function.

The foregoing equivalence can be viewed as the “functional analogue” of an equivalence
proved in [2] for the (incomparable) case of non-signaling players. The Fourier analytic
techniques that we use are novel and, moreover, can be adapted to the case of non-signaling
players in order to strengthen [2]’s result to find all quasi-distributions (rather than just one)
that describe a given set of non-signaling players (see full version for details). We believe that
the mathematical structure uncovered by our Fourier analytic techniques is of independent
interest.

Having established the equivalence of local quasi-distributions and non-signaling functions,
we return to the problem of linearity testing against non-signaling functions. Our first theorem
in this direction is a characterization of the set of non-signaling functions that pass the
linearity test with probability 1: this set consists of local quasi-distributions over linear
functions (essentially).

I Theorem 2.2 (informal). Let F = {FS}S⊆{0,1}n,|S|≤k be a k-non-signaling function such
that

Pr
x,y←{0,1}n

f←F{x,y,x+y}

[f(x) + f(y) = f(x+ y)] = 1 .

There is a unique (k − 1)-local quasi-distribution L over linear functions describing F on all
input sets of size ≤ k − 1 (LS and FS are equal as distributions for every set S ⊆ {0, 1}n
with |S| ≤ k − 1).

See Theorem 10.1 in Section 10 for the precise statement. (A minor technicality of
the theorem is that L is only (k − 1)-local and only matches F on at most k − 1 inputs;
the discussion after Theorem 10.1 explains why this is the best we can hope for.) To
prove the theorem we define a quasi-distribution L over linear functions by solving a
certain system of linear equations that ensures that L and F match on single inputs,
i.e., that P̃r[L(x) = b] = Pr[F(x) = b] for all x ∈ {0, 1}n and b ∈ {0, 1}. We then
need to establish that L and F match on all sets of at most k − 1 inputs. We do so in
two steps: we first use linearity to show that L and F match on all parity events (i.e.,
P̃r
[∑

i∈T L(xi) = b
]

= Pr
[∑

i∈T F(xi) = b
]
for all x1, . . . , xs ∈ {0, 1}n and b ∈ {0, 1} with

s ≤ k − 1); then we use Fourier analysis to extend this claim to all allowed input sets.

We finally return to our original question (Question 1.1). Suppose that a non-signaling
function F passes the linearity test with probability 1−ε for sufficiently small ε ≥ 0 (possibly
with ε > 0 so Theorem 2.2 does not apply). What can we learn about F? Recall that if F
answers according to a fixed function f : {0, 1}n → {0, 1} (as in standard linearity testing),
then we may conclude that f is ε-close to some linear function [15, 12]. The foregoing
discussion for the case of ε = 0 leads to a natural conjecture: non-signaling functions that
pass the linearity test with high probability are local quasi-distributions over functions that are
close to linear. Our next theorem implies that this conjecture is true, but in a non-interesting
way. That is, it holds even without the hypothesis: every k-non-signaling function can be
expressed as a quasi-distribution over functions with support of size at most k (namely, over
functions that are non-zero for at most k inputs).

I Theorem 2.3 (informal). Every k-non-signaling function F can be expressed as a k-local
quasi-distribution Q over functions with support of size at most k.
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The above theorem is quite counterintuitive. On one hand, if F is described by a
distribution over functions that are close to linear, then F passes the linearity test with high
probability. But this simple fact does not extend to the case where F is a quasi-distribution
over functions that are close to linear. For example, the all-ones function never passes the
linearity test, yet Theorem 2.3 implies that it can be expressed as a quasi-distribution over
functions with support of size at most k, i.e., functions that are k

2n -close to the all-zeros
function (a linear function)!

We prove Theorem 2.3 via a greedy approach: given the non-signaling function F , we
iteratively consider small-support functions from heaviest to lightest and, in each iteration,
assign to these functions certain quasi-probabilities computed from F . See Theorem 9.1 (in
Section 9) for details.

Since our last conjecture turned out to be false, we again look for inspiration in the
standard setting in order to formulate another conjecture. Taking a different view, linearity
testing tells us that if a function f : {0, 1}n → {0, 1} passes the linearity test with high
probability then we know that there exists a linear function L such that for every x ∈ {0, 1}n
it holds that L(x) = f(x+ y)− f(y) with high probability over a random y ∈ {0, 1}n. Put
another way, the answers to any given query (or, more generally, a set of queries) given by
the self-correction of f and by L are close in statistical distance.

The foregoing observation suggests a conjecture: if a non-signaling function passes the
linearity test with high probability, then its self-correction is close to a quasi-distribution over
linear functions.

The self-correction F̂ of a non-signaling function F is naturally defined: on input
x ∈ {0, 1}n, F̂ samples a random y ∈ {0, 1}n and outputs F(x + y) − F(y); a similar
procedure applies if F̂ receives multiple inputs. Note that if F is k-non-signaling then F̂ is
k̂-non-signaling with k̂ := bk/2c.

The notion of distance is also naturally defined: the distance between two non-signaling
functions is the maximum statistical distance between the distributions induced on every
subset S; the equivalence of non-signaling functions and quasi-distributions (Theorem 2.1)
extends this definition to apply between two quasi-distributions, or between a non-signaling
function and a quasi-distribution.

The following theorem shows that the conjecture above is in fact true.

I Theorem 2.4 (informal). Let F = {FS}S⊆{0,1}n,|S|≤k be a k-non-signaling function such
that

Pr
x,y←{0,1}n

f←F{x,y,x+y}

[f(x) + f(y) = f(x+ y)] ≥ 1− ε for some ε ≥ 0 .

There is a (k̂ − 1)-local quasi-distribution L over linear functions that is Ok̂(ε)-close to F̂ on
all input sets of size ≤ k̂ − 1. That is, the maximum statistical distance between LS and F̂S,
across all sets S ⊆ {0, 1}n with |S| ≤ k̂ − 1, is Ok̂(ε).

See Theorem 11.2 (in Section 11) for details. Our proof differs significantly from prior
proofs of linearity testing in the standard setting. Informally, we start the proof by noting
that F̂ satisfies Prf̂←F̂{x,y,x+y}

Pr[f̂(x) + f̂(y) = f̂(x+y)] ≥ 1− ε̂ for every x, y ∈ {0, 1}n and
ε̂ := 4ε. (By assumption, F merely satisfies such a statement for random x, y ∈ {0, 1}n.) The
next step is similar to a step in the proof of Theorem 2.2: we define a quasi-distribution L
over linear functions by solving a system of linear equations that ensures that L and F̂ match
on single inputs, i.e., that Pr[L(x) = b] = Pr[F(x) = b] for all x ∈ {0, 1}n and b ∈ {0, 1}.
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We are left to argue that L and F̂ almost match on all sets of at most k̂ − 1 inputs, i.e.,
that the distributions LS and F̂S are statistically close for |S| < k̂. As before, we do so in
two steps: we first use linearity to show that L and F̂ almost match on all parity events
(i.e., Pr[

∑
i∈T F̂(xi) = b] ≈ P̃r[

∑
i∈T L(xi) = b] for all x1, . . . , xs ∈ {0, 1} for s ≤ k̂− 1), and

then we use a quantitative Fourier analytic claim (Lemma 5.1) to extend this claim to the
remaining query sets.

Finally, we use the foregoing results about non-signaling functions to prove analogous
statements about non-signaling players.

Recall that a k-non-signaling player P extends the notion of k non-communicating players
(possibly sharing randomness) as follows: it is a collection (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n where
each P(x1,...,xk) is a distribution over functions f : [k] → {0, 1} (the players’ k answers to
the k inputs) and, for every two input vectors (x1, . . . , xk) and (y1, . . . , yk) that agree on a
subset I ⊆ [k] of entries, the restrictions of P(x1,...,xk) and P(y1,...,yk) to entries in I are equal
as distributions. Non-signaling players are a richer class than non-communicating players
(and quantum-entangled ones) [40].

Now the linearity test, given a k-non-signaling player P = (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n ,
samples random vectors x, y ∈ {0, 1}n and distinct players i1, i2, i3 ∈ [k], sends the three
queries x, y, x+ y to the players Pi1 ,Pi2 ,Pi3 , and checks that Pi1(x) + Pi2(y) = Pi3(x+ y).

I Theorem 2.5 (informal). Let P = (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n be a k-non-signaling player.
1. Suppose that

Pr
x,y←{0,1}n

i1,i2,i3←[k]
P

[Pi1(x) + Pi2(y) = Pi3(x+ y)] = 1 .

There exists a (k − 2)-local quasi-distribution L over linear functions that describes P.
2. Suppose that

Pr
x,y←{0,1}n

i1,i2,i3←[k]
P

[Pi1(x) + Pi2(y) = Pi3(x+ y)] ≥ 1− ε .

There exists a (k̂ − 1)-local quasi-distribution L over linear functions that is Ok̂(ε)-close
to P̂, where P̂ is the (appropriately defined) self-correction of P.

See full version for details. The proof of these theorems show how to reduce to the case
of non-signaling functions, which we have already established (in Theorems 2.2 and 2.4
respectively).

We conclude this section via a brief comparison to the case of quantum strategies. Ito
and Vidick [30, 52] show that any quantum strategy that passes the linearity test with high
probability is close to a distribution over linear functions. Our results instead show that,
in our setting, we can only hope for a conclusion involving a quasi-distribution over linear
functions. This qualitative difference is due to the fact that non-signaling strategies are a
richer class than quantum strategies.

3 Techniques

We highlight some of the techniques that we use by providing proof sketches of some of our
results. We first discuss the ideas behind the equivalence between non-signaling functions
and local quasi-distributions (Section 3.1) and then how we analyze the linearity test
(Section 3.2). After that, we explain how we derive corresponding results about non-signaling
players (Section 3.3).
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3.1 Non-signaling functions and local quasi-distributions are equivalent
Our Theorem 2.1 states that non-signaling functions and local quasi-distributions are equiva-
lent. One direction of this equivalence, namely that every k-local quasi-distribution induces a
corresponding k-non-signaling function, is a simple observation. Below we focus on the other,
more interesting direction, which is: given a k-non-signaling function F = {FS}S⊆{0,1}n,|S|≤k,
how do we construct a quasi-distribution Q = {qf}f : {0,1}n→{0,1} that matches F on all sets
of at most k queries?

We construct Q by specifying its Fourier coefficients. We view Q = (qf )f : {0,1}n→{0,1} as
a function q : {0, 1}{0,1}n → R by setting q(f) := qf ∈ R, and then write Q via its Fourier
expansion:

q(·) =
∑

T⊆{0,1}n

q̂(T )χT (·) where
{
χT (f) := (−1)

∑
x∈T

f(x)

q̂(T ) := 〈q, χT 〉 = 1
22n

∑
f : D→{0,1} q(f)χT (f)

.

We set the 22n Fourier coefficients as follows:

q̂(T ) :=


1

22n if T = ∅
2

22n

(
Pr[
∑
x∈T F(x) = 0]− 1

2
)

if 1 ≤ |T | ≤ k
0 if |T | > k

.

We have to argue that the above choice of Q does describe F . First, we show that F and Q
match on all parity events of size at most k, i.e., for all S ⊆ {0, 1}n with |S| ≤ k

Pr
[∑
x∈S
F(x) = 1

]
=

∑
f :
∑

x∈S
f(x)=1

qf = P̃r
[∑
x∈S
Q(x) = 1

]
.

Recall (see Section 1.4) that P̃r[·] denotes the quasi-probability for an event about a quasi-
distribution.

Second, we prove that Pr [F(S) ∈ E] = P̃r [Q(S) ∈ E] for every subset S ⊆ {0, 1}n and
event E ⊆ {0, 1}S . We build on the previous step by observing that any event can be
expressed as a linear combination of parity events: there exist real numbers {cT }T depending
on E such that

Pr[Q(S) ∈ E] =
∑
T⊆S

cT · P̃r
[∑
x∈T
Q(x) = 0

]
. (1)

In fact, the real numbers {cT }T are closely related to the Fourier coefficients of the indicator
function of E, and this relation is a consequence of the fact that the functions {χT (·)}T
depend only on the parities of their inputs. See Lemma 5.1 for details.

The above is merely one quasi-distribution that explains F . We can find other such
quasi-distributions by noting that changing q̂(T ) for |T | > k yields quasi-distributions that
still match F . Essentially, if |T | > k then χT (·) does not affect the induced distributions
on sets of at most k inputs. We then argue that these are the only solutions possible. See
Section 8 for details.

3.2 Testing linearity against non-signaling functions
We discuss the ideas behind our analysis of linearity test against non-signaling functions
(that is, behind Theorem 2.2 and Theorem 2.4). We first explain why known proofs in the
standard setting do not easily extend to our setting, and then we describe the approach that
we took.
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3.2.1 Difficulties of prior approaches
We begin with a helpful exercise for which difficulties do not arise: consider the task of
analyzing the linearity test against a distribution D over boolean functions. Namely, if
Pr[f(x) + f(y) = f(x+ y)] ≥ 1− ε for f ← D and x, y ← {0, 1}n then what can we conclude
about D? This case is not hard to analyze: we separately apply known results on linearity
testing to each function in the support of D, and conclude that most of D is concentrated
on nearly-linear functions. Indeed, by Markov’s inequality, with probability 1−

√
ε over a

choice of f ← D it holds that Prx,y[f(x) + f(y) = f(x + y)] ≥ 1 −
√
ε and thus that f is√

ε-close to a linear function. This conclusion explains why D passes the linearity test with
high probability.

However, when considering the linearity test against a non-signaling function, the situation
changes significantly, as we now explain.

The Fourier analytic approach. One of the classical proofs of linearity testing in the
standard setting follows a Fourier analytic approach [12]. Unfortunately, we do not see how
to use this approach directly on a non-signaling function F , because computing Fourier
coefficients requires access to an entire function while F only provides local views. We could
instead rely on the equivalence between non-signaling functions and local quasi-distributions,
and apply Fourier analysis to the functions in a quasi-distribution Q = (qf )f : {0,1}n→{0,1}
that describes F . Namely, we could rewrite the probability Pr[F(x) + F(y) = F(x+ y)] as∑
f qf Pr[f(x) + f(y) = f(x+ y)], and then reason about the Fourier coefficients of every f .

We do not see how to make this work either, because the coefficients {qf}f can be positive
or negative (and even unbounded), which in particular forbids Markov-type arguments. It is
also not clear what kind of conclusion we could expect about the Fourier coefficients about
all functions.

The combinatorial approach. Another classical proof of linearity testing in the standard
setting follows a combinatorial approach (e.g., [15, 13]): given the function f : {0, 1}n → {0, 1},
define its correction g : {0, 1}n → {0, 1} to be g(x) := majy∈{0,1}nf(x+ y)− f(y), and show
that it is close to f ; then show that g is linear as, for every x ∈ {0, 1}n, a vast majority
of y’s yield g(x). This approach also seems to fail in our setting: the foregoing correcting
procedure relies on taking majority over all y ∈ {0, 1}n, but a non-signaling function only
accepts up to k inputs at a time.

It is not surprising that prior approaches do not seem to apply to our setting: they
were developed to show that a function f passing the linearity test with high probability is
nearly-linear. But we already know that every non-signaling function can be described by a
quasi-distribution over nearly-linear functions, so we are not interested in conclusions about
nearly-linear functions. Instead, we aim to show that (the self-correction of) a non-signaling
function passing the linearity test with high probability is close to a quasi-distribution over
linear functions. We next discuss our approach to establish such a conclusion.

3.2.2 Our approach
Let us once more first focus on the case where a k-non-signaling function F passes the linearity
test with probability 1, namely, Pr[F(x) + F(y) = F(x + y)] = 1 for every x, y ∈ {0, 1}n.
Our first step is to show that there exists a quasi-distribution L over linear functions that
matches F on single inputs, namely, P̃r[L(x) = b] = Pr[F(x) = b] for every x ∈ {0, 1}n and
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b ∈ {0, 1}. Viewing L as a vector (`α)α∈{0,1}n where each α is associated with the linear
function 〈α, ·〉, we know that L must be a solution to the following system of linear equations:

∀x ∈ {0, 1}n ,
∑

α:〈α,x〉=0

`α = Pr[F(x) = 0] .

Note that it suffices to consider constraints only involving Pr[F(x) = 0] because Pr[F(x) =
1] = 1 − Pr[F(x) = 0]. Also, L is a quasi-distribution because

∑
α `α = Pr[F(0n) = 0] =

Prx←{0,1}n [F(0n) + F(x) = F(x)] = 1 (as F always passes the linearity test). This system
has a unique solution, which thus defines the quasi-distribution L. We remark that it
is no coincidence that quasi-distributions supported on LIN are uniquely defined by their
probabilities on sets of size 1: a quasi-distribution is supported on LIN if and only if all of its
Fourier coefficients are determined by the coefficients only for sets of size 1 (see full version
for details).

Next, we need to argue that L and F match on larger sets of inputs. We first argue
that they match on all parity events, similarly to the idea behind the equivalence between
non-signaling functions and quasi-distributions discussed above (in Section 3.1). Specifically,
we use the assumption on linearity to show that for every subset S ⊆ {0, 1}n with |S| < k it
holds that

P̃r
[∑
x∈S
L(x) = 0

]
= Pr

[∑
x∈S
F(x) = 0

]
.

After that, using Eq. (1), we conclude that L and F match on all sets S of less than k inputs:
we express each event E ⊆ {0, 1}S as a linear combination of parity events for both F and L,

Pr [F(S) ∈ E] =
∑
T⊆S

cT · Pr
[∑
x∈T
F(x) = 0

]
,

and similarly

P̃r [L(S) ∈ E] =
∑
T⊆S

cT · P̃r
[∑
x∈T
L(x) = 0

]
.

The above shows that matching on parity events implies matching on all sets of less than k
inputs.

Let us now relax the assumption that F passes the linearity test with probability 1 to
merely that it passes the test with high probability, say at least 1 − ε for ε > 0. We first
consider F̂ , which is the k̂-non-signaling self-correction of F (with k̂ := k/2), and observe
that there exists ε̂ = 4ε such that F̂ satisfies, for every x, y ∈ {0, 1}n,

Pr
f̂←F̂{x,y,x+y}

[f̂(x) + f̂(y) = f̂(x+ y)] ≥ 1− ε̂ .

Note that, by assumption, F merely satisfies such a statement for random x, y ∈ {0, 1}n.
The next step is similar to the “ε = 0” case discussed above: we define a quasi-distribution

L over linear functions by solving the system of linear equations that ensures that L and
F̂ match on all single inputs, i.e., that P̃r[L(x) = b] = Pr[F̂(x) = b] for all x ∈ {0, 1}n and
b ∈ {0, 1}.

We then argue that L and F̂ almost match on sets of less than k̂ inputs, i.e., that the
distributions LS and F̂S are statistically close for every S ⊆ {0, 1}n with |S| < k̂. We do so,
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again, in two steps. First, we use the almost linearity of F̂ to show that L and F̂ almost
match on all parity events. Specifically, we show that for every subset T ⊆ {0, 1}n with
|T | < k̂ and b ∈ {0, 1},∣∣∣∣∣Pr

[∑
x∈T
F̂(x) = b

]
− P̃r

[∑
x∈T
L(x) = b

]∣∣∣∣∣ < (|T | − 1)ε̂ .

Then, we use Eq. (1) to extend this claim to all events on these query sets: for every subset
S ⊆ {0, 1}n with |S| < k̂ and event E ⊆ {0, 1}S∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]

∣∣∣ < ∑
T⊆S

|cT | · (|T | − 1) · ε̂ .

Crucially, unlike the case of ε = 0, here we need quantitative bounds on the coefficients
{cT }T in order to derive an upper bound. We prove such bounds in Lemma 5.1.

Finally, while L is close to F̂ (see Definition 7.5 for how to extend the notion of statistical
distance to our setting), it is possible that L does not induce a distribution on all subsets
S ⊆ {0, 1}n with |S| < k̂, because it could be that P̃r [L(S) ∈ E] is negative for some S and
E ⊆ {0, 1}S . However, since Pr[F̂(S) ∈ E] is a probability (i.e., a number between 0 and
1), for all subsets S ⊆ {0, 1}n with |S| < k̂ it holds that P̃r[L(S) ∈ E] ∈ [−ε′, 1 + ε′] for
ε′ := (|S| − 1) ·

√
|E| · ε̂. We then show that L can be corrected to obtain a (k̂ − 1)-local

quasi-distribution L′ that is close to L (see Corollary 7.9). By triangle inequality this implies
that L′ is also close to F̂ .

See Section 11 for details.

3.3 Extending the analysis to non-signaling players
We make a “black-box” use of our results on testing linearity against non-signaling functions
to derive corresponding results on testing linearity against non-signaling players. Recall
that, given a k-non-signaling player P = (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n , the linearity test is
now as follows: sample x, y ∈ {0, 1}n and (distinct) i1, i2, i3 ∈ [k] uniformly at random,
send the three queries x, y, x + y to the players Pi1 ,Pi2 ,Pi3 respectively, and check that
Pi1(x) + Pi2(y) = Pi3(x+ y).

We prove that if P always passes the linearity test, then there exists a quasi-distribution
L over linear functions that matches P.

We first argue that P must be (almost) symmetric, that is, P’s answers depend only on
the set of asked queries but not also on which players answer these queries. In more detail,
we show that, for every subset I ⊆ [k] of |I| = k − 1 players, it holds that Pr[P(~x) = ~b] =
Pr[P(π(~x)) = π(~b)] for every permutation π : I → I, inputs ~x = (xi)i∈I ∈ ({0, 1}n)I , and
answers ~b = (bi)i∈I ∈ {0, 1}I .

We then define a (k − 1)-non-signaling function F that matches k − 1 players of P
in the natural way (we define Pr[F(x1) = b1, . . . ,F(xk−1) = bk−1] to be Pr[P1(x1) =
b1, . . . ,Pk−1(xk−1) = bk]). By the aforementioned symmetry of P, it does not matter which
k − 1 players we use to define F .

We then argue that F always passes the linearity test. Our earlier results imply that there
exists a quasi-distribution L over linear functions that matches F on all subsets of at most
k − 2 queries. By definition of F this implies that L also matches the players P1, . . . ,Pk−2,
and, using the symmetry of P , we conclude that L also matches every subset of k− 2 players.

We now relax the assumption that P passes the linearity test with probability 1 to merely
that it passes the test with probability 1− ε for a small enough ε > 0.
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Similarly to the case of non-signaling functions, we define a self-correction P̂ of P
in the natural way: it is a k̂-non-signaling player (for k̂ := k/2) that, given a query
(x1, . . . , xk̂) ∈ {0, 1}k̂×n, samples w1, . . . , wk̂ ∈ {0, 1}n and a permutation π : [k] → [k]
uniformly at random, and answers each xi with Pπ(2i)(xi + wi) + Pπ(2i+1)(wi).

We show that P̂ is (fully) symmetric and that, for every x, y ∈ {0, 1}n and distinct
i1, i2, i3 ∈ [k̂], Pr[P̂i1(x) + P̂i2(y) = P̂i3(x + y)] > 1 − ε̂ for ε̂ := 4ε. This is analogous
to the average-case-to-worst-case statement that we showed for non-signaling functions.
We define a k̂-non-signaling function F̂ that matches P̂ similarly to the above (by letting
Pr[F̂(x1) = b1, . . . , F̂(xk̂) = bk̂] := Pr[P̂1(x1) = b1, . . . , P̂k̂(xk̂) = bk̂]), and show that it
satisfies the analogous worst-case property, that is, Pr[F̂(x) + F̂(y) = F̂(x+ y)] ≥ 1− ε̂ for
every x, y ∈ {0, 1}n. Our earlier results imply that there exists a quasi-distribution L over
linear functions that is close to F̂ , and thus also close to P̂.

See full version for details.

4 Discussion and open problems

The study of non-signaling strategies in Physics is motivated by the goal of understanding
the power and limitations of Nature’s apparent non-locality [35, 43, 40, 41, 8]. Prior work
has explored many topics, including the inter-convertibility between quantum strategies and
non-signaling strategies [19, 11, 10, 31, 17]; communication complexity with non-signaling
strategies [51, 16]; non-local computation [36]; using non-signaling strategies to achieve key
distribution, oblivious transfer, and bit commitments [9, 53, 18, 49, 48]; and many others
[38, 27, 20].

More recently, researchers have established connections with Complexity Theory and
Cryptography. Property Testing against non-signaling strategies, the subject of our work, is
likely to lead to a deeper understanding of these.

4.1 Powers and limitations of non-local strategies
Understanding the computational complexity of computing or approximating the value of
certain classes of games is a fundamental problem in Complexity Theory. Games are typically
phrased in terms of one or more non-communicating players that interact with a probabilistic
polynomial-time Referee (with polynomial randomness), who decides at the end of the game
if the players win or not. The complexity of these games is well-understood.

Results on Interactive Proofs (IPs) [37, 46] imply that approximating the value of single-
player games is PSPACE-complete, when given enough rounds.
Results on Multi-prover Interactive Proofs (MIPs) [7] imply that approximating the value
of multi-player games is NEXP-complete, even with only two players.
Results on Probabilistically Checkable Proofs (PCPs) [6, 24, 4, 3] imply that, if the
player’s strategy is non-adaptive (the player merely answers queries from the Referee)
then approximating the game’s value is NEXP-complete, even if the Referee asks only a
constant number of queries and receives answers over a constant-size alphabet.

However, if the players can use any non-signaling strategy to win the game, much less is
known.

If there are only two players, then approximating the game’s value is PSPACE-complete
[29, 28]. If the game has k players then its value can be computed in time poly(2kr, |Σ|k),
where r is the Referee’s randomness complexity and Σ is each player’s answer’s alphabet
[23], which means that this computation lies in EXP. This is very unlike the case of non-
communicating players.
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However, hardness results for this problem in the case of three or more players have been
elusive. Recently, Kalai, Raz, and Rothblum [32, 34] established EXP-hardness for the case
of polynomially-many provers, via a reduction from deterministic-time languages.

I Theorem 4.1 ([32, 34]). Let L be a language decidable in time T : N→ N. There exists
a constant c > 0 such that, for any function λ : N→ N with λ ≥ logc T , L has a (λ logc T )-
prover MIP with soundness error 2−λ against non-signaling players. The verifier runs in
time nλ2 logc T and the provers in time poly(T, λ); each query and answer consists of λ logc T
bits.

The above theorem is proved by constructing a PCP verifier that is secure against non-
signaling functions (Definition 6.1), which can then be compiled into an MIP verifier that is
secure against non-signaling players. The proof is a technical tour-de-force showing that a
modification of the “classical” PCP verifier in [7, 6] is secure against non-signaling functions.

The huge gap between the EXP-completeness for polynomially-many provers and the
PSPACE-completeness for two provers motivates a natural question:

Is there a non-signaling analogue of the PCP Theorem? I.e., does EXP have
O(1)-query PCPs over a O(1)-size alphabet that are secure against non-signaling
functions? (Equivalently, O(1)-prover MIPs over a O(1)-size alphabet that are secure
against non-signaling players?)

We believe that initiating a study of Property Testing against non-signaling strategies will
drive progress on this question. In particular, linearity testing is one of the ingredients of
the (classical) PCP Theorem, and linearity testing against non-signaling strategies may be a
good place to start.

We also believe that Property Testing against non-signaling strategies may play a signifi-
cant simplifying role, which could itself drive progress on this and other questions. Indeed,
the analysis of classical PCP constructions (including [7, 6]) is carried out in two conceptually
simple steps: first argue soundness assuming that the PCP is a low-degree function, and
then rely on low-degree testing and self-correction to ensure that the PCP is close to a
low-degree function [45, 44, 5]. The study of this latter step as a standalone problem in the
area of Property Testing has enabled much progress on PCP research. In contrast, while
the analysis in [32, 34] does analyze low-degree tests by proving certain average-case-to-
worst-case statements, it does not prove any local-to-global phenomena for the property of
“low-degreeness”.

We prove a first local-to-global phenomenon for Property Testing against non-signaling
strategies. However, whether Property Testing is feasible beyond the case of linearity testing
(our focus) and whether it plays a beneficial and simplifying role in PCP research are
fascinating open problems.

4.2 Hardness of approximation
Feige et al. [24] showed a fundamental connection between MIPs/PCPs and the hardness
of approximating values of constraint satisfaction problems. Kalai, Raz, and Regev [33]
recently established a similar connection, this time between non-signaling MIPs/PCPs
and the hardness of approximating values of linear programs. While the first connection
considers approximation algorithms that are bounded in time, the second connection considers
approximation algorithms that are bounded in space. We recall [33]’s result and its relation
to our results.
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I Theorem 4.2 ([33]). Let L be a language with a 1-round k-prover MIP with soundness
error ε against non-signaling players in which:
(i) the verifier has time complexity T , space complexity S, and randomness complexity r;
(ii) the prover’s answers are symbols in Σ.

Then there is a family of polyhedra {Hn}n∈N and a poly(2kr, |Σ|k , T )-time poly(k, r, S)-
space reduction R such that:
(i) For every instance x ∈ {0, 1}∗, R(x) is a linear program with polyhedron H|x| and with

poly(2kr, |Σ|k) variables and constraints.
(ii) If x ∈ L, then the value of the linear program R(x) is 1.
(iii) If x 6∈ L, then the value of the linear program R(x) at most ε.

The above result, when combined with the non-signaling MIPs for deterministic-time
languages of [32, 34] (see Section 4.1), implies that a 2logo(1)(n)-space approximation algorithm
for linear programming is unlikely, even when given unbounded computation based on the
polyhedron. (Since that would imply, in particular, that every problem in P can be solved in
2logo(1)(n)-space.)

The above conclusion, however, appears sub-optimal because both 2kr and |Σ|k are
super-polynomial in the construction of [32, 34]. Ideally, we would like a construction where
r = O(logn) and k = O(1), which again (as discussed in Section 4.1) leads to the question
of whether there is a non-signaling analogue of the PCP Theorem. We conjecture that the
study of Property Testing against non-signaling strategies is again very relevant.

4.3 One-round delegation of computation
Delegation of computation is a fundamental goal in Cryptography that involves designing
protocols that enable a weak verifier to outsource expensive computations to a powerful but
untrusted prover.

A key efficiency measure is round complexity (the number of back-and-forth messages
between the verifier and prover). Aiello et al. [1] suggested a cryptographic method to
transform any 1-round MIP into a 1-round delegation protocol, but did not provide a proof
of security. Later on, Dwork et al. [23] showed that this method is not secure in the general
case, by exhibiting a 1-round MIP for which the transformation yields a delegation protocol
that can be fooled.

Nevertheless, Kalai, Raz, and Rothblum [32] proved that if the 1-round MIP used in
the method is sound against non-signaling players then the resulting delegation protocol
cannot be fooled (namely, is secure). More precisely, the 1-round MIP must be sound not
only against all players that are non-signaling but also against all players that are almost
non-signaling (see full version for details), where “almost” denotes a certain parameter that
depends on the security reduction.

By invoking this method on the MIP of [32, 34] (which is secure against almost non-
signaling players), one obtains a delegation protocol for all polynomial-time functions in
which the prover runs in polynomial time and the verifier in polylogarithmic time.

Yet, the seemingly sub-optimal parameters of the MIP of [32, 34] suggest that there is
room to improve efficiency by invoking the method on more efficient MIPs. For example:

Is there an almost non-signaling analogue of the PCP Theorem?
Namely, does EXP have O(1)-query PCPs (equivalently, O(1)-prover MIPs) over a
O(1)-size alphabet that are secure against almost non-signaling strategies?
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The study of Property Testing against almost non-signaling strategies is likely a first step,
and our work establishes first results for exact non-signaling strategies.

I Remark 4.3 (extension to almost non-signaling). While almost non-signaling strategies are
not our focus, in this paper we do show that almost non-signaling strategies are not outside
the reach of tools that we use. Concretely, we show that every almost non-signaling function
is “reasonably close” to a corresponding (exact) non-signaling function. The proof of this
statement uses Fourier analysis, and the intuition behind it is similar to how almost-feasible
solutions to Sherali–Adams relaxations are “smoothened”into feasible ones [42]. The generic
lemma enables us, for example, to extend Theorem 2.4 to the case of almost non-signaling
strategies. Whether a whitebox analysis of linearity testing against almost non-signaling
strategies can improve upon such a blackbox extension remains an interesting open problem.
See full version for details.

5 Preliminaries

For a finite domain D, we denote by UD the set of all boolean functions f : D → {0, 1}; when
D is clear from context, we may omit the subscript in UD. When D = {0, 1}n, a function
f ∈ U{0,1}n is linear if f(x) + f(y) = f(x+ y) for all x, y ∈ {0, 1}n; LIN is the set of all such
linear functions.

5.1 Fourier analysis of boolean functions
We use standard notation for Fourier analysis of boolean functions (see [39] for more details).
For a domain D of size N , we consider functions f : {0, 1}D → R. The inner product of two
functions g1, g2 : {0, 1}D → R is 〈g1, g2〉 := 1

2N

∑
x∈{0,1}D g1(x)g2(x). For a subset T ⊆ D,

χT : {0, 1}D → R is the parity function χT (x) = (−1)
∑

i∈T
xi . It is not hard to verify that

the set of functions {χT }T⊆D is an orthonormal basis of the space of all functions from
{0, 1}D to R. In particular, every function f : {0, 1}D → R can be written as

f(·) =
∑
T⊆D

f̂(T )χT (·) ,

where f̂(T ) = 〈f, χT 〉 = 1
2N

∑
x∈{0,1}D f(x)χT (x). In particular, by Parseval’s identity for

any two functions f, g : {0, 1}D → R we have

1
2N

∑
x∈{0,1}D

f(x)g(x) =
∑
T⊆D

f̂(T )ĝ(T ) ,

which implies Plancherel’s identity

1
2N

∑
x∈{0,1}D

f(x)2 =
∑
T⊆D

f̂(T )2 .

For a set E ⊆ {0, 1}s, its indicator function 1E : {0, 1}s → {0, 1} is defined as

1E =
{

1 if x ∈ E
0 otherwise

.

Note that by Plancherel’s identity we have
∑
T⊆[s] 1̂E(T )2 = E[1E ] = |E|

2s . In particular, this

implies ‖1̂E‖1 =
∑
T⊆[s] |1̂E(T )| ≤

√∑
T⊆[s] 1̂E(T )2 ·

√∑
T⊆[s] 1 ≤

√
|E|
2s · 2s/2 =

√
|E|.
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5.2 Expressing boolean events as sums of parities
We state two lemmas that express the probability of certain events as probabilities about
the parities of related events.

I Lemma 5.1. Let X1, . . . , Xs be boolean random variables. Then, for every event E ⊆
{0, 1}s it holds that

Pr[(X1 . . . , Xs) ∈ E] =
∑
T⊆[s]

cT · Pr
[∑
i∈T

Xi = 0
]
,

where c∅ = 2 · 1̂E(∅)− 1E(~0), and cT = 2 · 1̂E(T ) for all T 6= ∅. In particular, cT ’s depend
only on E and

∑
T⊆[s] |cT | ≤ 3‖1̂E‖1 ≤ 3

√
|E|.

I Corollary 5.2. Let X1, . . . , Xs be boolean random variables. Then, for every ~b = (b1, . . . , bs)
in {0, 1}s it holds that

Pr[X1 = b1, . . . , Xs = bs] = −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T

Xi =
∑
i∈T

bi

]
.

Proof of Lemma 5.1. Define p : {0, 1}s → R as p(~a) = Pr[X1 = a1, . . . , Xs = as], and write
p =

∑
T⊆[s] p̂(T ) · χT . We have

p̂(T ) = E[p(~a) · χT (~a)]

= 1
2s

 ∑
~a:
∑

i∈T
~ai=0

p(~a)−
∑

~a:
∑

i∈T
~ai=1

p(~a)


= 1

2s

2
∑

~a:
∑

i∈T
~ai=0

p(~a)− 1


= 1

2s

(
2 Pr

[∑
i∈T

Xi = 0
]
− 1
)

Let E ⊆ {0, 1}s be an event, and let 1E : {0, 1}s → {0, 1} be its indicator function. Then,
by Parseval’s identity we have

Pr[(X1 . . . , Xs) ∈ E] =
∑

~a∈{0,1}s

p(~a) · 1E(~a) = 2s ·
∑
T⊆[s]

p̂(T ) · 1̂E(T ) .

By plugging in the formula p̂(T ) = 1
2s

(
2 Pr[

∑
i∈T Xi = 0]− 1

)
, and using Pr[

∑
i∈∅Xi =

0] = 1 we get

Pr[(X1 . . . , Xs) ∈ E] =
∑
T⊆[s]

(
2 Pr

[∑
i∈T

Xi = 0
]
− 1
)
·1̂E(T ) =

∑
T⊆[s]

cT ·Pr
[∑
i∈T

Xi = 0
]
,

where c∅ = 2 · 1̂E(∅) −
∑
T⊆[s] 1̂E(T ), and cT = 2 · 1̂E(T ) for all T 6= ∅. Since 1E(·) =∑

T⊆[s] 1̂E(T )χT (·), it follows that 1E(~0) =
∑
T⊆[s] 1̂E(T ), as required.

Thus, by the argument in Section 5.1 we have
∑
T⊆[s] |cT | ≤ 3

∑
T⊆[s] |1̂E(T )| ≤ 3

√
|E|.
J
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Proof of Corollary 5.2. Let E = {~b} be the singleton event. It is easy to verify that
1̂E(T ) = (−1)

∑
i∈T

bi · 2−s. Therefore, by Lemma 5.1 we have

Pr[X1 = b1, . . . , Xs = bs] =
∑
T⊆[s]

cT · Pr
[∑
i∈T

Xi = 0
]
,

where c∅ = 2 · 1̂E(∅) − 1E(~0) = 1
2s−1 − 1E(~0), and cT = (−1)

∑
i∈T

bi · 2−s+1 for all T 6= ∅.
By substituting Pr

[∑
i∈T Xi = 0

]
with 1 − Pr

[∑
i∈T Xi = 1

]
for all T ⊆ [s] such that∑

i∈T bi = 1 we get

Pr[X1 = b1, . . . , Xs = bs] =
∑
T⊆[s]

cT · Pr
[∑
i∈T

Xi = 0
]

=

−1E(0)−
∑

T :
∑

i∈T
bi=1

1
2s−1

+ 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T

Xi =
∑
i∈T

bi

]

= −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T

Xi =
∑
i∈T

bi

]
,

as required. J

5.3 A linear system
Below we prove that a certain linear system of equations, which we will use later, has a
unique solution. This linear system is the inverse of the Hadamard–Walsh matrix.

I Lemma 5.3. For every positive integer n and real numbers {cβ}β∈{0,1}n , the system of 2n
linear equations over R in 2n variables {zα}α∈{0,1}n given by∀β ∈ {0, 1}n

∑
α∈{0,1}n

s.t. 〈α,β〉=0

zα = cβ


has a unique solution.

Proof. Let A be the 2n× 2n boolean matrix corresponding to the system of linear equations,
that is, such that Az = c. Note that the (β, α)-th entry of A is equal to 1− 〈α, β〉, and in
particular, the row in A corresponding to β = 0n is the all-ones row. Define H to be the
matrix obtained from A by performing the following elementary row operations: for every
β 6= 0n, multiply row β by 2 and then subtract the all-ones row (corresponding to β = 0n).

Note that the (β, α)-th entry of H is equal to (−1)〈α,β〉. (The matrix H is sometimes
called the Hadamard–Walsh matrix.) Indeed, this holds trivially for the row β = 0n as
Hβ,α = (−1)〈α,0n〉 = 1, and for β 6= 0n we have Hβ,α = 2(1 − 〈α, β〉) − 1 = 1 − 2〈α, β〉 =
(−1)〈α,β〉. Since H was obtained from A by performing elementary row operations, A is
invertible if and only if H is invertible. Observe that H is indeed invertible because the rows
of H are mutually orthogonal since for every two distinct β and γ in {0, 1}n it holds that

〈row β, row γ〉 =
∑
α

(−1)〈α,β〉(−1)〈α,γ〉 =
∑
α

(−1)〈α,β〉+〈α,γ〉 =
∑
α

(−1)〈α,β+γ〉 = 0 ,

where the last equality holds because β + γ 6= 0n. J
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6 Non-signaling functions

We define non-signaling functions, introduce useful notation for them, and prove a simple
lemma about them. The notions described here are used throughout the paper.

I Definition 6.1 (non-signaling functions). A k-non-signaling (boolean) function over
a finite domain D is a collection F = {FS}S⊆D,|S|≤k where
(i) each FS is a distribution over functions f : S → {0, 1}, and
(ii) for every two subsets S and T each of size at most k, the restrictions of FS and FT to

S ∩ T are equal as distributions.
(If S = ∅ then FS always outputs the empty string.)

Given a set S ⊆ D of size |S| ≤ k and a string ~b ∈ {0, 1}S , we define

Pr[F(S) = ~b ] := Pr
f←FS

[ f(S) = ~b ] .

The non-signaling property in this notation is the following: for every two subsets S, T ⊆ D
of sizes |S| , |T | ≤ k and every string ~b ∈ {0, 1}S∩T , Pr[F(S)|S∩T = ~b ] = Pr[F(T )|S∩T = ~b ].

Sometimes it is more convenient to consider a vector of inputs (rather than a set), and
so we define notation for this case. Given a vector 〈x1, . . . , xs〉 with entries in D and a
vector 〈b1, . . . , bs〉 with entries in {0, 1} (with s ∈ {1, . . . , k}), we define Pr[F(〈x1, . . . , xs〉) =
〈b1, . . . , bs〉] and Pr[F(x1) = b1, . . . ,F(xs) = bs] to be the probability

Pr
f←F{x1,...,xs}

[ f(x1) = b1, . . . , f(xs) = bs] .

Note that {x1, . . . , xs} is an unordered set and its size may be less than s, because the entries
of the vector 〈x1, . . . , xs〉 may not be distinct. We abuse notation and still use symbols such
as S and ~b to denote vectors as above. We stress that we use an ordering on S merely to
match each element of S to the corresponding element in ~b; the event remains unchanged if
one permutes the entries of S and ~b according to the same permutation.

I Remark 6.2 (Sherali–Adams hierarchy). We note that k-non-signaling functions are solutions
to the linear program arising from the k-relaxation in the Sherali–Adams hierarchy [47]. The
variables are of the form XS,~b (for all S ⊆ D of size at most k and ~b ∈ {0, 1}S) and express
Pr[F(S) = ~b ]. Consistency across subsets S and T is expressed using the natural linear
constraints.2

We conclude with a useful lemma.

I Lemma 6.3. Let F be a k-non-signaling function over a domain D, let S1, S2 be subsets of
D with |S1 ∪ S2| ≤ k, and let g1 : {0, 1}S1 → {0, 1}r and g2 : {0, 1}S2 → {0, 1}r be functions.
If PrF [ g1(F(S1)) = g2(F(S2))] ≥ 1− ε, then for every ~b ∈ {0, 1}r it holds that∣∣∣Pr

F
[ g1(F(S1)) = ~b ]− Pr

F
[ g2(F(S2)) = ~b ]

∣∣∣ ≤ ε .

In particular, if ε = 0 then PrF [ g1(F(S1)) = ~b ] = PrF [ g2(F(S2)) = ~b ] for every ~b ∈ {0, 1}r.

2 In fact it suffices to only have variables of the form XS,1S as all other probabilities can be computed
from these.
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Proof. By direct computation:∣∣∣Pr
F

[ g1(F(S1)) = ~b ]− Pr
F

[ g2(F(S2)) = ~b ]
∣∣∣

=
∣∣∣∣Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) = ~b ] + Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) 6= ~b ]

− Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) = ~b ]− Pr
F

[ g1(F(S1)) 6= ~b ∧ g2(F(S2)) = ~b ]
∣∣∣∣

=
∣∣∣Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) 6= ~b ]− Pr
F

[ g1(F(S1)) 6= ~b ∧ g2(F(S2)) = ~b ]
∣∣∣

≤ Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) 6= ~b ] + Pr
F

[ g1(F(S1)) 6= ~b ∧ g2(F(S2)) = ~b ]

≤ Pr
F

[ g1(F(S1)) 6= g2(F(S2))] ≤ ε .

Note that we are implicitly using the fact that |S1 ∪ S2| ≤ k whenever we have S1 and S2 in
the same probability event because we are querying F on all inputs in S1 ∪ S2 at once. J

7 Quasi-distributions

A quasi-distribution extends the notion of a probability distribution by allowing probabilities
to be negative, and is the main tool that we use to analyze non-signaling functions.

I Definition 7.1 (quasi-distributions). Let D be a finite domain, and denote by UD the set
of all boolean functions of the form f : D → {0, 1}. A quasi-distribution Q over a subset
G ⊆ UD is a set of real numbers {qf}f∈UD

such that
∑
f∈UD

qf = 1 and qf = 0 for every
f /∈ G.

I Definition 7.2 (quasi-probability). Given a quasi-distribution Q = {qf}f∈UD
, a subset

S ⊆ D, and a string ~b ∈ {0, 1}S , we define the quasi-probability of the event “Q(S) = ~b”
to be the following (possibly negative) real number

P̃r[Q(S) = ~b ] :=
∑

f∈UD s.t. f(S)=~b

qf .

As in the case of non-signaling functions, it is sometimes more convenient to consider a
vector of inputs rather than a set. Given a vector 〈x1, . . . , xs〉 with entries in D and a vector
〈b1, . . . , bs〉 with entries in {0, 1}, we define Pr[Q(〈x1, . . . , xs〉) = 〈b1, . . . , bs〉] and Pr[Q(x1) =
b1, . . . ,Q(xs) = bs] to be the (possibly negative) real number

∑
f∈UD s.t. ∀i f(xi)=bi

qf . We
abuse notation and still use symbols such as S and ~b to denote vectors as above.

Since a quasi-distribution Q is defined by its weights q = (qf )f∈UD
, we can view Q as a

function from {0, 1}D to R, where we identify a function f : D → {0, 1} with the corresponding
vector in {0, 1}D and q(f) with qf . In particular, we can write q(·) =

∑
T⊆D q̂(T )χT (·),

where χT (f) = (−1)
∑

x∈T
f(x), and q̂(T ) = 〈q, χT 〉 = 1

2|D|
∑
f : D→{0,1} q(f)χT (f).

The following lemma is an analogue of Lemma 5.1 for quasi-distributions.

I Lemma 7.3. Let Q = (qf )f be a quasi-distribution, S = 〈x1, . . . , xs〉 a vector with entries
in {0, 1}n. Then, for every event E ∈ {0, 1}s it holds that

∑
f :f(S)∈E

qf =
∑
T⊆[s]

cT · P̃r
[∑
i∈T
Q(xi) = 0

]
=
∑
T⊆[s]

cT ·

 ∑
f :
∑

i∈T
f(xi)=0

qf

 ,

where c∅ = 2 · 1̂E(∅)− 1E(~0), and cT = 2 · 1̂E(T ) for all T 6= ∅.
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The proof of the lemma is immediate from the proof of Lemma 5.1, since the proof only uses
the fact that probabilities add up to 1, which also holds for quasi-probabilities.

I Definition 7.4 (locality). Let D be a finite domain of size N . For 1 ≤ ` ≤ N a quasi-
distribution Q over UD is `-local if for every subset S ⊆ D of size |S| ≤ ` and string
~b ∈ {0, 1}S ,

P̃r[Q(S) = ~b ] ∈ [0, 1] .

For completeness, we also say that all quasi-distributions are 0-local.

If Q is `-local, then for every subset S ⊆ D of size |S| ≤ `, we may view Q(S) as a
probability distribution over {0, 1}S . If Q is `-local then it is s-local for every s ∈ {0, 1, . . . , `}.

For Q to be `-local, it suffices for all relevant P̃r[Q(S) = ~b] to be non-negative (as opposed
to be in [0, 1]). This is because

∑
f qf = 1, so that

∑
~b∈{0,1}S P̃r[Q(S) = ~b] = 1 and, if all

terms in this sum are non-negative, then we can deduce that P̃r[Q(S) = ~b] ≤ 1 for every ~b.

IDefinition 7.5 (statistical distance). Given a finite domainD and an integer ` ∈ {1, . . . , |D|},
the ∆`-distance between two quasi-distributions Q and Q′ is

∆`(Q,Q′) := max
S⊆D , |S|≤`

∆(QS ,Q′S) ,

where ∆(QS ,Q′S) := maxE⊆{0,1}S

∣∣∣P̃r[Q(S) ∈ E]− P̃r[Q′(S) ∈ E]
∣∣∣.

We say that Q and Q′ are ε-close in the ∆`-distance if ∆`(Q,Q′) ≤ ε; else, they are
ε-far.

I Remark 7.6 (distance for non-signaling functions). The definition of ∆`-distance naturally
extends to defining distances between k-non-signaling functions, as well as between quasi-
distributions and k-non-signaling functions, provided that ` ≤ k.

The notion above generalizes the standard notion of statistical (total variation) distance: if
Q and Q′ are distributions then their ∆|D|-distance equals their statistical distance. Also note
that if Q and Q′ are `-local quasi-distributions then their ∆`-distance equals the maximum
statistical distance, across all subsets S ⊆ D with |S| ≤ `, between the two distributions QS
and Q′S — in particular this means that any experiment that queries exactly one set of size
at most ` cannot distinguish between the two quasi-distributions with probability greater
than ∆`(Q,Q′).

We stress that ∆`(Q,Q′) = 0 does not necessarily mean that Q = Q′! In fact, it is
possible to have ∆`(Q,Q′) = 0 while

∑
f∈U |qf − q′f | is arbitrarily large. We also remark

that the ∆`-distance is not necessarily upper bounded by 1, and is in general unbounded.

I Definition 7.7 (approximate locality). Given a finite domain D, an integer ` ∈ {1, . . . , |D|},
and a real number ε ≥ 0, a quasi-distribution Q over UD is (`, ε)-local if, for every subset
S ⊆ D of size |S| ≤ ` and every event E ⊆ {0, 1}S ,

P̃r[Q(S) ∈ E] ∈ [−ε, 1 + ε] .

Approximate locality generalizes the notion of (exact) locality as in Definition 7.4.
Indeed, note that in Definition 7.4 the condition is point-wise, i.e., P̃r[Q(S) = ~b] ∈ [0, 1]
for each ~b ∈ {0, 1}S . However, this is in fact equivalent to the event-wise definition,
P̃r[Q(S) ∈ E] ∈ [0, 1] for all E ⊆ {0, 1}S , and hence every `-local quasi-distribution Q is
(`, 0)-local.
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Below we discuss the following questions. Given an approximately local quasi-distribution
Q, can we find a local quasi-distribution Q′ close to it? Moreover, can we ensure that Q′
“looks like” Q? We show that if Q is (`, ε)-local and is supported over a set G of functions
that is nice in some precise way, then there is an `-local Q′ over G that is close to Q. The
proof idea is similar to that of “smoothening” almost-feasible solutions to Sherali–Adams
relaxations into feasible ones [42].

I Lemma 7.8. Let D be a finite domain, ` ∈ {1, . . . , |D|} be an integer, and δ > 0, ε ≥ 0 be
reals. Let G ⊆ UD be a set of functions f : D → {0, 1} such that for all subsets S ⊆ D of size
|S| ≤ ` and for all strings ~b ∈ {0, 1}S it holds that Prf←G[f(S) = ~b] ∈ {0} ∪ [δ, 1], where f
is sampled uniformly at random from G. If Q is a (`, ε)-local quasi-distribution over G, then
there exists an `-local quasi-distribution Q′ over G such that ∆`(Q,Q′) ≤ (1 + ε− δ) · ε

ε+δ .

We highlight two notable special cases for the domain D = {0, 1}n. If G = U{0,1}n (the
set of all functions), then Prf←G[f(S) = ~b ] = 2−`. Also, if G = LIN (the set of all linear
functions), then for every subset S ⊆ {0, 1}n of size at most ` and every string ~b ∈ {0, 1}S it
holds that Prf←G[f(S) = ~b ] = 0 or Prf←G[f(S) = ~b ] = 2− dim(span(S)) ≥ 2−|S| ≥ 2−`. These
two cases yield the following corollary.

I Corollary 7.9. If Q is a (`, ε)-local quasi-distribution over U{0,1}n (resp., LIN), then
there is an `-local quasi-distribution Q′ over U{0,1}n (resp., LIN) such that ∆`(Q,Q′) ≤
1+ε−2−`

1+2`ε
· 2`ε < 2`ε.

Proof. The hypothesis of Lemma 7.8 holds with δ = 2−`. So there exists an `-local quasi-
distribution Q′ over U{0,1}n (resp., LIN) such that ∆`(Q,Q′) ≤ ε · 1+ε−δ

ε+δ = 1+ε−2−`

ε+2−` · ε =
1+ε−2−`

1+2`ε
· 2`ε. Clearly the fraction is smaller than 1, and so the entire expression is at most

2`ε. J

We now prove the lemma.

Proof of Lemma 7.8. Let UG be the uniform distribution over all functions in G. For
ε′ := ε

ε+δ , define the quasi-distribution Q′ := (1 − ε′)Q + ε′UG. Namely, if the vector of
quasi-probabilities of Q is (qf )f∈G, then the the vector of quasi-probabilities of Q′ is (q′f )f∈G
where q′f := (1− ε′) · qf + ε′/|G|.

First, we show that Q′ is an `-local quasi-distribution. That is, for all subsets S ⊆ D

of size at most ` and for every ~b ∈ {0, 1}S it holds that P̃r[Q′(S) = ~b] ≥ 0. Fix such an
S and ~b. If Prf∈G[f(S) = ~b] = 0, then there is no f ∈ G such that f(S) = ~b, and hence
P̃r[Q′(S) = ~b] = 0. Otherwise, Prf∈G[f(S) = ~b] ≥ δ, and hence,

P̃r[Q′(S) = ~b] =
∑

f∈G:f(S)=~b

q′f

=

 ∑
f∈G:f(S)=~b

(1− ε′)qf

+ ε′ Pr
f∈G

[f(S) = ~b]

≥

 ∑
f∈G:f(S)=~b

(1− ε′)qf

+ ε′ · δ

≥ −ε(1− ε′) + ε′ · δ

= −ε
(

δ

ε+ δ

)
+ ε

ε+ δ
δ = 0 .
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Second, we show that Q and Q′ are close in the sense that ∆`(Q,Q′) ≤ 2ε′ · (1 + ε− δ)
(see Definition 7.5). Fix a subset S ⊆ D of size at most `, and let E ⊆ {0, 1}S . Then

∣∣∣P̃r[Q(S) ∈ E]− P̃r[Q′(S) ∈ E]
∣∣∣ =

∣∣∣∣∣∣
( ∑
f∈G:f(S)∈E

ε′qf

)
− ε′ Pr

f∈G
[f(S) ∈ E]

∣∣∣∣∣∣
=
∣∣∣∣ε′P̃r[Q(S) ∈ E]− ε′ Pr

f∈G
[f(S) ∈ E]

∣∣∣∣
≤ ε′(1 + ε− δ) ,

as required. J

8 Equivalence of non-signaling functions and local quasi-distributions

We establish an equivalence between non-signaling functions and local quasi-distributions.
First, we show that every local quasi-distribution induces a non-signaling function. Second,
we show that the converse is also true, namely, that every non-signaling function can be
described by a local quasi-distribution. In fact, the set of quasi-distributions describing it is
a real affine subspace.

I Theorem 8.1 (from local quasi-distributions to non-signaling functions). Let D be a finite
domain. For every `-local quasi-distribution Q over functions f : D → {0, 1} there exists an
`-non-signaling function F over D such that for every subset S ⊆ D of size |S| ≤ ` and
string ~b ∈ {0, 1}S, Pr[F(S) = ~b] = P̃r[Q(S) = ~b].

Proof. For every subset S ⊆ D of size |S| ≤ `, define FS to be the distribution over functions
f : S → {0, 1} where Pr[FS outputs f ] := P̃r[Q(S) = f(S)]. Note that FS is indeed a
distribution because Q is `-local, so the relevant probabilities are in [0, 1] and sum to 1. The
definition immediately implies that Pr[F(S) = ~b] = P̃r[Q(S) = ~b] for every string ~b ∈ {0, 1}S .
We are left to argue that F = {FS}S⊆D,|S|≤` is `-non-signaling.

Consider any two distinct subsets S, T ⊆ D of size at most `, and any string ~b ∈ {0, 1}S∩T .
Let US denote the set of functions from S → {0, 1}. We have that

Pr
f←FS

[f(S ∩ T ) = ~b] =
∑

f∈US s.t.
f(S∩T )=~b

Pr[FS outputs f ] =
∑

f∈US s.t.
f(S∩T )=~b

P̃r[Q(S) = f(S)]

=
∑

f∈US s.t.
f(S∩T )=~b

∑
g∈U s.t.
g(S)=f(S)

qg =
∑

g∈U s.t.
g(S∩T )=~b

qg = P̃r[Q(S ∩ T ) = ~b]

Similarly, we have that Prf←FT
[f(S ∩ T ) = ~b] = P̃r[Q(S ∩ T ) = ~b], and we conclude

that Prf←FS
[f(S ∩ T ) = ~b] = Prf←FT

[f(S ∩ T ) = ~b]. Since S, T were arbitrary, F is
`-non-signaling. J

We now show that every k-non-signaling function F arises from a k-local quasi-distribution
Q. Moreover, the set of such quasi-distributions is an affine subspace of co-dimension

(
N
≤k
)

in R2N , where N = |D| and
(
N
≤k
)

:=
∑k
i=0
(
N
i

)
. This converse is the interesting direction of

the equivalence.

I Theorem 8.2 (from non-signaling functions to local quasi-distributions). For every k-non-
signaling function F = {FS}S⊆D,|S|≤k over a finite domain D of size N there exists a k-local
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quasi-distribution Q over functions f : D → {0, 1} that describes F (for every subset S ⊆ D
of size |S| ≤ k and string ~b ∈ {0, 1}S it holds that P̃r[Q(S) = ~b] = Pr[F(S) = ~b]).

Moreover, the set of such quasi-distributions (viewed as vectors in R2N ) is the affine
subspace of co-dimension

(
N
≤k
)
given by Q0 + span{χT : T ⊆ D, |T | > k}, where Q0 is any

solution and χT : {0, 1}D → R is defined as χT (f) := (−1)
∑

x∈T
f(x).

Proof. We break the proof into three parts. First, we find one quasi-distribution that
matches F . Then, we find an affine space of such quasi-distributions. Finally, we prove that
this affine space contains all possible solutions.

Finding one solution. We construct a k-local quasi-distribution Q that behaves like F on
all sets of size at most k. Consider q(·) :=

∑
T :|T |≤k q̂(T )χT (·), where q̂(T ) is defined as

follows.

q̂(T ) :=


1

2N if T = ∅
2

2N

(
Pr[
∑
x∈T F(x) = 0]− 1

2
)

if 1 ≤ |T | ≤ k
0 if |T | > k

.

Note that Q is a quasi-distribution because
∑
f qf = 2N 〈q, χ∅〉 = 2N q̂(∅) = 1. Now, for any

subset S = 〈x1, . . . , xs〉 with |S| ≤ k,

∑
f :
∑

x∈S
f(x)=0

qf =
∑
f

qf (−1)
∑

x∈S
f(x) +

∑
f :
∑

x∈S
f(x)=1

qf

= 2N 〈q, χS〉+

1−
∑

f :
∑

x∈S
f(x)=0

qf


= 2N 1

2N−1

(
Pr
[∑
x∈S
F(x) = 0

]
− 1

2

)
+

1−
∑

f :
∑

x∈S
f(x)=0

qf


= 2 Pr

[∑
x∈S
F(x) = 0

]
−

∑
f :
∑

x∈S
f(x)=0

qf ,

which implies that

P̃r
[∑
x∈S
Q(x) = 0

]
=

∑
f :
∑

x∈S
f(x)=0

qf = Pr
[∑
x∈S
F(x) = 0

]
.

Therefore,

P̃r

[∑
x∈S

Q(x) = 1

]
= 1− P̃r

[∑
x∈S

Q(x) = 0

]
= 1− Pr

[∑
x∈S

F(x) = 0

]
= Pr

[∑
x∈S

F(x) = 1

]
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Thus, by Corollary 5.2 for any choice of bits b1, . . . , bs ∈ {0, 1} we have

Pr[F(x1) = b1, . . . ,F(xs) = bs] = −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T
F(xi) =

∑
i∈T

bi

]

= −1 + 1
2s−1

∑
T⊆[s]

P̃r
[∑
i∈T
Q(xi) =

∑
i∈T

bi

]
= P̃r[Q(x1) = b1, . . . ,Q(xs) = bs] .

This shows that Q behaves like F on all sets of size at most k.

Finding more solutions. We argue that Fourier coefficients for subsets T of size greater than
k do not affect the induced non-signaling function. Indeed, fix a subset T ⊆ D of size greater
than k, and let Q′ = (q′f )f be the quasi-distribution obtained from Q = (qf )f by defining its
weights as q′f := qf + cχT (f). Observe that for every ordered subset S = 〈x1, . . . , xs〉 with
s ≤ k and bits b1, . . . , bs it holds that

P̃r[Q(S) = ~b] =
∑

f :f(S)=~b

qf =
∑

f :f(S)=~b

(qf + cχT (f)) = P̃r[Q′(S) = ~b] .

To see that the middle equality holds, observe that there exists y ∈ T \ S, and thus∑
f :f(S)=~b

χT (f) =
∑

f(S)=~b

(−1)
∑

x∈T
f(x)

=
∑

f :f(S)=~b
f(y)=0

(−1)
∑

x∈T\{y}
f(x) −

∑
f :f(S)=~b
f(y)=1

(−1)
∑

x∈T\{y}
f(x) = 0 .

Therefore, Q′ matches Q (and thus also F) on all sets of size at most k. Since this holds for
every T with |T | > k, we see that every q′ in q + span{χT : T ⊆ D, |T | > k} also matches F
on all subsets of size at most k.

We found all solutions. Observe that if Q is a quasi-distribution, then for every subset
T ⊆ D with 1 ≤ |T | ≤ k it holds that

q̂(T ) = 1
2N
∑
f

qf (−1)
∑

x∈T
f(x)

= 1
2N

 ∑
f :
∑

x∈T
f(x)=0

qf −
∑

f :
∑

x∈T
f(x)=1

qf


= 1

2N

(
P̃r
[∑
x∈T
Q(x) = 0

]
− P̃r

[∑
x∈T
Q(x) = 1

])

= 1
2N−1

(
P̃r
[∑
x∈T
Q(x) = 0

]
− 1

2

)
.

If Q and F match on all input sets of size at most k, then they match on all parity events of
size at most k, and so q̂(T ) = 1

2N−1

(
P̃r[
∑
x∈T F(x) = 0]− 1

2

)
. Since q̂(∅) = 1

2N

∑
f qf = 1

2N ,
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we see that exactly
(
N
≤k
)
Fourier coefficients are determined. Thus, the set of all solutions is

contained in q + span{χT : T ⊆ D, |T | > k}.
On the other hand, we have already shown that the affine space q+span{χT : T ⊆ D, |T | >

k} contains only quasi-distributions that match F on all sets of size at most k. Thus, the affine
space of all quasi-distributions that match F is precisely q+ span{χT : T ⊆ D, |T | > k}. J

9 Quasi-distributions over functions with small support

We show that every k-non-signaling function can be expressed as a quasi-distribution over
functions with small support, namely, functions that evaluate to 1 for at most k inputs. For
linearity testing, this implies that restricting a quasi-distribution to functions that are ε-close
to linear is an empty condition, because all k-non-signaling functions can be expressed by
such quasi-distributions for ε = k

2n , regardless of whether they pass the linearity test with
high or low probability.

For a finite domain D, we denote by UD the set of all boolean functions f : D → {0, 1}
and, for k ≤ |D|, denote by U≤k the subset of UD of all functions that evaluate to 1 for
at most k values in D. We show that every k-non-signaling function F is described by a
quasi-distribution over U≤k.

I Theorem 9.1. Let D be a finite domain. For every k-non-signaling function F over D
there exists a k-local quasi-distribution Q over D supported on U≤k such that for every subset
S ⊆ D of size |S| ≤ k and string ~b ∈ {0, 1}S it holds that P̃r[Q(S) = ~b] = Pr[F(S) = ~b].

The proof of Theorem 9.1 relies on the following claim.

I Claim 9.2. Let F be a k-non-signaling function over a domain D, and let Q be a quasi-
distribution over functions f : D → {0, 1}. If for every subset S ⊆ D with 1 ≤ |S| ≤ k it
holds that P̃r[Q(S) = 1|S|] = Pr[F(S) = 1|S|] then for every subset S ⊆ D with |S| ≤ k and
string ~b ∈ {0, 1}S it holds that P̃r[Q(S) = ~b] = Pr[F(S) = ~b].

We first prove Theorem 9.1 using the claim, and then prove the claim.

Proof of Theorem 9.1. By Claim 9.2 it suffices to prove that the following linear system of
equations, in the variables {qf}f∈U≤k

, has a solution:

∑
f∈U≤k

qf = 1∑
f∈U≤k s.t.
f(S)=1|S|

qf = Pr[F(S) = 1|S|] ∀S ⊆ D with 1 ≤ |S| ≤ k

 .

We do so by iteratively assigning values to the variables {qf}f∈U≤k
, by considering all

functions with support size k, then with support size k − 1, and so on. At a high level, we
shall use the fact that this system of linear equations corresponds to an upper triangular
matrix (once variables are ordered according to support sizes), and thus can be solved via
back substitution.

First, consider any f ∈ U≤k such that |supp(f)| = k, and let S := supp(f). Since f is
the only function in U≤k whose support equals S, we must assign

qf := Pr[F(supp(f)) = 1k] .
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Next, we use induction on s = k − 1, . . . , 1 in decreasing order. Consider any f ∈ U≤k
such that |supp(f)| = s, and set

qf := Pr[F(supp(f)) = 1s]−

 ∑
f ′∈U≤k s.t.

supp(f ′))supp(f)

qf ′

 .

The above is well-defined since we first define qf for all functions with larger support.
Moreover, any choice of qf ′′ for functions f ′′ whose support does not contain supp(f) does
not affect the quasi-probability P̃r[Q(supp(f)) = 1s], and so we may think of this assignment
as qf satisfying the constraint P̃r[Q(supp(f)) = 1s] = Pr[F(supp(f)) = 1s].

Finally, if f is the all-zero function we define

qf := 1−
∑
f ′ 6=f

qf ′ ,

so that
∑
f∈U≤k

qf = 1. It is clear from the construction that the assignments to the variables
{qf}f∈U≤k

above satisfy the necessary linear constraints, as desired. J

Proof of Claim 9.2. Fix any subset S ⊆ D with |S| ≤ k and string ~b ∈ {0, 1}S . We prove
that P̃r[Q(S) = ~b] = Pr[F(S) = ~b], via induction on |Z| where Z := {i ∈ S : bi = 0}.

If |Z| = 0, then P̃r[Q(S) = ~b] = Pr[F(S) = ~b] holds by the assumption of the claim.
Now suppose that |Z| > 0, and let i∗ ∈ S be any coordinate such that bi∗ = 0. Let

~b¬i∗ ∈ {0, 1}S be the vector obtained from ~b by flipping the i∗-th coordinate to 1, and let
~b−i∗ ∈ {0, 1}S\{i

∗} be the vector obtained from ~b by removing the i∗-th coordinate. We
deduce that

Pr[F(S) = ~b ] = Pr[F(S \ {i∗}) = ~b−i∗ ]− Pr[F(S) = ~b¬i∗ ] , and

P̃r[Q(S) = ~b ] =P̃r[Q(S \ {i∗}) = ~b−i∗ ]− P̃r[Q(S) = ~b¬i∗ ] .

The inductive hypothesis tells us that Pr[F(S \ {i∗}) = ~b−i∗ ] = P̃r[Q(S \ {i∗}) = ~b−i∗ ] and
Pr[F(S) = ~b¬i∗ ] = P̃r[Q(S) = ~b¬i∗ ], from which we obtain that Pr[F(S) = ~b ] = P̃r[Q(S) =
~b ], as claimed. J

10 Exact local characterization of linear functions

We prove our results about non-signaling functions that always pass the linearity test. The
theorem below states that the test passes with probability 1 if and only if the non-signaling
function on sets of size at most k − 1 can be described by a (k − 1)-local quasi-distribution
over linear functions.

I Theorem 10.1 (exact local characterization). Let F be a k-non-signaling function with
k ≥ 4. The following statements are equivalent.
1. The linearity test always accepts: Prx,y,F [F(x) + F(y) = F(x+ y)] = 1.
2. For all x, y ∈ {0, 1}n it holds that PrF [F(x) + F(y) = F(x+ y)] = 1.
3. There exists a unique (k − 1)-local quasi-distribution L over LIN such that for every set

S ⊆ {0, 1}n of size |S| ≤ k − 1 and vector ~b ∈ {0, 1}S it holds that Pr[F(S) = ~b ] =
P̃r[L(S) = ~b ].

We comment on several aspects of the theorem.



A. Chiesa, P. Manohar, and I. Shinkar 17:29

The case of large k. If k ≥ n+ 1, then L in Item 3 is in fact a (standard) distribution
over linear functions. Explanation. Let `α be the weight assigned to the linear function
〈α, ·〉 by L. Since L matches F on sets of size n, we see that each `α is non-negative:

`α =
∑

α′:〈α′,ei〉=αi 1≤i≤n

`α′ = Pr[F(e1) = α1, . . . ,F(en) = αn] ≥ 0 .

Agreement on k − 1 layers. The fact that |S| < k in Item 3 is necessary, because we
can construct a k-non-signaling function F where Pr[F(S) = ~b ] 6= P̃r[L(S) = ~b ] when
|S| = k.
Explanation. Let S1 be the set of S such that |S| < k or S is linearly dependent, and
S2 be the set of S such that |S| = k and S is linearly independent. The non-signaling
function F that answers according to a uniformly random linear function on all sets in S1
and answers with uniformly random bits that sum to 0 on all sets in S2 is k-non-signaling.
Furthermore, the corresponding unique L is the uniform distribution over linear functions,
and so Pr[F(S) = ~b ] 6= P̃r[L(S) = ~b ] when S ∈ S2.

The case of k = 3. In the theorem it is necessary to have k ≥ 4. This is because for
k = 3 it is not true that Item 3 always implies Item 2: it is possible for Item 3 to hold
while the linearity test passes with probability 0.
Explanation. Let L be a uniform distribution over linear functions, and let F be a
3-non-signaling function that agrees with L on all query sets of size 2. For every subset
{x, y, z} ⊆ {0, 1}n \ {0n} of size 3, the distribution of F is uniform over the set of tuples
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}. If the input set S contains 0n, FS assigns 0n to 0 and
answers the rest according to FS\{0n}. One can verify that F is indeed a 3-non-signaling
function. Clearly, F satisfies Item 3, but passes the linearity test with probability 0, and
hence does not satisfy Item 2.

Proof that 1⇐⇒ 2. The acceptance probability of the test can be re-written as

Pr
x,y←{0,1}n,F

[F(x) + F(y) = F(x+ y)] = 1
22n

∑
x,y∈{0,1}n

Pr
F

[F(x) + F(y) = F(x+ y)] ,

and note that each of the probabilities in the sum lies in [0, 1]. Therefore, the acceptance
probability is 1 if and only if for all x, y ∈ {0, 1}n it holds that PrF [F(x) + F(y) =
F(x+ y)] = 1. J

Proof that 2 =⇒ 3. We first argue that if F behaves linearly on sets of the form {x, y, x+
y}, then it behaves linearly on all sets of size less than k. Let s ∈ {2, . . . , k− 1}, x1, . . . , xs ∈
{0, 1}n, and b ∈ {0, 1}, and define Si := {

∑i
j=1 xj , xi+1, . . . , xs} for every i ∈ {1, . . . , s}.

Note that |Si ∪ Si+1| = s− i+ 2 ≤ s+ 1 ≤ k. Letting add(·) be the addition function, the
fact that the linearity test always passes implies that

Pr
[
add(F(Si)) = add(F(Si+1))

]
= Pr

F
 i∑
j=1

xj

+ F(xi+1) = F

i+1∑
j=1

xj

 = 1 .
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This implies that Pr[F(
∑s
i=1 xi) = b] = Pr[

∑s
i=1 F(xi) = b], via the following argument:∣∣∣∣∣Pr

[
s∑
i=1
F(xi) = b

]
− Pr

[
F

(
s∑
i=1

xi

)
= b

]∣∣∣∣∣
= |Pr[add(F(S1)) = b]− Pr[add(F(Ss)) = b]|

=

∣∣∣∣∣
s−1∑
i=1

Pr[add(F(Si)) = b]− Pr[add(F(Si+1)) = b]

∣∣∣∣∣
≤
s−1∑
i=1
|Pr[add(F(Si)) = b]− Pr[add(F(Si+1)) = b]| = 0 ,

where the last equality is by Lemma 6.3, since |Si ∪ Si+1| ≤ k for every i. Note that s must
be strictly less than k because |S1 ∪ S2| = s+ 1.

We now construct L, and argue that it has the desired properties. Define (`α)α∈{0,1}n to
be the solution to the system of equations in Lemma 5.3 where cβ := Pr[F(β) = 0] for each
β ∈ {0, 1}n, and let L be the quasi-distribution over LIN that assigns weight `α to the linear
function 〈α, ·〉. That is, (`α)α∈{0,1}n satisfy the linear equations∑

α:〈α,x〉=0

`α = Pr[F(x) = 0]

for all x ∈ {0, 1}n. Note that L is indeed a quasi-distribution, because
∑
α `α = Pr[F(0n) =

0] = Prx←{0,1}n [F(0n) + F(x) = F(x)] = 1 (as F always passes the linearity test). We
remark that every quasi-distribution supported on LIN is uniquely determined by its induced
distributions on sets of size 1: a quasi-distribution is supported on LIN if and only if its
distributions on sets of size 1 determine all of its Fourier coefficients (see full version for
details).

Moreover, by definition of (`α)α∈{0,1}n , for every x ∈ {0, 1}n it holds that

Pr[F(x) = 0] =
∑

α:〈α,x〉=0

`α = P̃r[L(x) = 0] ,

which implies that for every x ∈ {0, 1}n and bit b ∈ {0, 1} it holds that Pr[F(x) = b] =
P̃r[L(x) = b]. In other words, F and L match on sets of size 1. This allows us to derive the
same conclusion for all sets of size less than k, as follows.

For every s ∈ {1, . . . , k − 1}, x1, . . . , xs ∈ {0, 1}n, and b1, . . . , bs ∈ {0, 1},

Pr[F(x1) = b1, . . . ,F(xs) = bs]

= −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T
F(xi) =

∑
i∈T

bi

]
(by Corollary 5.2)

= −1 + 1
2s−1

∑
T⊆[s]

Pr
[
F

(∑
i∈T

xi

)
=
∑
i∈T

bi

]
(by linearity)

= −1 + 1
2s−1

∑
T⊆[s]

P̃r
[
L

(∑
i∈T

xi

)
=
∑
i∈T

bi

]

= −1 + 1
2s−1

∑
T⊆[s]

P̃r
[∑
i∈T
L(xi) =

∑
i∈T

bi

]
(since supp(L) ⊆ LIN)

= P̃r[L(x1) = b1, . . . ,L(xs) = bs] . (by Lemma 7.3)
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Finally, since L agrees with F on all subsets of size less than k, the quasi-probabilities
must be in [0, 1], which means that L is (k − 1)-local. J

Proof that 3 =⇒ 2. Suppose that there exists a (k − 1)-local quasi-distribution L over LIN
such that for every s ∈ {1, . . . , k − 1}, x1, . . . , xs ∈ {0, 1}n, and b1, . . . , bs ∈ {0, 1} it holds
that Pr[F(x1) = b1, . . . ,F(xs) = bs] = P̃r[L(x1) = b1, . . . ,L(xs) = bs]. For every α ∈ {0, 1}n
denote by `α the weight assigned by L to the linear function 〈α, ·〉. For every x, y ∈ {0, 1}n
it holds that

Pr[F(x) + F(y) = F(x+ y)] =
∑
b1,b2

Pr[F(x) = b1,F(y) = b2,F(x+ y) = b1 + b2]

=
∑
b1,b2

P̃r[L(x) = b1,L(y) = b2,L(x+ y) = b1 + b2]

=
∑
b1,b2

∑
α:〈α,x〉=b1
〈α,y〉=b2

〈α,x+y〉=b1+b2

`α =
∑
b1,b2

∑
α:〈α,x〉=b1
〈α,y〉=b2

`α =
∑
α

`α = 1 ,

as desired. Note that the equality on the second line uses the assumption that k ≥ 4. This is
because we need L to match F on sets of size 3, and we only know that L matches F on all
sets of size at most k − 1. J

11 Robust local characterization of linear functions

We prove our results about non-signaling functions that pass the linearity test with high
probability. Given a k-non-signaling function F , define its self-correction F̂ as follows. On
an input x ∈ {0, 1}n we sample from F̂{x} by drawing a uniform w ∈ {0, 1}n, sampling a
function f from F{x+w,w}, and outputting f(x+w) + f(w). We generalize this correction to
larger input sets in the natural way.

I Definition 11.1. Given a k-non-signaling function F , define the self-correction of
F as follows. Given a set S = {x1, . . . , xs} ⊆ {0, 1}n, we sample from F̂{x1,...,xs} by
drawing uniform and independent w1, . . . , ws ∈ {0, 1}n, sampling a function f from the
distribution F{x1+w1,...,xs+ws,w1,...,ws}, and outputting the function f̂ that maps each xi to
f(xi + wi) + f(wi). That is, for every subset S = {x1, . . . , xs} ⊆ {0, 1}n of size at most k̂
and ~b ∈ {0, 1}S ,

Pr[F̂(S) = ~b] := Pr
w1,...,ws←{0,1}n

F

 F(x1 + w1) + F(w1) = b1
...

F(xs + ws) + F(ws) = bs

 .

F̂ is a k̂-non-signaling function for k̂ ≤ bk/2c. This follows immediately from the fact
that the wi’s are random and independent, and the fact that F is k-non-signaling.

The following theorem says that, if a k-non-signaling function F passes the linearity test
with high probability, then F̂ is close to a quasi-distribution over linear functions.

I Theorem 11.2 (robust local characterization). Let F be a k-non-signaling function with
k ≥ 7, and let F̂ be its (k̂-non-signaling) self-correction. Each of the following statements
implies the next one.
1. The linearity test accepts with probability 1− ε: Prx,y,F [F(x) +F(y) = F(x+ y)] ≥ 1− ε.
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2. For all x, y ∈ {0, 1}n it holds that PrF̂ [F̂(x) + F̂(y) = F̂(x + y)] ≥ 1 − ε̂ with ε̂ := 4ε;
moreover, it also holds that PrF̂ [F̂(0n) = 0] = 1.

3. There exists a quasi-distribution L over LIN such that for every ` ∈ {1, . . . , k̂− 1} it holds
that L is (`, 2`/2(`−1)ε̂)-local and, for every subset S ⊆ {0, 1}n of size at most ` and every
event E ⊆ {0, 1}S,

∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]
∣∣∣ ≤ (|S|−1)·‖1̂E‖1·ε̂ ≤ (|S|−1)·

√
|E|·ε̂.

4. For every ` ∈ {1, . . . , k̂ − 1}, there exists an `-local quasi-distribution L′ over LIN such
that ∆`(F̂ ,L′) ≤ (2` + 1) · 2`/2(`− 1)ε̂.

We highlight some of the differences of Theorem 11.2 (ε ≥ 0) from Theorem 10.1 (ε = 0).
In Item 2, we now need to use the self-correction F̂ to ensure that PrF̂ [F̂(x + y) =
F̂(x) + F̂(y)] is large for every x, y ∈ {0, 1}n, as opposed to random x, y ∈ {0, 1}n. This
is necessary because otherwise it is possible for PrF [F(x) +F(y) = F(x+ y)] to be small
for certain choices of x and y, and in this case a quasi-distribution supported only on
linear functions has no hope of approximating F on sets containing {x, y, x+ y}.
In Item 3, we choose L to match F̂ exactly on all sets of size 1, as before. However, since
the linearity condition only holds approximately, this means that we only get approximate
matching on larger input sets, and this approximation deteriorates as the sets get larger.
Since L only matches F̂ approximately, it is only an approximately `-local distribution.
Thus, we require the additional step of Item 4, where we correct L to an exactly `-local
distribution.

We now proceed to the proof of Theorem 11.2.

Proof that 1 =⇒ 2. Fix x, y ∈ {0, 1}n. The definition of F̂ implies that

Pr̂
F

[F̂(x) + F̂(y) = F̂(x+ y)]

= Pr
wx
wy
wx+y

F

[F(x+ wx) + F(wx) + F(y + wy) + F(wy) = F(x+ y + wx+y) + F(wx+y)] .

Define

S1 :={x+ wx, y + wy, x+ y + wx+y, wx, wy, wx+y} ,
S2 :={x+ wx + wy, y + wy, x+ y + wx+y, wx, wx+y} ,
S3 :={x+ wx + wy, y + wy + wx+y, x+ y + wx+y, wx} ,
S4 :={x+ wx + wy, y + wy + wx+y, x+ y + wx+y + wx} .

Observe that |Si ∪ Si+1| ≤ 7 ≤ k. Letting add(·) be the addition function, the linearity test
passing with probability at least 1− ε implies that

Pr[add(F(S1)) = add(F(S2))]
= Pr
wx,wy

F

[F(x+ wx + wy) = F(x+ wx) + F(wy)] ≥ 1− ε ,

Pr[add(F(S2)) = add(F(S3))]
= Pr
wy,wx+y

F

[F(y + wy + wx+y) = F(y + wy) + F(wx+y)] ≥ 1− ε ,

Pr[add(F(S3)) = add(F(S4))]
= Pr
wx,wx+y

F

[F(x+ y + wx+y + wx) = F(x+ y + wx+y) + F(wx)] ≥ 1− ε ,

Pr[add(F(S4)) = 0]
= Pr
wx,wy
wx+y

F

[F(x+ wx + wy) + F(y + wy + wx+y) = F(x+ y + wx+y + wx)] ≥ 1− ε .
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Therefore, by Lemma 6.3,

|Pr[add(F(S1)) = 0]− Pr[add(F(S4)) = 0]|

≤
3∑
i=1
|Pr[add(F(Si)) = 0]− Pr[add(F(Si+1)) = 0]| ≤ 3ε .

Since Pr[add(F(S4)) = 0] ≥ 1 − ε, it follows that PrF̂ [F̂(x) + F̂(y) = F̂(x + y)] =
Pr[add(F(S1)) = 0] ≥ 1− 4ε = 1− ε̂, as claimed. Finally, Pr[F̂(0n) = 0] = Prw∈{0,1}n [F(w+
0n) + F(w) = 0] = 1. J

Proof that 2 =⇒ 3. This proof generalizes the proof that 2 =⇒ 3 in Theorem 10.1. We begin
by arguing that F̂ behaves almost linearly on sets of size at most k̂−1. Let s ∈ {2, . . . , k̂−1},
x1, . . . , xs ∈ {0, 1}n, and b ∈ {0, 1}, and define Si := {

∑i
j=1 xj , xi+1, . . . , xs} for every

i ∈ {1, . . . , s}. Note that |Si ∪ Si+1| = s− i+ 2 ≤ s+ 1 ≤ k̂. Letting add(·) be the addition
function, the fact that the linearity test passes with probability at least 1− ε̂ implies that

Pr
[
add(F̂(Si)) = add(F̂(Si+1))

]
= Pr

F̂
 i∑
j=1

xj

+ F̂(xi+1) = F̂

i+1∑
j=1

xj

 ≥ 1− ε̂ .

This implies that
∣∣∣Pr[F̂(

∑s
i=1 xi) = b]− Pr[

∑s
i=1 F̂(xi) = b]

∣∣∣ ≤ (s − 1)ε̂, via the following
argument:∣∣∣∣∣Pr

[
s∑
i=1
F̂(xi) = b

]
− Pr

[
F̂

(
s∑
i=1

xi

)
= b

]∣∣∣∣∣
=
∣∣∣Pr[add(F̂(S1)) = b]− Pr[add(F̂(Ss)) = b]

∣∣∣
=

∣∣∣∣∣
s−1∑
i=1

Pr[add(F̂(Si)) = b]− Pr[add(F̂(Si+1)) = b]

∣∣∣∣∣
≤
s−1∑
i=1

∣∣∣Pr[add(F̂(Si)) = b]− Pr[add(F̂(Si+1)) = b]
∣∣∣

≤(s− 1)ε̂ .

where the last inequality is by Lemma 6.3, since |Si ∪ Si+1| ≤ k̂ for every i. Note that s
must be strictly less than k̂ because |S1 ∪ S2| = s+ 1.

We construct L as before. Define (`α)α∈{0,1}n to be the solution to the system of
equations in Lemma 5.3 where cβ := Pr[F̂(β) = 0] for each β ∈ {0, 1}n, and let L be the
quasi-distribution over LIN that assigns weight `α to the linear function 〈α, ·〉. Note that L
is indeed a quasi-distribution, because

∑
α `α = Pr[F̂(0n) = 0] = 1.

Moreover, by definition of (`α)α∈{0,1}n , for every x ∈ {0, 1}n and b ∈ {0, 1} it holds that
Pr[F̂(x) = b] = P̃r[L(x) = b]. In other words, F and L match exactly on sets of size one. We
now prove that F and L match approximately for sets of larger size (but still less than k̂)
with a guarantee that degrades with the set size.

Fix s ∈ {1, . . . , k − 1}, S = {x1, . . . , xs} ⊆ {0, 1}n, and E ⊆ {0, 1}S . We use Lemma 5.1
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to get real numbers {cT }T⊆[s] that depend only on E such that∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]
∣∣∣

=

∣∣∣∣∣∣
∑
T⊆[s]

cT · Pr
[∑
i∈T
F̂(xi) = 0

]
−
∑
T⊆[s]

cT · P̃r
[∑
i∈T
L(xi) = 0

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T⊆[s]

cT

(
Pr
[∑
i∈T
F̂(xi) = 0

]
− P̃r

[∑
i∈T
L(xi) = 0

])∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T⊆[s]

cT

(
Pr
[∑
i∈T
F̂(xi) = 0

]
− P̃r

[
L

(∑
i∈T

xi

)
= 0
])∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
T⊆[s]

cT

(
Pr
[∑
i∈T
F̂(xi) = 0

]
− Pr

[
F̂

(∑
i∈T

xi

)
= 0
])∣∣∣∣∣∣

≤
∑
T⊆[s]

|cT | (|T | − 1) ε̂ ≤ ε̂ · (s− 1) ·
∑
T⊆[s]

|cT |

≤ ε̂ · (s− 1)‖1̂E‖1 ≤ ε̂ · (s− 1)
√
|E| .

Since F̂ defines probabilities in [0, 1], L is (`, ε′)-local with ε′ = (` − 1)2`/2ε̂ for any
` < k̂. J

Proof that 3 =⇒ 4. Fix ` ∈ {1, . . . , k̂ − 1}, and let L be the (`, 2`/2(`− 1)ε̂)-local quasi-
distribution L over LIN such that for every subset S ⊆ {0, 1}n of size at most ` and event
E ⊆ {0, 1}S it holds that∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]

∣∣∣ ≤√|E|(|S| − 1)ε̂ ≤ 2`/2(`− 1)ε̂ .

Thus, ∆`(F̂ ,L) ≤ 2`/2(` − 1)ε̂. By Corollary 7.9, there is an `-local quasi-distribution L′
such that ∆`(L,L′) ≤ 2` · 2`/2(`− 1)ε̂. Therefore,

∆`(F̂ ,L′) ≤ ∆`(F̂ ,L)+∆`(L,L′) ≤ 2`/2(`−1)ε̂+2` ·2`/2(`−1)ε̂ = (2`+1) ·2`/2(`−1)ε̂ .J
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Abstract
One of the main challenges in property testing is to characterize those properties that are testable
with a constant number of queries. For unordered structures such as graphs and hypergraphs
this task has been mostly settled. However, for ordered structures such as strings, images, and
ordered graphs, the characterization problem seems very difficult in general.

In this paper, we identify a wide class of properties of ordered structures – the earthmover
resilient (ER) properties – and show that the “good behavior” of such properties allows us to
obtain general testability results that are similar to (and more general than) those of unordered
graphs. A property P is ER if, roughly speaking, slight changes in the order of the elements in
an object satisfying P cannot make this object far from P. The class of ER properties includes,
e.g., all unordered graph properties, many natural visual properties of images, such as convexity,
and all hereditary properties of ordered graphs and images.

A special case of our results implies, building on a recent result of Alon and the authors, that
the distance of a given image or ordered graph from any hereditary property can be estimated
(with good probability) up to a constant additive error, using a constant number of queries.
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1 Introduction

Property testing is mainly concerned with understanding the amount of information one
needs to extract from an unknown input function f to approximately determine whether
the function satisfies a property P or is far from satisfying it. In this paper, the types of
functions we consider are strings f : [n] → Σ; images or matrices f : [m] × [n] → Σ; and
edge-colored graphs f :

([n]
2
)
→ Σ, where the set of possible colors for each edge is Σ. In all

cases Σ is a finite alphabet. Note that the usual notion of a graph corresponds to the special
case where |Σ| = 2.

The systematic study of property testing was initiated by Rubinfeld and Sudan [33], and
Goldreich, Goldwasser and Ron [24] were the first to study property testing of combinatorial
structures. An ε-test for a property P of functions f : X → Σ is an algorithm that, given
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18:2 Earthmover Resilience and Testing in Ordered Structures

query access to an unknown input function f , distinguishes with good probability (say, with
probability 2/3) between the case that f satisfies P and the case that f is ε-far from P ; the
latter meaning that one needs to change the values of at least an ε-fraction of the entries
of f to make it satisfy P. In an n-vertex graph, for example, changing an ε-fraction of the
representation means adding or removing ε

(
n
2
)
edges. (The representation model we consider

here for graphs is the adjacency matrix. This is known as the dense model.)
In many cases, such as that of visual properties of images (where the input is often noisy

to some extent), it is more natural to consider a robust variant of tests, that is tolerant to
noise in the input. Such tests were first considered by Parnas, Ron and Rubinfeld [31]. A
test is (ε, δ)-tolerant for some 0 ≤ δ(ε) < ε if it distinguishes, with good probability, between
inputs that are ε-far from satisfying P and those that are δ(ε)-close to (i.e., not δ(ε)-far
from) satisfying P.

One of the main goals in property testing is to characterize properties in terms of the
number of queries required by an optimal test for them. If a property P has, for any ε > 0,
an ε-test that makes a constant number of queries, depending only on ε and not on the size
of the input, then P is said to be testable. P is tolerantly testable if for any ε > 0 it has a
constant-query (ε, δ)-test for some 0 < δ(ε) < ε. Finally, P is estimable if it has a constant
query (ε, δ)-test for any choice of 0 < δ(ε) < ε. In other words, P is estimable if the distance
of an input to satisfying P can be estimated up to a constant error, with good probability,
using a constant number of queries.

The meta-question that we consider in this paper is the following.

What makes a certain property P testable, tolerantly testable, or estimable?

1.1 Previous works: Characterizations of graphs and hypergraphs
For graphs, it was shown by Fischer and Newman [22] that the above three notions are
equivalent, i.e., any testable graph property is estimable (and thus trivially also tolerantly
testable). A combinatorial characterization of the testable graph properties was obtained
by Alon, Fischer, Newman and Shapira [4] and analytic characterizations were obtained
independently by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi [14] and Lovász
and Szegedy [30] through the study of graph limits. The combinatorial characterization
relates testability with regular reducibility, meaning, roughly speaking, that a graph property
P is testable (or estimable) if and only if satisfying P is equivalent to approximately having
one of finitely many prescribed types of Szemerédi regular partitions [35]. A formal definition
of regular reducibility is given in Section 2.

Very recently, a similar characterization for hypergraphs was obtained by Joos, Kim,
Kühn and Osthus [29], who proved that as in the graph case, testability, estimability and
regular reducibility are equivalent for any hypergraph property.

A (partial) characterization of the graph properties P that have a constant-query test
whose error is one-sided (i.e., tests that always accept inputs satisfying P) was obtained by
Alon and Shapira [5]. They showed that the only properties testable using an important
and natural type of one-sided tests, that are oblivious to the input size, are essentially the
hereditary properties.

The above characterizations for graphs rely on a conversion of tests into canonical tests,
due to Goldreich and Trevisan [26]. A canonical test T always behaves as follows: First it
picks a set U of vertices non-adaptively and uniformly at random in the input graph G, and
queries all pairs of these vertices, to get the induced subgraph G[U ]. Then T decides whether
to accept or reject the input deterministically, based only on the identity of G[U ] and the
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size of G. The number of queries needed by the canonical test is only polynomial in the
number of queries required by the original test, implying that any testable property is also
canonically testable.

To summarize, all of the following conditions are equivalent for graphs: Testability,
tolerant testability, canonical testability, estimability, and regular reducibility.

1.2 From unordered to ordered structures
Common to all of the above characterization results is the fact that they apply to unlabeled
graphs and hypergraphs, which are unordered structures: Graph (and hypergraph) properties
are symmetric in the sense that they are invariant under any relabeling (or equivalently,
reordering) of the vertices. That is, if a labeled graph G satisfies an unordered graph property
P , then any graph resulting from G by changing the labels of the vertices is isomorphic to G
(as an unordered graph), and so it satisfies P as well.

A natural question that one may ask is whether similar characterizations hold for the
more general setting of ordered structures over a finite alphabet, such as images and vertex-
ordered graphs in the two-dimensional case, and strings in the one-dimensional case. While
an unordered property is defined as a family of (satisfying) instances that is closed under
relabeling, in the ordered setting, any family of instances is considered a valid property. The
ordered setting is indeed much more general than the unordered one, as best exemplified
by string properties: On one hand, unordered string properties are essentially properties of
distributions over the alphabet Σ. On the other hand, any property of any finite discrete
structure can be encoded as an ordered string property!

In general, the answer to the above question is negative. It is easy to construct simple
string properties that are testable and even estimable, but are neither canonically testable
nor regular reducible.1 As an example, consider the binary string property P111 of “not
containing three consecutive ones”. The following is an ε-test for P111 (estimation is done
similarly): Pick a random consecutive substring S of the input, of length O(1/ε), and accept
if and only if S satisfies P111. On the other hand, global notions like canonical testability
and regular reducibility cannot capture the local nature of P.

Moreover, it was shown by Fischer and Fortnow [20], building on ideas from probabilistic-
ally checkable proofs of proximity (PCPP), that there exist testable string properties that
are not tolerantly testable, as opposed to the situation in unordered graphs [22].

However, it may still be possible that a positive answer holds for the above question if we
restrict our view to a class of “well behaved” properties.

Does there exist a class of properties that is wide enough to capture many interesting
properties, yet well behaved enough to allow simple characterizations for testability?

So far, we have seen that in general, properties in which the exact location of entries is
important to some extent, like P111 and the property from [20], do not admit characterizations
of testability that are similar to those of unordered graphs. But what about properties that

1 To this end, canonical tests in ordered structures are similar to their unordered counterparts, but they
act in an order-preserving manner. For example, a q-query test for a property P of strings f : [n] → Σ
is canonical if, given an unknown string f : [n] → Σ, the test picks q entries x1 < . . . < xq ∈ [n], queries
them to get the values y1 = f(x1), . . . , yq = f(xq), and decides whether to accept or reject the input
only based on the tuple (y1, . . . , yq). Canonical tests in ordered graphs or images are defined similarly,
but instead of querying a random substring, we query a random induced ordered subgraph or a random
submatrix, respectively.
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are ultimately global? Can one find, say, an ordered graph property that is canonically
testable but not estimable, for example? Stated differently,

Do the characterizations of testability in unordered graphs have analogues for canonical
testability in ordered graphs and images?

1.3 Our contributions
In this paper, we provide a partial positive answer to the first question, and a more complete
positive answer to the second question. For the second question, we show that canonical
testability in ordered graphs and images implies estimability and is equivalent to (an ordered
version of) regular reducibility, similarly to the case in unordered graphs. Addressing the
first question, we identify a wide class of well-behaved properties of ordered structures, called
the earthmover resilient (ER) properties, providing characterizations of tolerant testability
and estimability for these properties.

Earthmover resilient properties

Roughly speaking, a property P of a certain type of functions is earthmover resilient if slight
changes in the order of the “base elements”2 of a function f satisfying P cannot turn f into
a function that is far from satisfying P . The class of ER properties captures several types of
interesting properties:
1. Trivially, all properties of unordered graphs and hypergraphs.
2. Global visual properties of images. In particular, this includes any property P of black-

white images satisfying the following: Any image I satisfying P has a sparse black-white
boundary. This includes, as special cases, properties like convexity and being a half plane,
which were previously investigated in [10, 11, 15, 16, 32]. See Subsection 2.1 for the
precise definitions and statement and Appendix A for the proof.

3. All hereditary properties of ordered graphs and images, as implied by a recent result of
Alon and the authors [2]. While all hereditary unordered graph properties obviously fit
under this category, it also includes interesting order-based properties, such as the widely
investigated property of monotonicity (see [17, 18] for results on strings and images over
a finite alphabet), k-monotonicity [15], forbidden poset type problems [21], and more
generally forbidden submatrix type problems [1, 2, 3, 23].

The new results

ER properties behave well enough to allow us to fully characterize the tolerantly testable
properties among them in images and ordered graphs. In strings, it turns out that earthmover
resilience is equivalent to canonical testability.

Our first result relates between earthmover resilience, tolerant testability and canonical
testability in images and edge colored ordered graphs.

I Theorem 1 (See also Theorem 11). The following conditions are equivalent for any property
P of edge colored ordered graphs or images.
1. P is earthmover resilient and tolerantly testable.
2. P is canonically testable.

2 The base elements in an ordered graph are the vertices, and in images these are the rows and the
columns; in strings the base elements are the entries themselves.
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Theorem 11, which is the more detailed version of Theorem 1, also states that efficient
non-adaptive tolerant (ε, δ)-tests – in which the query complexity is polynomial in δ(ε) – can
be converted, under certain conditions, into efficient canonical tests, and vice versa.

Let us note that Theorem 1 can be extended to high-dimensional ordered structures, such
as tensors (e.g. 3D images) or edge colored ordered hypergraphs. As our focus in this paper
is on one- and two-dimensional structures, the full proof of the extended statement is not
given here, but it is a straightforward generalization of the 2D proof.

In (one-dimensional) strings, it turns out that the tolerant testability condition of
Theorem 1 is not needed. That is, ER and canonical testability are equivalent for string
properties.

I Theorem 2. A string property P is canonically testable if and only if it is earthmover
resilient.

As in Theorem 1, the transformation between canonical testability and earthmover resilience
is efficient: If a string property has a tolerant (ε, δ(ε))-test for any ε > 0, and δ is polynomial
in ε, then the number of queries of the corresponding canonical test is also polynomial in ε.
The converse is also true: A canonical ε-test for P with number of queries that is polynomial
in ε is in fact a tolerant (ε, δ)-test for P where δ(ε) is polynomial in ε.

In the unordered graph case, it was shown that testability is equivalent to estimability [22]
and to regular reducibility [4]; we note that the conversions induce a tower-type blowup in
the number of queries. Here, we establish analogous results for canonical tests in ordered
structures. The notion of (ordered) regular reducibility that we use here is similar in spirit
to the unordered variant, but is slightly more involved. The formal definition is given in
Subsection 2.5.

I Theorem 3. Any canonically testable property of edge colored ordered graphs and images
is (canonically) estimable.

I Theorem 4. A property of edge colored ordered graphs or images is canonically testable if
and only if it is regular reducible.

A tower-type blowup in Theorems 3 and 4

While the conversion between tolerant tests and canonical tests (and vice versa) among
earthmover resilient properties has a reasonable polynomial blowup in the number of queries
under certain conditions, for the relation between canonical testability and estimability
or regular reducibility this is not known to be the case. The proofs of Theorems 3 and 4
go through Szemerédi-regularity type arguments, and this yields at least a tower-type
blowup in the number of queries. Currently, it is not known how to avoid this tower-type
blowup in general, even for unordered graphs. However, interesting recent results of Hoppen,
Kohayakawa, Lang, Lefmann and Stagni [27, 28] state that for hereditary properties of
unordered graphs, the blowup between testability and estimability is at most exponential,
and extending this line of research would serve as an intriguing direction for future research.

The characterization of tolerant testability in ER properties, given below, is a direct
corollary of Theorems 1, 3, and 4.

I Corollary 5. The following conditions are equivalent for any earthmover resilient property
P of edge colored ordered graphs or images.
1. P is tolerantly testable.
2. P is canonically testable.

CCC 2018
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3. P is estimable.
4. P is regular reducible.

Alon and the authors [2] recently showed that any hereditary property of edge-colored
ordered graphs and images is canonically testable, by proving an order-preserving removal
lemma for all such properties. From Theorem 3 and [2] we derive the following very general
result.

I Corollary 6. Any hereditary property of edge-colored ordered graphs or images is (canonic-
ally) estimable.

In particular, this re-proves the estimability of previously investigated properties such as
monotonicity [17, 18] and more generally k-monotonicity [15], and proves the estimability of
forbidden-submatrix and forbidden-poset type properties [1, 2, 3, 21, 23].
I Remark. The characterization of the one-sided error obliviously testable properties by
Alon and Shapira [5], mentioned in Subsection 1.1, carries on to canonical tests in ordered
graphs and images. That is, a property P of such structures has a one-sided error oblivious
canonical test if and only if it is (essentially) hereditary. The fact that hereditary properties
are obliviously canonically testable with one-sided error is proved in [2]; the proof of the other
direction is very similar to its analogue in unordered graphs [5], and is therefore omitted.

1.4 Related work
Canonical versus sample-based testing in strings

The notion of a sample-based test, already defined in the seminal work of Goldreich, Gold-
wasser and Ron [24], refers to tests that cannot choose which queries to make. A q-query
test for P is sample-based if it receives pairs of the form (x1, f(x1)), . . . , (xq, f(xq)) where
f is the unknown input function and x1, . . . , xq are picked uniformly at random from the
domain of X (compare this to the definition of canonical tests from Subsection 1.2). A recent
work of Blais and Yoshida [13] characterizes the properties P that have a constant query
sample-based test.

In strings, sample-based testability might seem equivalent to canonical testability at
first glance, but this is actually not the case, as sample-based tests have more power than
canonical ones (canonical testability implies sample-based testability, but the converse is
not true). Consider, e.g., the property of equality to the string 010101 . . ., which is trivially
sample-based testable, yet not canonically testable. Thus, sample-based testability does
not imply canonical testability, so the results of Blais and Yoshida [13] are not directly
comparable to Theorem 2 above.

Previously investigated properties of ordered structures

On top of the hereditary properties mentioned earlier, several different types of properties of
ordered structures have been investigated in the property testing literature. Without trying
to be comprehensive, here is a short summary of some of these types of properties.

Geometric & visual properties. Image properties that exhibit natural visual conditions,
such as connectivity, convexity and being a half plane, were considered e.g. in [11, 10, 16, 32].
Typically in these cases, images with two colors – black and white – are considered, where
the “shape” consists of all black pixels, and the “background” consists of all white pixels.
For example, convexity simply means that the black shape is convex. As we shall see, some
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of these properties that are global in nature, such as convexity and being a half plane, are
ER, while connectivity – a property that is sensitive to local modifications – is not ER.

Algebraic properties. String properties related to low-degree polynomials, PCPs and locally
testable error correcting codes have been thoroughly investigated, starting with the seminal
papers of Rubinfeld and Sudan [33] and Goldreich and Sudan [25]. As shown in [20], there
exist properties of this type that are testable but not tolerantly testable. In this sense,
algebraic properties behave very differently from unordered graph properties. This should not
come as a surprise: In a PCP or a code, the exact location of each bit is majorly influential
on its “role”. This kind of properties is therefore not ER in general.

Local properties. These are image properties P where one can completely determine
whether a given image I satisfies P based only on the statistics of the k × k consecutive
sub-images of I, for a fixed constant k. Recently, Ben-Eliezer, Korman and Reichman [9]
observed that for almost all (large enough) patterns Q, the local property of not containing a
consecutive copy of Q in the image is tolerantly testable. Note that monotonicity can also be
represented as a local property, taking k = 2 (but `-monotonicity cannot be represented this
way). Local properties are not ER in general, and obtaining characterizations of testability
for them remains an intriguing open problem.

2 Preliminaries

This Section contains all required definitions, including those that are related to earthmover
resilience (Subsection 2.1), a discussion on earthmover resilient properties (Subsection 2.2),
property testing notation (Subsection 2.3), and finally, the definition of ordered regular
reducibility (Subsection 2.5). Along the way, we state the full version of Theorem 1 (Subsec-
tion 2.4).

We start with some standard definitions. A property P of functions f : X → Σ is simply
viewed as a collection of such functions, where f is said to satisfy P if f ∈ P. The absolute
Hamming distance between two functions f, f ′ : X → Y is DH(f, f ′) = |{x ∈ X : f(x) 6=
f ′(x)}|, and the relative distance is dH(f, f ′) = DH(f, f ′)/|X|; note that 0 ≤ dH(f, f ′) ≤ 1
always holds. f and f ′ are ε-far if dH(f, f ′) > ε, and ε-close otherwise. The distance of f
to a property P is minf ′∈P dH(f, f ′). f is ε-far from P if the distance between f and P is
larger than ε, and ε-close to P otherwise.

Representing images using ordered graphs

An image f : [n]× [n]→ Σ can be represented by an edge colored ordered graph g :
([2n]

2
)
→

Σ∪{⊥}, where ⊥/∈ Σ can be thought of as a special “no edge” symbol. g is defined as follows.
g(x, y) =⊥ for any pair x 6= y satisfying 1 ≤ x, y ≤ n (“pair of rows”) or n+ 1 ≤ x, y ≤ 2y
(“pair of columns”); and g(x, n + y) = f(x, y) for any x, y ∈ [n]. From now onwards, we
almost exclusively use this representation of images as ordered graphs, usually giving our
definitions and proofs only for strings and ordered graphs. It is not hard to verify that all
results established for ordered graphs can be translated to images through this representation.

2.1 Earthmover resilience
We now formalize our notion of being “well behaved”. As both strings and ordered graphs
are essentially functions of the form f :

([n]
k

)
→ Σ (for k = 1 and k = 2, respectively), we

simplify the presentation by giving here the general definition for functions of this type.
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I Definition 7 (Earthmover distance). Fix k > 0 and let f :
([n]
k

)
→ Σ. A basic move between

consecutive elements x, x + 1 ∈ [n] in f is the operation of swapping x and x + 1 in f .
Formally, let σx : [n]→ [n] be the permutation satisfying σx(x) = x+ 1, σx(x+ 1) = x, and
σx(i) = i for any i 6= x, x+ 1. For any X ∈

([n]
k

)
, define σkx(X) = {σx(i) : i ∈ X}. The result

of a basic move between x and x+ 1 in f is the composition f ′ = f ◦ σkx.
The absolute earthmover distance De(f, f ′) between two functions f, f ′ :

([n]
k

)
→ Σ is the

minimum number of basic move operations needed to produce f ′ from f . The distance is
defined to be +∞ if f ′ cannot be obtained from f using any number of basic moves. The
normalized earthmover distance between f and f ′ is de(f, f ′) = De(f, f ′)/

(
n
2
)
, and we say

that they are ε-earthmover-far if de(f, f ′) > ε, and ε-earthmover-close otherwise.

Our definition of earthmover distance matches the standard definition [34] for k = 1,
and we extend it conservatively to higher k, so that the basic earthmoving step involves
switching between neighboring vertices (or neighboring rows or columns, in the case of
images). For images, this definition is non-standard; In [34], for example, the basic move
in images corresponds to switching between neighboring entries (compared to switching
neighboring rows and columns, as in our case). Our definition is much more restrictive than
that of [34] in general: There exist two images f and f ′ such that the absolute distance
between them is ∞ under our definition, and 1 under the definition of [34].

I Definition 8 (Earthmover resilience). Fix a function δ : (0, 1) → (0, 1). A property P is
δ-earthmover resilient if for any ε > 0, function f satisfying P, and function f ′ which is
δ(ε)-earthmover-close to f , it holds that f ′ is ε-close to P (in the usual Hamming distance).
P is earthmover resilient if it is δ-earthmover resilient for some choice of δ.

Intuitively, a property is earthmover resilient if it is insensitive to local changes in the order
of the base elements.

Hereditary properties are earthmover resilient

It was shown in [2] that any hereditary property satisfies a removal lemma: If an ordered
graph (or image) G is ε-far from an hereditary property P, then G contains δnh ordered
copies of some h-vertex subgraph H not satisfying P, for suitable choices of δ = δP(ε) > 0
and h = hP(ε) > 0. Since one basic move can destroy no more than nh−2 such H-copies
(those that include both swapped vertices), one has to make at least δn2 basic moves to
make G satisfy P. Thus, ε-farness implies δP(ε)-earthmover-farness from P.

2.2 Earthmover resilience in visual properties
Convexity and being a half plane are earthmover resilient. This is a special case of a much
wider phenomenon concerning properties of black-white images in which the number of pixels
lying in the boundary between the black shape and the white background is small. Here, an
m× n white/black image is represented by a 0/1-matrix M of the same dimensions, where
the (i, j)-pixel of the image is black if and only if M(i, j) = 1. The definition below is given
for square images, but can be easily generalized to m× n images with m = Θ(n).

I Definition 9 (Sparse boundary). The boundary B = B(I) of an n× n black-white image I
is the set of all pixels in I that are black and have a white neighbor.3 B is c-sparse for a

3 Here, two pixels are neighbors if they share one coordinate and differ by one in the other coordinate.
An alternative definition (that will yield the same results in our case) is that two pixels are neighbors if
they differ by at most one in each of the coordinates, and are not equal.
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constant c > 0 if |B| ≤ cn. A property P has a c-sparse boundary if the boundaries of all
images satisfying P are c-sparse.

For example, for any property P of n× n images such that the black area in any image
satisfying P is the union of at most t convex shapes (that do not have to be disjoint), P
has a 4t-sparse boundary. This follows from the fact that the boundary of each of the black
shapes is of size at most 4n. For t = 1, this captures both convexity and being a half plane
as special cases. The following result states that c-sparse properties are earthmover resilient.

I Theorem 10. Fix c ≥ 1. Then any property with a c-sparse boundary is δ-earthmover-
resilient, where δ(ε) ≤ αε2/c2 for some absolute constant α > 0 and any ε > 0.

The result still holds if c is taken as a function of ε. The (non-trivial) proof serves as a
good example showing how to prove earthmover resilience of properties, and is given in
Appendix A.

Naturally, not all properties of interest are earthmover resilient. For example, the local
property P of “not containing two consecutive horizontal black pixels” in a black/white
image is not earthmover resilient: Consider the chessboard n× n image, which satisfies P,
but by partitioning the board into n/4 quadruples of consecutive columns and switching
between the second and the third column in each quadruple, we get an image that is O(1/n)-
earthmover-close to P yet 1/4-far from it in Hamming distance. A similar but slightly more
complicated example shows that connectivity is not earthmover resilient as well.

2.3 Definitions: Testing and estimation
A q-query algorithm T is said to be an ε-test for P with confidence c > 1/2, if it acts as
follows. Given an unknown input function f : X → Σ (where X and Σ are known), T picks
q elements x1, . . . , xq ∈ X of its choice, and queries the values f(x1), . . . , f(xq).4 Then T
decides whether to accept or reject f , so that

If f satisfies P then T accepts f with probability at least c.
If f is ε-far from P, then T rejects it with probability at least c.

Now let δ : (0, 1) → (0, 1) be a function that satisfies δ(x) < x for any 0 < x < 1. An
(ε, δ)-tolerant test T is defined similarly to an ε-test, with the first condition replaced with
the following strengthening: If f is δ(ε)-close to P, then T accepts it with probability at
least 1− c. Unless stated otherwise, the default choice for the confidence is c = 2/3. P is
testable if it has a constant-query ε-test (whose number of queries depends only on ε) for any
ε > 0. Similarly, P is δ-tolerantly testable, for a valid choice of δ : (0, 1)→ (0, 1), if it has a
constant query (ε, δ)-test for any ε > 0. If P is δ-tolerantly testable for some valid choice of
δ, we say that it is tolerantly testable. Finally, P is estimable if it is δ-tolerantly testable for
any valid choice of δ.

Next, we formally define what it means for a test (or a tolerant test) T to be canonical,
starting with the definition for strings.

A q-query test (or tolerant test) T for a property P of strings f : [n]→ Σ is canonical if it
acts in two steps. First, it picks x1 < . . . < xq uniformly at random, and queries the entries
y1 = f(x1), . . . , yq = f(xq). The second step only receives the ordered tuple Y = (y1, . . . , yk)
and decides (possibly probabilistically) whether to accept or reject only based on the values

4 T as defined here is a non-adaptive test, that chooses which queries to make in advance. Adaptivity
does not matter for our discussion, since we are only interested in constant-query tests, and since an
adaptive test making a constant number q of queries can be turned into a non-adaptive one making 2q

queries, which is still a constant.
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of Y . Note that the second step does not “know” the values of x1, . . . , xq themselves. As
before, P is canonically testable if it has a qP(ε)-query canonical test for any ε > 0, where
qP(ε) depends only on ε.

In contrast, a test for string properties is sample based if it has the exact same first
step, but the second step receives more information: It also receives the values of x1, . . . , xq.
A sample-based test is more powerful than a canonical test in general. For example, the
property of “being equal to the string 010101 . . .” is trivially sample-based ε-testable with
O(1/ε) queries, but is not canonically testable with a constant number of queries (that
depends only on ε).

For ordered graphs f :
([n]

2
)
→ Σ, a test (or a tolerant test) T is canonical if, again, it

acts in two steps. In the first step, T picks q vertices v1 < . . . < vq uniformly at random,
and queries all

(
q
2
)
values yij = f(vi, vj). The second step receives the ordered tuple

Y = (y11, y12, . . . , y1q, . . . , yq−1,q), and decides (possibly probabilistically) whether to accept
or reject only based on the value of Y .

We take a short detour to explain why asking T to make a deterministic decision in
the second step of the canonical test, rather than a probabilistic one, will not make an
essential difference for our purposes. It was proved by Goldreich and Trevisan [26] that any
probabilistic canonical test (for which the decision to accept or reject in the second step is
not necessarily deterministic) can be converted into a deterministic one, with a blowup that
is at most polynomial in the number of queries. The proof was given for unordered graph
properties, but it can be translated to ordered structures like strings, ordered graphs and
images in a straightforward manner. Thus, the requirement that the canonical test makes a
deterministic decision is not restrictive.

2.4 The full statement of Theorem 1
We are finally ready to present the more precise version of Theorem 1. This version depicts
an efficient transformation from earthmover resilience and tolerant testability to canonical
testability, and vice versa.

I Theorem 11. Let P be a property of edge-colored ordered graphs or images, and let
δ : (0, 1)→ (0, 1) and η : (0, 1)→ (0, 1) such that η(ε) < ε for any ε > 0.
1. If P is δ-earthmover resilient and η-tolerantly testable, where the number of queries of a

corresponding (ε, η)-tolerant non-adaptive test is denoted by q(ε), then P is canonically
testable. Moreover, if q, η−1 and δ−1 are polynomial in ε−1, then the number of queries
of the canonical ε-test is also polynomial in ε−1.

2. If P is canonically testable, where the number of queries of the canonical (non adaptive)
ε-test is denoted by q′(ε), then P is both δ′-earthmover resilient and δ′-tolerantly testable
where δ′ : (0, 1)→ (0, 1) depends only on q′ and ε. Moreover, if q′ is polynomial in ε−1,
then δ′ is polynomial in ε.

The proof is given along Sections 4, 5, and 6.

2.5 Regular reducibility
The last notion to be formally defined is that of ordered regular reducibility. This notion is a
natural analogue of the unordered variant, and is rather complicated to describe and define.
Since the intuition behind this definition is quite similar to that of the unordered case, we
refer the reader to a more thorough discussion on regular reducibility (and the relation to
Szemerédi’s regularity lemma) in [4]. Here, we only provide the set of definitions required for
our purposes.
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I Definition 12 (Regularity, regular partition). Let f :
([n]

2
)
→ Σ be an edge-colored ordered

graph. For any σ ∈ Σ, the σ-density of a disjoint pair A,B ⊆ [n] is dσ(A,B) = |f−1(σ)∩(A×
B)|/|A||B|. A pair (A,B) is γ-regular if for any two subsets A′ ⊆ A and B′ ⊆ B satisfying
|A′| ≥ γ|A| and |B′| ≥ γ|B|, and any σ ∈ Σ, it holds that |dσ(A′, B′)− dσ(A,B)| ≤ γ. An
equipartition of [n] into k parts V1, . . . , Vk is γ-regular if all but at most γ

(
k
2
)
of the pairs

(Vi, Vj) are γ-regular.

I Definition 13 (Interval partitions). The k-interval equipartition of [n] is the unique partition
of [n] into sets X1, . . . , Xk, such that x < x′ for any x ∈ Xi, x

′ ∈ Xi′ , i < i′ and |Xi′ | ≤
|Xi| ≤ |Xi′ |+ 1 for any i < i′. An interval partition of an ordered graph or a string is defined
similarly.

I Definition 14 (Ordered regularity instance). An ordered regularity instance R for Σ-colored
ordered graphs is given by an error parameter γ, integers r, k, a set of K =

(
r
2
)
k2|Σ| densities

0 ≤ ηi
′j′

ij (σ) ≤ 1 indexed by i < i′ ∈ [r], j, j′ ∈ [k] and σ ∈ Σ, and a set R̄ of tuples (i, j, i′, j′)
of size at most γK. An ordered graph f :

([n]
2
)
→ Σ satisfies the regularity instance if there is

an equitable refinement {Vij : i ∈ [r], j ∈ [k]} of the r-interval equipartition V1, . . . , Vr where
Vij ⊆ Vi for any i and j, such that for all (i, j, i′, j′) /∈ R̄ the pair Vij , Vi′j′ is γ-regular and
satisfies dσ(Vij , Vi′j′) = ηi

′j′

ij (σ) for any σ ∈ Σ. The complexity of the regularity instance is
max{1/γ,K}.

With some abuse of notation, when writing dσ(Vij , Vi′j′) = ηi
′j′

ij (σ) we mean that the number
of σ-colored edges between Vij and Vi′j′ is bηi

′j′

ij (σ)|Vij ||Vi′j′ |c or dηi
′j′

ij (σ)|Vij ||Vi′j′ |e. This
way we avoid divisibility issues, without affecting any of our arguments.

The definition of an ordered regularity instance differs slightly from the analogous
definition for unordered graphs in [4]: Here we insist that the regular partition will be a
refinement of an interval equipartition, disregarding pairs of parts inside the same interval.
We also allow a color set of size bigger than two. The definition of regular reducibility
is analogous to the unordered case, though obviously the regularity instances used in the
definition are of the ordered type.

I Definition 15 (Regular reducible). An edge-colored ordered graph property P is regular-
reducible if for any δ > 0 there exists t = tP(δ) such that for any n there is a family R of at
most t regularity instances, each of complexity at most t, such that the following holds for
every ε > 0 and ordered graph f :

([n]
2
)
→ Σ:

If f satisfies P then for some R ∈ R, f is δ-close to satisfying R.
If f is ε-far from satisfying P, then for any R ∈ R, f is (ε− δ)-far from satisfying R.

3 Proof outline

In this section, we shortly describe the main ingredients of our proofs.

Earthmover distance and mixingness

Suppose that G,G′ :
([n]

2
)
→ Σ are two ordered graphs with a finite earthmover distance

between them (all results mentioned here also apply for strings). In this case, G and G′

are isomorphic as unordered graphs, meaning that the collection of vertex permutations
π : [n] → [n] that “turn” G into G′ is not empty. We define the (absolute) mixingness
between G and G′ as the minimal number of pairs x < y ∈ [n] such that π(x) > π(y), over
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all possible choice of π from the collection. We show, via a simple inductive proof, that the
mixingness between G and G′ is exactly equal to the earthmover distance between them.

With the tool of mixingness in hand, it is not hard to prove that canonical testability
implies earthmover resilience and tolerant testability. The basic idea is that, if two graphs G
and G′ are sufficiently close in terms of mixingness, then the distributions of their q-vertex
subgraphs are very similar, and so a q-query canonical test cannot distinguish between them
with good probability. See Section 4 for more details.

Earthmover resilience to piecewise-canonical testability

A test T is piecewise-canonical if it acts in the following manner on the t-interval partition
of the unknown input graph (or string). First, T chooses how many vertices (entries,
respectively) to take from each interval, where the number of vertices may differ between
different intervals. Then T picks the vertices (entries) from the intervals in a uniformly
random manner. Finally, T queries precisely all pairs of picked vertices (or all entries, in the
string case), and decides whether to accept or reject based on the ordered tuple of the values
returned by the queries.

For strings of length n over Σ, if P is earthmover resilient then it is also piecewise-
canonically testable. The main idea of the proof is the following. If one takes a string S
and partitions it into sufficiently many equitable interval parts S1, . . . , St, then “shuffling”
entries inside each of the interval parts Si will not change the distance of S to P significantly.
With this idea in hand, it is not hard to observe that knowing the histograms Hi of all
parts Si (with respect to letters in Σ) is enough to estimate the distance of S to P up to a
small additive constant error. These histograms cannot be computed exactly with a constant
number of queries, but it is well known that each Hi can be estimated up to a small constant
error with a constant number of queries, which is enough for our purposes.

For properties P of ordered graphs (or images), earthmover resilience by itself is not
enough to imply piecewise-canonical testability, but earthmover resilience and tolerant
testability are already enough. The idea is somewhat similar to the one we used for strings.
We may assume that P has a tolerant test T whose set of queried pairs is always an induced
subgraph of G. Like before, we partition our input graph G into sufficiently many interval
parts V1, . . . , Vt. Now the piecewise canonical test T ∗ simulates a run of the original tolerant
test T (without making the actual queries that T decided on). Denote the vertices that
T decides to pick in Vi by vi1, . . . , viqi . T

∗ picks exactly qi vertices uniformly at random in
each part Vi, and queries all edges between all chosen vertices. Now T ∗ randomly “assigns”
the labels vi1, . . . , viqi to the vertices that it queried from Vi, and returns the same answer
that T would have returned for this set of queries. It can be shown that T ∗ is a test whose
probability to return the same answer as T is high, as desired. For the full details, see
Section 5.

Piecewise-canonical testability to canonical testability

We describe the transformation for ordered graph properties; for strings this is very similar.
Let T be piecewise-canonical test for P that partitions the input into t intervals U1, . . . , Ut.
Consider the following canonical test T ′: T ′ picks qt vertices v1 < . . . < vqt uniformly
at random, for large enough q. Then T ′ partitions the vertices into t intervals A1 =
{v1, . . . , vq}, . . . , At = {v(t−1)q+1, vtq}. Now T ′ simulates a run of T . If T chose to take qi
vertices from Ui, then T ′ picks exactly qi vertices from Ai. Finally, T ′ queries all edges
between all vertices it picked, and returns the same answer as T (where the simulation of T
assumes here that the vertices that were actually picked from Ai come from Ui).
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A rather straightforward but somewhat technical proof (that we do not describe at this
point, see Section 6) shows that the probability that T ′ returns the answer that T would
have returned on the same input is high, establishing the validity of T ′. For the full details,
see Section 6.

Canonical testability, estimability and regular reducibility

The proofs of Theorems 3 and 4 are technically involved. Fortunately, the proofs follow the
same spirit as those of the unordered case, considered in [4, 22], and in this paper we only
describe how to adapt the unordered proofs to our case.

Sections 7 and 8 contain the proofs of Theorems 3 and 4, respectively. It is shown in
these sections that for our ordered case, in some sense it is enough to make the proofs work
for k-partite graphs, for a fixed k. The intuition is that for our purposes, it is enough to
view an ordered graph G as a k-partite graph (for a large enough constant k), where the
parts are the intervals of a k-interval partition of G.

At this point, it is too difficult to explain the proof idea in high level without delving
deeply into the technical details. Therefore, all details are deferred to Sections 7 and 8.

4 Earthmover-resilience and mixing

I Definition 16. Let µ and η be two distributions over a finite family H of combinatorial
structures. The variation distance between µ and η is |µ− η| = 1

2
∑
H∈H |Prµ(H)−Prη(H)|.

The following folklore fact regarding the variation distance will be useful later.

I Lemma 17. Let µ and η be two distributions over a finite family H. Then |µ − η| =
maxF⊆H |Prµ(F)− Prη(F)| =

∑
H∈H: Prµ(H)>Prη(H)(Prµ(H)− Prη(H)).

I Definition 18. An unordered isomorphism between two ordered graphs G,H :
([n]

2
)
→ Σ

is a permutation σ : [n]→ [n] such that G(ij) = H(σ(i)σ(j)) for any i < j ∈ [n].
Given a permutation σ of [n], the mixing set of σ isMS(σ) = {i < j : σ(i) > σ(j)} ⊆

([n]
2
)
,

its mixingness is Dm(σ) = |MS(σ)| and its normalized mixingness is dm(σ) = |MS(σ)|/
(
n
2
)
.

Given graphs G and H, their normalized mixingness dm(G,H) is defined as the minimal
normalized mixingness of an unordered isomorphism from G to H (and +∞ if G and H are
not isomorphic as unordered graphs).

Our next goal is to show that the earthmover distance between two ordered graphs is
equal to the mixingness between them. Given a permutation σ : [n]→ [n], a basic move for
σ transforms it to a permutation σ′ of the same length, such that for some i, σ(i) = σ′(i+ 1)
and σ′(i) = σ(i + 1), and σ(j) = σ′(j) for any j 6= i, i + 1. Let b(σ) denote the minimal
number of basic moves required to turn σ into the identity permutation id satisfying id(i) = i

for any i.

I Lemma 19. Dm(σ) = b(σ) for any permutation σ : [n]→ [n].

Proof. The inequality Dm(σ) ≤ b(σ) is trivial: Any basic move changes the relative order
between a (single) pair of entries in the permutation, and thus cannot decrease the size of the
mixing set by more than one. Next we show by induction that b(σ) ≤ Dm(σ). Dm(σ) = 0
implies that σ = id and b(σ) = 0 in this case. Now assume that Dm(σ) > 0 and pick some
i < j such that σ(i) > σ(j). Take i′ < j to be the largest for which σ(i′) > σ(j) – such an i′
exists since σ(i) > σ(j). Note that σ(i′+ 1) ≤ σ(j) < σ(i′) due to the maximality of i′. Take
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σ′ to be the result of the basic move between i′ and i′ + 1 in σ. Dm(σ′) = Dm(σ)− 1, and
by the induction assumption we know that b(σ′) = Dm(σ′) = Dm(σ)− 1. But since σ′ is the
result of a basic move on σ, we conclude that b(σ) ≤ b(σ′) + 1 = Dm(σ), as desired. J

The equivalence between the earthmover distance and the mixingness is now immediate.

I Lemma 20. For any two graphs G,H :
([n]

2
)
→ Σ, de(G,H) = dm(G,H).

Proof. Dm(G,H) is the minimum value of Dm(σ) among all unordered isomorphisms σ
from G to H, and De(G,H) is the minimum value of b(σ) among all such isomorphisms. By
Lemma 19, these two values are equal, and thus the corresponding relative measures are also
equal. J

I Lemma 21. Let δ : (0, 1) → (0, 1) and let P be a δ-earthmover-resilient property. If
two graphs G,H :

([n]
2
)
→ Σ satisfy de(G,H) ≤ δ(ε) for some ε > 0, then dH(G,P) ≤

dH(H,P) + ε.

Proof. Suppose that G and H satisfy de(G,H) ≤ δ(ε). By definition, there exists an
unordered isomorphism σ : G→ H such that dm(G,H) = dm(σ). Let G′ :

([n]
2
)
→ Σ be the

graph in P that is closest to G (in Hamming distance). Consider the graph H ′ satisfying
H ′(σ(u)σ(v)) = G′(uv) for any u 6= v ∈ V , then dH(H,H ′) = dH(G,G′). Note that σ is
an unordered isomorphism between G′ and H ′. It follows, building on Lemma 20, that
dm(G′, H ′) ≤ dm(σ) = dm(G,H) = de(G,H) ≤ δ(ε). This implies (by the earthmover
resilience) that H ′ is ε-close to P. The triangle inequality concludes the proof. J

Canonical testability implies earthmover resilience
I Definition 22. Let H and G be Σ-edge-colored ordered graphs on q and n vertices
respectively. The number of (ordered) copies of H in T , i.e., the number of induced
subgraphs of G of size q isomorphic to H, is denoted by h(H,G). The density of H in G
is t(H,G) = h(H,G)/

(
n
q

)
(where t(H,G) = 0 if q > n). The q-statistic of G is the vector

(t(H,G))H∈Hq , where Hq is the family of all Σ-edge-colored ordered graphs with q vertices.

Every property of ordered graphs already testable by a canonical test is δ-earthmover-
resilient for some δ (depending on the number of its query vertices as a function of ε), as
implied by the following lemma.

I Lemma 23. Let ε, δ > 0. For any canonical ε-test querying up to q vertices and any two
graphs G and G′ of either Hamming distance or earthmover distance at most δ, the difference
between the acceptance probabilities of G and of G′ is at most δ

(
q
2
)
.

Proof. We may assume that the test queries exactly q vertices. For Hamming distance, the
statement is well known, and follows easily by taking a union bound over all

(
q
2
)
queried

edges. Assume then that de(G,G′) ≤ δ. Let µ, µ′ be the q-statistics of G, G′ respectively,
where G,G′ :

([n]
2
)
→ Σ are two graphs with earthmover distance at most δ between them.

By Lemma 17 it will be enough to show that |µ− µ′| ≤ δ
(
q
2
)
. Lemma 20 implies that there

is an unordered isomorphism σ : G→ G′ with dm(σ) ≤ δ.
For any set Q of q vertices, let σ(Q) = {σ(v) : v ∈ Q}, and note that Q 7→ σ(Q) is

a bijective mapping from Hq to itself. Observe that the induced subgraph G[Q] can be
non-isomorphic to G′[σ(Q)] (as an ordered graph on q vertices) only if there exist two vertices
u, v ∈ Q satisfying uv ∈MS(σ). By a union bound, the probability of a uniformly random
Q ∈ Hq to have such a pair is at most dm(σ)

(
q
2
)
≤ δ
(
q
2
)
, implying that |µ− µ′| ≤ δ

(
q
2
)
. J
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The next lemma proves the second (and easier) direction of Theorem 11. It uses Lemma 23
to conclude that a canonically testable property is earthmover-resilient and tolerantly testable.

I Lemma 24. Let P be an ordered graph property. Suppose that P has a canonical ε-test T
making q(ε) vertex queries for any ε > 0. Then P is δ-earthmover-resilient and δ-tolerantly
ε-testable with 9q(ε) vertex queries, where δ(ε) = 1/20

(
q(ε)

2
)
for any ε > 0.

Proof. Let ε > 0, and suppose that G and G′ are of earthmover distance at most δ(ε)
between them, where G satisfies P ; to prove the earthmover resilience, we need to show that
G′ is ε-close to satisfying P. Since G ∈ P, it is accepted by T with probability at least 2/3.
By Lemma 23, the acceptance probability of G′ by T is at least 2

3 − δ(ε)
(
q(ε)

2
)
> 1/3. Since

T rejects any graph ε-far from P with probability at least 2/3, we conclude that G′ must be
ε-close to P.

For the second part, regarding tolerant testability, Lemma 23 implies that for any graph
that is δ(ε)-close to satisfying P , the acceptance probability of T is at least 2/3− δ(ε)

(
q(ε)

2
)
>

0.61. By applying T independently 9 times and accepting if and only if the majority of the
runs accepted, we get a test that accepts δ(ε)-close graphs with probability at least 2/3 and
rejects ε-far graphs with probability at least 2/3 as well. This test can be made canonical
with no need for additional queries. J

Let us finish with two comments. First, in the last two lemmas it was implicitly assumed
that the canonical test is a deterministic one, but they also hold for randomized ones: The
fact that |µ−µ′| ≤ δ

(
q
2
)
in Lemma 23 is actually enough to imply the statement of Lemma 23

for any (deterministic or randomized) canonical test, and Lemma 24 follows accordingly.
Second, the results in this section, along with Sections 5 and 6, are not exclusive to

two-dimensional structures, and naturally generalize to k-dimensional structures for any k.
Thus, in ordered hypergraphs and tensors in three dimensions or more, it is still true that
the combination of earthmover resilience and tolerant testability is equivalent to canonical
testability.

5 Piecewise-canonical testability

In this section, we show that ER string properties and ER tolerantly testable ordered graph
properties have a constant-query piecewise canonical test. This is a test that consider a
k-interval partition of the input, picking a predetermined number of vertices (or entries, in
the string case) uniformly at random from each interval (this number may differ between
different intervals), and finally, queries all edges between the picked vertices from all intervals.
We always assume that our tolerant tests are non-adaptive and based on q query vertices
(we assume they query the entire induced subgraph even if they do not use all of it). Note
that unlike the case of unordered graphs, the move from an adaptive test to a non-adaptive
one can cause an exponential blowup in the query complexity (we may need to “unroll” the
entire decision tree).

I Definition 25. A (probabilistic) piecewise-canonical test with k parts and q query vertices
for a property P of functions f :

([n]
`

)
→ Σ works as follows. First, the test non-adaptively

selects (possibly non-deterministically) numbers q1, . . . , qk that sum up to q, and then it
considers a k-interval partition I1, I2, . . . , Ik of the input function f , selecting a uniformly
random set of qj vertices from Ij for every 1 ≤ j ≤ k. The test finally accepts or rejects f
based only on the selected numbers q1, . . . , qk and the unique function f ′ :

([q]
`

)
→ Σ that is

isomorphic (in the ordered sense) to the restriction of f on the selected vertices.
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A property P is piecewise-testable if for for every ε there exist k(ε) and q(ε) for which P
has a piecewise canonical ε-test with k(ε) parts and q(ε) query vertices.

I Remark. In Section 2 it was noted that a probabilistic canonical test for a property can
be transformed into a deterministic one, with the same confidence, as was shown in [26].
This is true for any choice of confidence c (not only the “default” confidence c = 2/3). Since
one can always amplify a (probabilistic or deterministic) test to get a test of the same type
with confidence arbitrarily close to 1, we conclude that if a property P has a probabilistic
canonical test with a certain confidence c > 1/2, then for any ζ > 0, P has a deterministic
canonical test with confidence at least 1− ζ.

All of the above is also true for piecewise-canonical tests; the proof for canonical tests
carries over naturally to this case, so we omit it. Here, the simulating deterministic test has
the same number of parts as the original test.

5.1 Strings: Earthmover resilience to piecewise-canonical testability
In this subsection, we prove that ER properties of strings are piecewise canonically testable.
In Section 6, we show that the latter condition implies canonical testability.

For a string S : [n] → Σ let dσ(S) = |S−1(σ)|/n denote the density of σ in S. Let
T (S) = (dσ(S))σ∈Σ denote the distribution vector of letters in S. The following well known
fact is important for the proof.

I Fact 26. The distribution vector of a string over Σ can be approximated up to variation
distance ζ, with probability at least 1− τ , using O(|Σ|2 log(τ−1)ζ−2) queries.

Fix a function δ : (0, 1)→ (0, 1), a δ-earthmover resilient property P of strings over Σ,
and ε > 0. Take t = d1/2δ(ε/2)e. For any string S over Σ, let S1, . . . , St be the t-interval
partition of S and let the t-interval distribution Γt(S) = (T (S1), . . . , T (St)) denote the
t-tuple of the distribution vectors of S1, . . . , St. For S as above and another string S′

over Σ with t-interval partition S′1, . . . , S
′
t, the t-aggregated distance between S and S′ is

dA(S, S′) =
∑t
i=1 |T (Si)−T (S′i)| · |Si|/|S|; recall that |T (Si)−T (S′i)| is the variation distance

between T (Si) and T (S′i). As usual, we define dA(S,P) = minS′∈P dA(S, S′). The next easy
lemma relates between the Hamming distance and the t-aggregated distance of S to P.

I Lemma 27. For any string S over Σ we have 0 ≤ dH(S,P)− dA(S,P) ≤ ε/2.

Proof. Let S′ be the string that is closest to P among those that can be generated from S only
using basic moves inside the intervals S1, . . . , St. In particular, it is trivial that dH(S′,P) ≤
dH(S,P) and we know by Lemma 20 that de(S, S′) ≤ 2/t ≤ δ(ε/2). By Lemma 21, we get
that dH(S,P) − dH(S′,P) ≤ ε/2. On the other hand, dH(S′,P) = dA(S′,P) = dA(S,P)
follows by the definitions of the distance functions and the minimality of S′. J

Finally we present the piecewise canonical test for P. More accurately, we describe a
piecewise-canonical algorithm A that, given an unknown string S over Σ of an unknown
length n, approximates the t-aggregated distance of S to P up to an additive error of ε/6,
with probability at least 2/3. The test simply runs A and accepts if and only if its output
value is at most ε/4. The algorithm A acts as follows. First, it runs the algorithm of Fact 26
in each interval of the t-interval partition of S, with parameters ζ = ε/6 and τ = 1/3t. For
any 1 ≤ i ≤ t, let T ∗i denote the distribution returned by this algorithm for interval i. Then,
Algorithm A returns r = minS′∈P

∑t
i=1 |T ∗i − TS′i | · |Si|/|S|.

With probability 2/3, we get that |T (Si)− T ∗i | ≤ ε/6 for any i. Suppose from now on
that the latter happens. It follows from the triangle inequality for the variation distance that
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dA(S,P) ≤ dA(S, S′) ≤ r+ε/6, where r is the minimum defined above and S′ ∈ P is the string
achieving this minimum. Conversely, there exists S′′ ∈ P such that dA(S, S′′) = dA(S,P).
But the minimality of S′ implies that

∑t
i=1 |T ∗i − TS′′i | · |Si|/|S| ≥ r, and again, from the

triangle inequality we get that dA(S, S′′) ≥ r − ε/6. To summarize,

r − ε/6 ≤ dA(S, S′′) = dA(S, P ) ≤ dA(S, S′) ≤ r + ε/6

which means that r is, with probability at least 2/3, an (ε/6)-additive approximation of
dA(S,P). Thus, if S satisfies P (meaning that dA(S,P) = 0) then with probability 2/3 the
algorithm A returns r ≤ ε/6 and the test accepts. On the other hand, if S is ε-far from P
then dA(S,P) ≥ ε/2 by the above lemma, and A returns r ≥ ε/2− ε/6 = ε/3 (making the
test reject) with probability at least 2/3, as desired.

5.2 Ordered graphs: ER and tolerant tests to piecewise-canonical tests
The next lemma shows that a tolerant test for an ER property P of ordered graphs can be
translated, in an efficient manner, into a piecewise-canonical test for P.

I Lemma 28. Let q : (0, 1)→ N, η : (0, 1)→ (0, 1), and δ : (0, 1)→ (0, 1), and suppose that
P is a δ-earthmover-resilient η-tolerantly testable property of ordered graphs, where for any
ε > 0, the corresponding (ε, η(ε))-tolerant test queries q(ε) vertices. Then for any ε > 0 there
exist q′ and k such that P has a piecewise-canonical ε-test with k parts and q′ query vertices.
Moreover, if q, η, δ are polynomial in ε, then so are q′ and k.

Proof. Let T be a (non-adaptive) (ε/2, η)-tolerant test for P querying the induced subgraph
on q′ = q(ε/2) vertices. Let G :

([n]
2
)
→ Σ denote the unknown input graph. Since T is

non-adaptive, we may view it as a two-step algorithm acting as follows. In the first step, T
chooses a q′-tuple x1 < . . . < xq′ ∈ [n] (which will eventually be the vertices T will query)
according to some distribution pT . The second step receives the tuples (x1, . . . , xq′) and
(G(xixj))i<j∈[q′] and decides (probabilistically) whether to accept or reject based only on
these tuples.

Take k = d2/δ(η(ε/2))e and consider the k-interval partition I1, . . . , Ik of the input graph
G. Our piecewise-canonical test T ′, also making q′ vertex queries, is designed as follows.
First it picks a tuple X of q′ elements x1 < . . . < xq′ ∈ [n] according to the distribution pT .
For each i = 1, . . . , k, let qi = |X ∩ Ii| and let Si = {1 +

∑i−1
j=1 qj , . . . ,

∑i
j=1 qj}. T ′ queries

exactly qi vertices from Ii uniformly at random. Now, T ′ picks a permutation π : [q′]→ [q′]
in the following manner: For each 1 ≤ i ≤ k, π restricted to Si is a uniformly random
permutation on [Si]. Finally, T ′ runs the second step of the original test T , with tuples
(x1, . . . , xq′) and (G(xπ(i)xπ(j)))i<j∈[q′].

Clearly, T ′ makes in total q′ queries in k intervals, where the vertex queries within each
interval are chosen uniformly at random. It only remains to show that T ′ is a valid ε-test.
Observe that applying T ′ on the input graph G is equivalent to the following process, in the
sense that their output distribution (given any fixed G) is identical.
1. “Shuffle” the vertices inside each interval Ii of G in a uniformly random manner, to get a

new ordered graph G′.
2. Run the original test T on G′, and return its answer.
The relative mixingness between G and any such G′ is at most k

(dn/ke
2
)
/
(
n
2
)
< 2/k ≤ δ(η(ε/2))

where the first inequality holds for large enough n. By Lemmas 20 and 21 and the δ-earthmover
resilience of P, we get that |dH(G′,P) − dH(G,P)| ≤ η(ε/2) < ε/2. Thus, if G satisfies
P, then any G′ possibly generated in the first step of the above process is η(ε/2)-close to
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P. Since T is (ε/2, η)-tolerant, the second step of the process accepts with probability at
least 2/3 for any fixed choice of G′. Thus, the process (or equivalently, T ′) accepts G with
probability at least 2/3 in this case. Conversely, if G is ε-far from P then G′ generated in
the first step is ε/2-far from P, and, similarly, the process (or equivalently, T ′) rejects with
probability at least 2/3. J

6 Piecewise-canonical testability to canonical testability

This section is dedicated to the proof that piecewise-canonically testable properties are
canonically testable. While the proofs are presented here for ordered graphs, they can easily
be translated to the case of strings. Therefore, the results in this section, combined with the
previous two sections, complete the proof of Theorems 11 and 2.

I Definition 29. Given {q1, . . . , qk} that sum up to q and t ≥ max1≤j≤k qj , the t-simulated
piecewise distribution over subsets of of [n] of size q is the result of the following process.
Uniform sampling Select a set of tk indices from [n], uniformly at random. Let {i1, . . . , itk}

denote the set with its members sorted in ascending order.
Simulation inside each block For every 1 ≤ j ≤ k, select a subset of {i(j−1)t+1, . . . , ijt} of

size qi, uniformly at random.

I Lemma 30. For every δ, k and q, there exist t(δ, k, q) and N(δ, k, q) polynomial in δ, k, q,
so that if n > N(δ, k, q) then the t-simulated piecewise distribution with respect to q1, . . . , qk is
δ-close (in the variation distance) to an actual piecewise distribution with respect to q1, . . . , qk,
i.e., a process of the following type. Consider a k-interval partition I1, . . . , Ik of the input
graph, and for every 1 ≤ j ≤ k, pick a uniformly random subset of Ij of size qj.

In the proof of Lemma 30 we do not try to optimize the dependence of t and N on δ, k, q,
but just show that it is a reasonable polynomial dependence.

Proof. Fix q1, . . . , qk and write Qi =
∑i
j=1 qj for any 1 ≤ i ≤ k. Also take q = Qk. For any

1 ≤ l1 < . . . < lq ≤ n denote by Prpiece(El1,...,lq) the probability that the indices selected
by a piecewise canonical distribution with parameters q1, . . . , qk are l1, . . . , lq. Similarly, for
q1, . . . , qk as above and a fixed t ≥ max1≤j≤k qj , we denote by Prsim(El1,...,lq ) the probability
that the indices selected by a simulated piecewise canonical distribution with parameters
q1, . . . , qk and t are l1, . . . , lq. It is enough to show, for a suitable choice of t and for n large
enough, that

∑
l1<...<lq

|Prpiece(El1,...,lq )−Prsim(El1,...,lq )| < δ. To prove this, we show that
there exist suitable events A and B satisfying the following conditions.

Prpiece(A) ≤ δ and Prsim(B) ≤ δ.
Prpiece(El1,...,lq |¬A) = Prsim(El1,...,lq |¬B) for any possible choice of l1 < . . . < lq, where
¬A and ¬B are the complementary events of A and B, respectively.

In the rest of the proof we define and analyze the events A and B.

Order statistics. Take t = 600k4q2δ−3 and N = tk. Let 1 ≤ i1 < . . . < iN ≤ n be the
elements of an N -tuple from

([n]
N

)
, picked uniformly at random. It is well known (see, e.g.,

Chapter 3 in [6]) that the expected value of ir – the r-th order statistic of the tuple – is
µr = r(n+ 1)/(N + 1) and satisfies |µr − rn/N | < n/N , and the variance of ir is σ2

r ≤ n2/N .
By Chebyshev’s inequality, for any 1 ≤ r ≤ N it holds that Pr(|ir − µr| > αn) < 1/Nα2.

Pick α = 3
√
k/δN < δ/8k2q. For any 1 ≤ j ≤ k − 1, we take r−j as the largest integer

r for which µr < (Qj/k − α − 1/N)n and r+
j as the smallest integer r′ for which µr′ >
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(Qj/k + α + 1/N)n; note that tQj − r−j < 2αN and µr−
j
> (Qj/k − 2α)n, and on the

other hand, r+
j − tQj < 2αN and µr+

j
< (Qj/k + 2α)n. Intuitively speaking, r−j , r

+
j were

chosen here with the following requirements in mind. With good probability, r−j needs to be
contained in Ij , r+

j needs to be contained in Ij+1, and both r−j and r+
j should be close to

jn/k (which is roughly equal to the last element of Ij and the first element of Ij+1).
Indeed, let C denote the event that(
Qj
k
− 3α

)
n < ir−

j
<
Qj
k
n < ir+

j
<

(
Qj
k

+ 3α
)
n (1)

holds for any 1 ≤ j ≤ k − 1, and observe that
(
Qj
k + 3α

)
n <

(
Qj+1
k − 3α

)
n for any j.

¬C is contained in the event that, for some j, |ir−
j
− µr−

j
| > αn or |ir+

j
− µr+

j
| > αn. The

probability of the latter event is bounded by 2k/Nα2 = 2δ/9 by a union bound. Therefore
C holds with probability at least 1− 2δ/9.

The “bad” events A and B. Suppose that, after picking i1 < . . . < iN uniformly at
random as above, we pick two (not necessarily disjoint) q-tuples w,w′ of vertices from [n]
simultaneously: w is picked according to the piecewise canonical distribution among all
elements of G, whereas w′ is picked according to the t-simulated piecewise distribution,
considering {i1, . . . , iN} as the output of the first step – the uniform sampling step – of the
simulated process. The events A and B are defined as follows. A holds if and only if either C
doesn’t hold or some entry of w is picked from I =

⋃k−1
i=1 Ij , where Ij = {ir−

j
, ir−

j
+1, . . . , ir+

j
}

for any j. B holds if and only if either C doesn’t hold or some entry of w′ is taken from
I ′ =

⋃k−1
j=1 I

′
j , where I ′j = {ir−

j
, ir−

j
+1, . . . , ir+

j
} for any j.

A and B satisfy the requirements. The major observation here is that the distribution of
the piecewise canonical distribution under the assumption that A does not hold is identical to
the distribution of the simulated process under the assumption that B does not hold. That is,
Prpiece(El1,...,lq |¬A) = Prsim(El1,...,lq |¬B) for any possible choice of l1 < . . . < lq, as required
above. To see this, observe that under these assumptions, both distributions pick exactly
qj entries, uniformly at random, from the set {ir+

j
+ 1, . . . , ir−

j+1
− 1} for any 0 ≤ j ≤ k − 1

(where we define r+
0 = 0 and r−k = n + 1). It remains to show that Prpiece(A) ≤ δ and

Prsim(B) ≤ δ.
In the piecewise-canonical distribution, every entry has probability at most q/n to be

picked. Assuming that C holds, we get that |Ij | < 6αn for any j, and so |I| ≤ 6αkn. Therefore,
Prpiece(A|C) ≤ |I|q/n < 6αkq < 3δ/4. Thus, Prpiece(A) ≤ Prpiece(A|C) + Pr(¬C) < δ, as
needed.

In the simulated distribution, the probability that any given element from I ′ is taken
to w′ is at most q/t. Since |I ′j | < 4αN , we get that |I ′| < 4αkN and so Prsim(B) ≤
|I ′|q/t+ Pr(C) < 4αk2q + δ/4 < δ, as desired. J

I Lemma 31. A piecewise-testable property has a canonical test. Moreover, if the number
of parts of the piecewise-canonical ε-test, denoted by k(ε), and its number of vertex queries,
denoted by q(ε), are polynomial in ε, then so is the number of queries of the canonical test.

Proof. Let P be a piecewise-testable property. Following Remark 5, for any ε > 0 there
exists a deterministic piecewise-canonical ε-test T , with confidence 3/4, making exactly q
queries on k parts. To simulate T using a canonical test T ′, we pick δ = 1/12 and take
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t = t(δ, k, q) as provided by Lemma 30 (here we also implicitly assume that n > N(δ, k, q)).
T ′ is taken as the t-simulated piecewise test, that queries the induced subgraph H on kt
vertices picked uniformly at random, and then imitates T : If, for any 1 ≤ i ≤ k, T chooses
qi vertices in part number i, then T ′ chooses q vertices of H using a t-simulated piecewise
distribution, where qi vertices are taken from the i-th simulated block. Then, T ′ makes the
same decision that T would have made on the queried subgraph induced on the chosen q
vertices.

By Lemma 30, the distributions η and η′ over q-tuples of vertices generated by T and
T ′, respectively, are δ-close. Let H be a family of ordered graphs on q vertices such that T
accepts its queried induced subgraph H if and only if H ∈ H. Then, Prη(H ∈ H) ≥ 3/4 if
the input graph G satisfies P , whereas Prη(H ∈ H) < 1/4 if G is ε-far from P . By Lemma 17,
if the input graph G for T ′ satisfies P then the queried induced subgraph H satisfies
Prη′(H ∈ H) ≥ 3/4− δ = 2/3, and if G is ε-far from P, then Prη′(H ∈ H) < 1/4 + δ = 1/3.
Thus, T ′ is a valid test for P. J

Lemmas 28 and 31 together prove the first (and more difficult) direction of Theorem 11.

7 Canonical testability to estimability

This section describes the proof of Theorem 3. The proof takes roughly the same steps as in
the proof of Fischer and Newman [22] for the unordered case. For the proof of [22] to work
in our case, we only need to make a few slight modifications. Therefore, instead of rewriting
the whole proof, we only describe what modifications are made and how they change the
proof.

The proof in [22] builds on a test for partition parameters, established in the seminal
paper of Goldreich, Goldwasser and Ron [24]. The test of [24] also needs to be slightly
modified for our needs. Therefore, the partition test receives the same treatment as the proof
in [22]: We describe the modified statement and how to change the proof accordingly, but do
not get into unnecessary technicalities.

7.1 The unordered proof

First we sketch the proof that canonical testability in unordered graphs implies estimabil-
ity [22].

7.1.1 Signatures of regular partitions and approximating the q-statistic

A (γ, ε)-signature for an equipartition A = {V1, . . . , Vt} is a sequence of densities ηi,j , such
that the density between Vi and Vj differs from ηi,j by at most γ, for all but at most ε

(
t
2
)
of

the pairs i, j. The (labeled) q-statistic of a graph is the distribution of the labeled graphs on
q vertices in it. Given a signature as above, it is natural to define the perceived q-statistic
of the signature as the distribution on labeled q-vertex graphs generated as follows: First
we choose q indices i1, . . . , iq from [t]. Then for every j < j′ we add an edge between vj
and vj′ with probability ηij ,ij′ , independently. The main observation in this part is that the
perceived q-statistic of a signature with good (small) enough parameters of a regular enough
partition of a graph G is close to the actual q-statistic of G. Thus, to estimate the q-statistic
of a graph we just need to obtain a good signature of a regular partition of this graph. For
more details, see Section 4 in [22].
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7.1.2 Computing signature of a final partition

Implicit in the proof of the celebrated Szemerédi regularity lemma [35] is the concept of
an index of an equipartition, which is a convex function of partitions that never decreases
under taking refinements of a partition. A partition P is robust if, for any refinement Q of
P that is not too large (in terms of the number of parts) with respect to P , the index of
Q is similar to that of P . The main argument in [35] is that robustness implies regularity.
An even stronger condition, that implies robustness, is finality. A partition P is final if for
any partition Q5 whose number of parts is not much larger than that of P , the index of Q is
also not much larger than that of P . It is easy to prove that robust and final partitions with
arbitrarily good parameters exist. The definitions appear in Section 4 of [22], while the rest
of the discussion here appears in Section 5 there.

Knowing the parameters of a good signature of a robust enough partition is useful for
estimation, as we shall see soon. Before doing so, we explain how to find such a signature
using the partition parameters test of [24]. This test is described in a more formal and
detailed fashion in Subsection 7.3, but for our purposes, it acts as a test for the property of
“having a given signature”. We consider a quantized set of signatures, which contains only a
constant number of possible signatures, so that every graph is close to a graph satisfying one
of the signatures (i.e., an η-net for a suitable parameter η).

By applying the test of [24] to each of the signatures sufficiently many times and
accepting or rejecting each of the signatures according to majority vote, we determine with
good probability which signatures our input graph G is close to having. More precisely, all
signatures that are very close to some actual signature S of G are accepted, and all of those
that are very far from any actual signature S are rejected. Thus, this process only accepts
signatures that are at the very least “quite close” to some actual one.

Finally, an index measure can also be defined for signatures, and the index of a good
signature is close to that of the corresponding partition. Under the assumption that all
signatures that we captured are quite close to an actual one, in particular we will find a good
approximation of a final partition, and will recognize that it is final by not finding signatures
of partitions that are only somewhat bigger and have a much bigger index (meaning that
such partitions do not exist).

7.1.3 Knowing signature of a robust partition implies estimation

Note that for δ > 0 and a family H of q-vertex graphs, having only a good signature S of a
robust enough partition allows us to distinguish for any ε > 0, deterministically, between the
case that G is (ε− δ)-close to a graph G′ that contains a large number of copies of labeled
graphs from H, and the case that all graphs that are ε-close to G contain only a small number
of H-copies. Combining this statement with the one from the previous subsection, stating
that computing the signature of some robust (and in particular, final) partition is possible
with good probability in constant time, it is straightforward to conclude that any testable
graph property is estimable. As the proof of this statement is rather technical and the main
arguments do not change when moving to the ordered case, we do not go into the details of
the proof here. Section 6 in [22] is dedicated to this proof.

5 Here Q is not necessarily a refinement of P
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7.2 Adapting to the ordered setting
Suppose that a property P has a canonical test making q queries. Using the proof for the
undirected case as is will not work here. The reason is that, theoretically, a pair of vertex
sets can be regular as an unordered pair, but interleaved in a way that makes it useless when
we are interested in understanding the ordered q-statistic of a graph. Another issue that
needs to be considered is the fact that we work here with edge-colored graphs, instead of
standard ones. However, the latter is not a real issue: As observed in previous works [2, 7, 8],
regularity-based arguments tend to generalize in a straightforward manner to the multicolored
setting.

To accommodate for the first issue, we need a “regularity scheme” that is slightly different
from the unordered instance. At the base of the scheme lies a k-interval equipartition I for a
suitable k, which is known in advance. The regular, robust or final partitions that we need
along the proof (analogously to the unordered case) are always refinements of the interval
equipartition I, where we do not care about the relation between two parts that lie inside the
same interval. Here, for partitions P and Q, we say that Q is a refinement of P if any part
of Q is completely contained in a part of P . A formal presentation of the scheme is given
in the next few definitions and lemmas. The first definition presents the (q, k)-statistic of a
graph, which in some sense is the k-partite version of the q-statistic, as defined in Section 4.

I Definition 32. Let G,H be Σ-edge-colored ordered graphs on n ≥ q vertices respectively,
and let I = Ik(G) = (I1, . . . , Ik) be the k-interval equipartition of G for k ≥ q. A q-vertex
induced subgraph of G is k-separated if, for every 1 ≤ i ≤ k, no two vertices of the subgraph
lie in Ii. The total number of k-separated subgraphs on q vertices in a graph on n vertices is
denoted by N(k, q, n). The number of k-separated H-copies in G is denoted by hk(H,G).
The k-density of H in G is tk(H,G) = hk(H,G)/N(k, q, n). Finally, the (q, k)-statistic of G
is the vector (tk(H,G))H∈Hq , where Hq is the family of all Σ-edge-colored ordered graphs
with q vertices.

I Observation 33. The variation distance between the q-statistic and the (q, k)-statistic of
a graph is at most q2/2k.

Proof. For a uniformly chosen pair (u, v) of disjoint vertices in a graph G, the probability
that v lies in the same interval as u is at most n/k

n−1 . By a union bound, the probability that
a uniformly random q-tuple Q of disjoint vertices contains two vertices in the same interval
is at most

n

k(n− 1)

(
q

2

)
≤ q

k(q − 1)

(
q

2

)
= q2

2k .

Conditioning on the above not happening, the induced subgraph G[Q] is distributed according
to the (q, k)-statistic. The statement of the lemma thus follows from Lemma 17. J

The next definition presents the k-partite notion analogous to canonical testability.

I Definition 34. A property P of Σ-edge-colored ordered graphs is (ε, q, k)-canonical if
there exists a set A of q-vertex Σ-edge-colored ordered graphs satisfying the following two
conditions.

If an ordered graph G satisfies P, then
∑
H∈A tk(H,G) ≥ 2/3. In this case we say that

G is A-positive.
If G is ε-far from satisfying P, then

∑
H∈A tk(H,G) ≤ 1/3. Here G is A−negative.
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Note that there may be graphs that are neither positive not negative with respect to A in
the above definition. As it turns out, canonical ε-testability implies (ε, q, k)-canonicality for
a suitable q and any k = Ω(q2). In fact, the converse is also true, but is not needed for our
proof.

I Lemma 35. If a property P of edge-colored ordered graphs is canonically testable, then
there exists a function q : (0, 1) → N so that P is (ε, q(ε), k)-canonical for any ε > 0 and
k ≥ 4q(ε)2.

Proof. By Remark 5, if P is canonically testable then for any ε > 0 it has a canonical
ε-test with confidence 11/12, making q = q(ε) queries. This means that there is a family
A of q-vertex graphs, such that

∑
H∈A t(H,G) ≥ 11/12 for graphs G satisfying P and∑

H∈A t(H,G) ≤ 1/12 for graphs that are ε-far from P . By Observation 33,
∑
H∈A |t(H,G)−

tk(H,G)| ≤ 2 q
2

2k ≤ 1/4, and the statement follows. J

The definition of a regular partition needed for our case is given below. Here, the partition
must refine the base interval equipartition, and we do not care how parts inside the same
interval interact between themselves. For a single pair of parts lying in different intervals, the
notion of regularity that we use is the standard multicolored notion, defined in Subsection 2.5.

I Definition 36 (k-refinement, (γ, k)-regular partition, (γ, ε, k)-signature). Let G be an Σ-
edge-colored ordered graph, and let I = (I1, . . . , Ik) be the k-interval equipartition of G. An
equipartition P = (V11, . . . , V1r, . . . , Vk1, . . . , Vkr) is a k-refinement if Vij ⊆ Ii for any i, j. P
is (γ, k)-regular if it is a k-refinement and all but a γ-fraction of the pairs (Vij , Vi′j′) with
i < i′ are γ-regular.

A (γ, ε, k)-signature of P is a sequence S = (ηi
′j′

ij (σ)) for i < i′ ∈ [k], j, j′ ∈ [r],
σ ∈ Σ, such that for all but at an ε-fraction of the pairs (Vij , Vi′j′) with i < i′, we have
|dσ(Vij , Vi′j′) − ηi

′j′

ij (σ)| ≤ γ for any σ ∈ Σ. A (γ, γ, k)-signature is also referred to as a
(γ, k)-signature.

In the above definition, dσ(U, V ) is the density of the color σ among edges between U and V .
The perceived (q, k)-statistic is the natural translation of the notion of the perceived q-statistic
from Definition 7 in [22] to our k-partite setting: It captures the “expected” fractions of each
of the graphs on q vertices among the k-separated q-vertex subgraphs of G. (f, γ, k)-Robust
and (f, γ, k)-final partitions (see Section 4 in [22] for the original unordered definitions) are
also defined with respect to the k-partite structure, where we do not care about the relation
between pairs of parts from the same interval. To accommodate the fact that we consider
multicolored graphs, the index of a pair U, V is

∑
σ∈Σ dσ(U, V )2 (compared to d(U, V )2 in

the case of standard graphs). The index of an equipartition refining an interval partition
is the sum of indices of all pairs not coming from the same interval, divided by the total
number of such pairs.

After providing the definitions required for our ordered setting, the main statements of
the proof, analogous to Lemmas 3.8, 4.4 and 4.5 in [22], are the following.

I Lemma 37 (Ordered analogue of Lemma 3.8 in [22]). For every q and ε there exist γ and k,
so that for every (γ, k)-regular partition P of G into t ≥ k sets, where G has n ≥ N(q, ε, t)
vertices, and for every (γ, k)-signature S of P , the variation distance between the actual
(q, k)-statistic and the perceived (q, k)-statistic with respect to S is at most ε.

I Lemma 38 (Ordered analogue of Lemma 4.4 in [22]). For every k, γ, and f : N→ N there
exist q, T , and an algorithm that makes up to q (piecewise-canonical) queries to any large
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enough graph G, computing with probability at least 2/3 a (γ, k)-signature of an (f, γ, k)-final
partition of G into at most T sets.

Note that the second lemma requires piecewise-canonical vertex queries, making our algorithm
a piecewise-canonical one. But Lemma 31 implies that this algorithm can be converted into
a canonical one, since an algorithm that distinguishes between δ-closeness to a property P
and ε-farness from P, for any ε > δ, is actually an (ε− δ)-test for being δ-close to P.

I Lemma 39 (Ordered analogue of Lemma 4.5 in [22]). For every q and δ there exist γ, k,
and f : N→ N with the following property. For every family H of edge-colored ordered graphs
with q vertices there exists a deterministic algorithm that receives as an input only a (γ, k)-
signature S of an (f, γ, k)-robust partition with t ≥ k sets of a graph G with n ≥ N(q, δ, t)
vertices, and distinguishes given any ε between the case that G is (ε − δ) close to some
H-positive graph, and the case that G is ε-far from every graph that is not H-negative.

Once all definitions for our setting have been given, Lemma 35 brings us to a “starting
point” from which the flow of the proof is essentially the same as in the unordered case,
other then two issues mentioned and handled below. To avoid repeating the same ideas as in
the unordered case, we will not provide the full technical details of the proofs of the three
main lemmas. Deriving the proof of Theorem 3 from Lemmas 38 and 39 is similar to the
unordered case.

One place where the move to a multicolored version requires more care is in proving
the multicolored analogue of Lemma 6.2 in [22]. In the original proof, edges are being
added/removed with a suitable probability, where the decision whether to modify an edge is
independent of the other edges. In the multicolored version, the analogue of adding/removing
edges is recoloring them. One way to do this is the following: for every color c where edges
need to be added, we consider every relevant edge that has a “too dense” color c′ and, with
a suitable probability (that depends on the densities of the colors c, c′ and the relevant
signature), we recolor this edge from c′ to c. By doing this iteratively for all colors that are
in deficit, the multicolored analogue of Lemma 6.2 in [22] follows.

Another issue is that for our ordered setting, we need a “partition parameters” test that
is slightly different than the one proved in [24] and used in [22]. We describe the modified
partition parameters problem in Subsection 7.3.

7.3 The partition parameters test
Let Φ = {ρLBj , ρUBj }kj=1 ∪ {%LBj,j′ , %UBj,j′ }j<j′∈([k]

2 ) be a set of nonnegative parameters so that
ρLBj ≤ ρUBj and %LBj,j′ ≤ %UBj,j′ . An n-vertex graph G = (V,E) satisfies an (unordered)
Φ-instance if there is a partition V = V1 ∪ . . . ∪ Vk ∪ V ′ such that

0 ≤ |V ′| < k and |V | − |V ′| is divisible by k.
For any 1 ≤ j ≤ k, ρLBj bn/kc ≤ |Vj | ≤ ρUBj bn/kc.
For any j < j′ ∈

([k]
2
)
, %LBj,j′bn/kc2 ≤ |E[Vi, Vj ]| ≤ %UBj,j′ bn/kc2.

In [24], it was shown that the property of having an unordered Φ-instance is testable.
For our purposes, the base graph that we need to consider is an edge-colored r-partite

graph, where the parts are of equal size (instead of a complete base graph, as in the unordered
case). Formally, the partition parameters problem that we need to test is the following.

I Definition 40 (Ordered Φ-instance). An ordered Φ-instance whose parameters are the
positive integers r and k and the finite color set Σ consists of the following ingredients:
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For every i < i′ ∈ [r] and j, j′ ∈ [k] and every σ ∈ Σ, there are parameters `i,i
′

j,j′(σ) ≤
hi,i

′

j,j′(σ).
For fixed i, i′, j, j′, it holds that

∑
σ∈Σ `

i,i′

j,j′(σ) ≤ 1 ≤
∑
σ∈Σ h

i,i′

j,j′(σ).
Let G be an n-vertex Σ-edge-colored ordered graph, and denote its r-interval equipar-
tition by I = (I1, . . . , Ir). G is said to satisfy Φ if there exist disjoint sets of vertices
V11, . . . , V1k, . . . , Vr1, . . . , Vrk such that for any i and j, Vij ⊆ Ii and |Vij | = bn/rkc, and
`i,i
′

j,j′(σ) ≤ dσ(Vij) ≤ hi,i
′

j,j′(σ) for any i < i′ ∈ [r], j, j′ ∈ [k] and σ ∈ Σ.

Recall that dσ(A,B) is the density function of the color σ between the sets A and B. Note
that while in the original unordered Φ-instance, one could also specify lower and upper
bounds on the number of vertices in each part, in our case it is not needed; for us it suffices
to consider the special case where the size of each part is a 1/rk-fraction of the total number
of vertices.

I Lemma 41. The edge-colored ordered graph property of satisfying an ordered Φ-instance
is testable.

The proof is very similar to that of the unordered case in [24]. We first explain the main
ideas of the proof in [24], and then describe what modifications are needed for our case.

A sketch of the proof of Goldreich, Goldwasser and Ron [24]

The following observation is a key to the proof: Given a partition P = (P1, . . . , Pk) of
the set of vertices V and a set X which is small relatively to V , define the neighborhood
profile of a vertex v ∈ X with respect to P,X as the (ordered) set of k densities of the
edges from v to each of the parts Pj \ X. The observation is that if all vertices of X
have approximately the same neighborhood profile, and if we redistribute the vertices
of X among the sets P1, . . . , Pk so that each set receives roughly the same amount of
vertices it lost to X, then the amount of edges between every pair of sets Pi, Pj is roughly
maintained.
Generally we will deal with sets X containing vertices with different neighborhood profiles,
and will need a way to cluster them according to their profiles, and then be able to
use the above observation. For this, one needs an oracle that, given a vertex v, will
determine efficiently and with good probability a good approximation of the neighborhood
profile of v. Another related oracle that we need is one that efficiently approximates, for
P1, . . . , Pk and X, the “Pj-fraction” with respect to X, which determines what fraction
of the vertices in X with a given neighborhood profile belong to each Pj ∩X.
Using the oracles, it is shown that if a given graph satisfies a Φ-instance, then the
following process generates, with good probability, an explicit partition P s1 , . . . , P sk that
approximately satisfies Φ. Assume for now that we start with a partition P 0

1 , . . . , P
0
k that

satisfies the Φ-instance exactly. We partition all vertices of the graph into a large enough
constant number of sets X1, . . . , Xs of equal size. Now we do the following for i = 1, . . . , s:
We take the elements of Xi, apply the oracles on them, accordingly approximate how
many elements from Xi with a certain neighborhood profile came from each P i−1

j , and
then “shuffle”: Return the same amount of elements from Xi with this profile to P i−1

j ,
to create the part P ij (the returned elements are chosen arbitrarily among those with
the relevant profile, and in particular, are not necessarily the ones that were taken from
P i−1
j ).

There are two problems with the above statement. First, we do not know in advance
the partition that satisfies the desired Φ-instance, and thus along the way the partition
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P1, . . . , Pk is not known to us. Second, we still do not know how to simulate the oracles.
The solution to both of these problems is a brute force one: For each Xi we pick a large
enough constant size set Ui ⊆ V \Xi, and then enumerate on all possible partitions of
Ui into Ui ∩ P i−1

1 , . . . , Ui ∩ P i−1
k and all (rounded) possible values of the P i−1

j -fraction
for each j = 1, . . . , k and all i. As it turns out, if there is a partition of G satisfying the
Φ-instance, then our brute force search will find a good approximation of t with good
probability.
To turn the partitioning algorithm into a test, the observation is that one does not need
to apply the first oracle on every vertex in each Xi to determine its neighborhood profile.
Instead, we only apply it for a constant-size Si ⊆ Xi chosen at random. As it turns out,
this process is almost as accurate as the partitioning process, and in particular, it is
shown that if G has a Φ-instance then the process will accept, with good probability, a
set of parameters of a Φ′-instance which is close to the Φ-instance. On the other hand, if
G is far from having such a Φ-instance, then the process will reject, with good probability,
all sets of parameters that are close to the Φ-instance. This concludes the proof of [24].

Adapting the proof to our case

The first and minor issue that we have to deal with is the fact that our graphs are
edge-colored, and not standard graphs as in [24]. To handle this, instead of considering
the neighborhood profile of a vertex, we are interested in the colored neighborhood profile
of a vertex v, which keeps, for any relevant part P ij and any color σ, the fraction of
vertices u ∈ P ij for which vu is colored σ. The rest of the proof translates naturally,
implying that with this modification, the proof of [24] also applies to edge-colored graphs.
The second issue is that our desired partition that satisfies the Φ-instance has to be
a refinement of the interval partition I1, . . . , Ir of the input graph, as opposed to the
situation in [24]. This issue is also not hard to handle. A “shuffle” operation in the
unordered case was the process of removing elements from P i−1

j into Xi, and then
returning other elements from Xi to create P ij . In our case we will have to make shuffles
of elements separately within each Ii, since it is not allowed to move elements between
different Ii’s. The rest of the analysis is essentially the same as in the proof of [24].
For the analysis of the last bullet to hold, we need the ability to pick a vertex uniformly
at random from a given predetermined part Vi. This means that our algorithm is a
piecewise canonical one, but not necessarily canonical. However, the transformation from
a piecewise canonical test to a canonical one, that was proved in Section 6, implies the
canonical testability of our version of the partition problem.

8 Canonical testability versus regular reducibility

As in the previous section, first we describe how the equivalence between testability and
regular reducibility is proved in the unordered case [4], and then detail the small changes
required to prove the edge-colored ordered case, namely Theorem 4.

8.1 The unordered case
8.1.1 Enhancing regularity efficiently
In Section 3 of [4], it is shown that if a pair of vertex sets A,B has density close to η and its
regularity measure is very close to γ, then by making a small number of edge modifications
(insertions/deletions), one can turn the pair A,B into a “perfect” one, that has density
exactly η and is γ-regular. The proof has two main steps: In the first step, we take a “convex
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combination” of G[A,B] with a random bipartite graph with density η. This process does
not change significantly the density between A and B, but since a random graph is highly
regular, the combination is slightly more regular then the original G[A,B], and this is all
we need. In the second step, we fix the density between A and B to be exactly η. This
might very slightly hurt the regularity, but if in the first step we make G[A,B] a bit more
regular, i.e., γ′-regular for a suitable γ′ < γ, then it will remain γ-regular even after the loss
of regularity in the second step.

8.1.2 Canonical testability implies regular reducibility
The easier direction of the proof is to show that any canonically testable property is also
regular reducible, as is shown in Section 4 of [4]. Recall that, as discussed in Subsection 7.1.1,
a regular enough partition of a graph G provides a good approximation of the q-statistic of G.
We consider a canonical test T with a small enough proximity parameter, making q vertex
queries. Basically, our set of “accepting” regular instances (see Definition 2.6 in [4]) will be
created as follows: Initially, we take an ε-net of possible parameters of regular partitions:
This is a constant size quantized collection of the possible parameters of regular partitions,
that “represents” all possible choices of parameters (in the sense that any possible choice
of parameters has a representative in the constant size collection that is very close to it).
Among the representatives from the ε-net, we choose as accepting only those choices of
parameters that predict acceptance of the above canonical test with probability at least 1/2.
Now, if a graph G satisfies our property P, then it is accepted with probability 2/3 by the
canonical test, and thus a regular enough partition of G will be similar to some accepting
regularity instance, making G very close to satisfying this instance. Conversely, if G is ε-far
from P , then it must also be far from any graph G′ satisfying the accepting instance – since,
by our choice of the accepting regular instances as those that indicate acceptance of the
canonical test, any such G′ is accepted by the canonical test with probability that is larger
than 1/3, meaning that G′ cannot be far from satisfying P (and thus G cannot be too close
to G′, otherwise it would be ε-close to P, a contradiction)

8.1.3 Sampling preserves regular partitions
In Section 5 of [4] it is shown that if we sample a constant size set S of vertices in a graph G,
then with good probability the induced subgraph G[S] will have γ-regular partitions with the
same structure and approximately the same parameters (up to small differences) as those of
G. The proof builds on a weaker argument of the same type, proved in [19], which states that
for a regular enough partition P of G, and a large enough sample S, with good probability
S has a partition with roughly the same densities as these of P , and with regularity that is
slightly worse than that of P .

8.1.4 Regular reducibility implies testability
Due to the fact that canonical testability implies estimability, as we have seen in Section 7,
it is enough to show that satisfying a specific regularity instance is testable. To do so, we
take a large enough sample S of vertices and determine all possible parameters of regular
partitions of S. By Subsection 8.1.3, these are essentially also all possible parameters of
regular partitions of G, up to a small error. By Subsection 8.1.1, this small error is not a
problem, implying that we are able to determine (with good probability) whether G satisfies
the regularity instance by checking if it is close to one of the regular partitions suggested
by S.
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8.2 Adapting the proof to the ordered case
First, we need to translate the results from Section 3 in [4] to the multicolored setting. The
main lemma that we need here is the following.

I Lemma 42 (Ordered analogue of Lemma 3.1 in [4]). There exists a function f : N×(0, 1)→ N
such that for any 0 < δ ≤ γ ≤ 1 and finite alphabet Σ the following holds: Suppose that
(A,B) is a (γ + δ)-regular pair of sets of vertices with density between η − δ and η + δ in a
Σ-edge-colored graph, where |A| = |B| = m ≥ m0(η, δ, |Σ|). Then, it is possible to make at
most δf(|Σ|, γ)m2 edge color modifications in G, turning (A,B) into a γ-regular pair with
density precisely η.

The proof of Lemma 42 is largely similar to that of Lemma 3.1 in [4]. The only places that
require special attention in the translation of the proof are those with “coin flip” arguments,
such as the one in the proof of Lemma 3.3 in [4]. Adapting this type of arguments to the
multicolored case is done as described in Subsection 7.2. In the proof of Lemma 3.3, for
example, the second coin flip needs to have |Σ| possible outcomes instead of two (where the
probability to get a σ should correspond to the desired density ησ).

The corollary of Lemma 42 that is used in our proof is the following. Note that the
notation in the following statement is largely borrowed from Definition 14.

I Lemma 43 (Ordered analogue of Corollary 3.8 from [4]). There exists a function τ : N×
(0, 1) → (0, 1) for which the following holds. Let R be an ordered regularity instance
as in Definition 14, with the parameter k in R being large enough (as a function of
the other parameters). Suppose that for some ε > 0, a Σ-edge-colored ordered graph G

has an equipartition (V11, . . . , V1k, . . . , Vr1, . . . , Vrk) which is an r-refinement, and satisfies
|dσ(Vij , Vi′j′ , σ) − ηi

′j′

ij (σ)| ≤ ετ(|Σ|, γ) for all i < i′ ∈ [r], j, j′ ∈ [k], and σ ∈ Σ, and
whenever (i, j, i′, j′) /∈ R̄, the pair Vij , Vi′j′ is (γ + ετ(|Σ|, γ))-regular. Then G is ε-close to
satisfying R.

Canonical testability to ordered regular reducibility
The next step is to show that any canonically testable ordered graph property is (ordered) reg-
ular reducible. Recall that, by Section 7, canonical testability implies (ε, q(ε), k)-canonicality
for k large enough (with respect to q(ε)), so it is enough to show the following.

I Lemma 44 (Ordered analogue of Lemma 4.1 in [4]). If a property P is (ε, q(ε), k)-canonical
for any ε and any k large enough with respect to q(ε), then it is ordered regular reducible.

For the results of Section 4 in [4], we define the ordered multicolored analogues of Definitions
4.3 and 4.7 in [4] as follows. Note the following “notational glitch”: σ in our definition
refers to an edge color, whereas in Definition 4.3 of [4] it plays a totally different role, as a
permutation.

IDefinition 45. LetH = (U,EH) be a Σ-edge-colored ordered graph on h vertices u1 < . . . <

uh, and let W = (U,Ew) be an (edge) weighted Σ-edge-colored ordered graph on h-vertices,
where the weight of edge (ui, uj) is ηij . Define IC(H,W ) =

∏
σ∈Σ

∏
uiuj∈E−1

H
(σ) ηij .

Let R be an ordered regularity instance (recall Definition 14). Define IC(H,R) =∑
W∈W IC(H,W ), where W ranges over all q-vertex weighted Σ-edge-colored weighted

graph of the following type. Pick q pairs (i1, j1), . . . , (iq, jk) with i1 < . . . < iq ∈ [r] and
j1, . . . , jq ∈ [k], and take W to be the graph in which the weight of color σ between vertices
ua < ub is ηib,jbia,ja

(σ).
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With these definitions, it is straightforward to translate the results of Section 4 in [4] to our
setting. Note that an analogue for Definition 4.5 in that section is not needed in our case,
since there are no non-trivial automorphisms in an ordered graph. In the proof of Lemma
4.1 in [4], let A be the family of edge-colored ordered graphs on q = q(ε) vertices, promised
to us through Definition 34 by the fact that our given property P is (ε, q, k)-canonical, for k
that is sufficiently large. As in the unordered case, we take a (constant size) set I of ordered
regular instances, such that any possible regular instance has parameters that are very close
to one of the instance in I. Our chosen R in Definition 15 will be as in the unordered case:
R = {R ∈ I :

∑
H∈A IC(R,H) ≥ 1/2}. The rest of the proof goes as in the unordered case.

Ordered regular reducibility to (piecewise) canonical testability

It follows from the definition of regular reducibility, similarly to the unordered case, that it
is enough to show that the property P of satisfying a given regularity instance is canonically
testable (the easy proof of the analogous unordered statement appears in Section 6 of [4],
and translates directly to our case). In fact, by Lemma 31, it is enough to show that P
is piecewise canonically testable. Indeed, the core of the proof of this statement in the
unordered case is in the fact that for γ, a large enough (as a function of γ) sample of a graph
has, with good probability, essentially the same γ-regular equipartitions as the containing
graph, up to a small error.

The definition of similar regular partitions in the ordered case (analogous to Definition
5.1 from [4]) is the same as in the unordered case, but it refers to (γ, k)-regular partitions,
instead of the unordered γ-regular ones. The analogue of Lemma 5.2 in the ordered case is
exactly the same, except that we require the sample Q to have exactly q vertices in each
interval of the k-interval equipartition (note that this is doable using piecewise-canonical
algorithms). The proofs from this section (including the proof of the weaker result from [19]),
as well as the proof of Theorem 1 from Section 6, translate readily to the ordered case.

9 Discussion and open problems

The earthmover resilient properties showcase, among other phenomena, an interesting
connection between visual properties of images and the regularity-based machinery that
was previously used to investigate unordered graphs. We believe that further research on
the characterization problem for ordered structures would be interesting. It might also be
interesting to investigate such problems using distance functions that are not Hamming
distance, as was done, e.g., in [12]. Finally we present two open questions.

9.1 Characterization of testable earthmover-resilient properties

In this work we provide a characterization of earthmover resilient tolerantly testable properties.
Although using such tests might make more sense than using intolerant tests in the presence of
noise in the input (a situation that is common in areas like image processing, that are related
to image property testing), it would also be very interesting to provide a characterization of
the testable earthmover resilient properties. In particular, does there exist an earthmover
resilient property that is testable but not tolerantly testable? The only known example
of a (non earthmover resilient) property that is testable but not tolerantly testable is the
PCPP-based property of [20], and it will certainly be interesting to find more examples of
properties that have this type of behavior.
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9.2 Alternative classes of properties
The class of earthmover resilient properties captures properties that are global in nature,
and it will be interesting to identify and analyze some other wide classes of properties. A
natural candidate is the class of all local properties [9]. We also believe that it might be
possible to find other interesting classes of visual properties.
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The following lemma suggests that it is enough to prove a similar statement for an image
J of our choice that is close enough (in Hamming distance) to I.

I Lemma 46. Fix α, β > 0 and let I,J : [n] × [n] → Σ. Suppose that dH(J ,J ′) ≤ α for
any J ′ : [n]× [n]→ Σ that satisfies de(J ,J ′) ≤ β. Then dH(I, I ′) ≤ α+ 2dH(I,J ) for any
I ′ : [n]× [n]→ Σ satisfying de(I, I ′) ≤ β.

Proof. Write γ = dH(I,J ). Consider any I ′ satisfying de(I, I ′) ≤ β and let σ be a minimal
unordered isomorphism of n × n images6 that maps I to I ′. By the minimality of σ, the
image J ′ = σ(J ) satisfies de(J ,J ′) ≤ β and so dH(J ,J ′) ≤ α. On the other hand, we
know that dH(I ′,J ′) = dH(σ(I), σ(J )) = dH(I,J ) = γ where the least equality follows
from the fact that Hamming distance between two images is preserved when applying the
same unordered isomorphism on both of them. The triangle inequality for the Hamming
distance implies that

dH(I, I ′) ≤ dH(I,J ) + dH(J ,J ′) + dH(J ′, I ′) ≤ β + 2γ

as desired. J

Indeed, Lemma 46 implies that in order to prove Theorem 10, it is enough to show that there
exists some n× n black-white image J with dH(I,J ) = O(c

√
δn2), such that for any image

J ′ that is the result of making at most δn2 basic moves on J , we have dH(J ,J ′) = O(c
√
δn2).

In order to explain which J to take (as a function of I), and proceed with the rest of the
proof, we need several topological definitions. A pixel P = (i, j) in I is represented by
its location (i, j), and its color (black/white) is denoted I[P ]. The distance between two
pixels (i, j), (i′, j′) ∈ [n]× [n] is defined as |(i, j)− (i′, j′)| = |i− i′|+ |j − j′|; these pixels are
neighbors if the distance between them is 1. A shape S in I is a connected component (with
respect to the neighborhood relation) of pixels with the same color. We call P 0 = (1, 1) the
outer pixel of an image, and the shape S0 that contains it is called the outer shape. Note that,
by our assumption, the outer shape of S contains all pixels in ({1, n} × [n]) ∪ ([n]× {1, n}).

A path between pixels P and P ′ is a tuple of (not necessarily disjoint) pixels P1 =
P, P2, . . . , Pt = P ′ in I, such that Ps and Ps+1 are neighbors for any 1 ≤ s ≤ t − 1. The
outer boundary B(S) of a shape S 6= S0 is the set of all pixels P in S satisfying the following:
there exists a path from P 0 = (1, 1) to P that does not intersect S \ {P}. Finally, a pixel P
is encircled by a shape S if any path from (1, 1) to P intersects S (this includes all pixels
P ∈ S). If all pixels P encircled by S satisfy P ∈ S, we say that S is full.

Our first lemma states that if two neighboring pixels have different colors, than one of
them lies in the outer boundary of its shape.

I Lemma 47. Let P1, P2 be two neighboring pixels, where P1 is black and lies in shape S1
and P2 is white and lies in S2. Then either P1 ∈ B(S1) or P2 ∈ B(S2) (or both).

Proof. If there exists a path from (1, 1) to a pixel P ′1 in S1, that does not intersect S2, then
P2 ∈ B(S2). To see this, recall that S1 is connected (by definition of a shape) and thus there
exists a path from P ′1 to P1 that remains inside S1. Concatenating the above two paths and
adding P2 at the end implies that P2 ∈ B(S2).

Otherwise, all paths from (1, 1) to any pixel in S1 intersect S2. In particular, this implies
that there exists a path from (1, 1) to some P ′2 ∈ S2 that does not intersect S1. Symmetrically
to the previous paragraph, we get that P1 ∈ B(S1). J

6 The formal definition is given for ordered graphs in Definition 18, but can translated naturally to images
using our standard representation of an image as an ordered graph.
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define B(I) as the union of all outer boundaries B(S) where S ranges over all shapes in I
other than S0. The next lemma follows immediately from Lemma 47 and the fact that I is
c-sparse.

I Lemma 48. |B(I)| ≤ 4cn, where S ranges over all shapes in I other than S0.

The next lemma implies that shapes with a small boundary cannot encircle a large number
of pixels. This will play a crucial role in the design of J .

I Lemma 49. The total number of pixels encircled by a shape S 6= S0 is at most |B(S)|2.

Proof. We may assume that S is full. Let r(S) denote the number of pairs of neighboring
pixels (P, P ′) where P ∈ S and P ′ /∈ S. Then r(S) ≤ 4|B(S)|. Among all possible full shapes
S with a given value of r(S), an (axis-aligned) rectangle contains the biggest number of
pixels. This follows by iterating the following simple type of arguments as long as possible:
If (i, j) and (i+ 1, j + 1) are pixels of S while (i, j + 1) /∈ S, then adding (i, j + 1) to S yields
a shape S′ with more pixels than in S, that satisfies r(S′) ≤ r(S).

Now note that the number of pixels in a rectangle S is bounded by r(S)2/16 ≤ |B(S)|2.
The bound is achieved if S is a square with side length r(S)/4. J

We pick J using the following iterative process. Start with J = I, and as long as
possible do the following: Take a shape S 6= S0 in J with |B(S)| ≤

√
δn, and recolor all

pixels encircled by S by the opposite color to that of S; repeat. Each such iteration deletes
all pixels of B(S) from B(J ) (and does not add any new pixels to B(J )), modifying at
most |B(S)|2 pixels in J , so by Lemmas 48 and 49, in the end of the process we have
dH(I,J ) = (4cn/

√
δn) ·O(δn2) = O(c

√
δn2) as desired.

Consider any composition σ of at most δn2 basic moves on J . The new location of any
pixel P after the basic moves is denoted by σ(P ). To conclude the proof, we need to show
that the number of pixels P for which J [P ] 6= J [σ(P )] is O(c

√
δn2).

Define the boundary distance of a pixel P in J as the minimal distance of P to a pixel
from B(J ). Our next lemma states that σ can only change the color of a small number of
pixels with large boundary distance.

I Lemma 50. No more than O(
√
δn2) pixels P in J have boundary distance at least

√
δn

and satisfy J [P ] 6= J [σ(P )].

Proof. By Lemma 47, a pixel P with boundary distance d that satisfies J [P ] 6= J [σ(P )]
must either be contained in a row that was moved at least d/2 times or a column that was
moved at least d/2 times by the basic moves of σ; here we pick d =

√
δn. With δn2 basic

moves, at most O(
√
δn) rows and columns can be moved

√
δn/2 or more steps away from

their original location. The total number of pixels in these rows and columns is O(
√
δn2), as

desired. J

It remains to show that no more than O(c
√
δn2) pixels in J have boundary distance less

than
√
δn. The following lemma serves as a first step towards this goal.

I Lemma 51. Let S 6= S0 be a shape in J . Then there exists a path Γ(S) (possibly with
repetitions of pixels) of length O(|B(S)|), that covers all pixels of B(S).

Proof. Consider an n× n grid in R2 where the pixel (i, j) is represented by the unit square
whose four endpoints are {i−1, i}×{j−1, j}. Since any shape S is connected (by definition)
under the neighborhood relation, in this representation S is the interior of a closed curve
consisting of at most 4|B(S)| axis-parallel length-1 segments. Following the segments of this
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curve in a clockwise fashion and recording all pixels in S that we see on our right (including
pixels that we only visit their corner) constructs a path (possibly with repetitions) that
contains only the pixels of B(S) and some of their neighbors; recall that each pixel in J has
at most four neighbors. Moreover, each pixel appears at most O(1) times in this path, and
so the total length of the path is O(|B(S)|). J

Finally, the next lemma allows us to conclude the proof.

I Lemma 52. Let S 6= S0. The number of pixels in J of distance at most d to B(S) is
O(d|B(S)|+ d2).

Proof. Take the path Γ(S) obtained in Lemma 51. For each pixel P ∈ Γ(S) let Bd(P ) =
{P ′ ∈ [n]× [n] : |P ′−P | ≤ d} denote the d-ball around P in I. Note that the set of all pixels
of distance at most d to B(S) is contained in ∪P∈Γ(S)Bd(P ). Trivially, Bd(P ) contains at
most d2 pixels for any P . Moreover, if P1 and P2 are neighbors, then |Bd(P1) \Bd(P2)| ≤ d.
The statement now follows since Γ(S), a path, is connected under the neighborhood relation,
and is of length O(|B(S)|). J

Recall that |B(J )| ≤ |B(I)| ≤ 4cn by Lemma 48. Since all shapes S 6= S0 in J satisfy
|B(S)| >

√
δn, the number of such shapes must be at most 4c/

√
δ. Lemma 52 implies

that the total number of pixels of boundary distance at most d =
√
δn in J is at most

O(dcn+d2c/
√
δ) = O(c

√
δn2). Along with Lemma 50, this completes the proof of Theorem 10.
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In 2011, Aaronson gave a striking proof, based on quantum linear optics, that the problem of
computing the permanent of a matrix is #P-hard. Aaronson’s proof led naturally to hardness of
approximation results for the permanent, and it was arguably simpler than Valiant’s seminal proof
of the same fact in 1979. Nevertheless, it did not show #P-hardness of the permanent for any
class of matrices which was not previously known. In this paper, we present a collection of new
results about matrix permanents that are derived primarily via these linear optical techniques.

First, we show that the problem of computing the permanent of a real orthogonal matrix is #P-
hard. Much like Aaronson’s original proof, this implies that even a multiplicative approximation
remains #P-hard to compute. The hardness result even translates to permanents of orthogonal
matrices over the finite field Fp4 for p 6= 2, 3. Interestingly, this characterization is tight: in fields
of characteristic 2, the permanent coincides with the determinant; in fields of characteristic 3, one
can efficiently compute the permanent of an orthogonal matrix by a nontrivial result of Kogan.

Finally, we use more elementary arguments to prove #P-hardness for the permanent of a
positive semidefinite matrix. This result shows that certain probabilities of boson sampling
experiments with thermal states are hard to compute exactly, despite the fact that they can be
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counting classes in complexity theory, including #P. Indeed, the power of these counting
classes was later demonstrated by Toda’s celebrated theorem, which proved that every
language in the polynomial hierarchy could be computed in polynomial-time with only a
single call to a #P oracle [26].

Let us recall the definition of the matrix permanent. Suppose A = (ai,j) is an n × n
matrix over some field. The permanent of A is

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

where Sn is the group of permutations of {1, 2, . . . , n}. Compare this to the determinant of
A:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

Since we can compute the determinant in polynomial time (in fact, in NC2; see Berkowitz
[7]), the apparent difference in complexity between the determinant and permanent comes
down to the cancellation of terms in the determinant [23, 33].

In his original proof, Valiant [31] casts the permanent in a combinatorial light, in terms of
a directed graph rather than as a polynomial. Imagine the matrix A encodes the adjacency
matrix of a weighted graph with vertices labeled {1, . . . , n}. Each permutation σ on the
vertices has a cycle decomposition, which partitions the vertices into a collection of cycles
known as a cycle cover. The weight of a cycle cover is the product of the edge weights of
the cycles (i.e.,

∏n
i=1 ai,σ(i)). Therefore, the permanent is the sum of the weights of all cycle

covers of the graph. Equipped with this combinatorial interpretation of the permanent,
Valiant constructs a graph by linking together different kinds of gadgets in such a way that
some cycle covers correspond to solutions to a CNF formula, and the rest of the cycle covers
cancel out.

Valiant’s groundbreaking proof, while impressive, is fairly opaque and full of complicated
gadgets. A subsequent proof by Ben-Dor and Halevi [6] simplified the construction, while
still relying on the cycle cover interpretation of the permanent. In 2009, Rudolph [22] noticed
an important connection between quantum circuits and matrix permanents—a version of
a correspondence we will use often in this paper. Rudolph cast the cycle cover arguments
of Valiant into more physics-friendly language, which culminated in a direct proof that
the amplitudes of a certain class of universal quantum circuits were proportional to the
permanent. Had he pointed out that one could embed #P-hard problems into the amplitudes
of a quantum circuit, then this would have constituted a semi-quantum proof that the
permanent is #P-hard. Finally, in 2011, Aaronson [2] (independently from Rudolph) gave a
completely self-contained and quantum linear optical proof that the permanent is #P-hard.

One must then ask, what is gained from converting Valiant’s combinatorial proof to
Aaronson’s linear optical one? One advantage is pragmatic—much of the difficulty of
arguments based on cycle cover gadgets is offloaded onto central, well-known theorems in
linear optics and quantum computation. In this paper, we show that the linear optical
approach has an even more important role in analyzing permanents of matrices with a global
group structure. Such properties can be very difficult to handle in the “cycle cover model."
For instance, the matrices which arise from Valiant’s construction may indeed be invertible,
but this seems to be more accidental than intentional, and a proof of their invertibility
appears nontrivial. Adapting such techniques to give hardness results for orthogonal matrices
would be extraordinarily tedious. In contrast, using the linear optical framework, we give
proofs of hardness for many such matrices.
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This gives a clean example for which a quantum mechanical approach sheds light on
a problem in classical theoretical computer science. To take another example of such a
quantum-classical connection, Kuperberg [19] shows that computing certain values of the
Jones polynomial to high accuracy is #P-hard using PostBQP = PP, a well-known result of
Aaronson [1]. For a more thorough treatment of this topic, see the survey on quantum proofs
for classical theorems of Drucker and de Wolf [11].

1.1 Results
We refine Aaronson’s linear optical proof technique and show that it can provide new #P-
hardness results. First, let us formally define what we mean by #P-hardness throughout this
paper. We say that the permanent is #P-hard for a class of matrices if all functions in #P
can be efficiently computed with single-call access to an oracle which computes permanents
of matrices in that class. That is, the permanent is hard for a function class A if, given an
oracle O for the permanent, A ⊆ FPO[1].

Our main result is a linear optical proof that the permanent of a real orthogonal matrix
is #P-hard. Consequently, the permanent of matrices in any of the classical Lie groups (e.g.,
invertible matrices, unitary matrices, symplectic matrices) is also #P-hard.

Our approach also reveals a surprising connection between the hardness of the permanent
of orthogonal matrices over finite fields and the characteristic of the field. First notice
that in fields of characteristic 2, the permanent is equal to the determinant and is therefore
efficiently computable. Over fields of characteristic 3, there exists an elaborate yet polynomial
time algorithm of Kogan [18] that computes the (orthogonal) matrix permanent. We give
the first explanation for why no equivalent algorithm was found for the remaining prime
characteristics, establishing a sharp dichotomy theorem: for fields of characteristic 2 or
3 there is an efficient procedure to compute orthogonal matrix permanents, and for all
other primes p there exists a finite field2 of characteristic p for which the permanent of an
orthogonal matrix (over that field) is as hard as counting the number of solutions to a CNF
formula mod p.3 Furthermore, there exist infinitely many primes for which computing the
permanent of an orthogonal matrix over Fp (i.e., modulo p) is hard.

Finally, we give a polynomial interpolation argument showing that the permanent of
a positive semidefinite matrix is #P-hard. This has an interesting consequence due to a
recent connection between matrix permanents and boson sampling experiments with thermal
input states [10, 21]. In particular, the probability of a particular experimental outcome is
proportional to a positive semidefinite matrix which depends on the temperatures of the
thermal states. Our result implies that it is hard to compute such output probabilities
exactly despite the fact that an efficient classical sampling algorithm exists [21].

1.2 Proof Outline
The main result concerning the #P-hardness of real orthogonal permanents follows from
three major steps:
1. Construct a quantum circuit (over qubits) with the following property: If you could

compute the probability of measuring the all-zeros state after the circuit has been applied
to the all-zeros state, then you could calculate some #P-hard quantity. We must modify

2 We prove that this field is Fp4 , although in some cases Fp2 or even Fp will suffice. See Section 4 for
more details.

3 Formally, this language is complete for the class ModpP. By Toda’s theorem, we have that PH ⊆
BPPModpP. See Appendix B for a more precise exposition of such counting classes.

CCC 2018



19:4 Permanent Hardness from Linear Optics

the original construction of Aaronson [2], so that all the gates used in this construction
are real.

2. Use a modified version of the Knill, Laflamme, Milburn protocol [17] to construct a linear
optical circuit which simulates the quantum circuit in the previous step. In particular,
we modify the protocol to ensure that the linear optical circuit starts and ends with
one photon in every mode. Notice that this is distinct from Aaronson’s approach [2]
because we can no longer immediately use the dual-rail encoding of KLM. We build new
postselected encoding and decoding gadgets to circumvent this problem.

3. Use a known connection (first pointed out by Caianiello [9]) between the transition
amplitude of a linear optical circuit and the permanent of its underlying matrix. Because
we paid special attention to the distribution of photons across the modes of our linear
optical network in the previous step, the success probability of the linear optical circuit
is exactly the permanent of the underlying transition matrix. It is then simple to work
backwards from this permanent to calculate our original #P-hard quantity.

The paper is organized as follows. Section 2 gives a brief introduction to the linear optical
framework and the relevant tools we use in this paper. In Section 3, we use this framework
to show that the permanent of a real orthogonal matrix is #P-hard. A careful analysis in
Section 4 (and Appendix D) extends these gadgets to finite fields.4 Finally, in Section 5, we
explore other matrix classes, culminating in a proof that the permanent of a real special
orthogonal symplectic involution is #P-hard.

2 Linear Optics Primer

In this section we will introduce the so-called “boson sampling" model of quantum com-
putation, which will make clear the connection between the dynamics of noninteracting
bosons and the computation of matrix permanents [9, 29]. The most promising practical
implementations of this model are based on linear optics and use photons controlled by
optical elements such as beamsplitters. We will use the term “linear optics" throughout,
although any type of indistinguishable bosons would have the same dynamics.

Let us first consider the dynamics of a single boson. At any point in time, it is in one of
finitely many modes. As the system evolves, the particle moves from one of m initial modes
to a superposition of m final modes according to a transition matrix of amplitudes. That
is, there is an m×m unitary transition matrix U ∈ Cm×m, where Uji is the amplitude of a
particle going from mode i to mode j.

The model becomes more complex when we consider a system of multiple particles
evolving on the same modes according to the same transition matrix. Let us define states in
our space of k bosons in what is called the Fock basis. A Fock state for a k-photon, m-mode
system is of the form |s1, s2, . . . , sm〉 where si ≥ 0 is the number of bosons in the ith mode
and

∑m
i=1 si = k. Therefore, the Hilbert space which is spanned by the Fock basis states

Φm,k has dimension
(
k+m−1

k

)
. Alternatively, one can think of Φm,k as the symmetrized

subspace of (Cm)⊗k. For a full exposition of the Fock space in these terms see Appendix A.
Let ϕ be the transformation which lifts the unitary U to act on a multi-particle system.

On a k-particle system, ϕ(U) is a linear transformation from Φm,k to Φm,k. Let |S〉 =
|s1, s2, . . . , sm〉 be the Fock state describing the starting state of the system, and let |T 〉 =

4 As is the case with Aaronson’s proof, our real orthogonal construction also leads naturally to hardness
of approximation results, which we discuss in Appendix E.
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|t1, t2, . . . , tm〉 be the ending state. We have:

〈T |ϕ(U)|S〉 = per(US,T )√
s1! . . . sm!t1! . . . tm!

where US,T is the matrix obtained by taking si copies of the ith row and ti copies of the
column i in U for all i ∈ {1, 2, . . . ,m}. We will refer to this formula as the ϕ-transition
formula.5

Notice that s1 + · · ·+ sm must equal t1 + · · ·+ tm in order for US,T to be square. This
expresses the physical principle that photons are not created or destroyed in the experiment.

For example, suppose U is the Hadamard gate and that we wish to apply U to two modes
each with a single photon. That is, U = 1√

2

( 1 1
1 −1

)
and |S〉 = |1, 1〉. Since the number of

photons must be conserved, the resulting state of the system is in some linear combination
of |2, 0〉, |1, 1〉, and |0, 2〉. We calculate these amplitudes explicitly below:

|T 〉 |2, 0〉 |1, 1〉 |0, 2〉
US,T

1√
2 ( 1 1

1 1 ) 1√
2

(
1 1
1 −1

)
1√
2

(
1 1
−1 −1

)
per(US,T ) 1 0 −1
〈T |ϕ(U)|S〉 1/

√
2 0 −1/

√
2

Therefore, when we apply Hadamard in a linear optical circuit to the state |1, 1〉 we
get the state |2,0〉−|0,2〉√

2 . Indeed, we have derived the famous Hong-Ou-Mandel effect—the
photons are noninteracting, yet the final state is clearly highly entangled [15].

Finally, we note that ϕ expresses the fact that linear optical systems are reversible and
can be composed together. This behavior is captured by the following theorem:

I Theorem 1 (see Facts 19 and 20 in Appendix A). The map ϕ is a group homomorphism.
Furthermore, if U ∈ Cn×n is unitary, then ϕ(U) is unitary.

We now state a landmark result in linear optics, which connects the dynamics of a
linear optical system with those of a traditional quantum circuit over qubits. Define
|I〉 = |0, 1, . . . , 0, 1〉, the Fock state with a photon in every other mode.

I Theorem 2 (Knill, Laflamme, and Milburn [17]). Postselected linear optical circuits are
universal for quantum computation. Formally, given a quantum circuit Q consisting of
CSIGN6 and single-qubit gates, there exists a linear optical network U constructible in
polynomial time such that

〈I|ϕ(U)|I〉 = 1
4Γ 〈0 · · · 0|Q|0 · · · 0〉,

where Γ is the number of CSIGN gates in Q.

We will refer to the construction of the linear optical network U from Q in Theorem 2 as
the KLM protocol. It will be helpful to give some idea of its proof here. First, each qubit of
Q is encoded in two modes of U in the classic dual-rail encoding. That is, the qubit state |0〉
is encoded by the Fock state |0, 1〉 and the state |1〉 is encoded by the Fock state |1, 0〉.

5 Once again, we refer readers, especially non-physicists, to Appendix A for a description of the ϕ-transition
formula in terms of linear operators on the space (Cm)⊗k.

6 The CSIGN gate, also often referred to as a controlled-Z gate, is the two-qubit operation which applies a
minus phase when both of its inputs are 1. That is, CSIGN|x1x2〉 = (−1)x1x2 |x1x2〉 for x1, x2 ∈ {0, 1}.
It is well-known that CSIGN and single-qubit gates are universal for quantum computation [20].
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19:6 Permanent Hardness from Linear Optics

Now suppose G is a single-qubit gate in Q. Using the ϕ-transition formula, it is not hard
to see that applying G to the corresponding pair of dual-rail modes in the linear optical
circuit implements the correct single-qubit unitary. Applying a CSIGN gate is trickier. The
KLM protocol builds the CSIGN gate from a simpler NS1 gate, which flips the sign of a
single mode if it has 2 photons and does nothing when the mode has 0 or 1 photon. Using
two NS1 gates one can construct a CSIGN gate (see Figure 5 in Appendix F).

Unfortunately, the NS1 gate cannot be implemented with a straightforward linear optical
circuit. Therefore, some additional resource is required. The original KLM protocol uses
adaptive measurements, that is, the ability to measure in the Fock basis in the middle of a
linear optical computation and adjust the remaining sequence of gates if necessary. Intuitively,
using adaptive measurements one can apply some transformation and then measure a subset
of the modes to “check” if the NS1 gate was applied. For simplicity, however, we will assume
we have a stronger resource—namely, postselection—so we can assume the measurements
always yield the most convenient outcome. Putting the above parts together completes the
proof Theorem 2.

3 Permanents of Real Orthogonal Matrices

The first class of matrices we consider are the real orthogonal matrices, that is, square
matrices A ∈ Rn×n with AAT = ATA = I. This section is devoted to proving the following
theorem, which forms the basis for many of the remaining results in this paper.

I Theorem 3 (informal). The permanent of a real orthogonal matrix is #P-hard.

The orthogonal matrices form a group under composition, the real orthogonal group,
usually denoted O(n,R). This is a subgroup of the unitary group, U(n,C), which is itself
a subgroup of the general linear group GL(n,C). Notice then that the hardness result of
Theorem 3 will carry over to unitary matrices and invertible matrices.7

Our result follows the outline of Aaronson’s linear optical proof [2] that the permanent is
#P-hard. In particular, our result depends on the KLM construction [17], and a subsequent
improvement by Knill [16], which will happen to have several important properties for our
reduction.

Let us briefly summarize Aaronson’s argument. Suppose we are given a classical circuit
C, and wish to compute ∆C , the number of satisfying assignments minus the number
of unsatisfying assignments. Clearly, calculating ∆C is a #P-hard problem. The first
thing to notice is that there exists a simple quantum circuit Q such that the amplitude
〈0 · · · 0|Q|0 · · · 0〉 is proportional to ∆C . The KLM protocol of Theorem 2 implies that there
exists a postselected linear optical experiment simulating Q. This results in the following
chain which relates ∆C to a permanent.

per(UI,I) = 〈I|ϕ(U)|I〉 ∝ 〈0 · · · 0|Q|0 · · · 0〉 ∝ ∆C .

Notice that Aaronson’s result does not imply that the permanent of U ∈ U(n,C) is #P-
hard since UI,I is a submatrix of U . If, however, |S〉 = |T 〉 = |1, . . . , 1〉, then US,T = U so the
analogous chain relates ∆C directly to the permanent of U , which is a complex unitary matrix.
In fact, this is exactly what we will arrange by modifying the KLM protocol. Furthermore,
we will be careful to use real matrices exclusively during all gadget constructions, which will
result in U being real, finishing the proof of Theorem 3.

7 See Corollary 17 for a complete list of classical Lie groups for which our result generalizes.
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In the following subsections, we will focus on the exact details of the reduction and
emphasize those points where our construction differs from that of Aaronson.

3.1 Constructing the Quantum Circuit
Let C : {0, 1}n → {0, 1} be a classical Boolean circuit of polynomial size and let

∆C :=
∑

x∈{0,1}n

(−1)C(x).

In this section, we prove the following:

I Theorem 4. Given C, there exists a p(n)-qubit quantum circuit Q such that

〈0|⊗p(n)
Q|0〉⊗p(n) = ∆C

2n

where p(n) is some polynomial in n. Furthermore, Q can be constructed in polynomial time
with a polynomial number of real single-qubit gates and CSIGN gates.

To prove the theorem, it will suffice to implement OC , the standard oracle instantiation
of C on n + 1 qubits. That is, OC |x, b〉 = |x, b⊕ C(x)〉 for all x ∈ {0, 1}n and b ∈ {0, 1}.
The circuit for Q is depicted below, where H is the Hadamard gate and Z = ( 1 0

0 −1 ) is the
Pauli σZ gate.

H

OC

H

H H
...

...
H Z Z H

From this construction, we have

〈0|⊗p(n)
Q|0〉⊗p(n) = 1

2n

 ∑
x∈{0,1}n

〈x|〈−|

OC
 ∑
x∈{0,1}n

|x〉|−〉

 = ∆C

2n .

Therefore, to complete the proof, it suffices to construct OC from CSIGN and single-qubit
gates. For now let us assume we have access to the Toffoli gate as well. Since C is a classical
Boolean function of polynomial complexity, OC can be implemented with a polynomial
number of Toffoli and NOT gates8 and a polynomial number of ancillas starting in the |0〉
state [28].

Let us describe, briefly, one way to construct OC . Suppose we are given the circuit C
as a network of polynomially many NAND gates. For each wire, with the exception of the
input wires, we create an ancilla initially in state |0〉 and use the NOT gate to put it in state
|1〉. For each NAND gate (in topological ordering, i.e., such that no gate is applied before its
inputs have been computed), we apply a Toffoli gate targeting the ancilla associated with
the output wire, and controlled by the qubits associated with its input wires (whether they
are the output of an earlier NAND gate, or an actual input). Hence, the target qubit is in
state |1〉 unless both control qubits are in state |1〉, simulating a NAND gate. Once we have

8 Because we require that all ancillas start in the |0〉 state, we also need the NOT gate to create |1〉
ancillas.
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19:8 Permanent Hardness from Linear Optics

applied all the gates of C, the output of the function will exist in the final ancilla register.
We can now apply the same sequence of gates (ignoring the final Toffoli gate) in reverse
order, which returns all other ancillas and inputs to their original value. This completes the
construction.

Finally, we must construct the Toffoli gate from single-qubit gates and CSIGN gates.
Unfortunately, Aaronson’s proof [2] uses a classic construction of the Toffoli gate which uses
complex single-qubit gates (see, for example, Nielsen and Chuang [20]). This will later give
rise to linear optical circuits with complex matrix representations as well.9 Therefore, we
will restrict ourselves to CSIGN and real single-qubit gates in our construction of the Toffoli
gate.10

I Lemma 5. There exists a circuit of CSIGN, Hadamard, and Rπ/4 gates which implements
a Toffoli gate exactly, where

Rπ/4 = 1
2

(√
2 +
√

2 −
√

2−
√

2√
2−
√

2
√

2 +
√

2

)
.

We prove this lemma in Appendix C. This completes the proof of Theorem 4.

3.2 Postselected Linear Optical Gadgets
We will construct a postselected linear optical circuit L which will simulate the qubit circuit
Q on the all zeros input via a modified version of the KLM protocol. The following chain of
relations will hold:11

per(L) = 〈1, . . . , 1|ϕ(L)|1, . . . , 1〉 ∝ 〈0 · · · 0|Q|0 · · · 0〉 ∝ ∆C .

The first step was to convert from a classical circuit to a quantum circuit. Below we
formalize the second step: converting from a quantum circuit to a linear optical circuit.

I Theorem 6. Given an n-qubit quantum circuit Q with a polynomial number of CSIGN
and real single-qubit gates, there exists a linear optical circuit L ∈ O(4n+ 2Γ,R) such that

〈1, . . . , 1|ϕ(L)|1, . . . , 1〉 =
(

1
3

√
2
3

)Γ(
−1√

6

)n
〈0|⊗nQ|0〉⊗n,

where Γ is the number of CSIGN gates in Q. Furthermore, L can be computed in time
polynomial in n.

We now give an explicit construction of L using the original KLM protocol, subsequent
improvements by Knill [16], and a new gadget unique to our problem. First, let us recall
our main issue with using the original KLM protocol: to prove that orthogonal matrices
are #P-hard, we must have that all modes start and end with exactly one photon. There

9 Actually, the proof of Aaronson [2] claims that the final linear optical matrix consists entirely of
real-valued entries even though the matrices of the individual single-qubit gates have complex entries.
In fact, the matrix does have complex entries, but our construction for Toffoli suffices to fix this error.

10Although it is known that the Toffoli gate and the set of real single-qubit gates suffice to densely
generate the orthogonal matrices (i.e., O(2n) for every n > 0) [24], it will turn out to be both simpler
and necessary to have an exact decomposition. In particular, we will need an exact construction of the
Toffoli gate in Section 4 where we discuss the computation of permanents in finite fields.

11To clarify, |0 · · · 0〉 is a tensor product of qubits in the state |0〉 and |1, . . . , 1〉 is a Fock state with 1
photon in every mode.
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V

CSIGN

|1〉 |1〉 =

|1〉 |1〉

Figure 1 Applying a postselected V gadget to generate CSIGN.

are two instances in which the original KLM protocol requires a mode to be empty at the
beginning and end of the computation. First, the NS1 gate postselects on the Fock state
|0, 1〉, and second, KLM protocol works in a dual-rail encoding. Therefore, half of the modes
in the original KLM protocol start and end empty.

To overcome the first obstacle, we appeal to subsequent work of Knill [16], in which the
NS1 gadget construction for CSIGN is replaced by a single 4-mode gadget V , which directly
implements CSIGN with two modes postselected in state |1, 1〉. From the matrix gadget

V = 1
3
√

2


−
√

2 −2 2 2
√

2
2 −

√
2 −2

√
2 2

−
√

6 + 2
√

6
√

6− 2
√

6 −
√

3 +
√

6
√

3−
√

6
−
√

6− 2
√

6 −
√

6 + 2
√

6 −
√

3−
√

6 −
√

3 +
√

6


we can directly calculate the transition amplitudes of the circuit:

〈0, 0, 1, 1|ϕ(V )|0, 0, 1, 1〉 = 1
3

√
2
3 〈0, 1, 1, 1|ϕ(V )|1, 0, 1, 1〉 = 0

〈0, 1, 1, 1|ϕ(V )|0, 1, 1, 1〉 = 1
3

√
2
3 〈1, 0, 1, 1|ϕ(V )|0, 1, 1, 1〉 = 0

〈1, 0, 1, 1|ϕ(V )|1, 0, 1, 1〉 = 1
3

√
2
3 〈2, 0, 1, 1|ϕ(V )|1, 1, 1, 1〉 = 0

〈1, 1, 1, 1|ϕ(V )|1, 1, 1, 1〉 = − 1
3

√
2
3 〈0, 2, 1, 1|ϕ(V )|1, 1, 1, 1〉 = 0

We now argue that these transition amplitudes suffice to generate a postselected CSIGN.
Consider the linear optical circuit depicted in Figure 1: the first two inputs of the V gadget
are applied to the dual rail modes which contain a photon whenever their corresponding
input qubits of the CSIGN gate are in state |1〉; the next two modes are postselected in the
|1, 1〉 state. First, because we postselect on the final two modes ending in the state |1, 1〉, we
only need to consider those transitions for which those two modes end in that state. Secondly,
because we use “fresh” ancillary modes for every CSIGN gate, we can always assume that
those two modes start in the |1, 1〉 state. This already vastly reduces the number of cases we
must consider.

Finally, we wish to know what will happen when the first two modes start in the states
|0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉. Our construction will ensure that there is never more than
one photon per mode representing one of the dual-rail encoded qubits. For instance, the
transition amplitudes of V show that whenever the first two modes of the circuit each start
with a photon, there is 0 probability (after postselection) that those photons transition to a
state in which one of those modes contains 2 photons and the other contains no photons.

We find that all other amplitudes behave exactly as we would expect for CSIGN. Since
each of the acceptable transitions (e.g. from the state |0, 1〉 to the state |0, 1〉) has equal
magnitude, we only have left to check that V flips the sign of the state whenever the input
modes are both in the |1〉 state, which is indeed the case. Importantly, because ϕ is a
homomorphism, we can analyze each such gate separately. Therefore, using the above we
can now construct a linear optical circuit where all of our postselected modes for CSIGN
start and end with exactly one photon.
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19:10 Permanent Hardness from Linear Optics

We now turn our attention to the dual-rail encoding. Instead of changing the dual-rail
encoding of the KLM protocol directly, we will start with one photon in every mode and
apply a linear optical gadget to convert to a dual-rail encoding. Of course, the number of
photons in the circuit must be conserved, so we will dump these extra photons into n modes
separate from the modes of the dual-rail encoding. Specifically, each logical qubit is our
scheme is initially represented by four modes in the state |1, 1, 1, 1〉. We construct a gadget
that moves a photon from the first mode to the third mode, postselecting on a single photon
in the last mode. That is, under postselection, we get the transition

|1, 1, 1, 1〉 → |0, 1, 2, 1〉,

where the first two modes now represent a logical |0〉 qubit in the dual-rail encoding, the third
mode stores the extra photon (which we will reclaim later), and the last mode is necessary
for postselection. We call the gadget for this task the encoding gadget E, and it is applied to
the first, third, and fourth mode of the above state. The matrix12 for E is

E = 1√
6


√

2 −
√

2
√

2
0

√
3
√

3
−2 −1 1


from which we get the following transition amplitudes

〈1, 1, 1|ϕ(E)|1, 1, 1〉 = 0, 〈2, 0, 1|ϕ(E)|1, 1, 1〉 = 0, 〈0, 2, 1|ϕ(E)|1, 1, 1〉 = 1√
3 .

After applying the encoding gadget to each logical qubit, we can implement the KLM
protocol as previously discussed.13 Therefore, the relevant amplitude in the computation of
Q is now proportional to amplitude of the Fock state which has n groups of modes in the
state |0, 1, 2, 1〉 and 2Γ modes in the state |1〉. Because we want to return to a state which
has one photon in every mode, we must reverse the encoding step.14 For this purpose, we
construct a decoding gadget D, which will not require any extra postselected modes. We
apply the gadget to the second and third modes of the logical qubit such that the two photons
in the third mode split with some nonzero probability. The matrix for D is

D = 1√
2

(
1 1
1 −1

)
from which the transition condition 〈1, 1|ϕ(D)|0, 2〉 = −1/

√
2 follows. Nearly any two-mode

linear optical gate would suffice here, but D, the familiar Hadamard gate, maximizes the
norm of the amplitude on state |1, 1〉. If the logical qubit is in state |1〉, then D is applied to
the three-photon state |1, 2〉. Therefore, the resulting amplitude on the two-photon state

12To find E, we first define a set of constraints on transition amplitudes. The following equations must
hold for this particular encoding gadget to exist: 〈1, 1, 1|ϕ(E)|1, 1, 1〉 = 0, 〈2, 0, 1|ϕ(E)|1, 1, 1〉 = 0,
〈0, 2, 1|ϕ(E)|1, 1, 1〉 6= 0. That is, starting from the state |1, 1, 1〉, there is some nonzero amplitude on
the state |0, 2, 1〉 and zero amplitude on the states |1, 1, 1〉 and |2, 0, 1〉. We then solve these constraints
using Mathematica.

13One might wonder why we cannot simply apply the encoding gadget to the entire input, thus circum-
venting the need to use Knill’s more complicated V gadget to implement CSIGN. Examining Theorem 2
carefully, we see that all the postselection actually happens at the end of the computation. One might
be concerned that once we measured the state |0, 1〉 to implement NS1, those modes would remain in
that state. Nevertheless, it is possible to compose the gadgets in such a way to allow for postselection on
|0〉 while maintaining that the desired amplitude is still on the |1, . . . , 1〉 state. We omit such a design
since V will turn out to have some nice properties, including its minimal usage of ancillary modes.

14Notice that postselection was required for the encoding gadget, so it does not have a natural inverse.
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|1, 1〉 is zero by conservativity. To complete the proof of the theorem, let the linear optical
circuit L simply be the composition of the encoding gadget, the KLM scheme, and the
decoding gadget.

3.3 Main Result
We are finally ready to prove the Theorem 3, which we restate formally below.

I Theorem 3. The permanent of a real orthogonal matrix is #P-hard. Specifically, given
a polynomially sized Boolean circuit C, there exist integers a, b ∈ Z and a real orthogonal
matrix L over a finite Galois extension Q(α) (where α =

√
2 +
√

2 +
√

3 +
√

6) computable
in polynomial time such that

per(L) = 2a3b∆C .

Proof. We reduce from the problem of calculating ∆C for some polynomially sized Boolean
circuit C on n bits. By Theorem 4, we first construct the quantum circuit Q from CSIGN
and single-qubit gates such that 〈0|⊗p(n)

Q|0〉⊗p(n) = ∆C/2n. Let Γ be the number of CSIGN
gates in Q. We then convert the qubit circuit Q to a linear optical circuit L on 4p(n) + 2Γ
modes using Theorem 6. Notice that we can assume without loss of generality that p(n) and
Γ are both even since we can always add an extra qubit to the circuit Q and/or apply an
extra CSIGN gate to the |00〉 state. Combined with the fact that the output amplitudes of
linear optical experiments can be described by permanents via the ϕ-transition formula, we
have the following chain of consequences

per(L) = 〈1, . . . , 1|ϕ(L)|1, . . . , 1〉

=
(

1
3

√
2
3

)Γ(
−1√

6

)p(n)
〈0|⊗p(n)

Q|0〉⊗p(n)

=
(

1
3

√
2
3

)Γ(
−1√

6

)p(n)( 1
2n

)
∆C

= 2a3b∆C ,

where the last equality comes from the fact that Γ and p(n) are even. J

We now turn to the question of how to represent entries of the orthogonal matrix. First,
the problem is clearly still hard if we generalize the matrix to arbitrary algebraic numbers
(say, represented implicitly with integer polynomials) instead of only Q(α). More practically,
the entries may be represented as floating point numbers, such that the matrix is only
approximately orthogonal due to rounding error. To this end, we state without proof the
following corollary:

I Corollary 7. Given Ã ∈ Qn×n such that ‖A − Ã‖∞ ≤ 2−cn for some orthogonal matrix
A ∈ Rn×n, the problem of computing per(Ã) to within additive 2−cn precision is #P-hard
for some constant c.

4 Permanents over Finite Fields

Valiant’s foundational work on #P is well-known, but his contemporary work on the relation-
ship between the permanent and the class we now know as ModkP is less appreciated. In
another 1979 paper [32], Valiant showed that the permanent modulo p is ModpP-complete,
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19:12 Permanent Hardness from Linear Optics

except when p = 2, in which case the permanent coincides with the determinant because
1 ≡ −1 (mod 2).

I Theorem 8 (Valiant [32]). The problem of computing per(M) mod p for a square matrix
M ∈ Fn×np is ModpP-complete for any prime p 6= 2 (and in NC2 otherwise).

As discussed in Appendix B, ModpP-hardness provides evidence for the difficulty of computing
the permanent, even modulo a prime. In particular, an efficient algorithm for the problem
would collapse the polynomial hierarchy.

In the spirit of our result on real orthogonal matrices, we ask whether the permanent
is still hard for orthogonal matrices in a finite field. We are not the first to consider the
problem; there is the following surprising theorem of Kogan [18] in 1996.

I Theorem 9 (Kogan [18]). Let F be any field of characteristic 3. There is a polynomial
time algorithm to compute the permanent of any orthogonal matrix over F.

In other words, for orthogonal matrices, the permanent is easy to compute for fields of
characteristic 2 (since it is easy in general), but it is also easy for fields of characteristic 3
(by a much more elaborate argument)! Could it be that the permanent is easy for all finite
fields of some other characteristic? No, it turns out. Using the gadgets from Section 3, we
prove a converse to Theorem 9.

I Theorem 10. Let p 6= 2, 3 be a prime. There exists a finite field of characteristic p, namely
Fp4 , such that the permanent of an orthogonal matrix in Fp4 is ModpP-hard.

We prove the theorem by carefully porting Theorem 3 to the finite field setting. Recall that
Theorem 3 takes a circuit C and constructs a sequence of gadgets G1, . . . , Gm such that

per(G1 · · ·Gm) = 2a3b∆C , (1)

for some a, b ∈ Z. In general, there is no way to convert such an identity on real numbers
into one over finite fields, but all of our gadgets are built out of algebraic numbers. In
particular, all of the entries are in some algebraic field extension Q(α) of the rationals, where
α ≈ 4.182173283 is the largest real root of irreducible polynomial

f(x) = x16 − 40x14 + 572x12 − 3736x10 + 11782x8 − 17816x6 + 11324x4 − 1832x2 + 1.

Each element in Q(α) can be written as a polynomial (of degree less than 16) in α over the
rationals. In Appendix D.1, we give explicit canonical representations for a set of numbers
which generate (via addition, subtraction and multiplication, but not division) the entries of
all our gadgets.

Each entry of a gadget Gi is a polynomial in α with rational coefficients, so observe that
we can take a common denominator for the coefficients and write the entry as an integer
polynomial divided by some positive integer. By the same token, we can take a common
denominator for the entries of a gadget Gi, and write it as 1

ki
Ĝi where Ĝi is a matrix over

Z[α], and ki is a positive integer.
Now we would like to take Equation 1 modulo a prime p. In principle, we can pull

k1, . . . , km out of the permanent, multiply through by Z = (k1 · · · km)n2|a|3|b| to remove all
fractions on both sides, and obtain an equation of the form

K per(Ĝ1 · · · Ĝm) = K ′∆C ,

where K,K ′ are integers. Then the entire equation is over Z[α], so if we reduce all the
coefficients modulo p, we get an equation over Fp[α].
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We show in Appendix D.1 that for each gadget we use, the denominator ki may have
prime divisors 2, 3, and 23, but no others. Hence, as long as p 6= 2, 3, 23 (and in the case
p = 23, there is an alternative representation we can use, see Appendix D), we can divide
through by Z, pull it back inside the permanent as the 1

ki
s, and distribute each 1

ki
into the

corresponding Ĝi. This gives

per(G1 · · ·Gm) ≡ 2a3b∆C (mod p),

the equivalent of Equation 1, but over Fp[α]. In particular, G1, . . . , Gm are now orthogonal
matrices in Fp[α], and ∆C has been reduced modulo p.

Note that Fp[α] ∼= Fp[x]/(f(x)) is a ring, not a field. If f(x) were irreducible modulo p
then it would be a field, but this will never happen for our f . Consider the following lemma.

I Lemma 11. Let q be a prime power. Suppose Fq is the subfield of order q contained in
the finite field Fq2 . Then every element in Fq has a square root in Fq2 .

Proof. Let a be an arbitrary element of Fq. By definition, a has a square root if the
polynomial f(x) := x2 − a has a root. If f has a root in Fq then we are done. Otherwise, f
is irreducible, but has a root in Fq[x]/〈f(x)〉 ∼= Fq2 . J

By Lemma 11, the square roots of 2 and 6 are in Fp2 , and therefore so are 2 +
√

2 and 3 +
√

6.
Then their square roots are in Fp4 , so α =

√
2 +
√

2 +
√

3 +
√

6 is in Fp4 . All the other
roots of f can be expressed as polynomials in α (see Appendix D.2), so they are all in Fp4 .
It follows that f factors over Fp as a product of irreducible polynomials, each of degree 1, 2,
or 4.

Suppose g is some irreducible factor of f . The ideal (g(x)) contains (f(x)), so there exists
a ring homomorphism σ from Fp[x]/(f(x)) to Fp[x]/(g(x)). Note that Fp[x]/(g(x)) is a field
because g(x) is irreducible over Fp. Also, σ fixes Fp, so we obtain

per(σ(G1) · · ·σ(Gm)) = σ(per(G1 · · ·Gm)) = 2a3b∆C

as an equation over the field Fp[x]/(g(x)). For each i, σ(Gi) is orthogonal in Fp[x]/(g(x)) as
well:

σ(Gi)σ(Gi)T = σ(GiGTi ) = σ(I) = I.

It follows that M := σ(G1) · · ·σ(Gm) is orthogonal.
Depending on the degree of g, the field Fp[x]/(g(x)) is isomorphic to Fp, Fp2 , or Fp4 . But

Fp4 contains Fp and Fp2 , so M can be lifted to a matrix over Fp4 . Given the permanent of
M in Fp4 , we can easily solve for ∆C , so this completes the proof of Theorem 10.

Theorem 10 shows that for any prime p 6= 2, 3 there is some finite field of characteristic p
where computing permanents (of orthogonal matrices) is hard. In particular, p = 2 and p = 3
are the only cases where the permanent of an orthogonal matrix is easy to compute in every
finite field of characteristic p, assuming the polynomial hierarchy does not collapse. We will
now show that there are primes p for which this problem is hard in any field of characteristic
p, by showing that it is hard to compute in Fp (which is contained in every other field of
characteristic p).

I Theorem 12. For all but finitely many primes p that split completely in Q(α), computing
the permanent of an orthogonal matrix over Fp is ModpP-complete. This is a sequence of
primes with density 1

16 beginning

191, 239, 241, 337, 383, 433, 673, 863, 911, 1103, 1151, 1249, 1583, 1871, 1873, 2017, . . .

CCC 2018



19:14 Permanent Hardness from Linear Optics

Proof. Recall that in the proof of Theorem 10, if g is an irreducible factor of f , then the
result applies over the field Fp[x]/(g(x)) ∼= Fpdeg g . We show that g is degree at most 4, but
in special cases this can be improved. In particular, we want g to be degree 1 (i.e., a linear
factor) for our orthogonal matrix to be over Fp.

First, observe that Q(α) is a Galois extension of Q. That is, every root of the minimal
polynomial for α is in Q(α). See Appendix D.2 for details. We apply Chebotarev’s density
theorem [30], which says that if K is a finite Galois extension of Q of degree n, then the
density of primes which split completely in K is 1

n . We take K = Q(α), a degree 16 extension
of Q.

For our purposes, a prime p splits completely if and only if the ideal (p) factors into 16
distinct maximal ideals in the ring of integers of Q(α). For all by finitely many such primes,15
we also have that f (the minimal polynomial for α) factors into distinct linear terms modulo
p by Dedekind’s theorem. Furthermore, since Q(α) is a Galois extension, f will split into
equal degree factors. Hence, if any factor is linear, then all the factors are linear.

Therefore, according to Chebotarev’s theorem, (1/16)th of all primes split completely
and yield the desired hardness result. We verified the list of primes given in the theorem
computationally. J

Note that as a consequence of the proof above theorem, we can also prove a hardness
result over Fp2 for 3/16 of all primes. We leave open how hard it is to compute the permanent
of an orthogonal matrix over Fp for the remaining 15/16 of all primes. Other linear optical
gadgets can be used for CSIGN instead of V , resulting in different field extensions where
different primes split. For instance, there exists an orthogonal gadget for KLM’s NS1 gate
for which computing the permanent modulo 97 is hard (see Appendix F). However, it seems
impossible to design linear optical gadgets that do not involve 2 or 3 photons at a time, in
which case writing down ϕ(L) requires

√
2 and

√
3. By quadratic reciprocity, these square

roots only exist if p ≡ ±1 (mod 24) (i.e., for about a quarter of all primes), so the remaining
primes may require some other technique.

5 Expanding Permanent Hardness

In this section, we try to fill in some of the remaining landscape of matrix permanents. In
particular, we will focus on the permanents of positive semidefinite (PSD) matrices and
their connection to boson sampling. We will conclude by listing some matrix variants and
their accompanying permanent complexities, many of which are simple consequences of the
reduction in Section 3.

5.1 Positive Semidefinite Matrix Permanents

Permanents of PSD matrices have recently become relevant to the expanding theory of boson
sampling [21]. Namely, permanents of PSD matrices describe the output probabilities of a
boson sampling experiment in which the input is a tensor product of thermal states. Suppose
we have a thermal state with m modes. The ith mode of the system starts in a state of the
form

15Actually, we can compute these primes explicitly as those that divide the index of Z[α] in the ring of
integers of Q(α). For our choice of field, this number is 19985054955504338544361472 = 275232.
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ρi = (1− τi)
∞∑
n=0

τni |n〉〈n|

where τi = 〈ni〉 /(〈ni〉+1) and 〈ni〉 is average number of photons one observes when measuring
ρi. In particular, notice that τi ≥ 0.

Let U be a unitary matrix representing the linear optical network applied to our thermal
state. Define D to be the diagonal matrix with τ1, . . . , τm along the diagonal, and let
A = UDU†. Since τi ≥ 0 for all i, A is PSD. We can calculate the probability of detecting
one photon in each mode:16

〈1, . . . , 1|
(
ϕ(U)

(
m⊗
i=1

ρi

)
ϕ(U)†

)
|1, . . . , 1〉 = per(A)∏m

i=1(1 + 〈ni〉)
.

One might then reasonably ask, “how hard is it to compute such probabilities?” The
following theorem answers that question in the exact case.

I Theorem 13. The permanent of a positive-definite matrix in Zn×n is #P-hard. This
implies #P-hardness for the larger class of positive semidefinite matrices.

Proof. It is well-known that the permanent of a 0-1 matrix is #P-hard [31]. Therefore, let
B ∈ {0, 1}n×n and consider the matrix

ΛB =
(

0 B

BT 0

)
Since per(B) ≥ 0, we have per(B) =

√
per(ΛB). Also observe that ΛTB = ΛB, so ΛB is

Hermitian, that is, diagonalizable with real eigenvalues. Furthermore, since B is a 0-1
matrix, its spectral radius is at most 2n. Defining ΛB(x) := ΛB + xI, we see that ΛB(x) is
positive-definite for all x > 2n.

Notice now that per(ΛB(x)) is a degree-2n polynomial in x. Therefore, given an oracle that
calculates the permanent of a positive-definite matrix, we can interpolate a monic polynomial
through the points x = 2n+ 1, 2n+ 2, . . . , 4n to recover the polynomial per(ΛB(x)). Since
per(ΛB(0)) = per(ΛB), the permanent of a positive-definite matrix under Turing reductions
is #P-hard.

We now only have left to prove that the above reduction can be condensed into a single
call to the positive-definite matrix permanent oracle. Since the matrix B is a 0-1 matrix,
the polynomial per(ΛB(x)) has positive integer coefficients, the largest of which is at most
(2n)!. Therefore, if x > (2n)!, then we can deduce the constant term of per(ΛB(x)) with a
single oracle call. Clearly, this requires at most a polynomial increase in the bit length of the
integers used in the reduction. J

Theorem 13 implies that there is some linear optical experiment one can perform with
thermal input states for which calculating the exact success probability is computationally
difficult. We would like to say that this also precludes an efficient classical sampling
algorithm (unless PH collapses), as is done in work by Aaronson and Arkhipov [3] and
Bremner, Jozsa, Shepherd [8]. Unfortunately, those arguments rely on the fact that even
finding an approximation to their output probabilities is difficult, but the following theorem
heavily suggests that such a result cannot exist.

16A similar formula arises for detecting 1 photon in each of k distinct modes and 0 photons in the
remaining m− k modes.
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I Theorem 14 (Rahimi-Keshari, Lund, Ralph [21]). There exists an efficient classical sampling
algorithm for Boson Sampling with thermal input states. Furthermore, multiplicatively
approximating the permanent of a PSD matrix is in the class FBPPNP .

Intuitively, such an algorithm exists because it is possible to write the permanent of a
PSD matrix as an integral17 of a nonnegative function, on which we can use Stockmeyer’s
approximate counting algorithm [25]. Such a representation as a sum of positive terms also
implies that the permanent of a PSD matrix is nonnegative.

Notice that this also justifies our use of techniques distinct from the linear optical
approach. Suppose we can encode the answer to a GapP-hard problem into the permanent of
a PSD matrix as we do with real orthogonal matrices, then multiplicatively approximating
the permanent of a PSD matrix would also be GapP-hard under Turing reductions (see
Theorem 30 in Appendix E). On the other hand, Theorem 14 says that such a multiplicative
approximation does exist, so

PH ⊆ PGapP ⊆ BPPNP ⊆ ΣP
3 .

Therefore, either such a reduction does not exist or the polynomial hierarchy collapses to the
third level.

5.2 More Permanent Consequences of the Main Result
In this section, we try to give a sense in which our proof for the hardness of the permanent
for real orthogonal matrices leads to new hardness results for many classes of matrices. The
structure of this section is as follows: we will first restrict as much as possible the class of
matrices for which the permanent is #P-hard; we will then observe that the permanent for
any larger class of matrices must also be hard, which will show hardness for many natural
classes of matrices.

We call matrix A an involution if A = A−1.

I Theorem 15. Let A be a real orthogonal involution with per(A) ≥ 0. The permanent of A
is #P-hard.

Proof. Let C : {0, 1}n → {0, 1} be a Boolean function for which we want to calculate
∆C . We will construct a new circuit C ′ : {0, 1}n+1 → {0, 1} such that for x ∈ {0, 1}n and
b ∈ {0, 1} we have C ′(x, b) = C(x) ∨ b. It is not hard to see then that ∆C′ = ∆C + 2n.
Importantly, this implies that ∆C′ ≥ 0.

Now let us leverage the reduction in Theorem 3 to build a real orthogonal matrix B such
that per(B) ∝ ∆C′ . As in the proof of Theorem 13, let

ΛB =
(

0 B

BT 0

)
.

Since ∆C′ ≥ 0, we have per(B) ≥ 0, which implies that per(B) =
√

per(ΛB). However, since
B is orthogonal, we have that Λ2

B = I, so ΛB is an involution. Furthermore, ΛB = ΛTB, so

17 Suppose we have PSD matrix A = CC† where C = {ci,j}. Then the permanent of A can be expressed
as the following expected value over complex Gaussians:

per(A) = E
x∈GC(0,1)n

[
n∏
i=1

∣∣∣∣∣
n∑
j=1

ci,jxj

∣∣∣∣∣
2]

.
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ΛB is a real orthogonal matrix. Therefore, the permanent of real orthogonal involutions is
#P-hard. J

We call a matrix A special if det(A) = 1. Furthermore, a matrix A is symplectic if
ATΩA = Ω where Ω =

( 0 In

−In 0
)
. We strengthen Theorem 15 to provide the smallest class of

matrices for which we know the permanent is #P-hard.

I Theorem 16. Let A be a real special orthogonal symplectic involution with per(A) ≥ 0.
The permanent of A is #P-hard.

Proof. Let B be a real orthogonal involution, and let In be the n × n identity matrix.
Consider the matrix

I2 ⊗B =
(
B 0
0 B

)
.

Notice that

det(I2 ⊗B) = det(B)2 = det(B2) = det(In) = 1,

where we use that B2 = In is an involution for the third equality. Therefore, I ⊗B is special.
It is also easy to verify that I2 ⊗ B is real orthogonal symplectic involution. Assuming
per(B) ≥ 0, we have per(B) =

√
per(I2 ⊗B). Combining the above with Theorem 15, we

get that the permanent of real special orthogonal involutions is #P-hard. J

Since the set of n × n real special orthogonal matrices form a group SO(n,R), we
immediately get #P-hardness for all the matrix groups containing it.

I Corollary 17. The permanent of an n× n matrix A in any of the classical Lie groups over
the complex numbers is #P-hard. That is, it is hard for the following matrix groups:

General linear: A ∈ GL(n) iff det(A) 6= 0
Special linear: A ∈ SL(n) iff det(A) = 1

Orthogonal: A ∈ O(n) iff AAT = In

Special orthogonal: A ∈ SO(n) iff AAT = In and det(A) = 1
Unitary: A ∈ U(n) iff AA† = In

Special unitary: A ∈ SU(n) iff AA† = In and det(A) = 1
Symplectic: A ∈ Sp(2n) iff ATΩA = Ω where Ω =

( 0 In

−In 0
)

Proof. Since SO(n,R) is a subgroup of all the stated Lie groups besides the symplectic group
Sp(2n), their permanents are #P-hard by Theorem 16. Theorem 16 handles the symplectic
case separately. J

6 Open Problems

This paper gives many new classes of matrices for which the permanent is hard. Nevertheless,
there exist classes of matrices which have unknown permanent complexity, and proving
#P-hardness or otherwise remains a central open problem. For instance, is computing the
permanent of an orthogonal matrix modulo a prime p hard for all p 6= 2, 3? Notice that our
result only gives ModpP-hardness for 1/16th of all primes.

Another interesting open question about permanents concerns the complexity of multi-
plicatively approximating permanents of PSD matrices. Although we show the exact version
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of this problem to be #P-hard in this paper, we know that an FBPPNP algorithm exists
[21]. Could this problem actually just be in P? Is there any more insight to be gained
by viewing PSD permanents as probabilities of certain boson sampling experiments? For
instance, Chakhmakhchyan, Cerf, and Garcia-Patron [10] have recently detailed conditions
on the eigenvalues of a PSD matrix for which a linear optical sampling algorithm gives a
better additive approximation to the permanent than the classic approximation algorithm of
Gurvits [14].
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A Linear optics as a symmetric subspace

The Fock space Φm,k can alternatively be described as a linear subspace of (Cm)⊗k, the
Hilbert space of k qudits with local dimension m.

A single photon can be in one ofmmodes, so is described as a unit vector in Cm. Therefore,
transformations on single photons are unitary matrices in U(m). Linear optical states with
multiple photons are described by the symmetric tensor. That is, for v1, v2, . . . , vk ∈ Cm, let

v1 � v2 � . . .� vk = 1
k!
∑
σ∈Sk

vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(k)
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be their symmetric tensor. Notice that the symmetric tensor is invariant under permutations;
that is, v1 � v2 � . . . � vk = vσ(1) � vσ(2) � . . . � vσ(k) for any σ ∈ Sk. This captures the
physical intuition that the photons are indistinguishable.

We can extend the usual inner product to the symmetric setting:

〈v1 � . . .� vk, w1 � . . .� wk〉

=
(

1
k!
∑
σ∈Sk

v†σ(1) ⊗ . . .⊗ v
†
σ(k)

) 1
k!
∑
ρ∈Sk

wρ(1) ⊗ . . .⊗ wρ(k)


=
(

1
k!

)2 ∑
σ,ρ∈Sk

(
v†σ(1)wρ(1)

)
· · ·
(
v†σ(k)wρ(k)

)
= 1
k!
∑
ρ∈Sk

〈v1, wρ(1)〉 · · · 〈vk, wρ(k)〉

= 1
k! per(〈vi, wj〉)i,j .

We are now ready to define an orthonormal basis for Φm,k. Let e1, . . . , em be the standard
basis for Cm, where ei represents a photon in mode i. The basis vectors for Φm,k will be
k-fold symmetric tensors of the ei vectors. Let v1 � . . .� vk be one such symmetric tensor
with vj ∈ {e1, . . . , em}. Let si = |{vj | vj = ei}|; that is, there are si photons in mode i. We
will denote the corresponding basis vector in Φm,k as |s1, . . . , sm〉. Formally,

|s1, . . . , sm〉 =
√

k!
s1!s2! · · · sm! (v1 � v2 � . . .� vk) .

Notice that if we specify the symmetric tensor by the si in this way, we lose the relative
ordering of the elements v1, . . . , vk. Recall, however, that any choice will do since the
symmetric tensor is invariant under permutation.

I Theorem 18. The elements |s1, . . . , sm〉 such that
∑m
i=1 si = k form an orthonormal basis

for Φm,k.

Proof. First, it should be clear that every symmetrized basis vector of (Cm)⊗k corresponds
to some element |s1, . . . , sm〉 such that

∑m
i=1 si = k. We need now only show orthonormality.

For states |s1, . . . , sm〉 and |t1, . . . , tm〉, we have

〈t1, . . . , tm | s1, . . . , sm〉 = k!√
s1! · · · sm!t1 · · · tm

〈v1 � . . .� vk, w1 � . . .� wk〉

= per(〈vi, wj〉)i,j√
s1! · · · sm!t1 · · · tm

Since the ei form an orthonormal basis for Cm, we have 〈vi, wj〉 = 1 when vi = wj and 0
otherwise. Therefore, if there exists i such that si 6= ti, then per(〈vi, wj〉)i,j = 0. Otherwise,
the value of this permanent is equal to the number of permutations σ ∈ Sk such that
vσ(j) = vj for all j. In other words, these permutations only permute the photons within
each mode. Since there are si many photons in mode i, there are si! many permutations
of photons in that mode. Therefore, per(〈vi, vj〉)i,j = s1!s2! · · · sm!, which completes the
proof. J

Finally, we must describe the transformations of the space Φm,k. These are just those
transformations that act identically on all photons. For A ∈ Cm×m, we write ϕ(A) = A⊗k
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as its k-fold tensor product. This notation is often convenient because it suppresses the
parameter k. Notice that ϕ(A) fixes the subspace Φm,k since

A⊗k (v1 � . . .� vk) = 1
k!
∑
σ∈Sk

Avσ(1) ⊗ . . .⊗Avσ(k) = w1 � . . .� wk,

where wi = Avi ∈ Cm. We get the following other important properties of ϕ from this
definition:

I Fact 19. If U is unitary, then ϕ(U) is unitary.

Proof. If U ∈ U(m), then U⊗k ∈ U(mk). J

I Fact 20. ϕ is a group homomorphism: ϕ(AB) = ϕ(A)ϕ(B) for A,B ∈ Cm×m.

Proof. (AB)⊗k = A⊗kB⊗k. J

Finally, we ready to state and prove the ϕ-transition formula.

I Theorem 21. For A ∈ Cm×m, |S〉 = |s1, . . . , sm〉 ∈ Φm,k, and |T 〉 = |t1, . . . , tm〉 ∈ Φm,k,
we have

〈t1, . . . , tm|ϕ(A)|s1, . . . , sm〉 = per(AS,T )√
s1! · · · sm!t1! · · · tm!

provided
∑m
i=1 si =

∑m
i=1 ti = k. Let AS,T be the matrix obtained by taking si copies of the

ith row and ti copies of the column i in A for all i ∈ {1, 2, . . . ,m}.

Proof. By definition, we have

〈t1, . . . , tm|ϕ(A)|s1, . . . , sm〉 = k!· 〈v1 � . . .� vk, Aw1 � . . .�Awk〉√
s1! · · · sm!t1 · · · tm

= per(〈vi, Awj〉)i,j√
s1! · · · sm!t1 · · · tm

.

where vi, wj ∈ {e1, . . . , em}, si = {wj | wj = ei}, and ti = {vj | vj = ei}. Notice that
if vi = ek, then the ith row of the matrix (〈vi, Awj〉)i,j corresponds to the kth row of A.
Following this reasoning, we get that (〈vi, Awj〉)i,j = AS,T . J

B Counting Classes

Let us introduce the complexity classes we use in this paper. Note that the permanent is a
function, so computing it is a function problem. Hence, we will sometimes need the class FP
to stand in for P when we are talking about function problems.

I Definition 22. FP is the class of functions computable by deterministic Turing machines
in polynomial time.

Of course, computing the permanent is, in general, thought to be intractable (i.e., not in FP).
We use a variety of different classes to capture the difficulty of computing the permanent
(depending on the kind of matrix, underlying field, etc.), but the most important class is #P:

I Definition 23. #P is the class of function problems of the form “compute the number
of accepting paths of a polynomial-time non-deterministic Turing machine." For example,
given a classical circuit of NAND gates as input, the problem of computing the number of
satisfying assignments is in #P (and indeed, is #P-complete).
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Since #P is a class of function problems (more specifically, counting problems), we often
consider P#P to compare #P to decision classes. Observe that P#P = PPP since, on the one
hand, the #P oracle can count paths to simulate PP, and on the other hand, we can use the
PP oracle to binary search (on the number of accepting paths) to count exactly. We add
that P#P ⊆ PSPACE is a upper bound for #P, and Toda’s theorem [26] gives PH ⊆ P#P.

Fenner, Fortnow, and Kurtz [13] define a very closely related class, GapP, which is also
relevant to us.

I Definition 24. GapP is the class of function problems of the form “compute the number of
accepting paths minus the number of rejecting paths of a polynomial-time non-deterministic
Turing machine."

We have GapP ⊇ #P since we can take a #P problem (manifest as a non-deterministic
Turing machine) and at the end of each rejecting path, add a non-deterministic branch which
accepts in one half and rejects in the other. In the other direction, any GapP problem can be
solved with at most two calls to a #P oracle (one for accepting paths, one for rejecting), and
a subtraction. Hence, for most of our results we neglect the difference.

Nonetheless, GapP and #P are different. For one, functions in #P are non-negative (and
integral) by definition, whereas functions in GapP can take negative values. The distinction
is also important in the context of approximation; Stockmeyer’s approximate counting gives
a multiplicative approximation to any #P problem in BPPNP, whereas it is known that
multiplicative approximation to a GapP-hard problem remains GapP-hard under Turing
reductions (see Theorem 30).

One cannot even get very bad multiplicative approximations to GapP-hard problems.
Even the worst multiplicative approximation will distinguish zero from non-zero outputs,
and this problem is captured by the class C=P, defined below.

I Definition 25. C=P is the class of decision problems of solvable by a non-deterministic
polynomial-time machine which accepts if it has the same number of accepting paths as
rejecting paths.

A good upper bound for C=P is simply PP. This is easily seen once we have the following
theorem.

I Theorem 26. Suppose f1, f2 ∈ Σ∗ → Z are functions computable in GapP. Then f1 + f2,
−f1, and f1f2 are computable in GapP.

Proof. Let M1 and M2 be non-deterministic machines witnessing f1 ∈ GapP and f2 ∈ GapP
respectively. Then the machines for f1 + f2, −f1, and f1f2 are defined as follows.
1. For f1 + f2, non-deterministically branch at the start, then run M1 in one branch and

M2 in the other.
2. For −f1, take the complement of M1. That is, make every accepting path reject, and

make every rejecting path accept.
3. For f1f2, run M1 to completion, then run M2 to completion (in every branch of M1).

Accept if the two machines produce the same outcome, otherwise reject.
The last construction may require some explanation. Let a1, a2 be the number of accepting
paths of M1 and M2 respectively, and similarly let b1, b2 be the numbers of rejecting paths.
Then there are a1a2 + b1b2 accepting paths for the new machine and a1b2 + a2b1 rejecting
paths, so as a GapP machine it computes

a1a2 − a1b2 − a2b1 + b1b2 = (a1 − b1)(a2 − b2) = f1(x)f2(x). J
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Theorem 26 implies that C=P ⊆ PP because we can square and negate the gap. In other
words, we can find a machine such that the gap is always negative (i.e., strictly less than
half of all paths accept) unless the original machine had gap zero, in which case the gap is
still zero (or, WLOG, very slightly positive). It is also worth noting that coC=P is known to
equal NQP, by a result of Fenner et al. [12].

I Definition 27. The class NQP contains decision problems solvable by a polynomial-time
quantum Turing machine (or, equivalently, a uniform, polynomial-size family of quantum
circuits) where we accept if there is any nonzero amplitude on the accept state at the end of
the computation.

Quantum classes with exact conditions on the amplitudes (e.g., NQP or EQP) tend to be
very sensitive to the gate set, or QTM transition amplitudes allowed. Adleman, Demarrais,
and Huang [5] are careful to define NQP for the case where the transition amplitudes are
algebraic and real.

Finally, we specify computational hardness for our finite field problems using a mod k
decision version of #P.

I Definition 28. For any integer k ≥ 2, let ModkP be the class of decision problems solvable
by a polynomial time non-deterministic machine which rejects if the number of accepting
paths is divisible by k, and accepts otherwise. In the special case k = 2, ModkP is also known
as “parity P", and denoted ⊕P.

Clearly P#P is an upper bound for ModkP. We are finally ready to state the main hardness
result for these counting classes, namely, the celebrated theorem of Toda [26] and a subsequent
generalization by Toda and Ogiwara [27]. There are many important consequences of Toda’s
work, but we only require the following formulation.

I Theorem 29 (Toda’s Theorem [26, 27]). Let A be one of the counting classes ModkP, C=P,
#P , PP, or GapP. Then PH ⊆ BPPA.

This means in particular that, if a problem is hard for any of these classes, then there is
no efficient algorithm for the problem unless PH collapses.

C Real Construction of Toffoli (Proof of Lemma 5)

In this appendix we prove Lemma 5 from Section 3. Let us first define Rθ as the rotation by
θ about the Y -axis. That is, Rθ = cos(θ/2)I − i sin(θ/2)Y where Y is the Pauli σY matrix.
For our purposes, we only require the following two matrices:

Rπ/4 = 1
2

(√
2 +
√

2 −
√

2−
√

2√
2−
√

2
√

2 +
√

2

)
Rπ =

(
0 −1
1 0

)
Let us now recall the statement of the lemma:

I Lemma 5. There exists a circuit of CSIGN, Hadamard, and Rπ/4 gates which implements
a Toffoli gate exactly.

Proof. We construct the Toffoli gate from the CSIGN, Hadamard, and Rπ/4 gates in three
steps:
1. Construct a controlled-controlled-Rπ gate (CC-Rπ) from CSIGN and Rπ/4 gates.

CC-Rπ is a three-qubit gate that applies Rπ to the third qubit if the first two qubits are
in the state |11〉. Notice that CC-Rπ is already a kind of “poor man’s” Toffoli gate. If it
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• • •

• • = •

Rπ/4 R−1
π/4 Rπ/4 R−1

π/4 Rπ

Figure 2 Generating CC-Rπ from the CNOT and Rπ/4 gates.

Rπ • • •

• • • • = • •

• Rπ • •

Figure 3 Generating non-affine classical gate from CC-Rπ and CSIGN.

were not for the minus sign in the Rπ gate, we would be done. The construction is given
in Figure 2. Observe that if either of the two control qubits is zero, then any CNOT gate
controlled by that qubit can be ignored. The remaining gates will clearly cancel to the
identity. Furthermore, if the two control qubits are in the state |11〉, then on the last
qubit, we apply the operation XR−1

π/4XRπ/4XR
−1
π/4XRπ/4. Since XR

−1
π/4X = Rπ/4,

XR−1
π/4XRπ/4XR

−1
π/4XRπ/4 = R4

π/4 = Rπ.

Notice that this construction uses CNOT gates, but observe that a CNOT is a CSIGN
gate conjugated by the Hadamard gate:

(I ⊗H) CSIGN(I ⊗H) = CNOT .

2. Construct a non-affine classical reversible gate from CSIGN and CC-Rπ gates.
By classical, we simply mean that the gate maps each computational basis state to
another computational basis state (i.e., states of the form |x〉 for x ∈ {0, 1}n). If this
transformation is non-affine, then it suffices to generate Toffoli (perhaps with some
additional ancilla qubits) by Aaronson et al. [4]. The construction is shown in Figure 3.

3. Use the non-affine gate to generate Toffoli. We give an explicit construction in
Figure 4. Notice that the fourth qubit is an ancillary qubit starting in the |0〉 state.18 J

D Gadget Details

As discussed above in Section 3 and Section 4, our results on orthogonal matrices depend
on a collection of gadgets. In the real orthogonal setting (Section 3), each gadget is a real
orthogonal matrix with algebraic entries, and all entries have clear, compact expressions in
terms of radicals. However, in Section 4, we wish to reuse the same gadgets over finite fields,
and radicals are no longer the best representation.

Instead, we will show that our (real) gadget matrices have entries in Q(α), the algebraic
field extension of the rational numbers by α, where α =

√
2 +
√

2 +
√

3 +
√

6 ≈ 4.182173283

18 Indeed, this ancillary qubit is necessary because the non-affine gate in Figure 3 is an even permutation
and the Toffoli gate is an odd permutation on three bits.
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• • •

• • • • • • • •
=

•

• • •

• • •

Figure 4 Generating Toffoli gate from non-affine gate in Figure 3.

is the largest real root of irreducible polynomial

f(x) = x16 − 40x14 + 572x12 − 3736x10 + 11782x8 − 17816x6 + 11324x4 − 1832x2 + 1.

More specifically, we will write every entry as a polynomial in α, with rational coefficients
and degree less than 16.

This is a cumbersome representation for hand calculation, but there are some advantages.
First, it eliminates any ambiguity about, for instance, which square root of 2 to use in a
finite field. Second, we can check the various conditions our gadgets need to satisfy in the
field Q(α), and then argue that the verification generalizes to Fp(α), with a few caveats. So,
without further ado, we present polynomials for a set of reals which generate all the entries
of our gadgets.

D.1 Gadget entries
Since ± 1√

2 are the only entries in D, our decoder gadget, we show how to express those
entries as polynomials in α.

1√
2

= 1
11776

(
α14 − 53α12 + 1077α10 − 10561α8 + 51555α6 − 115791α4 + 95207α2 − 8379

)
,

For our encoder gadget E, we also must also express 1√
3 as an element in Q(α). Note that

1√
6 can be obtained as 1√

2 ·
1√
3 .

1√
3

= 1
11776

(
α14 − 53α12 + 1077α10 − 10561α8 + 51555α6 − 115791α4 + 95207α2 − 8379

)
.

Showing that the entries of the Rπ/4 gate are in Q(α) requires the following:√
2 +
√

2 = 1
5888

(
− 123α15 + 4932α13 − 70785α11 + 464494α9

− 1470141α7 + 2209176α5 − 1357287α3 + 193302α
)√

2−
√

2 = 1
5888

(
216α15 − 8711α13 + 126234α11 − 841629α9

+ 2733428α7 − 4270353α5 + 2799098α3 − 466411α
)

Finally, we have the V gate. We already have the 1
3
√

2 in front, and the various multiples
of
√

2 inside, so we just need
√

3±
√

6 and
√

6± 2
√

6. These are related by a factor of
√

2,
so it suffices to give

√
3±
√

6.√
3 +
√

6 = 1
5888

(
123α15 − 4932α13 + 70785α11 − 464494α9

+ 1470141α7 − 2209176α5 + 1357287α3 − 187414α
)√

3−
√

6 = 1
256

(
15α15 − 598α13 + 8505α11 − 55084α9

+ 171665α7 − 256518α5 + 161671α3 − 25624α
)
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The numbers above, combined with 1
2 and 1

3 , generate all the entries of our real orthogonal
gadgets. Note that the denominators in front of the polynomials above (e.g., 11776, 5888,
256, 3, etc.) all divide 35328 = 29 · 3 · 23. In other words, this representation is a bad choice
for fields of characteristic 2, 3, or 23 because, in those cases, division by 35328 is division by
0. Aside from this restriction, the representation is well-defined for any field containing some
root α of the polynomial p.

We should not be surprised that the representation fails for fields of characteristic 2
or 3 because our matrices contain, for instance, the entries 1

3 and 1√
2 . We also know the

permanent of an orthogonal matrix is easy to compute in fields of characteristic 2 or 3, so it
is actually no surprise to find this obstacle to our hardness proof.

On the other hand, we can find no explanation for the requirement p 6= 23; it appears to
be a quirk of the algebraic number α. In fact, a different choice fails for different primes.
Consider β ≈ 5.596386846, the largest real root of

x16 − 56x14 − 32x13 + 1084x12 + 960x11 − 9224x10 − 8928x9 + 37702x8+
33920x7 − 73736x6 − 53216x5 + 63932x4 + 23488x3 − 21560x2 + 3808x− 191.

This appendix is long enough without doing all the same steps for β, so let us claim without
proof that Q(β) = Q(α). Furthermore, when we represent the matrix entries as polynomials
in β (we omit the details), the denominators prohibit the use of this representation for fields
of characteristic 2, 3, 191, and 3313, but not 23. Hence, for all primes p other than 2 or 3,
there is some representation that works for that prime.

D.2 Galois Extension
We need Q(α) to be a Galois extension to apply Chebotarev’s theorem, which we use to
prove Theorem 12. Another helpful consequence is that if α is in some field, then all the
roots of f are also in the field since they can be expressed as polynomials in α.

The most direct way to prove Q(α) is a Galois extension is to write all 16 roots of f in
terms of α. Since f is an even polynomial, half of the roots are just the negatives of the
other half, so we restrict our attention to the 8 positive roots.

Root Polynomial
0.0234 1

5888

(
−129α15 + 5043α13 − 69381α11 + 425303α9 − 1214867α7 + 1629561α5 − 919335α3 + 122941α

)
0.4866 1

2944

(
123α15 − 4932α13 + 70785α11 − 464494α9 + 1470141α7 − 2209176α5 + 1357287α3 − 190358α

)
1.1057 1

2944

(
−234α15 + 9343α13 − 133200α11 + 865713α9 − 2709218α7 + 4054545α5 − 2537860α3 + 391327α

)
1.5073 1

5888

(
561α15 − 22465α13 + 321849α11 − 2108561α9 + 6681723α7 − 10170267α5 + 6517531α3 − 1055763α

)
1.5690 1

5888

(
−93α15 + 3779α13 − 55449α11 + 377135α9 − 1263287α7 + 2061177α5 − 1441811α3 + 278997α

)
2.5897 1

2944

(
111α15 − 4411α13 + 62415α11 − 401219α9 + 1239077α7 − 1845369α5 + 1180573α3 − 198025α

)
3.0997 1

5888

(
339α15 − 13643α13 + 197019α11 − 1306123α9 + 4203569α7 − 6479529α5 + 4156385α3 − 653825α

)
4.1821 α

E Approximation

Much like in Aaronson’s paper [2], our hardness reductions for exactly computing the
permanent lead naturally to hardness of approximation results as well. Approximation
results comes in two flavors: additive and multiplicative. For example, Gurvits’ algorithm
[14] approximates the permanent of a matrix A up to ±ε‖A‖n additive error. We will focus



D. Grier and L. Schaeffer 19:27

strictly on multiplicative approximation. That is, the result of the approximation should be
between 1

k per(A) and k per(A) for some k.
We give approximation results only for real orthogonal matrices since it is unclear how

to even define multiplicative approximation in a finite field. All of our results follow from
the fact that we actually prove GapP-hardness (since we compute the gap, ∆C , rather than
just the number of satisfying assignments). None of the results use anything specific to
permanents; they are all GapP folklore, but we state them as permanent results for clarity.

I Theorem 30. Suppose A is an oracle that approximates the permanent of a real orthogonal
matrix to any multiplicative factor. In other words, A is an oracle for the sign (zero, positive,
or negative) of the permanent. Then GapP ⊆ FPA.

Proof. We give an FPA algorithm for computing ∆C for a classical circuit C. Since this
problem is GapP-hard, we get GapP ⊆ FPA.

By earlier results, we can construct a real orthogonal matrix with permanent proportional
to ∆C . Then we can apply the oracle to compute the sign of the permanent, and hence the
sign of ∆C . This is helpful, but we can do better.

Recall that we can add or subtract two GapP functions (see Appendix B), so for any
integer k, we can construct a circuit Ck such that ∆Ck

= ∆C − k. Then we can apply A to
give us the sign of ∆Ck

, or equivalently, compare ∆C to k. In other words, we can use A to
binary search for the value of ∆C , which we know to be an integer in the range −2n and
2n. J

Recall that C=P is the class of decision problems of solvable by a non-deterministic
polynomial-time machine which accepts if it has the same number of accepting paths as
rejecting paths. By Toda’s theorem, PH ⊆ BPPC=P.

I Theorem 31. Suppose A is an oracle that approximates the absolute value of permanent
of a real orthogonal matrix to any multiplicative factor. That is, A tells us whether the
permanent is zero. Then PC=P ⊆ PA.

Proof. The problem of computing whether ∆C = 0 for a classical circuit C is C=P-hard.
But clearly we can construct a real, orthogonal matrix from the circuit with permanent
proportional to ∆C , and then apply A to determine if the permanent is zero, and hence
whether ∆C is zero. Therefore PC=P ⊆ PA. J

Finally, we show that even a very poor approximation to the absolute value of the
permanent still allows us to calculate the exact value of the permanent via a boosting
argument.

I Theorem 32. Suppose A is an oracle that approximates the absolute value of the permanent
of an n×n real orthogonal matrix to within a 2n1−ε factor for some ε > 0. Then GapP ⊆ FPA.

Proof. We give an FPA algorithm for computing ∆C of a classical circuit. Since this problem
is GapP-hard, we get GapP ⊆ FPA.

As in Theorem 30, we can construct a circuit Ck such that ∆Ck
= ∆C − k for any

integer k. By applying oracle A to the real orthogonal matrix corresponding to Ck, we can
get a multiplicative estimate for |∆C − k|. Let us assume for the moment that A gives a
multiplicative approximation to within a factor of 2, and improve this to 2n1−ε later.

Suppose we are given an interval [a, b] guaranteed to contain ∆C . For instance, ∆C

is initially in [−2n, 2n]. Apply A to find an estimate for ∆Ca
= ∆C − a. Suppose the
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approximation we get is x∗. Then we have

a+ 1
2x
∗ ≤ ∆C ≤ a+ 2x∗.

So ∆C is in the interval [a+ 1
2x
∗, a+ 2x∗] ∩ [a, b]. One can show that this interval is longest

when a + 2x∗ = b, where it has length 3
4 (b − a). Since the interval length decreases by a

constant factor each step, we only need O(n) steps to shrink it from [−2n, 2n] to length < 1,
and determine ∆C .

Finally, suppose we are given an oracle which gives an approximation to within a
multiplicative factor 2n1−ε . Theorem 26 in Appendix B lets us construct a circuit Cm (not
to be confused with Ck) such that ∆Cm = (∆C)m. The circuit is essentially m copies of C,
so we can only afford to do this for k polynomial in the size of C, otherwise our algorithm is
too slow.

The point of Cm is that a factor β approximation to ∆Cm gives a factor β1/m approxi-
mation of ∆C by taking mth roots. This is excellent for reducing a constant approximation
factor, but when β grows with n, we must account for the fact that the size of Cm grows
with n as well. In particular, the size of Cm scales with m, and the dimension of the matrix
in our construction scales linearly with m as well.

So, for our algorithm to succeed, we need β(nm)1/m ≤ 2 or

β(nm) ≤ 2m

for m a polynomial in n. Suppose we can afford m = nc copies of C. Then we succeed when
β(n1+c) ≤ 2nc , or

β(n) ≤ 2n
1− 1

c+1
.

Within the scope of polynomial time algorithms, we can make 1
c+1 less than any ε, and

thereby handle any 2n1−ε approximation factor. J

The core ideas in both Theorem 30 and 32 were already noticed by Aaronson [2], but we
give slightly better error bounds for the latter theorem.

F Orthogonal Matrices mod 97 are #P-hard via NS1-approach

It is natural to ask whether Theorem 12 can be extended to more primes, or all primes. In
other words, is there some prime p 6= 2, 3 such that it is easy to compute the permanent
modulo p, even though computing the permanent over Fp4 is hard? In this appendix, we
present a different construction for CSIGN gates (in fact, the construction originally used by
KLM) which works in F97, where the V gate does not. We conclude that there is at least
one more prime, namely p = 97, where the permanent is hard.

The original KLM construction builds an CSIGN gate from what they call an NS1 gate,
instead of directly using a V gate. Logically, the NS1 gate acts on one mode and does
nothing to 0 or 1 photon, but flips the sign for 2 photons. The construction of CSIGN from
NS1 is shown in Figure 5. If |1, 1〉 is the input state, the Hadamard gate turns it into a
linear combination of |2, 0〉 and |0, 2〉, which then change phase by the NS1 gate, and get
recombined into −|1, 1〉 by the Hadamard gate. Otherwise, there are not enough photons for
the NS1 gates to do anything, and the Hadamard gates cancel, so the gate does nothing (as
a CSIGN should).
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(i, 0)
CSIGN H

NS1

H

(j, 0)
=

NS1

Figure 5 Generating CSIGN from H and NS1 [17].

It turns out it is impossible to construct an NS1 gate without at least two postselected
modes, so the KLM NS1 is a three mode gate where the last two modes start and end (via
postselection) in state |0, 1〉. Unfortunately, the KLM NS1 gate postselects on a mode having
zero photons, which is undesirable for our application. Therefore, we construct our own NS1
gate shown below. It postselects on the last two modes being |1, 1〉 and has entirely real
entries.

The gate is

NS1 = 1
6

 6− 18γ −
√

6
√

9γ −
√

6− 3γ − 2 −
√

6
√

9γ +
√

6− 3γ − 2
−
√

6
√

9γ −
√

6− 3γ − 2 9γ +
√

24− 45γ −3
√

2− 4γ
−
√

6
√

9γ +
√

6− 3γ − 2 −3
√

2− 4γ 9γ −
√

24− 45γ


where γ , 1

18
(√

33 + 3
)
≈ 0.4858090359.

One can verify the following identities hold.

〈0, 1, 1|φ(NS1)|0, 1, 1〉 = γ,

〈1, 1, 1|φ(NS1)|1, 1, 1〉 = γ,

〈2, 1, 1|φ(NS1)|2, 1, 1〉 = −γ.

That is, with amplitude γ the postselection succeeds, and the three mode gate behaves like
an NS1 gate on the first mode.

The field extension containing this gate is of higher degree than Q(α), so we have not
computed it explicitly. If we proved the equivalent of Theorem 12 in that extension, we
would expect the density to be worse. However, this construction of an CSIGN works for at
least one prime where V does not, namely p = 97.
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We show that it is NP-hard to approximate, to within an additive constant, the maximum
success probability of players sharing quantum entanglement in a two-player game with classical
questions of logarithmic length and classical answers of constant length. As a corollary, the
inclusion NEXP ⊆ MIP∗, first shown by Ito and Vidick (FOCS’12) with three provers, holds with
two provers only. The proof is based on a simpler, improved analysis of the low-degree test of
Raz and Safra (STOC’97) against two entangled provers.
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1 Introduction

Interactive proofs are a fundamental concept in theoretical computer science, with applications
to complexity theory, cryptography, and more. A classic result [19, 24] shows that interaction
is a powerful resource: the class IP of problems that a polynomial-time verifier can solve
with access to a single, untrusted prover is equal to PSPACE. A subsequent line of works
culminating in [3] showed that even more power can be gained by interacting with multiple
provers: the class MIP of problems decidable by a polynomial-time verifier interacting with
multiple non-communicating provers is equal to NEXP. This result was an important catalyst
in the discovery of the PCP theorem [2, 1], a seminal result in complexity theory that has had
broad-ranging implications for hardness of approximation [9, 12]. More recently, increasingly
efficient probabilistically checkable proofs (PCPs) have played a major role in the design of
protocols for delegated computation of space [11] or time-bounded [18] circuits.
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What happens when one considers a verifier that has the increased power of quantum
polynomial-time computation, or provers that may use the non-local properties of quantum
entanglement? In the single-prover setting, it is a highly non-trivial result that a quantum
verifier, having the ability to exchange quantum messages with the prover, cannot decide
more languages than a classical polynomial-time verifier: QIP = IP = PSPACE [15].

The story for multi-prover interactive proof systems is more complex. Cleve et al. [6] were
the first to explore the consequences of entanglement for complexity theory. The class MIP∗

is the class of languages having multi-prover interactive proofs between a classical polynomial-
time verifier and quantum provers who may share entanglement. (The class QMIP∗ allows
a quantum verifier and quantum messages; it is known that QMIP∗ = MIP∗ [23].) It has
been known since the early days of quantum mechanics [8], and more specifically the work of
Bell [4], that allowing spatially isolated provers to perform local measurements on a shared
entangled state may allow them to generate correlations between their (classical) outputs
that cannot be reproduced by any local model, even using shared randomness. In general,
quantum strategies have a higher success probability than classical ones, and this can affect
both the completeness and soundness parameters of a proof system. As a result, the only
trivial lower bound on MIP∗ is IP, since the verifier can ignore one of the provers, and there
are no trivial upper bounds, as the size of entangled-prover strategies can be arbitrary. Cleve
et al. [6] showed that entanglement could at least in some cases lead to a collapse of a
complexity class based on an interactive proofs: they studied XOR proof systems and showed
that ⊕MIP∗ ⊆ PSPACE (for any constant completeness-soundness gap), while it follows
from Håstad’s work [12] that ⊕MIP = NEXP (for some choice of constant completeness and
soundness parameters).

Nevertheless, a sequence of works established techniques to limit the power of entangled
provers, eventually leading to a proof that MIP ⊆ MIP∗ [14] for proof systems involving four
provers, a single round of interaction, and sufficiently large, but constant, answer size. The
result is a corollary of the inclusion NEXP ⊆ MIP∗, whose proof follows the same structure
as Babai et al.’s celebrated proof [3] that NEXP ⊆ MIP. The main technical component of
the proof is an analysis of the soundness of Babai et al.’s multilinearity test with entangled
provers. The result was later refined in [26], who obtained a scaled-down version that applies
to multiplayer games specified in explicit form: the main result of [26] is that it is NP-hard to
approximate the value of a three-player entangled game specified in explicit form (in contrast
to an interactive proof system, which is specified by a family of circuits for the verifier). The
proof rests on an analysis of the soundness of the “plane-vs-point” low-degree test [22], an
improvement over Babai et al.’s multilinearity test, with entangled provers.

A rather intriguing limitation of the results in [14, 26] is that they only apply to games,
or interactive proof systems, with three or more entangled players, or provers. Even though
in any interaction the verifier in the proof systems considered in those works only exchanges
messages with two out of the three provers,3 the proof seems to crucially require that the joint
Hilbert space supporting the provers’ strategies can be decomposed in at least three tensor
factors. Most importantly, this requirement is used in the proof of the “self-improvement
lemma” that is key to control the accumulation of approximation errors in the inductive
analysis of both the multilinearity and low-degree tests. Intuition for the requirement that
there are three players is based on the phenomenon of monogamy of entanglement: it has
been known at least since the work of Toner [25] that this kind of “embedding” of a two-player

3 More precisely, all tests considered, including the low-degree test, take the form: (i) the verifier selects
two provers at random, and calls them “Alice” and “Bob”; (ii) the verifier plays a two-prover game with
Alice and Bob.
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game in a three-player game can effectively limit the players’ ability to take advantage of their
shared entanglement, in some cases drastically lowering their maximum success probability in
the game. Could it be that the two-prover entangled value of the game can be approximated
in polynomial time, while the three-player entangled value is NP-hard?

We answer this question by showing that the same plane-vs-point low-degree test analyzed
in [26] remains sound even when it is played with two, instead of three, entangled provers.
As a consequence, we obtain the first non-trivial hardness results for the class MIP∗(2, 1) of
two-prover one-round entangled proof systems. (The best prior result is hardness for inverse-
exponential completeness-soundness gap [13], which cannot be amplified by a polynomial-time
verifier using e.g. parallel repetition.)

I Theorem 1. The inclusion NEXP ⊆ MIP∗(2, 1) holds. Furthermore, it still holds when
MIP∗(2, 1) is restricted to one-round proof systems with constant answer size.

Theorem 1 is obtained by scaling up a stronger NP-hardness result for two-player entangled
projection games,4 see Theorem 15 and Corollary 16 in Section 4.

Theorem 1 shows that allowing the provers to share entanglement does not weaken the
power of two-prover one-round interactive proof systems. As mentioned earlier, entanglement
may also have the effect of increasing the complexity of such proof systems, by allowing the
verifier to implement protocols whose completeness can only be achieved by provers sharing
entanglement. In fact, this is known to occur when the completeness-soundness gap is allowed
to be exponentially small. In this regime, it was shown by [10] that the class QMIP∗ of
multi-prover interactive proof systems with a quantum verifier and messages contain QMAEXP,
the quantum analogue of NEXP, and subsequent works by Ji [16, 17] improved this result
to show that MIP∗ with exponentially small gap contains NEEXP (nondeterministic doubly-
exponential time). However, it remained an open question whether a similar phenomenon
occurs when the completeness-soundness gap is a constant.

In a subsequent work [21], building on the soundness analysis of the two-player low-degree
test presented in this paper, we were able to answer (a version of) this question in the
affirmative, showing the first constant-gap QMA-hardness results for entangled-player games.
Specifically, we show that it is QMA-hard, under randomized reductions, to give a constant
additive approximation to the maximum success probability of a players sharing entanglement
in a multiplayer game specified in explicit form. The reduction in [21] yields a game with
7 players and one round of interaction. Interestingly, the analysis of this 7 player game,
which uses the quantum error-correcting code framework of [10, 16], relies essentially on the
soundness of the low-degree test with two entangled players. This is a further application of
the techniques of this work, beyond the hardness for two-player games achieved in Theorem 1.

The main ingredient needed to obtain Theorem 1, and our main technical contribution,
is a soundness analysis of the plane-vs-point low-degree test in the presence of two entangled
provers. The analysis that we provide is both conceptually and technically simpler than the
analysis in [26]. Although our proof relies on elementary reductions from [26], we present it
in a modular way which, we hope, will make it more easily accessible, and more conveniently
re-usable, than the proof in [26]. In the following subsection we describe the low-degree test
and give a high-level overview of our analysis.

4 The reduction proceeds in a standard way by using a succinctly represented instance of the 3-SAT
problem as starting point; we omit the details.
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Out of the two provers, choose one at random to be Alice and the other to be Bob.
1. Let d,m be integer and q a prime power given as input.
2. Select a random point x ∈ Fmq and two random directions y1, y2 ∈ Fmq . If y1 and y2 are

not linearly independent, accept; otherwise, let s be the plane spanned by the two lines
parallel to y1, y2 passing through x.

3. Send s to Alice and x to Bob. Receive g, a specification of a degree-d polynomial restricted
to s, from Alice, and a ∈ Fq from Bob.

4. Accept if and only if g(x) = a.

Figure 1 The (d, m, q)-low-degree test.

1.1 The low-degree test
We recall the “plane-vs-point” low-degree test from [26] in Figure 1. The test is essentially
the same as the classical test from [22]. It asks one prover for the restriction of a low-degree
m-variate polynomial g to a random two-dimensional subspace s of Fmq , where Fq is the
finite field with q elements, q a prime power, and the other prover for the evaluation of g at
a random x ∈ s; the prover’s answers are checked for consistency.

Since the test treats both provers symmetrically, for the purposes of the soundness analysis
we may reduce to the case where the provers share a permutation-invariant state and use the
same collection of measurement operators. The following states the result of our analysis of
the test. It extends Theorem 3.1 in [26] to the case of two provers.5 In the theorem, we use
the notation 〈A,B〉Ψ for 〈Ψ|A⊗B|Ψ〉.

I Theorem 2. There exists a δ = poly(ε) and a constant c > 0 such that the following holds.
Let ε > 0, m, d integers, and q a prime power such that q ≥ (dm/ε)c. For any strategy for
the players using entangled state |Ψ〉 and projective measurements {Ars}r that succeeds in the
(d,m, q)-low-degree test with probability at least 1− ε, there exists a POVM {Sg}g, where g
ranges over m-variate polynomials over Fq of total degree at most d, such that the following
hold:
1. Approximate consistency with A:

E
s

∑
g

∑
r 6=g|s

〈Ars, Sg〉Ψ ≤ δ ,

where the expectation is over a random two-dimensional subspace s of Fmq , as chosen by
the verifier in the test;

2. Self-consistency:∑
g

〈Sg, (Id−Sg)〉Ψ ≤ δ .

The proof of Theorem 2 follows the same structure as the proof of Theorem 3.1 in [26].
The proof is by induction on the number of variables m. The base case m = 2 is trivial, since
there is a single subspace s, and the provers’ associated POVM {Ar} can directly play the
role of {Sg} in the theorem. Suppose then that the theorem is true for a value (m− 1) such
that m− 1 ≥ 2. To show that the theorem holds for m there are three main steps, which
mirror the classical analysis of the low-degree test:

5 The self-consistency condition is not explicitly stated in [26] but (as we will show) it follows easily from
the proof.
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1. (Section 6.3 of [26]) By the induction hypothesis, for every (m− 1)-dimension hyperplane
s in Fmq there is a POVM {Qgs}g with outcomes g in the set of degree-d polynomials on s,
such that on average over the choice of a uniformly random s and x ∈ s the POVM {Qgs}
is consistent with {Aax}.

2. (Section 6.4 of [26]) For any k ≥ 1, measurements {Qgs}g associated with k parallel
subspaces s1, . . . , sk are “pasted” together to yield a combined measurement {Q(gi)

(si)} that
returns a k-tuple of degree-d polynomials gi defined on si. This is proved by induction
on k.

3. (Section 6.5 of [26]) Finally, taking k to be sufficiently large compared to d, the mea-
surement {Q(gi)

(si)} is consolidated into a single global measurement {Sg} that satisfies the
conclusion of the theorem for the m-variate case.

These three steps remain unchanged in the current proof. At only very few places in [26] is
the presence of three provers used; in most cases this is only a matter of convenience and is
easily avoided. For completeness, in Appendix A we explicitly list those places and how the
use of three provers can be avoided.

As already mentioned the critical point in the proof where three provers, or rather the
existence of three tensor factors in the provers’ Hilbert space, is used, is to control the error
increase throughout the induction. As shown by the analysis, if the measurements {Qgs}
produced by the induction hypothesis are δ-consistent with {Aax}, then the resulting Sg will
be O(δc)-consistent with the same {Aax}, for some constant c < 1. For poly-logarithmic m
such an increase is unmanageable.

The key step in the analysis consists in establishing a “self-improvement lemma”, which
resets the consistency error to some constant baseline at each step of the induction. This
is called the “consolidation procedure” in [26]. A similar self-improvement was already at
the heart of Babai et al.’s proof of MIP ⊆ NEXP; variants thereof have found uses outside of
complexity theory, such as in property testing.

Our main technical contribution is a simpler, self-contained proof of a variant of the
consolidation procedure from [26] (stated as Proposition 5.8 in that paper), which applies to
strategies with two provers only. The procedure shows that the consistency error sustained
by any POVM, when measured against a structure called a “robust triple” in [26], can
be automatically improved. Our variant is based on a simpler notion than the robust
triples from [26], that we call “global consistency”. We believe that our formulation of
self-improvement, and its analysis (which crucially relies on semidefinite duality), should be
of broad interest. At a high level, the result relies on a procedure that, given a collection
of positive semidefinite operators {Ai}, identifies a measurement {Ti}, i.e. Ti ≥ 0 and∑
i Ti = Id, that “optimally coincides” with the {Ai} (see Lemma 13 for a precise formulation).

Throughout we assume familiarity with the notation and proof structure from [26], though
we recall the most important notions in Section 2. In particular we formally define robust
triples and global consistency, and show that the former notion implies the latter, so that
our result can be directly used in lieu of Proposition 5.8 in the analysis of [26]. In Section 3
we prove our replacement for Proposition 5.8, Proposition 12. The proof of (the scaled-down
version of) Theorem 1 follows from the analysis of the test using similar reductions as in [26];
we briefly explain how in Section 4.
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2 Preliminaries

2.1 Notation
We use H to denote a finite-dimensional Hilbert space, and L(H) for the linear operators
on H. Subscripts HA, HB indicate distinct spaces. For |Ψ〉 ∈ HA ⊗ HB and A ∈ L(HA),
B ∈ L(HB) we write 〈A,B〉Ψ = 〈Ψ|A⊗B|Ψ〉. Note that we do not conjugate A or B. Given
two families of operators {Aax} and {Bax} on HA, where x ∈ X and a ∈ A range over finite
sets, and 0 ≤ δ ≤ 1, we write Aax ≈δ Bax for

E
x

∑
a

〈(Aax −Bax)2, Id〉Ψ = O(δ) .

The expectation over x will usually be taken with respect to the uniform distribution. The
distinction between taking an expectation (over x) or a summation (over a) will always be
clear from context.

2.2 Measurements
Throughout, we consider a bipartite state |Ψ〉 ∈ H ⊗ H assumed to be invariant under
permutation of the two registers. All operators we consider act on the finite-dimensional
space H.

I Definition 3. A sub-measurement {Ma}a is a collection of positive semidefinite operators
satisfying M =

∑
aM

a ≤ Id. We say that a sub-measurement is η-complete if

〈M, Id〉Ψ ≥ 1− η ;

η is called the completeness error. If M = Id then we say that {Ma}a is a measurement, in
which case the completeness error is zero.6

The following definition appears in [26].

I Definition 4. Let X and A be finite sets. Let {Ma
x}a be a family of sub-measurements

indexed by x ∈ X and with outcomes a ∈ A. For each x, let Mx =
∑
aM

a
x . We say that

{Ma
x} is
ε-self-consistent if

E
x

∑
a 6=a′
〈Ma

x , M
a′

x 〉Ψ ≤ ε ,

γ-projective if

E
x
〈Mx, (Id−Mx)〉Ψ ≤ γ .

Let {T g} be a sub-measurement with outcomes in the set of all functions g : X → A. We
say that {Ma

x} and {T g} are δ-consistent if

E
x

∑
g,a: a6=g(x)

〈T g, Ma
x 〉Ψ ≤ δ .

6 The converse does not necessarily hold, as |Ψ〉 may not have full support.
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We consider families of functions such that distinct functions have few points of intersection.
The following definition is the reformulation of the definition of an error-correcting code,
that is adapted to our notation using functions (where the codeword associated to a function
is the evaluation table of the function, and vice-versa).

I Definition 5. Let X and A be finite sets, G a set of functions from X to A, and 0 ≤ κ ≤ 1.
We say that (X ,A,G) is κ-structured if for any two distinct g, g′ ∈ G,

Pr
x∈X

(
g(x) = g′(x)

)
≤ κ ,

where the probability is taken under the uniform distribution on X .

The following lemma states useful properties of consistency.

I Lemma 6. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements indexed
by x ∈ X that is ε-self-consistent. Let {T g}g∈G be a sub-measurement that is δ-consistent
with {Aax}. Then
{T g} is δ′-self-consistent, for δ′ = O(

√
ε+
√
δ + κ);

Let T =
∑
g T

g, and suppose {T g} is γ-projective. Then

TAax ≈√ε+√δ+γ+κ AaxT .

Proof. We sketch the proof. For the first item,∑
g 6=g′
〈T g, T g

′
〉Ψ = E

x

∑
a

∑
g 6=g′
〈T g, T g

′
Aax〉Ψ

≈√δ E
x

∑
g 6=g′
〈T g, T g

′
Ag(x)
x 〉Ψ

≈√ε E
x

∑
g 6=g′
〈T gAg(x)

x , T g
′
〉Ψ

≈√δ E
x

∑
g 6=g′

1g(x)=g′(x) 〈T gAg(x)
x , T g

′
〉Ψ

≈√δ E
x

∑
g 6=g′

1g(x)=g′(x) 〈T g, T g
′
〉Ψ

≤ κ .

For the second item, it suffices to lower bound

E
x

∑
a

〈TAaxTAax, Id〉Ψ ≈√ε E
x

∑
a

∑
g

〈TAaxT g, Aax〉Ψ

≈√δ E
x

∑
a

∑
g

〈TAaxT g, Ag(x)
x 〉Ψ

≈√δ E
x

∑
a,a′

∑
g

〈TAaxT g, Aa
′

x 〉Ψ

= 〈T 2, Id〉Ψ .

The claimed bound then follows by expanding Ex

∑
a(TAax−AaxT )2 and regrouping terms. J

CCC 2018
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2.3 Global consistency
The analysis of the low-degree test amounts to arguing that a set of measurement operators
which produce outcomes that are locally consistent can be combined into a single measurement
which returns a global object consistent with each of the local measurements: it is possible to
recombine local views. In [26] the notion of local consistency used is called a “robust triple”.
For convenience we recall the definition.

I Definition 7 (Definition 5.2 in [26]). Let G = (V,E) be a graph, S a finite set, G ⊆ {g :
V → S} a set of functions and for every v ∈ V , {Aav}a∈S a measurement with outcomes in
S. Given δ > 0 and 0 < µ ≤ 1, we say that (G, {Aav},G) is a (δ, µ)-robust triple if:
1. (self-consistency) The family of measurements {Aav} is δ-self-consistent;
2. (small intersection) (V, S,G) is δ-structured;
3. (stability) For any sub-measurement {Rg}g∈G it holds that

E
v∈V

E
v′∈N(v)

∑
g

〈Rg, (Ag(v)
v −Ag(v

′)
v′ )2〉Ψ ≤ δ ,

where N(v) is the set of neighbors of v in G;
4. (expansion) G has mixing time O(µ−1). Precisely, if for any v ∈ V we let pk(v) denote

the distribution on V that results from starting a k-step random walk at v, then for any
δ > 0 and some k = O(log(1/δ) log(1/µ)) it holds that Ev∈V ‖pk(v)− |V |−1‖1 ≤ δ.

We observe that the only way in which items 3. and 4. from the definition are used for
the self-improvement results is through [26, Claim 5.3], which states the following.

I Claim 8 (Claim 5.3 in [26]). Suppose (G,A,G)Ψ is a (δ, µ)-robust triple. Then there exists
a δ′ = O

(
δ1/2 log2(1/δ) log2(1/µ)

)
such that for any sub-measurement {Rg}g∈G,∑

g

〈Rg, Ag − (Ag)2〉Ψ ≤ δ′ , (1)

where Ag = Ev∈V A
g(v)
v .

It is more direct, and more general, to use condition (1) directly as part of the definition,
as this allows us to set aside any notion of an expanding graph.

I Definition 9. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements
indexed by x ∈ X and with outcomes a ∈ A. For g ∈ G, let Ag = ExA

g(x)
x . Let |Ψ〉 be a

permutation-invariant bipartite state. For 0 ≤ ε, δ ≤ 1 we say that ({Aax},G) is (ε, δ)-globally
consistent on |Ψ〉 if:
1. κ = O(ε);
2. The family {Aax} is ε-self-consistent;
3. There exists a positive semidefinite operator Z such that

∀g ∈ G, 0 ≤ Ag − (Ag)2 ≤ Z, and 〈Z, Id〉Ψ ≤ δ.

It is not hard to verify that condition 3. in the definition is equivalent to (1). This can be
seen by writing the bound δ in the condition as the optimum of a semidefinite program, and
taking the dual. This is done in a similar way to the analysis of the semidefinite program (2).
The only difference is that the latter considers consistency when the state |Ψ〉 is maximally
entangled. Formally, we have the following lemma.
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I Lemma 10. Let |Ψ〉 ∈ H ⊗H be a state invariant under permutation of its two registers,
such that the reduced density of |Ψ〉 on either register has full support. Let {Ai} be a family
of positive semidefinite operators on H with Ai ≤ Id for all i. Then the following primal and
dual semidefinite program satisfy strong duality, and hence have the same optimum value:

Primal SDP

sup
∑
i

〈Ti, Ai〉Ψ

s.t. Ti ≥ 0 ∀i ,∑
i

Ti ≤ Id .

Dual SDP

inf 〈Z, Id〉Ψ

s.t. Z ≥ Ai ∀i ,
Z ≥ 0 .

Proof. Both the primal and dual are strictly feasible, as can be seen by taking e.g. Ti ∝ Id
such that

∑
i Ti = Id /2, and Z = 2 Id. J

Taking Ai in Lemma 10 to equal Ag−(Ag)2, the primal value being less than δ′ is equivalent
to (1), while the dual value being less than δ′ is equivalent to item 3. in Definition 9.

For later use we note that self-consistency of {Aax} implies self-consistency of the operators
Ag introduced in Definition 9, in the following sense.

I Lemma 11. Let {Aax} be a family of measurements that is ε-self-consistent. Then for any
sub-measurement {Rg},∑

g

〈Ag, Rg〉Ψ ≈√ε
∑
g

〈Id, RgAg〉Ψ.

Proof. Write∑
g

〈Ag, Rg〉Ψ =
∑
g

E
x
〈Ag(x)

x , Rg〉Ψ

=
∑
g,a

E
x
〈Ag(x)

x , RgAax〉Ψ

≈√ε
∑
g

E
x
〈Ag(x)

x , RgAg(x)
x 〉Ψ

≈√ε
∑
g

E
x
〈Id, RgAg(x)

x 〉Ψ . J

3 Self-improvement with two provers

The main result on self-improvement from [26] is stated as Proposition 5.8 in that paper. Our
main technical result, Proposition 12 below, improves upon Proposition 5.8 in the following
respects:

Proposition 12 allows performing self-improvement with two provers only;
Proposition 12 only requires the notion of consistency introduced in Definition 9, which
as argued in Section 2.3 is less restrictive than the notion of robust triple used in [26];

CCC 2018



RET
RACTED

20:10 Retracted: Two-Player Entangled Games are NP-Hard

The proof of Proposition 12 is simpler and yields better parameters.
We state the proposition and give its proof here. In Section 4 we show how the proposition
is used to obtain the hardness results.

I Proposition 12. There exists universal constants ε0, δ0, t0 > 0 such that the following
holds. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements indexed by
x ∈ X , and |Ψ〉 a bipartite permutation-invariant state. Suppose that the following conditions
hold:
1. ({Aax},G) is (ε, δ)-globally consistent on |Ψ〉, for some 0 ≤ ε ≤ ε0, 0 ≤ δ ≤ δ0;
2. There exists a function t = t(ε′, δ′) and ε′0, δ′0 > 0 such that for any 0 ≤ ε′ ≤ ε′0 and

0 ≤ δ′ ≤ δ′0 it holds that t(ε′, δ′) ≤ t0, and such that the following holds. For any (ε′, δ′)
and state |Φ〉 such that ({Aax},G) is (ε′, δ′)-globally consistent on |Φ〉, there exists a
measurement {Qg}g∈G that is t(ε′, δ′)-consistent with {Aax}.

Then there exists a measurement {Rg}g∈G that is δ′-consistent with {Aax}, for some δ′ =
O(
√
r(ε, δ)), where r(ε, δ) is the function defined in Lemma 13.

The key “improvement” provided by the proposition is that, while the function t is only
assumed to be bounded by a fixed constant for sufficiently small values of the arguments,
the proposition returns a measurement {Rg} that has an explicit consistency δ′ with {Aax},
where δ′ is polynomial in ε and δ, irrespective of t (indeed t need not approach 0 as ε, δ
approach 0).

We note that, in our language, [26, Proposition 5.8] considers a family of globally consistent
pairs ({Aat,x},Gt), parametrized by some finite set t ∈ T , and makes both the assumptions
and the conclusions of Proposition 12 in an averaged sense, for uniformly random t ∈ T .
For simplicity we state and prove the proposition for |T | = 1. The case of general T is
needed for the inductive application of the Proposition towards the proof of Theorem 2. We
sketched the inductive step in the introduction. We refer to [26] for details of the derivation
of Theorem 2 from Proposition 12, which is identical to the derivation of [26, Theorem 3.1]
from [26, Proposition 5.8], up to minor modifications that we review in Appendix A.

The main step in the proof of the proposition is provided by the following lemma, which
is analogous to [26, Claim 5.4]. The semidefinite program considered in the proof of the
lemma, and its analysis, are our main points of departure from the proof in [26]. Indeed, the
proof of an upper bound on the completeness error of the sub-measurement {Sg} constructed
in the proof of the lemma is the main point where the existence of a three-fold tensor product
decomposition of the Hilbert space is most crucially used in [26].

I Lemma 13. There exists a function r(ε, δ) = O(
√
ε+
√
δ) such that the following holds for

all 0 ≤ ε, δ, η ≤ 1. Let (X ,A,G) be κ-structured. Let {Aax}a∈A be a family of measurements
indexed by x ∈ X . Let |Ψ〉 be a permutation-invariant bipartite state and assume ({Aax},G)
are (ε, δ)-globally consistent on |Ψ〉. Let {Qg}g∈G be a sub-measurement that is η-consistent
with {Aax} on |Ψ〉. Then there exists a sub-measurement {Sg} that is r(ε, δ)-consistent with
{Aax} and projective and has completeness error

〈Id−S, Id〉Ψ ≤ 〈Id−Q, Id〉Ψ + η + r(ε, δ) .

Proof. For g ∈ G, let Ag = ExA
g(x)
x . We consider the following primal and dual semidefinite

program, obtained from the semidefinite program in Lemma 10 by setting Ai to Ag and
formally replacing the state |Ψ〉 appearing in the SDP by the maximally entangled state7.

7 Note that we are not assuming that the state |Ψ〉 appearing in the hypothesis of Lemma 13 is maximally
entangled. The purpose of defining the SDP (2) without reference to the state |Ψ〉 is to make the
resulting complementary slackness conditions (4) easier to work with.
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The primal becomes

ω = sup
∑
g

Tr(T gAg) (2)

s.t. T g ≥ 0 ∀g ∈ G ,∑
g

T g ≤ Id ,

and the dual

min Tr(Z)
s.t. Z ≥ Ag ∀g ∈ G , (3)

Z ≥ 0 .

As shown in Lemma 10 both the primal and dual are strictly feasible, so that strong duality
holds. Let {T g} be an optimal primal solution. Without loss of generality,

∑
g T

g = Id, as any
solution such that (Id−

∑
g T

g)Ag′ 6= 0 for any g′ is clearly not optimal. The complementary
slackness conditions, which follow from the KKT conditions for optimality, immediately
imply

T gZ = T gAg ∀g ∈ G . (4)

For each g ∈ G let

Sg = E
x
Ag(x)
x T gAg(x)

x .

Then {Sg} is a sub-measurement. We show that Sg satisfies the desired consistency, projec-
tivity and completeness properties.
(i) Consistency: We have that

E
x

∑
g

∑
a 6=g(x)

〈Sg, Aax〉Ψ =
∑
g

〈Sg, (Id−Ag)〉Ψ .

Using self-consistency of {Aax},∑
g

〈Sg, Id〉Ψ = E
x

∑
g

〈Ag(x)
x T gAg(x)

x , Id〉Ψ

≈√ε E
x

∑
g

〈T g, Ag(x)
x 〉Ψ

=
∑
g

〈T g, Ag〉Ψ . (5)

Similarly,∑
g

〈Sg, Ag〉Ψ = E
x

∑
g

〈Ag(x)
x T gAg(x)

x , Ag〉Ψ

≈√ε E
x

∑
g

〈T g, Ag(x)
x AgAg(x)

x 〉Ψ . (6)
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Using the Cauchy-Schwarz inequality,

E
x

∑
g

〈T g,
(
Ag −Ag(x)

x

)
AgAg(x)

x 〉Ψ ≤
(

E
x

∑
g

〈T g, Ag(x)
x (Ag)2Ag(x)

x 〉Ψ
) 1

2

·
(

E
x

∑
g

〈T g,
(
Ag −Ag(x)

x

)2〉Ψ) 1
2

≤
(∑

g

〈T g,
(
Ag − (Ag)2)〉Ψ) 1

2

≤
√
δ , (7)

where the second inequality uses Ag(x)
x (Ag)2A

g(x)
x ≤ Id for the first term, and expands

the square and uses (Ag(x)
x )2 ≤ Ag(x)

x for the second term, and the last inequality follows
from item 3. in the definition of globally consistent. Combined with (5) and (6), we
have shown

E
x

∑
g

∑
a 6=g(x)

〈Sg, Aax〉Ψ ≈√ε+√δ
∑
g

〈T g, (Ag − (Ag)3)〉Ψ . (8)

Writing

Ag − (Ag)3 = Ag − (Ag)2 +
√
Ag
(
Ag − (Ag)2)√Ag

≤ 2
(
Ag − (Ag)2) ,

since all terms commute and (Ag)2 ≤ Ag ≤ Id, using item 3. in the definition of globally
consistent the right-hand side of (8) is at most 2δ.

(ii) Completeness:∑
g

〈Sg, Id〉Ψ = E
x

∑
g

〈Ag(x)
x T gAg(x)

x , Id〉Ψ

≈√ε E
x

∑
g

〈T g, Ag(x)
x 〉Ψ

≈√ε
∑
g

〈T gAg, Id〉Ψ

=
∑
g

〈T gZ, Id〉Ψ

= 〈Z, Id〉Ψ ,

where the third line uses Lemma 11 and the penultimate equality follows from (4), and
for the last we used

∑
g T

g = Id. We establish a lower bound on this last expression by
introducing {Qg}:

〈Q, Id〉Ψ − η ≤
∑
g

〈Qg, Ag〉Ψ

≤
∑
g

〈Qg, Z〉Ψ

≤ 〈Id, Z〉Ψ ,

where the second inequality uses the dual constraint (3), and the third uses
∑
g Q

g ≤ Id.
It follows that∑

g

〈Sg, Id〉Ψ ≥ 〈Q, Id〉Ψ − η −O
(√
ε
)
.
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(iii) Projectivity: By proceeding exactly as in (7), we can show

〈S, S〉Ψ =
∑
g

E
x
〈Ag(x)

x T gAg(x)
x , S〉Ψ

≈√ε+√δ
∑
g

〈AgT gAg, S〉Ψ

=
∑
g,g′

E
x
〈AgT gAg, Ag

′(x)
x T g

′
Ag
′(x)
x 〉Ψ

≈√ε+√δ
∑
g,g′

E
x
〈Ag(x)

x T gAg(x)
x , Ag

′(x)
x T g

′
Ag
′(x)
x 〉Ψ .

Using self-consistency of {Aax}, from the above we get

〈S, S〉Ψ ≈√ε+√δ
∑
g,g′

E
x
〈T gAg(x)

x , Ag
′(x)
x T g

′
Ag
′(x)
x 〉Ψ

≈√ε+√δ
∑
g,g′

〈T gAg, Sg
′
〉Ψ

= 〈Z, S〉Ψ , (9)

where the second line again uses similar arguments as (7) and the last line uses (4) and∑
g T

g = Id. Using the dual constraint (3), we deduce

〈S, S〉Ψ ≥
∑
g

〈Ag, Sg〉Ψ −O(
√
ε+
√
δ)

≈√ε+√δ 〈S, Id〉Ψ ,

where the second line follows from consistency of {Sg} and {Aax} shown in item (i). J

Based on Lemma 13, we give the proof of Proposition 12.

Proof of Proposition 12. Let ε, δ be as in condition 1., and {Qg} be the measurement whose
existence follows from condition 2. in the proposition, when |Φ〉 = |Ψ〉 and ε′, δ′ = ε, δ.
By applying Lemma 13 to the state |Ψ〉 and measurements {Aax} and {Qg} we obtain a
sub-measurement {Sg} that is ξ = r(ε, δ)-projective and consistent with {Aax}. Among all
sub-measurements that are ξ-projective and consistent with {Aax}, let {T g} be one that
minimizes the completeness error θ = 〈Id−T, Id〉. Provided ε0, δ0 are small enough we may
assume θ ≤ t(ε, δ) + r(ε, δ) ≤ 1/4. If θ = 0 the measurement T is perfectly complete, and
we are done as we can take the measurements Rg in the conclusion of the proposition to be
equal to T g. So, for the rest of the proof, we can assume that θ > 0. To complete the proof
we need to prove a better upper bound on θ. Towards this, introduce a state

|Φ〉 = |Φ̃〉
‖|Φ̃〉‖

, where |Φ̃〉 = (Id−T )⊗ (Id−T )|Ψ〉 .

Given the assumption that θ > 0, it follows that ‖|Φ̃〉‖ > 0, and hence this state is well
defined. Moreover we can estimate the norm of |Φ̃〉 as follows:∥∥|Φ̃〉∥∥2 = 〈(Id−T )2, (Id−T )2〉Ψ

= 〈Id−2T + T 2, Id−2T + T 2〉Ψ
= 1− 4〈T, Id〉Ψ + 4〈T, T 〉Ψ + 2〈T 2, Id〉Ψ − 4〈T 2, T 〉Ψ + 〈T 2, T 2〉Ψ
= 1− 4〈T, (Id−T )〉Ψ + 2〈T 2, (Id−T )〉Ψ − 〈T 2, T (Id−T )〉Ψ − 〈T 2, T 〉Ψ
≈√

ξ
1− 〈T, T 2〉Ψ

≈√
ξ

1− 〈T, Id〉Ψ , (10)
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where the last two approximations use the projectivity assumption on T .

I Claim 14. There are ε′ = O(ε+
√
ξ) and δ′ = O(δ +

√
ξ) such that ({Aax},G) is (ε′, δ′)-

globally consistent on |Φ〉.

Proof. We verify the properties in Definition 9. Item 1. is automatic. For item 2., self-
consistency of {Aax} on |Φ〉, write

E
x

∑
a

〈Aax, Aax〉Φ̃ = E
x

∑
a

〈Aax(Id−T )− TAax(Id−T ), (Id−T )Aax − (Id−T )AaxT 〉Ψ

≈√
ξ

E
x

∑
a

〈Aax, Aax〉Ψ − 〈T, Aax〉Ψ + 〈Aax(Id−T ), T 〉Ψ

≈√
ξ

1− ε− 〈T, Id〉Ψ .

Together with (10), it follows that {Aax} is ε′-self-consistent on |Φ〉, for some ε′ = O(ε+
√
ξ).

For item 3. in the definition, let Z be such that Ag−(Ag)2 ≤ Z for all g ∈ G, and 〈Z, Id〉Ψ ≤ δ.
Then

〈Z, Id〉Φ̃ ≈√ξ 〈Z, (Id−T )〉Ψ

≤ δ ,

and the property follows using (10). J

Applying condition 2. in the proposition to |Φ〉 and ({Aax},G) we obtain a measure-
ment {Qg} that is ξ′ = t(ε′, δ′)-projective and consistent with {Aax} on |Φ〉. Define a
sub-measurement {Rg} by

Rg := TT gT + (1− T )Qg(1− T ) .

The completeness of this measurement on |Ψ〉 is

〈R, Id〉Ψ = 〈T 3, Id〉Ψ + 〈(1− T )2, Id〉Ψ
≈√

ξ
1 , (11)

since

〈T 3, Id〉Ψ ≈√ξ 〈T
2, Id〉Ψ ≈√ξ 〈T, Id〉Ψ .

To evaluate consistency with {Aax},

E
x

∑
g

∑
a6=g(x)

〈Rg, Aax〉Ψ

= E
x

∑
g

∑
a 6=g(x)

(
〈TT gT, Aax〉Ψ + 〈(1− T )Qg(1− T ), Aax〉Ψ

)
≈√

ε+
√
ξ+κ E

x

∑
g

∑
a6=g(x)

(
〈TT g, TAax〉Ψ + 〈(1− T )Qg, (1− T )Aax〉Ψ

)
= O(

√
ξ) +O(

√
ξ′)
∥∥|Φ̃〉∥∥2

,

where the second line uses the second item in Lemma 6 and the last ε = O(ξ), given the
definition of the function r. Using (11), if we complete {Rg} into a measurement {R̃g} by
adding an arbitrary term, the latter will have consistency δ′′ = O(

√
ξ) +O(

√
ξ′)‖|Φ̃〉‖2 with
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{Aax}. Applying Lemma 13 yields a sub-measurement {V g} that is ξ = r(ε, δ)-projective and
consistent with {Aax}, and for which

〈(Id−V ), Id〉Ψ = O(
√
ξ) +O(

√
ξ′)‖|Φ̃〉‖2.

Recall that by assumption, {T g} is the most complete measurement that is ξ-projective and
consistent with Ax. Hence, 〈(Id−V ), Id〉Ψ ≥ 〈(Id−T ), Id〉Ψ, so that

θ ≤ O(
√
ξ) +O(

√
ξ′)(θ +O(

√
ξ)).

Provided ε, δ are small enough that O(
√
ξ′) = O(

√
t(ε′, δ′)), with ε′, δ′ as in Claim 14, is at

most 1/4, as can be assumed from the assumed upper bound t(ε′, δ′) ≤ t0 for ε′ ≤ ε0 and
δ′ ≤ δ0 provided t0 is a small enough universal constant, we have obtained θ = O(

√
ξ) =

O(
√
r(ε, δ)), as claimed. J

4 NP-hardness for two-player entangled games

Based on the result of the analysis of the low-degree test stated in Theorem 2 and following the
same sequence of reductions — composition of the low-degree test with itself, to reduce answer
size, and combination with the 3-SAT test — as in [26] we obtain the following analogue of [26,
Theorem 4.1], which establishes NP-hardness for games with poly(log logn)-bit answers.

I Theorem 15. There is an ε > 0 such that the following holds. Given a 2-player game G in
explicit form, it is NP-hard to distinguish between ω(G) = 1 and ω∗(G) ≤ 1− ε. Furthermore,
the problem is still NP-hard when restricting to games G of size n that are projection games
for which questions and answers can be specified using O(logn) bits and poly(log logn) bits
respectively.

In [26] this result is improved to obtain hardness for games with constant-bit answers
by reducing the 3-SAT test, on which the proof of Theorem 15 is based, to the three-player
QUADEQ test for testing satisfiability of a system of quadratic equations in binary variables.
This amounts to composing a PCP based on low-degree polynomials with the “exponential
PCP” based on the three-query linearity test of [5], and yields hardness for three-player
games with binary answers. The same steps can be completed with two players only by
using the technique of oracularization to transform the QUADEQ and linearity tests into
two-player games. The idea of oracularization is that for every triple of questions (q1, q2, q3)
to be sent to the three players in the original test, the verifier sends the entire triple to a
single player, Alice, and receives a triple of answers. The verifier also sends a randomly
selected question from the triple to a second player, Bob. The verifier accepts if and only if
Bob’s answer is consistent with Alice’s, and the triple of answers provided by Alice would
have been accepted in the original test. For concreteness, we summarize the oracularized
QUADEQ test in Figure 2. (Note that the third element in each of Alice’s question and
answer triples is redundant and can be eliminated.)

It is easy to see that honest strategies pass the oracularized QUADEQ test with probability
1. To establish soundness of the test, i.e to show an analogue of Lemma 3.5 of [26], we can
follow essentially the same steps as in the proof of that lemma. The key step of the proof is
to argue that, due to the soundness of the linearity test against entangled provers, there exist
measurements on each prover’s space whose outcomes are linear functions that are consistent
with the measurements applied in the test. For the oracularized test, we can perform this
step using the soundness of the oracularized linearity test against entangled provers, which
was analyzed in [20]. The rest of the proof proceeds unchanged. As a result we obtain the
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Out of the two provers, choose one at random to be Alice and the other to be Bob.
1. With probability 1/4 each, do the following:

a. Send label `1 to the two players and perform the (n/2)-bit (oracularized) linearity test.
b. Same with label `2.
c. Send labels (`1, `2) to the two players and perform the n-bit linearity test.
d. Same but perform the n2-bit linearity test.

2. Select random u, v ∈ Fn/22 and i ∈ [3], and generate the three queries q1 = (`1, u),
q2 = (`2, v), q3 = (`1, `2, (u, v)). Send q1, q2 to Alice, receiving answers a1, a2, and let
a3 = a1 + a2. Send qi to Bob, receiving answer b. Accept if b = ai.

3. Select random u, v ∈ Fn2 and i ∈ [3], and generate the three queries q1 = (`1, `2, u),
q2 = (`1, `2, v), q3 = (`1, `2, u⊗ v). Send q1, q2 to Alice, receiving answers a1, a2 and let
a3 = a1 · a2. Send qi to Bob, receiving answer b. Accept if b = ai.

4. Select a random vector v ∈ FK2 and let w =
∑
k wka

(k) ∈ Fn2

2 . Send (`1, `2, w) to a
randomly chosen player and check that the answer a =

∑
k wkc

(k).

Figure 2 The two-prover QUADEQ test. See Section [26, Section 3.4] for additional explanations
regarding the notation.

following corollary, which establishes Theorem 1; it is completely analogous to [26, Corollary
4.3], except that due to the oracularization, the two provers now have to provide answers of
two bits each instead of one.

I Corollary 16. There is an ε > 0 such that the following holds. Given a two-player projection
game G in explicit form in which answers from one player is restricted to 2 bits, and answers
from the other player to a single bit, it is NP-hard to distinguish between ω(G) = 1 and
ω∗(G) ≤ 1− ε.

Using that the games G for which NP-hardness is shown in Corollary 16 are projection
games, we may apply results on the parallel repetition of two-player entangled projection
games [7] to amplify the completeness and soundness parameters from 1 and 1− ε to 1 and
δ respectively, for any δ > 0, by repeating the game poly(ε−1 log δ−1) times and incurring a
corresponding multiplicative factor blow-up in the length of questions and answers in the
game.
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A Modified proofs from [26]

As noted in the introduction, the principal modifications to the soundness analysis of the
low-degree test in [26] necessary to make it hold for two provers concern the self-improvement
results of section 5. There are a few other steps of the proof of the main theorem in [26]
that seem to require a tripartite tensor product factorization of the Hilbert space to be
carried out. In all cases this is easily avoided by simple modification of the proof. Although
they remain very elementary, in this appendix we describe the only two other non-trivial
modifications needed. The first is in the proof of [26, Claim 6.10]. (We refer to the paper [26]
for context, including an explanation of the notation; the following discussion is meant for a
reader already familiar with the proofs in [26].)

I Claim 17 (Claim 6.10 in [26]). The measurements {Qgs}g∈Pd(s) satisfy

E
s∈Sm−1(Fm

q )

∑
g∈Pd(s)

〈Qgs , (Id−Qgs)〉Ψ = O(εc`) .

Proof. The proof is the same as in [26], except the third tensor factor is not needed — the
second can be used for the same purpose:

E
s∈Sm−1(Fm

q )

∑
g,g′∈Pd(s),g 6=g′

〈Qgs , Qg
′

s 〉Ψ ≈ E
s∈Sm−1(Fm

q )
E
x∈S

∑
g,g′∈Pd(s),g 6=g′

〈Qgs , Qg
′

s A
g(x)
x 〉Ψ

+O(εc`)

≈εc` E
s∈Sm−1(Fm

q )
E
x∈S

∑
g,g′∈Pd(s),g 6=g′

〈QgsAg(x)
x , Qg

′

s 〉Ψ

+O(εc`) +O(ε)
≈ O(εc`) +O(ε) .

In the first line, we used the consistency between Qgs on the first prover and Ag(x)
x on the

second; in the second line, we used the self-consistency of A; and in the third, we used the
consistency between Qg′s on the second prover and Ag(x)

x on the first prover. J

The second is in the proof of [26, Claim 6.14]. Here again, the use of a third tensor factor
can be avoided by a simple modification. Specifically, the last set of centered equations on
p.1056 (right below (6.22)) should be replaced with

E
(si)

∑
g,deg(g)>d

〈Rg(si), Id〉Ψ ≈εc` E
(si),z,`,`′3z

∑
g,deg(g)>d

∑
h(`∩si)=g(`∩si)
h′(`′∩si)=g(`′∩si)

〈Rg(si), B
h
` B

h′

`′ 〉Ψ

≈εc` E
(si),z,`,`′3z

∑
g,deg(g)>d

∑
h(`∩si)=g(`∩si)
h′(`′∩si)=g(`′∩si)

〈Rg(si)B
h′

`′ , B
h
` 〉Ψ

= O(εdc/2)
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1 Introduction

Quantum computers hold the promise of efficiently solving certain problems, such as factoring
integers [53], which are believed to be intractable for classical computers. However, experi-
mentally implementing many of these quantum algorithms is very difficult. For instance, the
largest number factored to date using Shor’s algorithm is 21 [40]. These considerations have
led to an intense interest in algorithms which can be more easily implemented with near-term
quantum devices, as well as a corresponding interest in the difficulty of these computational
tasks for classical computers. Some prominent examples of such models are constant-depth
quantum circuits [56, 11] and non-adaptive linear optics [3].

In many of these constructions, one can show that these “weak” quantum devices can
perform sampling tasks which cannot be efficiently simulated classically, even though they
may not be known to be capable of performing difficult decision tasks. Such arguments
were first put forth by Bremner, Jozsa, and Shepherd [14] and Aaronson and Arkhipov
[3], who showed that exactly simulating the sampling tasks performed by weak devices is
impossible assuming the polynomial hierarchy is infinite. The proofs of these results use
the fact that the output probabilities of quantum circuits can be very difficult to compute
– in fact they can be GapP-hard and therefore #P-hard to approximate. In contrast the
output probabilities of classical samplers can be approximated in BPPNP by Stockmeyer’s
approximate counting theorem [55], and therefore lie in the polynomial hierarchy. Hence a
classical simulation of these circuits would collapse the polynomial hierarchy to the third
level by Toda’s Theorem [57]. Similar hardness results have been shown for many other
models of quantum computation [56, 43, 22, 10, 21, 8, 16, 39].

A curious feature of many of these “weak” models of quantum computation is that they
can be implemented using non-universal gate sets. That is, despite being able to perform
sampling problems which appear to be outside of BPP, these models are not themselves
known to be capable of universal quantum computation. In short these models of quantum
computation seem to be “quantum-intermediate” between BPP and BQP, analogous to the
NP-intermediate problems which are guaranteed to exist by Ladner’s theorem [36]. From the
standpoint of computational complexity, it is therefore natural to study this intermediate
space between BPP and BQP, and to classify its properties.

One natural way to explore the space between BPP and BQP is to classify the power
of all possible quantum gate sets over qubits. The Solovay-Kitaev Theorem states that all
universal quantum gate sets, i.e. those which densely generate the full unitary group, have
equivalent computational power [18]. Therefore the interesting gates sets to classify are
those which are non-universal. However just because a gate set is non-universal does not
imply it is weaker than BQP – in fact some non-universal gates are known to be capable of
universality in an “encoded” sense, and therefore have the same computational power as
BQP [32]. Other non-universal gate sets are efficiently classically simulable [25], while others
seem to lie “between BPP and BQP” in that they are believed to be neither universal for
BQP nor efficiently classically simulable [14]. It is a natural open problem to fully classify all
restricted gate sets into these categories according to their computational complexity.

This is a challenging problem, and to date there has only been partial progress towards
this classification. One immediate difficulty in approaching this problem is that there is not
a known classification of all possible non-universal gate sets. In particular this would require
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classifying the discrete subgroups of SU(2n) for all n ∈ N, which to date has only been
solved for n ≤ 2 [28]. Therefore existing results have characterized the power of modifications
of known intermediate gate sets, such as commuting circuits and linear optical elements
[9, 10, 47]. Others works have classified the classical subsets of gates [6, 27], or else given
sufficient criteria for universality so as to rule out the existence of certain intermediate
families [52]. A complete classification of this space “between BPP and BQP” would require a
major improvement in our understanding of universality as well as the types of computational
hardness possible between BPP and BQP.

One well-known example of a non-universal family of quantum gates is the Clifford group.
Clifford circuits – i.e. circuits composed of merely CNOT, Hadamard and Phase gates –
are a discrete subgroup of quantum gates which play an important role in quantum error
correction [24, 13], measurement-based quantum computing [49, 50, 17], and randomized
benchmarking [38]. However a well-known result of Gottesman and Knill states that circuits
composed of Clifford elements are efficiently classically simulable [25, 5]. That is, suppose
one begins in the state |0〉⊗n, applies polynomially many gates from the set CNOT,H,S,
then measures in the computational basis. Then the Gottesman-Knill theorem states that
one can compute the probability a string y is output by such a circuit in classical polynomial
time. One can also sample from the same probability distribution on strings as this circuit as
well. A key part of the proof of this result is that the quantum state at intermediate stages
of the circuit is always a “stabilizer state” – i.e. the state is uniquely described by its set of
stabilizers in the Pauli group – and therefore has a compact representation. Therefore the
Clifford group is incapable of universal quantum computation (assuming BPP 6= BQP).

In this work, we will study the power of a related family of non-universal gates, known
as Conjugated Clifford gates, which we introduce below. These gates are non-universal by
construction, but not known to be efficiently classically simulable either. Our main result
will be to fully classify the computational power of this family of intermediate gate sets.

1.1 Our results

This paper considers a new “weak” model of quantum computation which we call “conjug-
ated Clifford circuits” (CCCs). In this model, we consider the power of quantum circuits
which begin in the state |0〉⊗n, and then apply gates from the set (U† ⊗ U†)(CNOT)(U ⊗
U), U†HU,U†SU where U is a fixed one-qubit gate. In other words, we consider the power
of Clifford circuits which are conjugated by an identical one-qubit gate U on each qubit.
These gates manifestly perform a discrete subset of unitaries so this gate set is clearly not
universal.

Although this transformation preserves the non-universality of the Clifford group, it is
unclear if it preserves its computational power. The presence of generic conjugating unitaries
(even the same U on each qubit, as in this model) breaks the Gottesman-Knill simulation
algorithm [25], as the inputs and outputs of the circuit are not stabilizer states/measurements.
Hence the intermediate states of the circuit are no longer efficiently representable by the
stabilizer formalism. This, combined with prior results showing hardness for other modified
versions of Clifford circuits [33, 34], leads one to suspect that CCCs may not be efficiently
classically simulable. However prior to this work no hardness results were known for this
model.

In this work, we confirm this intuition and provide two results in this direction. First,
we provide a complete classification of the power of CCCs according to the choice of U .
We do this by showing that any U which is not efficiently classically simulable by the
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Gottesman-Knill theorem suffices to perform hard sampling problems with CCCs4. That
is, for generic U , CCCs cannot be efficiently classically simulated to constant multiplicative
error by a classical computer unless the polynomial hierarchy collapses. This result can be
seen as progress towards classifying the computational complexity of restricted gate sets.
Indeed, given a non-universal gate set G, a natural question is to classify the power of G when
conjugated by the same one-qubit unitariy U on each qubit, as this transformation preserves
non-universality. Our work resolves this question for one of the most prominent examples of
non-universal gate sets, namely the Clifford group. As few examples of non-universal gate
sets are known5, this closes one of the major gaps in our understanding of intermediate gate
sets. Of course this does not complete the complexity classification of all gate sets, as there is
no known classification of all possible non-universal gate sets. However it does make progress
towards this goal.

Second, we show that under an additional complexity-theoretic conjecture, classical
computers cannot efficiently simulate CCCs to constant error in total variation distance.
This is a more experimentally achievable model of error for noisy error-corrected quantum
computations. The proof of this result uses standard techniques introduced by Aaronson
and Arkhipov [3], which have also been used in other models [22, 15, 8, 16, 42, 39].

This second result is interesting for two reasons. First, it means our results may have
relevance to the empirical demonstration of quantum advantage (sometimes referred to
as “quantum supremacy”) [48, 8, 4], as our results are robust to noise. Second, from the
perspective of computational complexity, it gives yet another conjecture upon which one can
base the supremacy of noisy quantum devices. As is the case with other quantum supremacy
proposals [3, 22, 15, 42, 39], in order to show that simulation of CCCs to additive error still
collapses the polynomial hierarchy, we need an additional conjecture stating that the output
probabilities of these circuits are hard to approximate on average. Our conjecture essentially
states that for most Clifford circuits V and most one-qubit unitaries U , it is #P-hard to
approximate a constant fraction of the output probabilities of the CCC U⊗nV (U†)⊗n to
constant multiplicative error. We prove that this conjecture is true in the worst case – in
fact, for all non-Clifford U , there exists a V such that some outputs are #P-hard to compute
to multiplicative error. However, it remains open to extend this hardness result to the
average case, as is the case with other supremacy proposals as well [3, 22, 15, 42, 39]. To
the best of our knowledge our conjecture is independent of the conjectures used to establish
other quantum advantage results such as boson sampling [3], Fourier sampling [22] or IQP
[15, 16]. Therefore our results can be seen as establishing an alternative basis for belief in
the advantage of noisy quantum devices over classical computation.

One final motivation for this work is that CCCs might admit a simpler fault-tolerant
implementation than universal quantum computing, which we conjecture to be the case. It is
well-known that many stabilizer error-correcting codes, such as the 5-qubit and 7-qubit codes
[37, 19, 54], admit transversal Clifford operations [24]. That is, performing fault-tolerant
Clifford operations on the encoded logical qubits can be done in a very simple manner –
by simply performing the corresponding Clifford operation on the physical qubits. This
is manifestly fault-tolerant, in that an error on one physical qubit does not “spread” to
more than 1 qubit when applying the gate. In contrast, performing non-Clifford operations
fault-tolerantly on such codes requires substantially larger (and non-transversal) circuits – and

4 More precisely, we show that any U that cannot be written as a Clifford times a Z-rotation suffices to
perform hard sampling problems with CCCs. See Theorem 7 for the exact statement.

5 The only examples to our knowledge are matchgates, Clifford gates, diagonal gates, and subsets thereof.
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therefore the non-transversal operations are often the most resource intensive. The challenge
in fault-tolerantly implementing CCCs therefore lies in performing the initial state preparation
and measurement. Initial preparation of non-stabilizer states in these codes is equivalent to
the challenge of producing magic states, which are already known to boost Clifford circuits
to universality using adaptive Clifford circuits [13, 12] (in contrast our construction would
only need non-adaptive Clifford circuits with magic states). Likewise, measuring in a non-
Clifford basis would require performing non-Clifford one-qubit gates prior to fault-tolerant
measurement in the computational basis. Therefore the state preparation/measurement
would be the challenging part of fault-tolerantly implementing CCCs in codes with transversal
Cliffords. It remains open if there exists a code with transversal conjugated Cliffords6 and
easy preparation and measurement in the required basis. Such a code would not be ruled
out by the Eastin-Knill Theorem [20], which states that the set of transversal gates must be
discrete for all codes which correct arbitrary one qubit errors. Of course this is not the main
motivation for exploring the power of this model – which is primarily to classify the space
between BPP and BQP – but an easier fault-tolerant implementation could be an unexpected
bonus of our results.

1.2 Proof Techniques
To prove these results, we use several different techniques.

1.2.1 Proof Techniques: classification of exact sampling hardness
To prove exact (or multiplicative) sampling hardness for CCCs for essentially all non-Clifford
U , we use the notion of postselection introduced by Aaronson [2]. Postselection is the
(non-physical) ability to discard all runs of the computation which do not achieve some
particular outcomes. Our proof works by showing that postselecting such circuits allows them
to perform universal quantum computation. Hardness then follows from known techniques
[2, 14, 3].

One technical subtlety that we face in this proof, which is not present in other results, is
that our postselected gadgets perform operations which are not closed under inversion. This
means one cannot use the Solovay-Kitaev theorem to change quantum gate sets [18]. This is
a necessary step in the proof that PostBQP = PP [2], which is a key part of the hardness
proof (see [10]). Fortunately, it turns out that we can get away without inverses due to a
recent inverse-free Solovay-Kitaev theorem of Sardharwalla et al. [51], which removes the
needs for inverses if the gate set contains the Paulis. Our result would have been much more
difficult to obtain without this prior result. To our knowledge this is the first application of
their result to structural complexity.

A further difficulty in the classification proof is that the postselection gadgets we derive do
not work for all non-Clifford U . In general, most postselection gadgets give rise to non-unitary
operations, and for technical reasons we need to work with unitary postselection gadgets
to apply the results of [51]. Therefore, we instead use several different gadgets which cover
different portions of the parameter space of U ’s. Our initial proof of this fact used a total

6 Of course one can always “rotate” a code with transversal Clifford operations to obtain a code with
transversal conjugated Cliffords. If the code previously had logical states |0〉L, |1〉L, then by setting
the states |0〉′L = U†L|0〉L and |1〉′L = U†L|1〉L, one obtains a code in which the conjugated Clifford gates
(conjugated by U) are transversal. However having the ability to efficiently fault-tolerantly prepare |0〉L
in the old code does not imply the same ability to prepare |0〉′L in the new code.
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of seven postselection gadgets found by hand. We later simplified this to two postselection
gadgets by conducting a brute-force search for suitable gadgets using Christopher Granade
and Ben Criger’s QuaEC package [26]. We include this simplified proof in this writeup.

A final difficulty that one often faces with postselected universality proofs is that one must
show that the postselection gadgets boost the original gate set to universality. In general this
is a nontrivial task; there is no simple test of whether a gate set is universal, though some
sufficient (but not necessary) criteria are known [52]. Prior gate set classification theorems
have solved this universality problem using representation theory [9, 52] or Lie theory [10, 47].
However, in our work we are able to make use of a powerful fact: namely that the Clifford
group plus any non-Clifford unitary is universal. This follows from results of Nebe, Rains and
Sloane [44, 45, 1] classifying the invariants of the Clifford group7. As a result our postselected
universality proofs are much simpler than in other gate set classification theorems.

1.2.2 Proof techniques: additive error
To prove hardness of simulation to additive error, we follow the techniques of [3, 15, 22, 42].
In these works, to show hardness of sampling from some probability distribution with additive
error, one combines three different ingredients. The first is anti-concentration – showing that
for these circuits, the output probabilities in some large set T are somewhat large. Second,
one uses Markov’s inequality to argue that, since the simulation error sums to ε, on some
other large set of output probabilities S, the error must be below a constant multiple of
the average. If S and T are both large, they must have some intersection – and on this
intersection S ∩ T , the imagined classical simulation is not only a simulation to additive
error, but also to multiplicative error as well (since the output probability in question is
above some minimum). Therefore a simulation to some amount ε of additive error implies a
multiplicative simulation to the output probabilities on a constant fraction of the outputs.
The impossibility of such a simulation is then obtained by assuming that computing these
output probabilities is multiplicatively hard on average. In particular, one assumes that it is
a #P-hard task to compute the output probability on |S ∩ T |/2n -fraction of the outputs.
This leads to a collapse of the polynomial hierarchy by known techniques [3, 14].

We follow this technique to show hardness of sampling with additive error. In our case,
the anticoncentration theorem follows from the fact that the Clifford group is a “2-design”
[58, 59] – i.e. a random Clifford circuit behaves equivalently to a random unitary up to its
second moment – and therefore must anticoncentrate, as a random unitary does (the fact that
unitary designs anticoncentrate was also shown independently by several groups [29, 39, 31]).
This is similar to the hardness results for IQP [15] and DQC1 [42], in which the authors also
prove their corresponding anticoncentration theorems. In contrast it is open to prove the
anticoncentration theorem used for Boson Sampling and Fourier Sampling [3, 22], though
these models have other complexity-theoretic advantages8. Therefore the only assumption
needed is the hardness-on-average assumption. We also show that our hardness assumption
is true for worst-case inputs. This result follows from combining known facts about BQP
with the classification theorem for exact sampling hardness.

7 However we note that in our proofs we will only use the fact that the Clifford group plus any non-Clifford
element is universal on a qubit. This version of the theorem admits a direct proof using the representation
theory of SU(2).

8 For instance, for these models it is known to be #P-hard to exactly compute most output probabilities of
their corresponding circuit. This is a necessary but not sufficient condition for the supremacy conjectures
to be true, which require it to be #P-hard to approximately compute most output probabilities of their
corresponding circuit. It remains open to show an exact average-to-worst case reduction for models
which exhibit anticoncentration, such as our model, IQP, and DQC1.
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1.3 Relation to other works on modified Clifford circuits

While we previously discussed the relation of our results to prior work on gate set classification
and sampling problems, here we compare our results to prior work on Clifford circuits. We
are not the first to consider the power of modified Clifford circuits. Jozsa and van den
Nest [33] and Koh [34], categorized the computational power of a number of modified
versions of Clifford circuits. The closest related result is the statement in [33] that if the
input state to a Clifford circuit is allowed to be an arbitrary tensor product of one-qubit
states, then such circuits cannot be efficiently classically simulated unless the polynomial
hierarchy collapses. Their hardness result uses states of the form |0〉⊗n/2|α〉⊗n/2, where
|α〉 = cos(π/8)|0〉+ i sin(π/8)|1〉 is a magic state. They achieve postselected hardness via
the use of magic states to perform T gates, using a well-known construction (see e.g. [13]).
So in the [33] construction there are different input states on different qubits. In contrast,
our result requires the same input state on every qubit – as well as measurement in that
basis at the end of the circuit. This ensures our modified circuit can be interpreted as the
action of a discrete gate set, and therefore our result has relevance for the classification of
the power of non-universal gate sets.

2 Preliminaries

We denote the single-qubit Pauli matrices by X = σx =
(

0 1
1 0

)
, Y = σy =

(
0 −i
i 0

)
,

Z = σz =
(

1 0
0 −1

)
, and I =

(
1 0
0 1

)
. The ±1-eigenstates of Z are denoted by |0〉 and |1〉

respectively. The rotation operator about an axis t ∈ {x, y, z} with an angle θ ∈ [0, 2π) is

Rt(θ) = e−iθσt/2 = cos(θ/2)I − i sin(θ/2)σt. (1)

We will use the fact that any single-qubit unitary operator U can be written as

U = eiαRz(φ)Rx(θ)Rz(λ), (2)

where α, φ, θ, λ ∈ [0, 2π) [46].
For linear operators A and B, we write A ∝ B to mean that there exists α ∈ C\{0} such

that A = αB. For linear operators, vectors or complex numbers a and b, we write a ∼ b

to mean that a and b differ only by a global phase, i.e. there exists θ ∈ [0, 2π) such that
a = eiθb. For any subset S ⊆ R and k ∈ R, we write kS to refer to the set {kn : n ∈ S}. For
example, kZ = {kn : n ∈ Z}. We denote the set of odd integers by Zodd. We denote the
complement of a set S by Sc.

2.1 Clifford circuits and conjugated Clifford circuits

The n-qubit Pauli group Pn is the set of all operators of the form ikP1 ⊗ . . . ⊗ Pn, where
k ∈ {0, 1, 2, 3} and each Pj is a Pauli matrix. The n-qubit Clifford group is the normalizer of
Pn in the n-qubit unitary group Un, i.e. Cn = {U ∈ Un : UPnU† = Pn}.

The elements of the Clifford group, called Clifford operations, have an alternative char-
acterization: an operation is a Clifford operation if and only if it can be written as a
circuit comprising the following gates, called basic Clifford gates: Hadamard, π/4 phase, and
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controlled-NOT gates, whose matrix representations in the computational basis are

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


respectively. An example of a non-Clifford gate is the T gate, whose matrix representation is

given by T =
(

1 0
0 eiπ/4

)
. We denote the group generated by the single-qubit Clifford gates

by 〈S,H〉.
We will make use of the following fact about Clifford operations.

I Fact 1. Rz(φ) is a Clifford operation if and only if φ ∈ π
2Z.

A Clifford circuit is a circuit that consists of computational basis states being acted on
by the basic Clifford gates, before being measured in the computational basis. Without loss
of generality, we may assume that the input to the Clifford circuit is the all-zero state |0〉⊗n.
We define conjugated Clifford circuits (CCCs) similarly to Clifford circuits, except that each
basic Clifford gate G is replaced by a conjugated basic Clifford gate (U⊗k)†gU⊗k, where
k = 1 when g = H,S and k = 2 when g = CNOT. In other words,

I Definition 2. Let U be a single-qubit unitary gate. A U -conjugated Clifford circuit
(U -CCC) on n qubits is defined to be a quantum circuit with the following structure:
1. Start with |0〉⊗n.
2. Apply gates from the set {U†HU,U†SU, (U† ⊗ U†)CNOT(U ⊗ U)}.
3. Measure each qubit in the computational basis.
Because the intermediate U and U† gates cancel, we may equivalently describe a U -CCC as
follows:
1. Start with |0〉⊗n.
2. Apply U⊗n.
3. Apply gates from the set {H,S,CNOT}.
4. Apply (U†)⊗n.
5. Measure each qubit in the computational basis.

2.2 Notions of classical simulation of quantum computation
Let P = {pz}z and Q = {qz}z be (discrete) probability distributions, and let ε ≥ 0. We say
that Q is a multiplicative ε-approximation of P if for all z,

|pz − qz| ≤ εpz. (3)

We say that Q is an additive ε-approximation of P if

1
2
∑
z

|pz − qz| ≤ ε. (4)

Note that any multiplicative ε-approximation is also an additive ε/2-approximation, since
summing Eq. (3) over all z produces Eq. (4). Here the factor of 1/2 is present so that ε is
the total variation distance between the probability distributions.

A weak simulation with multiplicative (additive) error ε > 0 of a family of quantum
circuits is a classical randomized algorithm that samples from a distribution that is a
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multiplicative (additive) ε-approximation of the output distribution of the circuit. Note that
from an experimental perspective, additive error is the more appropriate choice, since the
fault-tolerance theorem merely guarantees additive closeness between the ideal and realized
output distributions [7].

There are of course other notions of simulability of quantum circuits – such as strong
simulation where one can compute individual output probabilities. We discuss these further
in Section 6.

2.3 Postselection gadgets
Our results involve the use of postselection gadgets to simulate unitary operations. In this
section, we introduce some terminology to describe these gadgets.

I Definition 3. Let U be a single-qubit operation. Let k, l ∈ Z+ with k > l. A k-to-l
U -CCC postselection gadget G is a postselected circuit fragment that performs the following
procedure on an l-qubit system:
1. Introduce a set T of (k − l) ancilla registers in the state |a1 . . . ak−l〉, where a1 . . . ak−l ∈
{0, 1}k−l.

2. Apply U⊗(k−l) to the set T of registers.
3. Apply a k-qubit Clifford operation Γ to both the system and ancilla.
4. Choose a subset S of (k − l) registers and apply (U†)⊗(k−l) to S.
5. Postselect on the subset S of qubits being in the state |b1 . . . bk−l〉, where b1 . . . bk−l ∈
{0, 1}k−l.

An example of a 4-to-1 U -CCC postselection gadget is the circuit fragment described by
the following diagram:

Γ

U† 〈b1|

|a1〉 U U† 〈b2|

|a2〉 U U† 〈b3|

|a3〉 U

Let G be a U -CCC postselection gadget as described in Definition 3. The action A(G)
(also denoted AG) of G is defined to be the linear operation that it performs, i.e.

A(G) = AG = 〈b1 . . . bl|S

(∏
i∈S

U†i

)
Γ
(∏
i∈T

Ui

)
|a1 . . . al〉T , (5)

and the normalized action of G, when it exists, is

ÃG = AG

(detAG)2−l . (6)

Note that the above normalization is chosen so that det ÃG = 1.
We say that a U -CCC postselection gadget G is unitary if there exists α ∈ C\{0} and a

unitary operator U such that AG = αU . It is straightforward to check that the following are
equivalent conditions for gadget unitarity.
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I Lemma 4. A U-CCC postselection gadget G is unitary if and only if either one of the
following holds:
1. There exists γ > 0 such that A†GAG = γI,
2. Ã†GÃG = I, i.e. ÃG is unitary.

Similarly, we say that a U -CCC postselection gadget G is Clifford if there exists α ∈ C\{0}
and a Clifford operator U such that AG = αU . The following lemma gives a necessary
condition for a gadget to be Clifford.

I Lemma 5. If G is a Clifford U -CCC postselection gadget, then

AGXA
†
G ∝ X or AGXA†G ∝ Y or AGXA†G ∝ Z, (7)

and

AGZA
†
G ∝ X or AGZA†G ∝ Y or AGZA†G ∝ Z. (8)

Proof. If G is a Clifford U -CCC postselection gadget, then there exists α ∈ C\{0} and a
Clifford operation Γ such that AG = αΓ. Since Γ is Clifford, ΓXΓ† is a Pauli operator. But
ΓXΓ† 6∼ I, otherwise, X ∼ I, which is a contradiction. Hence, ΓXΓ† ∼ X or Y or Z, which
implies Eq. (7). The proof of Eq. (8) is similar, with X replaced with Z. J

3 Weak simulation of CCCs with multiplicative error

3.1 Classification results
In this section, we classify the hardness of weakly simulating U -CCCs as we vary U . As we
shall see, it turns out that the classical simulation complexities of the U -CCCs associated with
this notion of simulation are all of the following two types: the U -CCCs are either efficiently
simulable, or are hard to simulate to constant multiplicative error unless the polynomial
hierarchy collapses. To facilitate exposition, we will introduce the following terminology to
describe these two cases: Let C be a class of quantum circuits. Following the terminology in
[34], we say that C is in PWEAK if it is efficiently simulable in the weak sense by a classical
computer. We say that C is PH-supreme (or that it exhibits PH-supremacy) if it satisfies
the property that if C is efficiently simulable in the weak sense by a classical computer to
constant multiplicative error, then the polynomial hierarchy (PH) collapses.

The approach we take to classifying the U -CCCs is to decompose each U into the form
given by Eq. (2),

U = eiαRz(φ)Rx(θ)Rz(λ), (9)

and study how the classical simulation complexity changes as we vary α, φ, θ and λ. Two
simplifications can immediately be made. First, the outcome probabilities of the U -CCC are
independent of α, since α appears only in a global phase. Second, the probabilities are also
independent of λ. To see this, note that the outcome probabilities are all of the form:

|〈b|Rz(−λ)⊗nV Rz(λ)⊗n|0〉|2 = |〈b|V |0〉|2, (10)

which is independent of λ. In the above expression, b ∈ {0, 1}n and

V = Rx(−θ)⊗nRz(−φ)⊗nΓRz(φ)⊗nRx(θ)⊗n

for some Clifford circuit Γ. The equality follows from the fact that the computational basis
states are eigenstates of Rz(λ)⊗n with unit-magnitude eigenvalues.
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Table 1 Complete complexity classification of U -CCCs (where U = Rz(φ)Rx(θ)) with respect
to weak simulation, as we vary φ and θ. The roman numerals in parentheses indicate the parts of
Lemma 6 that are relevant to the corresponding box. All U -CCCs are either in PWEAK (i.e. can be
efficiently simulated in the weak sense) or PH-supreme (i.e. cannot be simulated efficiently in the
weak sense, unless the polynomial hierarchy collapses.)

φ
θ πZ π

2 Zodd
(
π
2 Z
)c

π
2 Z

PWEAK
(i, ii)

PWEAK
(ii)

PH-supreme
(iv)(

π
2 Z
)c PWEAK

(i)
PH-supreme

(iii)
PH-supreme

(iv)

Hence, to complete the classification, it suffices to just restrict our attention to the
two-parameter family {Rz(φ)Rx(θ)}φ,θ of unitaries. We first prove the following lemma (see
Table 1 for a summary):

I Lemma 6. Let U = Rz(φ)Rx(θ), where φ, θ ∈ [0, 2π). Then
U -CCCs are in PWEAK, if

(i) φ ∈ [0, 2π) and θ ∈ πZ, or

(ii) φ ∈ π
2Z and θ ∈ π

2Z.
U -CCCs are PH-supreme, if

(iii) φ /∈ π
2Z and θ ∈ π

2Zodd, or

(iv) θ /∈ π
2Z.

We defer the proof of Lemma 6 to Sections 3.2 and 3.3. Lemma 6 allows us to prove our
main theorem:

I Theorem 7. Let U be a single-qubit unitary operator. Consider the following two state-
ments:
(A) U -CCC is in PWEAK.
(B) There exists a single-qubit Clifford operator Γ ∈ 〈S,H〉 and λ ∈ [0, 2π) such that9

U ∼ ΓRz(λ). (11)

Then,
1. (B) implies (A).
2. If the polynomial hierarchy is infinite, then (A) implies (B).

In other words, if we assume that the polynomial hierarchy is infinite, then U -CCCs are
PH-supreme if and only if they cannot be written in the form U ∼ ΓRz(λ), where Γ is a
Clifford circuit and Rz(λ) is a Z-rotation.

Proof.
1. Since Rz(λ)|0〉 ∼ |0〉, it follows that for any Γ, ΓRz(λ)-CCCs have the same outcome

probabilities as Γ-CCCs. But C-CCCs are efficiently simulable, by the Gottesman-Knill
Theorem, since Γ ∈ 〈S,H〉. Hence, U -CCCs are in PWEAK.

9 or alternatively, we could restrict the range of λ to be in [0, π], since any factor of Rz(π/2) ∼ S can be
absorbed into the Clifford operator Γ.
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2. Let U be such that U -CCCs are in PWEAK. Using the decomposition in Eq. (2), write
U = eiαRz(φ)Rx(θ)Rz(λ). Since we assumed that the polynomial hierarchy is infinite,
Lemma 6 implies that
a. θ ∈ πZ, or
b. θ ∈ π

2Z and φ ∈ π
2Z.

In Case (a), θ ∈ 2πZ or πZodd. If θ ∈ 2πZ, then

U ∼ Rz(φ)Rx(2πZ)Rz(γ) = I.Rz(φ+ γ),

which is of the form given by Eq. (11). If πZodd, then

U ∼ Rz(φ)Rx(πZodd)Rz(γ) ∼ Rz(φ)XRz(γ) = XRz(γ − φ),

which is again of the form given by Eq. (11).
In Case (b),

U ∈ eiαRz(πZ/2)Rx(πZ/2)Rz(γ)
= eiαRz(πZ/2)HRz(πZ/2)HRz(γ). (12)

But the elements of Rz(πZ/2) are of the form Sj , for j ∈ Z, up to a global phase.
Therefore, Rz(πZ/2)HRz(πZ/2)H is Clifford, and U is of the form Eq. (11). J

Hence, Theorem 7 tells us that under the assumption that the polynomial hierarchy is
infinite, U -CCCs can be simulated efficiently (in the weak sense) if and only if U ∼ ΓRz(λ)
for some single qubit Clifford operator Γ, i.e. if U is a Clifford operation times a Z-rotation.

3.2 Proofs of efficient classical simulation

In this section, we prove Cases (i) and (ii) of Lemma 6.

3.2.1 Proof of Case (i): φ ∈ [0, 2π) and θ ∈ πZ

I Theorem 8. Let U = Rz(φ)Rx(θ). If φ ∈ [0, 2π) and θ ∈ πZ, then U-CCCs are in
PWEAK.

Proof. First, we consider the case where θ ∈ 2πZ. In this case, U = Rz(φ), and the
amplitudes of the U -CCC can be written as

〈y|Rz(−φ)⊗nΓRz(φ)⊗n|x〉 ∼ 〈y|Γ|x〉 (13)

for some Clifford operation Γ and computational basis states |x〉 and |y〉. By the Gottesman-
Knill Theorem, these U -CCCs can be efficiently weakly simulated.

Next, we consider the case where θ ∈ πZodd. In this case, U = Rz(φ)Rx(π) ∼ Rz(φ)X,
and the amplitudes of the U -CCC can be written as

〈y|X⊗nRz(−φ)⊗nΓRz(φ)⊗nX⊗n|x〉 ∼ 〈ȳ|Γ|x̄〉 (14)

for some Clifford operation Γ and computational basis states |x〉 and |y〉, where z̄ is the
bitwise negation of z. By the Gottesman-Knill Theorem, these U -CCCs can be efficiently
weakly simulated.

Putting the above results together, we get that U -CCCs are in PWEAK. J
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3.2.2 Proof of Case (ii): φ ∈ π
2Z and θ ∈ π

2Z

I Theorem 9. Let U = Rz(φ)Rx(θ). If φ ∈ π
2Z and θ ∈ π

2Z, then U -CCCs are in PWEAK.

Proof. The elements of Rz(π2Z) are of the form Sj , where j ∈ Z, up to a global phase.
Therefore, U = Rz(φ)Rx(θ) = Rz(φ)HRz(θ)H is a Clifford operation, and so, the U -CCCs
consist of only Clifford gates. By the Gottesman-Knill Theorem, these U -CCCs can be be
efficiently (weakly) simulated. J

3.3 Proofs of hardness

In this section, we prove Cases (iii) and (iv) of Lemma 6. Our proof uses postselection gadgets,
similar to the techniques used in [14, 10]. One can also prove hardness using techniques from
measurement-based-quantum computing, at least for certain U . We give such a proof in the
appendix of the full version of our paper for the interested reader; we believe this proof may
be more intuitive for those who are familiar with measurement-based quantum computing.

We start by proving a lemma that will be useful for the proofs of hardness.

I Lemma 10. (Sufficient condition for PH-supremacy) Let U be a single-qubit gate. If there
exists a unitary non-Clifford U -CCC postselection gadget G, then U -CCCs are PH-supreme.

Proof. Suppose such a gadget G exists. Then, since the Clifford group plus any non-Clifford
gate is universal [44, 45, 1], the Clifford group plusGmust be universal on a single qubit. Then,
by the inverse-free Solovay-Kitaev Theorem of Sardharwalla et al. [51], using polynomially
many gates from the set G,H, S one can compile any desired one-qubit unitary V to inverse
exponential accuracy (since in particular 〈H,S〉 contains the Paulis). In particular, since
any three-qubit unitary can be expressed as a product of a constant number of CNOTs and
one-qubit unitaries, one can compile any gate in the set {CCZ, Controlled-H, all one-qubit
gates } to inverse exponential accuracy with polynomial overheard.

In his proof that PostBQP = PP, Aaronson showed that postselected poly-sized circuits
of the above gates can compute any language in PP [2]. Furthermore, as his postselection
succeeds with inverse exponential probability, compiling these gates to inverse exponential
accuracy is sufficient for performing arbitrary PP computations.

Hence, by using polynomially many gadgets for G, CNOT, H and S, one can compile
Aaronson’s circuits10 for computing PP to inverse exponential accuracy, and hence these
circuits can compute PP-hard problems. PH-supremacy then follows from the techniques of
[14, 3]. Namely, a weak simulation of such circuits with constant multiplicative error would
place PP ⊆ BPPNP ⊆ ∆3 by Stockmeyer counting, and hence by Toda’s theorem this would
result in the collapse of PH to the third level. In fact, by the arguments of Fujii et al. [23],
one can collapse PH to the second level as well, by placing coC=P in SBP, and we refer the
interested reader to their work for the complete argument. J

10More specifically, we compile the circuit given by (U†)⊗n, then Aaronson’s circuit, then U⊗n, as we
need to cancel the U ’s at the beginning and the U†s at the end in order to perform Aaronson’s circuit
which starts and measures in the computational basis. However as the U,U† are one-qubit gates, one
can cancel them to inverse exponential accuracy using our gates, and hence this construction suffices.
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3.3.1 Proof of Case (iii): φ /∈ π
2Z and θ ∈ π

2Zodd
Let U = Rz(φ)Rx(θ). Consider the following U -CCC postselection gadget:

I(φ, θ) = • U† 〈0|

|0〉 U •

(15)

We now prove some properties about I(φ, θ).

I Theorem 11.
1. The action of I(φ, θ) is

AI(φ,θ) =
(

cos2 θ
2

i
2 sin θ e−iφ

− i
2 sin θ eiφ − sin2 θ

2

)
. (16)

2. I(φ, θ) is a unitary gadget if and only if θ ∈ π
2Zodd. When I(φ, θ) is unitary,

ÃI(φ,θ) = i√
2

(
1 i(−1)ke−iφ

−i(−1)keiφ −1

)
, (17)

where k = θ
π −

1
2 .

3. I(φ, θ) is a Clifford gadget if and only if φ ∈ π
2Z and θ ∈ π

2Zodd.
4. I(φ, θ) is a unitary non-Clifford gadget if and only if φ /∈ π

2Z and θ ∈ π
2Zodd.

Proof.
1. By direct calculation.
2. By Eq. (16),

A†I(φ,θ)AI(φ,θ) =
(

cos2 θ
2

i
4 sin(2θ)e−iφ

− i
4 sin(2θ)eiφ sin2 θ

2

)
. (18)

If θ ∈ π
2Zodd, then A

†
I(φ,θ)AI(φ,θ) = 1

2I, which implies that I(φ, θ) is a unitary gadget, by
Lemma 4. Conversely, assume that I(φ, θ) is a unitary gadget. Suppose that θ /∈ π

2Zodd.
Then sin(2θ) 6= 0, which implies that A†I(φ,θ)AI(φ,θ) 6∝ I, which is a contradiction. Hence,
θ ∈ π

2Zodd.
Next, k = θ

π −
1
2 implies that θ = π

2 (2k + 1). Since θ ∈ π
2Zodd, it follows that k ∈ Z.

Then sin θ = (−1)k, cos2 θ
2 = 1

2 and sin2 θ
2 = 1

2 . Hence,

AI(φ,θ) =
( 1

2
i
2 (−1)ke−iφ

− i
2 (−1)keiφ − 1

2

)
. (19)

Hence, detAI(φ,θ) = − 1
2 . Plugging this and Eq. (19) into Eq. (6) gives Eq. (17).

3. (⇐) Let φ ∈ π
2Z and θ ∈ π

2Zodd. Write φ = π
2 l and θ = π

2 (2k + 1). Then, by Eq. (17),

ÃI(φ,θ) = i√
2

(
1 i1+2k+3l

i3+2k+l −1

)
. (20)

Now, it is straightforward to check that for all k, l ∈ Z, ÃI(φ,θ)XÃ
†
I(φ,θ) ∈ {−X,Z,−Z}

and ÃI(φ,θ)ZÃ
†
I(φ,θ) ∈ {−Y,X, Y,−X}. This shows that ÃI(φ,θ) maps the Pauli group to

itself, under conjugation, which implies that ÃI(φ,θ) is Clifford.
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(⇒) Assume that I(φ, θ) is a Clifford gadget. Suppose that φ /∈ π
2Z or θ /∈ π

2Zodd. But
I(φ, θ) is unitary, and hence, θ ∈ π

2Zodd. So φ /∈ π
2Z. By Lemma 5, ÃI(φ,θ)XÃ

†
I(φ,θ) ∼ X

or Y or Z. But, as we compute,

ÃI(φ,θ)XÃ
†
I(φ,θ) =

(
(−1)k sinφ −e−iφ cosφ
−eiφ cosφ −(−1)k sinφ

)
. (21)

If ÃI(φ,θ)XÃ
†
I(φ,θ) ∼ X or Y , then sinφ = 0, which is a contradiction, since φ /∈ π

2Z.
Hence, ÃI(φ,θ)XÃ

†
I(φ,θ) ∼ Z, which implies that cosφ = 0. But this also contradicts

φ /∈ π
2Z. Hence, φ ∈ π

2Z and θ ∈ π
2Zodd.

4. Follows from Parts 2 and 3 of Theorem 11. J

I Theorem 12. Let U = Rz(φ)Rx(θ). If φ /∈ π
2Z and θ ∈ π

2Zodd, then U-CCCs are
PH-supreme.

Proof. By Theorem 11, when φ /∈ π
2Z and θ ∈ π

2Zodd, then I(φ, θ) is a unitary non-Clifford
U -CCC postselection gadget. Hence, by Lemma 10, U -CCCs are PH-supreme. J

3.3.2 Proof of Case (iv): θ /∈ π
2Z

Let U = Rz(φ)Rx(θ). Consider the following U -CCC postselection gadget:

J(φ, θ) = •

|0〉 U S • U† 〈0|

(22)

We now prove some properties about J(φ, θ).

I Theorem 13.
1. The action of J(φ, θ) is

AJ(φ,θ) = 1√
2
e−i

π
4

(
i+ cos θ 0

0 1 + i cos θ

)
= i√

2
e−i

π
4
√

1 + cos2 θ S†Rz(2 tan−1(cos θ)). (23)

2. J(φ, θ) is a unitary gadget for all θ, φ ∈ [0, 2π). The normalized action is

ÃJ(φ,θ) ∼ S†Rz(2 tan−1(cos θ)). (24)

3. J(φ, θ) is a Clifford gadget if and only if θ ∈ π
2Z.

4. J(φ, θ) is a unitary non-Clifford gadget if and only if θ /∈ π
2Z.

Proof.
1. By direct calculation.
2. The determinant of AJ(φ,θ) is

detAJ(φ,θ) = 1
2 (1 + cos2 θ) 6= 0 (25)

for all θ and φ. Hence, AJ(φ,θ) ∝ S†Rz(2 tan−1(cos θ)) for all θ and φ, which implies that
J(φ, θ) is a unitary gadget for all θ and φ.
Hence,

ÃJ(φ,θ) =
AJ(φ,θ)√
detAJ(φ,θ)

= ie−i
π
4 S†Rz(2 tan−1(cos θ)).
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3.

J(φ, θ) is a Clifford gadget ⇔ S†Rz(2 tan−1(cos θ)) is Clifford
⇔ Rz(2 tan−1(cos θ)) is Clifford
⇔ 2 tan−1(cos θ) ∈ π

2Z by Fact 1
⇔ cos θ ∈ {0, 1,−1}
⇔ θ ∈ π

2Z. (26)

4. Follows from Parts 2 and 3 of Theorem 13. J

I Theorem 14. Let U = Rz(φ)Rx(θ). If θ /∈ π
2Z, then U -CCCs are PH-supreme.

Proof. By Theorem 13, when θ /∈ π
2Z, then I(φ, θ) is a unitary non-Clifford U -CCC postse-

lection gadget. Hence, by Lemma 10, U -CCCs are PH-supreme. J

4 Weak simulation of CCCs with additive error

Here we show how to achieve additive hardness of simulating conjugated Clifford circuits,
under additional hardness assumptions. Specifically, we will show that under these assump-
tions, there is no classical randomized algorithm which given a one-qubit unitary U and a
Clifford circuit V , samples the output distribution of V conjugated by U ’s up to constant `1
error.

In the following, let V be a Clifford circuit on n qubits, U be a one-qubit unitary which
is not a Z-rotation times a Clifford, and y ∈ {0, 1}n be an n-bit string. Define

py,U,V =
∣∣〈y|(U†)⊗nV U⊗n|0n〉∣∣2 .

In other words py,U,V is the probability of outputting the string y when applying the circuit
V conjugated by U ’s to the all 0’s state, and then measuring in the computational basis. Let
the corresponding probability distribution on y’s given U and V be denoted D(U, V ).

I Theorem 15. Assuming that PH is infinite and Conjecture 16, then there is no classical
algorithm which given a one-qubit unitary U and an n-qubit Clifford circuit V , outputs a
probability distribution which is 1/100 close to D(U, V ) in total variation distance.

I Conjecture 16. For any U which is not equal to a Z-rotation times a Clifford, it is #P-hard
to approximate a 6/50 fraction of the py,U,V over the choice of y, V to within multiplicative
error 1/2 + o(1).

In order to prove this we’ll actually prove a more general theorem described below; the
result will then follow from simply setting a = c = 1/5, ε = 1/100. One can in general plug in
any values they like subject to the constraints; for instance one can strengthen the hardness
assumption by assuming computing a smaller fraction of the py,U,V is still #P-hard to obtain
larger allowable error in the simulation. These parameters are similar to those appearing in
other hardness conjectures, for example those used for IQP [15].

I Theorem 17. Pick constants 0 < ε, a, c < 1 such that (1−a)2/2− c > 0 and 2ε
ac < 1. Then

assuming Conjecture 18, given a one-qubit unitary U and an n-qubit Clifford circuit V , one
cannot weakly simulate the distribution D(U, V ) with a randomized classical algorithm with
total variation distance error ε, unless the polynomial hierarchy collapses to the third level.
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I Conjecture 18. For any U which is not equal to a Z-rotation times a Clifford, it is #P-hard
to multiplicatively approximate (1− a)2/2− c fraction of the py,U,V over the choice of (y, V ),
up to multiplicative error 2ε

ac + o(1).

Proof of Theorem 17. Suppose by way of contradiction that there exists a classical poly-
time randomized algorithm which given inputs U, V outputs samples from a distribution
D′(U, V ) such that 1

2 |D(U, V )−D′(U, V )|1 < ε. In particular, let qy,U,V be the probability
that D′(U, V ) outputs y – i.e. the probability that the simulation outputs y under inputs
U, V .

By our simulation assumption, for all U, V we have that
∑
y |qy,U,V − py,U,V | ≤ 2ε.

Therefore by Markov’s inequality, given our constant 0 < c < 1, we have that for all U and
V there exists a set S′ ⊆ {0, 1}n of output strings y of size |S′|/2n > 1− c, such that for all
y ∈ S′,

|qy,U,V − py,U,V | ≤
2ε
c2n .

In particular, by averaging over V ’s, we see that for any U as above, there exists a
set S ⊂ {0, 1}n × C of pairs (y, V ) such that for all (y, V ) ∈ S, |qy,U,V − py,U,V | ≤ 2ε

c2n .

Furthermore S has measure at least (1− c) over a uniformly random choice of (y, V ).
We now show the following anticoncentration lemma (similar theorems were shown

independently in [29, 39, 31]):

I Lemma 19. For any fixed U and y as above, and for any constant 0 < a < 1, we have
that at least (1−a)2

2 fraction of the Clifford circuits V have the property that

py,U,V ≥
a

2n .

We will prove Lemma 19 shortly. First, we will show why this implies Theorem 17. In
particular, by averaging Lemma 19 over y’s, we see that for any U as above, there exists a
set T ⊂ {0, 1}n × C of pairs (y, V ) such that for all (y, V ) ∈ T , py,U,V ≥ a

2n . Furthermore
T has measure at least (1−a)2

2 over a uniformly random choice of (y, V ). Since we assumed
that (1− a)2/2 + (1− c) > 1, then S ∩ T must be nonempty, and in particular must contain
(1− a)2/2− c fraction of the pairs (y, V ). On this set S ∩ T , we have that

qy,U,V ≤ py,U,V + 2ε
c2n = py,U,V + 2ε

ac

a

2n ≤
(

1 + 2ε
ac

)
py,U,V ,

and likewise

qy,U,V ≥ py,U,V −
2ε
c2n = py,U,V −

2ε
ac

a

2n ≥
(

1− 2ε
ac

)
py,U,V .

Since 1 − 2ε
ac > 0 (which we guaranteed by assumption), qy,U,V is a multiplicative

approximation to py,U,V with multiplicative error 2ε
ac for (y, V ) in the set S ∩ T . The set

S ∩ T contains at least (1− a)2/2− c fraction of the total pairs (y, V ).
On the other hand, by Conjecture 18 we have that computing a (1− a)2/2− c fraction of

the py,U,V to this level of multiplicative error is a #P-hard task. So approximating py,U,V to
this level of multiplicative error for this fraction of outputs is both #P-hard, and achievable
by our simulation algorithm. This collapses PH to the third level by known arguments [3, 14].
In particular, by applying Stockmeyer’s approximate counting algorithm [55] to py,U,V , one
can multiplicatively approximate qy,U,V to multiplicative error 1

poly in FBPPNP for those
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elements in S ∩T . But since qy,U,V is a 2ε
ac -approx to py,U,V , this is a 2ε

ac + o(1) multiplicative
approximation to py,U,V in S ∩ T . Hence a #P-hard quantity is in FBPPNP. This collapses
PH to the third level by Toda’s theorem [57].

To complete our proof of Theorem 17, we will prove Lemma 19.

Proof of Lemma 19. To prove this, we will make use of the fact that the Clifford group is
an exact 2-design11 [58, 59]. The fact that the Clifford group is a 2-design means that for
any polynomial p over the variables {Vij} and their complex conjugates, which is of degree
at most 2 in the Vij ’s and degree at most 2 in the V ∗ij ’s, we have that

1
|C|

∑
V ∈C

p(V, V ∗) =
∫
p(V, V ∗)dV,

where C denotes the Clifford group and the integral dV is taken over the Haar measure. In
other words, the expectation values of low-degree polynomials in the entries of the matrices
are exactly identical to the expectation values over the Haar measure.

In particular, note that py,U,V is a degree-1 polynomial in the entries of V and their
complex conjugates, and p2

y,U,V is a degree-2 polynomial in these variables. Therefore, since
the Clifford group is an exact 2-design, we have that for any y and U ,

1
|C|

∑
V ∈C

py,U,V =
∫
py,U,V dV = 1

2n

and

1
|C|

∑
V ∈C

p2
y,U,V =

∫
p2
y,U,V dV = 2

22n − 1

(
1− 1

2n

)
,

where the values of these integrals over the Haar measure are well known – see for instance
Appendix D of [30].

Following [15], we now invoke the Paley-Zygmund inequality, which states that:

I Fact 20. Given a parameter 0 < a < 1, and a non-negative random variable p of finite
variance, we have

Pr[p ≥ aE[p]] ≥ (1− a)2E[p]2/E[p2].

Applying this inequality to the random variable py,U,V over the choice of the Clifford
circuit V , we have that

PrV
[
py,U,V ≥

a

2n
]
≥ (1− a)2 2−2n

2−2−n+1

22n−1
= (1− a)2 1− 2−2n

2− 2−n+1 ≥
(1− a)2

2

which implies the claim. J

This completes the proof of Theorem 17. J

11The Clifford group is also a 3-design, but we will only need the fact it is a 2-design for our proof.
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5 Evidence in favor of hardness conjecture

In Section 4, we saw that by assuming an average case hardness conjecture (namely Conjecture
18), we could show that a weak simulation of CCCs to additive error would collapse the
polynomial hierarchy. A natural question is: what evidence do we have that Conjecture 18 is
true?

In this section, we show that the worst-case version of Conjecture 18 is true. In fact, we
show that for any U 6= CRZ(θ) for a Clifford C, there exists a Clifford circuit V and an
output y such that computing py,U,V is #P-hard to constant multiplicative error. Therefore
certainly some output probabilities of CCCs are #P-hard to compute. Conjecture 18 is
merely conjecturing further that computing a large fraction of such output probabilities is
just as hard.

I Theorem 21 (Worst-case version of Conjecture 18). For any U which is not equal to a
Z-rotation times a Clifford, there exists a Clifford circuit V and string y ∈ {0, 1}n such that
it is #P-hard to multiplicatively approximate a py,U,V to multiplicative error 1/2− o(1).

Proof. This follows from combining the ideas from the proof of Lemma 6 with previously
known facts about BQP. In particular, we will use the following facts:
1. There exists a uniform family of poly-size BQP12 circuits Cx where x ∈ {0, 1}n using a

gate set with algebraic entries such that computing |〈0n|Cx|0n〉|2 to multiplicative error
1/2 is #P-hard [15].

2. For any poly-sized quantum circuit C over a gate set with algebraic entries, any non-zero
output probability has magnitude at least inverse exponential [35].

3. As shown in the proof of Theorem 7, for any U which is not a Clifford gate times a Z
rotation, there is a postselection gadget G which performs a unitary but non-Clifford
one-qubit operation. Furthermore all ancilla qubits in G begin in the state |0〉.

From these facts, we can now prove the theorem. Let p = |〈0n|Cx|0n〉|2. By Fact 2, the
circuit Cx from Fact 1 either has p = 0 or p ≥ 2−O(nc) for some constant c. Now suppose
we compile the circuit Cx from Fact 1 using Clifford gates plus the postselection gadget G –
call this new circuit with postselection C ′x. By Sardharwalla et al. [51] we can compile this
circuit with accuracy ε = 2−O(nc)−100 with only polynomial overhead.

Let ` ∈ {0, 1}k be the string of postselection bits of the circuit C ′x (which without loss of
generality are the last bits of the circuit), and let α is the probability that all postselections
succeed. Note α is a known and easily calculated quantity, since each postselection gadget is
unitary so succeeds with a known constant probability.

Let p′ = |〈0n`|C ′x|0n+k〉|2/α. Then we have that:
If p = 0 then p′ ≤ 2−O(nc)−100.
If p 6= 0 then p − 2−O(nc)−100 ≤ p′ ≤ p + 2−O(nc)−100. Since p ≥ 2−O(nc), this is a
multiplicative approximation to p with error 2−100.

Now suppose that one can compute |〈0n`|C ′x|0n+k〉|2 to multiplicative error γ to be
chosen shortly. Then immediately one can compute p′ = |〈0n`|C ′x|0n+k〉|2/α to the same
amount of multiplicative error – call this estimate p′′. By the above argument, if p = 0 then
p′′ < 2−O(nc)−100(1+γ). On the other hand if p > 0 then p′ > 2−O(nc), so p′′ > 2−O(nc)(1−γ).
So long as γ is chosen such that 2−100(1 + γ) < (1− γ) these two cases can be distinguished
– which holds in particular if γ ≈ 1/2.

12Even IQP suffices here [15].
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Therefore, if p′′ < 2−O(nc) then we can infer that p = 0. If p′′ > 2−O(nc)(1 − γ), then
p > 0 so p′′ is a γ approximation to p′ and hence a γ + 2−100 + γ2−100 approximation to
p. In either case we have computed a γ + 2−100 + γ2−100 approximation to p. Therefore, if
γ = 1/2− 2−99, then we have computed a 1/2-multiplicative approximation to p, which is
#P-hard by Fact 1. Therefore, computing some the probability that the CCC correspoding
to C ′x outputs |0n`〉 to multiplicative error 1/2− 2−99 is #P-hard. One can similarly improve
this hardness to 1/2− o(1). J

Given that the worst-case version of Conjecture 18 is true, a natural question to ask is how
difficult it would be to prove the average-case conjecture. To do so would in particular prove
quantum advantage over classical computation with realistic error, and merely assuming the
polynomial hierarchy is infinite. In some ways this would be stronger evidence for quantum
advantage over classical computation than Shor’s factoring algorithm, as there are no known
negative complexity-theoretic consequences if factoring is contained in P.

Unfortunately, recent work has shown that proving Conjecture 18 would be a difficult
task. Specifically, Aaronson and Chen [4] demonstrated an oracle relative to which PH is
infinite, but classical computers can efficiently weakly simulate quantum devices to constant
additive error. Therefore, any proof which establishes quantum advantage with additive error
under the assumption that PH is infinite must be non-relativizing. In particular this implies
any proof of Conjecture 18 would require non-relativizing techniques – in other words it
could not remain true if one allows for classical oracle class in the circuit. This same barrier
holds for proving the similar average-case hardness conjectures to show advantage for Boson
Sampling, IQP, DQC1, or Fourier sampling. Therefore any proof of Conjecture 18 would
require facts specific to the Clifford group. We leave this as an open problem. We also note
that it remains open to prove the average-case exact version of Conjecture 18 - i.e. whether
it is hard to exactly compute a large fraction of py,U,C . We believe this may be a more
tractable problem to approach than Conjecture 18. However this remains open, as is the
analogous average-case exact conjecture corresponding to IQP. We note the corresponding
average-case exact conjecture for Boson Sampling and Fourier sampling are known to be true
[3, 22], though these models are not known to anticoncentrate.

6 Summary of simulability of CCCs

For completeness, in this section we summarize the simulability of U -CCCs when U is not a
Clifford rotation times a Z rotation. There are various notions of classical simulation at play
here. The results of this paper so far have focused of notions of approximate weak simulation.
A weak simulation of a family of quantum circuits is a classical randomized algorithm that
samples from the same distribution as the output distribution of the circuit. On the other
hand, a strong simulation of a family of quantum circuits is a classical algorithm that computes
not only the joint probabilities, but also any marginal probabilities of the outcomes of the
measurements in the circuit. Following [34], we can further refine these definitions according
to the number of qubits being measured: a strong(1) simulation computes the marginal output
probabilities on individual qubits, and a strong(n) simulation computes the probability of
output strings y ∈ {0, 1}n. Similarly, a weak(1) simulation samples from the marginal output
probabilities on individual qubits, and a weak(n) simulation samples from p(y1, . . . , yn). A
weak+ simulation samples from the same distribution on all n output qubits up to constant
additive error. Our previous results have shown that efficient weak(n) simulations (Theorem
7), weak+ simulations (Theorem 17), and strong(n) simulations (Theorem 21) of CCCs are
implausible. However it is natural to ask if it is possible to simulate single output probabilities
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strong

weak strong(n)

weak+

strong(1)

weak(1)

hard

easy

conjectured

hard

(assuming PH
is infinite)

Figure 1 Relationships between different notions of classical simulation and summary of the
hardness of simulating CCCs. An arrow from A to B (A→ B) means that an efficient A-simulation
of a computational task implies that there is an efficient B-simulation for the same task. Note
also that an weak(n) simulation exists if and only if a weak simulation exists. For a proof of these
relationships, see [34]. The two curves indicate the boundary between efficiencies of simulation of
U -CCCs, where U is not a Clifford operation times a Z rotation. “Hard” means that an efficient
simulation of U -CCCs is not possible, unless PH collapses. “Conjectured hard” means that an
efficient simulation of U -CCCs is not possible, if we assume Conjecture 18. “Easy” means that an
efficient simulation of U -CCCs exists. Note that when U is a Clifford operation times a Z rotation,
all the above notions become easy.

of CCCs. It turns out the answer to this question is yes. This follows immediately from
Theorem 5 of [34], which showed more generally that Clifford circuits with product inputs or
measurements have an efficient strong(1) and weak(1) simulation. Therefore this completes
the complexity classification of the simulability of such circuits. We note that IQP has
identical properties in this regard. This emphasizes that the difficulty in simulating CCCs
(or IQP circuits) comes from the difficulty of simulating all of the marginal probability
distributions contained in the output distribution, where the marginal is taken over a large
number of output bits. The probabilities of computing individual output bits of either model
are easy for classical computation. This is summarized in Figure 1.

7 Open Problems

Our work leaves open a number of problems.
What is the computational complexity of commuting CCCs? In other words, can the
gate set CZ, S conjugated by a one-qubit gate U ever give rise to quantum advantage?
Note that this does not follow from Bremner, Jozsa and Shepherd’s results [14], as
their hardness proof uses the gate set CZ, T or CCZ,CZ,Z conjugated by one-qubit
gates. If this is true, it would say that the “intersection” of CCCs and IQP remains
computationally hard. One can also consider the computational power of arbitrary
fragments of the Clifford group, which were classified in [27]. Perhaps by studying such
fragments of the Clifford group one could achieve hardness with lower depth circuits (see
additional question below).
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We showed that Clifford circuits conjugated by tensor-product unitaries are difficult to
simulate classically. A natural extension of this question is: suppose your gate set consists
of all two-qubit Clifford gates, conjugated by a unitary U which is not a tensor product
of the same one-qubit gate. Can one show that all such circuits are difficult to simulate
classically (say exactly)? Such a theorem could be a useful step towards classifying the
power of all two-qubit gate sets.
Generic Clifford circuits have a depth which is linear in the number of qubits [5]. In
particular the lowest-depth decomposition for a generic Clifford circuit over n qubits to
date has depth 14n− 4 [41]. Such depth will be difficult to achieve in near-term quantum
devices without error-correction. As a result, others have considered quantum supremacy
experiments with lower-depth circuits. For instance, Bremner, Shepherd and Montanaro
showed advantage for a restricted version of IQP circuits with depth O(logn) [16] with
long-range gates (which becomes depth O(n1/2 logn) if one uses SWAP gates to simulate
long-range gates using local operations on a square lattice). We leave open the problem
of determining if quantum advantage can be achieved with CCCs of lower depth (say
O(n1/2) or O(n1/3)) with local gates only.
In order to establish quantum supremacy for CCCs, we conjectured that it is #P-hard
to approximate a large fraction of the output probabilities of randomly chosen CCCs
(Conjecture 18 ). Is it also #P-hard to exactly compute that large of a fraction of the
output probabilities? This is a necessary but not sufficient condition for Conjecture 18 to
be true, and we believe it may be a more approachable problem.
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Consider a setting in which a prover wants to convince a verifier of the correctness of k NP state-
ments. For example, the prover wants to convince the verifier that k given integers N1, . . . , Nk
are all RSA moduli (i.e., products of equal length primes). Clearly this problem can be solved by
simply having the prover send the k NP witnesses, but this involves a lot of communication. Can
interaction help? In particular, is it possible to construct interactive proofs for this task whose
communication grows sub-linearly with k?

Our main result is such an interactive proof for verifying the correctness of any k UP state-
ments (i.e., NP statements that have a unique witness). The proof-system uses only a constant
number of rounds and the communication complexity is kδ · poly(m), where δ > 0 is an arbi-
trarily small constant, m is the length of a single witness, and the poly term refers to a fixed
polynomial that only depends on the language and not on δ. The (honest) prover strategy can
be implemented in polynomial-time given access to the k (unique) witnesses.

Our proof leverages “interactive witness verification” (IWV), a new type of proof-system that
may be of independent interest. An IWV is a proof-system in which the verifier needs to verify
the correctness of an NP statement using: (i) a sublinear number of queries to an alleged NP
witness, and (ii) a short interaction with a powerful but untrusted prover. In contrast to the
setting of PCPs and Interactive PCPs, here the verifier only has access to the raw NP witness,
rather than some encoding thereof.
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1 Introduction

The power of efficiently verifiable proof-systems is a central question in the study of compu-
tation. Interactive proofs, introduced in the seminal work of Goldwasser, Micali and Rackoff
[24], are interactive protocols between a randomized verifier and an untrusted prover. The
prover convinces the verifier of the validity of a computational statement, usually framed as
membership of an input x in a language L. Soundness is unconditional. Namely, if the input
is not in the language, then no matter what (unbounded and adaptive) strategy a cheating
prover might employ, the verifier should reject with high probability over its own coin tosses.
Interactive proofs have had a dramatic impact on complexity theory and on cryptography.
Opening the door to randomized and interactive verification led to revolutionary notions
of proof verification, such as zero knowledge interactive proofs [24, 21] and probabilistically
checkable proofs (PCPs) [7, 15, 5, 4, 13, 3, 1]. Interactive proof-systems also allow for more
efficient verification of larger classes of computations (compared with NP proof systems), as
demonstrated in the celebrated IP = PSPACE Theorem [29, 33].

This work studies whether interactive proofs can allow for more efficient batch verification
of NP statements. Namely:

Can an untrusted prover convince a verifier of the correctness of k NP statements with
communication complexity that is sublinear in k?

Note that the naive solution is sending the k witnesses in their entirety. Looking ahead,
our main result answers this question in the affirmative for a rich subclass of NP (the class
UP of NP statements that have at most one witness). Along the way, we also introduce and
study a new notion of proof-system: Interactive Witness Verification (IWV), which allow for
the verification of NP statements using a sublinear number of queries to a “raw” (unencoded)
NP witness and a short interaction with an untrusted prover. We construct IWVs for a rich
subclass of NP, and these are a primary ingredient in our efficient batch verification protocol
for UP.

Before proceeding to detail these contributions, we observe that the membership of k
inputs in an NP language can be solved in space O(log k+m · poly(n)), where n is the length
of a single input and m is the length of a single NP witness. Thus, by the IP = PSPACE
Theorem, there is an interactive proof for batch verification with communication complexity
poly(log k, n,m). A major caveat, however, is that the complexity of proving correctness
(the running time of the honest prover) is exponential in poly(n,m). We, on the other hand,
focus on batch verification where the honest prover runs in polynomial time given the k NP
witnesses. We refer to such an interactive proof as having an efficient prover.3

3 Efficiency of the honest prover (given an NP witness) has been central in the study of zero-knowledge
interactive proofs [24, 21]. Our emphasis on an efficient honest prover is also inspired by the recent line
of work on doubly-efficient interactive proofs [23]. That line of work focuses on proofs for deterministic
polynomial-time computations and the prover is required to run in polynomial-time without any auxiliary
input. We remark that doubly efficient interactive proofs for deterministic computations do not seem to
imply protocols for non-deterministic computations such as those we consider here.
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1.1 Our Results
Our main result is an interactive proof-system, with an efficient prover, for verifying the
correctness of k UP statements. Recall that UP refers to the subclass of NP statements
for which correct statements have a unique witness. The canonical example (of a promise
problem) in this class is unique-SAT in which one needs to distinguish unsatisfiable formulas
from those having a unique satisfying assignment. Multiple other examples arise from
cryptography, where problems related to factoring, discrete-log or lattices all have unique
solutions.

Our protocol for UP batch verification uses a constant number of rounds and has commu-
nication complexity (kδ · poly(m)), for any arbitrarily small constant δ > 0. For UP relations
that are checkable in polynomial-time and bounded polynomial space, we can reduce the
communication complexity to (kδ ·m1+δ). When the number of instances k is large, this
is a significant improvement over the trivial solution in which the prover sends over all k
witnesses.

I Theorem 1 (Informally Stated, see Theorem 13). Let L be a language in UP with witnesses
of length m. For every δ > 0, there exists a constant-round interactive proof for verifying
that k instances x1, . . . , xk, each of length n, all belong to L. The communication complexity
is kδ · poly(m). The verifier runs in time Õ(k ·n) + kδ · poly(m), where n is the length of each
of the instances. The honest prover runs in time poly(k, n,m) given the k unique witnesses.

Comparison to prior work. Theorem 1 improves over the aforementioned protocol derived
from IP = PSPACE theorem in two ways: (1) it has an efficient prover strategy (given the
witnesses), and (2) it uses only a constant number of rounds of interaction (whereas the
IP = PSPACE theorem uses poly(log k, n,m) rounds).

Theorem 1 also improves over a prior result for batch verification of UP statements [31].
The communication complexity of that protocol has an additional additive k · polylog(m)
term. In particular, even when k is larger than m, the [31] protocol gives at most a quadratic
saving over just naively sending all k witnesses. In contrast, our protocol yields an arbitrarily
large polynomial saving in the parameter k.4 A comparison of our techniques with those of
[31] is provided in Section 1.2.1.

A new type of proof-system. The protocol of Theorem 1 makes extensive use of a new
type of proof-system that we introduce and construct. In a nutshell, these are proof-systems
in which the verifier needs to check the correctness of an NP statement given oracle access
to the NP witness. In contrast to PCPs, the verifier is only given access to the raw (i.e.,
original) NP witness, rather than to an encoding thereof. We allow the verifier to have a
short interaction with an all powerful, but untrusted prover (this part of the interaction is
similar to the interactive PCPs of Kalai and Raz [27]). We use the name “interactive witness
verification” (IWV) for these proof-systems.

Jumping ahead, we remark that IWVs are closely related to interactive proofs of proximity
(IPPs) [12, 32]. Indeed, we show that IPPs for a class of deterministic polynomial-time
computations directly imply IWVs for a related class of NP relations. The IWV protocol
used in the proof of Theorem 1 is derived from known results on IPPs [32]. We proceed to
elaborate on the notion of IWVs.

4 We remark that a linear dependence of the communication complexity on m is inherent. Indeed, by
results of Goldreich et al. [20, 22], under complexity theoretic assumptions, even verification of a single
instance (i.e., k = 1) requires Ω(m) communication.

CCC 2018
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1.1.1 Interactive Witness Verification
Motivation: sublinear witness verification. Suppose Alice wants to test whether a given
graph G is 3-colorable. The validity of an alleged 3-coloring χ can be verified in polynomial
time, but this requires reading every bit of the coloring. Can Alice verify χ’s validity while
reading a sublinear number of bits from χ?

At first glance, it may seem that PCPs give a direct solution to this problem. Recall that
a PCP is an encoding of an NP witness that can be verified by reading only a very small
number of bits. The celebrated PCP theorem [2] shows that every NP language has a PCP
proof-system. However, the reason that PCPs do not solve Alice’s problem is that she only
has oracle access to the original 3-coloring χ of the graph. In contrast, in the PCP setting,
the verifier is given oracle access to an encoding of the witness (e.g., via an error correcting
code).

Indeed, sublinear witness verification for general NP relations is not possible (assuming
that P 6= NP). Consider an NP relation for satisfiability where the witness is an encoding of
the m-bit satisfying assignment w on a polynomial of high degree (say degree 10m). The
polynomial is given by a list of valuations on field elements and the satisfying assignment
can be recovered by interpolating the polynomial. There are many possible polynomials that
encode a given satisfying assignment. In particular, if Alice is given a random polynomial
encoding the assignment, she must read Ω(m) valuations before she learns anything about
the alleged satisfying assignment.

Adding interaction. While sublinear witness verification for general NP relations is not
possible, this situation changes when we also allow interaction. Namely, we allow Alice to
interact with an untrusted prover Bob who knows the entire 3-coloring of the graph. The
communication should also be sublinear in the witness size (in particular, Bob cannot simply
send χ to Alice). Given the 3-coloring, an honest Bob should run in polynomial time.

More generally, an interactive witness verification for a given NP relation R for a language
L is a protocol between a prover P and verifier V, who both get as input an instance x. In
addition, the verifier has query access to an alleged witness w for x and the prover is given
full explicit access to w. The prover wants to convince the verifier that indeed (x,w) ∈ R.
Towards this end, the prover and verifier run an interactive protocol. The verifier V, on
examination of the communication transcript with P and the queried points in w, accepts
or rejects the prover’s claim. For completeness, if (x,w) ∈ R then the verifier V, when
interacting with the honest prover P, should accept. For soundness, we emphasize that the
witness w is fixed before the protocol begins. I.e., the soundness property is that if x /∈ L,
then for any fixed false witness w∗, and for any (unbounded) cheating prover strategy P∗, if
we run the interactive protocol between V and P∗, where V’s witness-queries are answered
using the fixed (false) witness w∗, then V will reject w.h.p. over its coins tosses. In terms of
complexity, our goal is to have both the number of witness-queries and the communication
be significantly smaller than m = |w|.

Note that an IWV refers to a specific NP relation, and not only to the underlying NP
language (which can have many possible NP relations). Indeed, every NP language has some
witness relation with an extremely efficient IWV.5 The point, however, is that we would like
to construct IWVs for arbitrary NP relations, not just highly structured ones.

5 Consider the relation in which witnesses are PCP proof strings. For such relations even the interaction
with the prover is unnecessary.
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In particular, an IWV can be particularly useful in situations where the NP witness is
outside the prover’s control. For example, the witness could arise from nature in the form
of a physical or biological observation, in which case it is not reasonable to assume that it
is given in an encoded format. Thus, we find IWVs to be natural objects worthy of further
study (beyond their importance as a technical tool in our protocol for UP batch verification).

Constructions. We construct IWVs for a large class of NP relations. Namely, any NP
relation R that is checkable by bounded-space Turing machines or bounded-depth (logspace
uniform) circuits. This includes, for example, the natural NP relations for 3-coloring,
satisfiability, k-clique, etc. In the protocol the verifier only reads

√
m bits of the witness

and the communication complexity is also roughly
√
m (recall that m denotes the witness

length). Thus, the verifier only observes
√
m bits of information about the witness. More

precisely, we obtain the following result, which allows for a tradeoff between the query and
communication complexities:

I Theorem 2 (Informally Stated, see Theorem 9). Let q be a parameter. Let R be an NP
relation with witness length m that is checkable either by a bounded space Turing Machine or
by a bounded depth (logspace uniform) circuit. For every constant δ > 0, and q ∈ [m], there
exists an IWV for R in which the verifier reads q bits of the witness and the communication
complexity is O(m1+δ/q). Furthermore, the prover, given the NP witness, can be implemented
efficiently (i.e., in polynomial time). The verifier runs in time Õ(n+ q + (m1+δ/q)). For
bounded space relations the number of rounds is constant, and for bounded depth relations it
is polylog(n).

The proof of Theorem 2 relies on known constructions of interactive proofs of proximity
(IPPs). Loosely speaking, IPPs are interactive proofs in which the verifier runs in time that
is sub-linear in the input length and is convinced that the input is close to the language
(see Section 1.3 for additional details and related works on IPPs). Specifically, Theorem 2
follows from an IPP construction of Rothblum, Vadhan and Wigderson [32] (together with
an extension due to [31]).

In particular, IWVs are closely related to IPPs. To see this, observe that an IWV for a
relation R may be thought of as an IPP, where the IPP input is the IWV witness w, and
the goal is to check whether the witness is “close” to the language Lx = {w′ : (x,w′) ∈ R}.
Even though IWVs do not refer to the proximity of the witness to Lx, observe that if x is not
in the language, then Lx = ∅, and so any fixed w will have “infinite” distance from Lx. In
general, IWVs seem to be a more relaxed object than IPPs (in particular, the above reduction
gives instances with infinite distance).

Lower Bound for IWVs. We also give a lower bound for IWVs that shows that Theorem 2
is quantitatively almost tight. Moreover, the specific NP relation for which we demonstrate
this lower bound is in the class of relations for which we assume an IWV in the proof of
Theorem 1. For our lower bound to hold we assume the existence of an exponentially strong
cryptographic pseudorandom generator. The proof of the lower bound follows from a similar
lower bound of Kalai and Rothblum [28] for IPPs, but is somewhat simpler.

1.2 Technical Overview
Let L be a UP language and let R be the corresponding UP relation. By the proof of the
Cook-Levin theorem we may assume without loss of generality that R is computable in NC1

CCC 2018



22:6 Efficient Batch Verification for UP

(more specifically, by a CNF formula).6 Recall that our goal is to design a protocol, between
a prover Pbatch and verifier Vbatch that both get as input k instances x1, . . . , xk. The prover,
in addition, also gets witnesses w1, . . . , wk, each of length m, and needs to convince V that
x1, . . . , xk ∈ L.

For sake of simplicity, we will focus on constructing a protocol with small communication
O(kδ ·m1+δ) for some small constant δ > 0, and ignore the running time of the verifier.
Obtaining a verifier that runs in time that is sub-linear in k amounts to maintaining concise
descriptions of all the objects involved in the interaction. We ignore the verification time for
this overview.7

A Warmup: Batch Verification with
√

k ·m1+δ Communication. As a warmup, we first
consider a quantitatively easier task: batch verification with communication complexity√
k ·m1+δ (rather then our eventual goal of kδ ·m1+δ). This task is already non-trivial and

demonstrates most of our key ideas.
Consider an augmented UP relation R⊗k defined as:

R⊗k =
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R
}
.

Note that R⊗k is computable in NC1. By Theorem 2, R⊗k has an efficient IWV protocol.
Setting the parameter q of Theorem 2 to

√
k, we obtain an IWV protocol for R⊗k in which

the verifier reads
√
k bits of the witness w = (w1, . . . , wk) and with communication roughly√

k ·m1+δ (where recall that m = |w1| = ... = |wk| is the length of a single witness).
We would like for Pbatch and Vbatch to run this IWV. An immediate objection that

should arise is that in contrast to the IWV setting, we are now trying to construct a
standard interactive proof and so the verifier does not have access to the witness string
w = (w1, . . . , wk). To get around this, we will leverage a property of the IWV of Theorem 2.
Specifically, that IWV operates in two phases: an online phase followed by an offline phase.
First, in the online phase, the verifier does not have oracle access to the witness w, but is
allowed to communicate with the prover. The result of this interaction is a set of coordinates
Q of w that the verifier would like to read and a predicate φ to be applied to wQ. In
the second (offline) phase, the verifier is given oracle access to w but is no longer allowed
to interact with the prover. Rather, the verifier just reads wQ and accepts if and only if
φ(wQ) = 1. The soundness condition remains unchanged. Namely, for any alleged witness w
for a false statement, which is fixed prior to the interaction, with high probability over the
coins tossed in the online phase, either the verifier rejects or it generates Q and φ such that
φ(wQ) = 0.

The batch verification prover Pbatch and verifier Vbatch start by running the online phase
of the IWV for R⊗k on input (x1, . . . , xk). The prover Pbatch also uses w = (w1, . . . , wk) as
its witness string. Observe that for this online phase the verifier Vbatch does not need oracle
access to w (indeed, as discussed above, Vbatch has no such oracle access).

6 This step incurs a polynomial blowup in the witness size, which is the source of the poly(m) dependence
in Theorem 1. This blowup can be avoided for many natural UP relations which are natively checkable
in NC1 and more generally, for relations that are checkable by bounded space Turing machines or
bounded depth (logspace uniform) circuits.

7 One way getting an efficient verifier is to first construct a protocol with small communication but large
verification time (as will be described in this overview), and then further delegate the verification task
(which is a deterministic computation applied to the transcript of the interaction and the input) to the
prover using a doubly-efficient interactive proof such as those of [23] or [31]. However, in our actual
construction we show that the verifier can be implemented efficiently directly, without this additional
trick.
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At the end of the this phase, Vbatch obtains a set Q ⊆ [k] × [m], of size |Q| ≤
√
k,

of points that it would like to read from w = (w1, . . . , wk) together with a predicate
φ : {0, 1}|Q| → {0, 1} to be evaluated on wQ. However, since Vbatch does not have oracle
access to w, it is not immediately clear how we can leverage the soundness condition of
IWVs in our current setting. Jumping ahead, we shall do so by using the uniqueness of the
witnesses in a crucial way.

Specifically, consider the fixed witness string ŵ = (ŵ1, . . . , ŵ1), where for every j ∈ [k]:
if xj ∈ L, then we set ŵj to be the corresponding unique witness, and otherwise (in case
xj 6∈ L) we set ŵj as an arbitrary fixed string (e.g., 0m). Since ŵ is an a priori fixed string,
by the soundness of the IWV, if there exists some j∗ such that xj∗ 6∈ L, then, no matter what
a cheating prover does, with high probability the IWV verifier generates φ and Q such that
φ(ŵQ) = 0 (or it rejects, which case Vbatch also rejects).

Suppose that indeed φ(ŵQ) = 0. While our verifier Vbatch does not have oracle access to
ŵ, since |Q| ≤

√
k, we can ask the prover Pbatch to send all of the witnesses belonging to

the subset S ⊆ [k] of witnesses that are “touched” by Q (i.e., S is the projection of the set
Q ⊆ [k]× [m] to its first coordinate). Denote the set of alleged witnesses that the prover sends
by w̃ = (w̃j)j∈S . Sending w̃ only costs us an additional |S| ·m = O(

√
k ·m) communication.

The verifier Vbatch checks that (xj , w̃j) ∈ R, for all j ∈ S, and that φ(w̃) = 1. To argue that
soundness holds, observe that if for some j ∈ S it holds that xj 6∈ L, then for any w̃j that a
potential cheating prover P∗batch might send, it holds that (xj , w̃j) 6∈ R and so Vbatch rejects.
On the other hand, since L ∈ UP, if xj ∈ L for all j ∈ S (which can certainly happen), the
prover P∗batch has to send the unique witnesses w̃ = ŵS (in order for these witnesses to satisfy
the relation R) in which case Vbatch rejects when checking that φ(w̃) = φ(ŵS) = 1. Thus, in
any case Vbatch rejects and soundness follows.

Taking a step back, our proof of soundness strongly leverages the uniqueness of the
witnesses to emulate query access to an a priori fixed witness by having the prover send the
relevant parts of the witness a posteriori (i.e., after the interactive phase of the IWV).

Observe that by our setting of parameters, the IWV part of the protocol uses
√
k ·m1+δ

communication, and actually sending the witnesses (ŵj)j∈S adds only an additional
√
k ·m

communication. Overall we obtain communication complexity
√
k ·m1+δ.

Batch Verification with kδ · m Communication. The main idea for obtaining smaller
communication kδ ·m1+δ, where δ > 0 is an arbitrary small constant, is to recursively apply
the solution for the warmup case (with slightly different parameters). We describe our
approach in detail next.

First, in contrast to the warmup case, we use the IWV of Theorem 2 with respect to
parameter q = k1−δ (rather than q =

√
k). Thus, we have an IWV for the relation Rk with

communication kδ ·m1+δ and query complexity k1−δ.
The prover Pbatch and Vbatch run the IWV as in the warmup. The main difference is that

now the set S of instances that are queried in the IWV is of size k1−δ and we cannot afford
for Pbatch to send (wj)j∈S explicitly to Vbatch. Rather, we observe that after running the
(online part of the) IWV what remains to be checked is that for every j ∈ S it holds that
xj ∈ L and that the corresponding (unique) witnesses (wj)j∈S satisfy φ((wj)j∈S).

Our approach is to check that these conditions hold by a recursive application of our
batch verification protocol on (xj)j∈S . Observe that the number of instances has shrunk
from k to k1−δ so we have made significant progress. Actually, batch verification per se
does not suffice since it only guarantees that xj ∈ L for every j ∈ S but does not guarantee
that φ((wj)j∈S). Still, we can obtain also the latter condition by using the fact that φ is
computable in NC1 and therefore can be incorporated into the augmented relation which is
defined for the next round.
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Thus, in each iteration of the recursion we shrink the number of instances by a kδ factor.
After ` = O(1/δ) iterations we will be left with a constant number of instances and the
prover Pbatch can send the corresponding witnesses explicitly. As in the warmup case, the
verifier checks that all these witnesses satisfy the base relation R individually and that they
jointly satisfy the predicate φ` generated by the last iteration of the recursion.

By our setting of parameter for the IWV, the communication complexity in each one of
the iterations is kδ ·m1+δ. At the final step the verifier sends O(1) witnesses in the clear
so that also adds at most O(m) communication. The prover can be implemented efficiently
(given the UP witnesses) since the underlying IWV has an efficient prover strategy. As
described above, the verifier’s running time might be as high as Ω(k ·m) (naively, that will
be complexity of the first iteration) but in the technical sections we provide a more refined
analysis that shows how to implement the verifier more efficiently.

1.2.1 Technical Comparison with [31]
As noted above, a less efficient UP batch verification protocol was presented in [31]. We
briefly review that approach and the differences from the current work. We refer the reader
to [31] and to Goldreich’s recent survey [18] for more details on the [31] protocol.

The high level idea in the [31] batch verification protocol is for the prover to generate PCP
proof strings for all the k instances and send a short “checksum” of these PCPs. The verifier
in turn, generates PCP queries and asks the prover to reveal the answer to these queries
for all k PCPs. The checksum is designed to guarantee that a cheating prover must either
answer these queries in a way that is consistent with predetermined PCPs, or alternatively,
it can send answers that are inconsistent with the correct PCPs of many of the statements.
For UP the correct PCPs are unique, and so the latter situation can be checked directly by
having the verifier specify a random subset of the PCP proofs for the prover to fully reveal
(also here, similarly to our protocol, recursion can be used to obtain improved parameters).

The current work completely avoids the use of checksums and PCPs. Instead, we use
IWVs to force a cheating prover to make false claim about a subset of the witnesses. IWVs,
together with the uniqueness of the witnesses, let us accomplish this without requiring the
verifier to make explicit queries to the witnesses. In terms of complexity, the key difference
is that in the [31] protocol, the prover must reveal the PCP answers for all the k instances.
This step adds Ω(k) to the communication complexity, which we avoid.

1.3 Additional Related Works
Doubly Efficient Interactive Proofs. Goldwasser, Kalai and Rothblum [23] introduced a
variant of interactive proofs, called doubly-efficient interactive proofs, in which both the
prover and the verifier are highly efficient. Namely, the honest prover must run in time
that is proportional to the complexity of the statement being proved, whereas the verifier
should be much faster than the complexity of the computation. Soundness is required to
hold against computationally unbounded provers.

Goldwasser et al. [23] construct such doubly efficient interactive proofs for every language
in (logspace-uniform) NC. The aforementioned recent work of Reingold et al. [31] gives such
proof-systems for languages computable in polynomial-time and some bounded polynomial
space. This includes in particular the complexity class SC. Moreover the latter protocol
only requires a constant number of rounds of interaction. We note that batch verification of
certain types of interactive proofs (that generalize UP batch verification) was a key ingredient
in the [31] result.
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We remark that [23] and [31] doubly-efficient interactive proof-systems are for deterministic
computations and do not seem to immediately imply a protocol for batch NP, or even UP,
verification.

Batch Verification with Computational Soundness. A recent work of Brakerski, Holmgren
and Kalai [10] shows an argument-system for batch verification of NP statements. We
emphasize that they only obtain soundness against polynomial-time cheating provers whereas
we achieve statistical soundness against computationally unbounded provers. In addition, the
result of [10] relies on an unproven cryptographic assumption (specifically a computational
private information retrieval scheme) whereas our result is unconditional. On the other hand,
the protocol of [10] also offers significant advantages (some of which are likely to be infeasible
in the context of interactive proofs with statistical soundness). First, their result holds for any
NP language (rather than just UP). Second, their protocol requires only 2 messages whereas
our protocol requires a larger (but still constant) number of rounds. Lastly, under strong
enough assumptions, [10] achieve communication that depends only poly-logarithmically on
k, whereas our dependence is any arbitrarily small polynomial.

Interactive PCPs and PCIPs. Interactive PCPs, introduced by Kalai and Raz [27] are a
generalization of PCPs in which the PCP verifier can, in addition to reading bits of the
PCP, also interact with a prover. Our notion of IWV can be thought of as a restriction of
Interactive PCPs in which the PCP proof string is exactly the NP witness and cannot be
further encoded.

A generalization of interactive PCPs, called probabilistically checkable interactive proofs
(PCIPs) was recently introduced by Reingold et al. [31] and Ben Sasson et al. [8].8 Loosely
speaking, these are interactive proofs in which the verifier only reads few bits of each message.
Again, and in contrast to IWVs, the prover is allowed to send long messages of its choice
(e.g., a PCP encoding of the NP witness).

Interactive Proofs of Proximity (IPPs). As mentioned above, interactive proofs of prox-
imity (IPPs) form an important component in our UP batch verification protocol. IPPs
were introduced in [12, 32] and have seen a considerable amount of progress in recent years.
The latter work gives a general purpose sub-linear IPP protocol for general bounded depth
computations (which was extended to bounded space computations in [31]). A non-interactive
variant of IPPs was studied in [25, 14]. Highly efficient protocols for restricted classes of
computations (i.e., context free languages and small read-once branching programs) were
given in [19]. A study of a computational variant of IPPs was initiated in [28]. The latter
work also shows a lower bound for IPPs. As mentioned above, we use their proof technique
to derive a similar lower bound for IWVs. Gur and Rothblum [26] show a round hierarchy
for IPPs. Most recently, IPPs were considered in the context of zero-knowledge [9] and
distribution testing [11].

1.4 Open Questions
We conclude the introduction by mentioning two open questions on batch verification:
1. Do there exist interactive proofs for batch verification of arbitrary NP statements (rather

than just UP statements)? Ideally such a proof-system would be both constant-round
and have an efficient prover strategy, but even getting a result satisfying only one of these

8 Ben Sasson et al. refer to these as Interactive Oracle Proofs.
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two requirements would be very interesting. We mention that we do not know a way to
extend our UP batch verification to NP via the Valiant-Vazirani randomized reduction
from NP to UP [34].

2. The communication complexity in our protocol is proportional to kδ. Is it possible to
obtain a similar result with communication that grows only poly logarithmically with
k? (By [6], such a result would likely require a super constant number of rounds.) In
particular, a quantitative improvement to the interactive proof of proximity of [32] could
yield such a result.9

1.5 Organization
Section 2 contains definitions and notations. In Section 3 we formally define our notion
of interactive witness verification IWV, show that they exist for bounded NP relations and
demonstrate a lower bound on their complexity. In Section 4 we present our protocol for
batch verification of UP statements.

2 Preliminaries

Throughout this work we use NC1 to refer to the class of logspace uniform Boolean circuits
of logarithmic depth and constant fan-in. Namely, L ∈ NC1 if there exists a logspace
Turing machine M that on input 1n outputs a full description of a logarithmic depth circuit
C : {0, 1}n → {0, 1} such that for every x ∈ {0, 1}n it holds that C(x) = 1 if and only if
x ∈ L. We recall that the class SC refers to languages decidable by Turing machines that
run in polynomial-time and poly-logarithmic space.

We next define a notion of succinct representation of circuits. Loosely speaking, a
function f : {0, 1}n → {0, 1} has a succinct representation if there is a short string 〈f〉, of
poly-logarithmic length, that describes f . That is, 〈f〉 can be expanded to a full description
of f . The actual technical definition is slightly more involved and in particular requires that
the full description of f be an NC1 (i.e., logarithmic depth) circuit:

I Definition 3 (Succinct Description of Functions). We say that a function f : {0, 1}n → {0, 1}
of size s has a succinct description if there exists a string 〈f〉 of length polylog(n) and a
logspace Turing machine M (of constant size, independent of n) such that on input 1n, the
machine M outputs a full description of an NC1 circuit C such that for every x ∈ {0, 1}n it
holds that C(〈f〉 , x) = f(x). We refer to 〈f〉 as the succinct description of f .

We also define succinct representation for sets S ⊆ [k]. Roughly speaking this means that
the set can be described by a string of length polylog(k). The formal definition is somewhat
more involved:

I Definition 4 (Succinct Description of Sets). We say that a set S ⊆ [k] of size s has a
succinct description if there exists a string 〈S〉 of length polylog(k) and a logspace Turing
machine M such that on input 1k, the machine M outputs a full description of a depth
polylog(k) and size poly(s, log k) circuit (of constant fan-in) that on input 〈S〉 outputs all the
elements of S as a list (of length s · log(k)).

We emphasize that the size of the circuit that M outputs is proportional to the actual
size of the set S, rather than the universe size k.

9 By slightly adjusting our parameters we could obtain a batch verification protocol with communication
complexity ko(1) ·m1+o(1) (and a super constant number of rounds of interaction). Still, achieving
communication polylog(k) ·m seems beyond our current techniques.
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2.1 Interactive Proofs
An interactive proof-system, as defined by Goldwasser, Micali and Rackoff [24], is a protocol
between a polynomial-time verifier V and a computationally unbounded prover P. The two
parties interact and at the end of the interaction the verifier accepts if and only if the given
computational statement is correct (with high probability).

We denote by (P,V)(x) the output of V after interacting with P on common input x. If
either V or P are given additional explicit inputs than we shall denote this by (P(y),V(z))(x)
which refers to the output of V after interacting with P where V gets as input (x, z) and
P gets as input (x, y). We extend the foregoing notation to implicit access to the input by
placing the implicit input as a superscript. Thus, by (P,Vz)(x) we refer to the output of V
after interacting with P , where V has oracle access to z and both parties have explicit access
to x.

I Definition 5. An interactive proof for a language L is an interactive protocol between a
polynomial-time verifier V and a computationally unbounded prover P. Both parties are
given as input a string x and must satisfy the following two properties:

Completeness: If x ∈ L, then

Pr[(P,V)(x) = 1] = 1.

Soundness: If x 6∈ L, then for every possible cheating strategy P∗,

Pr[(P∗,V)(x) = 1] ≤ 1/2.

If L ∈ NP, we say that an interactive proof for L has an efficient prover if the honest
prover strategy P can be implemented an polynomial-time given access to an NP witness.
I Remark (On Completeness and Soundness Errors). We note that Theorem 5 can be generalized
to allow for an error in the completeness condition. For simplicity however, and since our
protocols achieve perfect completeness, we avoid doing so.10 We also remark that the
soundness error (and completeness error, if ones allows for such) can be reduced at an
exponential rate by either sequential or parallel repetition (see, e.g., [17, Lemma C.1]).

2.1.1 Doubly Efficient Interactive Proofs
Doubly-efficient interactive proofs, introduced by Goldwasser et al. [23] are interactive proofs
in which the prover is relatively efficient (i.e., runs in time proportional to the complexity of
the computation), whereas the verifier is extremely efficient (i.e., running in almost linear
time). We shall use a recent result of Reingold et al. [31] giving such doubly efficient
interactive proofs for bounded space computations. The reason that we use the more recent
protocol of [31] rather than that of [23], is mainly because the former only requires a constant
number of rounds.

I Theorem 6 (Interactive Proofs for Bounded Space ([31])). Let T = T (n) and S = S(n)
such that n ≤ T ≤ exp(n) and log(T ) ≤ S ≤ poly(n).

Let L ∈ DTISP(T, S) and let τ = τ(n) ∈ (0, 1/2) such that poly(1/τ) ≤ log(T ). Then,
L has a public-coin interactive proof with perfect completeness and soundness error 1

2 .

10Fürer et al. [16] show how to transform any interactive proof to one having perfect completeness. Their
transformation however does not preserve the efficiency of the prover.
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The number of rounds is (1/τ)O(1/τ). The communication complexity is TO(τ) · poly(S).
The (prescribed) prover runs in time T 1+O(τ) · poly(S) time, and the verifier runs in time(
n · polylog(T ) + TO(τ) · poly(S)

)
.

3 Interactive Witness Verification

For an NP relation R, we denote by R(x) the set of witnesses for x, namely R(x) = {w :
R(x,w) = 1}.

I Definition 7 (Interactive Witness Verification IWV). An Interactive Witness Verification
Protocol (IWV) for an NP relation R, is an interactive protocol between a computationally
unbounded prover P and a verifier V on a given input x. The verifier also has oracle access
to an alleged witness w. The protocol must satisfy the following two requirements:

Completeness: If (x,w) ∈ R then

Pr
[(
P,Vw

)
(x, |w|) = 1

]
= 1.

Soundness: If R(x) = ∅ (i.e., x is not in the underlying NP language), then for every a
priori fixed w∗ and every prover strategy P∗:

Pr
[(
P∗,Vw

∗)
(x, |w∗|) = 1

]
≤ 1/2.

The query complexity q = q(|x|, |w|) is the number of bits that V reads from w and the
communication complexity cc = cc(|x|, |w|) is the number of bits exchanged between V and
P in the protocol.

We say that the IWV has an efficient prover, if the honest prover strategy P can be
implemented in polynomial time, if the prover is given explicit access to w (i.e., the same
witness to which the verifier has oracle access).

Loosely speaking, we say that an IWV is oblivious if the verifier makes all its queries
non-adaptively at the end of the interaction. Put differently, at the end of the interaction the
verifier specifies some query set Q of bits from the witness, and a predicate φ and accepts if
and only if φ(wQ) = 1. For technical considerations in our proof, we actually require that
the verifier generate succinct descriptions of Q and φ (see Theorems 3 and 4 for the precise
technical definition of succinct descriptions of functions and sets). This allows the verifier to
run in time that is sublinear in the sizes of Q and φ. We proceed to the formal definition:

I Definition 8 (Oblivious IWV). An Oblivious IWV for an NP relation R with witness length
m, is an interactive protocol between a computationally unbounded prover P and a verifier
V on a given input x. At the end of the interaction either the verifier rejects or it outputs a
succinct description 〈Q〉 of a set Q ⊆ [m] of size q and succinct description 〈φ〉 of a predicate
φ : {0, 1}q → {0, 1} such that

Completeness: If (x,w) ∈ R then

Pr
[
V does not reject and φ(wQ) = 1

]
= 1.

Soundness: If R(x) = ∅ (i.e., x is not in the underlying NP language), then for every a
priori fixed w∗ and every prover strategy P∗:

Pr
[
V does not reject and φ(w∗Q) = 1

]
≤ 1/2.
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The query complexity of an oblivious IWV is q, the size of the set Q, and the communication
complexity cc is the number of bits exchanged between V and P in the protocol.

We say that the IWV has an efficient prover, if the honest prover strategy P can be
implemented in polynomial time, if the prover is given explicit access to w (i.e., the same
witness to which the verifier has oracle access to).

We will rely on the following theorem, which is established in Section 3.1. Loosely
speaking, this result shows that any NP relation verifiable by small depth circuits has an
IWV in which we can trade off the query and communication complexities, such that their
product is roughly equal to the witness length. In particular, it yields IWV protocols for all
such NP relations in which the complexity scales with the square root of the witness length.

I Theorem 9. [IWVs for Bounded Space Relations] Let R be an NP relation with witness
length m = m(n), which can be verified in poly(n) time and space S = S(n). Then, for
every parameter q = q(n,m) and constant δ > 0, there exists a constant-round oblivious IWV
for R. The query complexity is q and the communication complexity is cc = cc(n,m) =(
(m/q) ·mδ · poly(S)

)
. The verifier runs in time

(
n · polylog(n,m) + Õ(cc)

)
. The prover

runs in time poly(n,m), given as input the NP witness.

We remark that a similar result holds for any language computable in (log-space uniform)
NC, where in the case of NC the number of rounds is polylog(n,m) rather than constant,
and the mδ terms in the communication complexity and the verifier runtime are replaced by
mo(1).

3.1 Constructing IWVs for NP
The main technical tool that we use to prove Theorem 9 is the interactive proofs of proximity
(IPPs) protocol of Rothblum, Vadhan and Wigderson [32]. First, in Section 3.1.1 we introduce
the model of IPPs and state the [32] result. Then, in Section 3.1.2, we prove Theorem 9.

3.1.1 Background on IPPs
Loosely speaking, IPPs are interactive proofs in which the verifier runs in sub-linear time in
the input length and is assured that the input is close to the language. Actually, we will
think of the input of the verifier as being composed of two parts: a short input x ∈ {0, 1}n
to which the verifier has direct access and a long input y ∈ {0, 1}m to which the verifier has
oracle access. The goal is for the verifier to run in time that is sub-linear in m and to verify
that y is far from any y′ such that the pair (x, y′) are in the language. Since such languages
are composed of input pairs, we refer to them as pair languages.

I Definition 10 (Interactive Proof of Proximity (IPP) [12, 32]). An interactive proof of proximity
(IPP) for the pair language L is an interactive protocol with two parties: a (computationally
unbounded) prover P and a computationally bounded verifier V. Both parties get as input
x ∈ {0, 1}n and a proximity parameter ε > 0. The verifier also gets oracle access to
y ∈ {0, 1}m whereas the prover has full access to y. At the end of the interaction, the
following two conditions are satisfied:

1. Completeness: For every pair (x, y) ∈ L, and proximity parameter ε > 0 it holds that

Pr
[(
P(y),Vy

)
(x, |y|, ε) = 1

]
= 1.
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2. Soundness: For every ε > 0, x ∈ {0, 1}n and y that is ε-far from the set {y′ : (x, y′) ∈ L},
and for every computationally unbounded (cheating) prover P∗ it holds that

Pr
[(
P∗(y),Vy

)
(x, |y|, ε) = 1

]
≤ 1/2.

An IPP for L is said to have query complexity q = q(n,m, ε) if, for every ε > 0 and
(x, y) ∈ L, the verifier V makes at most q(|x|, |y|, ε) queries to y when interacting with P.
The IPP is said to have communication complexity cc = cc(n,m, ε) if, for every ε > 0 and pair
(x, y) ∈ L, the communication between V and P consists of at most cc(|x|, |y|, ε) bits.

We are now ready to state the main result of [32]. Actually we will use an extension, due
to [31], of the [32] IPP.11

I Theorem 11 (IPPs for Bounded Space Computations, [32, 31]). Let L be a pair language
that is computable in poly(n,m) time and space S = S(n,m). For every constant δ > 0, there
is an IPP for L with the following parameters. For every input pair (x, y) ∈ {0, 1}n×{0, 1}m,
the query complexity is q = q(n,m, ε) = (1/ε) · mO(δ), the communication complexity is
cc = cc(n,m, ε) = (ε ·m1+O(δ) · poly(S)), and the number of rounds is constant. The honest
prover runs in time poly(n,m, 1/ε) and the verifier runs in time n · polylog(n,m) + Õ(q+ cc).

Furthermore, the verification can be implemented in two phases. In the communication
phase the verifier interacts with the prover without querying y. The verifier’s running time in
this phase is n · polylog(n,m) + Õ(cc). At the end of the communication phase, the verifier
either rejects or it outputs a succinct description 〈Q〉 of a set Q ⊆ [m] of size q and succinct
description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} which can be computed by a (logspace
uniform) NC1 circuit of size Õ(q). In the query phase, the verifier only queries yQ and
accepts if and only if φ(yQ) = 1.

3.1.2 Proof of Theorem 9
Let R be an NP relation with witness length m = m(n), which can be verified in poly(n)
time and space S = S(n). Let δ > 0 be a constant and let q = q(n,m) ∈ [m] be a parameter.

View R as a pair language. Namely each input-witness pair (x,w) is viewed as a an input
pair (x,w) for the pair language. Let (P,V) by the IPP for R guaranteed by Theorem 11
with respect to proximity parameter ε = mO(δ)

q . We claim that (P,V) is an IWV for R, where
queries to the IPP input oracle y are emulated by querying the IWV witness oracle.

Completeness follows immediately from the completeness of the IPP. For soundness,
let x ∈ {0, 1}n such that R(x) = ∅. Fix an alleged witness string ỹ and an IWV prover
strategy P∗. We view P∗ as a cheating prover strategy for the IPP (P,V) with respect to
the input pair (x, ỹ). Since R(x) = ∅, it holds that (x, ỹ) is at infinite distance from the set
{y′ : (x, y′) ∈ R} (in particular the distance is more than ε). Thus, by the IPP soundness,
the verifier rejects with probability at least 1/2.

The fact that the foregoing IWV is oblivious, as well as its complexity, follows from the
furthermore part of Theorem 11.

3.2 Lower Bound for IWVs
In this section we show a lower bound on the efficiency of IWVs that, loosely speaking, shows
that Theorem 9 is tight. This lower bound relies on the existence of an exponentially strong

11The [31] IPP extends the [32] result from bounded depth computations to also hold for bounded space
computations. Also, and more importantly for our purposes, the [31] IPP only requires a constant
number of rounds (for languages computable in bounded space).



O. Reingold, G.N. Rothblum, and R.D. Rothblum 22:15

cryptographic pseudorandom generator (PRG). By exponentially strong, we mean that the
output of the generators, when evaluated of a random string of length m, computationally
indistinguishable from a uniformly random string even for adversaries running in time
2m/100 · poly(m). We remark that by assuming only sub-exponential hardness (i.e., hardness
against 2mε time adversaries) we can still obtain a meaningful (albeit weaker) lower bound.

For an NP relation R, we denote by R⊗k the relation

R⊗k
def=
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R and |x1| = . . . = |xk|
}
.

I Theorem 12. Assume the existence of an exponentially hard cryptographic PRG. Then,
there exists an NP relation R with witnesses of size m, such that for every k ≤ poly(m),
every IWV for R⊗k must have either query complexity q = Ω(k) or communication complexity
cc = Ω(m). Furthermore, if the PRG is injective, then R is a UP relation.

The proof of Theorem 12 follows in a straightforward way from the IPP lower bound of
Kalai and Rothblum [28]. We provide a proof sketch below.

Proof Sketch. Let G : {0, 1}m → {0, 1}n be an exponentially strong PRG. Let RG =
{(y, s) : y = G(s)}. Clearly RG ∈ NP and if G is injective, then RG ∈ UP. Suppose toward a
contradiction that there exists an IWV (P,V) for R⊗kG =

{(
(y1, . . . , yk), (s1, . . . , sk) : ∀j ∈

[k], yj = G(sj)
}
with query complexity k/100 and communication complexity m/100.

The proof is composed of two steps. First, we use (P,V) to construct a relatively efficient
interactive proof for RG (i.e., with communication m/100). The second step is to show that
such an interactive proof violates the exponential hardness of G.

We start with the first step: constructing an interactive proof (P ′,V ′) for RG - i.e.,
deciding whether a given string is in the image of G. Actually, we only achieve a relaxed
notion of interactive proof. Specifically we have the following two relaxations:

(Average-case Completeness:) Completeness holds for most inputs in the language but not
necessarily for all inputs. Namely, for most s, the verifier V ′ accepts with high probability
after interacting with the prover P ′ on common input G(s).
(Common Random String:) Both the prover and verifier have access to a (relatively long)
common random string. We do not count this random string as part of the communication
complexity of the protocol.

We proceed to describe the interactive proof (P ′,V ′) for R⊗kG . The common random
string consists of

(
(s1, . . . , sk), i

)
∈R ({0, 1}m)k × [k]. We define yj = G(sj), for all j ∈ [k].

In addition to the common random string, the verifier V ′ and prover P ′ are given as input
y ∈ {0, 1}n, and V ′ needs to decide whether there exists s ∈ {0, 1}m such that G(s) = y (i.e.,
whether RG(y) =6= ∅).

The interactive proof proceeds as follows. The prover P ′ and verifier V ′ run the IWV
(P,V) where the input is (y1, . . . , yi−1, y, yi+1, . . . , yk) and the witness, to which V only gets
oracle access, is (s1, . . . , si−1, 0m, si+1, . . . , sk).

To show that average-case completeness holds, let s ∈R {0, 1}m and consider the execution
of (P ′,V ′) on input y = G(s). Consider a mental experiment in which we run the IWV with
the witness (s1, . . . , si−1, s, si+1, . . . , sk) (rather than (s1, . . . , si−1, 0m, si+1, . . . , sk) as in the
real execution). By the completeness of the IWV, in this mental experiment, V accepts.

Observe that, conditioned on not querying s, the view of V is identical in the real execution
and in the mental experiment, and so it will accept also in the real execution. Moreover,
since i and y are random, and V makes at most k/100 queries, with constant probability, V
does not query s and average-case completeness follows.
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Soundness of (P ′,V) is easier to show. Specifically, if RG(y) = ∅ then R⊗kG
(
y1, . . . , yi−1, y,

yi+1, . . . , y`
)

= ∅ and so by the soundness of the IWV, the verifier V rejects with high proba-
bility given oracle access to any fixed witness (in particular, (s1, . . . , si−1, 0m, si+1, . . . , sk))
and no matter what the cheating prover does.

Thus, (P ′,V ′) is an interactive proof for RG. Observe that (P ′,V ′) has the same commu-
nication as (P,V) - namely, m/100.

The second step of the proof is to observe that the foregoing interactive proof can be
emulated by an algorithm A running in time 2m/100 · poly(m, k). This is similar to the proof
that IP ⊆ PSPACE (i.e., interactive proofs can be emulated by bounded space machines).12
Thus, using the fact that k = poly(m), the PRG can be broken in time 2m/100 · poly(m) time,
in contradiction to our assumption. J

4 Batch Verification for UP

For an NP relation R, we denote by R⊗k the relation

R⊗k
def=
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R and |x1| = . . . = |xk|
}
.

I Theorem 13 (Batch Verification for UP). Let R be a UP relation that is verifiable in
NC1, with witnesses of length m = m(n) such that m and n are polynomially related. Let
k = k(n) ≥ 1 and let δ > 0 be a constant. There exists a constant-round interactive proof
system for R⊗k such that the verifier runs in time

(
Õ(n · k) + kδ ·m1+δ), the (honest) prover

runs in time poly(n,m, k) and the communication complexity is
(
kδ ·m1+δ).

By the proof of the Cook-Levin theorem every UP language has a UP relation that is
verifiable in NC1 (albeit with a polynomial blowup in the witness size). Thus, Theorem 13 is
applicable to any UP language.

As described in the technical overview (see Section 1.2), our batch verification protocol
works in iterations, where the goal of each iteration is to significantly reduce the number
of instances that are still “alive”. In Section 4.1 we describe the iterative step and then in
Section 4.2 we describe the UP batch verification protocol.

4.1 The Iterative Step
We first describe the main step in our proof, corresponding to a single iteration of the protocol
that was described in Section 1.2. Loosely speaking, this step shows an interactive protocol,
where if we start with a false claim about a subset of the k UP statements, then at the end
of the protocol, with high probability, we will have a false claim about a smaller subset of
the statements.

This step, which appears next in Theorem 14, is where we rely on the existence of IWVs
for general NC1 relations. Theorem 14 can be instantiated with any such IWV. Later, in
Section 4.2, we will use Theorem 14 instantiated with the IWVs that were shown to exist
(unconditionally) in Theorem 9.

I Lemma 14. Suppose that for every parameter q, every NP relation computable in NC1

has an oblivious IWV with an efficient prover such that with respect to inputs of size n and
witness of size m, the proof-system has soundness error ε = ε(n,m, q), verifier complexity

12We cannot afford to count the CRS as part of the communication of the interactive proof, since it is of
length m · k + log(k)� m/100. Rather, observe that A can simply sample the CRS directly, in time
poly(m, k) (rather than enumerating over all possible CRS strings).
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Vtime = Vtime(n,m, q), prover complexity Ptime(n,m, q) (assuming the prover is given
access to the NP witness), round complexity r(n,m, q), query complexity q and communication
complexity cc = cc(n,m, q).

Let R be a UP relation computable in NC1, with witnesses of length m = m(n), and let
δ > 0 be a constant. There exists an interactive protocol between a prover P and verifier V
such that the following holds. Both parties get as input x = (x1, . . . , xk) ∈ ({0, 1}n)k and
succinct descriptions 〈S〉 and 〈φ〉, of a set S ⊆ [k] of size s and circuit φ, respectively. The
prover P also gets witnesses w = (w1, . . . , wk) ∈ ({0, 1}m)k as an additional input. The
two parties interact and at the end of the interaction V either rejects or outputs succinct
descriptions 〈S′〉 and 〈φ′〉 of a subset S′ ⊆ S, of size s1−δ, and circuit φ′, respectively, such
that:

(Completeness:) If (xj , wj) ∈ R for all j ∈ S, and φ(w|S) = 1, then, with probability
1, after interacting with P, the verifier V outputs 〈S′〉 and 〈φ′〉 such that φ′(w|S′) = 1.
(Soundness:) If either (1) there exists j ∈ S such that R(xj) = ∅, or (2) (xj , wj) ∈ R
for all j ∈ S but φ(w|S) = 0, then, for every prover strategy P∗, with probability 1− ε,
after interacting with P∗, the verifier V either rejects or outputs 〈S′〉 and 〈φ′〉 such that
one of the following holds:
1. ∃j ∈ S′ such that R(xj) = ∅; or
2. φ′(w|S′) = 0.
(Complexity:) The protocol (P,V) has verifier complexity Vtime

(
n·k+poly(logn, log k),

s ·m, q
)
, prover complexity Ptime

(
n ·k+poly(logn, log k), s ·m, q

)
(assuming the prover is

given access to the k UP witnesses), round complexity r = r
(
n·k+poly(logn, log k), s·m, q

)
and communication complexity cc = cc

(
n · k + poly(logn, log k), s ·m, q

)
, where q = s1−δ.

Proof. Let R be a UP relation computable in NC1. We consider a related NP relation Rk
defined as follows. The input to Rk is (x1, . . . , xk, 〈S〉 , 〈φ〉) and the witness is a sequence
w|S = (wj)j∈S . The relation checks that (1) for every j ∈ S it holds that (xj , wj) ∈ R, and
(2) that φ(w|S) = 1. Observe that membership in Rk can be decided in (logspace uniform)
NC1, and therefore, by the lemma’s hypothesis there exists an oblivious IWV (P,V) for Rk
where we use parameter q = s1−δ, where s is the size of the set S.

We use (P,V) to construct a protocol (Pk,Vk) as required in the theorem’s statement.
Given as common input (x1, . . . , xk, 〈S〉 , 〈φ〉), the verifier Vk and prover Pk run (P,V) with
respect to the common input (x1, . . . , xk, 〈S〉 , 〈φ〉), where Pk gets as an auxiliary input also
w|S = (wj)|j∈S .

If V rejects then Vk immediately rejects. Otherwise, V outputs succinct NC1 descriptions
〈Q′〉 and 〈φ′〉 where Q′ ⊆ [k]× [m], of size k1−δ specifies which locations to read from w|S
and φ′ is a predicate specifying whether V would have accepted had it read those bits. For
simplicity, and without loss of generality, we assume that Q specifies k1−δ of the witnesses
w1, . . . , wk entirely and ignores the rest. Let S′ ⊆ [k] denote the witnesses that the Q refers
to. The verifier Vk outputs 〈S′〉 and 〈φ′〉.

Completeness. Let x1, . . . , xk be a sequence of inputs, S ⊆ [k] a set and φ a circuit such
that there exist unique w|S = (wj)|j∈S such that (xj , wj) ∈ R for all j ∈ [k] and φ(w|S) = 1.
The IWV protocol is run with respect to an input

(
(x1, . . . , xk, 〈S〉 , 〈φ〉),wS

)
∈ Rk. Thus,

by the completeness of the IWV, with probability 1, it holds that φ′(wS′) = 1.

Soundness. Suppose that either there exists j ∈ S such that R(xj) = ∅, or w|S = (wj)j∈S
consists of the corresponding unique witnesses and 〈φ〉 is such that φ(w|S) = 0. Let P∗ be a
cheating prover strategy. To show that the soundness condition holds, it suffices to prove the
following claim:
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I Claim 14.1.

Pr
[(
∀j ∈ S′, R(xj) 6= ∅

)
and

(
φ′(w|S′) = 0

)]
≤ ε

Proof. For every j ∈ S, if R(xj) 6= ∅ then define ŵj = wj (i.e., the unique witness for xj),
whereas if R(xj) = ∅, then define ŵj as some arbitrary fixed string (e.g., 0m).

We view P∗ as an adversary for the oblivious IWV protocol, with respect to the a priori
fixed witness string ŵ|S = (ŵj)|j∈S . By the soundness condition of the oblivious IWV (see
Theorem 8), it holds that:

Pr[φ′(ŵS′) = 1] ≤ ε.

For all j ∈ S we have that, if R(xj) 6= ∅ then wj = ŵj . Thus,

Pr
[(
∀j ∈ S′, R(xj) 6= ∅

)
and

(
φ′(w|S′) = 0

)]
≤ Pr

[
φ′(ŵ|S′) = 0

)]
≤ ε,

and the claim follows. J

Complexity. The stated complexity follows from the complexity of the IWV, which is run
on an input of size n · k + poly(logn, log k) (the concatenation of the k inputs and succinct
representations 〈S〉 and 〈φ〉), witness size s ·m (i.e., the length of (wi)|i∈S - the concatenation
of the relevant witnesses) and with respect to the parameter q = s1−δ. J

4.2 The Batch Verification Protocol: Proof of Theorem 13

Let (Preduction, Vreduction) be the protocol guaranteed by Theorem 14, with respect to UP
relation R and the IWV protocol of Theorem 9. We construct a protocol (Pbatch,Vbatch)
satisfying the requirement of Theorem 13. The protocol is described in Fig. 1.

To complete the proof of Theorem 13 we need to show that completeness and soundness
hold, as well as analyze the complexity of the protocol.

Completeness. Let x1, . . . , xk such that there exist (unique) witnesses w = (w1, . . . , wk)
such that (xj , wj) ∈ R, for every j ∈ [k]. Let S1, . . . , S` and φ1, . . . , φ` be the sets and
formulas, respectively, generated in the interaction between Pbatch and Vbatch.

I Claim 14.2. For every i ∈ [`], with probability 1, it holds that Vbatch does not reject prior
to the ith iteration and φi(wSi) = 1.

Proof. We prove by induction on i. In the case base φ1 always outputs 1 and so the claim
holds trivially. Suppose that the claim holds for some value i. Thus, φi(wSi) = 1.

Since (xj , wj) ∈ R for all j ∈ Si, and φi(wSi) = 1, by the completeness of (Preduction,

Vreduction)) it holds that Vreduction does not reject and outputs 〈Si+1〉 and 〈φi+1〉 such that
φi+1(wSi+1) = 1. The claim follows. J

Thus, at the end of the loop φ`(wS`) = 1. Since Pbatch sends the correct (unique) witnesses
wS` in Step 3, by the completeness of the interactive proof-system of Theorem 6, the verifier
Vbatch accepts.
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The UP Batching Protocol (Pbatch,Vbatch)

Common Input: x = (x1, . . . , xk) ∈ ({0, 1}n)k.
Prover’s Auxiliary Input: witnesses w = (w1, . . . , wk) ∈ ({0, 1}m)k.

1. Set 〈S1〉 to be a concise description of the set S1 = [k], and 〈φ1〉 to be a concise description of
a circuit φ1 : ({0, 1}m)k → {0, 1} that always outputs 1.

2. For i = 1, . . . , `− 1, where ` = O(1/δ):
a. Run (Preduction,Vreduction) on common input (x, 〈Si〉 , 〈φi〉), and with respect to parameter

qi = s1−δ
i , where si is the size of the set Si, and with soundness error ε = 1/(10`).a More

specifically, Vbatch emulates Vreduction and Pbatch emulates Preduction, using w|Si as the auxiliary
input.

b. If Vreduction rejects then Vbatch immediately rejects. Otherwise Vreduction outputs 〈Si+1〉 and
〈φi+1〉.

3. Pbatch sends to Vbatch the witnesses w|S` = (wj)j∈S` .
4. The verifier Vbatch expands 〈S`〉 to a full description of the set S`. The prover and verifier then

run the doubly efficient interactive proof of Theorem 6 on input
(
(xj)j∈S` , (wj)j∈S` , 〈φ`〉

)
checking that for every j ∈ S` it holds that (xj , wj) ∈ R and that φ`(w|S`) = 1 (the protocol of
Theorem 6 is used with a sufficiently small parameter τ > 0 to be determined in the analysis).
If all checks pass then Vbatch accepts and otherwise it rejects.b

a Such soundness amplification can be achieved by repeating the base protocol O(log(`)) times in
parallel.

b This step could be replaced by having the verifier directly check by itself that (xj , wj) ∈ R for every
j ∈ S`. However, doing so introduces an additive overhead of poly(n,m) to the verifier’s running
time (arising from the complexity of the relation R) which we can reduce to Õ(n+m) by using the
interactive proof of Theorem 6.

Figure 1 UP Batching.

Soundness. Let x1, . . . , xk ∈ {0, 1}n such that ∃j∗ ∈ [k] with R(xj∗) = ∅. Let P∗ be a
cheating prover strategy. For every j ∈ [k], if R(xj) 6= ∅, let wj be the corresponding unique
witness. Purely for notational convenience, we also define wj to be an arbitrary string, for
every j ∈ [k] such that R(xj) = ∅. Let w = (w1, . . . , wk).

For every i ∈ [`], let Ei denote the conjunction of the following three events:
The verifier Vbatch has not rejected prior to the start of the ith iteration; and
For every j ∈ Si it holds that R(xj) 6= ∅; and
φi(w|Si) = 1

Setting ε = 1/(10`), we have the following central claim:

I Claim 14.3. For every i ∈ [`]:

Pr[Ei] ≤ (i− 1) · ε

Proof. We prove the claim by induction on i. For the base case i = 1, since R(xj∗) = ∅ and
j∗ ∈ [k] = S1, it holds that

Pr[E1] ≤ Pr
[
∀j ∈ S1, R(xj) 6= ∅

]
≤ Pr[R(xj∗) 6= ∅] = 0.

Assume that the claim holds for some i ∈ [`− 1]. By elementary probability theory,

Pr[Ei+1] ≤ Pr[Ei] + Pr
[
Ei+1|¬Ei

]
.
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By the induction hypothesis the first term is bounded by (i− 1) · ε and so to complete
the proof we need to bound the second term by ε. This holds since:

Pr[Ei+1 | ¬Ei] ≤ Pr
[
Ei+1 | Vbatch rejects prior to iteration i

]
+ Pr

Ei+1

∣∣∣∣∣
(
∃j ∈ Si s.t. R(xj) = ∅

)
or(

φi(w|Si) = 0
)


= Pr

Ei+1

∣∣∣∣∣
(
∃j ∈ Si s.t. R(xj) = ∅

)
or(

φi(w|Si) = 0
)


≤ ε,

where the equality is since if Vbatch rejects prior to iteration i then clearly it also rejects
prior to iteration i+ 1 (and so Ei+1 does not occur), and the last inequality follows directly
from the soundness condition of Theorem 14 (where recall that we used that protocol with
soundness error ε = 1/(10`)). J

Thus, with probability at least 1− ` · ε ≥ 0.9, one of the following events occurs at the
end of the loop:
1. Vbatch has already rejected; or
2. There exists j ∈ [S`] such that R(xj) = ∅; or
3. φ`(w|S`) = 0.

We show that in each of these cases, the verifier rejects with high probability. For the
first case this is immediate. In the second case, the cheating prover must send some incorrect
witness w∗j . Thus, the verifier and prover run the doubly efficient interactive proof-system of
Theorem 6 on a false input, and by the soundness condition of that protocol, the verifier
rejects with probability 0.9.

Lastly, if φ`(wS`) = 0, then either P∗ sends witnesses that are not the unique witnesses,
in which case again the protocol of Theorem 6 is run on a false statement or P∗ sends the
unique witnesses but in this case the statement is still false since φ`(w|S`) = 1. Thus, in
both cases, by the soundness of Theorem 6, the verifier rejects with probability 0.9.

Thus, in all cases the verifier rejects with probability at least 0.92 ≥ 1/2.

Complexity. For every i ∈ [`], let si denote the size of the set Si generated in the interaction.
By Theorem 14 it holds that si ≤ k1−(i−1)·δ.

Consider the ith iteration of the loop, for some i ∈ [`− 1]. Let ni = n · k + polylog(n, k)
and mi = si ·m ≤ k1−(i−1)·δ ·m and recall that we set qi = s1−δ

i ≤ k1−i·δ. By Theorem 9,
together with Theorem 14, the ith iteration takes a constant number of rounds and has:

Communication complexity:

cci = (mi/qi) ·mδ
i · polylog(n,m)

≤
(

(k1−(i−1)·δ ·m)/k1−i·δ
)
· (k ·m)δ · polylog(n,m)

= k2δ ·m1+δ · polylog(n,m)

Verifier running time:

Vtimei = ni · polylog(ni,mi) + Õ(cci)
≤ n · k · polylog(n, k,m) + k2δ ·m1+δ · polylog(n,m, k)
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And prover running time (given the UP witnesses):

Ptimei = poly(ni,mi)
= poly(n,m, k)

To analyze the last two steps of the protocol, first observe that s` (i.e., the size of the final
set S`) has size s` ≤ k1−(`−1)δ̇ = O(1). Thus, Step 3 only adds an additional s` ·m = O(m)
communication.

As for the verification time, generating the set S` takes time poly(s`, log k) = polylog(k)
(by the definition of concise description of sets, see Theorem 4). The protocol of Theorem 6,
is run on a logspace computation and with its parameter τ set to be a sufficiently small
constant so that the communication is O(m). This protocol takes an additional O(1) rounds,
the verifier runs in time Õ(n+m), the prover runs in time poly(n,m) and the communication
complexity is O(m).

The parameters stated in the theorem’s statement now follows by taking resetting δ to be
sufficiently small (e.g., take δ′ = δ/4) and the fact that m and n are polynomially related.
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Abstract
We study entropy flattening: Given a circuit CX implicitly describing an n-bit source X (namely,
X is the output of CX on a uniform random input), construct another circuit CY describing a
source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon
entropy of Y is monotonically related to that of X. The standard solution is to have CY evaluate
CX altogether Θ(n2) times on independent inputs and concatenate the results (correctness follows
from the asymptotic equipartition property). In this paper, we show that this is optimal among
black-box constructions: Any circuit CY for entropy flattening that repeatedly queries CX as an
oracle requires Ω(n2) queries.

Entropy flattening is a component used in the constructions of pseudorandom generators and
other cryptographic primitives from one-way functions [12, 22, 13, 6, 11, 10, 7, 24]. It is also
used in reductions between problems complete for statistical zero-knowledge [19, 23, 4, 25]. The
Θ(n2) query complexity is often the main efficiency bottleneck. Our lower bound can be viewed
as a step towards proving that the current best construction of pseudorandom generator from
arbitrary one-way functions by Vadhan and Zheng (STOC 2012) has optimal efficiency.
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23:2 A Tight Lower Bound for Entropy Flattening

1 Introduction

A flat source X is a random variable that is uniform on its support; equivalently, its Shannon
entropy, min-entropy, and max-entropy are all equal:

Hsh (X) = Ex∼X [log(1/Pr [X = x])] ,
Hmin (X) = minx log(1/Pr [X = x]),
Hmax (X) = log | SuppX|.

These can be far apart for non-flat sources, but we always have Hmin (X) ≤ Hsh (X) ≤
Hmax (X).

Entropy flattening. Entropy flattening is the following task: Given a circuit CX implicitly
describing an n-bit source X (namely, X is the output of CX on a uniform random input),
efficiently construct another circuit CY describing a “flattened” version Y of X. The goal is
to have the output source Y (or a small statistical modification of it) be such that its min-
and max-entropies are monotonically related to the Shannon entropy of X. Concretely, one
interesting range of parameters is:

if two input sourcesX andX ′ exhibit a 1-bit Shannon entropy gap, Hsh (X ′) ≥ Hsh (X)+1,
then the two respective output sources Y and Y ′ must witness Hmin (Y ′) ≥ Hmax (Y ) + 1
(modulo a small modification to Y and Y ′).

X X ′ Y Y ′

min

sh

max

min

sh

max

max

min

Shannon
gap

min/max
gap

flattening

 

Entropy flattening is used as an ingredient in constructions of pseudorandom generators
and other cryptographic primitives from one-way functions [12, 22, 13, 6, 11, 10, 7, 24] and
in reductions between problems complete for (non-interactive) statistical zero-knowledge [19,
23, 4, 25]. See Section 1.2 for a detailed discussion.

A solution: repeat X. The standard strategy for entropy flattening is to construct Y
as the concatenation Xq of some q i.i.d. copies of the input source X. That is, in circuit
language, CY (x1, . . . , xq) = (CX(x1), . . . , CX(xq)). The well-known asymptotic equipartition
property in information theory states that Xq is ε-close5 to having min- and max-entropies
closely approximated by q · Hsh (X). (It is common to say that Xq has a certain ε-smooth
min- and max-entropy [21].)

5 Random variables Z1 and Z2 are ε-close if dTV (Z1, Z2) ≤ ε where dTV (Z1, Z2) is the usual statistical
(or total variation) distance, given by dTV (Z1, Z2) = maxT⊆Z |Pr [Z1 ∈ T ]− Pr [Z2 ∈ T ]|.
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I Lemma 1 ([12, 14]). Let X be an n-bit random variable. For any q ∈ N and ε > 0 there
is an nq-bit random variable Y ′ that is ε-close to Xq such that

Hmin (Y ′) , Hmax (Y ′) ∈ q · Hsh (X)±O
(
n
√
q log(1/ε)

)
.

In particular, it suffices to set q = Θ̃(n2) in order to flatten entropy in the aforementioned
interesting range of parameters (1-bit Shannon gap implies at least 1-bit min/max gap).
The analysis here is also tight by a reduction to standard anti-concentration results: it is
necessary to have q = Ω(n2) in order for the construction Y = Xq to flatten entropy.

1.1 Our Result
We show that any black-box construction for entropy flattening – that is, a circuit CY which
treats CX as a black-box oracle – requires Ω(n2) oracle queries to CX . This is formalized in
Theorem 2 below.

In particular, the simple “repeat-X” strategy is optimal among all black-box constructions.
Besides querying CX on independent inputs, a black-box algorithm has the freedom to perform
adaptive queries, and it can produce outputs that are arbitrary functions of its query/answer
execution log (rather than merely concatenating the answers). For example, this allows the
use of hash functions and randomness extractors, which is indeed useful for variations of the
flattening task (e.g., Lemma 4 below).

Query model. In our black-box model, the input source is now encoded as the output
distribution of an arbitrary function f : {0, 1}n → {0, 1}m where m = Θ(n) (not necessarily
computed by a small circuit); namely, the input source is f(Un) where Un denotes the
uniform distribution over n-bit strings. We consider oracle algorithms Af that have query
access to f . Given an n′-bit input w (thought of as a random seed) to Af , the algorithm
computes by repeatedly querying f (on query x ∈ {0, 1}n it gets to learn f(x)), until it
finally produces some m′-bit output string Af (w). We denote by Af : {0, 1}n′ → {0, 1}m′

the function computed by Af . Thus Af (Un′) is the output source.

Inputs/outputs. Our input sources come from the promise problem Entropy Approximation
(EA); the circuit version of this problem is complete for the complexity class NISZK (non-
interactive statistical zero-knowledge), as shown by Goldreich, Sahai, and Vadhan [4]. The
EA promise problem is (here τ ∈ N is a threshold parameter):

YES input: (f, τ) such that Hsh (f(Un)) ≥ τ + 1.
NO input: (f, τ) such that Hsh (f(Un)) ≤ τ − 1.

The goal of a flattening algorithm Af (which also gets τ as input, but we supress this in
our notation) is to produce an output distribution that is statistically close to having high
min-entropy or low max-entropy depending on whether the input source f is a YES or a NO
instance. We say that Af is an (ε,∆)-flattening algorithm if (here κ = κ(τ) is a parameter
that Af gets to choose):

If (f, τ) is a YES input, then Af (Un′) is ε-close to a distribution ZH with Hmin (ZH) ≥
κ+ ∆.
If (f, τ) is a NO input, then Af (Un′) is ε-close to a distribution ZL with Hmax (ZL) ≤ κ−∆.

The result. Our main result is the following.

I Theorem 2. There exist constants ε,∆ > 0 such that every (ε,∆)-flattening algorithm for
n-bit oracles f requires Ω(n2) oracle queries.

CCC 2018
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In fact, our proof yields an even more fine-grained lower bound. Suppose we allow ε and
∆ to vary subject to n/25 ≥ ∆ ≥ log(1/ε). Then our lower bound becomes Ω(n2 log(1/ε)),
which is tight in both n and ε.

1.2 Relevance to Cryptographic Constructions
Pseudorandom generators from one-way functions. The use of flattening in complexity-
based cryptography originates with the celebrated work of Håstad, Impagliazzo, Levin, and
Luby (HILL) [12], which showed how to construct a pseudorandom generator from any
one-way function. The first step of their construction is to show how to obtain, from any
one-way function, a pseudoentropy generator. That is, a polynomial-time computable function
f : {0, 1}n → {0, 1}m such that f(Un) is computationally indistinguishable from a random
variable Y such that Hsh (Y ) is noticeably higher than Hsh (f(Un)). In other words, for some
threshold τn and a nonnegligible gap parameter ∆n ≥ 1/ poly(n) it holds that:
1. f(Un) is computationally indistinguishable from a random variable Y with Shannon

entropy at least τn + ∆n, and
2. f(Un) has Shannon entropy at most τn −∆n.
Notice that if ∆n = 1, then Condition 2 says that the pair (fn, τn) is a NO instance of EA
(where fn is the restriction of f to instances of length n). On the other hand, Condition 1 says
that (fn, τn) appears to be a YES instance of EA to computationally bounded algorithms
(that get to observe an output of fn on a uniformly random input). In the HILL construction,
it turns out that ∆n = Θ̃(1/n) (rather than ∆n = 1), corresponding to an appropriate
variant of EA.

Given the similarity with EA, it is natural that the next step of the HILL construction
is flattening. Specifically evaluating f on many independent inputs yields a distribution
that is close to having low max-entropy yet is computationally indistinguishable from having
high min-entropy. Since ∆n is not 1, but rather Θ̃(1/n), the number of copies needed for
flattening becomes q = Õ(n/∆n)2 = Θ̃(n4).

After flattening, universal hashing (or randomness extraction) is applied to obtain
a pseudorandom generator Gf : {0, 1}n′ → {0, 1}m′ , where Gf (Un′) is computationally
indistinguishable from Um′ (i.e. indistinguishable from min-entropy at least m′) yet has
max-entropy at most n′ ≤ m′ − 1 (due to having a seed length of n′). (This step is a
computational analogue of Lemma 4 below.)

As described, the pseudorandom generator Gf makes q = Θ̃(n4) queries to the pseudoen-
tropy generator f and hence to the one-way function. The actual HILL construction is more
complex and inefficient, due in part to the fact that the entropy threshold τn is not known.
To deal with the latter issue, they enumerate all t = Θ(n/∆n) = Θ̃(n2) possibilities for the
threshold τn to within precision ∆n, construct a pseudorandom generator for each choice,
and then combine the generators (which has a further cost in efficiency).

A series of subsequent works [13, 6, 9, 24] improved the efficiency of the HILL construction.
The state-of-the-art constructions [9, 24] replace “pseudoentropy” with a more relaxed
computational analogue of Shannon entropy (“next-bit pseudoentropy”) and thereby obtain
∆n = 1 (or even ∆n = logn), reducing the cost of flattening to q = Θ̃(n/∆n)2 = Θ̃(n2). In
these constructions, the entropy threshold τn is also known (in fact τn = n), but there still is
an analogous cost of Θ̃(n) due to the fact that we don’t know how the entropy is spread out
among the bits of the output of the next-bit pseudoentropy generator f .

Overall, with the most efficient constructions to date, the pseudorandom generator makes
Θ̃(n3) queries to the one-way function, of which a Θ̃(n2) factor is due to flattening. This
complexity renders the constructions too inefficient for practice, and thus it is important to
know whether a more efficient construction is possible.



Y. Chen, M. Göös, S. P. Vadhan, and J. Zhang 23:5

Lower Bounds. The work of Gennaro, Gertner, Katz, and Trevisan [2] gave the first lower
bound on constructing pseudorandom generators from one-way functions. Specifically they
proved that any “black-box” construction of a pseudorandom generator Gf : {0, 1}n′ →
{0, 1}m′ from a one-way function f : {0, 1}n → {0, 1}m requires Ω((m′−n′)/ logn) queries to
f . Thus, many queries are needed to construct a pseudorandom generator with large stretch.
However, their lower bound says nothing about the number of queries needed to obtain a
pseudorandom generator with small stretch (i.e., where m′ = n′ +O(logn)), and indeed it
applies even to one-way permutations f , where no flattening is needed and a pseudorandom
generator with small stretch can be obtained with a single query to the one-way function [3].

For constructing pseudorandom generators with small stretch from one-way functions,
Holenstein and Sinha [15] proved that any black-box construction requires Ω̃(n) queries.
Their lower bound also does not tell us about flattening, as it applies even to regular one-way
functions, which directly (with one query) give a separation between pseudo-min-entropy
and max-entropy. Rather, their lower bound corresponds to the efficiency costs coming from
not knowing the entropy thresholds τn mentioned above (or how the entropy is spread across
the bits in the case of next-bit pseudoentropy).

Our lower bound for flattening (Theorem 2) can be viewed as a first-step towards proving
that any black-box construction of pseudorandom generators from one-way functions requires
Ω̃(n2) queries. One might hope to also combine this with [15] and obtain a lower bound of
Ω̃(n3) queries, which would match the best-known construction of [24].

Seed length. Another important and well-studied efficiency criterion for pseudorandom
generator constructions is how the seed length n′ of the pseudorandom generator Gf :
{0, 1}n′ → {0, 1}m′ depends on the input length n of the one-way function f : {0, 1}n →
{0, 1}m. The standard method for flattening (Lemma 1) requires independent samples from
the distribution being flattened, and thus the query complexity of flattening contributes a
multiplicative factor to the seed length of the pseudorandom generator. For example, the
construction of [24] gives a pseudorandom generator with seed length Θ̃(n2) · n = Θ̃(n3), as
Θ̃(n2) independent evaluations of the one-way function (or corresponding pseudoentropy
generator) are used for flattening. An interesting open problem is to show that independent
evaluations are indeed necessary, and extend our lower bound on query complexity to a
lower bound on the input length n′ of the flattening algorithm Af : {0, 1}n′ → {0, 1}m′ .
This could be a first step towards proving a superlinear lower bound on the seed length
of pseudorandom generators constructed (in a black-box way) from one-way functions, a
long-standing open problem. We note that the existing lower bounds on query complexity
of [2, 15] cannot be turned into seed length lower bounds, as there are constructions of
large-stretch pseudorandom generators from regular one-way functions with seed length
Õ(n) [6]. That is, although those constructions make polynomially many queries to the
one-way functions, the queries are highly correlated (and even adaptive).

Other Cryptographic Primitives. Flattening is also an efficiency bottleneck in the construc-
tions of other cryptographic primitives from arbitrary one-way functions, such as universal
one-way hash functions [22, 16, 7] and statistically hiding commitment schemes [8, 11]. In
both cases, the state-of-the-art constructions begin by constructing a function f where there
is a gap between its output entropy H(f(Un)) and a computational analogue of Shannon
entropy (namely, a form of “inaccessible entropy”). Then flattening is applied, after which
some (possibly interactive) hashing techniques are used to obtain the final cryptographic
primitive. Again, our lower bound on flattening can be viewed as a first step towards proving
an efficiency lower bound on black-box constructions.

CCC 2018
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We note that there was a very fruitful interplay between this sequence of works on
constructions of cryptographic primitives from one-way functions and general results about
SZK and NISZK, with inspirations going in both directions (e.g., [18, 8, 20, 11]). This
reinforces the feeling that our lower bound for Flattening the NISZK-complete problem EA
can help in understanding the aforementioned constructions.

2 Proof Overview

Our proof builds on the recent result of Lovett and Zhang [17], who showed that there
is no efficient black-box reduction (making polynomially many queries) from EA to its
complement, thereby giving evidence that NISZK is not closed under complement and hence
that NISZK 6= SZK. The result of [17] a qualitative one, whereas here we are concerned
with a quantitative question: What is the exact query complexity of flattening? Nevertheless,
we use a similar construction of hard instances as [17] and make use of a variation of their
key lemma.

2.1 Simplification: The SDU Problem
We find it convenient to work with a slightly simplified version of the flattening task, having
one fewer parameter to worry about.

I Definition 3 (Statistical distance from uniform (SDU)). We say an algorithm Af : {0, 1}n′ →
{0, 1}m′ is a k-SDU algorithm if for all f : {0, 1}n → {0, 1}m, we have

If (f, τ) is a YES input to EA, then Af (Un′) is 2−k-close to Um′ .
If (f, τ) is a NO input to EA, then

∣∣Supp(Af (Un′))
∣∣ ≤ 2m′−k.

Note that a k-SDU algorithm is a (2−k, k/2)-flattening algorithm (with threshold κ =
m′ − k/2). Conversely, we can transform any flattening algorithm to a SDU algorithm using
hashing similar to [4]:

I Lemma 4. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for
function f : {0, 1}n → {0, 1}m with query complexity q, then there exists a k-SDU algorithm
Af : {0, 1}n′′ → {0, 1}n′′−3k where n′′ = O(n′ +m′) for function f : {0, 1}n → {0, 1}m with
query complexity q and k = Ω(min{∆, log(1/ε)}). In particular, there exists such a k-SDU
algorithm with query complexity O(k ·min{n,m}2).

I Remark. Note that Lemma 2.2 guarantees not only that A is a k-SDU algorithm but also
that its output length is only 3k bits shorter than its input length. This additional property
will be useful in our proof.

Here for our main result (Theorem 2), it suffices to prove an Ω(kn2) query lower bound
for any k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ with m′ = n′ − 3k and k ≤ n/25.

I Theorem 5. Let k ≤ n. Every k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m has query complexity Ω(kn2).

2.2 Hard Instances
We consider two input distributions DH and DL over functions f : {0, 1}n → {0, 1}3n such
that the entropies of most functions in DH and DL are at least τ + 1 and at most τ − 1
(where τ = Θ(n)), respectively. To sample a function from DH , we randomly partition the
domain of f into many blocks B1, B2, . . . , Bs, each of size 2n/s where s = 23n/4. For each
block Bi,
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with probability 1/2 + Θ(1/n) we insert a high-entropy block: f |Bi will be a uniformly
random mapping from Bi to {0, 1}3n; and
with the remaining probability 1/2−Θ(1/n), we insert a low-entropy block: all elements
of Bi are mapped to the same random element of {0, 1}3n.

The distribution DL is the same, except we swap the two 1/2±Θ(1/n) probabilities.
Note that since the range {0, 1}3n is so much larger than the domain {0, 1}n, with high

probability f will be injective on the high-entropy blocks and will also have no collisions
between different blocks. Under this condition, if we let B(x) denote the block containing x
(which is determined by f(x)) and p be the fraction of high entropy blocks, we have

Hsh (f(Un)) = Hsh (B(Un)) + Hsh (f(Un) | B(Un)) (1)

= log2 s+ p · log2

(
2n

s

)
+ (1− p) · 0 = 3n

4 + p · n4 . (2)

Under DH we have p = 1
2 + Θ( 1

n ) whp, and under DL we have p = 1
2 −Θ( 1

n ) whp, which
yields a constant gap in Shannon entropies, as desired.

2.3 Basic Intuition – and a Warning!

The first natural instinct – but too naive, we argue – is that since the bias between observing
a high-entropy block versus a low-entropy block is only Θ(1/n), an anti-concentration bound
should imply that distinguishing the two distributions takes Ω(n2) queries.

This intuition indeed applies to simple bounded-error randomized decision trees (which
output just a 1-bit answer). Concretely, suppose for simplicity that our input is just an
n2-bit string x (instead of an exponentially large oracle f): each bit xi represents either a
high-entropy block (xi = 1) or a low-entropy block (xi = 0). We are given the following
gap-majority promise: the relative Hamming weight |x|/n2 is either 1/2 + 1/n or 1/2− 1/n.
It is a well-known fact that any bounded-error query algorithm needs Ω(n2) queries to
distinguish these two cases.

But surprisingly enough, there does exist6 a flattening/SDU algorithm Ax that solves the
gap-majority promise problem with only O(n) queries! This suggests that any superlinear
lower bound must somehow hide from the algorithm the type (high vs. low) of a queried
block. Our choice of distributions DH and DL does indeed achieve this: since there are so
many blocks, a single run of the algorithm is unlikely to query more than one point in a
single block, and the marginal distribution of such a single query is the same in both DH
and DL. The more precise way in which we exploit the hidden type of a block is in invoking
the main result of [17]: when switching a high-entropy block in an f to a low-entropy block,
the support of an SDU algorithm’s output distribution, Supp

(
Af (Un′)

)
, cannot increase by

much.

6 Consider the following algorithm Ax on input a random seed w: query a sequence of random positions i
(according to w) until a position with xi = 1 is found. Output Ax(w) = i. It is easy to verify that this
is an (0, Θ(1/n))-flattening algorithm with expected query complexity O(1). Repeating the algorithm
some Θ(n) many times yields an (0, Ω(1))-flattening algorithm with expected query complexity O(n).
Finally, we can make the algorithm abort if any run exceeds the expected query complexity by a large
constant factor; this results in an (ε, Ω(1))-flattening algorithm of worst-case query complexity O(n).

CCC 2018
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2.4 Technical Outline
Recall that Af (Un′) is almost-uniform when f ∼ DH has high entropy. For almost all
z ∈ {0, 1}m′ , most of the high-entropy functions f make the algorithm Af output z (on some
random seed):

Pr
f∼DH

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
≥ 1− 2−Ω(k). (3)

On the other hand, since the support of Af (Un′) is small when f has low entropy, there
should be many z such that when we sample f from DL, with high probability Af (w) does
not output z:

Pr
f∼DL

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
≤ 2−Ω(k). (4)

To connect the high-entropy and low-entropy cases, we essentially prove that for many
z ∈ {0, 1}m′ and every algorithm A making o(kn2) queries, we have

Pr
f∼DH

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
≤ 2o(k) · Pr

f∼DL

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
+O(2−k).

(5)

As long as there exists z such that Equation (3), (4) and (5), the combination of those
equations contradict inequality (5).

Our inequality (5) is similar to the key lemma of Lovett and Zhang [17] except the inequal-
ity is reversed, we have an extra multiplicative factor of 2o(k) and our lemma (necessarily)
only applies to algorithms making o(kn2) queries (where the [17] lemma applies even to
exponentially many queries).

One key step toward the inequality (5) is to reverse the direction of the inequality by the
following trick. We name elements of {0, 1}n′ as w1, . . . , w2n′ in some arbitrary fixed order.
Then

Pr
f

[
∃w ∈ {0, 1}n

′
, Af (w) = z

]
=

2n
′∑

`=1
Pr
f

[
Af (w`) = z and @w ∈ {w1, . . . , w`−1}, Af (w) = z

]
=

2n
′∑

`=1

(
1− Pr

f

[
∃w ∈ {w1, . . . , w`−1}, Af (w) = z | Af (w`) = z

])
· Pr
f

[
Af (w`) = z

]
.

Having a negative sign, now we wish to relate the probability of

Pr
f

[
∃v ∈ {w1, . . . , w`−1}, Af (w) = z | Af (w`) = z

]
over DH and DL in the same direction as [17]. It is not a direct application of their lemma
due to the fact that the block size is constant in their construction and our probability is
conditioned on the event Af (w`) = z, but we prove a generalization (Lemma A.1) of their
lemma that suffices. In fact, the proof we provide in Appendix B is simpler than the one
in [17] and yields better parameters.

Like in [17], instead of considering the event ∃w,Af (w) = z in all the probabilities
above, we further impose the restriction that Af (w) queries each block Bi of the domain
at most once, since this event happens with high probability. Furthermore (unlike [17]),
we also restrict to the case that the number of high-entropy block queries is in the range
q ·
(
1/2± (O(1/n) +O(1/√q)

)
out of a total of q queries, which also occurs with high

probability.
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3 The Hard Distribution

Let Af : {0, 1}n′ → {0, 1}m′ be a potential k-SDU algorithm for functions f : {0, 1}n →
{0, 1}m. Throughout, we will consider a fixed oracle algorithm Af with query complexity
q, and will omit the dependency of A in most notations. For a vector ~X, we use ~X(j) to
denote the j-th element of ~X, and X means the unordered set { ~X(j) : j ∈ [| ~X|]}.

It is equivalent to interpret an element {0, 1}n as an integer in [N ], since we do not make
use of any structure in {0, 1}n. Under this notation, we are considering the fixed oracle
algorithm Af : [N ′]→ [M ′] for functions f : [N ]→ [M ] where N ′ = 2n′ ,M ′ = 2m′ , N = 2n
and M = 2m.

Partition. Given parameters s, t ∈ N where st = N , and a function f : [N ] → [M ], we
partition the domain [N ] into s blocks X1, . . . , Xs each of size t. We also fix an order for
the blocks: ~X = ( ~X1, . . . , ~Xs). Given a vector ~Yi ∈ [M ]t, we use the shorthand f( ~Xi) = ~Yi
to mean f( ~Xi(j)) = ~Yi(j), for all j ∈ [t]. Therefore, once vectors ~Y1, . . . , ~Ys ∈ [M ]t and a
partition ~X are determined, the function f is fully defined as f( ~Xi) = ~Yi for all i ∈ [s].

Distributions.
Let Xs be a uniform distribution over an ordered partitions ~X = ( ~X1, . . . , ~Xs) of [N ]
where | ~Xi| = N/s = t for all i ∈ [s].
Let Y0 and Y1 be distributions on [M ]t defined as follows,

For Y0, uniformly sample a string z, and output ~Y (1) = · · · = ~Y (t) = z.
For Y1, uniformly and independently sample ~Y (1), . . . , ~Y (t) from [M ].

Given a vector ~b ∈ {0, 1}s and a partition ~X = ( ~X1, . . . , ~Xs) of [N ], we define the
distribution F(~X,~b) of function f : [N ] → [M ] such that f( ~Xi) = ~Yi where ~Yi ← Y~b(i).
Essentially, ~b indicates whether each block is “high entropy” or “low entropy”.
For 0 ≤ α ≤ 1, let Bα be a distribution over a vector ~b ∈ {0, 1}s, so that each entry of ~b
is sampled from Bern(α) independently.
For 0 ≤ α ≤ 1, Dα is a distribution a function f : [N ] → [M ], a partition ~X, and an
indicator vector ~b: (f,~b, ~X) ∼ Dα means ~b ∼ Bα, ~X ∼ Xs and f ∼ F(~X,~b).

Block-Compatibility. When an algorithm A runs with input w and oracle f , let Queryf (w)
be the set of the queries made by the algorithm Af (w) to f . We say w is block-compatible
with (f,X) if |Queryf (w) ∩X| ≤ 1 for all X ∈ X. The set of block-compatible inputs with
(f,X) is denoted

BC(f,X) = {w : w is block-compatible with (f,X)}

Construction. Set m = 3n, so M = N3. Also, set s = 23n/4 = N3/4 and t = 2n/4 = N1/4.
Let the high entropy distribution be DH

def= D1/2+5/n and the low entropy distribution be
DL

def= D1/2+5/n. We claim that with high probability, a function f from DH and DL has
entropy at least τ + 1 and at most τ − 1 for τ = 7n/8.

I Lemma 6. Let the parameters be as above. Then we have

Pr
(f,~b,~X)∼DH

[Hsh (f) ≥ τ + 1] ≥ 1− 2−0.9n and

Pr
(f,~b,~X)∼DL

[Hsh (f) ≤ τ − 1] ≥ 1− 2−0.9n
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Proof. For any pair of independent and random mappings to M , the collision probability is
1/M . There are no more than N2 pairs of inputs, so with probability at least 1−N2/M =
1 − 2−n, there is no collision when two images are sampled independently. Under that
condition, as shown by Equation (1), let p be the fraction of high entropy blocks, namely p
is the hamming weight of ~b divided by s, the entropy of the function f is

Hsh (f(Un)) = 3n
4 + p · n4 .

Recall that when we sample ~b from DH , ~b(i) ∼ Bern(1/2 + 5/n) for all i ∈ [s]. By the
Chernoff bound,

Pr
(f,~b,~X)∼DH

[
p ≥ 1

2 + 4
n

]
≥ 1− 2 1

4 ·s·(1/n)2
,

which implies

Pr
(f,~b,~X)∼DH

[
Hsh (f) ≥ 3n

4 +
(

1
2 + 4

n

)
· n4 = 7n

8 + 1
]
≥ 1− 2− 1

4 ·s·(1/n)2
− 2−n

≥ 1− 2−0.9n.

Similarly, when sampling from DL,

Pr
(f,~b,~X)∼DL

[
Hsh (f) ≤ 3n

4 +
(

1
2 −

4
n

)
· n4 = 7n

8 − 1
]
≥ 1− 2− 1

4 ·s·(1/n)2
− 2−n

≥ 1− 2−0.9n.

Taking τ = 7n
8 concludes the lemma. J

4 Query Lower Bound for SDU Algorithms

4.1 Proof Strategy
Let Af be a k-SDU algorithm making q = o(kn2) queries. We may assume wlog that the
algorithm makes exactly q oracle queries to f , and all the query positions are distinct. (It is
useless to query the same positions, and if the number of queries is less than q, we simply
make some dummy queries.) We derive a contradiction from the following two lemmas to
conclude the lower bound (Theorem 5). For every z ∈ [M ′] that satisfies

E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k, (6)

we have

Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2o(k) · Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
+O(2−k) (7)

There exists a universal constant c > 0 such that for every sufficiently large n and 25k ≤ n,
there is an output z ∈ [M ′] that satisfies
1. Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−ck.

2. Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−ck.
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3. E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k

The contradiction directly came from plugging z that satisfies the inequalities in Lemma 4.1
into Inequality (7).

In the following section, we prove that most inputs are block-compatible and hence we
can only consider the block-compatible inputs rather than the whole domain [N ′]. Then we
prove Lemma 4.1 and 4.1 in Section 4.3 and 4.4, respectively.

4.2 Block-Compatible Inputs

As in [17], we only consider block-compatible inputs, where each block is queried at most
once. In that case, it is easier to compare the behavior of the SDU algorithms. Since there are
exponentially many blocks but only polynomially many queries, intuitively, the probability
of having block-compatible property is overwhelming if we randomly partition the domain of
f . Formally,

I Lemma 7. For every w ∈ [N ′] and α ∈ [0, 1],

Pr
(f,~b,~X)∼Dα

[w /∈ BC(f,X)] ≤ q2

s
≤ 2−0.6n.

Proof. In order to handle adaptive algorithms, we consider the following procedure to sample
(f,~b, ~X), which is equivalent to sampling from Dα. Specifically, we sample the parts that are
related to w first.

Procedure 4.1

1. Initially, ~Xi(j) = ∗ and ~b(i) = ∗ for all i ∈ [s], j ∈ [t].
2. Simulate Af (w) handling the r-th oracle query xr as follows. For r = 1, . . . , q,

a. Based on previous queries and results as well as w, let the r-th query be
xr. Select (i, j) uniformly at random from [s]× [t] subject to Xi(j) = ∗ and
assign ~Xi(j) = xr.

b. If ~b(i) = ∗, then assign ~b(i) ∼ Bern(α) and ~Yi ∼ Y~b(i).
c. Set f(xr) = Yi(j) and return f(xr) as the answer to the query.

3. Assign the rest of the vectors ~X and ~b by executing Step 2(a)–2(c) for all
x ∈ [N ] \ {x1, . . . , xq}.

By the principle of deferred decisions, it can be verified that the joint distribution of
(f, ~X,~b) is identical to Dα.

Notice that w ∈ BC(f, ~X,~b) if and only if the sequence of q values of i selected in Step 2(a)
are all distinct. The probability that the (r+ 1)st value of i is the same one comparing to the
previous r values is at most rt/(st− r) ≤ q/s, since r ≤ q− 1 and qr ≤ st. So the probability
that there are any repetitions is at most q2/s. J

By Markov’s inequality, almost all inputs are block-compatible.

I Corollary 8. For every α ∈ [0, 1],

Pr
(f,~b,~X)∼Dα

[
|BC(f,X)| > N ′ · (1− 2−0.3n)

]
≥ 1− 2−0.3n
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4.3 Proof of Lemma 4.1

For every z ∈ [M ′] that satisfies

E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k, (6)

we have

Pr
(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2o(k) · Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
+O(2−k) (7)

Proof. Define the set

Wz(f,X) = {w : w ∈ BC(f,X), Af (w) = z}.

Let w1, · · · , wN ′ be all possible inputs in arbitrary but fixed order. The first step is to break
the event ∃w ∈Wz(f,X) to the events that w` is the “first” one in Wz(f,X) for all ` ∈ [N ′],

Pr
(f,~b,~X)∼Dα

[∃w ∈Wz(f,X)]

=
N ′∑
`=1

Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X) ∧ w1, . . . , w`−1 /∈Wz(f,X)]

=
N ′∑
`=1

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

× Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X)]

Our goal is to switch the distribution from DH to DL and see how the probability changes. We
do the switch using the following two claims. For every w` ∈ [N ′], Pr(f,~b,~X)∼Dα [w` ∈Wz(f,X)]
does not depend on α ∈ [0, 1]. In particular,

Pr
(f,~b,~X)∼DH

[w` ∈Wz(f,X)] = Pr
(f,~b,~X)∼DL

[w` ∈Wz(f,X)] .

For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f,~b,~X)∼DH

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] +O

(
q3t2

s

)
+ 2−5k

The intuition behind the first claim is that as long as w` is block-compatible, the query
results are independently uniform over [M ] in both DH or DL case. For the second claim, we
will apply a variation of the main lemma in [17]. Notice that the direction of the inequality
in the second claim is reversed by our first step, and thus is consistent to the one in [17].
The formal proofs of those Claims are shown in Section 4.3.1 and 4.3.2.
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Once we have the above claims, we can prove the lemma:

Pr
(f,~b,~X)∼DH

[∃w ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[∃w ∈Wz(f,X)]

+
(
O

(
q3t2

s

)
+ 2−5k

)
·

2n
′∑

`=1
Pr

(f,~b,~X)∼DH
[w` ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[∃w ∈Wz(f,X)]

+
(
O
(

2−n/5
)

+ 2−5k
)
· E

(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[∃w ∈Wz(f,X)] +O(2−k).

The second inequality is by the assumption of n > 25k, and the last inequality is by
Inequality (6). J

4.3.1 Proof of Claim 4.3

For every w` ∈ [N ′], Pr(f,~b,~X)∼Dα [w` ∈Wz(f,X)] does not depend on α ∈ [0, 1]. In particu-
lar,

Pr
(f,~b,~X)∼DH

[w` ∈Wz(f,X)] = Pr
(f,~b,~X)∼DL

[w` ∈Wz(f,X)] .

Proof. We factorize the probability into two parts and prove both of them are independent
of α.

Pr
(f,~b,~X)∼Dα

[w` ∈Wz(f,X)]

= Pr
(f,~b,~X)∼Dα

[
Af (w`) = z | w` ∈ BC(f,X)

]
· Pr

(f,~b,~X)∼Dα
[w` ∈ BC(f,X)]

We use Procedure 4.1 to sample (f,~b, ~X). We will prove the second factor is independent
of α by induction over r. Conditioning on the first (r − 1) values of i selected in Step 2(a)
being all distinct, that is, the block-compatible property has not been violated in the first r
rounds, we have ~b(i) = ∗ at the beginning of Step 2(b) in the r-th round. Thus no matter
what α is and what ~b(i) is assigned, Yi(j) is uniform over [M ] in the r-th round. Therefore,
under the assumed condition, the distribution of xr and f(xr) are independent of α and the
probability of maintaining the block-compatible property in the r-th round is independent of
α. By induction, we know that the probability of maintaining the block-compatible property
in all q rounds is independent of α.

For the first factor, as discussed above, conditioning on the block-compatible property,
the distributions of xr and f(xr) are independent of α, so the probability of getting z as the
output of Af (w`) is also independent of α. J
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4.3.2 Proof of Claim 4.3
For every w` ∈ [N ′] and z ∈ [M ′],

Pr
(f,~b,~X)∼DH

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2o(k) · Pr
(f,~b,~X)∼DL

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)] +O

(
q3t2

s

)
+ 2−5k

Proof. We consider the following sampling procedure which is equivalent to sampling (f,~b, ~X)
from Dα conditioned on w` ∈Wz(f,X) (Namely, Af (w`) = z and w` ∈ BC(f,X)). We denote
such a distribution as (f,~b, ~X) ∼ Dα(w`, z). It follows the same idea as in Procedure 4.1
– sampling the blocks that are queried by Af (w`) first, and uses the rejection sampling to
handle the condition w` ∈Wz(f,X).

Procedure 4.2

1. Initially, ~Xi(j) = ∗ and ~b(i) = ∗ for all i ∈ [s], j ∈ [t] and f(x) = ∗ for all
x ∈ [N ].

2. Simulate Af (w`) handling the r-th oracle query xr as follows. For r = 1 . . . , q,
a. Based on previous queries and results as well as w, let the r-th query be

xr. Select (i, j) uniformly at random from [s]× [t] subject to Xi(j) = ∗ and
assign ~Xi(j) = xr.

b. If ~b(i) = ∗, then assign ~b(i) ∼ Bern(α) and ~Yi ∼ Y~b(i).
c. Set f(xr) = Yi(j) and return f(xr) as the answer to the query.

3. If q values of i in Step 2(a) are not all distinct, or Af (w`) 6= z, restart.
4. For all (i, j) such that ~b(i) 6= ∗ and ~Xi(j) = ∗, randomly sample x ∈ [N ] that

has not been assigned to any partition. Set ~Xi(j) = x and f(x) = Yi(j).
5. Denote the partially assigned (some of them are mapped to ∗) function and

vectors sampled so far as f∗,~b∗, (~X∗) ∼ D∗α(w`, z).
6. Assign the rest of the vectors ~X, ~b and the mapping f by executing Step 2(a)–(c)

for all x ∈ [N ] \ {x1, . . . , xq} (instead of xr).

Notice that until Step 5, information (including the partition ~X∗, function mapping f∗
and the indicator ~b∗) on exactly q blocks is decided.

The probability we consider then can be written as

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

= Pr
(f,~b,~X)∼Dα(w`,z)

[w1, . . . , w`−1 /∈Wz(f,X)]

=
∑

(f∗,~b∗,~X∗)

Pr
(f,~b,~X)∼Dα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X) | (f∗,~b∗, ~X∗)

]
× Pr
D∗α(w`,z)

[
(f∗,~b∗, ~X∗)

]
Now we introduce a property of a partial indicator. We say a partial indicator is balanced if
the number of zeros (low entropy block) and ones (high entropy block) are about the same.

I Definition 9 (Balance). Let ~b∗ ∈ {0, 1, ∗}s be a “partial” indicator vector where there are
q non-star entries. We say it is balanced if the number of 1s is in [q · (1/2− 5/n−

√
25k/q), q ·

(1/2 + 5/n+
√

25k/q)].
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According to Procedure 4.2, each non-star entry of ~b∗ is sampled uniformly and in-
dependently from Bern(α). When α ∈ [1/2 − 5/n, 1/2 + 5/n], by Chernoff bound, we
have

Pr
f∗,~b∗,(~X∗)∼D∗α(w`,z)

[
~b∗ is balanced

]
≥ 1− 2−5k.

And thus we can sum over only balanced ~b∗ by paying an additive term.

Pr
(f,~b,~X)∼Dα

[w1, . . . , w`−1 /∈Wz(f,X) | w` ∈Wz(f,X)]

≤ 2−5k +
∑

(f∗,~b∗,~X∗)
where ~b∗ is balanced

Pr
(f,~b,~X)∼Dα(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X) | (f∗,~b∗, ~X∗)

]

× Pr
Dα(w`,z)∗

[
(f∗,~b∗, ~X∗)

]
(8)

Now we use the following two claims (proved in the later paragraphs) to connect the high
entropy case (DH) and the low entropy case (DL) on those two factors.

For every w` ∈ [N ′], z ∈ [M ′] and every possible (f∗,~b∗, ~X∗) from D∗H(w`, z), we have

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

≤ Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
(9)

For every w` ∈ [N ′], z ∈ [M ′] and every (f∗,~b∗, ~X∗) where ~b∗ is balanced,

Pr
D∗
H

(w`,z)

[
(f∗,~b∗, ~X∗)

]
≤ 2o(k) · Pr

D∗
L

(w`,z)

[
(f∗,~b∗, ~X∗)

]
(10)

Inserting Inequalities (9) and (10) to Equation (8) with α = 1/2 + 5/n, we conclude the
claim. J

Proof of Claim 4.3.2 For every w` ∈ [N ′], z ∈ [M ′] and every possible (f∗,~b∗, ~X∗) from
D∗H(w`, z), we have

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

≤ Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
(9)

Proof. We will use a variation of the main lemma (Lemma 3) in [17]. Let Âf̂ : [N̂ ′]→ [M̂ ′]
be an algorithm making at most q oracle queries to f̂ : [N̂ ]→ [M̂ ]. Let D̂H = D̂1/2+5/n and
D̂L = D̂1/2−5/n be the distribution over a function f̂ : [N̂ ]→ [M̂ ], a partition ~̂X ∈ ([N̂ ]t̂)ŝ,
and the indication vector ~̂b ∈ {0, 1}ŝ as defined in Section 3. If t̂ > q, then for all z ∈ [N̂ ′],

Pr
(f̂ ,~̂b, ~̂X)∼D̂L

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
− Pr

(f̂ ,~̂b, ~̂X)∼D̂H

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
≤ O(q3 · t̂2)

ŝ
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Proof. See Appendix A.1. J

For a fixed (f∗,~b∗, ~X∗), apply the above lemma in the following way:
Let ŝ = s− q, t̂ = t, and so N̂ = ŝ · t̂ = N − qt.
Let S = {x | f∗(x) = ∗} ⊆ [N ], I = {i | ~b∗(i) = ∗} ⊆ [s] and πX : S → [N̂ ], πI : I → [ŝ]
be arbitrary bijection mappings. Then we define f̂ , ~̂X and ~̂b as follows.

∀ x̂ ∈ [N̂ ] , f̂(x̂) def= f(π−1
X (x̂))

∀ (̂i, ĵ) ∈ [ŝ]× [t̂] ,
~̂
Xî(ĵ)

def= πX( ~Xπ−1
I

(̂i)(ĵ))

∀ î ∈ [ŝ] ,
~̂
b(̂i) def= ~b(π−1

I (̂i))

.

For ŵ ∈ [N̂ ], define Âf̂ (ŵ) to simulate Af (w) and w ∈ {w1, . . . , w`−1} in the following
way. It first check that if w /∈ {w1, . . . , w`−1}, output something not equal to z. Otherwise
simulate Af (w) and when A makes a query x ∈ X∗, Â hardwire the result f(x) as the
answer. When x ∈ S, return f̂(πX(x)) as the answer.

By the above mapping, we have

Pr
(f,~b,~X)∼Dα(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

= Pr
(f̂ ,~̂b, ~̂X)∼D̂α

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
.

By Lemma 4.3.2,

Pr
DH(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

= 1− Pr
DH(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

= 1− Pr
(f̂ ,~̂b, ~̂X)∼D̂H

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
≤ 1− Pr

(f̂ ,~̂b, ~̂X)∼D̂L

[
∃w ∈ BC(f̂ , X̂), Âf̂ (w) = z

]
+O

(
q3 · t̂2

ŝ

)
= 1− Pr

DL(w`,z)

[
∃w ∈ BC(f,X) ∩ {w1, . . . , w`−1}, Af (w) = z

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
= Pr
DL(w`,z)

[
w1, . . . , w`−1 /∈Wz(f,X)

∣∣∣ (f∗,~b∗, ~X∗)
]

+O

(
q3t2

s

)
. J

Proof of Claim 4.3.2 For every w` ∈ [N ′], z ∈ [M ′] and every (f∗,~b∗, ~X∗) where ~b∗ is
balanced,

Pr
D∗
H

(w`,z)

[
(f∗,~b∗, ~X∗)

]
≤ 2o(k) · Pr

D∗
L

(w`,z)

[
(f∗,~b∗, ~X∗)

]
(10)

Proof. The only difference between DL(w`, z) and DH(w`, z) is when sampling ~b∗. Re-
call that a balanced partial indicator means the hamming weight is within the range
q ·
(

1/2±
(

1/n+
√

25k/q
))

. Since we only consider the cases where ~b∗ is balanced, the
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ratio can be bounded as follows.

PrD∗
H

(w`,z)

[
(f∗,~b∗, ~X∗)

]
PrD∗

L
(w`,z)

[
(f∗,~b∗, ~X∗)

] ≤ ( 1
2 + 5

n
1
2 −

5
n

)q( 1
2 +
(

1
n+
√

25k
q

)) ( 1
2 −

5
n

1
2 + 5

n

)q( 1
2−
(

1
n+
√

25k
q

))

≤
(

1 + 10
n

)2q
(

1
n+
√

25k
q

) (
1− 10

n

)−2q
(

1
n+
√

25k
q

)

≤ 2
O

(
q

n2 +
√

kq

n2

)
≤ 2o(k) (11)

J

4.4 Proof of Lemma 4.1
There exists a universal constant c > 0 such that for every sufficiently large n and 25k ≤ n,
there is an output z ∈ [M ′] that satisfies
1. Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−ck.

2. Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−ck.

3. E
(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k

Proof. In this proof, we abuse notation by denoting BC(f,X) also to be the uniform
distribution over the set BC(f,X). We will show that that for a random z sampled from
[M ′], it satisfies each property with probability at least 1− 2−Ω(k), and hence by the union
bound, it satisfies all three properties with probability at least 1 − 2−Ω(k). In particular,
there exists z ∈ [M ′] satisfying all three conditions simultaneously.
1.

Pr
z∼{0,1}m′

[
z /∈ Af (BC(f,X)

]
= 1−

∣∣Supp(Af (BC(f,X)))
∣∣

[M ′]
≤ dTV

(
Af (BC(f,X)), Um′

)
≤ dTV

(
Af (Un′), Um′

)
+ dTV (BC(f,X), Um′)

= dTV
(
Af (Un′), Um′

)
+ 1− |BC(f,X)|

[N ′] (12)

Take the expectation over (f,~b, ~X) from DH for Equation (12). By Lemma 6, Definition 3
and Corollary 8 we have

Pr
(f,~b,~X)∼DH ,z∼[M ′]

[
z /∈ Af (BC(f,X))

]
≤ Pr

(f,~b,~X)∼DH
[Hsh (f) < τ + 1] + 2−k + 2−0.3n

≤ 2−0.9n + 2−k + 2−0.3n ≤ 2−0.2k

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≥ 1− 2−0.1k

]
≥ 1− 2−0.1k.
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2. By Lemma 6 and Definition 3, we have

Pr
(f,~b,~X)∼DL,z∼[M ′]

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ Pr

(f,~b,~X)∼DL,z∼[M ′]

[
∃w ∈ [N ′], Af (w) = z

]
≤ Pr

z∼[M ′]

[
∃w ∈ [N ′], Af (w) = z | Hsh (f) ≤ τ − 1

]
+ Pr

(f,~b,~X)∼DL
[Hsh (f) > τ − 1]

≤ 2−k + 2−0.9n ≤ 2−0.8k.

By the Markov inequality,

Pr
z∈[M ′]

[
Pr

(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−0.1k

]
≥ 1− 2−0.7k.

3. Since m′ = n′ + 3k,

E
z∈[M ′]

[∣∣{w : Af (w) = z}
∣∣] = Pr

z∈[M ′]

 ∑
w∈[N ′]

I(Af (w) = z)

 = 2n
′
· 2−m

′
= 23k.

In particular,

E
(f,~b,~X)∼DH ,z∈[M ′]

[∣∣{w : Af (w) = z}
∣∣] = 23k.

By the Markov inequality,

Pr
z∼[M ′]

[
E

(f,~b,~X)∼DH

[∣∣{w : Af (w) = z}
∣∣] ≤ 24k

]
≥ 1− 2−k. J
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A Missing Proofs

A.1 Proof of Lemma 4.3.2

We restate the lemma as follows. Note that it is not necessarily the case that N is a power
of two (similarly for M,N ′ and M ′).

Let Af : [N ′]→ [M ′] be an algorithm making at most q oracle queries to f : [N ]→ [M ].
Let DH = D1/2+5/n and DL = D1/2−5/n be the distribution over a function f : [N ]→ [M ], a
partition ~X ∈ ([N ]t)s, and the indication vector ~b ∈ {0, 1}s as defined in Section 3. If t > q,
then for all z ∈ [N ],

Pr
(f,~b,~X)∼DL

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~b,~X)∼DH

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2)

s
.

Besides the parameters difference, a key difference between Lemma A.1 and the key
lemma in [17] is that in our construction, the indicator vectors b consist of s independent
Bernoulli random variables, while in their case, the number of ones, namely the Hamming
weight is fixed. Formally, they consider the following distribution.

I Definition 10. For i ∈ [s], D̃i is a distribution over the function f : [N ] → [M ] and a
partition ~X. Define ~bi = (1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
s−i

). Then (f, ~X) ∼ D̃i denotes that ~X ∼ Xs and

f ∼ F(~X, ~bi).
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A direct generalization of the key lemma in [17] can be stated using our notation: Let
Af : [N ′]→ [M ′] be an algorithm, which makes at most q queries to its oracle f : [N ]→ [M ].
If t > q, then for all z ∈ {0, 1}m′ and i ∈ [s],

Pr
(f,~X)∼D̃i−1

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃i

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2)

i2
.

We provide a simpler proof of Lemma A.1 in Appendix B. Now we prove Lemma A.1
using Lemma A.1.

Proof of Lemma A.1. By telescoping over i in Lemma A.1, we get that for 1
4 ≤ α < β ≤ 1

where αs and βs are integers, we have

Pr
(f,~X)∼D̃αs

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃βs

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2(β − α))

s
.

Conditioning on the Hamming weight of ~b being αs when we sample D1/2−4/n or D1/2+4/n,
the probability of the event ∃w ∈ BC(f,X), Af (w) = z is same to sampling from D̃αs,
because this event is invariant to permuting the indices of the s blocks, so the vector
~b = (1, . . . , 1︸ ︷︷ ︸

αs

, 0, . . . , 0︸ ︷︷ ︸
s−αs

) is equivalent to any other vector of the same Hamming weight. Hence,

we have

Pr
(f,~b,~X)∼D1/2±4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
=

s∑
h=0

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2± 4/n) = h] ,

where Bin is the binomial distribution. By the Chernoff bound,

Pr
(f,~b,~X)∼D1/2−4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~b,~X)∼D1/2+4/n

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ 2−Ω(s) +

∑
s/4<h<3s/4

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2 + 4/n) = h]

−
∑

s/4<h<3s/4

Pr
(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
· Pr [Bin(s, 1/2− 4/n) = h]

Then by symmetry (Pr [Bin(s, p) = h] = Pr [Bin(s, 1− p) = s− h]) and the bound we got at
the beginning by telescoping, the difference is bounded by∑

s/4<h<3s/4

(
Pr

(f,~X)∼D̃h

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃s−h

[
∃w ∈ BC(f,X), Af (w) = z

])
× Pr [Bin(s, 1/2− 4/n) = h] + 2−Ω(s)

≤ O(q3t2)
s

. J
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A.2 Proof of Lemma 4
I Claim 1. If there exists a (ε,∆)-flattening algorithm Af : {0, 1}n′ → {0, 1}m′ for function
f : {0, 1}n → {0, 1}m with query complexity q, then there exists an k-SDU algorithm
Bf : {0, 1}n′′ → {0, 1}m′′ where n′′ = O(n′ + m′) and m′′ = O(n′ + m′) for function
f : {0, 1}n → {0, 1}m with query complexity q and k = Ω(min{∆, log(1/ε)}).

I Claim 2. If there exists a k-SDU algorithm Af : {0, 1}n′ → {0, 1}m′ for function f :
{0, 1}n → {0, 1}m with query complexity q, then there exists an (k − 1)-SDU algorithm Bf :
{0, 1}n′′ → {0, 1}m′′ where n′′ = O(n′) and m′′ = n′′ − 3k for function f : {0, 1}n → {0, 1}m
with query complexity q.

Proof of Claim 1. This proof mostly follows the idea in [5]. It suffices to prove the existence
of Ω(k)-SDU algorithm for k = min{∆, log(1/ε)}. Let Ha,b be a family of 2-universal
hash function from a bits to b bits. We sample hash functions h1 and h2 from Hm′,κ and
∼ Hn′,n′−κ−k/3, respectively, where κ is the parameter chosen by the flattening algorithm
Af . We will show that

Bf (w, h1, h2) =
(
h1, h1(Af (w)), h2, h2(w)

)
is a Ω(k)-SDU algorithm. We denote the output of Bf (w, h1, h2) as a jointly distributed
random variables (H1, Z1, H2, Z2) when w ∼ Un′ , h1 ∼ Hm′,κ and h2 ∼ Hn′,n′−κ−k/3.
1. When (f, τ) ∈ EAY , there exists a distribution ZH with Hmin (ZH) ≥ κ+ ∆ such that

dTV
(
Af (Un′), ZH

)
≤ ε. First, we show that (H1, Z1) is close to uniform. By the Leftover

Hash Lemma, dTV ((H1, H1(ZH), (H1, Uκ)) ≤ 2−∆/3, and so

dTV
(
(H1, Z1), (H1, Uκ)

)
≤dTV

(
Af (Un′), ZH

)
+ dTV

(
(H1, H1(ZH), (H1, Uκ)

)
≤2−∆/3 + ε ≤ 2−Ω(k).

For the (H2, Z2) of part, we will show that with high probability over sampling (h1, z1)
from (H1, Z1), the distribution (H2, Z2) conditioned on (h1, z1) is close to uniform. Since
(H1, Z1) is 2−Ω(k)-close to uniform, by the Markov inequality, with probability at least
1− 2−Ω(k) over choosing (h1, z1) from (H1, Z1), we have

Pr
[
h1(Af (Un′)) = z1

]
= Pr [Z1 = z1 | H1 = h1] ≥ 1

2 · 2
−κ.

Thus, except for 2−Ω(k) probability over (h1, z1), the number of w such that h1(Af (w)) =
z1 is at least 2n′−κ−1. Again, by the Leftover Hash Lemma, (H2, Z2) is 2−Ω(k)-close to
uniform conditioned on any such (h1, z1). We then can conclude that (H1, Z1, H2, Z2) is
2−Ω(k)-close to uniform.

2. When (f, τ) ∈ EAN , there exists a distribution ZL with Hmax (ZL) ≤ κ−∆ such that
dTV

(
Af (Un′), ZL

)
≤ ε. For every fixed h1 and h2, we will bound the support size of

(Z1, H2, Z2) conditioned on H1 = h1 and H2 = h2. We divide Supp(Z1, Z2) into three
subset according to z1 ∈ Supp(Z1).

S1 = {(z1, z2) : z1 ∈ Supp(ZL)}
S2 = {(z1, z2) : Pr [Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}
S3 = {(z1, z2) : Pr [Z1 = z1] < 2−κ−2k/3 and z1 /∈ Supp(ZL)}

Since, Supp(Z1, Z2) = S1 ∪ S2 ∪ S3, it suffices to show that

|Si| ≤ 2−Ω(k) ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣

for all i = 1, 2, 3.
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a. For S1, by definition, Hmax (ZL) ≤ κ −∆ implies that |Supp(ZL)| / |{0, 1}κ| ≤ 2−∆,
and so

|S1| ≤ 2−∆ ·
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ ≤ 2−Ω(k) ·

∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣ .
b. For S2, since dTV

(
Af (Un′), ZL

)
≤ ε,

∑
z1 /∈Supp(ZL) Pr [Z1 = z1] ≤ ε. Each z1 such

that Pr [Z1 = z1] ≥ 2−κ−2k/3 contributes at least 2−κ−2k/3 towards ε, so∣∣∣{z1 : Pr [Z1 = z1] ≥ 2−κ−2k/3 and z1 /∈ Supp(ZL)}
∣∣∣ ≤ ε · 2κ+2k/3.

Then we have |S2| ≤ 2−Ω(k)
∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣, since k ≤ log(1/ε).

c. For S3, if Pr [Z1 = z1] < 2−κ−2k/3, then the number of w ∈ {0, 1}n′ such that
h1(Af (w)) = z1 is at most 2n′−κ−2k/3, which is at most a 2−k/3 fraction of
{0, 1}n′−κ−k/3. Therefore, |S3| ≤ 2−Ω(k) ·

∣∣∣{0, 1}κ × {0, 1}n′−κ−k/3∣∣∣.
Thus, we conclude that Bf is a Ω(k)-SDU algorithm. J

Proof of Claim 2.

I Definition 11 (average min-entropy [1]). Let (X,Y ) be jointed distributed random variables.
The average min-entropy of X conditioned on Z is

Hmin (X|Y ) def= log
(

1
Ey←Y [maxx Pr [X = x|Y = y]]

)
I Lemma 12 (Generalized Leftover Hash Lemma [1]). Let (X,Y ) be a jointed distributed
random variables such that Hmin (X|Y ) ≥ k. Let Hn,m = {h : {0, 1}n → {0, 1}m} be a family
of universal hash function where h can be described in (n+m) bits and m = k−2 log(1/ε)+2.
Then

dTV ((h(X), Y, h), (Um, Y, h)) ≤ ε

where Um is a uniform m bits string.

Let Hn′,n′−m′−3k = {h : {0, 1}n → {0, 1}m} be a family of universal hash function
where h can be described in d = 2n′ −m′ − 3k bits. Based on the given k-SDU algorithm
Af : {0, 1}n′ → {0, 1}m′ , we define the algorithm Bf : {0, 1}n′+d → {0, 1}n′+d−3k as

Bf (w, h) def= (Af (w), h(w), h).

By the chain rule of average min-entropy ([1, Lemma 2.2b])

Hmin(w|A(w)) ≥ Hmin(w)− |A(w)| = n′ −m′,

and hence

dTV((A(w),Ext(w, v)), (A(w), Un′−m′+d−2k−O(1))) ≤ 2−k.

Therefore, when Hsh (f) ≥ τ + 1

dTV
(
Bf (Un′+d), Un′+d−3k

)
= dTV

(
(Af (w), h(w), h), (Um′ , Un′−m′+d−3k)

)
= dTV

(
Af (w), Um′

)
+ dTV

(
(Af (w), h(w), h), (Af (w), Un′−m′+d−3k)

)
≤ 2−k + 2−k = 2−(k−1).

CCC 2018



23:24 A Tight Lower Bound for Entropy Flattening

The last inequality is by the property of k-SDU algorithm and Lemma 12.
On the other hand, if Hsh (f) ≤ τ − 1,∣∣Supp(Bf (Un′+d))

∣∣ ≤ 2m
′−k · 2n

′−m′+d−3k ≤ 2(n′+d−3k)−k.

Therefore, Bf is an (k − 1)-SDU algorithm with desired parameter. J

B Proof of Lemma A.1

Let Af : [N ′]→ [M ′] be an algorithm, which makes at most q queries to its oracle f : [N ]→
[M ]. If t > q, then for all z ∈ {0, 1}m′ and i ∈ [s],

Pr
(f,~X)∼D̃i−1

[
∃w ∈ BC(f,X), Af (w) = z

]
− Pr

(f,~X)∼D̃i

[
∃w ∈ BC(f,X), Af (w) = z

]
≤ O(q3t2)

i2
.

Proof. Distributions D̃i−1 and D̃i differ only on the block ~Xi. So an equivalent way to
sample both distributions is that we can first sample the partition ~X, and the mapping except
on the set Xi. In particular, we sample ~Y1, . . . , ~Yi−1 ∼ Y0 and ~Yi+1, . . . , ~Ys ∼ Y1. After that,
for fixed ~X and ~Y1, . . . , ~Yi−1, ~Yi+1, . . . , Ys, we sample ~Yi from Y1 or Y0 for distribution D̃i or
D̃i−1, respectively.

For notational convenience, we define

~Y−i
def= ( ~Y1, . . . , ~Yi−1, ~Yi+1, . . . , ~Ys)

~X−i
def= ( ~X1, . . . , ~Xi−1, ~Xi+1, . . . , ~Xs)

Now the difference of the probabilities can be written as

∆i = E
~Y−i,~X,z

[
Pr
~Yi∼Y0

[
∃w ∈ BC(f,X), Af (w) = z

]]
− E

~Y−i,~X,z

[
Pr
~Yi∼Y1

[
∃w ∈ BC(f,X), Af (w) = z

]]
. (13)

If the block Xi is not queried, then the distributions are identical to the adversary. To
compare two probabilities better, we refine the event ∃w ∈ BC(f,X), Af (w) = z based on
the block Xi. For given f, ~X and z, we define the following events.

∀j ∈ [t] , Ef,~X,z(j)
def= ∃w ∈ BC(f,X) s.t. Af (w) = z ∧ ~Xi(j) ∈ Queryf (w)

Ef,~X,z(⊥) def= ∃w ∈ BC(f,X) s.t. Af (w) = z ∧ Queryf (w) ∩Xi = ∅,

where Queryf (w) is the set of the queries made by the algorithm Af (w) to the f with input
w.

The main events that we care about is the union of the above events we defined, so for
Y ∈ {Y0,Y1}

Pr
~Yi∼Y

[∃w ∈ BC(f,X)] = Pr
~Yi∼Y

Ef,~X,z(⊥) ∨

 t∨
j=1

Ef,~X,z(j)


= Pr

~Yi∼Y

[
Ef,~X,z(⊥)

]
+ Pr

~Yi∼Y

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)

 .
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An important observation is that the event Ef,~X,z(⊥) does not depend on the f(Xi), so
sampling ~Yi from Y0 or Y1 does not affect the probability of the event. Hence, Equation (13)
can be written as

∆i = E
~Y−i,~X,z

 Pr
~Yi∼Y0

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)


− E

~Y−i,~X,z

 Pr
~Yi∼Y1

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)

 .
Now, for the probability over Y0 part, we apply the union bound.

E
~Y−i,~X,z

 Pr
~Yi∼Y0

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)


≤ E

~Y−i,~X,z

 t∑
j=1

Pr
~Yi∼Y0

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]
For the Y1 part, we bound the probability via the inclusion-exclusion principle.

E
~Y−i,~X,z

 Pr
~Yi∼Y1

¬Ef,~X,z(⊥) ∧

 t∨
j=1

Ef,~X,z(j)


≥ E
~Y−i,~X,z

[
t∑

j=1
Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]

−
∑

j 6=j′∈[t]

Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j) ∧ Ef,~X,z(j

′)
]]

Observe that Af (w) only queries Xi at most once for all w ∈ W (f,X), and the marginal
distributions of the mapping on ~Xi(j) for every j ∈ [t] are the same in both Y1 and Y0 cases,
so for every j ∈ [t]

Pr
~Yi∼Y0

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]
= Pr

~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j)

]
Therefore, the difference between two cases is bounded as

∆i ≤ E
~Y−i,~X,z

 ∑
j 6=j′∈[t]

Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(j) ∧ Ef,~X,z(j

′)
]

≤ t2 · E
~Y−i,~X,z

[
Pr
~Yi∼Y1

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]]
= t2 · Pr

(f,~X)∼D̃i,z

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
. (14)

To bound the term, we consider another way to sample (f, ~X) from D̃i.
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Procedure B.1

1. Sample (f, ~X) from Di as usual.
2. Undo the partition for the first i blocks. That is, set Xi′(j) = ∗ and Yi′(j) = ∗

for all (i′, j) ∈ [i]× [t].
3. For every x ∈ [N ] \X>i, randomly sample y from [M ] and let f(x) = y.
4. Randomly partition the unassigned part [N ] \ X>i into i blocks ~X1, . . . , ~Xi.

Specifically, we will use Procedure B.2 for this step.

Since f(x) for x in ~X≤i is randomly and independently chosen from [M ], the partition
among the first i blocks and f(x) for x in the first i blocks are independent. It is equivalent
to sample the partition of the first i blocks after fixing the function f .

After the first sampling step, since the mapping is fixed, the set {w : Af (w) = z}
and Queryf (w) are determined. Let {w : Af (w) = z} = {w1, . . . , wu} and define Q`

def=
Queryf (w`) \X>i for all ` ∈ [u]. That is, we only look at queries that belong to the blocks
that have not been decided.

Recall the definitions of the events Ef,~X,z(⊥). Its negation means that for all w, Af (w) 6= z

or w /∈ BC(f,X) or Queryf (w) intersect with Xi. By the definition of {w1, . . . , wu}, an
equivalent way to describe the event ¬Ef,~X,z(⊥) is for all ` ∈ [u], either w` /∈ BC(f,X) or
Queryf (w)∩Xi = 1. Note that if the first condition fails, then w is block-compatible, and so
the size of the intersection is at most one. Therefore, the probability factor in Equation 14
can be written as

Pr
~X[i]

[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
= Pr
~X[i]

[(
∀` ∈ [u], |Q` ∩Xi| = 1 ∨ w` /∈ BC(f,X)

)
∧(
∃`1 6= `2 ∈ [u], w`1 , w`2 ∈ BC(f,X), ~Xi(1) ∈ Q`1 ,

~Xi(2) ∈ Q`2

) ]
(15)

In sum up, the event holds when

Every w ∈ {w : Af (w) = z} is either not block-compatible or it interests with Xi.

Exists two distinct inputs in {w : Af (w) = z} such that the queries made by Af using
them as input intersect with Xi at the first and the second positions.

We consider the following procedure to sample ~X[i]. Basically, the procedure will decide
the partition without assigning the indices first, which is sufficient for deciding the block-
compatilibilities. Then we assign the indices to the blocks after putting all elements in [N ]
in blocks.

The intuition of the probability bounded by Θ(poly(q)/i2) (omitting the dependency
on q) is as follows. In the last step, since we assign the indices to the block randomly.
The probability of the i-th block being the one queried by some block-compatible w in
{w1, . . . , wu} is at most q/i. If all blocks are block-compatible, then the probability of two
different w and w′ in {w1, . . . , wu} hitting same block with different queries is Θ(q2/i). On
the other hand, the probability of some w in {w1, . . . , wu} being non-block-compatible is
bounded by Θ(1/i). Therefore, no matter what, we have two Θ(1/i) factors.
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Procedure B.2

1. Let ti′ represents the remaining slots in the i′-th block. Initially, ti′ = t for all
i′ ∈ [i].

2. Let block(x) represents which block x is assigned to. Initially, block(x) = ∗ for
all x ∈ X≤i.

3. Let `1 = `2 = −1 and π : [i]→ [i] be a permutation will be decided later.
4. For ` = 1, . . . , u:

a. For all x ∈ Q`, if block(x) = ∗, set block(x) = i′ with probability ti′/(t1 +
· · ·+ ti), and decrease t′i by 1.

b. If all block(x) for x ∈ Q` are distinct, namely w` ∈ BC(f,X), then let `1 = `

and break
5. If `1 = 1.

a. First we randomly decide the mapping π(i). (The rest i− 1 mapping will be
decided later).

b. If π(i) /∈ {block(x) | x ∈ Q1}, jump to Step 7.
c. Suppose x∗ ∈ Q1 such that block(x∗) = π(i). We check if there is any
` ∈ [2, u] such that x∗ /∈ Q`. If there is no such `, then jump to Step 7.

d. Let ` ∈ [2, u] such that x∗ /∈ Q`. For all x ∈ Q`, if block(x) = ∗, set
block(x) = i′ with probability ti′/(t1 + · · ·+ ti), and decrease t′i by 1. If all
block(x) for x ∈ Q` are distinct, namely w` ∈ BC(f,X), then let `2 = `.

6. For all x ∈ X≤i, if block(x) = ∗, set block(x) = i′ with probability ti′/(t1 + · · ·+
ti), and decrease t′i by 1.

7. Let π : [i] → [i] be a random permutation (Except that if π(i) is decided in
Step 6(a).

8. For i′ ∈ [i], let πi′ : [t] → [t] be a random permutation, assign the πi′(j)-th
element of {x | block(x) = π(i′)} to ~Xi′(j).

To bound Equation (15), we consider a relaxed event. Event E happens when for all
` ∈ [u], either is not block-compatible or |Q` ∩Xi| = 1. And there exists `1 6= `2 ∈ [u],
w`1 , w`2 ∈ BC(f,X) and Q`1 ∩Xi 6= Q`2 ∩Xi. That is, we do not require the intersection
being the first two elements in Xi

Based on Procedure B.2, we also consider the following events. The subscripts are from
the step numbers in the procedure.

E5 : `1 = 1 that is, w1 ∈ BC(f,X)
E5c : |Q1 ∩Xi| = 1 and ∃` ∈ [2, u] such that x∗ /∈ Q`.
E5d : `2 6= −1 that is, w` ∈ BC(f,X)

First, we consider the probability of w1 or w` being non-compatible (in Step 2(b) or
Step 4(d)). The probability that the (r+ 1)-th choice of value i′ collides to previous r choices
is at most r(t − 1)/(ti − r − q) ≤ (rt + q)/ti ≤ (rt + t)/ti ≤ q/i. By union bound, the
probability of w1 or w` being non-compatible is at most q2/i. That is,

Pr [¬E5] ≤ q2

i
and Pr [¬E5d | E5c] ≤

q2

i
.
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By the above inequalities, we can bound the probability in Equation 15 as follows.

Pr
[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
≤Pr [E] = Pr [E ∧ E5] + Pr [E ∧ ¬E5]

≤Pr [E ∧ E5c | E5] + Pr [¬E5] Pr [E | ¬E5]

≤Pr [E5c | E5] ·
(

Pr [E ∧ E5d | E5c] + Pr [E ∧ ¬E5d | E5c]
)

+ q2

i
· Pr [E | ¬E5]

≤Pr [E5c | E5] ·
(

Pr [E | E5d ∧ E5c] + Pr [¬E5d | E5c]
)

+ q2

i
· Pr [E | ¬E5]

≤Pr [E5c | E5] ·
(

Pr [E | E5d ∧ E5c] + q2

i

)
+ q2

i
· Pr [E | ¬E5]

Pr [E5c | E5] is at most the probability of π(i) ∈ {block(x) | x ∈ Q1} which is at most q/i.
Now we consider the event E happens when E5 and E5d happened. Event E happens only
when w` in Step 5d hit the i-th block in different locations. For each x ∈ Q`, the probability
of it hitting the i-th block is at most (t− 1)/(ti− 2q) ≤ (t+ 2q)/ti ≤ 3/i. Applying union
bound over at most q elements in Q`, we get

Pr [E | E5d ∧ E5c] ≤
3q
i
.

For Pr [E | ¬E5], if there is no block compatible w` for ` ∈ [u], there is no hope for E to be
satisfied. If there is a block compatible w`, then E requires that the i-th block being hit by
Af (w`). Since the the indices of the first i blocks are randomly assigned by the end, the
probability is at most q/i.

Combine the bounds above, we have

Pr
[
¬Ef,~X,z(⊥) ∧ Ef,~X,z(1) ∧ Ef,~X,z(2)

]
≤ q

i
·
(

3q
i

+ q2

i

)
+ q2

i
· q
i

= O

(
q3

i2

)
.

Insert the above inequality back to Inequality (14), we have ∆i ≤ O
(
q3t2

i2

)
, which

concludes the lemma. J
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Abstract
Algebraic proof systems reduce computational problems to problems about estimating the dis-
tance of a sequence of functions ~u = (u1, . . . , uk), given as oracles, from a linear error correcting
code V . The soundness of such systems relies on methods that act “locally” on ~u and map it to
a single function u∗ that is, roughly, as far from V as are u1, . . . , uk.

Motivated by these applications to efficient proof systems, we study a natural worst-case to
average-case reduction of distance for linear spaces, and show several general cases in which the
following statement holds: If some member of a linear space U = span(u1, . . . , uk) is δ-far from
(all elements) of V in relative Hamming distance, then nearly all elements of U are (1 − ε)δ-far
from V ; the value of ε depends only on the distance of the code V and approaches 0 as that
distance approaches 1. Our results improve on the previous state-of-the-art which showed that
nearly all elements of U are 1

2δ-far from V [Rothblum, Vadhan and Wigderson, STOC 2013].
When V is a Reed-Solomon (RS) code, as is often the case for algebraic proof systems,

we show how to boost distance via a new “local” transformation that may be useful elsewhere.
Relying on the affine-invariance of V , we map a vector u to a random linear combination of
affine transformations of u, and show this process amplifies distance from V . Assuming V is an
RS code with sufficiently large distance, this amplification process converts a function u that is
somewhat far from V to one that is (1− ε)-far from V ; as above, ε depends only on the distance
of V and approaches 0 as the distance of V approaches 1.

We give two concrete application of these techniques. First, we revisit the axis-parallel low-
degree test for bivariate polynomials of [Polischuk-Spielman, STOC 1994] and prove a “list-
decoding” type result for it, when the degree of one axis is extremely small. This result is similar
to the recent list-decoding-regime result of [Chiesa, Manohar and Shinkar, RANDOM 2017] but
is proved using different techniques, and allows the degree in one axis to be arbitrarily large.
Second, we improve the soundness analysis of the recent RS proximity testing protocol of [Ben-
Sasson et al., ICALP 2018] and extend it to the “list-decoding” regime, bringing it closer to the
Johnson bound.
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1 Introduction

Proof systems that involve interaction between a randomized verifier and a prover have
revolutionized computational complexity and cryptography [7, 14]. A question of paramount
importance here is soundness – the minimal probability of the verifier rejecting a falsity.
Transformations that maintain or increase soundness, while improving other aspects of the
proof system (like proof length, or query complexity), are few and hard to obtain. Here, we
study certain soundness-preserving techniques for the special case of linear spaces, improving
on the prior state-of-the-art which was due to Rothblum, Vadhan and Wigderson [19]; see
Section 1.2. Then, in Section 1.4, we introduce a soundness-amplifying technique for the
special case of Reed-Solomon codes; these codes are used in constructions of efficient proof
systems. Before presenting the results we explain their relevance to the general study of
proof systems.

1.1 Motivation – improving concrete soundness and communication
complexity of interactive protocols

Arithmetization is a technique that was introduced to the construction of interactive proof
(IP) systems by [17], and later applied to other systems including multi-prover interactive
proof (MIP) [6], probabilistically checkable proof (PCP) [5, 3, 2] and zero knowledge (ZK)
systems [14], to name a few notable examples. Arithmetization refers to a family of reductions
from languages (like 3SAT) to promise problems involving algebraic codes like Reed-Solomon
(RS), Reed-Muller (RM), or their generalization to algebraic geometry (AG) codes; all are,
in particular, linear codes.

An arithmetization reduction maps an instance x (like a 3SAT formula) to a sequence of
algebraic codes V1, . . . , Vk, along with a set of “local” constraints, meaning that each constraint
depends only on a small number of entries from k purported codewords. The reduction
implies that x ∈ L if and only if there exists a sequence ~u = (u1, . . . , uk) ∈ V1 × . . . × Vk
that satisfies all local constraints4. The locality of the constraints, along with the distance
property of the codes V1, . . . , Vk also implies that when x 6∈ L, every sequence ~u falsifies a
large fraction of local constraints, as long as each member ui of the sequence is sufficiently
close to the code Vi in relative Hamming distance. Therefore, a major problem in the
construction of such proof systems is to build protocols that efficiently ensure each ui is
in close proximity to Vi, and reject with non-negligible probability s = s(δ) a purported
codeword ui that is δ-far in relative Hamming distance from Vi. This problem is known
as proximity testing; the study of the reliance of the soundness parameter s on the query
complexity q and proximity parameter δ is referred to as soundness analysis.

Suffice it to say that protocols that solve the proximity testing problem are often a
bottleneck in the construction of efficient proof systems, and the quality of their soundness
analysis determines concrete efficiency and applicability (see, e.g., [1, 8] for recent instances).
Therefore, it is desirable to construct transformations that minimize the number of proximity

4 The exact nature of these constraints is not relevant to our study here. The interested reader is referred,
e.g., to [16, Section 3.1] and [11, Section 5] for examples and more information.
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testing problems that are needed to be addressed by a proof system, and boost and maintain
the distance of ~u from V1 × . . .× Vk when x 6∈ L.

Certain proof systems use several instances of the same proximity problem, i.e., V1 =
. . . = Vk = V for a single linear code V . In this case, a natural optimization arises: instead
of having the prover and verifier interact to solve k independent proximity problem, let the
verifier sample r1, . . . , rk ∈ F, send them to the prover, and then interact to solve the single
proximity problem that refers to

∑
i riui. The cost of an extra round of interaction (and

extra randomness) are often well-worth the benefit of reducing the number of proximity
testing problems. The linearity of C implies that this transformation does not harm (perfect)
completeness, because when ~u ⊂ V then Pr [(

∑
riui) ∈ V ] = 1.

The more interesting question, discussed next, is to understand what happens to the
“typical” distance of

∑
riui as a function of the maximal distance, defined as δmax =

maxi ∆(ui, V ).

1.2 Soundness transference results for linear spaces and error
correcting codes

Our question is a special case of the “worst-case to average-case” problem: Suppose that
a member u∗ of a linear space U ⊆ Fn is δmax-far in relative Hamming distance from all
members of another linear space V ⊆ Fn (this is the “worst-case” assumption), what can be
said about the median5 distance δmed from V , where this median is computed among the
members of U? We address this question first for the case of V be a general space, then for
V being an error correcting code.

1.2.1 General spaces

The basic question above was first raised by Rothblum, Vadhan and Wigderson, as part
of their construction of efficient interactive proofs of proximity (IPPs) [19]. They also
showed that nearly all members of U – all but a 1

|F|−1 -fraction of them – are δ/2-far from V

(Lemma 4). Thus, δmed ≥ δmax/2. On the other hand, δmax ≥ δmed for certain spaces U
(including all 1-dimensional ones). We are interested in closing the gap between these two
bounds.

Our first result (Theorem 7) looks at δmed as a function of δmax and says

δmed(δmax) ≥ 1−
√

1− δmax − o(1)

Here and henceforth, o(1) denotes negligible terms that approach 0 as |F| → ∞. In words,
the median distance scales roughly like the Johnson list-decoding function of δmax, denoted
J(δmax), where J(x) , 1−

√
1− x. Thus, the median distance δmed is strictly greater than

δmax/2 for all δmax > 0, and approaches 1 as δmax approaches 1; the prior state-of-the-art
approached 1/2 in this case. For small values of δmax, our bound approaches δmax/2, as in
prior works, but for special (and natural) cases we obtain better bounds on δmed, even when
it is arbitrarily small, as discussed next.

5 All our results hold with high probability, i.e., with respect to the average and 99.9th percentile but we
stick to using “median” for simplicity.
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1.2.2 Linear error correcting codes
Most of the applications to interactive proof systems use a space V that is an error correcting
code, i.e., the members of V are pair-wise far. Letting ∆(V ) denote the relative distance of
V , our second result (Theorem 9) states

∀δmax ≤ J(J(∆(V ))− o(1), δmed ≥ δmax − o(1).

In simple words, δmed ≈ δmax for sufficiently small values of δmax, where “sufficiently small”
depends on ∆(V ) and approaches 1 as ∆(V )→ 1. Combining Theorems 7 and 9, one sees
that for any ε > 0 there exists a code-distance parameter δε, such that for every V with
∆(V ) > δε and all spaces U , we have δmed ≥ (1− ε)δmax.

1.3 Applications to low-degree testing
We now present two different applications of our results. First, we extend the soundness
analysis of the ubiquitous bivariate low-degree test of Polischuck and Spielman to the high-
error regime for polynomials that have constant degree in one variable. Then we improve the
soundness bounds on the recently suggested “fast RS interactive oracle proof of proximity”
(FRI) protocol to beyond the unique-decoding radius.

1.3.1 High error bivariate testing
The bivariate axis-parallel test theorem of Polischuck and Spielman [18] is a fundamental
component in many efficient PCP constructions. Roughly, the theorem says that if a function
f : F× F has the property that its restriction to most columns is very close to a degree dY
polynomial, and the restriction to most rows is a function that is very close to a degree dX
polynomial, then f is very close to being the evaluation of a bivariate polynomial of degree
dX in X and degree dY in Y .

As stated there, the result works for degrees dX , dY as large as ≈ |F|/2 but requires the
columns and rows to have large agreement with univariate low-degree polynomials, and this
setting is known as the low error regime. An intriguing question is whether a similar result
holds in the high-error regime, when only a non-trivial fraction of rows/columns exhibit
non-trivial agreement with degree d polynomials.

This question has been given a positive answer by Arora and Safra for a richer class of
tests that includes the restriction of f to all lines (not just axis-parallel ones), and when
d < |F|1/3 [4]. Recently, Chiesa, Manohar and Shinkar have proven the high-error case of
the axis parallel test for small degree, i.e., when both dX and dY are less than log |F| [13].

As the first application of our results, we improve on [18] and present a high-error analysis
of the axis-parallel test. Our result, stated in Theorem 14 works when one of the degrees is a
constant (dX = O(1)), but the other can be arbitrarily large dY − Ω(|F|). Thus, our result
is incomparable to that of [13], because of the different requirements on dX , dY ; the proof
techniques are also quite different.

1.3.2 Improved soundness analysis of the Fast Reed-Solomon
interactive oracle proof of proximity (IOPP)

The fast RS IOPP (FRI) protocol [9] is an interactive oracle proof of proximity (IOPP)
for the RS proximity testing (RPT) problem (cf. [12, 10] for a definition and discussion
of the IOPP model). For RS-codes of message length N over a field F, prover arithmetic
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complexity is O(N) and verifier arithmetic complexity for each test6 is O(logN); this also
bounds the query complexity of a single test. The efficiency of the FRI protocol is important
for proof systems realized in code, like the recent zero knowledge proof system of [8], called a
“zk-STARK” there.

The soundness of a proximity testing protocol is described by a soundness function s(·)
that takes as input a proximity parameter δ, and outputs the minimum rejection probability
of the verifier, where this minimum is taken over all words that are δ-far from the code. In
the case of FRI soundness for a single test, an upper bound s(δ) ≤ δ is easy to establish.
The analysis in [9] showed a nearly matching lower bound for sufficiently small values of δ.
In particular, the bound obtained there gives

s(δ) ≥ min{δ, δ0} − o(1) (1)

where δ0 is a soundness threshold constant that depends on the code rate ρ as follows
δ0 ≈ 1−3ρ

4 (see red line in Figure 1). For codes of rate ≥ 1/3 this bound is meaningless,
and even when ρ→ 0 it holds that δ0 → 1/4; this rather low soundness means that many
tests must be applied in order to reach a target soundness error; for soundness error 2−λ
and maximal proximity parameter 1 − ρ, the number of tests must still be greater than

λ
− log2

3
4
≈ 2.4 · λ.

Using the results described in Sections 1.2.1 and 4.2 we improve on this state of affairs,
and show that FRI soundness (for a single test) behaves as in Equation (1) but for a larger
value of δ0, namely, δ0 ≈ 1− 4

√
ρ (see blue line in Figure 1). Consequently, to reach soundness

error 2−λ as before, the number of tests is reduced to ≈ 4λ
− log ρ which is always smaller than

2.4 · λ and approaches 0 as ρ → 0. We end by pointing out that [9] conjecture that the
trivial soundness upper bound (green line in Figure 1) is nearly tight, i.e., that s(δ) ≈ δ for
all values of δ. Reducing further the gap between soundness upper bounds (green line) and
lower bounds (blue line) remains an interesting open problem that is relevant to realized
proof systems like the zk-STARK of [8].

1.4 Soundness amplification for Reed-Solomon codes
So far we tried to minimize the loss in distance incurred by sampling an element of U . Next,
we suggest a way to boost distance via a family of “locally-computable” transformations
acting on a single purported codeword u. A q-locally computable transformation is a mapping
M : Fn → Fn for which the ith entry of M(u) can be computed by querying at most q
entries of u. To preserve completeness, we require the mappings M to preserve the space
V , and this leads to a natural suggestion. Let Aut(V ) be the automorphism group of V .
Sample M1 . . . ,Mq−1 ∈ Aut(V ) and r1, . . . , rq−1 and let u∗ = M(u) , u +

∑
i<q riMi(u).

By definition, this mapping is q-local and it preserves (perfect) completeness: if u belongs to
V then so does each Mi(u), so by linearity M(u) ∈ V . It now stands to reason that if Aut(V )
is sufficiently “pseudo-random”, say, a doubly-transitive group, then the median distance of
M(u) should be even greater than ∆(u, V ) (the distance of u from V ).

For example, consider the family of Reed-Solomon codes RS[F, ρ], which are comprised of
all functions f : F→ F such that deg(f) < ρ|F| where deg(f) is the degree of the interpolating
polynomial of (the function) f . It is well known that Aut(RS[F, ρ]) is the 1-dimensional
affine group of F, denoted Aff1(F), whose members are all invertible affine transformations
Aff1(F) = {M(X) = aX + b | a ∈ F∗, b ∈ F}; this group is indeed doubly-transitive.

6 In [9], a single test means a single invocation of the QUERY protocol.,
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Figure 1 FRI soundness threshold δ0 as a function of RS code rate ρ, for a single invocation
of the FRI QUERY phase (see Equation (1) and explanation in text there for the meaning of the
constant δ0). Higher lines are better. The top line is the trivial upper bound on soundness; the
bottom line is the soundness of the original analysis of [9] (cf. Theorem 15). The middle line is
the new and improved analysis given by Theorem 16. This analysis presents non-trivial soundness
bounds for all code rates, and these bounds are better than the prior state of the art.

Our final set of results studies the effect of taking random linear combinations of random
automorphisms for Reed-Solomon codes. Suppose we start with a function u, and then
take random linear combinations of a few random affine shifts of u to produce a function
u∗. From the discussion above, if u is in a Reed-Solomon code, then so is u∗. We show in
Theorem 13 that if u is far from a Reed-Solomon code, then with high probability u∗ is very
far from that Reed-Solomon code. The main strength of this result is that this process can
then amplify the distance to V all the way to 1− o(1) (while more direct analyses, related to
the Rothblum-Vadhan-Wigderson [19] lemma, cannot amplify beyond distance 1/2).

2 Preliminaries

We use ∆ to denote normalized Hamming distance, and 0 = 0n denotes the identity element
of an n-dimensional vector space, viewed as an additive group.

In what follows Σ is a finite alphabet. For S ⊂ Σn let

∆(S) = min {∆(w,w′) | w,w′ ∈ S,w 6= w′}

denote the relative Hamming distance of S. For w ∈ Σn let B(w, δ) denote the Hamming
ball in Σn of normalized radius δ centered at w,

B(w, δ) = {r ∈ Σn | ∆(w, r) < δ}

I Definition 1 (List decodability). For ρ ∈ [0, 1] and L ≥ 1, we say a set S ⊆ Σn is
(ρ, L)-list-decodable if for all w ∈ Σn,

|B(w, ρ) ∩ S| ≤ L.

We have the fundamental Johnson bound, which says that sets with large minimum
distance have nontrivial list-decodability. See, e.g., [15, Corollary 3.2] for a proof.
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I Theorem 2 (Johnson bound). For every ε ∈ (0, 1], Let Jε : [0, 1]→ [0, 1] be the function

Jε(δ) = 1−
√

1− δ(1− ε).

Let Σ be a finite alphabet, n an integer and S ⊆ Σn. Then S is (Jε(∆(S)), 1/ε)-list-decodable
for every ε ∈ (0, 1].

An affine space U is an additive coset of a vector space U ′, i.e., for some fixed a ∈ Fn, U =
a+ U ′ , {a+ u | u ∈ U ′}. We introduce the following definition.

I Definition 3 (Divergence). For U, V ⊆ Σn, the divergence of U from V is D(U, V ) =
maxu∈U ∆(u, V ).

Divergence is not a distance measure because it is not symmetric. This is witnessed by
U =

{
0, 10n−1} , V = {0, 1n} ⊂ {0, 1}n, which gives D(U, V ) = 1

n 6=
n−1
n = D(V,U).

The next lemma, due to Rothblum-Vadhan-Wigderson, says that if some vector in a
linear space U is δ-far from a space V , then nearly all elements of U are δ/2-far from V .

I Lemma 4 ([19, Lemma 1.6]). For any pair of linear spaces U, V over a finite field F,

Pr
u∈U

[
∆(u, V ) < D(U, V )

2

]
≤ 1
|F| − 1 . (2)

3 Preserving distances for general subspaces

In this section, we prove our first strengthening of the Rothblum-Vadhan-Wigderson lemma
Lemma 4 from above. The main new qualitative feature is that if D(U, V ) = 1− o(1), then
the lemma concludes that most elements of u are at distance 1− o(1) from V .

I Theorem 5. For a pair of affine spaces U, V over a finite field F, and for all ε ∈ (0, 1],

Pr
u∈U

[∆(u, V ) < Jε(D(U, V ))] < 1
ε (|F| − 1) .

Theorem 5 is a consequence of the following lemma, which says that if u∗ is δ-far from V ,
then for any line passing through u∗ in direction u, most points are Jε(δ) from V . We state
the Lemma, prove Theorem 5 and then prove the lemma.

I Lemma 6. Let V ⊆ Fn be a linear space over a finite field F; suppose u∗ ∈ Fn satisfies
∆(u∗, V ) ≥ δ. For any u ∈ Fn and ε ∈ (0, 1] let

A = Au,ε = {α ∈ F \ {0} | ∆(u∗ + αu, V ) < Jε(δ)} .

Then |A| ≤ 1/ε.

Proof of Theorem 5. It suffices to prove the Theorem for the case that V is a linear space
and U is an affine space (which may be linear as well), because Hamming distance is invariant
under shifting both U and V by the same vector v. Let u∗ ∈ U be some element for which
∆(u∗, V ) = D(U, V ). We may assume u∗ 6= 0, otherwise D(U, V ) = 0 because 0 ∈ V so the
claim trivially holds. If dim(U) = 0 the claim also trivially holds because |U | = 1. Therefore,
we assume U = u∗ + U ′ for some linear space U ′ of positive dimension d (which may include
u∗). There exist k = |F|d−1 vectors u1, . . . , uk such that U \ {u∗} can be partitioned into
equi-sized sets, the ith set being the line {u∗ + αui | α ∈ F \ {0}}. Theorem 5 follows by
applying Lemma 6 to each of the sets in this partition. J
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Proof of Lemma 6. For α ∈ A, let vα ∈ V be such that ∆(u∗ + αu, vα) < Jε(δ). Rewriting,
we have that for each α ∈ A,

∆
(
u,
vα − u∗

α

)
< Jε(δ).

Assume by way of contradiction that |A| > 1/ε. Thus, a set (or possibly multi-set) of
more than 1/ε vectors are all J(δ, ε)-close to u. By the Johnson bound, two of the vectors
must be δ-close to one another. Let α, α′ be these distinct members of A for which

∆
(
vα − u∗

α
,
vα

′ − u∗

α′

)
< δ.

Recalling ∆(u, v) = Pri∈[n][ui 6= vi] where ui, vi denote the ith entry of u, v, respectively, we
have

δ > Pr
i∈[n]

[(
vα − u∗

α

)
i

6=
(
vα

′ − u∗

α′

)
i

]
= Pr
i∈[n]

[(
vα − u∗

α
− vα

′ − u∗

α′

)
i

6= 0
]

= Pr
i∈[n]

[(
(α− α′)u∗ − (αvα

′
− α′vα)

)
i
6= 0
]

= Pr
i∈[n]

[
u∗i 6=

(
αvα

′ − α′vα

α− α′

)
i

]
.

Setting v′ = αvα
′
−α′vα

α−α′ and noticing v′ ∈ V we conclude

∆(u∗, V ) ≤ ∆(u∗, v′) < δ

which is false and which contradicts our hypothesis on the size of A. We conclude |A| ≤ 1/ε,
as claimed. J

4 Preserving distances for good error correcting code

In this section we prove another strengthening of the Rothblum-Vadhan-Wigderson lemma.
This strengthening only works when the subspace V is a code of good distance. Assume for
now that V is a code with minimum distance 1− o(1). Then the strengthened theorem gives
a stronger guarantee: they show that most elements of U are at distance min(D(U, V )− o(1)
from V . Thus the maximum distance of an element of U from V is also the typical distance
of an element of U from V .

We begin with a warm-up: we show a “unique-decoding" version which only works up to
1/3 of the minimum distance of the code V . The next “list-decoding" version works up to
a much larger distance, and in particular for V having distance 1− o(1), it works up to a
distance of 1− o(1).

4.1 Unique-Decoding version
I Theorem 7. Let V ⊆ Fn be a linear space over a finite field F with ∆(V ) = λ. Let U be
an affine space and suppose D(U, V ) > δ. For any ε > 0 such that δ − ε < λ/3,

Pr
u∈U

[∆(u, V ) < δ − ε] ≤ 1
ε|F|
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Theorem 7 is a consequence of the following lemma. As in Section 3, we state the lemma,
prove Theorem 7 and then prove the lemma.

I Lemma 8. Let V ⊆ Fn be a linear space over a finite field F with ∆(V ) = λ. Suppose
u∗ ∈ Fn satisfies ∆(u∗, V ) > δ and fix arbitrary u ∈ Fn. For ε > 0 satisfying δ − ε < λ/3 let
A = {α ∈ F | ∆(u∗ + αu, V ) < δ − ε}. If |A| > 1/ε then there exist v, v∗ ∈ V such that:

|{i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )}| ≥ (1− δ) · n.

Proof of Theorem 7. We prove the contra-positive: If the assumptions on ε, δ, λ hold and

Pr
u∈U

[∆(u, V ) < δ − ε] > 1
ε|F|

, (3)

then D(U, V ) ≤ δ.
Let u∗ ∈ U satisfy ∆(u∗, V ) = D(U, V ). We may assume V is a linear space and dim(U) >

0, as argued in the proof of Theorem 5. As there, partition U \{u∗} into equi-size sets, each of
the form {u∗ + αui | α ∈ F \ {0}} for some set u1, . . . , uk ∈ Fn of vectors. By our assumption
in Equation (3) there exists ui such that the set A = {α ∈ F | ∆(u∗ + αui, V ) < δ − ε} is of
size greater than 1/ε. Apply Lemma 8 to this set, and conclude ∆(u∗, v∗) ≤ δ, as claimed. J

Proof of Lemma 8. For α ∈ A, let vα ∈ V be such that ∆(u∗ + αu, vα) < δ − ε.
We first show that for all α ∈ A, the points (α, vα) are all collinear. To see this, let

α1, α2, α3 ∈ A be distinct. We have ∆(u∗ + α3u, v
α3) ≤ δ − ε. On the other hand, if

β = α3−α2
α1−α2

, we have:

u∗ + α3u = β(u∗ + α1u) + (1− β)(u∗ + α2u),

and so:

∆(u∗ + α3u, βv
α1 + (1− β)vα2) ≤ ∆(u∗ + α1u, v

α1) + ∆(u∗ + α2u, v
α2)

≤ (δ − ε) + (δ − ε)
= 2(δ − ε).

Thus ∆(βvα1 + (1− β)vα2 , vα3) ≤ 3(δ − ε) < λ. By the minimum distance hypothesis on V ,
we conclude that

βvα1 + (1− β)vα2 = vα3 ,

which implies the desired collinearity.
Thus there exist v, v∗ ∈ V such that for all α ∈ A,

vα = v∗ + αv.

Taking this information back to the definition of vα, we have that for all α ∈ A,

∆(u∗ + αu, v∗ + αv) < δ − ε.

Rewriting,

∆(u∗ − v∗, α(v − u)) < δ − ε.

for all α ∈ A.
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Now for any coordinate i ∈ [n] where ui 6= vi or u∗i 6= v∗i , there can be at most one value
of α ∈ F for which u∗i − v∗i = α(vi − ui). Let t = |A|. Thus there is an α ∈ A such that:

δ − ε > ∆(u∗ − v∗, α(v − u)) ≥ 1− |{i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )}|
n

− 1
t
.

Putting everything together, we get that:

|{i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )}|
n

≥ 1− δ + ε− 1
t
.

Thus if t > 1
ε , we have:

|{i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )}|
n

≥ 1− δ,

as claimed. J

4.2 List-Decoding version
I Theorem 9. Let V ⊆ Fnq be a subspace with minimum distance λ. Let ε, δ > 0 with
δ < Jε(Jε(λ)).

Suppose u∗ ∈ Fmq is such that ∆(u∗, V ) > δ. Then for all u ∈ Fnq , there are at most 2/ε3
values of α ∈ Fq such that ∆(u∗ + αu, V ) < δ − ε.

This is a consequence of the following theorem.

I Theorem 10. Let V ⊆ Fn be a linear space over a finite field F with ∆(V ) = λ. Let
u∗ ∈ Fn and let ε > 0 satisfy δ < Jε(Jε(λ)). For u ∈ Fn let

A = Au,ε = {α ∈ F \ {0} | ∆(u∗ + αu, V ) < δ − ε} .

If |A| > 2/ε3 then there exist v∗, v ∈ V such that

| {i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )} | ≥ (1− δ)n.

In particular,

∆(u∗, v∗) ≤ δ.

Proof. Let t = |A|. For α ∈ A, let vα ∈ V be such that ∆(u∗ + αu, vα) < δ − ε. Thus
∆(u∗, vα − αu) < δ − ε.

Now consider the following graph with vertex set A: α and α′ are adjacent if ∆(vα −
αu, vα

′ −α′u) < J−1
ε (δ). The Johnson bound implies that this graph has no independent set

of size c′ = 1/ε. Thus by Turan’s theorem, there is a vertex α0 of degree at least ε|A| − 1.
Concretely, this means that there is a set B ⊆ A, with |B| ≥ ε|A| − 1, such that for all

α ∈ B,

∆(vα0 − α0u, v
α − αu) < J−1

ε (δ).

Rewriting, we have:

∆(u, 1
α− α0

· (vα − vα0)) < J−1
ε (δ), (4)
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for every α ∈ B.
Now we apply the Johnson bound again. Since V has distance λ, and Jε(λ) > J−1

ε (δ),
there can be at most 1/ε distinct vectors v ∈ V such that ∆(u, v) < J−1

ε (δ).
The only way this can be consistent with Equation (4) is if many of the 1

α−α0
· (vα − vα0)

are identical. Specifically, by the pigeonhole principle we get that there is a v ∈ V and a set
C ⊆ B, with |C| ≥ ε|B|, such that for all α ∈ C,

v = 1
α− α0

· (vα − vα0).

So for all α ∈ C,

vα = (vα0 − α0v) + α · v.

Let us denote this by vα = v∗ + αv, where v, v∗ ∈ V .
Taking this information back to the definition of vα, we have that for all α ∈ C,

∆(u∗, v∗ + α(v − u)) < δ − ε.

Rewriting,

∆(u∗ − v∗, α(v − u)) < δ − ε.

for all α ∈ C.
Now for any coordinate i ∈ [n] where ui 6= vi or u∗i 6= v∗i , there can be at most one value

of α ∈ F for which u∗i − v∗i = α(vi − ui). Thus there is an α ∈ C such that

∆(u∗ − v∗, α(v − u)) ≥ 1− |{i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )}|
n

− 1
|C|

.

Combining this with our upper bound on ∆(u∗ − v∗, α(v − u)), we get that:

|{i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )}|
n

≥ 1− δ + ε− 1
|C|

. (5)

Since |C| ≥ ε|B| ≥ ε(ε|A| − 1), and since A ≥ 2/ε3, we get that

|C| > 1/ε,

and the desired conclusion follows from Equation (5). J

We now state a variation of Theorem 10. The proof of this theorem follows immediately
from the proof of Theorem 10 and hence we omit it. The reason we have this variation is
that this precise form of the statement will be useful later in the proof of the low degree
Polischuk-Spielman theorem.

I Theorem 11. Let V ⊆ Fn be a linear space over a finite field F with ∆(V ) = λ. Let
u∗ ∈ Fn and let ε > 0 satisfy δ < Jε(Jε(λ)). For u ∈ Fn let

A = Au,ε = {α ∈ F \ {0} | ∆(u∗ + αu, V ) < δ} .

If |A| > 2/ε3 then the following two statements hold:
1. There exist v∗, v ∈ V such that

| {i ∈ [n] | (ui = vi) ∧ (u∗i = v∗i )} | ≥ (1− δ − ε)n.

In particular,

∆(u∗, v∗) ≤ δ + ε.
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2. For α ∈ A, fix vα ∈ V such that ∆(u∗ + αu, vα) < δ. Then there is a large subset C ⊆ A
such that |C| ≥ ε2|A| − 1 and such that for all α ∈ C, v∗ + αv = vα.

We now state a strengthening of the above theorem from lines to higher degree curves.
Define J [k]

ε (λ) = Jε(Jε(. . . (Jε(λ)))), where there are k iterations of the function Jε.

I Theorem 12. Let V ⊆ Fn be a linear space over a finite field F with ∆(V ) = λ. Let
u∗ ∈ Fn and let ε > 0 satisfy δ < J

[`+1]
ε (λ). For u1, u2, · · · , u` ∈ Fn let A = Au1,u2,...,u`,ε ={

α ∈ F \ {0} | ∆(u∗ + αu1 + α2u2 + α3u3 + · · ·+ α`u`, V ) < δ
}
. If |A| > Kε,` for some suf-

ficiently large constant Kε,` that depends only on ε and `, then the following two statements
hold:
1. There exist v∗, v1, v2, . . . , v` ∈ V such that

| {i ∈ [n] | (u∗i = v∗i ) ∧ ((u1)i = (v1)i) ∧ · · · ∧ ((u`)i = (v`)i)} | ≥ (1− δ − ε)n.

In particular,

∆(u∗, v) ≤ δ + ε.

2. For α ∈ A, fix vα ∈ V such that ∆(u∗ + αu1 + α2u2 + α3u3 + · · ·+ α`u`, v
α) < δ. Then

there is a large subset C ⊆ A such that |C| ≥ cε,`|A|, where cε,` > 0 is a constant only
depending on ε and `, and such that for all α ∈ C, v∗+αv1 +α2v2 +α3v3 + · · ·+α`v` = vα.

Proof. The proof of the above theorem follows from the proof of Theorem 11 and an induction
on `. When ` = 1, the result follows from Theorem 11. Let us assume the result is true for
` ≤ k − 1, and now consider ` = k.

Let t = |A|. For α ∈ A, let vα ∈ V be such that ∆(u∗ + αu1 + α2u2 + α3u3 + · · · +
αkuk, v

α) < δ. Thus ∆(u∗, vα − (αu1 + α2u2 + α3u3 + · · ·+ αkuk)) < δ.
Now consider the following graph with vertex set A: α and α′ are adjacent if ∆(vα −

(αu1 +α2u2 +α3u3 + · · ·+αkuk), vα′ − (α′u1 +α′2u2 +α′3u3 + · · ·+α′kuk)) < J−1
ε (δ). The

Johnson bound implies that this graph has no independent set of size c′ = 1/ε. Thus by
Turan’s theorem, there is a vertex α0 of degree at least ε|A| − 1.

Concretely, this means that there is a set B ⊆ A, with |B| ≥ ε|A| − 1, such that for all
α ∈ B,

∆(vα0−(α0u1 +α2
0u2 +α3

0u3 + · · ·+αk0uk), vα−(αu1 +α2u2 +α3u3 + · · ·+αkuk)) < J−1
ε (δ).

Rewriting, we have:

∆
(
vα0 − vα

α0 − α
,

1
α0 − α

·
k∑
i=1

(αi0 − αi)ui

)
< J−1

ε (δ), (6)

for every α ∈ B.
Now, let Wα ∈ V be the vector

vα0 − vα

α0 − α
,

and let u′1, u′2, . . . , u′k ∈ Fn be such that u′i is the coeffecient of αi−1 in

1
α0 − α

·
k∑
i=1

(αi0 − αi)ui.
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Thus,

1
α0 − α

·
k∑
i=1

(αi0 − αi)ui =
k∑
i=1

u′i · αi−1,

and for all α ∈ B,

∆(Wα, u′1 + αu′2 + · · ·+ αk−1u′k) < J−1
ε (δ).

Notice that since we are given that δ < J
[k+1]
ε (λ), where the function Jε is iterated k + 1

times, thus for δ′ = J−1
ε (δ), δ′ < J

[k]
ε (λ), where the function Jε is iterated k times.

Now, |B| ≥ ε|A| − 1. Thus, if |A| is large enough, then by induction hypothesis,
there is a large subset C ⊆ B such that |C| ≥ cε,k|B|, where cε,k > 0 is a constant
only depending on ε and k, and there exist v′1, v′2, . . . , v′k ∈ V such that for all α ∈ C,
v′1 + αv′2 + α2v′3 + · · ·+ αkv′k = Wα.

Thus
vα0 − vα

α0 − α
= v′1 + αv′2 + α2v′3 + · · ·+ αkv′k,

where v′1, v′2, . . . , v′k ∈ V .
Rearranging, this shows that for all α ∈ C, we can express vα as v∗+αv1 +α2v2 +α3v3 +

· · ·+ αkvk, where v∗, v1, v2, . . . , vk ∈ V .
Taking this back to the definition of vα, we have that for all α ∈ C,

∆(u∗, v∗ + (α(v1 − u1) + α2(v2 − u2) + α3(v3 − u3) + · · ·+ αk(vk − uk))) < δ.

Rewriting, we have that for all α ∈ C,

∆(u∗ − v∗ + α(u1 − v1) + α2(u2 − v2) + α3(u3 − v3) + · · ·+ αk(uk − vk), 0) < δ.

Now for any coordinate i ∈ [n] where u∗i 6= v∗i or (uj)i 6= (vj)i for any j ∈ [k], the
restriction to the ith coordinate gives us a nonzero degree k polynomial in α, and so there
are at most k values of α ∈ F for which (u∗ − v∗)i + α · (u1 − v1)i + α2 · (u2 − v2)i + α3 ·
(u3 − v3)i + · · ·+ αk · (uk − vk)i = 0.

Thus there is an α ∈ C such that

∆(u∗ − v∗ + α(u1 − v1) + α2(u2 − v2) + α3(u3 − v3) + · · ·+ αk(uk − vk), 0) ≥

1− |{i ∈ [n] | (u∗i = v∗i ) ∧ ((u1)i = (v1)i) ∧ · · · ∧ ((uk)i = (vk)i)}|
n

− k

|C|
.

Combining this with our upper bound on

∆(u∗ − v∗ + α(u1 − v1) + α2(u2 − v2) + α3(u3 − v3) + · · ·+ αk(uk − vk), 0),

we get that:

|{i ∈ [n] | (u∗i = v∗i ) ∧ ((u1)i = (v1)i) ∧ · · · ∧ ((uk)i = (vk)i)}|
n

≥ 1− δ − k

|C|
. (7)

Since Now is |A| is a large enough constant depending on ε and k, then the bounds on
|C| imply that

|C| > k/ε,

and the desired conclusion follows from Equation (7). J
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5 Distance Amplification for Reed-Solomon codes

In this section, we show how to use the results of the previous section to show that some
simple transformations amplify the distance of a function from the space of low-degree
polynomials (i.e., Reed-Solomon codes). In the previous section, we saw results with the
flavor: if u∗ is δ-far from the subspace V , then there are many other functions (related to u∗)
that are also almost δ-far from the subspace V . Now we will get more: we will find many
functions related to u∗ that are δ′-far from V for some δ′ bigger than δ. The main strength
of this result is that this process can then amplify the distance to V all the way to 1− o(1)
(while more direct analyses, related to the Rothblum-Vadhan-Wigderson [19] lemma, cannot
amplify beyond distance 1/2).

For a function u∗ we consider taking random linear combinations of a few random affine
shifts of u∗. Notice that if u∗ was actually a low-degree polynomial, then the resulting
function would also be a low-degree polynomial (since low-degree polynomials are closed
under taking affine shifts and taking linear combinations). We show that if u∗ is far from low-
degree polynomials, this operation amplifies distance to low-degree polynomials noticeably.
More precisely, suppose V is the space of polynomials of degree at most ρq, let δ > 0, and
suppose ρ > 0 is small enough as a function of δ. We show that if u∗ is δ-far from V , then
the function u(x) = u∗(x) + c · u∗(ax+ b) (where a, b, c are picked uniformly at random from
Fq) is with high probability ≈ (2δ − δ2) far from V . This final distance matches what one
would expect if we took the sum of two random functions that were δ-far from V - thus the
random affine shift of u∗ behaves nearly independently of u∗ (subject to the trivial constraint
that the random affine shift is also δ-far from V ).

To state the theorem, we begin with some notation. For a function f : Fq → Fq, we
denote by Ta,b(f) the function g : Fq → Fq given by:

g(β) = f(aβ + b),

for each β ∈ Fq.

I Theorem 13. Let V = RS(Fq, (1 − λ)q) ⊆ Fqq be the Reed-Solomon code over Fq with
minimum distance λ.

Let u′, u′′ : Fq → Fq be functions with ∆(u′, V ) ≥ δ′ and ∆(u′′, V ) ≥ δ′′. Let ε > 0, and
let

δ = min(Jε(Jε(λ))− ε, δ′ + δ′′ − δ′δ′′ − 2ε).

Then:

Pr
a,b,c∈Fq

[∆(u′ + c · Ta,b(u′′), V ) < δ] ≤ K

q
, (8)

where K = 8/ε4.

Proof. Set δ = δ + ε. Note that

δ = δ + ε < Jε(Jε(λ)) < Jε(λ).

Suppose Equation (8) did not hold. Thus:

Pr
a,b,c∈Fq

[∆(u′ + c · Ta,b(u′′), V ) < δ − ε] > K

q
.
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Then with probability at least K
2q over the choice of (a, b), we have that:

Pr
c∈Fq

[∆(u′ + c · Ta,b(u′′), V ) < δ − ε] > K

2q .

Fix such an (a, b) ∈ F2
q. Since K > 4/ε3and δ < Jε(Jε(λ)), we may apply Theorem 10 to

u′ and Ta,b(u′′). It tells us that there exist y, y∗ ∈ V such that:

|{β ∈ Fq | u′(β) = y(β) ∧ u′′(aβ + b) = y∗(β)}| ≥ (1− δ)q, (9)

which, after letting y∗∗(T ) = y∗((β − b)/a)), can be rewritten as:

|{β ∈ Fq | u′(β) = y(β) ∧ u′′(aβ + b) = y∗∗(aβ + b)}| ≥ (1− δ)q. (10)

It is thus natural to consider the collection of polynomials close to u′, u′′:

L′ = {f ∈ V | ∆(u′, f) ≤ δ},

L′′ = {f ∈ V | ∆(u′′, f) ≤ δ},

as well as the collection of agreement sets:

F ′ = {A ⊆ Fq | for some f ∈ L′ we have A = {β ∈ Fq | f(β) = u′(β)}}.

F ′ = {A ⊆ Fq | for some f ∈ L′′ we have A = {β ∈ Fq | f(β) = u′′(β)}}.

By the Johnson bound, Theorem 2, (and since δ < Jε(λ)), we have that

|L′|, |L′′|, |F ′|, |F ′′| < 1/ε.

Equation (10) and the discussion before it tells us that with probability at least K
2q over

the choice of (a, b) ∈ F2
q, there exists some A′ ∈ F ′ and some A′′ ∈ F ′′ such that

|A′ ∩ 1
a

(A′′ − b)| ≥ (1− δ)q.

By averaging, this means that there must exist some A′ ∈ F ′ and A′′ ∈ F ′′ such that
with probability at least ε2K

2q over the choice of (a, b) ∈ F2
q,

|A′ ∩ 1
a

(A′′ − b)| ≥ (1− δ)q. (11)

We will use this to deduce that either A′ or A′′ must be big. For each r ∈ A′′, let Xr

denote the indicator random variable for the event that (r − b)/a ∈ A′. Let X =
∑
r∈A′′ Xr.

Note that

X = |A′ ∩ 1
a

(A′′ − b)|.

It is easy to see that E[Xr] = |A′|/q, and so:

E[X] = |A
′| · |A′′|
q

= µ.

Furthermore, the Xr are pairwise independent, and thus the variance of X is bounded by:

Var[X] ≤ 4 |A
′′||A′|
q

≤ 4q.
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Thus:

Pr[X ≥ µ+ 2t√q] ≤ 1
t2
.

If |A′|, |A′′| are such that |A′| · |A′′| ≤ (1− δ − ε) · q2, then µ ≤ (1− δ − ε)q, and the above
equation with t = ε

2
√
q gives us that:

Pr[X ≥ (1− δ)q] ≤ 4
ε2q

.

This is a contradiction to Equation (11), since by the choice of K,

ε2K

2q <
4
ε2q

.

Thus we must have that:

|A′| · |A′′| > (1− δ − ε)q2.

Recalling that A′ ∈ F ′ and A′′ ∈ F ′′, we conclude that

(1− δ′)(1− δ′′) > (1− δ − 2ε),

a contradiction to our assumption on δ′, δ′′. J

6 A low-agreement analysis of the Polischuck–Spielman axis-parallel
test

In this section, we use the tools we developed above to give improved versions of the
Polischuk-Spielman robust low-degree test [18] in certain settings. Their result gives a way
to robustly test proximity of a 2-dimensional function f : F2

q → Fq to bivariate polynomials
with individual degrees (d, `). Our result shows that for ` = O(1), and for d = O(q), the
Polischuk-Spielman low-degree test works even in the presence of high noise: even if the test
passes with some tiny probability η, it means that the underlying bivariate function has
nontrivial agreement with some low degree bivariate polynomial.

The original Polischuk-Spielman analysis (improving on Arora-Safra [3]) allows d, ` to
both be Ω(q), but could only conclude something if the passing probability η was at least
1/2. The very recent analysis of the Polischuk-Spielman test due to Chiesa et al. [13] allows
η to be small, as in the result we obtain below, but the two results are incomparable (neither
implies the other). The result of [13] works for d, ` as large as O(log q) whereas ours requires
` = O(1) but allows d to be as large as Ω(q).

I Theorem 14 (High-error soundness analysis of the Polischuk–Spielman test). There exists a
function f : N+ × (0, 1)× (0, 1) that, for each fixed ` ∈ N+, satisfies f(`, ρ, ε)→ 0 as ρ→ 0
and ε→ 0, and for which the following holds.

Let d = ρq. Suppose for each x ∈ Fq, we have a degree ` polynomial Qx(Y ), and for each
y ∈ Fq we have a degree d polynomial Py(X). Suppose that for some non-trivial agreement
parameter η > f(`, ρ, ε) all these polynomials meet the following nontrivial agreement
condition:

Pr
x,y∈Fq

[Qx(y) = Py(x)] ≥ η. (12)
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Then there exists a bivariate polynomial R(X,Y ) of individual degree (d, `) such that

Pr
x,y∈Fq

[Qx(y) = R(x, y)] ≥ η − 2ε,

Pr
x,y∈Fq

[Qx(y) = Py(x) = R(x, y)] ≥ Cε,` · η,

where Cε,` > 0 is a constant only depending on ε and `.

Proof. Our plan is to use Theorem 12 to deduce some information about Qx and Py. Let
V ⊆ Fqq be the Reed-Solomon code of polynomials of degree at most d. Let λ = ∆(V ) = 1−ρ.

Let u∗, u1, . . . , u` be functions from Fq to Fq such that:

Qx(Y ) = u∗(x) + u1(x)Y + u2(x)Y 2 + . . .+ u`(x)Y `.

For each α ∈ Fq, define vα(X) = Pα(X).
The non-trivial agreement hypothesis of Equation (12) tells us that:

Pr
α,x∈Fq

[u∗(x) + u1(x)α+ . . .+ u`(x)α` = vα(x)] ≥ η.

Equivalently:

Eα∈Fq [∆(u∗ + αu1 + α2u2 + . . .+ α`u`, v
α)] ≤ 1− η.

Set δ = 1− η + ε. By an averaging argument, we get:

Pr
α∈Fq

[∆(u∗ + αu1 + α2u2 + . . .+ α`u`, v
α) < δ] ≥ ε.

Let A be the set of α for which the above event happens: thus |A| ≥ ε · q.
We now apply Theorem 12. We need δ < J

[`]
ε (λ), which we may assume by suitably

setting f(`, ρ, ε). We get that there exist v∗, v1, . . . , v` ∈ V and a subset G ⊆ Fq with
|G| ≥ (1− δ − ε)q for all x ∈ G,

v∗(x) = u∗(x), v1(x) = u1(x), . . . , v`(x) = u`(x).

Since v∗ and the vi are all in V , they are polynomials of degree at most d. Define

R(X,Y ) = v∗(X) + v1(X)Y + . . .+ v`(X)Y `.

Rephrasing what we just concluded in terms of R, we get that for all x ∈ G:

R(x, Y ) = Qx(Y ),

and thus:

Pr
x∈Fq,y∈Fq

[R(x, y) = Qx(y)] ≥ 1− δ − ε = η − 2ε.

Moreover, we conclude from Item 2 of Theorem 12 that for some cε,` fraction of the
α ∈ A, we have:

vα = v∗ + αv1 + . . .+ α`v`.

For any such α where this identity holds, we get that:

R(x, α) = vα(x) = Pα(x),

and thus

Pr
x∈Fq

[R(x, α) = Pα(x) = Qx(α)] ≥ 1− δ = η − ε > η/2.

This completes the proof of the theorem. J

CCC 2018



24:18 Worst-Case to Average Case Reductions for the Distance to a Code

7 Improved soundness for the Fast RS IOPP (FRI) protocol

In this section we describe how our prior results lead to a better analysis of the soundness
of the FRI protocol of [9]. We start by recalling the notation needed to state our results,
referring the reader to [9] for a detailed description of the protocol with its two phases, the
COMMIT and QUERY sub-protocols.

7.1 Notation
We use the notation introduced in [9, Sections 3.4, 4.2.1]; let us briefly recall it. Our starting
point is a function f (0) : L(0) → F where F is a finite field of characteristic 2 and size 2n, the
evaluation domain L(0) ⊂ F is an affine space over the two element field F2, i.e., L(0) is a
coset of an additive subgroup of F, and |L(0)| = 2k(0) which means that k(0) = dim

(
L(0)).

We assume the target rate is ρ = 2−R for some positive integer R. The COMMIT phase of the
FRI protocol involves r = k(0) −R rounds. For i > 0, during the ith round the verifier sends
a uniformly random x(i) ∈ F and the prover responds with a function f (i+1) : L(i+1) → F
where L(i+1) is an affine space of dimension k(i+1) = k(i) − 1 (and size 2k(i+1)) defined
by L(i+1) = q(i) (L(i)) where q(i) is a linearized polynomial of degree 2 that is a subspace
polynomial of a space L(i)

0 such that L(i) can be partitioned into additive cosets of L(i)
0 . Let

S(i) denote the set of cosets of L(i)
0 contained in L(i).

For f, g : L(i) → F let ∆(i) (f, g) be the block-wise distance between f, g (cf. [9, Definition
3.2]), defined as the fraction of cosets of L(i)

0 on which f and g differ,

∆(i) (f, g) , Pr
S∈S(i)

[f |S 6= g|S ]

where f |S is the restriction of f to S (and g|S is similarly defined) and equality above
is in the space FS . Notice ∆(i) (f, g) ≥ ∆(f, g). For a set of functions V ⊂ FL(i) let
∆(i) (f, V ) = min

{
∆(i) (f, v) | v ∈ V

}
.

7.2 Statement of results
The following is the main theorem from [9], and we improve its soundness in Theorem 16,
stated after it.

I Theorem 15 (FRI – main properties). The following properties hold when the FRI protocol
is invoked on oracle f (0) : L(0) → F with rate ρ = 2−R for R ∈ N+ such that ρ|L(0)| > 16:
1. Completeness If f (0) ∈ RS(0) , RS[F, L(0), ρ = 2−R] and f (1), . . . , f (r) are computed

by the prover specified in the COMMIT phase, then the FRI verifier outputs accept with
probability 1.

2. Soundness Suppose δ(0) , ∆(0)
(
f (0),RS(0)

)
> 0. Then with probability at least

1− 3|L(0)|
|F|

(13)

over the randomness of the verifier during the COMMIT phase, and for any (adaptively
chosen) prover oracles f (1), . . . , f (r), the QUERY protocol with repetition parameter `
outputs accept with probability at most(

1−min
{
δ(0),

1− 3ρ− 2/
√
|L(0)|

4

})`
(14)
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Consequently, the soundness of FRI is at least

s−
(
δ(0)
)
, 1−

3|L(0)|
|F|

+
(

1−min
{
δ(0),

1− 3ρ− 2/
√
|L(0)|

4

})` . (15)

3. Prover complexity is O(|L(0)|) arithmetic operations over F
4. Verifier complexity is O(log |L(0)|) arithmetic operations over F for a single invocation

of the QUERY phase; this also bounds communication and query complexity (measured in
field elements).

We improve FRI soundness as follows:

I Theorem 16 (FRI with improved soundness). The following properties hold when the FRI
protocol is invoked on oracle f (0) : L(0) → F, |L(0)| = k(0), with rate ρ = 2−R,R ∈ N+ such
that ρ|L(0)| > 16:
1. Soundness Suppose δ(0) , ∆(0)

(
f (0),RS(0)

)
> 0. Then for any ε > 0, with probability

at least

1− 2k(0)

ε3|F|
(16)

over the randomness of the verifier during the COMMIT phase, and for any (adaptively
chosen) prover oracles f (1), . . . , f (r), the QUERY protocol with repetition parameter `
outputs accept with probability at most(

1−min
{
δ(0), Jε(Jε(1− ρ))

}
+ εk(0)

)`
(17)

Consequently, the soundness of FRI is at least

s−
(
δ(0)
)
, 1−

(
2k(0)

ε3|F|
+
(

1−min
{
δ(0), Jε(Jε(1− ρ))

}
+ εk(0)

)`)
. (18)

7.3 Proof of Theorem 16
Before presenting the proof of our main theorem for this section, we require a corollary of
our prior results, which we state first. To state the corollary, we need more notation from [9]

7.3.1 More notation
Given x(i) ∈ F, the function f (i+1)

f(i),x(i) : L(i+1) → F is that which is provided by the honest
FRI prover upon input f (i) and verifier randomness x(i). For s(i+1) ∈ L(i+1) and s(i)

0 , s
(i)
1 the

two roots of q(i)(X)− s(i+1), we have

f
(i+1)
f(i),x(i)(s(i+1)) , P

f(i),s
(i)
0 ,s

(i)
1

(s(i+1)) (19)

where P
f(i),s

(i)
0 ,s

(i)
1

(X) is the polynomial that interpolates the two points
(
s

(i)
0 , f (i)

(
s

(i)
0

))
and

(
s

(i)
1 , f (i)

(
s

(i)
1

))
; notice deg

(
P
f(i),s

(i)
0 ,s

(i)
1

)
≤ 1 and

{
s

(i)
0 , s

(i)
1

}
is a coset of L(i)

0 , denoted

S
(i)
s(i+1) .
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7.3.2 A corollary of Theorem 10

The following statement is a corollary of Theorem 10, as applied to a single round of the FRI
protocol involving an honest prover.

I Corollary 17. Suppose δ(i) , ∆(i)
(
f (i),RS(i)

)
satisfies δ(i) < Jε(Jε(1− ρ)). Then

Pr
x(i)∈F

[
∆
(
f

(i+1)
f(i),x(i) ,RS(i+1)

)
≥ δ(i) − ε

]
≤ 2
ε3|F|

. (20)

Proof. Consider the space of functions U = U (i+1) =
{
f

(i+1)
f(i),x(i) | x(i) ∈ F

}
⊂ FL(i+1) that

are supplied by the honset prover in response to the various verifier messages x(i). Let

u∗ = f
(i+1)
f(i),0 , u = f

(i+1)
f(i),1 − f

(i+1)
f(i),0 .

Since deg(P
f(i),s

(i)
0 ,s

(i)
1

) ≤ 1 for every pair
{
s

(i)
0 , s

(i)
1

}
∈ S(i) it follows that every u′ =

f
(i+1)
f(i),x(i) ∈ U can be written as a linear combination of u∗, u; specifically, f (i+1)

f(i),x(i) = u∗+x(i) ·u.
Let Ū (i+1) ⊆ U be the set of elements in U that have distance less than δ(i) − ε to RS(i+1).

Assume by way of contradiction that |Ū (i+1)| > 2
ε3 . Then Theorem 10 implies the

existence of v∗, v ∈ RS(i+1) and a subset T ⊂ L(i+1), |T |
|L(i+1)| ≥ 1−δ(i), such that v∗|T = u∗|T

and v|T = u|T . Let Q∗(Y ), Q(Y ) be the polynomials interpolating v∗ and v respectively. We
have deg(Q∗), deg(Q) < ρ|L(i+1)| because v∗, v ∈ RS(i+1). Let

Q̂(X,Y ) , Q∗(Y ) +X ·Q(Y )

and notice that (i) degX(Q̂) < 2, degY (Q̂) < ρ|L(i+1)| (ii) Q̂(0, Y ) = Q∗(Y ), (iii) Q̂(1, Y ) =
Q(Y ).

Consider the polynomial R(X) , Q̂(X, q(i)(X)). We have

deg(R) ≤ 2 · degY (Q̂)− 1 < 2|L(i+1)| = ρ|L(i)|.

We claim that R agrees with f (i) on
{
S

(i)
s(i+1) | s(i+1) ∈ T

}
. Indeed, for each s(i+1) ∈ T

let S(i)
s(i+1) =

{
s

(i)
0 , s

(i)
1

}
∈ S(i) be the pair of roots of the polynomial q(i) (X) − s(i+1). By

our assumption on T ,

Q̂
(

0, s(i+1)
)

= f
(i+1)
f(i),0

(
s(i+1)

)
and Q̂

(
1, s(i+1)

)
= f

(i+1)
f(i),1 .

The polynomials Q̂
(
X, s(i+1)) and P

f(i),s
(i)
0 ,s

(i)
1

(X) are both of degree less than 2 and they
agree on the two points {0, 1}, hence they agree everywhere. It follows that

f (i)
(
s

(i)
0

)
= Q̂

(
s

(i)
0 , s(i+1)

)
= Q̂

(
s

(i)
0 , q(i)

(
s

(i)
0

))
= R

(
s

(i)
0

)
and similarly f (i)

(
s

(i)
1

)
= R

(
s

(i)
1

)
. Therefore, R and f (i) agree on T , as claimed.

We have established ∆(i)
(
f (i),RS(i)

)
≤ 1 − |T |

|L(i+1)| ≤ δ(i) and this contradicts our
assumption. Therefore |U (i+1)| ≤ 2

ε3|F| , as claimed. J
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7.3.3 Proof of improved soundness
Armed with Corollary 17 we move on to the proof of the main theorem of this section.

Proof of Theorem 16. Let E(i) be the “bad” event that f (i+1)
f(i),x(i) ∈ Ū (i+1); in words, E(i) is

the event that ∆
(
f

(i+1)
f(i),x(i) ,RS(i+1)

)
≤ δ(i) − ε. Corollary 17 implies that Pr

[
E(i)] ≤ 2

ε3|F| .
(When δ(i) < 1−ρ

2 the stronger bound Pr
[
E(i)] ≤ 1

ε|F| holds.) By the union bound

Pr
[r−1∨
i=0

E(i)

]
≤ 2r
ε3|F|

≤ 2k(0)

ε3|F|
(21)

We continue our analysis assuming no such event holds. Let f (0), . . . , f (r) be the sequence
of functions sent by the prover, which is not necessarily honest. Recall that during the
QUERY phase of the FRI protocol, the verifier selects a random s(0) ∈ L(0) and this defines
a sequence s(0), . . . , s(r) inductively by using the rule s(i+1) = q(i)(s(i)) for i ∈ {1, . . . , r};
Recall S(i)

s(i+1) ∈ S(i) is the coset containing the two roots of the polynomial q(i)(X)− s(i+1),
and one of them is s(i). The test associated with s(0) accepts iff Equation (19) holds for all
i ∈ {0, . . . , r − 1} and additionally f (r) is a constant function; we assume it by associating
the constant function with the first entry of f (r).

For the sake of analysis, consider the directed graph in which an edge appears from s(i)

to s(i+1) if and only if s(i) ∈ S(i)
s(i+1) . This graph has r + 1 layers, and the vertices in the ith

layer are the elements of L(i). For all nodes but for the root and leaves, the in-degree is 2;
all non-root nodes have out-degree is 1, making the graph a directed tree (we direct edges
from leaves to root). A single invocation of the QUERY phase involves selecting a leaf s(0)

and performing the sequence of tests along the path from s(0) to the top layer of the graph
(which corresponds to L(r)).

Call a vertex s(i) bad if Equation (19) fails to hold for s(i) and S(i−1)
s(i) ; all other vertices

are called good. A QUERY test rejects if and only if the path examined by it contains a bad
vertex. To analyze the rejection probability of the test, it will be simpler to consider only
the last such bad vertex along a path. To this end, we shall modify the sequence of functions
f (1), . . . , f (r−1) (but not f (0) and f (r)) in a way that may change some bad vertices into good
ones, but will not make a good vertex bad. We will then analyze the rejection probability of
a QUERY test applied to the modified set of functions.

Working top down with i = r, . . . , 2 in decreasing order, for each bad vertex s(i) ∈ L(i),
we modify the entries in the sub-tree whose root is s(i), as follows. Let L(j)

s(i) be the set of
vertices in layer j that have a path to s(i). For j ∈ {0, . . . , i− 2}, in increasing order, set

f (j+1)|
L

(i+1)
s(i)

, f
(j+1)
f(j),x(j) .

This modification process may change the entries of f (1), . . . , f (r−1) but does not change
neither f (0), nor f (r) because 0 ≤ j < r−1 and we only modify entries in layer j+1. Crucially,
the probability of rejecting during the QUERY phase does not increase as a result of this
modification, because the modification does not turn a good vertex into a bad one and hence
the set of post-modification bad vertices is a subset of the pre-modification bad vertices.

Consider the sequence of modified functions f (0), . . . , f (r). Let β(i) denote the fraction
of bad vertices in L(i). As said earlier, the probability of rejection during a single QUERY
invocation is precisely the probability that a path originating in a random leaf passes through
a bad vertex. After our modification process, the set of leaves that lead to distinct bad
vertices, are distinct, and along a path there is at most one bad vertex. Hence, the probability
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that the FRI verifier rejects on a single invocation of the QUERY protocol is precisely
∑r

=1 β
(i).

All that remains is to bound this sum from below, as done next.

I Claim 18. If E(i) does not hold, then

β(i+1) ≥ δ(i) − δ(i+1) − ε

Proof. Assuming E(i) does not hold, Corollary 17 implies

∆
(
f

(i+1)
f(i),x(i) ,RS(i+1)

)
≥ δ(i) − ε

By the properties of the modification process, f (i+1)(s(i+1)) = f
(i+1)
f(i),x(i) for every s(i+1) that

is not bad. So

∆
(
f (i+1),RS(i+1)

)
≥ δ(i) − ε− β(i+1)

or, rearranging,

β(i+1) ≥ δ(i) −∆
(
f

(i+1)
f(i),x(i) ,RS(i+1)

)
− ε

The claim follows because δ(i+1) , ∆(i)
(
f (i+1),RS(i+1)

)
≥ ∆

(
f

(i+1)
f(i),x(i) ,RS(i+1)

)
. J

We continue with the proof. By assumption δ(r) = 0 and f (0) is unchanged by the modification
process, so

δ(0) = δ(0) − δ(r) =
r−1∑
i=0

δ(i) − δ(i+1)

Applying Claim 18 to the rightmost term above we conclude that whenever no event E(i) holds
(cf. Equation (21)), then the probability of the verifier rejecting during a single invocation of
the QUERY phase is at least

∑r
i=1 β

(i) ≥ δ(0) − rε. This completes the proof. J
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Abstract
We investigate the complexity of deciding, given a multiplication table representing a semigroup S,
a subset X of S and an element t of S, whether t can be expressed as a product of elements
of X. It is well-known that this problem is NL-complete and that the more general Cayley
groupoid membership problem, where the multiplication table is not required to be associative,
is P-complete. For groups, the problem can be solved in deterministic log-space which raised
the question of determining the exact complexity of this variant. Barrington, Kadau, Lange
and McKenzie showed that for Abelian groups and for certain solvable groups, the problem is
contained in the complexity class FOLL and they concluded that these variants are not hard for
any complexity class containing Parity. The more general case of arbitrary groups remained
open. In this work, we show that for both groups and for commutative semigroups, the problem
is solvable in qAC0 (quasi-polynomial size circuits of constant depth with unbounded fan-in) and
conclude that these variants are also not hard for any class containing Parity. Moreover, we
prove that NL-completeness already holds for the classes of 0-simple semigroups and nilpotent
semigroups. Together with our results on groups and commutative semigroups, we prove the
existence of a natural class of finite semigroups which generates a variety of finite semigroups with
NL-complete Cayley semigroup membership, while the Cayley semigroup membership problem
for the class itself is not NL-hard. We also discuss applications of our technique to FOLL.
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The Cayley groupoid membership problem (sometimes also called the generation problem)
asks, given a multiplication table representing a groupoid G, a subset X of G and an element
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showed that this problem is P-complete [20]. Barrington and McKenzie later studied natural
subproblems and connected them to standard subclasses of P [10].

When restricting the set of valid inputs to inputs with an associative multiplication table,
the problem becomes NL-complete [21]. We will call this variant of the problem the Cayley
semigroup membership problem and analyze its complexity when further restricting the
semigroups encoded by the input. For a class of finite semigroups V, the Cayley semigroup
membership problem for V is formally defined as follows.

CSM(V)
Input: The Cayley table of a semigroup S ∈ V, a set X ⊆ S and an element t ∈ S

Question: Is t in the subsemigroup of S generated by X?

The motivation for investigating this problem is two-fold. Firstly, there is a direct
connection between the Cayley semigroup membership problem and decision problems for
regular languages: a language L ⊆ Σ+ is regular if and only if there exist a finite semigroup S,
a morphism ϕ : Σ+ → S and a set P ⊆ S such that L = ϕ−1(P ). Thus, morphisms to
finite semigroups can be seen as a way of encoding regular languages. For encoding such a
semigroup, specifying the multiplication table is a natural choice. Deciding emptiness of a
regular language represented by a morphism ϕ : Σ+ → S to a finite semigroup S and a set
P ⊆ S boils down to checking whether any of the elements from the set P is contained in
the subsemigroup of S generated by the images of the letters of Σ under ϕ. Conversely, the
Cayley semigroup membership problem is a special case of the emptiness problem for regular
languages: an element t ∈ S is contained in the subsemigroup generated by a set X ⊆ S if
and only if the language ϕ−1(P ) with ϕ : X+ → S, x 7→ x and P = {t} is non-empty.

Secondly, we hope to get a better understanding of the connection between algebra
and low-level complexity classes included in NL in a fashion similar to the results of [10].
In the past, several intriguing links between so-called varieties of finite semigroups and
the computational complexity of algebraic problems for such varieties were made. For
example, the fixed membership problem for a regular language was shown to be in AC0 if its
syntactic monoid is aperiodic, in ACC0 if the syntactic monoid is solvable and NC1-complete
otherwise [8, 11]. It is remarkable that in most results of this type, both the involved
complexity classes and the algebraic varieties are natural. On a language-theoretical level,
varieties of finite semigroups correspond to subclasses of the regular languages closed under
Boolean operations, quotients and inverse morphisms.

Related Work. We already mentioned the work of Jones and Laaser on the Cayley groupoid
membership problem [20], the work of Jones, Lien and Laaser on the Cayley semigroup mem-
bership problem [21] and the work of Barrington and McKenzie on subproblems thereof [10].
The semigroup membership problem and its restrictions to varieties of finite semigroups
was also studied for other encodings of the input, such as matrix semigroups [2, 4, 7] or
transformation semigroups [5, 6, 12,13,14,15,18].

The group version of the Cayley semigroup membership problem (CSM(G), using our
notation) was first investigated by Barrington and McKenzie in 1991 [10]. They observed that
the problem is in symmetric log-space, which has been shown to be the same as deterministic
log-space by Reingold in 2008 [23], and suggested it might be complete for deterministic
log-space. However, all attempts to obtain a hardness proof failed (in fact, their conjecture
is shown to be false in this work). There was no progress in a long time until Barrington,
Kadau, Lange and McKenzie showed that for Abelian groups and certain solvable groups,
the problem lies in the complexity class FOLL and thus, cannot be hard for any complexity
class containing Parity in 2001 [9]. The case of arbitrary groups remained open.
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Our Contributions. We generalize previous results on Abelian groups to arbitrary com-
mutative semigroups. Then, using novel techniques, we show that the Cayley semigroup
membership problem for the variety of finite groups G is contained in qAC0 and thus, cannot
be hard for any class containing Parity. Our approach relies on the existence of succinct
representations of group elements by algebraic circuits. More precisely, it uses the fact that
every element of a group G can be computed by an algebraic circuit of size O(log3 |G|) over
any set of generators. Since in the Cayley semigroup membership problem, the algebraic
structure is not fixed, we introduce so-called Cayley circuits, which are similar to regular
algebraic circuits but expect the finite semigroup to be given as part of the input. We prove
that these Cayley circuits can be simulated by sufficiently small unbounded fan-in Boolean
circuits. We then use this kind of simulation to evaluate all Cayley circuits, up to a certain
size, in parallel.

By means of a closer analysis and an extension of the technique used by Jones, Lien
and Laaser in [21], we also show that the Cayley semigroup membership problem remains
NL-complete when restricting the input to 0-simple semigroups or to nilpotent semigroups.

Combining our results, we obtain that the Cayley semigroup membership problem for the
class G ∪Com, which consists of all finite groups and all finite commutative semigroups, is
decidable in qAC0 (and thus not NL-hard) while the Cayley semigroup membership problem
for the minimal variety of finite semigroups containing G ∪Com is NL-complete.

Finally, we discuss the extent to which our approach can be used to establish membership
of Cayley semigroup membership variants to the complexity class FOLL. Here, instead of
simulating all circuits in parallel, we use an idea based on repeated squaring. This technique
generalizes some of the main concepts used in [9].

2 Preliminaries

Algebra. A semigroup T is a subsemigroup of S if T is a subset of S closed under multi-
plication. The direct product of two semigroups S and T is the Cartesian product S × T

equipped with componentwise multiplication. A subsemigroup of a direct product is also
called subdirect product. A semigroup T is a quotient of a semigroup S if there exists a
surjective morphism ϕ : S → T .

A variety of finite semigroups is a class of finite semigroups which is closed under finite
subdirect products and under quotients. Since we are only interested in finite semigroups,
we will henceforth use the term variety for a variety of finite semigroups. Note that in the
literature, such classes of semigroups are often called pseudovarieties, as opposed to Birkhoff
varieties which are also closed under infinite subdirect products. The following varieties play
an important role in this paper:

G, the class of all finite groups,
Ab, the class of all finite Abelian groups,
Com, the class of all finite commutative semigroups,
N, the class of all finite nilpotent semigroups, i.e., semigroups where the only idempotent
is a zero element.

The join of two varieties V and W, denoted by V ∨W, is the smallest variety containing
both V and W. A semigroup S is 0-simple if it contains a zero element 0 and if for each
s ∈ S \ {0}, one has SsS = S. The class of finite 0-simple semigroups does not form a variety.

Complexity. We assume familiarity with standard definitions from circuit complexity. A
function has quasi-polynomial growth if it is contained in 2O(logc n) for some fixed c ∈ N.

CCC 2018
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Throughout the paper, we consider the following unbounded fan-in Boolean circuit families:
AC0, languages decidable by circuit families of depth O(1) and polynomial size,
qAC0, languages decidable by circuit families of depth O(1) and quasi-polynomial size,
FOLL, languages decidable by circuit families of depth O(log log n) and polynomial size,
AC1, languages decidable by circuit families of depth O(log n) and polynomial size,
P/poly, languages decidable by circuit families of polynomial size (and unbounded depth).

We allow NOT gates but do not count them when measuring the depth or the size of a
circuit. We will also briefly refer to the complexity classes ACC0, TC0, NC1, L and NL.

It is known that the Parity function cannot be computed by AC0, FOLL or qAC0 circuits.
This follows directly from Håstad’s and Yao’s famous lower bound results [19, 24], which
state that the number of Boolean gates required for a depth-d circuit to compute Parity is
exponential in n1/(d−1).

3 Hardness Results

Before looking at parallel algorithms for the Cayley semigroup membership problem, we
establish two new NL-hardness results. To this end, we first analyze the construction already
used by Jones, Lien and Laaser [21]. It turns out that the semigroups used in their reductions
are 0-simple which leads to the following result.

I Theorem 1. For a class containing all 0-simple semigroups, the Cayley semigroup mem-
bership problem is NL-complete.

Proof. To keep the proof self-contained, we briefly describe the reduction from the connec-
tivity problem for directed graphs (henceforth called STConn) to the Cayley semigroup
membership problem given in [21].

Let G = (V, E) be a directed graph. We construct a semigroup on the set S = V ×V ∪{0}
where 0 is a zero element and the multiplication rule for the remaining elements is

(v, w) · (x, y) =
{

(v, y) if w = x,

0 otherwise.

By construction, the subsemigroup of S generated by E∪{(v, v) | v ∈ V } contains an element
(s, t) if and only if t is reachable from s in G. To see that the semigroup S is 0-simple,
note that for pairs of arbitrary elements (v, w) ∈ V × V and (x, y) ∈ V × V , one has
(x, v)(v, w)(w, y) = (x, y), which implies S(v, w)S = S. J

In order to prove NL-completeness for another common class of semigroups, we need a
slightly more advanced construction reminiscent of the “layer technique”, which is usually
used to show that STConn remains NL-complete when the inputs are acyclic graphs.

I Theorem 2. CSM(N) is NL-complete (under AC0 many-one reductions).

Proof. Following the proof of Theorem 1, we describe an AC0 reduction of STConn to
CSM(N).

Let G = (V, E) be a directed graph with n vertices. We construct a semigroup on the set
S = V × {1, . . . , n− 1} × V ∪ {0} where 0 is a zero element and the multiplication rule for
the remaining elements is

(v, i, w) · (x, j, y) =
{

(v, i + j, y) if w = x and i + j < n,

0 otherwise.
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The subsemigroup of S generated by {(v, 1, w) | v = w or (v, w) ∈ E} contains an element
(s, n− 1, t) if and only if t is reachable (in less than n steps) from s in G. Clearly, the zero
element is the only idempotent in S, so S is nilpotent. Also, it is readily verified that the
reduction can be performed by an AC0 circuit family. J

4 Parallel Algorithms for Cayley Semigroup Membership

Algebraic circuits can be used as a succinct representation of elements in an algebraic
structure. This idea will be the basis of the proof that CSM(G) is in qAC0. Unlike in usual
algebraic circuits, in the context of the Cayley semigroup membership problem, the algebraic
structure is not fixed but given as part of the input. We will introduce so-called Cayley
circuits to deal with this setting. Since these circuits will be used for the Cayley semigroup
membership problem only, we confine ourselves to cases where the algebraic structure is a
finite semigroup.

4.1 Cayley Circuits
A Cayley circuit is a directed acyclic graph with topologically ordered vertices such that each
vertex has in-degree 0 or 2. In the following, to avoid technical subtleties when squaring an
element, we allow multi-edges. The vertices of a Cayley circuit are called gates. The vertices
with in-degree 0 are called input gates and vertices with in-degree 2 are called product gates.
Each Cayley circuit also has a designated gate of out-degree 0, called the output gate. For
simplicity, we assume that the output gate always corresponds to the maximal gate with
regard to the vertex order. The size of a Cayley circuit C, denoted by |C|, is the number of
gates of C. An input to a Cayley circuit C with k input gates consists of a finite semigroup S

and elements x1, . . . , xk of S. Given such an input, the value of the i-th input gate is xi and
the value of a product gate, whose predecessors have values x and y, is the product x · y in
S. The value of the circuit C is the value of its output gate. We will denote the value of C
under a finite semigroup S and elements x1, . . . , xk ∈ S by C(S, x1, . . . , xk).

A Cayley circuit can be seen as a circuit in the usual sense: the finite semigroup S and
the input gate values are given as part of the input and the functions computed by product
gates map a tuple, consisting of semigroup S and two elements of S, to another element of S.
We say that a Cayley circuit with k input gates can be simulated by a family of unbounded
fan-in Boolean circuits (Cn)n∈N if, given the encodings of a finite semigroup S and of elements
x1, . . . , xk of S of total length n, the circuit Cn computes the encoding of C(S, x1, . . . , xk).
For a semigroup S with N elements, we assume that the elements of S are encoded by the
integers {0, . . . , N − 1} such that the encoding of a single element uses dlog Ne bits. The
semigroup itself is given as a multiplication table with N2 entries of dlog Ne bits each.

I Proposition 3. Let C be a Cayley circuit of size m. Then, C can be simulated by a family
of unbounded fan-in constant depth Boolean circuits (Cn)n∈N of size at most nm.

Proof. Let C be a Cayley circuit with k input gates and m− k product gates. We want to
construct a Boolean circuit which can be used for all finite semigroups S with a fixed number
of elements N . The input to such a circuit consists of n = (N2 + k) dlog Ne bits.

For a fixed vector (y1, . . . , ym) ∈ Sm, one can check using a single AND gate (and
additional NOT gates at some of the incoming wires) whether (y1, . . . , ym) corresponds to the
sequence of values occurring at the gates of C under the given inputs. To this end, for each
gate i ∈ {1, . . . , m} of C, we add dlog Ne incoming wires to this AND gate: if the i-th gate
of C is an input gate, we feed the bits of the corresponding input value into the AND gate,
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complementing the j-th bit if the j-th bit of yi is zero. If the i-th gate is a product gate and
has incoming wires from gates ` and r, we connect the entry (y`, yr) of the multiplication
table to the AND gate, again complementing bits corresponding to 0-bits of yi.

To obtain a Boolean circuit simulating C, we put such AND gates for all vectors of the
form (y1, . . . , ym) ∈ Sm in parallel. In a second layer, we create dlog Ne OR gates and
connect the AND gate for a vector (y1, . . . , ym) to the j-th OR gate if and only if the j-th
bit of ym is one. The idea is that exactly one of the AND gates— the gate corresponding to
the vector of correct guesses of the gate values of C—evaluates to 1 and the corresponding
output value ym then occurs as output value of the OR gates.

This circuit has depth 2 and size Nm + dlog Ne 6 nm. J

4.2 The Poly-Logarithmic Circuits Property
When analyzing the complexity of CSM(Ab), Barrington et al. introduced the so-called
logarithmic power basis property. A class of semigroups has the logarithmic power basis
property if any set of generators X for a semigroup S of cardinality N from the family
has the property that every element of S can be written as a product of at most log(N)
many powers of elements of X. In [9], it was shown that the class of Abelian groups has
the logarithmic power basis property. Using a different technique, this result can easily be
extended to arbitrary commutative semigroups.

I Lemma 4. The variety Com has the logarithmic power basis property.

Proof. Suppose that S is a commutative semigroup of size N and let X be a set of generators
for S. Let y ∈ S be an arbitrary element. We choose k ∈ N to be the smallest value such that
there exist elements x1, . . . , xk ∈ X and integers i1, . . . , ik ∈ N with y = xi1

1 · · ·x
ik

k . Assume,
for the sake of contradiction, that k > log(N).

The power set P({1, . . . , k}) forms a semigroup when equipped with set union as binary
operation. Consider the morphism h : P({1, . . . , k}) → S defined by h({j}) = x

ij

j for all
j ∈ {1, . . . , k}. This morphism is well-defined because S is commutative.

Since |P({1, . . . , k})| = 2k > 2log(N) = |S|, we know by the pigeon hole principle that
there exist two sets K1, K2 ⊆ {1, . . . , k} with K1 6= K2 and h(K1) = h(K2). We may assume,
without loss of generality, that there exists some j ∈ K1 \K2. Now, because

y = h({1, . . . , k}) = h(K1)h({1, . . . , k} \K1) = h(K2)h({1, . . . , k} \K1)

and since neither K2 nor {1, . . . , k} \ K1 contain j, we know that y can be written as a
product of powers of elements xi with 1 6 i 6 k and i 6= j, contradicting the choice of k. J

For the analysis of arbitrary groups, we introduce a more general concept. It is based on
the idea that algebraic circuits (Cayley circuits with fixed inputs) can be used for succinct
representations of semigroup elements.

I Example 5. Let e ∈ N be a positive integer. Then, one can construct a Cayley circuit of
size at most 2 dlog ee which computes, given a finite semigroup S and an element x ∈ S as
input, the power xe in S. If e = 1, the circuit only consists of the input gate. If e is even,
the circuit is obtained by taking the circuit for e/2, adding a product gate and creating two
edges from the output gate of the circuit for e/2 to the new gate. If e is odd, the circuit is
obtained by taking the circuit for e − 1 and connecting it to a new product gate. In this
case, the second incoming edge for the new gate comes from the input gate.
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A class of semigroups has the poly-logarithmic circuits property if there exists a constant
c ∈ N such that for each semigroup S of cardinality N from the class, for each subset X of S

and for each y in the subsemigroup generated by X, there exists a Cayley circuit C of size
logc(N) with k input gates and there exist x1, . . . , xk ∈ X such that C(S, x1, . . . , xk) = y.

I Proposition 6. Let V be a family of semigroups which is closed under subsemigroups and
has the logarithmic power basis property. Then V has the poly-logarithmic circuits property.

Proof. Let X be a subset of a semigroup S of cardinality N . Let y be in the subsemigroup
generated by X. Then, we have y = xi1

1 · · ·x
ik

k for some x1, . . . , xk ∈ X with k 6 log(N) and
i1, . . . , ik ∈ N. By the pigeon hole principle, we may assume without loss of generality that
1 6 i1, . . . , ik 6 N . Using the method from Example 5, one can construct Cayley circuits
C1, . . . , Ck of size at most 2 dlog Ne such that Cj(S, x) = xij for all j ∈ {1, . . . , k} and x ∈ S.
Using k − 1 additional product gates, these circuits can be combined to a single circuit C
with C(S, x1, . . . , xk) = xi1

1 · · ·x
ik

k = y.
In total, the resulting circuit consists of k · 2 dlog Ne+ k − 1 < 5 log2(N) gates. J

Let G be a finite group and let X be a subset of G. A sequence (g1, . . . , g`) of elements
of G is a straight-line program over X if for each i ∈ {1, . . . , `}, we have gi ∈ X or gi = g−1

p

or gi = gpgq for some p, q < i. The number ` is the length of the straight-line program and
the elements of the sequence are said to be generated by the straight-line program. The
following result by Babai and Szemerédi [7] is commonly known as Reachability Lemma.

I Lemma 7 (Reachability Lemma). Let G be a finite group and let X be a set of generators
of G. Then, for each element t ∈ G, there exists a straight-line program over X generating t

which has length at most (log |G|+ 1)2.

The proof of this lemma is based on a technique called “cube doubling”. For details, we
refer to [3]. It is now easy to see that groups admit poly-logarithmic circuits.

I Lemma 8. The variety G has the poly-logarithmic circuits property.

Proof. Let G be a group of order N , let X be a subset of G and let y be an element in
the subgroup of G generated by X. By Lemma 7, we know that there exists a straight-line
program (g1, . . . , g`) over X with ` 6 (log(N) + 1)2 and g` = y. We may assume that the
elements g1, . . . , g` are pairwise distinct. It suffices to describe how to convert this straight-line
program into a Cayley circuit C and values x1, . . . , xk ∈ X such that C(S, x1, . . . , xk) = y.

We start with an empty circuit and with k = 0 and process the elements of the straight-
line program left to right. For each element gi, we add gates to the circuit. The output gate
of the circuit obtained after processing the element gi will be called the gi-gate.

If the current element gi is contained in X, we increment k, add a new input gate to
the circuit and let xk = gi. If the current element gi can be written as a product gpgq with
p, q < i, we add a new product gate to the circuit and connect the gp-gate as well as the
gq-gate to this new gate. If the current element gi is an inverse g−1

p with p < i, we take a
circuit C′ with 2 dlog Ne gates and with C′(G, x) = xN−1 for all x ∈ S. Such a circuit can be
built by using the powering technique illustrated in Example 5. We add C′ to C, replacing
its input gate by an edge coming from the gp-gate.

The resulting circuit has size at most (log(N) + 1)2 · 2 dlog Ne 6 2(log(N) + 1)3. J

We will now show that for classes of semigroups with the poly-logarithmic circuits
property, one can solve the Cayley semigroup membership problem in qAC0.
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I Theorem 9. Let V be a class of semigroups with the poly-logarithmic circuits property.
Then CSM(V) is in qAC0.

Proof. We construct a family of unbounded fan-in constant-depth Boolean circuits with
quasi-polynomial size, deciding, given the multiplication table of a semigroup S ∈ V, a set
X ⊆ S and an element t ∈ S as inputs, whether t is in the subsemigroup generated by X.

Since V has the poly-logarithmic circuits property, we know that, for some constant c ∈ N,
the element t is in the subsemigroup generated by X if and only if there exist a Cayley circuit
C of size logc(n) and inputs x1, . . . , xk ∈ X such that C(S, x1, . . . , xk) = t. There are at
most (logc(n) · logc(n))logc(n) = 2logc(n) log(2c log n) different Cayley circuits of this size. Let us
consider one of these Cayley circuits C. Suppose that C has k input gates. By Proposition 3,
there exists a unbounded fan-in constant-depth Boolean circuit of size nlogc n = 2logc+1 n

deciding on input S and elements x1, . . . , xk ∈ S whether C(S, x1, . . . , xk) = t. There are
at most nk 6 nlogc n = 2logc+1 n possibilities of connecting (not necessarily all) input gates
corresponding to the elements of X to this simulation circuit.

Thus, we can check for all Cayley circuits of the given size and all possible input
assignments in parallel, whether the value of the corresponding circuit is t, and feed the
results of all these checks into a single OR gate to obtain a quasi-polynomial-size Boolean
circuit. J

In conjunction with Lemma 4 and Lemma 8, we immediately obtain the following corollary.

I Corollary 10. Both CSM(G) and CSM(Com) are contained in qAC0.

As stated in the preliminaries, problems in qAC0 cannot be hard for any complexity class
containing Parity. Thus, we also obtain the following statement.

I Corollary 11. Let V be a class of semigroups with the poly-logarithmic circuits property,
such as the variety of finite groups G or the variety of finite commutative semigroups Com.
Then CSM(V) is not hard for any complexity class containing Parity, such as ACC0, TC0,
NC1, L or NL.

4.3 The Complexity Landscape of Cayley Semigroup Membership
Our hardness results and qAC0-algorithms have an immediate consequence on algebraic
properties of maximal classes of finite semigroups for which the Cayley semigroup membership
problem can be decided in qAC0. It relies on the following result, which can be seen as a
consequence of [1] and the fact that the zero element in a semigroup is always central. For
completeness, we provide a short and self-contained proof.

I Proposition 12. The variety N is included in G ∨Com.

Proof. We show that every finite nilpotent semigroup is a quotient of a subdirect product of a
finite group and a finite commutative semigroup. Note that in a finite nilpotent semigroup S,
there exists an integer e > 0 such that for each x ∈ S, the power xe is the zero element.
Let T = {1, . . . , e} be the commutative semigroup with the product of two elements i and j

defined as min {i + j, e}.
Let G be a finite group generated by the set X of non-zero elements of S such that no

two products of less than e elements of X evaluate to the same element of G. Such a group
exists because the free group over X is residually finite [22].

Let U be the subsemigroup of G × T generated by {(x, 1) | x ∈ X}. Now, we define a
mapping ϕ : U → S as follows. Each element of the form (g, e) is mapped to zero. For every
(g, `) with ` < e, there exists, by choice of G and by the definition of U , a unique factorization
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g = x1 · · ·x` with x1, . . . , x` ∈ X. We map (g, `) to the product x1 · · ·x` evaluated in S. It is
straightforward to verify that ϕ is a surjective morphism and thus, S is a quotient of U . J

I Corollary 13. There exist two varieties V and W such that both CSM(V) and CSM(W)
are contained in qAC0 (and thus not hard for any class containing Parity) but CSM(V∨W)
is NL-complete.

The corollary is a direct consequence of the previous proposition, Corollary 10 and
Theorem 2. As was observed in [9] already, Cayley semigroup problems seem to have “strange
complexity”. The previous result makes this intuition more concrete and suggests that it is
difficult to find “nice” descriptions of maximal classes of semigroups for which the Cayley
semigroup membership problem is easier than any NL-complete problem.

4.4 Connections to FOLL
In a first attempt to solve outstanding complexity questions related to the Cayley semigroup
membership problem, Barrington et al. introduced the complexity class FOLL. The approach
presented in the present paper is quite different. This raises the question of whether our
techniques can be used to design FOLL-algorithms for Cayley semigroup membership. Note
that FOLL and qAC0 are known to be incomparable, so we cannot use generic results from
complexity theory to simulate qAC0 circuits using families of FOLL circuits or vice versa.
The direction FOLL 6⊆ qAC0 follows from bounds on the average sensitivity of bounded-depth
circuits [16]; using these bounds, one can show that there exists a padded version of the
Parity function which can be computed by a FOLL circuit family and cannot be computed
by any qAC0 circuit family. Conversely, each subset of {0, 1}n of cardinality at most nlog n

is decidable by a depth-2 circuit of size nlog n + 1, but for each fixed k ∈ N, there is some
large value n > 1 such that the number of such subsets exceeds the number of different
circuits of size nk. This shows that there exist languages in qAC0 which are not contained in
P/poly ⊇ FOLL.

Designing an FOLL-algorithm which works for arbitrary classes of semigroups with the
poly-logarithmic circuits property seems difficult. However, for certain special cases, there is
an interesting approach, based on the repeated squaring technique. In the remainder of this
section, we sketch one such special case.

For a Cayley circuit, the width of a topological ordering (v1, . . . , vm) of the gates is the
smallest number w ∈ N such that for each i ∈ {1, . . . , m− 1}, at most w product gates from
the set Ai = {v1, . . . , vi} are connected to gates in Bi = {vi+1, . . . , vm}. Let Ci be the set of
product gates, which belong to Ai and are connected to gates in Bi. The subcircuit induced
by Ai can be interpreted as a Cayley circuit computing multiple output values Ci. The
subcircuit induced by Bi can be seen as a circuit which, in addition to the input gates of the
original circuit, uses the gates from Ci as input gates. The width of a Cayley circuit is the
smallest width of a topological ordering of its gates. Let us fix some width w ∈ N.

We introduce a predicate P (z1, . . . , zw, y1, . . . , yw, i) which is true if there exists a Cayley
circuit of width at most w and size at most 2i with w additional input gates and w additional
passthrough gates (which have in-degree 1 and replicate the value of their predecessors),
such that the elements y1, . . . , yw ∈ S occur as values of the passthrough gates when
using z1, . . . , zw ∈ S as values for the additional input gates and using any subset of the
original inputs X as values for the remaining input gates. The additional input gates
(resp. passthrough gates) are not counted when measuring the circuit size but are considered
as product gates when measuring width and they have to be the first (resp. last) gates in all
topological orderings considered for width measurement. For each fixed i, there are only n2w

such predicates.
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The truth value of a predicate with i = 0 can be computed by a constant-depth unbounded
fan-in Boolean circuit of polynomial size. This is achieved by computing all binary products
of the elements z1, . . . , zw and elements of the input set X. For i > 1, the predicate
P (z1, . . . , zw, y1, . . . , yw, i) is true if and only if there exist z′1, . . . , z′w ∈ S such that both
P (z1, . . . , zw, z′1, . . . , z′w, i− 1) and P (z′1, . . . , z′w, y1, . . . , yw, i− 1) are true. Having the truth
values of all tuples for i− 1 at hand, this can be checked with a polynomial number of gates
in constant depth because there are only nw different vectors (z′1, . . . , z′w) ∈ Sw.

For a class of semigroups with Cayley circuits of bounded width and poly-logarithmic
size, we obtain a circuit family of depth O(log log n) deciding Cayley semigroup membership:
the predicates are computed for increasing values of i, until i exceeds the logarithm of an
upper bound for the Cayley circuit size and then, we return P (x, . . . , x, t, . . . , t, i) for the
element t given in the input and for an arbitrary element x ∈ X. It is worth noting that
the circuits constructed in the proof of Proposition 6 have width at most 2, so our FOLL-
algorithm is a generalization of the Double-Barrelled Recursive Strategy and the proof that
CSM(Ab) ∈ FOLL presented in [9]. In particular, the procedure above yields a self-contained
proof of the following result.

I Theorem 14. Let V be a class of semigroups which is closed under taking subsemigroups
and has the logarithmic power basis property. Then CSM(V) is in FOLL.

By Lemma 4, we obtain the following corollary.

I Corollary 15. CSM(Com) is contained in FOLL.

5 Summary and Outlook

We provided new insights into the complexity of the Cayley semigroup membership problem
for classes of finite semigroups, giving parallel algorithms for the variety of finite commutative
semigroups and the variety of finite groups. We also showed that a maximal class of
semigroups with Cayley semigroup membership decidable by qAC0 circuits does not form a
variety. Afterwards, we discussed applicability to FOLL.

It is tempting to ask whether one can find nice connections between algebra and the
complexity of the Cayley semigroup membership problem by conducting a more fine-grained
analysis. For example, it is easy to see that for the varieties of rectangular bands and
semilattices, the Cayley semigroup membership problem is in AC0. Does the maximal class
of finite semigroups, for which the Cayley semigroup membership problem is in AC0, form
a variety of finite semigroups? Is it possible to show that AC0 does not contain CSM(G)?
Potential approaches to tackling the latter question are reducing small distance connectivity
for paths of non-constant length [17] to CSM(G) or developing a suitable switching lemma.
Another related question is whether there exist classes of semigroups for which the Cayley
semigroup membership problem cannot be NL-hard but, at the same time, is not contained
within qAC0.

Moreover, it would be interesting to see whether the Cayley semigroup membership
problem can be shown to be in FOLL for all classes of semigroups with the poly-logarithmic
circuits property. More generally, investigating the relation between FOLL and qAC0, as well
as their relationships to other complexity classes, remains an interesting subject for future
research.
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Abstract
We consider normalized Boolean circuits that use binary operations of disjunction and conjunc-
tion, and unary negation, with the restriction that negation can be only applied to input variables.
We derive a lower bound trade-off between the size of normalized Boolean circuits computing
Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of
and-gates on a directed path to an output gate). In particular, we show that any normalized
Boolean circuit of at most ε logn conjunction-depth computing the n-dimensional Boolean vec-
tor convolution has Ω(n2−4ε) and-gates. Analogously, any normalized Boolean circuit of at most
ε logn conjunction-depth computing the n× n Boolean matrix product has Ω(n3−4ε) and-gates.
We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by
the known fast algebraic algorithms.
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1 Introduction

1.1 Background
A set F of polynomials over a semi-ring is a form (in case of the Boolean semi-ring, just a
set of monotone Boolean functions). F is a semi-disjoint bilinear form if it defined on the
set of variables X ∪ Y and the following properties hold.
1. For each polynomial Q in F and each variable z ∈ X ∪ Y, there is at most one monomial

(in the Boolean case, called a prime implicant [24]) of Q containing z.
2. Each monomial of a polynomial in F consists of exactly one variable in X and one variable

in Y.
3. The sets of monomials of polynomials in F are pairwise disjoint.

The n-dimensional vector convolution and the n× n matrix product are important and
popular examples of semi-disjoint bilinear forms (for the convolution, |X| = |Y | = n and
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26:2 Small Normalized Boolean Circuits

|F | = 2n−1 while for the matrix product, |X| = |Y | = |F | = n2). Both semi-disjoint bilinear
forms in the arithmetic and Boolean case have a wide range of fundamental applications, for
instance, in stringology (see, e.g., [6]) and graph algorithms (see, e.g., [27]).

Two n× n integer matrices can be arithmetically multiplied using O(n3) additions and
multiplications following the definition of matrix product. This is optimal if neither other
operations nor negative constants are allowed [13, 16, 20]. If additionally subtraction or
negative constants are allowed then the so-called fast matrix multiplication algorithms can
be implemented using O(nω) operations [7, 22, 26], where ω < 3. They rely on algebraic
equations following from the possibility of term cancellation (for a study on the power of
arithmetic term cancellation see [23]). Le Gall and Vassilevska Williams have recently shown
the exponent ω of fast matrix multiplication to be smaller than 2.373 in [7, 26]. The fast
arithmetic algorithms run on 0− 1 matrices yield the same asymptotic upper time bounds for
n× n Boolean matrix multiplication. On the other hand, Raz proved that if only addition,
multiplication and products with constants of absolute value not exceeding one are allowed
then n× n matrix multiplication requires Ω(n2 logn) operations [17].

Similarly, the arithmetic convolution of two n-dimensional vectors can be computed using
O(n2) additions and multiplications. Next, the convolution of two n-dimensional vectors
over a commutative ring with the so-called principal n-th root of unity can be computed via
Fast Fourier Transform using O(n logn) operations of the ring. The n-dimensional Boolean
vector convolution admits an algorithm using O(n log2 n log logn) Boolean operations by
reduction to the fast integer multiplication algorithm from [21] in turn relying on Fast Fourier
Transform [6].

It is well known that for uniform problems, their Boolean circuit complexity corresponds
up to logarithmic factors to their Turing complexity [24]. Unfortunately, until today no
super-linear lower bounds on the size of circuits using binary and unary Boolean operations
forming a complete Boolean basis are known for natural problems [24]. On the other hand,
such lower bounds are known in case of monotone Boolean circuits that use only the binary
operations of disjunction and conjunction [1, 2, 3, 11, 13, 14, 15, 16, 18, 24, 25]. In particular,
Alon and Boppana showed by refining Razborov’s breakthrough method [18] that the (m, s)-
clique, i.e., the problem of determining if a graph on m vertices includes a complete subgraph
on s vertices, requires monotone Boolean circuits of 2

√
m size [1].

There exist interesting connections between the general Boolean circuit complexity and
the monotone one [4]. In particular, any Boolean circuit using disjunctions, conjunctions
and negations can be easily transformed into a Boolean circuit using the same operations,
where negations are applied solely to input variables. The transformations follows from de
Morgan’s laws and keep the circuit size within a factor 2. In other words, one can see such
Boolean circuits as monotone Boolean circuits with respect to the input literals, i.e., input
variables and their negations. We shall term Boolean circuits in the latter form normalized.

In case of n × n Boolean matrix product, almost tight or even tight lower bounds of
the form Ω(n3) for the monotone circuit complexity were presented in a series of papers
[13, 14, 16] more than three decades ago. The best known (in the literature) lower bound
on monotone Boolean circuit complexity for n-dimensional Boolean vector convolution is
Ω(n2/ log6 n) due to Grinchuk and Sergeev [8]. It improves on the previously best n3/2 lower
bound due to Weiss [25] and an earlier best n4/3 lower bound due to Blum [3]. The lower
bounds of Weiss, Grinchuk and Sergeev are on the number of disjunctions while that of Blum
is on the number of conjunctions.

Furthermore, Lingas studied the complexity of monotone Boolean circuits for Boolean semi-
disjoint bilinear forms under various monotone circuit restrictions in [12]. In particular, he
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Table 1 Lower bounds on the monotone Boolean circuit complexity for n-dimensional Boolean
vector convolution in a historical perspective.

author year lower bound

N. Pippinger and L.G. Valiant [15] 1976 Ω(n log n)
E.A. Lamagna [11] 1979 Ω(n log n)

N. Blum [3] 1980 n4/3 conjunctions
R. Weiss [25] 1981 n3/2 disjunctions

M.I. Grinchuk and I.S. Sergeev [8] 2011 Ω(n2/ log6 n) disjunctions

considered monotone Boolean circuits of bounded conjunction-depth, i.e., bounded maximum
number of and-gates on any single directed path to an output gate in the monotone circuit.
He showed that any monotone Boolean circuit of conjunction-depth at most d computing
a Boolean semi-disjoint form with p prime implicants has to have at least p/22d and-gates.
As a corollary, he obtained the Ω(n2−2ε) lower bound on the size of any monotone Boolean
circuit of ε logn-bounded conjunction-depth computing the n-dimensional Boolean vector
convolution.

1.2 Our contributions
Surprisingly enough, we can derive a lower-bound trade-off between the circuit size and its
conjunction-depth for normalized Boolean circuits computing semi-disjoint bilinear forms
similar to that for monotone Boolean circuits from [12].

More exactly, we show that any normalized Boolean circuit of conjunction-depth at most
d computing a Boolean semi-disjoint form with p prime implicants has to have Ω(p/24d)
and-gates. As a corollary, we obtain the Ω(n2−4ε) lower bound on the size of any normalized
Boolean circuit of ε logn-bounded conjunction-depth computing the n-dimensional Boolean
vector convolution, and an analogous Ω(n3−4ε) lower bound for the n× n Boolean matrix
product.

We complete our lower-bound trade-offs with upper-bounds trade-offs of similar form
yielded by the aforementioned fast algebraic algorithms. We observe that there is a positive
constant c ≤ 1 such that for any ε ∈ (0, 1

c ), the n-dimensional Boolean vector convolution
can be computed by a normalized Boolean circuit of ε logn-bounded conjunction-depth and
O(n2−cε + n log2 n log logn) size. Similarly, there is a positive constant c ≤ 1 such that for
any ε ∈ (0, 1

c ), the n× n Boolean matrix product can be computed by a normalized Boolean
circuit of ε logn-bounded conjunction-depth and O(n3−(3−ω)cε) size.

1.3 Motivations
Our primary motivation is the very weak progress in deriving non-trivial lower bounds on the
size of Boolean circuits using disjunctions, conjunctions and negations to compute explicit
Boolean functions computable in polynomial time, since the 70s (from 3n [19] to almost
5n [9, 10]). For this reason, trade-offs between structural parameters and the size for the
aforementioned circuits computing explicit functions should be of interest.

We believe that the conjunction-depth of a normalized Boolean circuit computing a
Boolean form whose prime implicants (see Preliminaries) consist of relatively few literals is
an interesting structural characteristic. (For not-necessarily normalized Boolean circuit using
disjunctions, conjunctions and negations, the concept of conjunction-depth does not make
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sense since conjunctions can be eliminated by composing negations with disjunctions via de
Morgan’s laws. Also, there are trivial examples of Boolean functions that require a large
conjunction-depth in normalized circuits. E.g., the function given by ¬

∨n
i=1 xi ≡

∧n
i=1 x̄i

obviously requires logn conjunction-depth. The reason is that it has a prime implicant
consisting of n literals.)

Observe that each prime implicant of the functions occurring in semi-disjoint bilinear forms
consists solely of two literals. Hence, any semi-disjoint bilinear form admits a normalized
(in fact, monotone) Boolean circuit having conjunction-depth 1 and the number of gates
proportional to the total number of prime implicants (see also Fact 1).

Our lower-bound trade-offs showing that in order to decrease the size of normalized
Boolean circuits computing a semi-disjoint bilinear form one has to increase their conjunction-
depth should be of interest. Our upper-bound trade-offs imply that normalized Boolean
circuits of even sub-logarithmic conjunction-depth for Boolean vector convolution or Boolean
matrix product have substantially smaller size than their monotone counterparts of unbounded
conjunction-depth.

1.4 Paper structure
In Preliminaries, we introduce basic definitions and notation. In Section 3, we present three
lemmata on restricted normalized circuits computing a Boolean form. In Section 4, we show
our lower-bound trade-offs for semi-disjoint bilinear forms which constitute our main results.
In Section 5, we present our upper-bound trade-offs. We conclude with final remarks.

2 Preliminaries

For two Boolean n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1), their convo-
lution is a vector c = (c0, ..., c2n−2), where ci =

∨min{i,n−1}
l=max{i−n+1,0} al ∧ bi−l for i = 0, ..., 2n− 2.

A literal is a variable or the negation of a variable.

A (Boolean) circuit is a finite directed acyclic graph with the following properties:
1. The indegree of each vertex (termed gate) is either 0, 1 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are labeled by

elements in some set of literals, i.e., variables and their negations, and the Boolean
constants 0, 1.

3. The vertices of indegree 2 are labeled by elements of the set {and, or} and termed
and-gates and or-gates, respectively.

4. The vertices of indegree 1 are labeled by negation and termed negation-gates.

A Boolean circuit is normalized if it does not use negation-gates. A Boolean circuit is
monotone if it is normalized and it does not use negated variables.

The size of a Boolean circuit C is the total number of non-input gates in C while the depth
of C is the maximum length of a directed path in C. Furthermore, C is of conjunction-depth
d if the number of and-gates on any directed path in C does not exceed d.

With each gate g of a normalized Boolean circuit, we associate a set T (g) of terms in
a natural way. Thus, with each input gate, we associate the singleton set consisting of the
corresponding variable, negated variable or constant. Next, with an or-gate, we associate
the union of the sets associated with its direct predecessors. Finally, with an and-gate g,
we associate the set of concatenations t1t2 of all pairs of terms t1, t2, where ti ∈ T (gi)
and gi stands for the i-th direct predecessor of g for i = 1, 2. The function computed at
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the gate g is the disjunction of the functions (called monoms) represented by the terms in
T (g). The monom represented by a term t is obtained by replacing concatenations in t with
conjunctions, respectively. A term in T (g) is a zero-term if it contains the Boolean constant
0 or a variable and its negation. Clearly, a zero-term represents the Boolean constant 0.

A form composed of k Boolean functions is computed by a Boolean circuit if there are k
distinguished gates (called output gates) computing the k functions.

A term (an output term, respectively) of a circuit C is a term in T (g) for some gate
(output gate, respectively) g of C.

An implicant of a Boolean form F is a conjunction of some variables and/or some negated
variables of F and/or Boolean constants (monom) such that there is a function belonging to
F which is true whenever the conjunction is true. If the conjunction includes the Boolean 0
or a variable x and its negation x̄ then it is a trivial implicant of (any) F.

A non-trivial implicant of F that is minimal with respect to included literals is a prime
implicant of F.

The following upper bound is straight-forward.

I Fact 1. [12] Each Boolean semi-disjoint bilinear form composed of l functions on x0, ..., xn−1
and y0, ..., yn−1 with p prime implicants in total can be computed by a monotone Boolean
circuit of conjunction-depth 1 with p ≤ n2 and-gates and p− l or-gates.

Proof. First, we use p and-gates to compute each prime implicant xiyj separately. Then,
we form l disjoint or-unions of the prime implicants corresponding to the l functions of the
bilinear form using p− l or-gates. J

3 Lemmata on Normalized Circuits

Recall that the monom represented by a term t is obtained by replacing concatenations in
t with conjunctions, respectively. We shall say that an implicant (in particular, a prime
implicant) of a function fg computed at the gate g is represented by a single term in T (g) if
there is a term t ∈ T (g) such that the monom represented by t is equivalent to the implicant.

In the following two lemmata, we shall show that if the output terms of a normalized
circuit computing a form contain a bounded number of different literals, we can obtain a
situation somewhat similar to that in monotone circuits, where each prime implicant of an
output function has to be represented by a single output term. Namely, we can zero some
part of variables such that in the resulting circuit, a large part of the prime implicants of the
form is represented by single output terms.

I Lemma 2. Let C be a normalized Boolean circuit computing a form F. For each prime
implicant of the function fo ∈ F computed at the output gate o of C, there is a term in T (o)
representing the (whole) prime implicant or a conjunction of the prime implicant with solely
negated variables.

Proof. Consider a prime implicant of fo. Assign the Boolean 1 to the variables in the prime
implicant and the Boolean 0 to all remaining variables in F. Under this assignment, the value
of fo should be 1. Hence, since each term in T (o) has to represent an implicant of fo, there
must exist a term in T (o) representing the whole prime implicant or a conjunction of the
prime implicant with solely negated variables. J
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I Lemma 3. Let C be a normalized Boolean circuit computing a form F with p prime
implicants. Suppose that each prime implicant of F is composed of q (not negated) variables
and each output term of C contains at most k distinct literals. Let 0 < β < 1. There is a
subset of the set of variables of F such that after setting them to the Boolean 0 there are at
least pβq(1−β)k−q prime implicants of F represented by single output terms of the circuit C ′
resulting from C. Note that the circuit C ′ computes a form F ′ whose set of prime implicants
is a subset of that of F.

Proof. Set each variable of F to the Boolean constant 0 with probability 1− β uniformly at
random. Consider any prime implicant xi1 ...xiq of F. The probability that none of xi1 , ..., xiq
is set to 0 is βq. By Lemma 2, there is a set of 0 ≤ l ≤ k − q negated variables whose
conjunction with xi1 ...xiq is represented by an output term of C. The probability that each
of these negated l variables is set to 0 is at least (1− β)k−q. Hence, the expected number of
prime implicants of the form computed by the resulting circuit represented by single output
terms in this circuit is at least pβq(1− β)k−q. It follows that there is a subset of the set of
variables satisfying the requirements of the lemma. J

The final lemma in this section is pretty obvious.

I Lemma 4. Let C be a normalized Boolean circuit of d-bounded conjunction-depth computing
a form F. Each term, in particular, each output term of C includes at most 2d literals.

Proof. An and-gate can at most double the number of literals in single terms while an
or-gate does not increase it. Hence, by induction on the maximum number d of and-gates on
a path from an input gate to a gate g in C, any term in T (g) includes at most 2d literals. J

4 Lower-bound Trade-offs (main results)

In monotone circuits, where negation is not used, each prime implicant of a function computed
at a gate h has to be represented by a single term in T (h) (there might be several such terms
and many other terms having subterms representing the prime implicant). This is not the
case in normalized circuits generally. There, we can associate to a prime implicant of the
function the set of all terms in T (g) representing a conjunction of the prime implicant with
an additional conjunction of literals (e.g., xiyj could be represented by {xiyjxk, xiyj x̄k}).
Interestingly, the disjunction of the aforementioned additional conjunctions does not have to
be always true (e.g., x ∨ y could be computed by xȳ ∨ y so the prime implicant x would be
represented just by {xȳ}).

First, we shall show how a restriction on the maximum number of distinct literals which
occur in an output term of a normalized Boolean circuit computing a Boolean semi-disjoint
form can be used to derive a non-trivial lower bound on the number of and-gates in the
circuit.

I Lemma 5. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear form
F on the variables x0, ..., xn−1 and y0, ..., yn−1. Suppose that for each output gate o in C,
each term in T (o) contains at most k different literals. Let h be a gate connected by directed
paths with some output gates in C such that the function computed at h has prime implicants
zq1 , ..., zql(h) which are single (not negated) variables represented by single terms in T (h), and
possibly some other prime implicants. The inequality l(h) ≤ k holds or h can be replaced by
the Boolean constant 1.
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Proof. Consider a directed path P connecting h with some output gate o in C. At the output
gate o, for each zqr

, 1 ≤ r ≤ l(h), any single term t(zqr
) ∈ T (h) representing zqr

has to
appear in terms t1t(zqr

)t2 in the associated set T (o) (see Preliminaries) such that t1t2 is a
concatenation (i.e., conjunction) of some terms added by subsequent and-gates on P and
t1t(zqr

)t2 represents an implicant of the function fo computed at o. In general, t(zqr
) may

include several occurrences of zqr and the Boolean 1, for simplicity we may assume w.l.o.g.
that t(zqr

) = zqr
. (The reason of having t1, t2 instead of a single term t is that syntactically

the concatenations can come from both sides.)
Suppose that there is such a t1t2, where t1zt2 ∈ T (o) for some z ∈ {zqr

|1 ≤ r ≤ l(h)},
which does not represent an implicant of fo. It follows from the definition of t1t2 that for any
z ∈ {zqr |1 ≤ r ≤ l(h)}, the term t1zt2 also appears in the set T (o) of terms associated with
the output gate o and consequently it has to represent an implicant of fo as well. Therefore,
for each such a z, either t1t2 contains z̄ or t1t2 contains the unique "mate" variable z′ for
which zz′ is a prime implicant of fo. Note that if z is an x-variable then z′ is a y-variable
and vice versa. Set H to {zq1 , ..., zql(h)}. E.g., the case that t1t2 contains z̄ could happen if
there were some other variables z” ∈ H for which t1z”t2 are not trivial implicants of fo but
t1zt2 becomes a trivial implicant because it contains both z and z̄.

Consider the mapping of each z ∈ H either to the z′ in t1t2 (which must be the unique
"mate" among the prime implicants of fo) or to the z̄ ∈ t1t2. Clearly, all the z̄ for z ∈ H are
distinct negated variables. Because no two elements of H have the same mate among the
prime implicants of fo, no two of the z′ for z ∈ H can be the same. Finally, the mates z′
are single not negated variables. It follows that the mapping is one-to-one. We infer that
l(h) ≤ k.

On the contrary, if each such term t = t1t2 for each path P connecting h with any output
gate o, represents an implicant of fo then on each P we could connect the successor of the
start vertex h with the Boolean constant 1 instead of h and the output gate o still would
output fo. To see this observe that then each u ∈ T (h) is a part of the terms of the form
t1ut2 in T (o), where t1t2 represents an implicant of the function fo. Since this holds for each
successor of h, this gate can be replaced by the constant 1. J

For an and-gate g in a normalized Boolean circuit C computing a semi-disjoint bilinear
form F, Sg will denote the set of prime implicants s of F such that:
1. s is a prime implicant of the function computed at g that is represented by a single term

in T (g),
2. s is not a prime implicant of the function computed at either of the two direct predecessors

h of g that is represented by a single term in T (h), and
3. there is a directed path connecting g with the output gate computing the function whose

prime implicant is s.

I Lemma 6. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear
form F. Suppose that for each output gate o in C, each term in T (o) contains at most k
different literals. Next, suppose that C does not contain any and-gate that could be replaced
by the Boolean 1 so the resulting circuit would still compute F. For any and-gate g in C, the
inequality |Sg| ≤ k2 holds.

Proof. We may assume w.l.o.g. |Sg| ≥ 1. It follows that at least for one of the direct
predecessor gates h of g, the function computed at h has at least

√
|Sg| single variable prime

implicants represented by single terms in T (h). By Lemma 5, we infer that either
√
|Sg| ≤ k

or the gate h can be replaced by the constant 1. The latter possibility contradicts the lemma
assumptions. J
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I Theorem 7. Let C be a normalized Boolean circuit computing a semi-disjoint bilinear
form F with p prime implicants. Suppose that each output term of C contains at most k
distinct literals. The circuit C has at least p

k4 (1− 1
k )k−2 and-gates.

Proof. We shall apply Lemma 3 with β = 1
k and q = 2 to the circuit C. Let C ′ be the

circuit resulting from C by zeroing the subset of variables specified in this lemma. Note
that the output terms of C ′ still contain at most k different literals, and that C ′ computes
a semi-disjoint bilinear form F ′ whose prime implicants are prime implicants of F. Among
the prime implicants of F ′, at least p

k2 (1− 1
k )k−2 are represented by single output terms by

Lemma 3.
Iterate the following steps starting from the circuit C ′. Whenever the current circuit

contains an and-gate or an or-gate h that can be replaced by the Boolean constant 1 without
affecting the functions computed at the output gates, replace h by 1. By induction on the
number of iterations, the new circuit still computes the same bilinear form F ′. Also, the
number of prime implicants of F ′ represented by single output terms does not drop and each
output term of the new circuit contains at most k literals.

Since the circuit C ′ is finite and each iteration eliminates at least one gate, after a finite
number of iterations, we obtain a circuit C ′′ sharing the aforementioned properties, not
containing any and-gate or or-gate that could be replaced by 1, and still computing F ′. It
follows from Lemma 5 that C ′′ does not have any gate h such that the function computed at
h contains more than k single-variable prime implicants represented by single terms in T (h).

Let S be the set of at least p
k2 (1− 1

k )k−2 prime implicants of F ′ represented by single
output terms of C ′′. Recall the definition of the set Sg of prime implicants of a form for an
and-gate g given before Lemma 6. For each s ∈ S, there must be at least one and-gate g
of C ′′ such that s ∈ Sg. (To find such a gate g start from the output gate computing the
function of F ′ for which s is a prime implicant represented by a single term and iterate the
following steps: check if the current gate g satisfies s ∈ Sg, if not go to the direct predecessor
of g that computes a function having s as a prime implicant represented by a single term.)
By the latter lemma, we have |Sg| ≤ k2. Hence, C ′′ has at least |S|/k2 ≥ p

k2 (1− 1
k )k−2/k2 ≥

p
k4 (1− 1

k )k−2 and-gates since |S| ≥ p
k2 (1− 1

k )k−2. J

By combining Theorem 7 with Lemma 4, we obtain our main result.

I Theorem 8. Let C be a normalized Boolean circuit of conjunction-depth at most d
computing a semi-disjoint bilinear form F with p prime implicants. The circuit C has at
least p

24d (1− 1
2d )2d−2 and-gates.

Observe that the n-dimensional Boolean vector convolution has Θ(n2) prime implicants
while the n× n Boolean matrix product has Θ(n3) prime implicants.

I Corollary 9. For ε > 0, any normalized Boolean circuit of ε logn-bounded conjunction-depth
that computes the n-dimensional Boolean vector convolution has Ω(n2−4ε) and-gates.

I Corollary 10. For ε > 0, any normalized Boolean circuit of ε logn-bounded conjunction-
depth that computes the n× n Boolean matrix product has Ω(n3−4ε) and-gates.
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5 Upper-bound Trade-offs

The fast algebraic algorithms for arithmetic matrix multiplication [7, 22, 26] yield normalized
Boolean circuits for the n× n Boolean matrix product of O(nω) size and O(logn) depth (see
[5]). Similarly, the fast algorithm for integer multiplication [21] yields normalized Boolean
circuits for the n-dimensional Boolean vector convolution of O(n log2 n log logn) size and
O(logn) depth [6, 5]. We can use these facts to derive the following upper-bound trade-offs
analogous to our lower-bound trade-offs for these two problems.

I Proposition 11. There is a positive constant c ≤ 1 such that for any ε ∈ (0, 1
c ), the

n-dimensional Boolean vector convolution can be computed by a normalized Boolean circuit
of ε logn-bounded conjunction-depth and O(n2−cεn log2 n log logn) size.

Proof. By the aforementioned facts, for some positive constant c ≤ 1, an ncε-dimensional
Boolean vector convolution can be computed by a normalized Boolean circuit of ε logn-
bounded conjunction-depth and O(ncε log2 n log logn) size. On the other hand, since cε < 1,
the n-dimensional Boolean vector convolution can be easily reduced to n2−2cε ncε-dimensional
Boolean vector convolutions using just disjunctions. The resulting normalized Boolean circuit
has still ε logn-bounded conjunction-depth and O(n2−cε log2 n log logn) size. J

I Proposition 12. There is a positive constant c ≤ 1 such that for any ε ∈ (0, 1
c ), the n× n

Boolean matrix product can be computed by a normalized Boolean circuit of ε logn-bounded
conjunction-depth and O(n3−(3−ω)cε)) size.

Proof. By the aforementioned facts, there is a positive constant c ≤ 1 such that an ncε× ncε
Boolean matrix product can be computed by a normalized Boolean circuit of ε logn-bounded
conjunction-depth and O(nωcε) size. On the other hand, since cε < 1, the n × n Boolean
matrix product can be easily reduced to n3−3cε ncε×ncε Boolean matrix products using just
disjunctions. The resulting normalized Boolean circuit has still ε logn-bounded conjunction-
depth and O(n3−(3−ω)cε) size. J

6 Final Remarks

The disjointness of the sets of prime implicants of the Boolean functions forming a bilinear
form is not essential in the proofs of Theorems 7, 8. Hence, these theorems hold even
for Boolean bilinear forms satisfying only the two remaining conditions (see Introduction)
provided that p denotes the number of distinct prime implicants of the form.

Our main results are the lower-bound trade-offs between the number of and-gates and
conjunction-depth in normalized Boolean circuits computing semi-disjoint bilinear forms
(Section 4). They rely on the analysis of output terms containing bounded numbers of literals
because of the assumed bound on the conjunction-depth (Lemma 4, note that this lemma
wouldn’t hold if the fan-in of and-gates wasn’t bounded).
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Abstract
We prove new cell-probe lower bounds for dynamic data structures that maintain a subset of
{1, 2, ..., n}, and compute various statistics of the set. The data structure is said to handle
insertions non-adaptively if the locations of memory accessed depend only on the element being
inserted, and not on the contents of the memory. For any such data structure that can compute
the median of the set, we prove that:

tmed ≥ Ω

(
n

1
tins+1

w2 · t2ins

)
,

where tins is the number of memory locations accessed during insertions, tmed is the number of
memory locations accessed to compute the median, and w is the number of bits stored in each
memory location. When the data structure is able to perform deletions non-adaptively and
compute the minimum non-adaptively, we prove

tmin + tdel ≥ Ω
(

logn
logw + log logn

)
,

where tmin is the number of locations accessed to compute the minimum, and tdel is the number
of locations accessed to perform deletions. For the predecessor search problem, where the data
structure is required to compute the predecessor of any element in the set, we prove that if
computing the predecessors can be done non-adaptively, then

either tpred ≥ Ω
(

logn
log logn+ logw

)
, or tins ≥ Ω

(
n

1
2(tpred+1)

)
,

where tpred is the number of locations accessed to compute predecessors.
These bounds are nearly matched by Binary Search Trees in some range of parameters. Our

results follow from using the Sunflower Lemma of Erdős and Rado [11] together with several
kinds of encoding arguments.
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1 Introduction

Data structures are algorithmic primitives to efficiently manage data. They are used widely
in computer systems, and not just to maintain large data sets; these primitives play a
fundamental role in many algorithmic tasks. For example, the heap data structure is a
crucial component of the best algorithms for computing shortest paths in weighted graphs,
and the union-find data structure is vital to algorithms for computing minimum spanning
trees in graphs. In both of these examples, the running times of these algorithms depend on
the performance of the underlying data structures. In this paper, we study data structures
that maintain a set of numbers S and allow for quickly computing the minimum, median or
predecessors of the set. The median is the middle number of the set in sorted order, and the
predecessor of a number x is the largest element in S that is at most x. We give new lower
bounds on data structures computing these statistics.

The performance of data structures is usually measured with Yao’s cell-probe model
[32]. A dynamic data structure in this model is a collection of cells that stores the data,
along with an algorithm that makes changes to the data or retrieves information about it by
reading from and writing to some of the cells. The word-size of the data structure, denoted
w throughout this paper, is the number of bits stored in each cell of the data structure.
The time complexity for performing a particular operation is the number of cells that are
accessed when the operation is carried out. Usually, there is a trade-off between the time
for performing different operations. For example, if we maintain a set S ⊆ {1, 2, . . . , n} by
storing its indicator vector (with w = 1), then elements can be inserted and deleted from the
set in time 1, but computing the median of the set could take time Ω(n) in the worst case.
However, if we maintained the set by storing its elements in sorted order (with w = logn),
and the size of the set, then the median can be computed in time 2, but inserting elements
into the set would take time Ω(n). Binary search trees are a well-known data structure
that maintain sets and allow one to compute the median and predecessors in time O(logn),
when w = logn. One can also use a very clever data structure due to van Emde Boas [29]
that brings down the time required for all operations to O(log logn), when w = logn. The
Fusion trees data structure of Fredman and Willard [14] takes O(logn/ logw) time for all
operations.

Proving lower bounds on the performance of dynamic data structures is usually challenging.
In their landmark paper, Fredman and Saks [13] were the first to establish tight lower bounds
for several dynamic data structure problems. They invented the chronogram technique
and leveraged it to prove several lower bounds. Since then, researchers have built on
their techniques to prove lower bounds on many other dynamic data structure problems
[24, 23, 26, 18, 33, 30]. Notably, Pǎtraşcu and Thorup [26] proved lower bounds on data
structures that can compute the k’th smallest number of the set for every k via a reduction
from Parity Sum for which [13] used the chronogram technique to prove a lower bound. This
shows that computing the k’th smallest element takes strictly more time than just computing
the median. Some of our own results also use the chronogram technique of Fredman-Saks.
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Lower bounds on data structures for computing single statistics like the median or
minimum have been particularly elusive. Computing statistics like the median and the
minimum are very fundamental in algorithm design. The best known upper bounds require
O(log logn) time for insertions, and median and minimum computations. It is surprising
that no previous lower bounds were known in the cell-probe model. We prove the first
lower bounds on the performance of data structures computing the median and minimum.
Brodal, Chaudhuri and Radhakrishnan [7] showed that if the data structure is only allowed
to compare the contents of cells, and perform no other computation with the cells, then
we must have tmin ≥ Ω (n/4tins), where tmin is the number of comparisons used to compute
the minimum, and tins is the number of comparisons used to insert numbers into the set.
Moreover, [7] gave a data structure matching these bounds. The same bounds apply for
computing the median as well. It remains an interesting open problem to prove a lower
bound of tins + tmed ≥ Ω(log logn) in the cell-probe model when w = O(logn), where tins is
the time for insertions and tmed is the time to compute the median. We note here that there
is a long sequence of works proving lower bounds on computing the median in the context of
branching programs [10, 21, 5, 9].

Past work had found more success with understanding the complexity of the predecessor
search problem. A long sequence of works has proved lower bounds here [1, 20, 19, 4, 28, 25].
In particular, [4, 28] showed that some operation must take time Ω (log logn/ log log logn),
when w = logn, and this was improved to Ω (log logn) by [25]. Still, it remains open to
understand the full trade-off between the time complexity of inserting elements and the time
complexity of computing predecessors3.

In our work, we prove new lower bounds on non-adaptive data structures that allow for
computing the median, minimum, and predecessors of elements. A data structure is said to
perform an operation non-adaptively if the locations of memory accessed depend only on the
operation being performed, and not on the contents of the memory that are read while the
operation is executing.

Perhaps the most widely known and basic dynamic data structure for maintaining sets
of numbers is the binary search tree (see Appendix A for a description). Both insertions
and deletions into a binary search tree are non-adaptive operations. Indeed, all of the
assumptions regarding non-adaptivity made in our lower bounds are satisfied by binary
search trees—so the models we consider here are both well motivated and quite natural.
Non-adaptive data structures tend to be simple, and faster in practice. This is because a
practical implementation can load all of the cells required to perform the operation into a
local cache in a single step, rather than having to fetch cells from the memory multiple times.

Several past works have proved lower bounds on various computational models under
the assumption of non-adaptivity (see for example [17]). In the context of data structures,
Brody and Larsen [8] showed polynomial lower bounds for various dynamic problems in
the non-adaptive setting. Among other results, they showed that any data structure for
reachability in directed graphs that non-adaptively checks for reachability between pairs of
vertices must take time Ω(n/w), where n is the size of the underlying graph. [3, 16] proved
non-adaptive lower bounds on static data structures for the dictionary problem in the bit
probe model.

3 We thank Mikkel Thorup for bringing this question to our attention.
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1.1 Our Results
We prove new lower bounds on non-adaptive data structures computing the minimum, median
and predecessors. Our results are obtained via an application of the famous Sunflower Lemma
of Erdős and Rado [11]. The Sunflower Lemma was used in the past to prove lower bounds
on dynamic data structures by Frandsen and Milterson [12] and then again for static data
structures by Gal and Milterson [15], and our use of it is similar. However, in the setting of
non-adaptive data structures, we are able to leverage the lemma to get results even when
the word size is large.

Our first result proves a lower bound when both deletions and minimum computations
are non-adaptive4. Similar results hold for computing the median and predecessors as well,
but they are subsumed by the theorems to follow.

I Theorem 1. Any data structure that computes the minimum of a subset of {1, 2, . . . , n}
while supporting non-adaptive delete operations and non-adaptive minimum computations
must take time Ω

(
log n

log log n+log w

)
for some operation, where w is the word size of the cells.

Our second result concerns non-adaptive data structures for computing the median. Here
the lower bound holds even if the median computation is adaptive and the insertion operation
is non-adaptive:

I Theorem 2. Any data structure that computes the median of a subset of {1, 2, . . . , n} while
supporting non-adaptive insert operations must satisfy

tmed ≥ Ω
(
n

1
tins+1

w2 · t2ins

)
,

where tmed is the time required to compute the median, tins is the time required to insert
elements, and w is the word size of the cells.

Our last result concerns the predecessor search problem. Here the lower bound holds
even if the insertion operation is adaptive, as long as the predecessor computations are
non-adaptive:

I Theorem 3. Any data structure that maintains a subset of {1, 2, . . . , n} while supporting
non-adaptive predecessor operations must satisfy

tpred ≥ Ω
(

logn
log logn+ logw

)
or tins ≥ Ω

(
n

1
2(tpred+1)

)
,

where tins is the time required for inserts, tpred is the time required for computing predecessors
and w is the word-size of the cells.

Very recently, Boninger, Brody and Kephart [6] independently obtained some lower
bounds on non-adaptive data structures computing predecessors. Among other results, they
showed that any data structure with non-adaptive insertions and non-adaptive predecessor
computations must have5 tins ≥ Ω(logn), or tpred ≥ log n

log w+log tins
. Our bounds do not require

4 The analogous result for computing the maximum also holds. Its proof is nearly identical to the proof
for theorem about the minimum.

5 [6] consider the tradeoff with the size of the set being added, which allows them to prove lower bounds
even when the data structure is only required to maintain small sets. The bound stated here is what
they obtain when the size of the set is allowed to be arbitrary.
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non-adaptivity for the insertion operations, and are quantitatively better when tpred =
o(logn/ log logn). We also note that the cell sampling technique ([22, 18]) does not give any
meaningful lower bounds for these problems.

Our theorems are complemented by the observation that a variant of Binary Search
trees gives a data structure that can insert and delete elements non-adaptively, compute
predecessors non-adaptively, and perform all operations in time O(logn), with w = logn.
Theorem 2 and Theorem 3 show that there is a gap between adaptive and non-adaptive data
structures computing the median and predecessors, since we know that the van Emde Boas
data structure can compute both in time O(log logn) with w = logn.

The rest of the paper is organized as follows. After the preliminaries, we begin proving
lower bounds in Section 3, where we give an introduction to our techniques by proving
lower bounds for several problems when all operations are assumed to be non-adaptive. We
prove Theorem 1 there. We then prove Theorem 2 in Section 4, and Theorem 3 in Section
5. We discuss a simple data structure based on binary search trees for these problems in
Appendix A.

2 Preliminaries

Unless otherwise stated, logarithms in this article are computed base two. Given a =
a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i similarly. Similarly,
we write a−i to denote a1, · · · , ai−1, ai+1, · · · , an. [`] denotes the set {1, 2, . . . , `}, for ` ∈ N.

The entropy of a discrete random variable A, is defined to be

H(A) =
∑

a

Pr[A = a] · log 1
Pr[A = a] .

For two random variables A, B, the entropy of A conditioned on B is defined as

H(A|B) =
∑
a,b

Pr[A = a,B = b] · log 1
Pr[A = a|B = b] .

The entropy satisfies some useful properties:

I Proposition 4 (Chain Rule). H(A1A2|B) = H(A1|B) + H(A2|BA1).

I Lemma 5 (Subadditivity). H(A1A2|B) ≤ H(A1|B) + H(A2|B).

I Proposition 6. For every a, b ≥ 1 and c > 2, if a log ab ≥ c, then a ≥ c
log c+log b .

Proof. Suppose that a < c
log c+log b . We then have,

a log ab < c

log c+ log b · (log b+ log c− log(log c+ log b))

< c,

where the last inequality follows from the fact that c > 2. This contradicts a log ab ≥ c, and
therefore, a ≥ c

log c+log b . J

I Proposition 7. For 1 ≤ k ≤ n, log
(

n
k

)
≤ k · log en

k .
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X

Xi1

Xi5
Xi9

Xi12

Figure 1 A Flower with 12 petals. X denotes the core of the Flower.

2.1 Sunflowers
Our proof relies on a variant6 of the Sunflower lemma [11]. The lemma we need is almost
identical to a lemma proved by [2], and we use their ideas to prove it.

I Definition 8. A sequence of sets X1, · · · , Xp is called a t-flower with p petals if each set
in the sequence is of size t, and there is a set X of size at most t such that for every i, j,
Xi ∩Xj ⊆ X. X is called the core of the flower.

See Figure 1 for an illustration of a flower. Next, following [2], we show that a long enough
sequence of sets must contain a flower.

I Lemma 9 (Flower Lemma). Let X1, · · · , Xn be a sequence of sets each of size t. If
n > (p− 1)t+1, then there is a subsequence that is a t-flower with p petals.

Proof. We prove the bound by induction on t, p. When t = 1, if n > (p− 1)2, either there
are p sets that are the same or p sets that are distinct. Either way, we obtain a 1-flower with
p petals. When p = 1 the statement is trivially true.

Suppose that t ≥ 2, and the sequence does not contain a t-flower with p petals. For
each set X ⊆ X1, we get a subsequence by restricting our attention to the sets Xi such
that Xi ∩X1 = X and i > 1. By induction, the length of this subsequence can be at most
(p− 2)t+1−|X| since all of these sets have X in common, and any (t− |X|)-flower with p− 1
petals yields a t-flower with p petals in our original sequence, by adding X1 to the list of
petals. Thus we get,

n ≤ 1 +
∑

X⊆X1

(p− 2)t+1−|X|

= 1 + (p− 2) ·
∑

X⊆X1

(p− 2)t−|X|

≤ 1 + (p− 2) · (p− 2 + 1)t ≤ (p− 1)t+1,

as desired. J

3 Lower Bounds when All Operations are Non-Adaptive

As a warm up, we prove some loose lower bounds when all operations in the data structure
are non-adaptive. In the next section, we prove our final theorems where we only assume
that some of the operations are non-adaptive.

6 Using the Sunflower lemma would would give us bounds with the same asymptotics, but the Flower
Lemma (Lemma 9) gives cleaner bounds.
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C

Xi1
Xi2

Xip�1

Xip

Figure 2 C denotes the core of the Flower, and the shaded cells are the only cells accessed when
deleting {i1, i2, · · · , ip} \ S.

We start by proving Theorem 1, which gives a lower bound on the time for any data
structure that computes minimum and deletions non-adaptively.

Proof of Theorem 1. Consider the sequence of sets X = X1, · · · , Xn where

Xi = {j|cell j is accessed while deleting i, or when computing the minimum} .

If t is the time required for the operations of the data structure, then each set Xi is of size
at most 2t. Without loss of generality, we can assume that each Xi is of size exactly 2t. The
key observation is that there cannot be a large 2t-flower in X :

I Claim 10. If X has a 2t-flower with p petals, then p ≤ 2wt.

Proof. Suppose for the sake of contradiction that the sequence Xi1 , · · · , Xip is a 2t-flower
with i1 < i2 < · · · < ip, and p = 2wt+ 1. Then let S be any subset of {i1, i2, · · · , ip} and C
denote the the contents of the core of the 2t-flower after inserting the set {i1, . . . , ip} and
then deleting the elements of {i1, i2, . . . , ip} \ S.

We show that C serves as an encoding of S. This is because C is all we need to reconstruct
the execution of the following sequence of deletion and minimum operations: compute the
minimum, delete the minimum, compute the minimum, delete the minimum, and so on.
The answers to these computations determine the elements in S. The answer to the first
minimum computation can be reconstructed from C, since C contains all cells used in this
computation. If we attempt to delete ij , then the only cells of Xij that were modified by a
previous deletion operation are contained in C. Thus, every such deletion operation can be
simulated with access to C (See Figure 2).

C can be described using at most 2t · w bits, yet C encodes an arbitrary subset of p
elements. This proves the claim. J

By the Flower-Lemma (Lemma 9), the sequence X has a 2t-flower with n
1

2t+1 petals. So,
we get

t ≥ p

2w ≥
n

1
2t+1

2w ,

where the last inequality follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (logn) .

Proposition 6 implies the desired bound on t. J

Next we prove a similar result for computing the median.

CCC 2018
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C

Xi1

Xip/3
Xi2p/3

Xip

Figure 3 C denotes the core of the Flower, and the shaded cells are the only cells accessed when
inserting S.

I Theorem 11. Any data structure with non-adaptive insertions and median computations
must take time Ω

(
log n

log log n+log w

)
for some operation.

Proof. Consider the sequence of sets X = X1, · · · , Xn where

Xi = {j|cell j is accessed while inserting i, or when computing the median} .

If t is the time required for the operations of the data structure, then each set Xi is of size
at most 2t. Without loss of generality, we can assume that each Xi is of size exactly 2t. The
key observation is that there cannot be a large 2t-flower in X :

I Claim 12. If X has a 2t-flower with p petals, then p ≤ 6wt+ 2.

Proof. Suppose for the sake of contradiction that the sequenceXi1 , · · · , Xip
is a 2t-flower with

i1 < i2 < · · · < ip, and p = 6wt+ 3. Then let S be any subset of {ip/3+1, ip/3+2, · · · , i2p/3}
and C denote the the contents of the core of the 2t-flower after inserting elements of S into
the data structure (see Figure 3).

We show that C serves as an encoding of S. This is because C is all we need to reconstruct
the execution of the following sequence of insert and median operations: insert i1, compute
the median, insert i2, compute the median,· · · , insert ip/3, compute the median. These
operations determine the elements in S between its smallest element and median. By the
definition of the flower, the only cells of Xi1 , . . . , Xip/3 that were accessed when S was
inserted are contained in C. Therefore, the sequence of operations can be simulated using
C (see Figure 3). Similarly, executing the following operations helps retrieve elements in S
between its median and largest element: insert i2p/3+1, compute the median, insert i2p/3+2,
compute the median,· · · , insert ip, compute the median.

C can be described using at most 2t · w bits, yet C encodes a subset of p/3 = (2tw + 1)
elements. This proves the claim. J

By the Flower-Lemma (Lemma 9), the sequence X has a 2t-flower with n
1

2t+1 petals.
Then we get

t ≥ p− 2
6w ≥ n

1
2t+1 − 2

6w ,

where the last inequality follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (logn) .

Proposition 6 implies the desired bound on t. J
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ab

A1

a

L R

… …

Ab

…

A2

Figure 4 The elements corresponding to petals are partitioned into disjoint intervals
L, A1, . . . , Aq, R. T is the set of black elements. Si is a random subset of the i’th gray elements
from each interval Aj .

Next we prove a lower bound for the predecessor search problem.

I Theorem 13. Any data structure for the predecessor problem with non-adaptive insert
operations and non-adaptive predecessor operations must have time Ω

(
log n

log log n+log w

)
.

Proof. Let X = X1, · · · , Xn, where

Xi = {j|cell j is accessed while inserting i or computing the predecessor of i} .

It t is the time required for the operations of the data structure, then each set Xi is of
size at most 2t. Without loss of generality, we can assume that each Xi is of size exactly 2t.
We first show that the time complexity can be lower bounded in terms of the the number of
petals in a 2t-flower belonging to X .

I Claim 14. If X has a 2t-flower with p petals, then p ≤ 4tw + 1.

Proof. Supposed for the sake of contradiction that the sequence Xi1 , · · · , Xip is a 2t-flower
and i1 < i2 < · · · < ip, and p = 4tw + 2. Let S be any subset of {i1, i3, · · · , ip−1} and C
denote the contents of the cells in the core after inserting the elements of S.

We show that C serves as an encoding of S. To reconstruct S, it suffices to compute the
predecessors of the following elements: i2, i4, · · · , ip. By the definition of the 2t-flower, the
only cells accessed in Xi2 , Xi4 , . . . , Xip during the insertion operations are contained in the
core of the 2t-flower. Therefore, the sequence of predecessor operations can be simulated by
access only to the cells in the core.

Hence C encodes S. Since there are 22tw+1 possible sets S, and C can be described using
2tw bits, we must have 2tw ≥ p/2. This proves the claim. J

By the Flower Lemma 9, the sequence X has a 2t-flower with n
1

2t+1 petals. So t ≥ p−1
4w ≥

n
1

2t+1−1
4w , which follows from the choice of p. After rearranging, we get

t · logwt ≥ Ω (logn) .

Proposition 6 implies the desired bound on t. J

4 Lower Bounds for Median when Insertions are Non-Adaptive

In this section, we prove Theorem 2. We start by giving an outline of the proof. As before,
we first associate every element in {1, 2, · · · , n} with the set of cells that are accessed while
inserting the element. We then identify a flower among these sets. Proving a lower bound on
the time to compute the median is challenging as the computation is adaptive. We shall have
to use the flower found above in a subtle way. We come up with a carefully chosen sequence
of insertions, followed by a median computation that recovers the k’th smallest element of
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the set. The sequence of insertions are performed in batches, and every cell that is not in the
core of the flower is associated with the batch number of the insertion operation that last
accessed it. Ignoring the cells that belong to the core of the flower, we show that at least one
cell associated with every batch is accessed with constant probability. Since these cells are
disjoint, this will prove that the time to compute the median is at least a constant fraction
of the number of batches. To make the above argument work, we use Shannon entropy to
quantify the amount of information that the median computation must recover from the cells
associated with each batch of insertions.

We now proceed with the formal proof. Define the sequence of sets X = X1, . . . , Xn,
where

Xi = {j|cell j is accessed while inserting i}.

By the flower lemma (Lemma 9), this sequence of sets must contain a tins-flower with
p = n1/(tins+1) petals, and without loss of generality, we assume that the petals are X1, . . . , Xp.
Let C denote the core of the tins-flower.

To carry out the proof, we need to carefully define a sequence of operations that insert a
subset of the elements {1, 2, . . . , p}7. For parameters a, b, let L,A1, . . . , Ab, R ⊆ {1, 2, . . . , p}
be consecutive disjoint intervals in ascending order, such that L is of size p/3, R is of
size p/3 and for each i, Ai is of size a + ab, and b(a + ab) ≤ p/3. See Figure 4. Let
S1, . . . , Sa be independently sampled sets, such that Si is a uniformly random subset of
{j : j is the i’th element of Ar for some r}. So each Si is a subset of the gray elements in
Figure 4. Finally, let T be the set

T = {j : for some i ∈ [b], j ∈ Ai and j is not one of the first a elements of Ai},

so T is the set of black elements in Figure 4. Let k be a uniformly random element of
{a, a+ (a+ ab), a+ 2(a+ ab), . . . , a+ (b− 1)(a+ ab)}.

Consider the following sequence of operations with the data structure:
1. Phase 1:

a. Insert the elements of T .
b. Insert the elements of S1, then the elements of S2, and so on, until Sa has been inserted.

2. Phase 2:
a. Insert an appropriate number of elements into L or R so that the median of all the

elements inserted is the k’th smallest element of T ∪ S1 ∪ S2 . . . ∪ Sa.
b. Compute the median of the inserted set.

We shall prove that the expected number of cells accessed to compute the median must
be close to a. In order to prove this, we use ideas inspired by the chronogram approach.
Consider the cells accessed during Phase 1. We say that a cell belongs to Si if it is in the set⋃

j:j is the i’th element of Ar for some r

Xj \ C

So, every cell of the data structure can belong to at most one of the sets S1, . . . , Sa. Moreover,
every cell that is accessed when inserting Si either belongs to Si or is in the core of the
tins-flower.

7 This sequence of operations is inspired by an argument in [27]
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Define

Ei =
{

1 if a cell that belongs to Si is accessed in Phase 2,
0 otherwise.

Observe that the insertions in Phase 2(a) never access a cell that belongs to Si for any i.
Since Ei = 1 whenever a cell that belongs to Si is accessed, all such accesses must come from
the median computation in Phase 2. Thus, tmed ≥

∑a
i=1 E [Ei]. We now proceed to lower

bound
∑a

i=1 E [Ei].
Let Ci denote the contents of the core immediately after Si was inserted. Let Sj

i denote
the set Si ∩ Aj and S<j

i denote the set S1
i ∪ S2

i ∪ . . . ∪ S
j−1
i . Recall that S−i denotes

S1, . . . , Si−1, Si+1, . . . , Sa.

I Claim 15. The variables S−i, Ci determine the contents, after Phase 1, of all cells that do
not belong to Si.

Proof. If a cell does not belong to Si, then there are three possibilities. If it belongs to a set
Si′ for i′ < i, then its value can be reconstructed from S1, . . . , Si′ . If it belongs to Si′ for
i′ > i, its value can be reconstructed from Ci and Si+1, . . . , Sa. If it does not belong to any
set, then if it is in the core, it is determined by Ci and Si+1, . . . , Sa, and if it is not in the
core, its value is fixed. J

Let k = a+ (j − 1)(a+ ab), so j is a uniformly random number from the set {1, 2, . . . , b}.

I Claim 16. The k’th smallest element of T ∪S1 ∪S2 . . .∪Sa computed in Phase 2 and S−i

together determine
∑j

`=1
∣∣S`

i

∣∣.
Proof. The k’th smallest element of T ∪ S1 ∪ S2 . . . ∪ Sa is e if and only if the number of
elements in A1 ∪A2 . . .∪Ab that are less than e and missing in T ∪S1 ∪S2 . . .∪Sa is exactly
e− k. In other words, the k’th smallest element of T ∪ S1 ∪ S2 . . . ∪ Sa is e if and only if

|{j : j < e, j ∈ (A1 ∪A2 . . . ∪Ab) \ (T ∪ S1 ∪ S2 . . . ∪ Sa)}| = e− k.

Let α be the number of elements missing from the intervals A1, A2, · · · , Ab, and e be the k’th
smallest element of T ∪S1 ∪S2 . . .∪Sa. We know that 0 ≤ α ≤ ab, and hence k ≤ e ≤ k+ab.
Therefore, the k’th smallest element must be the a’th smallest element in Aj or belong to
T ∩Aj , and must determine the total number of elements missing before this point. This
proves the claim. J

I Claim 17.

E [Ei] ≥ E
j

[
H
(
Sj

i |S
<j
i , S−i, Ci, |Si|

)]
.

Proof. The intuition behind the proof is that in Phase 2, the algorithm starts out knowing
only the size of the sets, and learns the k’th smallest element of the sets after computing
the median. The contents of all cells needed to insert elements in Phase 2 are determined
by S−i, Ci, since these variables determine the cells in the core. By Claim 15, after fixing
S<j

i , S−i, Ci, |Si|, all the cells that do not belong to Si are determined. Thus, after fixing
S<j

i , S−i, Ci, |Si|, the value of Ei is determined. Now if Ei = 0, then the k’th smallest element
is determined, which means that H

(
Sj

i |S
<j
i , S−i, Ci, |Si|

)
= 0. If Ei = 1, the inequality

holds trivially. J
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C

X1

X5X9

(a)
∑3

i=1 Zi = 2.

C

X1

X5X9

(b)
∑3

i=1 Zi = 0.

Figure 5 S ⊆ {1, 5, 9}. Cells in petal Xi are shaded black when Pred′(i) 6= Pred(i).

Recall that tmed ≥
∑a

i=1 E [Ei]. Then by the above claim, linearity of expectation and
the chain rule for entropy, we have:

tmed ≥
a∑

i=1
E [Ei] ≥

a∑
i=1

E
j

[
H(Sj

i |S
<j
i , Ci, S−i, |Si|)

]
= (1/b)

a∑
i=1

H(Si|Ci, S−i, |Si|)

≥ (1/b)
a∑

i=1
H(Si|S−i)− H(Ci, |Si|)

≥ a ·
(

1− tinsw + log b
b

)
, (1)

where the last inequality follows from the facts that

H(Si|S−i) = H(Si) = b, and H(Ci, |Si|) ≤ H(Ci) + H(|Si|) ≤ wtins + log b.

Set b = 4wtins and a to be the largest integer such that a ≤ p
3b(b+1) . Since b ≥ 4, log b

b ≤ 1
2 .

Now, (1) implies that

tmed ≥ a/4 ≥ Ω
(
n1/(tins+1)

w2 · t2ins

)
,

where the last inequality follows from the fact that a ≥ p
3b(b+1) − 1.

5 Lower Bounds for Predecessor Search when Predecessors are
Non-Adaptive

In this section we prove Theorem 3. Consider the sequence X = X1, · · · , Xn, where

Xi = {j|cell j is accessed while computing the predecessor of i} .

By the Flower Lemma (Lemma 9), X contains a tpred-flower with n
1

tpred+1 petals. Let a be

the largest even integer such that a(a+ 1) ≤ n
1

tpred+1 . Note that a ≥ n
1

2(tpred+1)

2 . For ease of
notation, we assume that X1, X2 · · · , Xa(a+1) are the promised tpred-flower.

Let S be any subset of {i|i = (j − 1)(a + 1) + 1 for some j ∈ [a]}. Insert all elements
of S. For j ∈ [a(a + 1)], let Pred′(j) be the value obtained by simulating the predecessor
computation assuming that the cells outside the core were never accessed when S was inserted.
Note that Pred′(j) can be computed from the cells in the core. Let Pred(j) be the predecessor
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of j. For every i ∈ [a], define

Zi =
{

1,
∣∣{j ∈ {i(a+ 1)− a+ 1, · · · , i(a+ 1)}

∣∣Pred(j) 6= Pred′(j)
}∣∣ > a/2

0, otherwise.

Figure 5 shows an example with a = 3. Since |S| ≤ a and the total number of cells accessed
while inserting S is atleast a

2 ·
∑a

i=1 Zi,

a∑
i=1

Zi · (a/2) ≤ tins · a. (2)

Let C denote the contents of the core after inserting elements of S, the names of the elements
i with Zi = 1, and whether or not i ∈ S for every element with Zi = 1. In other words, C
encodes the core, the set {i : Zi = 1} and the set S ∩ {i : Zi = 1}.

I Lemma 18. C encodes S.

Proof. It suffices to come up with a decoding procedure that given C recovers S. The
decoding algorithm first recovers elements of S in {i|Zi = 1} from the description of C.
By definition, if i ∈ S and i /∈ {i|Zi = 1}, then Pred′(j) = i for the majority values of
j ∈ {i(a+ 1)− a+ 1, · · · , i(a+ 1)}. If i /∈ {i|Zi = 1}, then the decoding algorithm computes
Pred′(j) for every j ∈ {i(a+ 1)− a+ 1, · · · , i(a+ 1)}. If the majority of the answers equal
i, then the decoding algorithm infers that i ∈ S. Otherwise, it infers that i /∈ S. This
determines whether or not i ∈ S. J

We now analyze the length of the encoding of C. The contents of the core can be described
with wtpred bits. It takes at most 2 log a bits to encode |{i|Zi = 1}| and |S ∩ {i|Zi = 1}|.
Given their sizes, it takes log

(
a∑a

i=1
Zi

)
bits to encode {i|Zi = 1}, and log

(
a

|S∩{i|Zi=1}|
)
bits

to encode S ∩ {i|Zi = 1}. Therefore, the length of the encoding is at most

wtpred + log
(

a∑a
i=1 Zi

)
+ log

(
a

|S ∩ {i|Zi = 1}|

)
+ 2 log a.

Since there are 2a possible sets S, we must have

a ≤ wtpred + log
(

a∑a
i=1 Zi

)
+ log

(
a

|S ∩ {i|Zi = 1}|

)
+ 2 log a. (3)

Observe that either tins ≥ a
64 or not. In the former case, since a ≥ n

1
2(tpred+1)

2 , we can conclude
that tins ≥ Ω

(
n

1
2(tpred+1)

)
. In the latter case, Equation 2 implies that

∑a
i=1 Zi ≤ a/32. Note

that
(

a
|S∩{i|Zi=1}|

)
≤
(

a∑a

i=1
Zi

)
when

∑a
i=1 Zi ≤ a/32. Using Proposition 7, we get

log
(

a∑a
i=1 Zi

)
+ log

(
a

|S ∩ {i|Zi = 1}|

)
≤ 2

(
a∑

i=1
Zi

)
· log ea∑a

i=1 Zi
≤ a

2 ,

where the last inequality follows from the fact that
∑a

i=1 Zi ≤ a/32. After rearranging (3),

the previous inequality implies that tpred ≥ a
2w −

2 log a
w . Since a ≥ n

1
2(tpred+1)

2 , we can conclude
that tpred · log(wtpred) ≥ Ω (logn). Using Proposition 6, we obtain the desired lower bound of
tpred ≥ Ω

(
log n

log log n+log w

)
.
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A A Data Structure based on Binary Search Trees

Here we describe a data structure that maintains a subset of {1, . . . , n} allowing non-adaptive
inserts, non-adaptive predecessor computations and adaptive median computations. The
data structure builds on the well known binary search tree on {1, . . . , n} and is very close
to the x-fast trie (see [31]). This data structure matches many of the lower bounds in our
proofs.

I Theorem 19. There is a data structure that maintains a subset of {1, 2, . . . , n} and
supports insertions, deletions and computing the median, minimum, and predecessors. All
operations take time O(logn), the word size is logn, and all operations except for the median
operation are non-adaptive.
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Figure 6 A data structure based on binary search trees storing the set {2, 4, 5, 7, , 9, 10, 12, 13, 16}.

Proof. Without loss of generality, we may assume that n is a power of 2. We maintain a
balanced binary tree of height logn. Every leaf is assigned an element from the universe.

There is a memory cell associated with every leaf and four memory cells associated with
every internal node of the tree. The cells corresponding to each internal node store the
number of elements in the left subtree rooteed at that node, the number of elements stored
in the right subtree, the maximum element of the left subtree and the maximum element of
the right subtree. Figure 6 shows an example of the data structure.

To insert an element into the set, we only need to access the cells associated with each
node on the path from the root to the corresponding leaf. These are the only cells that need
to be modified to make the data structure consistent with the new set. Deletions can be
performed in the same way. The time required for these operations is O(logn), and they are
non-adaptive.

To compute the median or minimum, we read the cells associated with the root to
determine if the desired value belongs to the left or the right sub tree. Accordingly, we read
the cells associated with either the left or the right child and recurse to find the median or
minimum. The time required for this operation is O(logn), but it is adaptive.

To compute the predecessor of an element, we only need to access the cells associated with
every node on the path from the root to the corresponding leaf in the tree. The predecessor
is the maximum of last non-empty left-subtree seen on this path. Again, we see that this
operation takes O(logn) time, and is non-adaptive. J



Dimension Reduction for Polynomials over
Gaussian Space and Applications
Badih Ghazi1

Google Research, 1600 Amphitheatre Parkway Mountain View, CA 94043, USA
badihghazi@gmail.com

Pritish Kamath2

Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
pritish@mit.edu

Prasad Raghavendra3

University of California Berkeley, Berkeley, CA, USA
raghavendra@berkeley.edu

Abstract
We introduce a new technique for reducing the dimension of the ambient space of low-degree
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its simplest and classic form, the central question in isoperimetry is to determine what is
the smallest possible surface area for a body of a given volume. Alternately, isoperimetric
problems can also be formulated in terms of the notion of Noise stability.

Fix a real number ρ ∈ [0, 1] and let f : Rn → {0, 1} denote the indicator function of a
subset (say Af ) of the n-dimensional Gaussian space (Rn with the Gaussian measure γn given
by the density function dγn/dX = exp(−‖X‖22/2)/(2π)n/2). The noise stability Stabρ(f) is
the probability that two ρ-correlated Gaussians X, Y both fall inside or outside Af . More
generally, the Gaussian “noise operator” Uρ (also known as the Ornstein-Uhlenbeck operator),
defined for each ρ ∈ [0, 1], acts on any f : Rn → [0, 1] as

(Uρf)(X) := E
Z∼γn

[
f
(
ρX +

√
1− ρ2 ·Z

)]
.

The noise stability is then defined as

Stab
ρ

(f) := E
X∼γn

[f(X) · Uρf(X) + (1− f(X)) · (1− Uρf(X))]

Reformulated in terms of noise stability, the isoperimetric problem is to determine the
largest possible value of Stabρ(f) for a function f : Rn → [0, 1] with a given expectation
E[f ] = α. The seminal isoperimetric theorem of Borell [10] shows that indicator functions
of halfspaces are the most noise-stable among all functions f : Rn → [0, 1] with a given
expectation over the Gaussian measure. Borell’s theorem (along with the invariance principle
[44, 42]) has had fundamental applications in theoretical computer science, e.g., in the
hardness of approximation for Max-Cut under the Unique Games conjecture [39] and in
voting theory [42].

In this work, we are interested in analogues of Borell’s theorem for partitions of the
Gaussian space into more than two subsets, or equivalently noise stability of functions f
taking values over [k] := {1, . . . , k}. Towards stating these analogues, let’s state Borell’s
theorem formally in a more general notation. Let ∆k be the probability simplex in Rk (i.e.,
convex hull of the basis vectors {e1, . . . , ek}). The Ornstein-Uhlenbeck operator naturally
extends to vector valued functions f : Rn → Rk as Uρf := (Uρf1, . . . , Uρfk) where f =
(f1, . . . , fk). The noise stability of functions f : Rn → ∆k is now defined as Stabρ(f) :=
EX∼γn [〈f(X), Uρf(X)〉] where 〈·, ·〉 denotes the inner product over Rk. We can similarly
define the noise stability of a function f : Rn → [k] by embedding [k] in ∆k, i.e., identifying
coordinate i ∈ [k] with the standard basis vector ei ∈ ∆k. Borell’s theorem can be formally
stated in this notation as follows:

Borell’s Theorem [10]. For any f : Rn → ∆2, consider the halfspace function h = (h1, h2) :
Rn → ∆2 given by h1(X) = 1{〈a,X〉 ≥ b} and h2(X) = 1 − h1(X), for suitable a ∈ Rn,
b ∈ R such that E[f ] = E[h]. Then, Stabρ(f) ≤ Stabρ(h).

While Borell’s theorem deals with the case of k = 2, it is natural to consider the question of
maximal noise stability for k > 2, stated as follows.

Question 1. [Maximum Noise Stability (MNS)] Given a positive integer k ≥ 2 and α ∈ ∆k,
what is the maximum noise stability of a function f : Rn → ∆k satisfying E[f ] = α?

Question 1 remains open even for k = 3. In the particular case where α = ( 1
k , . . . ,

1
k ),

the Standard Simplex Conjecture posits that the maximum noise stability is achieved by a
“standard simplex partition” (this is equivalent to the Plurality is Stablest conjecture) [39, 35].
Even in the special case when k = 3 and α = ( 1

3 ,
1
3 ,

1
3 ), the answer is still tantalizingly open.
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(a)

f(x) = 1

f(x) = 2

(b)

f(x) = 1

f(x) = 2

f(x) = 3

Figure 1 (a) Borell’s Theorem: Halfspaces are most noise stable (b) Standard Simplex Partition
for k = 3 conjectured to be most noise stable (also known as the “Peace Sign Conjecture”).

In fact, a suprising result of [32] shows that when the αi’s are not all equal, the standard
simplex partition (and any variant thereof) does not achieve the maximum noise stability.
This indicates that the case k ≥ 3 is fundamentally different than the case of k = 2. On the
positive side, if we consider 0 < ρ < ρ0(k, n) (for some ρ0(k, n) that goes to 0 for large n),
then the Standard Simplex Conjecture has been shown to hold [31]. However, this result is
not applicable in the setting where ρ is fixed and n→∞.

The fact that we do not understand optimal partitions for k ≥ 3, led De, Mossel &
Neeman [19] to ask whether the optimal partition is realized in any finite dimension. More
formally:

Question 2. Given k ≥ 2, ρ ∈ (0, 1), and α ∈ ∆k, let Sn(α) be the optimal noise stability
of a function f : Rn → ∆k subject to E[f ] = α. Is there an n0 such that Sn(α) = Sn0(α) for
all n ≥ n0?

Even Question 2 is open as of now! In this light, De, Mossel & Neeman [19] ask whether
one can obtain an explicitly computable n0 = n0(k, ρ, ε) such that Sn0(α) ≥ Sn(α)− ε for all
n ∈ N (in other words, there exists a function f : Rn0 → ∆k that comes ε-close to achieving
the optimal noise stability). Note that the challenge is really about n0 being explicit, since
some n0(k, ρ, ε) always exists, as Sn(α) is a converging sequence as n→∞.

A natural approach to proving such an explicit bound is the idea of dimension reduction.
Basically, it suffices to obtain an n0 = n0(k, ρ, ε) such that for any n and any given
function f : Rn → ∆k, there exists a function f̃ : Rn0 → ∆k with E[f̃ ] = E[f ] and
Stabρ(f̃) ≥ Stabρ(f)− ε. Instantiating f with an optimal (or near-optimal) partition in Rn,
for arbitrarily large n, then gives an ε-optimal partition f̃ in Rn0 .

Indeed, De, Mossel and Neeman follow such an approach and obtain an explicitly comput-
able bound on n0. To do so, they use and build on the theory of eigenregular polynomials
that were previously studied in [21], which in turn uses other tools such as Malliavin calculus.

In this work, we introduce fundamentally different, but more elementary techniques
(elaborated on shortly), thereby significantly improving the bound in [19]. In particular, we
show the following.

I Theorem 1 (Dimension Bound on Approximately Optimal Noise-Stable Function). Given
parameters k ≥ 2, ρ ∈ [0, 1] and ε > 0, there exists an explicitly computable n0 = n0(k, ρ, ε)
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such that the following holds:
For any n ∈ N and f : Rn → ∆k, there exists f̃ : Rn0 → ∆k such that,
1. ‖E[f ]− E[f̃ ]‖1 ≤ ε.
2. Stabρ(f̃) ≥ Stabρ(f)− ε.
In particular, the explicit choice of n0 can be upper bounded by exp

(
poly

(
k, 1

1−ρ ,
1
ε

))
.

Remarks

(i) In contrast to our theorem, the bound on n0 in [19] has an Ackermann-type growth.
(ii) It is a slight technicality that we get ‖E[f ]− E[f̃ ]‖1 ≤ ε instead of E[f ] = E[f̃ ] as was

required. However, it is possible to slightly modify f̃ to make E[f ] = E[f̃ ], if we allow
n0 to depend on α = E[f ] (which is the case in Question 2).

Theorem 1 has an immediate application to showing that approximately most-stable voting
schemes (among all low-influential voting schemes) can be computed efficiently. We refer
the reader to [19] for the details of this application. In order to prove Theorem 1, we in fact
turn to the more general setting of non-interactive simulation.

1.2 Non-Interactive Simulation from Correlated Gaussian Sources
Consider a more general setting where instead of a single function f , we have two players, Alice
and Bob, with corresponding functions A : Rn → ∆k and B : Rn → ∆k. They apply A and B
on the sequence of random variables X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) respectively,
where (X,Y ) ∼ G⊗nρ , which is the distribution of ρ-correlated Gaussians in n dimensions,

i.e. each coordinate (Xi,Yi) is independently sampled from Gρ := N
([

0
0

]
,

[
1 ρ

ρ 1

])
. The

goal is to choose A and B such that E[A] = E[B] = α, which is a pre-specified vec-
tor in ∆k, while maximizing E(X,Y )[〈A(X), B(Y )〉]. Note that, this quantity is same as
EX∼γn [〈A(X), UρB(X)〉], and hence in the restricted setting of A = B = f this quantity is
exactly the noise stability of f .

We can interpret the above as: Alice observesX and outputs i ∈ [k] with probability
Ai(X), similarly Bob observes Y and outputs j ∈ [k] with probability Bj(Y ). In this sense,
Alice and Bob wish to maximize their “agreement probability”, i.e., their probability of
outputting the same symbol. The dimension reduction mentioned in Theorem 1 generalized
to this setup would require obtaining an n0(k, ρ, ε) and a dimension reduction of A and B
that approximately preserves the marginals and does not decrease the agreement probability
by more than ε.

However, in this language, it is more natural to ask for a much stronger dimension
reduction that preserves the entire joint distribution of symbols that Alice and Bob output,
up to ε in total variation distance. We denote the joint distribution of Alice and Bob’s
outputs as (A(X), B(Y ))G⊗nρ , which is the distribution over (i, j) ∈ [k]× [k] given as Pr[Alice
outputs i and Bob outputs j] = E(X,Y )[Ai(X)Bj(Y )]. In the case of k = 2, such a dimension
reduction follows from (a more general version of) Borell’s theorem with in fact n0 = 1! Our
main result is indeed such a dimension reduction for all k ≥ 2.

I Theorem 2 (NIS from correlated Gaussian source). Given parameters k ≥ 2, ρ ∈ (0, 1) and
ε > 0, there exists an explicitly computable n0 = n0(k, ρ, ε) such that the following holds:
For any n and A : Rn → ∆k and B : Rn → ∆k, there exist Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k

such that,

dTV

(
(A(X), B(Y ))G⊗nρ , (Ã(a), B̃(b))G⊗n0

ρ

)
≤ ε .
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In particular, the explicit choice of n0 is upper bounded as exp
(

poly
(
k, 1

1−ρ ,
1
ε

))
.

The transformation satisfies a stronger property that there exists an “oblivious” randomized
transformation (with a shared random seed) to go from A to Ã and from B to B̃, which
works with probability at least 1− ε. Since the same transformation is applied on A and B
with the same random seed, if A = B, then Ã = B̃ as well.

Theorem 1 follows immediately from Theorem 2, by simply setting A = B = f to obtain
f̃ = Ã = B̃. In fact, following up on [19], De, Mossel & Neeman were able to extend their
techniques to prove Theorem 2 [20] (again with Ackerman-type bounds on n0). To do so,
they build on the tools developed in [19] along with a new smoothing argument inspired
by boosting procedures in learning theory and potential function arguments in complexity
theory and additive combinatorics. As we shall present shortly, our approach gets directly to
Theorem 2 in a much more elementary fashion.

1.3 Extension: Non-Interactive Simulation from General Discrete
Sources

The Non-Interactive Simulation of Joint Distributions is quite well studied in Information
Theory and more recently in Theoretical Computer Science. Two players, Alice and Bob,
observe the sequences of random variables (x1, . . . ,xn) and (y1, . . . ,yn) respectively, where
each pair (xi,yi) is independently drawn from a known source distribution µ. The funda-
mental question here is to understand which other target joint distributions ν can Alice
and Bob simulate, without communicating with each other? How many samples from µ are
needed to do so, or in other words, what is the simulation rate?

The history of this problem goes back to the classical works of Gács and Körner [24]
and Wyner [56]. Specifically, consider the distribution Eq over {0, 1} × {0, 1} where both
marginals are Ber(1/2) and the bits are identical with probability 1. Gács and Körner studied
the special case of this problem corresponding to the target distribution ν = Eq. They
characterized the simulation rate in this case, showing that it is equal to what is now known
as the Gács-Körner common information of µ. On the other hand, Wyner studied the special
case corresponding to the source distribution µ = Eq. He characterized the simulation rate in
this case, showing that it is equal to what is now known as Wyner common information of ν.
Another particularly important work was by Witsenhausen [54] who studied the case where
the target distribution ν = Gρ. In this case, he showed that the largest correlation ρ that can
be simulated is exactly the well-known “maximal correlation coeffcient”4 ρ(µ) which was first
introduced by Hirschfeld [33] and Gebelein [25] and then studied by Rényi [52]. Witsenhausen
also considered the case where the target distribution ν = DSBSρ is a “doubly symmetric
binary source”, which is a pair of ρ-correlated bits (i.e., a pair of ±1 random variables with
correlation ρ), and gave an approach to simulate correlated bits by first simulating Gρ starting
with samples from µ, and then applying half-space functions to get outputs in {±1}. Starting
with µ, such a approach simulates DSBSρ′ where ρ′ = 1− 2 arccos ρ(µ)

π . Indeed, this calculation
is identical to one that arises in the rounding technique employed in Goemans-Williamson’s
approximation algorithm [30] for MaxCut 20 years later!

We will consider the modern formulation of the NIS question as defined in [37]. This
formulation ignores the simulation rate, and only focuses on whether simulation is even
possible or not, given infinitely many samples from µ – that is, whether the simulation rate
is non-zero or not.

4 We skip this definition as it is not central to our paper. The definition can be found in e.g. [29].

CCC 2018



28:6 Dimension Reduction for Polynomials over Gaussian Space and Applications

Alice

Bob

x

y

Zn 3

Zn 3

u

v

∈ [k]

∈ [k]

private randomness

private randomness

µ⊗n ν ∈ P ?

Figure 2 Non-Interactive Simulation, e.g., as studied in [37]

I Definition 3 (Non-interactive Simulation of Joint Distributions [37]). Let (Z × Z, µ) and
([k] × [k], ν) be two joint probability spaces. The distribution ν can be non-interactively
simulated from distribution µ if there exists a sequence of functions

{
A(n) : Zn → ∆k

}
n∈N

and
{
B(n) : Zn → ∆k

}
n∈N such that the joint distribution νn = (A(n)(x), B(n)(y))µ⊗n over

[k]× [k] is such that lim
n→∞

dTV(νn, ν) = 0.

A central question that was left open following the work of Witsenhausen is: given
distributions µ and ν, can ν be non-interactively simulated from µ? Can this be even decided
algorithmically? Even when µ and ν are extremely simple, e.g., µ is uniform on the triples
{(0, 0), (0, 1), (1, 0)} and ν is the doubly symmetric binary souce DSBS0.49, it is open if µ
can simulate ν! This problem was formalized as a natural gap-problem in a work by a subset
of the authors along with Sudan [29]. Here we state a slightly more general version.

I Problem 4 (Gap-NIS((Z × Z, µ),P, k, ε), cf. [29]). Given a joint probability space
(Z × Z, µ), a family of joint probability spaces P supported over [k] × [k], and an error
parameter ε > 0, distinguish between the following cases:
(i) there exists n and A : Zn → ∆k and B : Zn → ∆k, s.t. the distribution ν′ =

(A(x), B(y))µ⊗n satisfies dTV(ν′, ν) ≤ ε for some ν ∈ P.
(ii) for all n and all A : Zn → ∆k and B : Zn → ∆k, the distribution ν′ = (A(x), B(y))µ⊗n

satisfies dTV(ν′, ν) > 2ε for all ν ∈ P.5

In prior work [29], it was shown that Gap-NIS for discrete distributions µ and ν is
decidable, in the special case where k = 2. This was done by introducing a framework, which
reduced the problem to understanding Gap-NIS for the special case where µ = Gρ. Indeed,
the reason why the case of k = 2 was easier was precisely because Borell’s theorem [10] gives
an exact characterization of the distributions over [2]× [2] that can be simulated from Gρ.
The lack of understanding of the distributions over [k]× [k] that can be simulated from Gρ was
suggested in [29] as a barrier for extending their result to k > 2. With Theorem 2 in hand,
it is possible to extend the framework in [29] of using a Regularity Lemma and Invariance
principle, to yield the following theorem (as also done in [20], but with Ackerman-type
bounds).

5 the choice of constant 2 is arbitrary. Indeed, we could replace it by any constant greater than 1.
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I Theorem 5 (NIS from Discrete Sources). Let (Z ×Z, µ) be a joint probability space. Given
parameters k ≥ 2 and ε > 0, there exists an explicitly computable n0 = n0(k, µ, ε) such that
the following holds:
For any n and A : Zn → ∆k and B : Zn → ∆k, there exist Ã : Zn0 → ∆k and B̃ : Zn0 → ∆k

such that,

dTV

(
(A(x), B(y))µ⊗n , (Ã(a), B̃(b))µ⊗n0

)
≤ ε .

In particular, the explicit choice of n0 is upper bounded as exp
(

poly
(
k, 1

ε ,
1

1−ρ , log
( 1
α

)))
,

where α = α(µ) is the smallest atom in µ and ρ = ρ(µ) is the maximal correlation coefficient
of µ.

The above theorem immediately suggests a brute force algorithm to decide Gap-NIS((Z ×
Z, µ),P, k, ε). We do not provide details of the proof of the above theorem in this extended
abstract. The interested reader is referred to the full version of this paper [27] (available
online) for details.

1.4 Dimension Reduction for Polynomials over Gaussian Space
We now describe the main technique of “dimension reduction for low-degree polynomials”
that we introduce in this work, which could be of independent interest. We highlight that
this technique is the main contribution of this paper.

Let’s start with Theorem 2, and explain the main ideas behind its proof. We are given two
vector-valued functions A : Rn → ∆k and B : Rn → ∆k. We wish to reduce the dimension
n of the Gaussian space on which A and B act while preserving the joint distribution
(A(X), B(Y ))G⊗nρ over [k]× [k]. Recall that E(X,Y )∼G⊗nρ [Ai(X) ·Bj(Y )] is the probability
of the event [Alice outputs i and Bob outputs j]. For succinctness, we write this expectation
as 〈Ai, Bj〉G⊗nρ . In order to approximately preserve the joint distribution (A(X), B(Y ))G⊗nρ ,
it suffices to approximately preserve 〈Ai, Bj〉G⊗nρ for each (i, j) ∈ [k]× [k] upto an additive
ε/k2. Thus, to prove Theorem 2, we wish to find an explicit constant n0 = n0(ρ, k, ε), along
with functions Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k such that∣∣∣∣〈Ãi, B̃j〉G⊗n0

ρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ ε

k2 .

Achieving this directly is highly unclear, since a priori, we have no structural information
about A and B! To get around this, we show that it is possible to first apply a structural
transformation on A and B to convert them to low-degree and multilinear polynomials
(see subsection 2.2 for formal definitions). Such transformations are described in section 4.
This however creates a new problem that the transformed A and B no longer map to
∆k. Nevertheless, we will show that after the said transformation, we still have that
the outputs of A and B are close to ∆k in expected `22 distance, that is, dist(A,∆k) :=
(EX ‖R(A(X))− A(X)‖22)1/2 is small (where R : Rk → ∆k denotes the rounding operator
that maps any v ∈ Rk to its closest point in ∆k). This will ensure that rounding the outputs
of A and B to ∆k will approximately preserve the correlations 〈Ai, Bj〉G⊗nρ .

We are now able to revise our objective as follows: Given two (vector-valued) degree-d
polynomials A : Rn → Rk and B : Rn → Rk, does there exist an explicit function n0 =
n0(k, d, δ), along with polynomials Ã : Rn0 → Rk and B̃ : Rn0 → Rk that δ-approximately
preserve (i) the correlation 〈Ai, Bj〉G⊗nρ for all (i, j) ∈ [k]× [k] and (ii) closeness of the outputs
of A and B to ∆k, that is, dist(A,∆k) and dist(B,∆k)?
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We introduce a very simple and natural dimension-reduction procedure for low-degree
multilinear polynomials over Gaussian space. Specifically, for M that is a randomly sampled
n× n0 matrix with i.i.d. standard Gaussian entries, we set

Ã(a) := A

(
Ma

‖a‖2

)
and B̃(b) := B

(
Mb

‖b‖2

)
for a, b ∈ Rn0 r {0} . (1)

We leave Ã and B̃ undefined on 0 ∈ Rn0 . This is inconsequential as {0} is a measure zero
set under γn. Our main dimension-reduction theorem for polynomials is stated as follows.

I Theorem 6 (Dimension Reduction Over Gaussian Space). Given parameters k ≥ 2, d ∈ Z≥0,
ρ ∈ (0, 1) and δ > 0, there exists an explicitly computable n0 = n0(d, k, δ) such that the
following holds:

Let A : Rn → Rk and B : Rn → Rk be degree-d multilinear polynomials. Additionally,
suppose that dist(A,∆k),dist(B,∆k) ≤ δ. Consider the functions Ã : Rn0 → Rk and
B̃ : Rn0 → Rk as defined in Equation 1. With probability at least 1−O(δ) over the choice of
M ∼ γ⊗(n×n0)

1 , the following holds:

1. For every i, j ∈ [k] :
∣∣∣∣〈Ai, Bj〉G⊗nρ −

〈
Ãi, B̃j

〉
G⊗n0
ρ

∣∣∣∣ ≤ δ.

2. dist(Ã,∆k) ≤
√
δ and dist(B̃,∆k) ≤

√
δ.

In particular, the explicit choice of n0 is upper bounded as exp
(
poly

(
d, log k, log( 1

δ )
))
.

It is clear from the construction of Ã and B̃ that this theorem is giving us an “oblivious”
randomized transformation, as also remarked in Theorem 2. The proof of Theorem 6 is
obtained by combining Theorem 8 and Proposition 9 in section 3.

Proof outline and analogy with the Johnson-Lindenstrauss lemma.

We will now highlight a few parallels between our proof of Theorem 6 and the proof of
the Johnson-Lindenstrauss (JL) lemma (cf. [36, 18]), which has been extremely influential
in computer science with numerous applications including compressed sensing, manifold
learning, unsupervised learning and graph embedding.

Suppose that we have two unit vectors u, v ∈ Rn. We wish to obtain a randomized
transformation Ψs : Rn → Rn0 (for some random seed s) that approximately preserves
the inner product, that is, 〈Ψs(u),Ψs(v)〉 ≈δ 〈u, v〉 holds with probability 1 − δ, over
the randomness of seed s; note that here 〈·, ·〉 denotes the inner product over Rn and
Rn0 respectively. Indeed, there is such a transformation, namely, ΨM (u) = M ·u√

n0
where

M ∼ γ⊗n0×n
1 . Let F (M) = 〈ΨM (u),ΨM (v)〉. Such a transformation satisfies,

E
M

[F (M)] = 〈u, v〉 and Var
M

(F (M)) = 〈u, v〉2 + ‖u‖22‖v‖22
n0

≤ 2
n0
,

where we use that u and v are unit vectors. Thus, if we choose n0 = 2/δ3, then we can make the
variance smaller than δ3. Thereby, using Chebyshev’s inequality, we get that with probability
at least 1− δ, the inner product 〈u, v〉 is preserved, that is, | 〈ΨM (u),ΨM (v)〉 − 〈u, v〉 | ≤ δ.
Thus, we have a oblivious randomized dimension reduction that reduces the dimension
of any pair of unit vectors to O(1/δ3), independent of n. Note that, instead of using
Chebyshev’s inequality, we could use a much sharper concentration bound to show that
n0 = O(1/ε2 log(1/δ)) suffices to preserve the inner product up to an additive ε, with
probability 1− δ. However, we described the Chebyshev’s inequality version as this is similar
to our proof of Theorem 6.
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The problem we are facing, although morally similar, is technically entirely different. For
simplicity, let’s first consider the task of reducing the dimension of the domain of a single pair of
polynomials A : Rn → R and B : Rn → R. And for the moment, consider the transformation
such that ΨMA : Rn0 → R is given by A(Ma/

√
n0). Similarly, ΨMB(b) = B(Mb/

√
n0).

Our proof of Theorem 6 proceeds along similar lines as the above proof of the JL Lemma,
that is, by considering F (M) = 〈ΨMA,ΨMB〉G⊗n0

ρ
, and proving bounds on EM [F (M)] and

Var(F (M)). This turns out to be quite delicate! Unlike the JL case, we don’t even have
EM [F (M)] = 〈A,B〉G⊗nρ . What we do show however is that,∣∣∣EM [F (M)] − 〈A,B〉G⊗nρ

∣∣∣ ≤ on0(1) and Var
M

(F (M)) ≤ on0(1) ,

that is, both are converging to 0 at an explict rate determined by n0 (with some dependence
on the degree d of A and B). Interestingly however, in the case of d = 1, it turns out that
F (M) is in fact an unbiased estimator of 〈A,B〉G⊗nρ . Indeed, this is not a coincidence! We
leave it to the interested reader to figure out that in the case of d = 1, our transformation
is in fact identical to the above described JL transformation on the n-dimensional space of
Hermite coefficients of A and B.

Our actual transformation is slightly different, namely ΨMA(a) = A(Ma/‖a‖2). This is
to ensure item 2, about preserving the closeness of the output of A to ∆k. The proof gets a
little more technical due to this change, but is intuitively similar to the above transformation
since ‖a‖2 is tightly concentrated around √n0. It is important to note that item 2 is quite
critical to the entire approach. If it were not for this restriction, item 1 is very easy to satisfy
on its own by other more direct dimension reduction operations on the Hermite coefficients.

The mean and variance bounds on F (M) are presented as Lemma 10. This is the most
technical part of this work, but we stress that the main ideas are conceptually simple and
elementary (for the most part). We provide a brief sketch of the proof in subsection 3.1 that
illustrates all the main ideas in under a page, and defer all details to Appendix A. To prove
these mean and variance bounds, we first analyze the case when A and B are multi-linear
monomials (subsection A.2) and then combine these monomial calculations to obtain bounds
for general multilinear polynomials (subsection A.3).

1.5 Comparisons with recent works of De, Mossel & Neeman
Our main theorems (Theorems 1, 2, 5) significantly improve the bounds in the versions
proved by De, Mossel & Neeman [19, 20]. Our work was inspired by [19, 20] through
several high-level ideas, such as the use of the transformation to low-degree and multilinear
polynomials (although these tranformations are technically different in our case). However, it
seems that the key insight into “why dimension reduction is possible” provided by the works
of De Mossel & Neeman and the current work are fundamentally different.

The key insight for dimension reduction in the work of De, Mossel & Neeman is (quoting
[19]): “the fact that a collection of homogeneous polynomials can be replaced by polynomials
in bounded dimensions is a tensor analogue of the fact that for any k vectors in Rn, there
exist k vectors in Rk with the same matrix of inner products”. By contrast, the main
intuition in our work is an “oblivious” dimension reduction technique, very similar to the
Johnson-Lindenstrauss Lemma, as described in subsection 1.4.

Also, we point out a minor difference in our versions of Theorem 1. In [19] the function
f̃ maps to [k], while in our theorem f̃ maps to ∆k. Interestingly however, this is not a major
difference and it follows from a thresholding lemma in [19, Lemma 15 & 16] that any such
f̃ can be modified to have range [k], while preserving E[f̃ ] without decreasing the noise
stability.
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1.6 Other Related Work and Future Directions
Information Theory

Several previous works in information theory and theoretical computer science study “non-
interactive simulation” type of questions. For instance, the non-interactive simulation of
joint distributions question studied in this work is a generalization of the “non-interactive
correlation distillation” problem6 which was studied by [43, 45]. Moreover, recent works in
the information theory community [37, 8] derive analytical tools (based on hypercontractivity
and the so-called strong data processing constant) to prove impossibility results for NIS.
While these results provide stronger bounds for some sources, they are not tight in general.
Finally, the “non-interactive agreement distillation” problem studied by [9] can also be viewed
as a particular case of the NIS setup.

Randomness in Computation

As discussed in [29], one motivation for studying NIS problems stems from the study of
the role of randomness in distributed computing. Specifically, recent works in cryptography
[2, 3, 11, 17, 41, 51], quantum computing [47, 16, 23] and communication complexity
[6, 15, 28, 26] study how the ability to solve various computational tasks gets affected by
weakening the source of shared randomness. In this context, it is very natural to ask how
well can a source of randomness be transformed into another (more structured) one, which is
precisely the setup of non-interactive simulation.

The classic Newman’s theorem [46] tells us that any communication protocol with n-bit
inputs and 0-1 outputs can be simulated with only O(logn) bits of randomness. On the
other hand, if we consider the setting where Alice and Bob run a communication protocol
with correlated randomness, such as those defined in [6, 15], then reducing the randomness
requirement of such protocols is not clear. Theorem 5 implies randomness reduction for
zero-communication or even simultaneous message protocols, and hence can be seen as a
first step towards understanding the randomness requirements of arbitrary (one or two way)
communication protocols with access to correlated randomness.

Tensor Power problems

Another motivation comes from the fact that NIS belongs to the class of tensor power
problems, which have been very challenging to analyze. In such questions, the goal is to
understand how some combinatorial quantity behaves in terms of the dimensionality of
the problem as the dimension tends to infinity. A famous instance of such problems is the
Shannon capacity of a graph [53, 40] where the aim is to understand how the independence
number of the power of a graph behaves in terms of the exponent. The question of showing
the computability of the Shannon capacity remains open to this day [4]. Other examples
of such open problems (which are more closely related to NIS) arise in the problems of
local state transformation of quantum entanglement [7, 22], the problem of computing the
entangled value of a 2-prover 1-round game (see for, e.g., [38] and also the open problems
[1]). Another example is the problem of computing the amortized value of parallel repetitions
of a 2-prover 1-round game [49, 34, 48, 50, 5]. While we don’t have computability results for
the amortized value, there has been a recent work that tries to characterize it in terms of an
information theoretic quantity [12]. Yet another example of a tensor-power problem is the

6 which considered the problem of maximizing agreement on a single bit, in various multi-party settings.
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task of computing the amortized communication complexity of a communication problem.
Braverman-Rao [13] showed that this equals the information complexity of the communication
problem, however the computability of information complexity was shown only recently [14].

We hope that the recent progress on the Non-Interactive Simulation problem would
stimulate progress on these other notable tensor-power problems. A concrete question is
whether the techniques used for NIS (regularity lemma, invariance principle, etc.) can be
translated to any of the above mentioned setups.

Deterministic Approximate Counting

We also point out that the notions of eigenregularity used in [19, 20] were originally introduced
and used in [21] to give the only known fixed-polynomial time deterministic approximate
counting algorithm for polynomial threshold functions (PTFs). Our randomized techniques
don’t seem directly applicable to the PTF counting problem, as the emphasis there is on
being deterministic. However, it will be interesting if our techniques could yield some further
insights into approximate counting problems and pseudorandomness in general.

1.7 Organization of the Paper
In section 2, we summarize some useful definitions and provide a simple lemma that will be
useful later. In section 3, we state our main technique of dimension reduction for polynomials
(Theorem 6) and provide a brief sketch of the proof, with most details deferred to Appendix A.
In section 4, we describe the transformations to make functions low-degree and multilinear,
with proofs deferred to Appendix B. Finally, in section 5, we prove Theorem 2 (which implies
Theorem 1 as a corollary).

2 Preliminaries

2.1 Gaussian Probability Spaces
Throughout this paper, we deal with the n-dimensional Gaussian space, i.e. Rn equipped
with Gaussian measure γn given by the density function

dγn
dX

:= 1
(2π)n/2

· exp
(
−1

2 · ‖X‖
2
Rn

)
.

where ‖ · ‖Rn denotes the `2 norm of a vector. We use letters such as X, Y to denote points
in Rn, bold symbols such as X, Y to denote random variables, subscripts such as Xi or Xi

denote the i-th coordinate.

The `2-norm of a function f : Rn → R is defined as ‖f‖2 :=
[

E
X∼γn

f(X)2
]1/2

. We use

L2(Rn, γn) to denote the space of all `2-integrable functions f : Rn → R, i.e. ‖f‖2 <∞. All
functions we consider will be `2-integrable. The inner product of f, g ∈ L2(Rn, γn) is defined
as 〈f, g〉γn := EX∼γn [f(X)g(X)].

The joint distribution of ρ-correlated Gaussians is denoted as Gρ, which is a 2-dimensional
Gaussian distribution (X,Y ), where X and Y are marginally distributed according to γ1,
with E[XY ] = ρ. For A,B ∈ L2(Rn, γn), the noisy correlation between A and B over G⊗nρ
is defined as,

〈A,B〉G⊗nρ := E
(X,Y )∼G⊗nρ

[A(X) ·B(Y )]
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Finally, the total variation distance between two distributions µ and ν over domain Ω is
defined as,

dTV(µ, ν) := sup
S⊆Ω

∣∣µ(S)− ν(S)
∣∣ .

2.2 Hermite Analysis
The set of Hermite polynomials {Hr : R→ R : r ∈ Z≥0} form an orthonormal basis for
functions in L2(R, γ1) with respect to the inner product 〈·, ·〉γ1

. The r-th Hermite polynomial
Hr : R→ R (for r ∈ Z≥0) is defined as,

H0(x) = 1; H1(x) = x; Hr(x) = (−1)r√
r!

ex
2/2 · d

r

dxr
e−x

2/2 .

Hermite polynomials can also be obtained via the generating function, ext− t
2
2 =

∑∞
r=0

Hr(x)√
r! ·

tr.
For any σ = (σ1, . . . , σn) ∈ Zn≥0, define Hσ : Rn → R as Hσ(X) =

∏n
i=1Hσi(Xi). It

easily follows that the set
{
Hσ : σ ∈ Zn≥0

}
forms an orthonormal basis for L2(Rn, γn). Thus,

every A ∈ L2(Rn, γn) has a Hermite expansion given by A(X) =
∑
σ∈Zn≥0

Â(σ) · Hσ(X),

where the Â(σ)’s are the Hermite coefficients of A obtained as Â(σ) = 〈A,Hσ〉γn . The
degree of σ is defined as |σ| :=

∑
i∈[n] σi, and the degree of A is the largest |σ| for which

Â(σ) 6= 0. We say that A ∈ L2(Rn, γn) is multilinear if Â(σ) is non-zero only if σi ∈ {0, 1}
for all i ∈ [n].
We list several useful facts about Hermite coefficients:
(1) Parseval’s identity:

∥∥A∥∥2
2 =

∑
σ∈Zn≥0

Â(σ)2 and Var(A) =
∑

0 6=σ∈Zn≥0
Â(σ)2.

(2) Plancherel’s identity: 〈A,A′〉γn =
∑
σ∈Zn≥0

Â(σ)Â′(σ).

(3) Ornstein-Uhlenbeck operator: UρA(X) =
∑
σ∈Zn≥0

ρ|σ| · Â(σ) ·Hσ(X).

(4) Noisy Correlation: 〈A,B〉G⊗nρ = 〈A,UρB〉γn =
∑
σ∈Zn≥0

ρ|σ|Â(σ)B̂(σ)

For convenience, Uρ(X) denotes the distribution (ρX +
√

1− ρ2Z) where Z ∼ γn, for any
X ∈ Rn.

2.3 Vector-valued functions
For any function A : Rn → Rk, we will interpret A as a vector of functions (A1, · · · , Ak),
where Ai : Rn → R is the i-th coordinate of the output of A. The definitions of Hermite
analysis extend naturally to vector-valued functions as follows. For A : Rn → Rk, the Hermite
coefficient Â(σ) is

(
Â1(σ), . . . , Âk(σ)

)
∈ Rk. We can extend the definition of `2-norm as

‖A‖2 := EX∼γn ‖A(X)‖2 or equivalently ‖A1‖2 + · · · + ‖Ak‖2 =
∑
σ∈Zn≥0

‖Â(σ)‖2. Also,
deg(A) := maxi∈[k] deg(Ai). Again, all the vector-valued functions with domain Rn that we
consider will be such that the function in each coordinate is in L2(Rn, γn).

For k ∈ N and i ∈ [k], let ei be the unit vector along coordinate i in Rk. The simplex ∆k

is defined as the convex hull formed by {ei : i ∈ [k]}. Equivalently, ∆k =
{
v ∈ Rk : ‖v‖1 = 1

}
is the set of probability distributions over [k]. While we will consider vector-valued functions
mapping to Rk, we will be primarily interested in functions which map to ∆k. The rounding
operator R(k) : Rk → ∆k maps any v ∈ Rk to its closest point in ∆k. In particular, it is
the identity map on ∆k. We will drop the superscript on R, as k is fixed throughout this
paper. Similar to our notation for vector-valued functions, Ri denotes the i-th coordinate of
R. Thus, while the i-th coordinate of A is denoted by Ai, the i-th coordinate of R(A) is
denoted by Ri(A).
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As mentioned already, an important relaxation in our work is to consider functions that
do not map to ∆k, but instead map to Rk. For such functions to be meaningful, we will
require that the outputs are usually close to ∆k, in which case, we will be rounding them
to the simplex ∆k. Towards this end, the following simple proposition will be very useful,
which says that if we modify the strategies of Alice and Bob slightly (in `2-distance), then
the correlation between the strategies does not change significantly. The proof follows by a
simple triangle inequality and the Cauchy-Schwarz inequality.

I Proposition 7 (Close strategies, have similar correlations). Let A, Ã,B, B̃ ∈ L2(Rn, γn) such
that ‖A‖2, ‖Ã‖2, ‖B‖2, ‖B̃‖2 ≤ 1. If ‖A− Ã‖2 ≤ ε and ‖B − B̃‖2 ≤ ε, then it holds that,∣∣∣∣〈Ã, B̃〉G⊗nρ − 〈A,B〉G⊗nρ

∣∣∣∣ ≤ 2ε .

3 Dimension Reduction for Low-Degree Multilinear Polynomials

In this section, we present our main technique of dimension reduction for low-degree multilin-
ear polynomials over Gaussian space. Theorem 6 is obtained immediately as a combination
of Theorem 8 and Proposition 9 stated below.

I Theorem 8. Given d ∈ Z>0, ρ ∈ [0, 1] and δ > 0, there exists an explicitly computable
n0 = n0(d, δ), such that the following holds:
Let A : Rn → R and B : Rn → R be degree-d multilinear polynomials, s.t.

∥∥A∥∥2 ,
∥∥B∥∥2 ≤ 1.

For M ∈ Rn×n0 with entries i.i.d. sampled from γ1, define the functions7 AM : Rn0 → R
and BM : Rn0 → R as

AM (a) = A

(
Ma∥∥a∥∥2

)
and BM (b) = B

(
Mb∥∥b∥∥2

)
for a, b ∈ Rn0 r {0} .

Then, with probability at least 1− δ (over the choice of M), it holds that,∣∣∣〈AM , BM 〉G⊗n0
ρ

− 〈A,B〉G⊗nρ
∣∣∣ < δ .

In particular, the explicit choice of n0 is upper bounded as dO(d)

δ4 .

In other words, for a typical choice of M ∼ γ
⊗(n×n0)
1 , the correlation between A and B

is approximately preserved if we replace (X,Y ) ∼ G⊗nρ by (Ma/
∥∥a
∥∥

2 ,Mb/
∥∥b
∥∥

2), where
(a, b) ∼ G⊗n0

ρ . Intuitively, M can be thought of as a means to “stretch” n0 coordinates of Gρ
into effectively n coordinates of Gρ, while “fooling” correlations between degree-d multilinear
polynomials.

Before we prove the above theorem, we prove a simple proposition that completely handles
item 2 of Theorem 6 by showing that if this dimension reduction were applied to vector-valued
functions whose outputs lie close to the simplex ∆k, then with high probability, even the
dimension-reduced functions will have outputs close to the simplex. More formally,

I Proposition 9. Let A : Rn → Rk and B : Rn → Rk, such that
∥∥R(A)−A

∥∥
2 ,∥∥R(B)−B

∥∥
2 ≤ δ. Then, with probability at least 1 − 2δ (over choice of M), it holds

that,∥∥R(AM )−AM

∥∥
2 ≤
√
δ and

∥∥R(BM )−BM

∥∥
2 ≤
√
δ .

7 AM and BM can be defined arbitrarily on 0 ∈ Rn0 . This is inconsequential as {0} is a measure zero
set under γn.
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Proof. Observe that even for a fixed non-zero a ∈ Rn0 , the distribution of Ma
‖a‖2

is identical
to that of a standard n-variate Gaussian distribution γn. Thus, we immediately have that,

E
M

E
a

∥∥∥R(A(Ma
‖a‖2

))
−A

(
Ma
‖a‖2

)∥∥∥2

2
= E

X

∥∥R (A (X))−A (X)
∥∥2

2

Alternately, E
M

∥∥R(AM )−AM

∥∥2
2 =

∥∥R(A)−A
∥∥2

2 ≤ δ2

Thus, by Markov’s inequality,
∥∥R(AM )−AM

∥∥
2 ≤
√
δ holds with probability at least 1− δ.

We can similarly argue for BM , and a union bound completes the proof. J

To prove Theorem 8, we primarily use the second moment method (i.e., Chebyshev’s
inequality). In particular, let F (M) be defined as,

F (M) def= 〈AM , BM 〉G⊗n0
ρ

The most technical part of this work is to show sufficently good bounds on the mean and
variance of F (M) for a random choice of M ∼ γ⊗(n×n0)

1 , given by the following lemma.

I Lemma 10. (Mean & Variance Bound). Given d and δ, there exists an explicitly computable
n0 := n0(d, δ) such that for M ∼ γ⊗(n×n0)

1 ,∣∣∣E
M
F (M)− 〈A,B〉G⊗nρ

∣∣∣ ≤ δ (Mean bound)

Var
M

(F (M)) ≤ δ (Variance bound)

In particular, one may take n0 = dO(d)

δ2 .

We provide a little sketch of the proof of Lemma 10 below, with the full details in Appendix A.
Assuming Lemma 10, we can easily prove Theorem 8.

Proof of Theorem 8. We invoke Lemma 10 with parameters d and δ2/2, to get a choice of
n0 = dO(d)

δ4 . Using Chebyshev’s inequality and the Variance bound in Lemma 10, we have
that for any η > 0,

Pr
M

[∣∣F (M)− EM F (M)
∣∣ > η

]
≤ δ2

2η .

Using the triangle inequality, and the Mean bound in Lemma 10, we get

Pr
M

[∣∣∣F (M)− 〈A,B〉G⊗nρ
∣∣∣ > δ

]
≤ Pr

M

[∣∣F (M)− EM F (M)
∣∣+
∣∣∣EM F (M)− 〈A,B〉G⊗nρ

∣∣∣ > δ
]

≤ Pr
M

[∣∣F (M)− EM F (M)
∣∣ > δ − δ2] ≤ δ. J

3.1 Proof Sketch of Lemma 10
While the proof of Lemma 10 is somewhat technical as a whole, the main driver of the
entire lemma is a simple combinatorial fact that if we sample d times with replacement
from a bag with n0 items, then the probability of not sampling distinct items is at most
O(d2/n0) = on0(1). We briefly illustrate this idea at play by proving a simpler version of
the mean bound. For this section, let’s consider a different dimension reduction of setting
AM and BM as, AM (a) = A(Ma/

√
n0) and BM (b) = B(Mb/

√
n0), where M ∼ γ⊗(n×n0)

1 .
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Let mi ∈ Rn0 denote the vector corresponding to the i-th row of M . Consider the mean of
F (M) = 〈AM , BM 〉G⊗n0

ρ
:

E
M
F (M) = E

M
E

a,b
A

(
Ma
√
n0

)
B

(
Mb
√
n0

)
= E

M
E

a,b

∑
σ,κ

Â(σ)B̂(κ)
n

(|σ|+|κ|)/2
0

·
∏

i :σi=1
〈mi,a〉 ·

∏
j :κj=1

〈mj , b〉

where, recall that A and B are multilinear, and so the relevant σ and κ are in {0, 1}n, with
|σ|, |κ| ≤ d. Next, observe that Emim

T
i = In0×n0 , and hence we get that,

E
M

∏
i :σi=1

〈mi,a〉 ·
∏

j :κj=1
〈mj , b〉 =

{
〈a, b〉|σ| if σ = κ

0 if σ 6= κ
.

Finally, we observe that if we expand 〈a, b〉d as
∑
i1,...,id∈[n0] ai1bi1 . . .aidbid , then from

the combinatorial fact above, except for a O(d2) · nd−1
0 out of total nd0 terms, the in-

dices i1, . . . , id are all distinct. It is immediate to see that if all the ij ’s are distinct then
Ea,b ai1bi1 . . .aidbid = ρd. Additionally, we show that if the ij ’s are not all distinct then
|Ea,b ai1bi1 . . .aidbid | ≤ dO(d) (this follows from the fact that for the d-th moments of γ1
are at most dO(d)). Putting this together we get for any σ (with |σ| ≤ d) that,

E
a,b

〈a, b〉|σ|

n
|σ|
0

= ρ|σ| ± dO(d)

n0

Putting everything together we get,

E
M
F (M) =

∑
σ

Â(σ)B̂(σ) ·
(
ρ|σ| ± dO(d)

n0

)
= 〈A,B〉G⊗nρ ±

∑
σ

Â(σ)B̂(σ) · d
O(d)

n0

And hence,∣∣∣EM F (M)− 〈A,B〉G⊗nρ
∣∣∣ ≤ dO(d)

n0
·
∑
σ

Â(σ)B̂(σ) ≤ dO(d)

n0
· ‖A‖2 · ‖B‖2 ≤ δ,

where we use the Cauchy-Schwarz inequality and that n0 ≥ dO(d)/δ. This completes a
proof sketch of the mean bound in Lemma 10. Replacing √n0 by ‖a‖2 introduces a minor
technicality, but still works because ‖a‖2 is tightly concentrated around √n0. The variance
bound is slightly more complicated with the use of a hypercontractive inequality instead of
Cauchy-Schwarz. The full details of the proof are in Appendix A.

4 Transformation to Low-Degree Multilinear Polynomials

While Theorem 6 applies only for low-degree multilinear polynomials, we can extend it
for all functions by using the following lemma that transforms k-dimensional `2-integrable
functions A : Rn → Rk and B : Rn → Rk into low-degree multilinear polynomials while
approximately preserving all correlations and also not deviating much from the simplex ∆k

(although slightly increasing the number of variables).

I Lemma 11 (Low-Degree Multilinear Transformation). Given parameters ρ ∈ [0, 1], δ > 0,
k ∈ N, there exists an explicit d = d(k, ρ, δ) and t := t(k, d, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk, s.t. for any i ∈ [k], it holds that Var(Ai),Var(Bi) ≤ 1.
Then, there exist functions Ã : Rnt → Rk and B̃ : Rnt → Rk such that the following
statements hold.
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1. Ã and B̃ are multilinear with degree at most d.
2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.
3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2 + δ and

∥∥∥R(B̃)− B̃
∥∥∥

2
≤
∥∥R(B)−B

∥∥
2 + δ

4. For every i, j ∈ [k],∣∣∣∣〈Ãi, B̃j〉G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ√
k

In particular, one may take d = O
(√

k log2(k/δ)
δ(1−ρ)

)
and t = O

(
kd2

δ2

)
.

This lemma is itself proved in two stages. The first stage transforms general functions
to low-degree polynomials by applying a small noise operator (making the functions have
“decaying Hermite tails”) followed by truncation of the higher degree terms. The second
stage transforms low-degree polynomials into multilinear ones, by replacing each variable by
a normalized sum of new variables (making the functions have low mass on non-multilinear
terms) followed by truncation of the non-multilinear terms.

These techniques are quite standard in literature. For the use of noise operator in the
first stage see e.g. [44, 42]. For the substitution of variables in the second stage see e.g. [19].
However, since we are stating particular quantitative versions of the lemmas, we provide the
proofs in Appendix B for completeness.

5 Non-Interactive Simulation from Correlated Gaussian Sources

In this section, we complete the proof of our main theorem regarding non-interactive
simulation from correlated Gaussian sources, i.e. Theorem 2. Recall that it immediately
implies Theorem 1 by setting A = B = f and obtaining f̃ = Ã = B̃.

Proof of Theorem 2. Starting with functions A : Rn → ∆k and B : Rn → ∆k, we first
apply Lemma 11 to transform A and B to low-degree and multilinear polynomials, and
subsequently apply Theorem 8. Unfortunately after these transformations, the range is no
longer restricted to ∆k. Nevertheless, we do have that these transformations ensure that
the functions still output something “close” to the simplex ∆k. This allows us to apply the
rounding operator and get the range as ∆k again (using Lemma 7). An overview of the
transformations done is presented in Figure 3.

We thus transform A and B through each of the following steps. At each step, we
approximately preserve the correlation 〈Ai, Bj〉 for every i, j ∈ [k]. Additionally, in each step∥∥R(A)−A

∥∥
2 and

∥∥R(B)−B
∥∥

2 doesn’t increase significantly (note that, to begin with, the
range of A and B is ∆k and hence we start with

∥∥R(A)−A
∥∥

2 =
∥∥R(B)−B

∥∥
2 = 0).

1. Transformation to Low-Degree & Multilinear: We apply Lemma 11 on A and B
with parameter δ (chosen later), setting d = d(ρ, k, δ) and t = t(d, k, δ) as required, to
get degree-d and multilinear A(1) : Rn → Rk and B(1) : Rn → Rk. Moreover, we have
that for every i, j ∈ [k],∣∣∣∣〈A(1)

i , B
(1)
j

〉
G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ (2)

Additionally, we have
∥∥R(A(1))−A(1)

∥∥
2 ≤

∥∥R(A)−A
∥∥

2 + δ ≤ δ and similarly for B(1).
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A B Rn → ∆k

Low-Degree &
Multilinear transform

Lemma 11 Lemma 11

A(1) B(1) Rnt → Rk

Dimension
Reduction

Theorem 8
(using random seed M)

A(2) B(2) Rn0 → Rk

Rounding Lemma 7 Lemma 7

Ã B̃ Rn0 → ∆k

Figure 3 Transformations for Non-interactive simulation from Correlated Gaussian Sources

2. Dimension reduction: We apply Theorem 8 with parameter δ/k2, setting n0 =
n0(d, ρ, δ/k2) as required, on individual coordinates of A(1) and B(1) to obtain func-
tions A(2) : Rn0 → Rk and B(2) : Rn0 → Rk. Taking a union bound, we have that with
probability at least 1− δ, it holds for every i, j ∈ [k] that,∣∣∣∣〈A(2)

i , B
(2)
j

〉
G⊗n0
ρ

−
〈
A

(1)
i , B

(1)
j

〉
G⊗ntρ

∣∣∣∣ ≤ δ (3)

From Proposition 9, we have that with probability 1− 4δ,∥∥R(A(2))−A(2)
∥∥

2 ≤
√∥∥R(A(1))−A(1)

∥∥
2 ≤

√
δ

∥∥R(B(2))−B(2)
∥∥

2 ≤
√∥∥R(B(1))−B(1)

∥∥
2 ≤

√
δ

Note that this is the only randomized step in the entire transformation, and it succeeds
in obtaining the above three statements with probability at least 1− 5δ.

3. Rounding to ∆k: Finally, we set Ã = R(A(2)) and B̃ = R(B(2)). Thus, assuming the
previous step succeeds, we have that ‖Ãi −A(2)

i ‖2 ≤
√
δ and ‖B̃j −B(2)

j ‖2 ≤
√
δ. Hence

we can invoke Lemma 7, to conclude that,∣∣∣∣〈Ãi, B̃j〉G⊗n0
ρ

−
〈
A

(2)
i , B

(2)
j

〉
G⊗n0
ρ

∣∣∣∣ ≤ 2
√
δ. (4)

Thus we started with functions A : Rn → ∆k and B : Rn → ∆k and ended with functions
Ã : Rn0 → ∆k and B̃ : Rn0 → ∆k such that for every i, j ∈ [k] (by combining Equations 2, 3
and 4) it holds that,∣∣∣∣〈Ãi, B̃j〉G⊗n0

ρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ O(
√
δ) .

Thus, more strongly, if we instantiate δ = O(ε2/k4), then we get that our entire transformation
succeeds with probability 1− ε in obtaining Ã and B̃ such that,

dTV

(
(A(X), B(Y ))G⊗nρ , (Ã(a), B̃(b))G⊗n0

ρ

)
≤ ε .
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It is easy to see that n0 works out to be

n0 = dO(d)

δ4 = exp
(
Õ

(
k4.5

ε2(1− ρ)

))
= exp

(
poly

(
k,

1
ε
,

1
1− ρ

))
. J
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A Proofs of Mean and Variance Bounds in Dimension Reduction

In this section, we provide the proof of Lemma 10. This is the main new technical component
introduced in this paper. Even though the calculations might seem cumbersome, they involve
mostly elementary steps. To understand the high level picture, we recommend the reader to
go through a short proof sketch presented in subsection 3.1.

Recall that starting with degree d multilinear polynomials A : Rn → R and B : Rn → R,
we defined functions AM : Rn0 → R and BM : Rn0 → R, for M ∼ γ⊗(n×n0)

1 , as

AM (a) = A

(
Ma∥∥a∥∥2

)
and BM (b) = B

(
Mb∥∥b∥∥2

)
for a, b ∈ Rn0 r {0} .

and we defined their correlation as F (M) def= 〈AM , BM 〉G⊗n0
ρ

. Lemma 10 proves bounds
on the mean and variance of F (M), which we restate below for convenience.

I Lemma 12. (Mean & Variance Bound). Given d and δ, there exists an explicitly computable
n0 := n0(d, δ) such that for M ∼ γ⊗(n×n0)

1 ,∣∣∣E
M
F (M)− 〈A,B〉G⊗nρ

∣∣∣ ≤ δ (Mean bound)

Var
M

(F (M)) ≤ δ (Variance bound)

In particular, one may take n0 = dO(d)

δ2 .

We break down the full proof into the following three modular steps.
1. In subsection A.1, we prove a meta-lemma (Lemma 13) that will help us prove both the

mean and variance bounds; indeed this meta-lemma is at the heart of why Theorem 8 holds.
Morally, this lemma says that if we have an expectation of a product of a small number
of inner products of normalized correlated Gaussian vectors, then, we can exchange the
product and the expectations while incurring only a small additive error. Lemma 13 is
the main take away from this subsection, and the reader may skip to subsection A.2 and
subsection A.3 to see the rest of the proof.

2. In subsection A.2, we prove bounds on the mean and co-variances of degree-d multilinear
monomials, under the above transformation of replacing X,Y ∈ Rn (inputs to A and B)
by Ma
‖a‖2

and Mb
‖b‖2

respectively.
3. In subsection A.3, we finally use the above bounds on mean and co-variances of degree-d

multilinear monomials in order to prove Lemma 10.
I Remark. To make our notations convenient, we will often write equations such as α = β±ε
which is to be interpreted as

∣∣α− β∣∣ ≤ ε.
A.1 Product of Inner Products of Normalized Correlated Gaussian

Vectors
The following is the main lemma in this subsection (this is the meta-lemma alluded to earlier).

I Lemma 13. Given d,D ∈ Z≥0 and δ > 0 (with D sufficiently larger than d), let
(u1, . . . ,ud,v1, . . . ,vd) be a 2dD-dimensional multivariate Gaussian distribution such that,

each ui,vi ∈ RD are marginally distributed as standard D-dimensional Gaussians γD.
for each j ∈ [D], the joint distribution (u1,j , . . . ,ud,j ,v1,j , . . . ,vd,j), is independent across
different values of j.
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Then,∣∣∣∣ E
{ui,vi}i

[∏d
i=1

〈ui,vi〉
‖ui‖2‖vi‖2

]
−
∏d
i=1 E

{ui,vi}i

[
〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
.

We point out that there are two steps taking place in Lemma 13:
(i) the replacement of ‖ui‖2 (and ‖vi‖2) by

√
D (around which it is tightly concentrated),

(ii) the interchanging of the expectation and the product.
We will handle each of these changes one by one.

Product of Negative Moments of `2-norm of Correlated Gaussian vectors
In order to handle the replacement of ‖ui‖2 (and ‖vi‖2) by

√
D, we will prove some bounds

on the mean and variance of products of negative powers of the `2-norm of a standard
Gaussian vector.

I Lemma 14. Let w1, w2, . . . , w` be (possibly correlated) multivariate Gaussians where
each wi ∈ RD is marginally distributed as γD, and let d1, d2, . . . , d` be non-negative integers
with d :=

∑`
i=1 di. Then,∣∣∣∣E [ ∏̀

i=1

1
‖wi‖

di
2

]
− 1

Dd/2

∣∣∣∣ ≤ O

(
d5

D
d
2 +1

)
,

Var
[∏̀
i=1

1
‖wi‖di2

]
≤ O

(
d5

Dd+1

)
.

I Remark. It is conceivable that the bounds in Lemma 14 could be improved in terms of the
dependence on d. However, this was not central to our application, so we go ahead with the
stated bounds. The main point to note in the above lemma is the extra factor of D in the
denominator.
We start out by first proving the base case where we have a single vector w, that is, ` = 1.

I Proposition 15. There exists an absolute constant C such that for sufficiently large
d,D ∈ Z>0 satisfying D > Cd2, we have that for w ∼ γD,∣∣∣∣Ew

[
1
‖w‖d2

]
− 1
Dd/2

∣∣∣∣ ≤ C ·
(

d2

D
d
2 +1

)
, (5)

Var
w

[
1
‖w‖d2

]
≤ 8C ·

(
d2

Dd+1

)
. (6)

Proof. It is well-known that the distribution of ‖w‖2 follows a χ-distribution with parameter
D, and whose probability density function is given by

fD(x) = xD−1 · e− x
2

2

2D2 −1 · Γ(D2 )
, (x ∈ R≥0)

where Γ(·) denotes the Gamma function. Thus, we have that

E
w

[
1
‖w‖d

]
=
∫ ∞

0

1
xd
· fD(x)dx =

∫ ∞
0

xD−d−1 · e− x
2

2

2D2 −1 · Γ(D2 )
dx

=
2D−d−1

2 · Γ
(
D−d

2
)

2D2 −1 · Γ(D2 )
= 1

Dd/2 ·
(

1±O
(
d2

D

))
,
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where the last equality follows from the Stirling’s approximation of the Gamma function,
which holds for every real number z > 0:

Γ(z + 1) =
√

2πz ·
(z
e

)z
·
(

1±O
(

1
z

))
.

This completes the proof of Equation 5, for the explicit constant C that can be derived from
the Stirling’s approximation. Now, Equation 6 immediately follows as:

Var
w

[
1
‖w‖d

]
= E

w

[
1

‖w‖2d

]
− E

w

[
1
‖w‖d

]2

=
(

1
Dd
± C ·

(
(2d)2

Dd+1

))
−
(

1
Dd/2 ± C ·

(
d2

Dd/2+1

))2

≤ 8C ·
(

d2

Dd+1

)
,

where, we use that D is sufficiently large that C2
(

d4

Dd+2

)
< 2C ·

(
d2

Dd+1

)
, i.e. D > Cd2. J

We now show how to generalize the above to prove Lemma 14.

Proof of Lemma 14. More specifically, we will show that,∣∣∣∣E [ ∏̀
i=1

1
‖wi‖

di
2

]
− 1

Dd/2

∣∣∣∣ ≤ C · `3 ·
(

d2

D
d
2 +1

)
(7)

Var
[∏̀
i=1

1
‖wi‖di2

]
≤ 8C · `3 ·

(
d2

Dd+1

)
(8)

where C is the absolute constant (as obtained in Proposition 15). This implies the lemma
since ` ≤ d.

We proceed by induction on ` (more specifically on log `). For ` = 1, the bound
immediately follows from Proposition 15. For the inductive step, we assume that the bound
in Equations 7 and 8 holds for `, and we prove that the bound also holds for 2`. While
it may seem that our bounds are being proven only when ` is a power of 2, it is not hard
to see that our proof could be done for non powers of 2 as well, giving a bound that is
monotonically increasing in ` and hence it suffices having proved it for ` that are powers of 2.
Let d1, d2, . . . , d2` be non-negative integers with d :=

∑2`
i=1 di. For notational convenience,

let s1 =
∑`
i=1 di and s2 =

∑2`
i=`+1 di, and so d = s1 + s2.

We will first prove Equation 7 inductively by using the following idea: for any two
random variables X and Y , we have E[XY ] = E[X]E[Y ] + Cov[X,Y ] and |Cov[X,Y ]| ≤√

Var[X] · Var[Y ] and hence E[XY ] = E[X]E[Y ]±
√

Var[X] · Var[Y ]. Thus, we get,

E
[ 2∏̀
i=1

1∥∥wi

∥∥di
2

]
= E

[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
· E
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]

±

√√√√Var
[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
· Var

[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
. (9)
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Using the inductive assumption w.r.t. `, we get that,

E
[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
= 1

Ds1/2

(
1± C · `3 ·

(
s2

1
D

))
(10)

E
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
= 1

Ds2/2

(
1± C · `3 ·

(
s2

2
D

))
(11)

and

Var
[ ∏̀
i=1

1∥∥wi

∥∥di
2

]
≤ 1

Ds1
· 8C · `3 ·

(
s2

1
D

)
(12)

Var
[ 2∏̀
i=`+1

1∥∥wi

∥∥di
2

]
≤ 1

Ds2
· 8C · `3 ·

(
s2

2
D

)
(13)

Plugging Equations 10, 11, 12 and 13 in Equation 9, it is not hard to see that,

E
[ 2∏̀
i=1

1∥∥wi

∥∥di
2

]
= 1
Dd/2

(
1± C · (2`)3 ·

(
d2

D

))
.

This completes the proof of Equation 7. Now, Equation 8 follows easily as,

Var

 2∏̀
i=1

1∥∥wi

∥∥di
2

 = E

 2∏̀
i=1

1∥∥wi

∥∥2di
2

− E
w

 2∏̀
i=1

1∥∥wi

∥∥di
2

2

=
(

1
Dd
± C · (2`)3

(
(2d)2

Dd+1

))
−
(

1
Dd/2 ± C · (2`)

3 ·
(

d2

Dd/2+1

))2

≤ 8C · (2`)3 ·
(

d2

Dd+1

)
. J

Interchanging Product and Expectation
In order to handle the interchanging of the product and expectation operations, we will show
the following lemma.

I Lemma 16. Let (u1, . . . ,ud,v1, . . . ,vd) be distributed as in Lemma 13. Then,∣∣∣∣ E
{ui,vi}i

[∏d
i=1 〈ui,vi〉

]
−
∏d
i=1 E

{ui,vi}i
[〈ui,vi〉]

∣∣∣∣ ≤ dO(d) ·Dd−1.

I Remark. The dO(d) term has an explicit expression, although we only highlight its qualitative
nature for clarity. Again, it is conceivable that the bounds in Lemma 16 could be improved
in terms of the dependence on d, although we suspect that it is tight upto constant factors
in the exponent. Anyhow, this was not central to our application, so we go ahead with the
stated bounds. The main point to note in the above lemma is that the exponent of D is
(d− 1) instead of d.

To prove the lemma, we first obtain the following proposition on moments of a multivariate
Gaussian.
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I Proposition 17. Let w ∈ R` be any multivariate Gaussian vector with each coordinate
marginally distributed according to γ1. Let d1, d2, . . . , d` be non-negative integers such that
d :=

∑`
i=1 di. Then,∣∣∣∣E [ ∏̀
i=1

wdi
i

]∣∣∣∣ ≤ (2d)3d.

Proof. More specifically we will show that when ` is a power of 2,∣∣∣∣E [ ∏̀
i=1

wdi
i

]∣∣∣∣ ≤ 2`−1(`d)d. (14)

It is easy to see that this immediately implies the bound of 2d · d2d in the main lemma, since
` ≤ d. However if ` is not a power of 2 we can round it up to the nearest power of 2, which
amounts to substituting ` ≤ 2d in the above, obtaining a bound of 23d · d2d ≤ (2d)3d.
We proceed by induction on ` (more specifically on log `). For ` = 1, we use the well-known
fact that for w ∼ γ1,∣∣E[wd]

∣∣ =
{

0 if d is odd
(d− 1)!! if d is even

}
≤ dd,

where (d− 1)!! denotes the double factorial of (d− 1), i.e., the product of all integers from
1 to d− 1 that have the same parity as d− 1. For the inductive step, we assume that the
bound in (14) holds for ` and we show that it also holds for 2`. For notational convenience,
let s1 =

∑`
i=1 di and s2 =

∑2`
i=`+1 di, and so d = s1 + s2.

The main idea to prove the inductive step is simply the Cauchy-Schwarz inequality.

∣∣∣∣E [ 2∏̀
i=1

wdi
i

]∣∣∣∣ ≤
√√√√E

[ ∏̀
i=1

w2di
i

]
· E
[ 2∏̀
i=`+1

w2di
i

]
≤
√

2`−1(2`s1)2s1 · 2`−1(2`s2)2s2 ≤ 22`−1(2`d)d ,

where, we use the inductive assumption regarding product of ` terms and that s1 +s2 = d. J

Using the above proposition, we are now able to prove Lemma 16.

Proof of Lemma 16. Let S ⊆ [D]d be the set of all tuples c ∈ [D]d such that cj 6= ck for all
j 6= k ∈ [d]. Let S denote the complement of S in [D]d. Note that |S| ≤ d2 ·Dd−1. We have
that

E
[ d∏
i=1
〈ui,vi〉

]
= E

[ d∏
i=1

D∑
k=1

ui,kvi,k

]
=

∑
c∈[D]d

E
[ d∏
i=1

ui,civi,ci

]

=
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]
+
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]

=
∑
c∈S

d∏
i=1

E[ui,civi,ci ] +
∑
c∈S

E
[ d∏
i=1

ui,civi,ci

]
, (15)

where the last equality follows from the assumption that the distribution of the j-th coordin-
ates (u1,j , . . . ,ud,j ,v1,j , . . . ,vd,j) is independent across j ∈ [D]. On the other hand, we have
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that
d∏
i=1

E[〈ui,vi〉] =
d∏
i=1

E
[ D∑
k=1

ui,kvi,k

]
=

∑
c∈[D]d

d∏
i=1

E[ui,civi,ci ]

=
∑
c∈S

d∏
i=1

E[ui,civi,ci ] +
∑
c∈S

d∏
i=1

E[ui,civi,ci ] (16)

Combining Equations 15 and 16, we get∣∣∣∣E [ d∏
i=1
〈ui,vi〉

]
−

d∏
i=1

E[〈ui,vi〉]
∣∣∣∣ =

∣∣∣∣∑
c∈S

(
E
[ d∏
i=1

ui,civi,ci

]
−

d∏
i=1

E[ui,civi,ci ]
)∣∣∣∣

≤ |S| ·max
c∈S

∣∣∣∣E [ d∏
i=1

ui,civi,ci

]
−

d∏
i=1

E[ui,civi,ci ]
∣∣∣∣

≤ d2 ·Dd−1 ·
(
(2d)3d + 1

)
≤ dO(d) ·Dd−1,

where the second last inequality follows from the fact that |S| ≤ d2 · Dd−1 and from
Proposition 17. J

Putting things together to prove Lemma 13
Proof of Lemma 13. We show the following bounds, which immediately imply Lemma 13.∣∣∣∣ E

{ui,vi}

[∏d
i=1

〈ui,vi〉
‖ui‖2‖vi‖2

]
− E
{ui,vi}

[∏d
i=1

〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
. (17)∣∣∣∣ E

{ui,vi}

[∏d
i=1

〈ui,vi〉
D

]
−
∏d
i=1 E

{ui,vi}

[
〈ui,vi〉
D

]∣∣∣∣ ≤ dO(d)

D
. (18)

Note that Equation 18 is simply a restatement of Lemma 16. To prove Equation 17, we
define the random variables

W :=
d∏
i=1
〈ui,vi〉 and Z :=

d∏
i=1

1∥∥ui
∥∥

2

∥∥vi
∥∥

2

− 1
Dd

.

Note that Equation 17 is equivalent to showing bounds on |E[W ·Z]|. In order to do so, we
use the following four bounds:
1.
∣∣E[W ]

∣∣ ≤ Dd + dO(d) ·Dd−1. Since, by Lemma 16, we have that

|E[W ]| ≤
∣∣∣∣ d∏
i=1

E[〈ui,vi〉]
∣∣∣∣+ dO(d) ·Dd−1 ≤ Dd + dO(d) ·Dd−1

2. Var[W ] ≤ dO(d) ·D2d−1. Since,

Var[W ] = E[W 2]− [EW ]2

= E

[
d∏
i=1
〈ui,vi〉2

]
−

[
E

d∏
i=1
〈ui,vi〉

]2

≤ dO(d) ·D2d−1 . . . (from Lemma 16)

3.
∣∣E[Z]

∣∣ = O
(

d5

Dd+1

)
(follows exactly from Lemma 14).
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4. Var[Z] = O
(

d5

D2d+1

)
(follows exactly from Lemma 14).

Thus, we can bound |E[W ·Z]| as,

∣∣E[W ·Z]
∣∣ ≤ ∣∣E[W ]

∣∣ · ∣∣E[Z]
∣∣+
√

Var[W ] · Var[Z] ≤ dO(d)

D
.

This completes the proof of Equation 17 and hence of Lemma 13. J

A.2 Mean & Variance Bounds for Multilinear Monomials

For the rest of this section, we simplify our notations as follows:
For (a, b) ∼ G⊗n0

ρ , we will use ã and b̃ to denote the normalized vectors a
‖a‖2

and b
‖b‖2

respectively.
We will use U ∈ Rn to denote Mã and similarly V ∈ Rn to denote Mb̃. We will also
have independent variables (a′, b′) ∼ G⊗n0

ρ , for which we use U ′ = Mã′ and V ′ = Mb̃′.
Ui denotes the i-th coordinate of U . Similarly, mi ∈ Rn0 is the i-th row of M . Note
that Ui = 〈mi, ã〉. For S ⊆ [n], let US denote

∏
i∈S Ui =

∏
i∈S 〈mi, ã〉. Similarly for

VS .
We will take expectations over random variables M , a, b, a′, b′. It will be understood
that we are sampling M ∼ γ⊗(n×n0)

1 . Also, (a, b) and (a′, b′) are independently sampled
from G⊗n0

ρ .

I Lemma 18 (Mean bounds for monomials). Given parameter d and δ, there exists an
explicitly computable n0 := n0(d, δ) such that the following holds: For any subsets S, T ⊆ [n]
satisfying |S|, |T | ≤ d, it holds that,

E
M

E
a,b

USVT =
{

0 if S 6= T

ρ|S| ± δ if S = T
.

In particular, one may take n0 = dO(d)

δ .

Proof. We have that

E
M

E
a,b

USVT = E
M

E
a,b

[∏
i∈S

Ui ·
∏
i∈T

Vi

]
= E

a,b
E
M

[ ∏
i∈S∩T

UiVi ·
∏

i∈S\T

Ui ·
∏

i∈T\S

Vi

]
= E

a,b
E
M

[ ∏
i∈S∩T

〈mi, ã〉
〈

mi, b̃
〉
·
∏

i∈S\T

〈mi, ã〉 ·
∏

i∈T\S

〈
mi, b̃

〉]
E
M

E
a,b

USVT = E
a,b

[ ∏
i∈S∩T

E
mi

〈mi, ã〉
〈

mi, b̃
〉
·
∏

i∈S\T

E
mi

〈mi, ã〉 ·
∏

i∈T\S

E
mi

〈
mi, b̃

〉]
, (19)

where the last equality follows from the independence of the mi’s.
If S 6= T , one of

∏
i∈S\T Emi [〈mi, ã〉] or

∏
i∈T\S Emi [

〈
mi, b̃

〉
] is 0. This is because even

for any fixed vector a and for each i ∈ [n], the random variable 〈mi, ã〉 has zero-mean (and
similarly for

〈
mi, b̃

〉
). The first part of the lemma now follows from Equation 19.

CCC 2018



28:28 Dimension Reduction for Polynomials over Gaussian Space and Applications

If S = T , Equation 19 becomes

E
M

E
a,b

USVT = E
a,b

[∏
i∈S

E
mi

〈mi,a〉
‖a‖2

〈mi, b〉
‖b‖2

]
= E

a,b

[∏
i∈S

〈a, b〉
‖a‖2‖b‖2

] [
since E

mi

mi ·mT
i = In0×n0 .

]

=
∏
i∈S

[
Ea,b〈a, b〉

n0

]
± δ

[
from Lemma 13, for n0 = dO(d)

δ

]
= ρ|S| ± δ. J

I Lemma 19 (Covariance bounds for monomials). Given parameters d and δ, there exists
an explicitly computable n0 := n0(d, δ) such that the following holds: For any subsets
S, T, S′, T ′ ⊆ [n] satisfying |S|, |T |, |S′|, |T ′| ≤ d, it holds that,∣∣∣∣∣∣ E

M
a,b,a′,b′

[USVT U ′S′V
′

T ′ ]−

(
E
M
a,b

[USVT ]

)
·

 E
M

a′,b′

[U ′S′V ′T ′ ]

∣∣∣∣∣∣
= 0 if S4T4S′4T ′ 6= ∅

≤ δ if S4T4S′4T ′ = ∅

Here, S4T4S′4T ′ is the symmetric difference of the sets S, T, S′, T ′, equivalently, the set
of all i ∈ [n] which appear an odd number of times in the multiset S t T t S′ t T ′.
In particular, one may take n0 = dO(d)

δ2 .

In order to prove Lemma 19, we need the following lemma.

I Lemma 20. For m ∼ γn0 ,

E
a,b,
a′,b′

[(
E
m

[〈m, ã〉〈m, b̃〉〈m, ã′〉〈m, b̃′〉]−E
m

[〈m, ã〉〈m, b̃〉] ·E
m

[〈m, ã′〉〈m, b̃′〉]
)2]
≤ O

(
1
n0

)

and

E
a,a′

[(
E
m

[〈m, ã〉 〈m, ã′〉]− E
m

[〈m, ã〉] · E
m

[〈m, ã′〉]
)2]

≤ O

(
1
n0

)
.

Proof. To prove the first part of the lemma, consider the quantity

T (a, b,a′, b′)

:= E
m

[〈m, ã〉〈m, b̃〉〈m, ã′〉〈m, b̃′〉]− E
m

[〈m, ã〉〈m, b̃〉] · E
m

[〈m, ã′〉〈m, b̃′〉]

= 〈ã, b̃〉〈ã′, b̃′〉+ 〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉 − 〈ã, b̃〉〈ã′, b̃′〉

= 〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉.

where we use that for any j ∈ [n0], it holds that Em[m4
j ] = 3 and Em[m2

j ] = 1. Thus,

E
a,b,a′,b′

[
T (a, b,a′, b′)2]

= E
a,b,a′,b′

[[
〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉

]2]
≤ 2 · E

a,b,a′,b′

[
〈ã, ã′〉2〈b̃, b̃′〉2

]
+ 2 · E

a,b,a′,b′

[
〈ã, b̃′〉2〈ã′, b̃〉2

]
≤ O

(
1
n0

)
,
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where the last step follows by two applications of Lemma 13 (with d = 4). This completes
the proof of the first part of the lemma. The second part of the lemma similarly follows from
Lemma 13 (with d = 2) along with the fact that Em[〈m, ã〉] = 0. J

Proof of Lemma 19. Let 1(E) denote the 0/1 indicator function of an event E. We have
that

E
M

E
a,b

E
a′,b′

[USVTU ′S′V
′
T ′ ]

= E
M

E
a,b

E
a′,b′

[ ∏
i∈S∪T∪S′∪T ′

U
1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]

= E
a,b

E
a′,b′

[ ∏
i∈S∪T∪S′∪T ′

E
mi

[
U

1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]]
. (20)

On the other hand, we have that

E
M

E
a,b

[USVT ] = E
a,b

E
M

[ ∏
i∈S∪T

U
1(i∈S)
i V

1(i∈T )
i

]
= E

a,b

[ ∏
i∈S∪T

E
mi

[
U

1(i∈S)
i V

1(i∈T )
i

]]
,

(21)

and similarly, E
M

E
a′,b′

[U ′S′V ′T ′ ] = E
a′,b′

[ ∏
i∈S′∪T ′

E
mi

[
U

1(i∈S′)
i V

1(i∈T ′)
i

]]
. (22)

If there exists i ∈ S ∪ T ∪ S′ ∪ T ′ that appears in an odd number of S, T , S′ and T ′, then
it can be seen that the expectation in Equation 20 is equal to 0, and that at least one of
the expectations in Equations 21 and 22 is equal to 0. This already handles the case that
S4T4S′4T ′ 6= ∅.

Henceforth, we assume that each i ∈ S ∪ T ∪ S′ ∪ T ′ appears in an even number of S, T ,
S′ and T ′. Assume for ease of notation that S ∪ T ∪ S′ ∪ T ′ ⊆ [4d]. Define

gi(a, b,a′, b′) := E
mi

[
U

1(i∈S)
i V

1(i∈T )
i U ′

1(i∈S′)
i V ′

1(i∈T ′)
i

]
(23)

hi(a, b) := E
mi

[
U

1(i∈S)
i V

1(i∈T )
i

]
. (24)

h′i(a′, b′) := E
mi

[
U
′1(i∈S′)
i V

′1(i∈T ′)
i

]
. (25)

Combining Equations 20, 21 and 22 along with the definitions in 23, 24 and 25, we get∣∣∣∣ EM E
a,b

E
a′,b′

[USVTU ′S′V
′
T ′ ]− E

M
E

a,b
[USVT ] · E

M
E

a′,b′
[U ′S′V ′T ′ ]

∣∣∣∣
=
∣∣∣∣ Ea,b E

a′,b′

[ 4d∏
i=1

gi(a, b,a′, b′)−
4d∏
i=1

hi(a, b) · h′i(a′, b′)
] ∣∣∣∣

=
∣∣∣∣ Ea,b E

a′,b′

 4d∑
j=1

[ ∏j−1
i=1 hi(a, b) · h′i(a′, b′)

∏4d
i=j gi(a, b,a′, b′)

−
∏j
i=1 hi(a, b) · h′i(a′, b′)

∏4d
i=j+1 gi(a, b,a′, b′)

] ∣∣∣∣
≤

4d∑
j=1

∣∣∣∣ Ea,b E
a′,b′

j−1∏
i=1

hi(a, b) · h′i(a′, b′)
4d∏

i=j+1
gi(a, b,a′, b′) ·

[
gj(a, b,a′, b′)

−hj(a, b) · h′j(a′, b′)

] ∣∣∣∣
≤ 4 · d ·

√
τ · κ,
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where the last inequality follows from the Cauchy-Schwarz inequality with

τ := max
j∈[4d]

E
a,b

E
a′,b′

j−1∏
i=1

hi(a, b)2 · hi(a′, b′)2
4d∏

i=j+1
gi(a, b,a′, b′)2


κ := max

j∈[4d]
E

a,b
E

a′,b′
[gj(a, b,a′, b′)− hj(a, b) · hj(a′, b′)]

2

Lemma 20 implies that κ ≤ O(1/n0). We now show that τ ≤ 2O(d). Note that for any
i ∈ [n0], it holds that,

hi(a, b) =


〈ã, b̃〉 if i ∈ S and i ∈ T

1 if i /∈ S and i /∈ T
0 otherwise

h′i(a′, b′) =


〈ã′, b̃′〉 if i ∈ S′ and i ∈ T ′

1 if i /∈ S′ and i /∈ T ′
0 otherwise

gi(a, b,a′, b′) =



〈ã, b̃〉〈ã′, b̃′〉+ 〈ã, ã′〉〈b̃, b̃′〉+ 〈ã, b̃′〉〈ã′, b̃〉 if i ∈ S ∩ T ∩ S′ ∩ T ′

〈ã, b̃〉 if i ∈ S ∩ T, i /∈ S′ ∪ T ′
〈ã, ã′〉 if i ∈ S ∩ S′, i /∈ T ∪ T ′

〈ã, b̃′〉 if i ∈ S ∩ T ′, i /∈ S′ ∪ T
〈ã′, b̃〉 if i ∈ S′ ∩ T, i /∈ S ∪ T ′

〈ã′, b̃′〉 if i ∈ S′ ∩ T ′, i /∈ S ∪ T
〈b̃, b̃′〉 if i ∈ T ∩ T ′, i /∈ S ∪ S′

1 otherwise

Thus, if we expand out a single term
∏j−1
i=1 hi(a, b)2 · hi(a′, b′)2∏4d

i=j+1 gi(a, b,a′, b′)2, we
get at most 38d terms (since each gi can increase the number of terms by a factor of at most
3). Each of these terms is the expectation of the product of inner product of some correlated
Gaussian vectors. We have from Lemma 13 that each such term is at most 1 + δ and thus
τ ≤ 2O(d). Thus, for an explicit choice of n0 that is upper bounded by dO(d)/δ2, we get that
4d
√
τκ ≤ δ, which concludes the proof of the lemma. J

A.3 Mean & Variance Bounds for Multilinear Polynomials
We are now ready to prove Lemma 10. Recall again that,

F (M) = E
a,b

[A(U) ·B(V )] where, U = Ma∥∥a
∥∥

2

and V = Mb∥∥b
∥∥

2

.

We wish to bound the mean and variance of F (M). These proofs work by considering the
Hermite expansions of A and B given by,

A(X) =
∑
S⊆[n]

ÂSXS and B(X) =
∑
T⊆[n]

B̂TYT .

The basic definitions and facts related to Hermite polynomials were given in section 2.

Proof of Lemma 10. We start out by proving the bound on
∣∣∣EM F (M)− 〈A,B〉G⊗nρ

∣∣∣. To
this end, we will use Lemma 18 with parameters d and δ. Thus, for a choice of n0 = dO(d)/δ2,
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we have that,

∣∣∣EM F (M)− 〈A,B〉G⊗nρ
∣∣∣

=
∣∣∣EM E

a,b
[A(U) ·B(V )]− E

X,Y∼G⊗nρ
[A(X) ·B(Y )]

∣∣∣
=
∣∣∣∣ ∑
S,T⊆[n]

ÂSB̂T ·
(
E
M

E
a,b

[US · VT ]− E
X,Y∼G⊗nρ

[XS · YT ]
)∣∣∣∣

=
∣∣∣∣ ∑
S⊆[n]

ÂSB̂S ·
(
E
M

E
a,b

[US · VS ]− ρ|S|
)∣∣∣∣ . . . (terms corresponding to S 6= T are 0.)

≤
∑

S⊆[n]

∣∣ÂSB̂S

∣∣ · δ . . . . . . (using Lemma 18)

≤
∥∥A∥∥

2
·
∥∥B∥∥

2
· δ . . . . . . (Cauchy-Schwarz inequality)

≤ δ . . . . . . (
∥∥A∥∥

2
,
∥∥B∥∥

2
≤ 1) J

We now move to proving the bound on VarM (F (M)). To this end, we will use Lemma 19
with parameters d and δ/9d. Thus, for a choice of n0 = dO(d)/δ2, we have that,

E
M

(
E

a,b
A(U) ·B(V )

)2
−
(
E
M

E
a,b

A(U) ·B(V )
)2

=

∣∣∣∣∣∣ E
M
a,b

a′,b′

[A(U)B(V )A(U ′)B(V ′)]−
(
E
M

E
a,b

[A(U)B(V )]
)
·
(
E
M

E
a′,b′

[A(U ′)B(V ′)]
)∣∣∣∣∣∣

≤
∑

S,T⊆[n]
S′,T ′⊆[n]

∣∣∣ÂSB̂T ÂS′B̂T ′ ∣∣∣ ·
∣∣∣∣∣∣∣

E
M

E
a,b

E
a′,b′

[USVTU ′S′V
′
T ′ ]

−
(
E
M

E
a,b

[USVT ]
)
·
(
E
M

E
a′,b′

[U ′S′V ′T ′ ]
)∣∣∣∣∣∣∣

≤ δ

9d ·
∑

S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′ ∣∣∣ .

To finish the proof, we will show that,

∑
S,T,S′,T ′⊆[n]
S4T4S′4T ′=∅

∣∣∣ÂSB̂T ÂS′B̂T ′ ∣∣∣ ≤ 9d ·
∥∥A∥∥2

2 ·
∥∥B∥∥2

2 .

Define functions f : {1,−1}n → R, g : {1,−1}n → R over the boolean hypercube as,

f(x) =
∑
S⊆[n]
|S|≤d

ÂSXS(x) and g(x) =
∑
S⊆[n]
|S|≤d

B̂SXS(x) .

Hypercontractivity bounds [55] for degree-d polynomials over the boolean hypercube imply
that,

E
x

[
f(x)4] ≤ 9d

(
E
x

[
f(x)2])2

and E
x

[
g(x)4] ≤ 9d

(
E
x

[
g(x)2])2

.
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We now finish the proof as follows,∑
S,T,S′,T ′⊆[n]

S4T4S′4T ′=∅

∣∣ÂSB̂T ÂS′B̂T ′
∣∣ = E

x

[
f(x)2g(x)2]

≤
(
E
x

[
f(x)4])1/2

·
(
E
x

[
g(x)4])1/2

. . . (Cauchy-Schwarz)

≤ 9d ·
(
E
x

[
f(x)2]) · (E

x

[
g(x)2]) . . . (Hypercontractivity)

= 9d ·
∥∥A∥∥2

2
·
∥∥B∥∥2

2
.

Thus, overall we get that, VarM (F (M)) ≤ δ.
This completes the proof of Lemma 10 for an explicit choice of n0 ≤ dO(d)/δ2.

B Proof of Low-Degree Multilinear Transformation Lemma

The goal of this section is to prove Lemma 11, which follows immediately by putting together
the following two lemmas. The first lemma transforms general functions to low-degree
polynomials and second lemma subsequently transforms it to multilinear polynomials.

I Lemma 21 (Low Degree Transformation). Given parameters ρ ∈ [0, 1], δ > 0, k ∈ N, there
exists an explicit d = d(ρ, k, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk, such that, for any j ∈ [k] : Var(Aj),Var(Bj) ≤ 1.
Then, there exist functions Ã : Rn → Rk and B̃ : Rn → Rk such that the following hold.
1. Ã and B̃ have degree at most d.
2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.
3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2 + δ and

∥∥∥R(B̃)− B̃
∥∥∥

2
≤
∥∥R(B)−B

∥∥
2 + δ

4. For every i, j ∈ [k],∣∣∣∣〈Ãi, B̃j〉G⊗nρ − 〈Ai, Bj〉G⊗nρ
∣∣∣∣ ≤ δ√

k

In particular, one may take d = O
(√

k log2(k/δ)
δ(1−ρ)

)
.

I Lemma 22 (Multi-linear Transformation). Given parameters ρ ∈ [0, 1], δ > 0, d, k ∈ Z≥0,
there exists an explicit t = t(k, d, δ) such that the following holds:
Let A : Rn → Rk and B : Rn → Rk be degree-d polynomials, such that, for any j ∈ [k] :
Var(Aj),Var(Bj) ≤ 1.
Then, there exist functions Ã : Rnt → Rk and B̃ : Rnt → Rk such that the following hold:
1. Ã and B̃ are multilinear with degree at most d.
2. For any i ∈ [k], it holds that Var(Ãi) ≤ Var(Ai) ≤ 1 and Var(B̃i) ≤ Var(Bi) ≤ 1.
3.
∥∥∥R(Ã)− Ã

∥∥∥
2
≤
∥∥R(A)−A

∥∥
2 + δ and

∥∥∥R(B̃)− B̃
∥∥∥

2
≤
∥∥R(B)−B

∥∥
2 + δ

4. For every i, j ∈ [k],∣∣∣∣〈Ãi, B̃j〉G⊗ntρ

− 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ√
k

In particular, one may take t = O
(
kd2

δ2

)
.
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Simple Proposition for Rounding
Before getting to the proofs of the above lemmas, we present a simple proposition that will
be useful. It says that if we have two strategies which are close in `2-distance, and one of
them is close to the simplex ∆k, then so is the other. The proof follows by a straightforward
triangle inequality.

I Proposition 23. For A : Rn → Rk and Ã : Rn → Rk s.t. ‖A‖2, ‖Ã‖2 ≤ 1, it holds that,

‖R(Ã)− Ã‖2 ≤ ‖R(A)−A‖2 + ‖A− Ã‖2 .

B.1 Transformation to Low-Degree
The key idea behind Lemma 21 is quite standard, that applying a “small” amount of noise
(via the Ornstein-Uhlenbeck operator) to a pair of functions doesn’t hurt their correlation
“significantly”. In particular, we have the following lemma.

I Lemma 24. Let P,Q ∈ L2(Rn, γn) and ε > 0. There exists ν = ν(ρ, ε) such that,∣∣∣〈P,Q〉G⊗nρ − 〈UνP,UνQ〉G⊗nρ ∣∣∣ ≤ ε ·√Var[P ] Var[Q]

In particular, one may take ν := (1− ε)log ρ/(log ε+log ρ), or even ν := 1−C (1−ρ)ε
log(1/ε) for some

constant C > 0.

Proof. Consider the Hermite expansions of P and Q. That is,

P (X) =
∑
σ∈Zn≥0

P̂ (σ)Hσ(X) and Q(Y ) =
∑
σ∈Zn≥0

Q̂(σ)Hσ(Y ).

Using properties of Hermite polynomials, namely, UνHσ = ν|σ|Hσ, we get that,

UνP (X) =
∑
σ∈Zn≥0

ν|σ|P̂ (σ)Hσ(X) and UνQ(Y ) =
∑
σ∈Zn≥0

ν|σ|Q̂(σ)Hσ(Y ).

Our choice of ν was to ensures that ρd
(
1− ν2d) ≤ ε for all d ∈ N. Thus, we get that,∣∣∣〈P,Q〉G⊗nρ − 〈UνP,UνQ〉G⊗nρ ∣∣∣

=
∣∣∣∣ ∑σ 6=0

ρ|σ| · P̂ (σ)Q̂(σ) ·
(
1− ν2|σ|)∣∣∣∣

≤
∑
σ 6=0

∣∣∣P̂ (σ)Q̂(σ)
∣∣∣ · ρ|σ| (1− ν2|σ|

)
≤ ε ·

∑
σ 6=0

∣∣∣P̂ (σ)Q̂(σ)
∣∣∣ . . . (since, ρd

(
1− ν2d) ≤ ε for all d ∈ N)

≤ ε ·
√

Var[P ] Var[Q] . . . (Cauchy-Schwarz inequality) J

The above lemma transforms general functions into functions which are concentrated
on low-degree. Thus, to complete the proof of Lemma 21, we consider the definition of
low-degree truncation.
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I Definition 25 (Low-degree truncation). Let A ∈ L2(Rn, γn) is given by the Hermite
expansion A(X) =

∑
σ∈Zn≥0

ÂσHσ(X). The degree-d truncation of A is defined as the
function A≤d ∈ L2(Rn, γn) given by

A≤d(X) :=
∑
σ∈Zn≥0
|σ|≤d

ÂσHσ(X).

That is, A≤d is obtained by retaining only the terms with degree at most d in the Hermite
expansion of A, where recall that for σ ∈ Zn≥0, its degree is defined as |σ| =

∑n
i=1 σi.

For convenience, define A>d := A−A≤d. Also, for vector valued functions A, we define A≤d
as the function obtained by applying the above low-degree truncation on each coordinate.

Proof of Lemma 21. We obtain Ã and B̃ by first applying some suitable amount of noise
to the functions such that the functions have decaying Hermite tails and then truncating the
Hermite coefficients corresponding to terms larger than degree d.

In particular, given parameter δ, we first choose ε and ν in Lemma 24, such that
ε = δ

2
√
k
and then ν = 1− C (1−ρ)ε

log(1/ε) as required. We choose d to be large enough such that

ν2d ≤ δ
4
√
k
, that is, d = O

(
log(k/δ)
log(1/ν)

)
= O

(√
k log2(k/δ)
δ(1−ρ)

)
. Finally, we let Ã := (UνA)≤d and

B̃ := (UνB)≤d.
We now verify the four properties required of the lemma.

1. By definition, Ã and B̃ have degree at most d.
2. Var(Ãi) =

∑
σ 6=0
|σ|≤d

ν2|σ| · Âi(σ)2 ≤ Var(Ai). Similarly, Var(B̃i) ≤ Var(Bi).

3. For convenience, define A := UνA, and hence Ã = A
≤d. Observe that, since ∆k is a

convex body,
∥∥R(v)− v

∥∥2
2 is a convex function in v ∈ Rk. Thus, we have that,∥∥R(A)−A

∥∥2
2 = E

X∼γn

∥∥R(A(X))−A(X)
∥∥2

2

= E
X∼γn

∥∥∥∥R( E
X′∼Uν(X)

A(X ′)
)
− E

X′∼Uν(X)
A(X ′)

∥∥∥∥2

2

≤ E
X∼γn

E
X′∼Uν(X)

∥∥R (A(X ′))−A(X ′)
∥∥2

2 . . . (using convexity of
∥∥R(v)− v

∥∥2
2)

= E
X′∼γn

∥∥R (A(X ′))−A(X ′)
∥∥2

2

=
∥∥R(A)−A

∥∥2
2 .

Next, observe that,
∥∥∥A>d∥∥∥2

2
=

∑
|σ|>d

ν2|σ| · ‖Â(σ)‖22 ≤ ν2d ·
√
k ≤ δ

4 . Thus, we get

that,∥∥∥R(Ã)− Ã
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2 +

∥∥∥A− Ã∥∥∥
2

. . . (Proposition 23)

=
∥∥R(A)−A

∥∥
2 +

∥∥∥A>d∥∥∥
2

≤
∥∥R(A)−A

∥∥
2 + δ/4 .

Similar argument holds for B̃.
4. For every i, j ∈ [k], we simply have from Lemma 24 that∣∣∣〈Ai, Bj〉G⊗nρ − 〈Ai, Bj〉G⊗nρ ∣∣∣ ≤ ε = δ

2
√
k
.
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Additionally, since
∥∥∥Ãi −Ai∥∥∥

2
≤ δ

4
√
k
and

∥∥∥B̃j −Bj∥∥∥
2
≤ δ

4
√
k
, we get using Lemma 7

that
∣∣∣∣〈Ãi, B̃j〉G⊗nρ − 〈Ai, Bj〉G⊗nρ

∣∣∣∣ ≤ δ
2
√
k
. We get the desired statement by combining

the two above statements. J

B.2 Transformation to Multi-linear
The key idea behind Lemma 22 is similar to that of Lemma 21 in that, we first apply a
transformation on our polynomials that makes it concentrated on multilinear terms, while
slightly increasing the number of variables. Subsequently, we apply a multi-linear truncation
defined as follows.

I Definition 26 (Multilinear truncation). Suppose A ∈ L2(Rn, γn) is given by the Hermite
expansion A(x) =

∑
σ∈Zn≥0

ÂσHσ(x). The multilinear truncation of A is defined as the function

Aml ∈ L2(Rn, γn) given by

Aml(x) :=
∑

σ∈{0,1}n
ÂσHσ(x).

That is, Aml is obtained by retaining only the multilinear terms in the Hermite expansion of
A.
For convenience, also define Anml := A − Aml. Also, for vector valued functions A, we
define Aml as the function obtained by applying the above multilinear truncation on each
coordinate.

I Lemma 27. Given parameters ρ ∈ [0, 1], δ > 0 and d ∈ Z≥0, there exists t = t(d, δ) such
that the following holds:

Let A,B ∈ L2(Rn, γn) be degree-d polynomials, such that
∥∥A∥∥2 ,

∥∥B∥∥2 ≤ 1. Define
polynomials A,B ∈ L2(Rnt, γnt) over variables X :=

{
X

(i)
j : (i, j) ∈ [n]× [t]

}
and Y :={

Y
(i)
j : (i, j) ∈ [n]× [t]

}
respectively, as,

A
(
X
)

:= A(X(1), . . . ,X(n)) and B
(
Y
)

:= B(Y (1), . . . ,Y (n))

where X(i) =
(

X
(i)
1 + · · ·+ X

(i)
t

)
/
√
t and Y (i) =

(
Y

(i)
1 + · · ·+ Y

(i)
t

)
/
√
t.

Since (X(i),Y (i)) is distributed according to Gρ, this transformation doesn’t change the
“structure” of A and B. In particular, it is follows that,〈

A,B
〉
G⊗ntρ

= 〈A,B〉G⊗nρ and
∥∥A∥∥2 =

∥∥A∥∥2 and
∥∥B∥∥2 =

∥∥B∥∥2

Next, let Aml
, B

ml ∈ L2(Rnt, γnt) be the multilinear truncations of A and B respectively.
Then the following hold,
1. Aml and Bml are multilinear with degree at most d.
2. Var(Aml) ≤ Var(A) ≤ 1 and Var(Bml) ≤ Var(B) ≤ 1.
3.
∥∥∥Aml −A

∥∥∥
2
,
∥∥∥Bml −B

∥∥∥
2
≤ δ/2.

4.
∣∣∣∣〈Aml

, B
ml〉
G⊗ntρ

− 〈A,B〉G⊗nρ

∣∣∣∣ ≤ δ.

In particular, one may take t = O
(
d2

δ2

)
.
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In order to prove Lemma 27, we will need the following multinomial theorem for Hermite
polynomials. It can be proved quite easily using the generating function for Hermite
polynomials.

I Fact 28 (Multinomial theorem for Hermite polynomials). Let β1, . . . , βt ∈ R satisfying∑t
i=1 β

2
i = 1. Then, for any d ∈ N, it holds that

Hd (β1X1 + · · ·+ βtXt) =
∑

d1,...,dt∈Z≥0
d1+···+dt=d

√
d!

d1! · · · dt!
·
t∏
i=1

βdii Hdi(Xi) .

Proof of Lemma 27. Before we prove the theorem, we will first understand the effect of
the transformation from X to X for a univariate Hermite polynomial. Instantiating βi’s in
Fact 28 with 1/

√
t, we get that,

Hd

(
X1 + · · ·+Xt√

t

)
=

∑
d1,...,dt∈Z≥0
d1+···+dt=d

√
d!

d1! · · · dt!
·
∏t
i=1Hdi(Xi)
td/2

.

We will split the terms into multilinear and non-multilinear terms, writing the above as
Hml
d +Hnml

d . Note that there are at most O(d
2td−1

d! ) non-multilinear terms (for t� d2). Also,
note that each coefficient 1

td/2 ·
√

d!
d1!···dt! is at most

√
d!
td
. Thus, we can bound

∥∥Hnml
d

∥∥
2 as

follows,

∥∥Hnml
d

∥∥2
2 =

∑
d1,...,dt∈Z≥0
d1+···+dt=d
∃i di≥2

(
1
td/2
·
√

d!
d1! · · · dt!

)2

≤ O

(
d2td−1

d!

)
· d!
td
≤ O

(
d2

t

)
(26)

More generally, if we consider a term Hσ

(
X
)

= Hσ1(X(1)) ·Hσ2(X(2)) · · ·Hσn(X(n)), where
each X(i) =

(
X

(i)
1 + · · ·+X

(i)
t

)
/
√
t. Let’s write Hσ

(
X
)

= H
ml
σ

(
X
)

+ H
nml
σ

(
X
)
, that

is, separating out the multilinear and non-multilinear terms. Similarly, for any i, let
Hσi(X(i)) = Hml

σi (X(i)) + Hnml
σi (X(i)). We wish to bound

∥∥∥Hnml
σ

∥∥∥
2
, which can be done as

follows,

∥∥∥Hnml
σ

∥∥∥2

2
=
∥∥∥∥ n∏
i=1

(Hml
σi +Hnml

σi )−
n∏
i=1

Hml
σi

∥∥∥∥2

2

≤
n∏
i=1

(
1 +O

(
σ2
i

t

))
− 1 (from Equation 26)

≤ O

(
|σ|2

t

)
(since, t� |σ|2)

Thus,
∥∥∥Hnml

σ

∥∥∥2

2
< δ2/4. (for t = Θ(d2/δ2)) (27)

We are now ready to prove the parts of Lemma 27.

1. It holds by definition that Aml and Bml are multilinear. Also, note that the transformation
from A to A and finally to Aml does not increase the degree. So both Aml and Bml have
degree at most d.
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2. It is easy to see that Var(A) = Var(A). Since Aml is obtained by truncating certain
Hermite coefficients of A, it immediately follows that Var(Aml) ≤ Var(A) = Var(A) ≤ 1.
Similarly, Var(Bml) ≤ Var(B) ≤ 1.

3. Recall that Anml = A − A
ml. We wish to bound

∥∥∥Anml
∥∥∥2

2
≤ δ2/4. Consider the

Hermite expansion of A, namely A(X) =
∑
σ∈Zn≥0

Â(σ) ·Hσ(X). Note that, Anml (
X
)

=∑
σ∈Zn≥0

Â(σ) ·Hnml
σ

(
X
)
, where recall that Hnml

σ is the non-multilinear part of Hσ

(
X
)

=

Hσ1(X(1)) ·Hσ2(X(2)) · · ·Hσn(X(n)), where each X(i) =
(
X

(i)
1 + · · ·+X

(i)
t

)
/
√
t.

From Equation 27, we have that for any σ ∈ Zn≥0, it holds that
∥∥∥Hnml

σ

∥∥∥2

2
< δ2/4. And

hence we get that,∥∥∥Anml
∥∥∥2

2
=
∑
σ

Â(σ)2 ·
∥∥∥Hnml

σ

∥∥∥2

2
≤
∑
σ

Â(σ)2 · (δ2/4) = (δ2/4)
∥∥A∥∥2

2 ≤ (δ2/4).

Note that, here we use that Hσ(X) are mutually orthogonal for different σ. Similarly,
we can also get that

∥∥∥Bnml
∥∥∥2

2
≤ δ2/4.

4. Note that we already have,〈
A,B

〉
G⊗ntρ

= 〈A,B〉G⊗nρ .

And combining Part 3 and Lemma 7, we immediately get that∣∣∣∣〈Aml
, B

ml〉
G⊗ntρ

−
〈
A,B

〉
G⊗ntρ

∣∣∣∣ ≤ δ

where we use that
∥∥∥Bml

∥∥∥
2
≤
∥∥B∥∥2 ≤ 1 and

∥∥∥Aml
∥∥∥

2
≤
∥∥A∥∥2 ≤ 1. J

Proof of Lemma 22. We apply the transformation in Lemma 27, with parameter δ being
δ/
√
k, to each of the k-coordinates of A : Rn → Rk and B : Rn → Rk to get polynomials

Ã : Rnt → Rk and B̃ : Rn → Rk. Namely, for any j ∈ [k], we set Ãj(X) = A
ml
j (X) and

B̃j(Y ) = B
ml
j (Y )as described in Lemma 27.

It is easy to see that parts 1, 2, 4 follow immediately from the conditions satisfied in
Lemma 27. For part 3, we have that

∥∥∥Aml
j −Aj

∥∥∥
2
≤ δ/

√
k for every j ∈ [k], which implies

that
∥∥∥Aml −A

∥∥∥
2
≤ δ. Using Proposition 23, we immediately get that,∥∥∥R(Aml)−Aml
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2 + δ .

Finally, it is a simple observation that
∥∥R(A)−A

∥∥
2 =

∥∥R(A)−A
∥∥

2, and hence,∥∥∥R(Ã)− Ã
∥∥∥

2
≤
∥∥R(A)−A

∥∥
2 + δ .

Similarly,
∥∥∥R(B̃)− B̃

∥∥∥
2
≤
∥∥R(B)−B

∥∥
2 + δ. This concludes the proof. J
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