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Preface

This volume contains papers presented at the 17th International Symposium on Experimental
Algorithms (SEA 2018), held June 27–29, 2018, in L’Aquila, Italy.

Since 2002, the series of SEA symposia (previously known as Workshop on Experimental
Algorithms, WEA) bring together specialists and young researchers working in experimental
algorithms and algorithm engineering, encouraging high-quality research in the area. Previous
WEA and SEA meetings have been held in Latvia, Switzerland, Brazil, Greece, Spain, Italy,
USA, Germany, Denmark, France, Russia, and UK.

We solicited papers in the broad area of design, analysis, and experimental evaluation
and engineering of algorithms, as well as of combinatorial optimization and its applications.
In response to the call for papers, we received 70 submissions, with the Program Committee
deciding to accept 30 papers. Each submission was reviewed by at least three program
committee members with the help of several external reviewers. Papers were submitted
and reviewed using the EasyChair online system. Authors of accepted papers come from 20
countries, across five continents.

In addition to the accepted contributions, the program also included three invited lectures
by Dorothea Wagner (KIT), Giuseppe Italiano (University of Rome Tor Vergata), and Simon
J. Puglisi (University of Helsinki).

We would like to thank all the authors who responded to the call for papers, the invited
speakers, the members of the PC, the external reviewers, and the members of the Organizing
Committee. We also thank the SEA steering committee for giving us the opportunity to
host SEA 2018.

L’Aquila Gianlorenzo D’Angelo
June 2018
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Network Flow-Based Refinement for Multilevel
Hypergraph Partitioning
Tobias Heuer
Karlsruhe Institute of Technology, Germany
tobias.heuer@gmx.net

Peter Sanders
Karlsruhe Institute of Technology, Germany
sanders@kit.edu

Sebastian Schlag
Karlsruhe Institute of Technology, Germany
sebastian.schlag@kit.edu

Abstract
We present a refinement framework for multilevel hypergraph partitioning that uses max-flow
computations on pairs of blocks to improve the solution quality of a k-way partition. The frame-
work generalizes the flow-based improvement algorithm of KaFFPa from graphs to hypergraphs
and is integrated into the hypergraph partitioner KaHyPar. By reducing the size of hypergraph
flow networks, improving the flow model used in KaFFPa, and developing techniques to improve
the running time of our algorithm, we obtain a partitioner that computes the best solutions
for a wide range of benchmark hypergraphs from different application areas while still having a
running time comparable to that of hMetis.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Multilevel Hypergraph Partitioning, Network Flows, Refinement

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.1

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
03587.

1 Introduction

Given an undirected hypergraph H = (V,E), the k-way hypergraph partitioning problem
is to partition the vertex set into k disjoint blocks of bounded size (at most 1 + ε times
the average block size) such that an objective function involving the cut hyperedges is
minimized. Hypergraph partitioning (HGP) has many important applications in practice
such as scientific computing [10] or VLSI design [40]. Particularly VLSI design is a field
where small improvements can lead to significant savings [53].

It is well known that HGP is NP-hard [35], which is why practical applications mostly
use heuristic multilevel algorithms [9, 11, 22, 23]. These algorithms successively contract
the hypergraph to obtain a hierarchy of smaller, structurally similar hypergraphs. After
applying an initial partitioning algorithm to the smallest hypergraph, contraction is undone
and, at each level, a local search method is used to improve the partitioning induced by the
coarser level. All state-of-the-art HGP algorithms [2, 4, 6, 14, 25, 29, 30, 31, 45, 48, 49, 51]
either use variations of the Kernighan-Lin (KL) [32, 46] or the Fiduccia-Mattheyses (FM)
heuristic [17, 43], or simpler greedy algorithms [30, 31] for local search. These heuristics move
vertices between blocks in descending order of improvements in the optimization objective

© Tobias Heuer, Peter Sanders, and Sebastian Schlag;
licensed under Creative Commons License CC-BY
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1:2 Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

(gain) and are known to be prone to get stuck in local optima when used directly on the
input hypergraph [31]. The multilevel paradigm helps to some extent, since it allows a more
global view on the problem on the coarse levels and a very fine-grained view on the fine
levels of the hierarchy. However, the performance of move-based approaches degrades for
hypergraphs with large hyperedges. In these cases, it is difficult to find meaningful vertex
moves that improve the solution quality because large hyperedges are likely to have many
vertices in multiple blocks [50]. Thus the gain of moving a single vertex to another block is
likely to be zero [38].

While finding balanced minimum cuts in hypergraphs is NP-hard, a minimum cut separ-
ating two vertices can be found in polynomial time using network flow algorithms and the
max-flow min-cut theorem [19]. Flow algorithms find an optimal min-cut and do not suffer
the drawbacks of move-based approaches. However, they were long overlooked as heuristics
for balanced partitioning due to their high complexity [37, 54]. Sanders and Schulz [44]
presented a max-flow-based improvement algorithm for graph partitioning which is integrated
into the multilevel partitioner KaFFPa and computes high quality solutions.

Outline and Contribution. Motivated by the results of Sanders and Schulz [44], we gener-
alize the max-flow min-cut refinement framework of KaFFPa from graphs to hypergraphs.
After introducing basic notation and giving a brief overview of related work and the tech-
niques used in KaFFPa in Section 2, we explain how hypergraphs are transformed into flow
networks and present a technique to reduce the size of the resulting hypergraph flow network
in Section 3.1. In Section 3.2 we then show how this network can be used to construct a flow
problem such that the min-cut induced by a max-flow computation between a pair of blocks
improves the solution quality of a k-way partition. We furthermore identify shortcomings of
the KaFFPa approach that restrict the search space of feasible solutions significantly and
introduce an advanced model that overcomes these limitations by exploiting the structure of
hypergraph flow networks. We implemented our algorithm in the open source HGP framework
KaHyPar and therefore briefly discuss implementation details and techniques to improve
the running time in Section 3.3. Extensive experiments presented in Section 4 demonstrate
that our flow model yields better solutions than the KaFFPa approach for both hypergraphs
and graphs. We furthermore show that using pairwise flow-based refinement significantly
improves partitioning quality. The resulting hypergraph partitioner, KaHyPar-MF, performs
better than all competing algorithms on all instance classes and still has a running time
comparable to that of hMetis. On a large benchmark set consisting of 3222 instances from
various application domains, KaHyPar-MF computes the best partitions in 2427 cases.

2 Preliminaries

2.1 Notation and Definitions
An undirected hypergraph H = (V,E, c, ω) is defined as a set of n vertices V and a set of m
hyperedges/nets E with vertex weights c : V → R>0 and net weights ω : E → R>0, where
each net e is a subset of the vertex set V (i.e., e ⊆ V ). The vertices of a net are called pins.
We extend c and ω to sets, i.e., c(U) :=

∑
v∈U c(v) and ω(F ) :=

∑
e∈F ω(e). A vertex v is

incident to a net e if v ∈ e. I(v) denotes the set of all incident nets of v. The degree of a
vertex v is d(v) := |I(v)|. The size |e| of a net e is the number of its pins. Given a subset
V ′ ⊂ V , the subhypergraph HV ′ is defined as HV ′ := (V ′, {e ∩ V ′ | e ∈ E : e ∩ V ′ 6= ∅}).

A k-way partition of a hypergraph H is a partition of its vertex set into k blocks
Π = {V1, . . . , Vk} such that

⋃k
i=1 Vi = V , Vi 6= ∅ for 1 ≤ i ≤ k, and Vi ∩ Vj = ∅ for i 6= j.
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We call a k-way partition Π ε-balanced if each block Vi ∈ Π satisfies the balance constraint:
c(Vi) ≤ Lmax := (1 + ε)d c(V )

k e for some parameter ε. For each net e, Λ(e) := {Vi | Vi∩ e 6= ∅}
denotes the connectivity set of e. The connectivity of a net e is λ(e) := |Λ(e)|. A net
is called cut net if λ(e) > 1. Given a k-way partition Π of H, the quotient graph Q :=
(Π, {(Vi, Vj) | ∃e ∈ E : {Vi, Vj} ⊆ Λ(e)}) contains an edge between each pair of adjacent
blocks. The k-way hypergraph partitioning problem is to find an ε-balanced k-way partition
Π of a hypergraph H that minimizes an objective function over the cut nets for some ε. The
most commonly used cost functions are the cut-net metric cut(Π) :=

∑
e∈E′ ω(e) and the

connectivity metric (λ − 1)(Π) :=
∑
e∈E′(λ(e) − 1) ω(e) [1], where E′ is the set of all cut

nets [15]. In this paper, we use the (λ− 1)-metric. Optimizing both objective functions is
known to be NP-hard [35]. In the following, we use nodes and edges when referring to graphs
and vertices and nets when referring to hypergraphs. Hypergraphs can be represented as
bipartite graphs [27]: In the star-expansion G∗(V ∪̇E,F ) the vertices and nets of H form
the node set and for each net e ∈ I(v), we add an edge (e, v) to G∗. The edge set F is thus
defined as F := {(e, v) | e ∈ E, v ∈ e}. Each net in E therefore corresponds to a star in G∗.

Let G = (V,E, c, ω) be a weighted directed graph. We use the same notation to refer to
node weights c, edge weights ω, and node degrees d(v). Furthermore Γ(u) := {v : (u, v) ∈ E}
denotes the neighbors of node u. A path P = 〈v1, . . . , vk〉 is a sequence of nodes, such that each
pair of consecutive nodes is connected by an edge. A strongly connected component C ⊆ V
is a set of nodes such that for each u, v ∈ C there exists a path from u to v. A topological
ordering is a linear ordering ≺ of V such that every directed edge (u, v) ∈ E implies u ≺ v
in the ordering. A set of nodes B ⊆ V is called a closed set iff there are no outgoing edges
leaving B, i.e., if the conditions u ∈ B and (u, v) ∈ E imply v ∈ B. A subset S ⊂ V is called
a node separator if its removal divides G into two disconnected components. Given a subset
V ′ ⊂ V , the induced subgraph G[V ′] is defined as G[V ′] := (V ′, {(u, v) ∈ E | u, v ∈ V ′}).

A flow network N = (V, E , c) is a directed graph with two distinguished nodes s and
t in which each edge e ∈ E has a capacity c(e) ≥ 0. An (s , t)-flow (or flow) is a function
f : V × V → R that satisfies the capacity constraint ∀u, v ∈ V : f(u, v) ≤ c(u, v), the skew
symmetry constraint ∀u, v ∈ V × V : f(u, v) = −f(v, u), and the flow conservation constraint
∀u ∈ V \ {s , t} :

∑
v∈V f(u, v) = 0. The value of a flow |f | :=

∑
v∈V f(s , v) is defined as the

total amount of flow transferred from s to t . The residual capacity is defined as rf (u, v) =
c(u, v)− f(u, v). Given a flow f , Nf = (V, Ef , rf ) with Ef = {(u, v) ∈ V × V | rf (u, v) > 0}
is the residual network. An (s , t )-cut (or cut) is a bipartition (S,V \ S) of a flow network N
with s ∈ S ⊂ V and t ∈ V \ S. The capacity of an (s , t)-cut is defined as

∑
e∈E′ c(e), where

E ′ = {(u, v) ∈ E : u ∈ S, v ∈ V \ S}. The max-flow min-cut theorem states that the value |f |
of a maximum flow f is equal to the capacity of a minimum cut separating s and t [19].

2.2 Related Work

Hypergraph Partitioning. HGP has evolved into a broad research area since the 1990s. We
refer to existing literature [5, 7, 40, 47] for an extensive overview. Well-known multilevel HGP
software packages with certain distinguishing characteristics include PaToH [10] (originating
from scientific computing), hMetis [30, 31] (originating from VLSI design), KaHyPar [2, 25, 45]
(general purpose, n-level), Mondriaan [51] (sparse matrix partitioning), MLPart [4] (circuit
partitioning), Zoltan [14], Parkway [48] and SHP [29] (distributed), UMPa [49] (directed
hypergraph model, multi-objective), and kPaToH (multiple constraints, fixed vertices) [6].
All of these tools use move-based local search algorithms in the refinement phase.
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Flows on Hypergraphs. While flow-based approaches have not yet been considered as
refinement algorithms for multilevel HGP, several works deal with flow-based hypergraph
min-cut computation. The problem of finding minimum (s , t )-cuts in hypergraphs was first
considered by Lawler [33], who showed that it can be reduced to computing maximum
flows in directed graphs. Hu and Moerder [27] present an augmenting path algorithm to
compute a minimum-weight node separator on the star-expansion of the hypergraph. Their
node-capacitated network can also be transformed into an edge-capacitated network using a
transformation due to Lawler [34]. Yang and Wong [54] use repeated, incremental max-flow
min-cut computations on the Lawler network [33] to find ε-balanced hypergraph bipartitions.
Solution quality and running time of this algorithm are improved by Lillis and Cheng [36]
by introducing advanced heuristics to select source and sink nodes. Furthermore, they
present a preflow-based [20] min-cut algorithm that implicitly operates on the star-expanded
hypergraph. Pistorius and Minoux [42] generalize the algorithm of Edmonds and Karp [16]
to hypergraphs by labeling both vertices and nets. Liu and Wong [37] simplify Lawler’s
hypergraph flow network [33] by explicitly distinguishing between graph edges and hyperedges
with three or more pins. This approach significantly reduces the size of flow networks derived
from VLSI hypergraphs, since most of the nets in a circuit are graph edges. Note that the
above-mentioned approaches to model hypergraphs as flow networks for max-flow min-cut
computations do not contradict the negative results of Ihler et al. [28], who show that, in
general, there does not exist an edge-weighted graph G = (V,E) that correctly represents
the min-cut properties of the corresponding hypergraph H = (V,E).

KaHyPar. Since our algorithm is integrated into the KaHyPar framework, we briefly review
its core components. While traditional multilevel HGP algorithms contract matchings or
clusterings and therefore work with a coarsening hierarchy of O(logn) levels, KaHyPar
instantiates the multilevel paradigm in the extreme n-level version, removing only a single
vertex between two levels. After coarsening, a portfolio of simple algorithms is used to create
an initial partition of the coarsest hypergraph. During uncoarsening, strong localized local
search heuristics based on the FM algorithm [17, 43] are used to refine the solution. Our work
builds on KaHyPar-CA [25], which is a direct k-way partitioning algorithm for optimizing the
(λ− 1)-metric. It uses an improved coarsening scheme that incorporates global information
about the community structure of the hypergraph into the coarsening process.

2.3 The Flow-Based Improvement Framework of KaFFPa
We discuss the framework of Sanders and Schulz [44] in greater detail, since our work makes
use of the techniques proposed by the authors. For simplicity, we assume k = 2. The
techniques can be applied on a k-way partition by repeatedly executing the algorithm on
pairs of adjacent blocks. To schedule these refinements, the authors propose an active block
scheduling algorithm, which schedules blocks adjacent in the quotient graph Q as long as
their participation in a pairwise refinement step improves solution quality or imbalance.

An ε-balanced bipartition of a graph G = (V,E, c, ω) is improved with flow computations
as follows. The basic idea is to construct a flow network N based on the induced subgraph
G[B], where B ⊆ V is a set of nodes around the cut of G. The size of B is controlled by an
imbalance factor ε′ := αε, where α is a scaling parameter that is chosen adaptively depending
on the result of the min-cut computation. If the heuristic found an ε-balanced partition
using ε′, the cut is accepted and α is increased to min(2α, α′) where α′ is a predefined upper
bound. Otherwise it is decreased to max(α2 , 1). This scheme continues until a maximal
number of rounds is reached or a feasible partition that did not improve the cut is found.
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In each round, the corridor B := B1 ∪B2 is constructed by performing two breadth-first
searches (BFS). The first BFS is done in the induced subgraph G[V1]. It is initialized with the
boundary nodes of V1 and stops if c(B1) would exceed (1+ε′)d c(V )

2 e−c(V2). The second BFS
constructs B2 in an analogous fashion using G[V2]. Let δB := {u ∈ B | ∃(u, v) ∈ E : v /∈ B}
be the border of B. Then N is constructed by connecting all border nodes δB ∩ V1 of G[B]
to the source s and all border nodes δB ∩ V2 to the sink t using directed edges with an
edge weight of ∞. By connecting s and t to the respective border nodes, it is ensured that
edges incident to border nodes, but not contained in G[B], cannot become cut edges. For
α = 1, the size of B thus ensures that the flow network N has the cut property, i.e., each
(s , t )-min-cut in N yields an ε-balanced partition of G with a possibly smaller cut. For larger
values of α, this does not have to be the case.

After computing a max-flow in N , the algorithm tries to find a min-cut with better
balance. This is done by exploiting the fact that one (s , t)-max-flow contains information
about all (s , t)-min-cuts [41]. More precisely, the algorithm uses the 1–1 correspondence
between (s , t)-min-cuts and closed sets containing s in the Picard-Queyranne-DAG Ds,t of
the residual graph Nf [41]. First, Ds,t is constructed by contracting each strongly connected
component of the residual graph. Then the following heuristic (called most balanced minimum
cuts) is repeated several times using different random seeds. Closed sets containing s are
computed by sweeping through the nodes of Ds,t in reverse topological order (e.g. computed
using a randomized DFS). Each closed set induces a differently balanced min-cut and the one
with the best balance (with respect to the original balance constraint) is used as bipartition.

3 Hypergraph Max-Flow Min-Cut Refinement

In the following, we generalize the KaFFPa algorithm to hypergraph partitioning. In
Section 3.1 we first show how hypergraph flow networks N are constructed in general and
introduce a technique to reduce their size by removing low-degree vertices. Given a k-way
partition Πk = {V1, . . . , Vk} of a hypergraph H, a pair of blocks (Vi, Vj) adjacent in the
quotient graph Q, and a corridor B, Section 3.2 then explains how N is used to build a
flow problem F based on the subhypergraph HB = (VB , EB). F is constructed such that an
(s , t )-max-flow computation optimizes the cut metric of the bipartition Π2 = (Vi, Vj) of HB

and thus improves the (λ− 1)-metric in H. Section 3.3 then discusses the integration into
KaHyPar and introduces several techniques to speed up flow-based refinement. A pseudocode
description of the entire flow-based refinement framework is given in Appendix A.

3.1 Hypergraph Flow Networks
From Hypergraphs to Flow Networks. Given a hypergraph H = (V,E, c, ω) and two
distinct vertices s and t , we first reduce the problem of finding an (s , t )-min-cut in H to the
problem of finding a minimum-weight (s , t )-node-separator in the star-expansion G∗, where
each star-node e has weight c(e) = ω(e) and all other nodes v have a weight of infinity [27].

This network is then transformed into the edge-capacitated flow network N = (V, E , c)
of Lawler [33] as follows: V contains all non-star nodes v. For each star-node e, add two
bridging nodes e′ and e′′ to V and a bridging edge (e′, e′′) with capacity c(e′, e′′) = c(e) to E .
For each neighbor u ∈ Γ(e), add two edges (u, e′) and (e′′, u) with infinite capacity to E .

The size of this network can be reduced by distinguishing between star-nodes corresponding
to multi-pin nets and those corresponding to two-pin nets in H. In the flow network of
Liu and Wong [37] the former are transformed as described above, while the latter (i.e.,
star-nodes e with |Γ(e)| = |{u, v}| = 2) are replaced with two edges (u, v) and (v, u) with
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Lawler Network [33] Liu-Wong Network [37] Our NetworkHypergraph H/Star-Expansion G∗

s

t

s

t

s

t

s

t

Figure 1 Unweighted hypergraph H with overlayed star-expansion G∗ and illustration of the
corresponding hypergraph flow networks. Thin, directed edges have infinite capacity, thick edges
have unit capacity. Differences between the networks are highlighted in red: Special treatment of
two-pin nets in the network of Liu and Wong [37], removal of low degree vertices in our network.

capacity c(e). For each such star-node, this decreases the network size by two nodes and
three edges. Figure 1 shows both networks as well as ours, which we describe in the following.

Removing Low Degree Vertices. We further decrease the network size by using the ob-
servation that the (s , t )-node-separator in G∗ has to be a subset of the star-nodes, since all
other nodes have infinite capacity. Thus it is possible to replace any infinite-capacity node
by adding a clique between all adjacent star-nodes without affecting the separator. The key
observation now is that an infinite-capacity node v with degree d(v) induces 2d(v) edges in
the Lawler network [33], while a clique between star-nodes induces d(v)(d(v)− 1) edges. For
non-star nodes v with d(v) ≤ 3, it therefore holds that d(v)(d(v)− 1) ≤ 2d(v). We therefore
remove all infinite-capacity nodes v corresponding to hypernodes with d(v) ≤ 3 that are not
incident to any two-pin nets by adding a clique between all star-nodes Γ(v). In case v was
either source or sink, we create a multi-source multi-sink problem by adding the star-nodes
Γ(v) to the set of sources resp. sinks [18]. We then apply transformation of Liu and Wong.

Reconstructing Min-Cuts. After computing an (s , t )-max-flow f in the Lawler or Liu-Wong
network, an (s , t)-min-cut of H can then be computed by a BFS in the residual graph Nf
starting from s [33]. Let S be the set of nodes corresponding to vertices of H reached by the
BFS. Then (S, V \ S) is an (s , t)-min-cut. Since our network does not contain low degree
vertices, we use the following lemma to compute an (s , t)-min-cut of H:

I Lemma 1. Let f be a maximum (s , t)-flow in the Lawler network N = (V, E) of a
hypergraph H = (V,E) and (S,V \ S) be the corresponding (s , t)-min-cut in N . Then for
each node v ∈ S ∩ V , the residual graph Nf = (Vf , Ef ) contains at least one path 〈s , . . . , e′′〉
to a bridging node e′′ of a net e ∈ I(v).

Proof. The proof can be found in Appendix B. J

Thus (A, V \A) is an (s , t )-min-cut of H, where A := {v ∈ e | ∃e ∈ E : 〈s , . . . , e′′〉 in Nf}.
Furthermore this allows us to employ the most balanced minimum cut heuristic as described
in Section 2.3. By the definition of closed sets it follows that if a bridging node e′′ is contained
in a closed set C, then all nodes v ∈ Γ(e′′) (which correspond to vertices of H) are also
contained in C. Thus we can use the respective bridging nodes e′′ as representatives of
removed low degree vertices.
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3.2 Constructing the Hypergraph Flow Problem
Let HB = (VB , EB) be the subhypergraph of H = (V,E) that is induced by a corridor B
computed in the bipartition Π2 = (Vi, Vj). In the following, we distinguish between the set of
internal border nodes −→B := {v ∈ VB | ∃e ∈ E : {u, v} ⊆ e ∧ u /∈ VB} and the set of external
border nodes ←−B := {u /∈ VB | ∃e ∈ E : {u, v} ⊆ e ∧ v ∈ VB}. Similarly, we distinguish
between external nets (e ∩ VB = ∅) with no pins inside HB , internal nets (e ∩ VB = e) with
all pins inside HB , and the set of border nets ←→EB := {e ∈ E | e ∈ I(−→B ) ∩ I(←−B )}.

A hypergraph flow problem consists of a flow network NB = (VB , EB) derived from HB

and two additional nodes s and t that are connected to some nodes v ∈ VB. It has the
cut property if the max-flow induced min-cut bipartition Πf of HB does not increase the
(λ− 1)-metric in H. Thus it has to hold that cut(Πf ) ≤ cut(Π2). While external nets are
not affected by a max-flow computation, the max-flow min-cut theorem [19] ensures the cut
property for all internal nets. Border nets however require special attention. Since a border
net e is only partially contained in HB and NB, it will remain connected to the blocks of
its external border nodes in H. In case external border nodes connect e to both Vi and Vj ,
it will remain a cut net in H even if it is removed from the cut-set in Πf . It is therefore
necessary to “encode” information about external border nodes into the flow problem.

The KaFFPa Model and its Limitations. In KaFFPa, this is done by directly connecting
internal border nodes −→B to s and t . This approach can also be used for hypergraphs. In
the hypergraph flow problem FG, the source s is connected to all nodes S = −→B ∩ Vi and all
nodes T = −→B ∩ Vj are connected to t using directed edges with infinite capacity. While this
ensures that FG has the cut property, it unnecessarily restricts the search space. Since all
internal border nodes −→B are connected to either s or t , every min-cut (S, VB \ S) will have
S ⊆ S and T ⊆ VB \ S. The KaFFPa model therefore prevents all min-cuts in which any
non-cut border net (i.e., e ∈ ←→EB with λ(e) = 1) becomes part of the cut-set. This restricts
the space of possible solutions, since corridor B was computed such that even a min-cut
along either side of the border would result in a feasible cut in HB . Thus, ideally, all vertices
v ∈ B should be able to change their block as result of an (s , t )-max-flow computation on FG
– not only vertices v ∈ B \ −→B . This limitation becomes increasingly relevant for hypergraphs
with large nets as well as for partitioning problems with small imbalance ε, since large nets
are likely to be only partially contained in HB and tight balance constraints enforce small
B-corridors. While the former is a problem only for HGP, the latter also applies to GP.

A more flexible Model. We exploit the structure of hypergraph flow networks such that
(s , t)-max-flow computations can also cut through non-cut border nets. Instead of directly
connecting s and t to internal border nodes −→B and thus preventing all min-cuts in which
these nodes switch blocks, we conceptually extend HB to contain all external border nodes←−B
and all border nets ←→EB . The resulting hypergraph is ←−HB = (VB ∪

←−
B, {e ∈ E | e ∩ VB 6= ∅}).

The key insight now is that by using the flow network of ←−HB and connecting s resp. t to the
external border nodes ←−B ∩ Vi resp.

←−
B ∩ Vj , we get a flow problem that does not lock any

node v ∈ VB in its block, since none of them is directly connected to either s or t . Due to the
max-flow min-cut theorem [19], this flow problem has the cut property, since all border nets
of HB are now internal nets and all external border nodes ←−B are locked inside their block.
However, it is not necessary to use←−HB instead of HB to achieve this result. For all v ∈ ←−B the
flow network of ←−HB contains paths 〈s , v, e′〉 and 〈e′′, v, t〉 that only involve infinite-capacity
edges. Therefore we can remove all nodes v ∈ ←−B by directly connecting s and t to the
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Figure 2 Comparison of the KaFFPa flow problem FG and our flow problem FH . For clarity the
zoomed in view is based on the Lawler network.

corresponding bridging nodes e′, e′′ via infinite-capacity edges without affecting the maximal
flow [18]. More precisely, in the flow problem FH , we connect s to all bridging nodes e′

corresponding to border nets e ∈ ←→EB : e ⊂ ←−B ∩ Vi and all bridging nodes e′′ corresponding
to border nets e ∈ ←→EB : e ⊂ ←−B ∩ Vj to t using directed, infinite-capacity edges.

Single-Pin Border Nets. Furthermore, we model border nets with |e ∩ −→B | = 1 more
efficiently. For such a net e, the flow problem contains paths of the form 〈s , e′, e′′, v〉 or
〈v, e′, e′′, t〉 which can be replaced by paths of the form 〈s , e′, v〉 or 〈v, e′′, t〉 with c(e′, v) = ω(e)
resp. c(v, e′′) = ω(e). In both cases we can thus remove one bridging node and two infinite-
capacity edges. A comparison of FG and FH is shown in Figure 2.

3.3 Implementation Details

Since KaHyPar is an n-level partitioner, its FM-based local search algorithms are executed
each time a vertex is uncontracted. To prevent expensive recalculations, it therefore uses a
cache to maintain the gain values of FM moves throughout the n-level hierarchy [2]. In order
to combine our algorithm with FM local search, we not only perform the moves induced by
the max-flow min-cut computation but also update the FM gain cache accordingly. Since
it is not feasible to execute our algorithm on every level of the n-level hierarchy, we use
an exponentially spaced approach that performs flow-based refinements after uncontracting
i = 2j vertices for j ∈ N+. This way, the algorithm is executed more often on smaller
flow problems than on larger ones. To further improve the running time, we introduce the
following speedup techniques: We modify active block scheduling such that after the first
round the algorithm is only executed on a pair of blocks if at least one execution using these
blocks lead to an improvement on previous levels (S1). We skip flow-based refinement if the
cut between two adjacent blocks is less than ten on all levels except the finest (S2). We stop
resizing the B-corridor if the current cut did not improve the previously best solution (S3).

4 Experimental Evaluation

We implemented the max-flow min-cut refinement algorithm in KaHyPar. Our imple-
mentation is available from http://www.kahypar.org. The code is written in C++ and
compiled using g++-5.2 with flags -O3 -march=native. We refer to our new algorithm as
KaHyPar-MF.

http://www.kahypar.org
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Instances. All experiments use the benchmark set of Heuer and Schlag [25], which contains
488 hypergraphs derived from four benchmark sets: the ISPD98 VLSI Circuit Benchmark
Suite [3], the DAC 2012 Routability-Driven Placement Contest [52], the SuiteSparse Matrix
Collection [13], and the international SAT Competition 2014 [8]. All hypergraphs have unit
vertex and net weights. The full benchmark set is referred to as set A. We furthermore
use the representative subset of 165 hypergraphs proposed in [25] (set B) and a smaller
subset consisting of 25 hypergraphs (set C). Furthermore we use 15 graphs from [39] to
compare our flow model FH to the KaFFPa model FG (set D). Unless mentioned otherwise,
all (hyper-)graphs are partitioned into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks with ε = 0.03. For
each value of k, a k-way partition is considered to be one test instance, resulting in a total of
105 instances for set D, 175 instances for set C, 1155 instances for set B and 3416 instances
for set A. An overview about the different benchmark sets is given in Appendix C.

System and Methodology. We compare KaHyPar-MF to KaHyPar-CA, the k-way (hMetis-
K) and recursive bisection variants (hMetis-R) of hMetis 2.0 (p1) [30, 31], and PaToH 3.2 [10],
as these provide the best solution quality [2, 25]. The results of these tools are available
online1 and report the arithmetic mean of the computed cut and running time as well as the
best cut found for ten repetitions with different seeds per instance. Since PaToH ignores
the seed if configured to use the quality preset, the results contain one run of the quality
(PaToH-Q) and ten runs using the default preset (PaToH-D). Each partitioner had a time
limit of eight hours per instance. We use the same number of repetitions and the same time
limit for our experiments2. Furthermore the experiments are performed on the same machine,
which runs RHEL 7.2 and consists of two Intel Xeon E5-2670 Octa-Core processors clocked
at 2.6 GHz, 64 GB main memory, 20 MB L3- and 8x256 KB L2-Cache. When averaging over
different instances we use the geometric mean in order to give every instance a comparable
influence on the final result. To compare the algorithms in terms of solution quality, we
use improvement plots. For each algorithm, these plots relate the minimum connectivity of
KaHyPar-MF to the minimum connectivity of the algorithm on a per-instance basis. For
each algorithm, these ratios are sorted in decreasing order. The plots use a cube root scale
for the y-axis to reduce right skewness [12] and show the improvement of KaHyPar-MF in
percent (i.e., 1−(KaHyPar-MF/algorithm)). A value below zero indicates that KaHyPar-MF
performed worse than the corresponding algorithm, while a value above zero indicates that
KaHyPar-MF performed better than the algorithm in question. A value of zero implies that
the partitions of both algorithms had the same solution quality. Values above one correspond
to infeasible solutions that violated the balance constraint. To include instances with a
connectivity of zero into the results, we set these values to one for ratio computations.

4.1 Evaluating Flow Networks and Models
Flow Networks. To analyze the effects of the different flow networks we compute five
bipartitions for each hypergraph of set B with KaHyPar-CA. These are then used to generate
flow networks for a corridor of size |B| = 25 000 vertices around the cut, from which we
create flow problems FH . Due to space constraints, we only report how the reductions in
network size translate to improved running times of the max-flow algorithm and refer to
the full version of the paper [26] for a detailed discussion. We use the highly tuned IBFS

1 http://algo2.iti.kit.edu/schlag/sea2017/
2 Detailed per-instance results can be found online: http://algo2.iti.kit.edu/schlag/sea2018/
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Figure 3 Speedup of the IBFS [21] max-flow algorithm over the execution on NL.

Table 1 Comparing the KaFFPa flow model FG with our model FH as described in Section 3.2.
The table shows the average improvement of FH over FG (in [%]) on benchmark sets C and D.

Hypergraphs (Set C) Graphs (Set D)
α′ ε = 1% ε = 3% ε = 5% ε = 1% ε = 3% ε = 5%

1 7.7 8.1 7.6 11.7 11.3 10.5
2 7.9 6.6 4.8 11.0 9.1 7.8
4 6.9 3.9 2.7 9.9 7.3 5.4
8 5.1 2.3 1.5 8.6 5.3 3.9

16 3.4 1.3 1.2 7.0 4.1 3.5

algorithm [21] to compute min-cuts, which performed best in preliminary experiments [24, 26].
Figure 3 compares the speedups of IBFS when executed on the Liu-Wong network NW , our
network NOur, and N 1

Our to the execution on the Lawler network NL. N 1
Our exploits the fact

that our flow problems are based on subhypergraphs HB by additionally modeling single-pin
border nets more efficiently as described in Section 3.2. We see that the algorithm benefits
from improved network models on all instance classes except SPM. These instances have
high average vertex degrees and large average net sizes, in which case the optimizations
only have a very limited effect since they target small nets and low degree vertices. While
NW speeds up computation for Primal and Literal instances, NOur additionally leads to
a speedup for Dual instances. Using N 1

Our, which combines these techniques with efficient
border net modeling results in an average speedup between 1.52 and 2.21 (except for SPM
instances). Therefore we use N 1

Our in all following experiments.

Flow Models. We now compare the flow model FG of KaFFPa to our advanced model
FH described in Section 3.2. The experiments summarized in Table 1 were performed
using benchmark sets C and D. To focus on the impact of the models on solution quality,
we deactivated KaHyPar’s FM local search algorithms and only use flow-based refinement
without the most balanced minimum cut heuristic. The results confirm our hypothesis
that FG restricts the search space of possible solutions. For all flow problem sizes and
all imbalances tested, FH yields better solution quality. As expected, the effects are most
pronounced for small flow problems and small imbalances where many vertices are likely
to be border nodes. Since these nodes are locked inside their respective block in FG, they
prevent all non-cut border nets from becoming part of the cut-set. Our model, on the other
hand, allows all min-cuts that yield a feasible solution for the original partitioning problem.
The fact that this effect also occurs for the graphs of set D indicates that our model can also
be effective for traditional graph partitioning. In all following experiments, we use FH .
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Table 2 Quality and running times for different framework configurations and increasing α′.
Column Avg[%] reports the quality improvement relative to the reference configuration (-F,-M,+FM).

(+F,-M,-FM) (+F,+M,-FM) (+F,-M,+FM) (+F,+M,+FM) Constant128
α′ Avg[%] t[s] Avg[%] t[s] Avg[%] t[s] Avg[%] t[s] Avg[%] t[s]

1 −6.09 12.9 −5.60 13.4 0.25 15.0 0.23 15.2 0.54 67.9
2 −3.19 15.8 −2.07 16.7 0.59 17.0 0.73 17.5 1.11 140.2
4 −1.82 20.4 −0.19 21.9 0.90 20.4 1.21 21.5 1.66 269.6
8 −0.85 28.5 0.98 30.7 1.24 26.5 1.71 28.7 2.20 512.1

16 −0.19 43.3 1.75 46.7 1.60 37.5 2.21 41.3 2.76 973.9

Ref. (-F,-M,+FM) 6373.88 13.7

Table 3 Comparison of quality improvement and running times using speedup heuristics. Column
tflow[s] refers to the running time of flow-based refinement, t[s] to the total partitioning time.

Configuration Avg Min tflow[s] t[s]

KaHyPar-CA 7077.20 6820.17 - 29.3
KaHyPar-MF 2.47 % 2.12 % 43.0 72.3
KaHyPar-MF(S1) 2.41 % 2.06 % 33.9 63.2
KaHyPar-MF(S1,S2) 2.40 % 2.05 % 28.5 57.8
KaHyPar-MF(S1,S2,S3) 2.41 % 2.06 % 21.2 50.5

4.2 Configuring the Algorithm
We now evaluate different configurations of our refinement framework on set C. In the
following, KaHyPar-CA [25] is used as a reference and referred to as (-F,-M,+FM), since
it neither uses (F)lows nor the (M)ost balanced minimum cut heuristic and only relies on
the (FM) algorithm for local search. This basic configuration is then successively extended
with specific components. The results of our experiments are summarized in Table 2 for
increasing scaling parameter α′. In configuration Constant128 all components are enabled
(+F,+M,+FM) and flow-based refinements are performed every 128 uncontractions. It is
used as a reference point for the quality achievable using flow-based refinement.

The results indicate that only using flow-based refinement (+F,-M,-FM) is inferior to
FM local search in regard to both running time and solution quality. Although the quality
improves with increasing flow problem size (i.e., increasing α′), the average connectivity
is still worse than the reference configuration. Enabling the most balanced minimum cut
heuristic improves partitioning quality. Configuration (+F,+M,-FM) performs better than
the basic configuration for α′ ≥ 8. By combining flows with the FM algorithm (+F,-M,+FM)
we get a configuration that improves upon the baseline even for small flow problems. However,
comparing this variant with (+F,+M,-FM) for α′ = 16, we see that using large flow problems
together with the most balanced minimum cut heuristic yields solutions of comparable
quality. Enabling all components (+F,+M,+FM) and using large flow problems performs
best. Furthermore we see that enabling FM local search slightly improves the running time
for α′ ≥ 8. This can be explained by the fact that the FM algorithm already produces good
cuts between the blocks such that fewer rounds of pairwise flow refinements are necessary to
improve the solution. Comparing configuration (+F,+M,+FM) with Constant128 shows
that performing flows more often further improves solution quality at the cost of slowing down
the algorithm by more than an order of magnitude. In all further experiments, we therefore
use configuration (+F,+M,+FM) with α′ = 16 for KaHyPar-MF. This configuration also
performed best in the effectiveness tests presented in Appendix D. While this configuration
performs better than KaHyPar-CA, its running time is still more than a factor of 3 higher.
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Figure 4 Improvement plots comparing KaHyPar-MF with KaHyPar-CA and other partitioners.

We therefore perform additional experiments on set B and successively enable the speedup
techniques described in Section 3.3. The results are summarized in Table 3. Only executing
pairwise flow refinements on blocks that lead to an improvement on previous levels (S1)
reduces the running time of flow-based refinement by a factor of 1.27, while skipping flows
in case of small cuts (S2) results in a further speedup of 1.19. By additionally stopping
the resizing of the flow problem as early as possible (S3), we decrease the running time of
flow-based improvement by a factor of 2 in total, while still computing solutions of comparable
quality. Thus in the comparisons with other systems, all heuristics are enabled.

4.3 Comparison with other Systems
We now compare KaHyPar-MF to the state-of-the-art HGP systems on the full benchmark set.
The following comparison is based on 3222 instances, since we exclude the same 194 out of
3416 instances that were already excluded in [25]. As can be seen in Figure 4 (left), KaHyPar-
MF outperforms all other algorithms. Comparing the best solutions of KaHyPar-MF to each
partitioner individually across all instances, it produced better partitions than PaToH-Q,
PaToH-D, hMetis-K, KaHyPar-CA, hMetis-R for 92.1%, 91.7%, 85.3%, 83.8%, and 75.6%
of the instances, respectively. Comparing the best solutions of all systems simultaneously,
KaHyPar-MF produced the best partitions for 2427 of the 3222 instances. As can be seen in
Figure 4 (right), the improvement is most pronounced for hypergraphs derived from matrices
of web graphs and social networks3, which are difficult to partition due to skewed degree and
net size distributions. With 55.7s, the average running time of KaHyPar-MF is less than
a factor of two slower than KaHyPar-CA, which took 31.1s. The average running times of
hMetis-R, hMetis-K, PaToH-Q and PaToH-D were 79.2s, 57.9s, 5.9s and 1.2s, respectively.
A detailed comparison of running times and solution quality can be found in Appendix E.

5 Conclusion

We generalize KaFFPa’s flow-based refinement framework [44] from graph to hypergraph
partitioning. By removing low degree hypernodes and exploiting the fact that our flow
problems are built on subhypergraphs, we reduce the size of hypergraph flow networks.

3 Based on the following matrices: webbase-1M, ca-CondMat, soc-sign-epinions, wb-edu, IMDB,
as-22july06, as-caida, astro-ph, HEP-th, Oregon-1, Reuters911, PGPgiantcompo, NotreDame_www,
NotreDame_actors, p2p-Gnutella25, Stanford, cnr-2000.
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Furthermore we identify shortcomings of the KaFFPa [44] approach that restrict feasible
solutions and introduce an advanced model that overcomes these limitations by utilizing the
structure of hypergraph flow networks. Lastly, we present techniques to improve the running
time of the framework by a factor of 2 without affecting solution quality. The resulting
hypergraph partitioner KaHyPar-MF performs better than all competing algorithms and has
a running time comparable to that of hMetis. Since our flow model yields better solutions
for both hypergraphs and graphs than the KaFFPa approach, future work includes the
integration of our flow model into KaFFPa and the evaluation in the context of graph
partitioning. We also plan to extend our framework to optimize other objectives such as cut.
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A Framework Pseudocode

Algorithm 1: Flow-Based Refinement.
Input: Hypergraph H, k-way partition Πk = {V1, . . . , Vk}, imbalance parameter ε.
Algorithm MaxFlowMinCutRefinement(H,Πk)

Q := QuotientGraph(H,Πk)
while ∃ active blocks ∈ Q do // in the beginning all blocks are active

foreach {(Vi, Vj) ∈ Q | Vi ∨ Vj is active} do // choose a pair of blocks
Πold = Πbest := {Vi, Vj} ⊆ Πk // extract bipartition to be improved
εold = εbest := imbalance(Πk) // imbalance of current k-way partition
α := α′ // use large B-corridor for first iteration
do // adaptive flow iterations

B := computeB-Corridor(H,Πbest, αε) // as described in Section 2.3
HB := SubHypergraph(H,B) // create B-induced subhypergraph
NB := FlowNetwork(HB) // as described in Section 3.1
F := FlowProblem(NB) // as described in Section 3.2
f := maxFlow(F) // compute maximum flow on F
Πf := mostBalancedMinCut(f,F) // as in Section 2.3 & 3.1
εf := imbalance(Πf ∪Πk \Πold) // imbalance of new k-way partition
if (cut(Πf ) < cut(Πbest)∧ εf ≤ ε)∨ εf < εbest then // found improvement

α := min(2α, α′), Πbest := Πf , εbest := εf // update α, Πbest, εbest

else α := α
2 // decrease size of B-corridor in next iteration

while α ≥ 1
if Πbest 6= Πold then // improvement found

Πk := Πbest ∪Πk \Πold // replace Πold with Πbest
activateForNextRound(Vi, Vj) // reactivate blocks for next round

return Πk

Output: improved ε-balanced k-way partition Πk = {V1, . . . , Vk}

B Proof of Lemma 1

I Lemma 1. Let f be a maximum (s , t)-flow in the Lawler network N = (V, E) of a
hypergraph H = (V,E) and (S,V \ S) be the corresponding (s , t)-min-cut in N . Then for
each node v ∈ S ∩ V , the residual graph Nf = (Vf , Ef ) contains at least one path 〈s , . . . , e′′〉
to a bridging node e′′ of a net e ∈ I(v).

Proof. Since v ∈ S, there has to be some path s  v in Nf . By definition of the flow
network, this path can either be of the form P1 = 〈s , . . . , e′′, v〉 or P2 = 〈s , . . . , e′, v〉 for some
bridging nodes e′, e′′ corresponding to nets e ∈ I(v). In the former case we are done, since
e′′ ∈ P1. In the latter case the existence of edge (e′, v) ∈ Ef implies that there is a positive
flow f(v, e′) > 0 over edge (v, e′) ∈ E . Due to flow conservation, there exists at least one
edge (e′′, v) ∈ E with f(e′′, v) > 0, which implies that (v, e′′) ∈ Ef . Thus we can extend the
path P2 to 〈s , . . . , e′, v, e′′〉. J



T. Heuer, P. Sanders, and S. Schlag 1:17

C Overview and Properties of Benchmark Sets

Sparse matrices (SPM) are translated into hypergraphs using the row-net model [10], i.e.,
each row is treated as a net and each column as a vertex. SAT instances are converted to
three different representations: For literal hypergraphs, each boolean literal is mapped to
one vertex and each clause constitutes a net [40], while in the primal model each variable
is represented by a vertex and each clause is represented by a net. In the dual model the
opposite is the case [38].

Table 4 Overview about different benchmark sets. Set B and set C are subsets of set A.

Source # DAC ISPD98 Primal Dual Literal SPM Graphs

Set A [25] 477 10 18 92 92 92 184 -
Set B [25] 165 5 10 30 30 30 60 -
Set C new 25 - 5 5 5 5 5 -

Set D [39] 15 - - - - - - 15

Table 5 Basic properties of set C. The number of pins is denoted with p.

Class Hypergraph n m p

ISPD

ibm06 32 498 34 826 128 182
ibm07 45 926 48 117 175 639
ibm08 51 309 50 513 204 890
ibm09 53 395 60 902 222 088
ibm10 69 429 75 196 297 567

Dual

6s9 100 384 34 317 234 228
6s133 140 968 48 215 328 924
6s153 245 440 85 646 572 692
dated-10-11-u 629 461 141 860 1 429 872
dated-10-17-u 1 070 757 229 544 2 471 122

Literal

6s133 96 430 140 968 328 924
6s153 171 292 245 440 572 692
aaai10-planning-ipc5 107 838 308 235 690 466
dated-10-11-u 283 720 629 461 1 429 872
atco_enc2_opt1_05_21 112 732 526 872 2 097 393

Primal

6s153 85 646 245 440 572 692
aaai10-planning-ipc5 53 919 308 235 690 466
hwmcc10-timeframe 163 622 488 120 1 138 944
dated-10-11-u 141 860 629 461 1 429 872
atco_enc2_opt1_05_21 56 533 526 872 2 097 393

SPM

mult_dcop_01 25 187 25 187 193 276
vibrobox 12 328 12 328 342 828
RFdevice 74 104 74 104 365 580
mixtank_new 29 957 29 957 1 995 041
laminar_duct3D 67 173 67 173 3 833 077
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Table 6 Basic properties of the graph instances.

Graph n m

p2p-Gnutella04 6 405 29 215
wordassociation-2011 10 617 63 788
PGPgiantcompo 10 680 24 316
email-EuAll 16 805 60 260
as-22july06 22 963 48 436
soc-Slashdot0902 28 550 379 445
loc-brightkite 56 739 212 945
enron 69 244 254 449
loc-gowalla 196 591 950 327
coAuthorsCiteseer 227 320 814 134
wiki-Talk 232 314 ≈1.5M
citationCiteseer 268 495 ≈1.2M
coAuthorsDBLP 299 067 977 676
cnr-2000 325 557 ≈2.7M
web-Google 356 648 ≈2.1M

Table 7 Results of the effectiveness test for different configurations of our flow-based refinement
framework for increasing α′. The quality in column Avg[%] is relative to the baseline configuration.

Config. (+F,-M,-FM) (+F,+M,-FM) (+F,-M,+FM) (+F,+M,+FM)
α′ Avg[%] Avg[%] Avg[%] Avg[%]

1 −6.06 −5.52 0.23 0.24
2 −3.15 −2.06 0.55 0.73
4 −1.89 −0.19 0.86 1.20
8 −0.87 0.96 1.20 1.69

16 −0.29 1.66 1.52 2.17

Ref. (-F,-M,+FM) 6377.15

D Effectiveness Tests

We give each configuration the same time to compute a partition. For each instance (H, k),
we execute each configuration once and note the largest running time tH,k. Then each
configuration gets time 3tH,k to compute a partition (i.e., we take the best partition out of
several repeated runs). Whenever a new run of a partition would exceed the largest running
time, we perform the next run with a certain probability such that the expected running time
is 3tH,k. The results of this procedure, which was initially proposed in [44], are presented in
Table 7. Combinations of flows and FM local search perform better than repeated executions
of the baseline configuration, with (+F,+M,-FM) and α′ = 16 performing best.
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E Comparison of Running Times and Solution Quality

Table 8 Comparing the average running times of KaHyPar-MF with KaHyPar-CA and other
hypergraph partitioners for different benchmark sets (top) and different values of k (bottom).

Algorithm Running Time t[s]

All DAC ISPD98 Primal Literal Dual SPM WebSoc

KaHyPar-MF 55.67 504.27 20.83 61.78 119.51 97.22 27.40 110.15
KaHyPar-CA 31.05 368.97 12.35 32.91 64.65 68.27 13.91 67.14
hMetis-R 79.23 446.36 29.03 66.25 142.12 200.36 41.79 89.69
hMetis-K 57.86 240.92 23.18 44.23 94.89 125.55 35.95 111.95
PaToH-Q 5.89 28.34 1.89 6.90 9.24 10.57 3.42 4.71
PaToH-D 1.22 6.45 0.35 1.12 1.58 2.87 0.77 0.88

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

KaHyPar-MF 19.75 32.89 47.52 60.38 78.51 100.34 119.15
KaHyPar-CA 12.68 17.16 23.88 31.01 41.69 57.35 76.61
hMetis-R 27.87 51.59 74.74 91.09 109.13 128.66 149.34
hMetis-K 25.47 32.27 42.50 53.41 74.00 109.12 152.92
PaToH-Q 1.93 3.61 5.44 7.01 8.40 10.06 11.44
PaToH-D 0.43 0.77 1.12 1.42 1.71 2.02 2.29

Table 9 Comparing the best solutions of KaHyPar-MF with the best results of KaHyPar-CA and
other partitioners for different benchmark sets (top) and different values of k (bottom). All values
correspond to the quality improvement of KaHyPar-MF relative to the respective partitioner (in %).

Algorithm Min. (λ− 1)

All DAC ISPD98 Primal Literal Dual SPM WebSoc

KaHyPar-MF 7542.88 16 828.15 5511.40 15 236.13 15 197.60 2927.42 6010.05 7478.06
KaHyPar-CA 2.22 % 2.80 % 1.92 % 1.85 % 2.46 % 3.33 % 1.74 % 3.91 %
hMetis-R 14.40 % 4.75 % 2.76 % 3.88 % 4.17 % 31.20 % 16.37 % 41.92 %
hMetis-K 12.92 % 7.77 % 2.17 % 4.78 % 6.91 % 21.51 % 16.23 % 40.45 %
PaToH-Q 11.48 % 15.24 % 9.53 % 14.36 % 14.98 % 11.44 % 8.36 % 18.45 %
PaToH-D 12.06 % 15.57 % 10.90 % 12.47 % 15.17 % 13.64 % 9.45 % 23.04 %

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

KaHyPar-MF 1005.76 2985.22 5805.19 9097.31 14 352.34 21 537.33 31 312.48
KaHyPar-CA 1.71 % 2.16 % 2.51 % 2.51 % 2.45 % 2.16 % 2.05 %
hMetis-R 22.25 % 17.62 % 15.63 % 14.29 % 11.94 % 9.80 % 8.01 %
hMetis-K 21.82 % 13.66 % 12.76 % 13.49 % 10.62 % 9.18 % 7.81 %
PaToH-Q 14.92 % 12.60 % 11.81 % 11.66 % 10.66 % 9.77 % 8.63 %
PaToH-D 8.54 % 10.41 % 13.64 % 14.50 % 12.70 % 12.66 % 11.89 %
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and stable matching approaches. We demonstrate the effectiveness of the developed schemes as
a part of multilevel hypergraph partitioning framework on a wide range of problems.
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1 Introduction

Hypergraph is a generalization of graph. Whereas in a graph each edge connects only two
vertices, in a hypergraph a hyperedge can connect an arbitrary number of vertices. In many
cases this allows hypergraph to better capture the underlying structure of the problem. In
graph partitioning (GP), the goal is to split the vertex set of a graph into approximately even
parts while minimizing the number of the edges in a cut [8]. Hypegraph partitioning problem
(HGP) extends it to hypergraphs. Hypergraph partitioning has many applications in fields
ranging from VLSI design [30] to parallel matrix multiplication [10] to classification [55] to
optimizing distributed systems [33, 13], among others [16, 28].

Hypergraph partitioning is NP-hard [20] and relies on heuristics in practice. Many state-
of-the-art graph and hypergraph partitioners utilize the multilevel approach [8]. In multilevel
methods, the original problem is iteratively coarsened by creating a hierarchy of smaller
problems, until it becomes small enough to be solved. Then the coarsest problem is solved
and the solution is iteratively projected onto finer levels and refined. Multilevel algorithms
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2:2 Aggregative Coarsening for Multilevel Hypergraph Partitioning

for HGP are typically generalizations of multilevel algorithms for graph partitioning, those
in turn drawing inspiration from multigrid and other multiscale optimization techniques [6].
Hypergraph partitioning is less well-studied than graph partitioning [13] and there is a
relative lack of advanced coarsening schemes compared to GP.

Our main contribution are two novel aggregative coarsening schemes for HGP that
are inspired by algebraic multigrid and stable matching methods. We expand and build
on the insights from an unfinished attempt to build a coarsening scheme for HGP using
algebraic multigrid ideas, published in Sandia Labs Summer Reports [7]. At each coarsening
level we split the set of vertices into the set of seeds and the set of non-seeds. Each seed
becomes a center of an aggregate which will, in turn, create a node at the next, coarser
level. Aggregation rules are established to specify which aggregate a non-seed joins. We
investigate two approaches to establishing aggregation rules. One approach is algebraic
multigrid-based generatlization of an inner-product matching similar to the matching scheme
used in Zoltan[11] and PaToH[10]. Another approach is inspired by stable matching. Both
approaches take advantage of the algebraic distance on hypergraphs when making coarsening
decisions. Algebraic distance is a vertex similarity measure that extends simple measures
such as hyperedge weights to better capture the structure of the hypergraphs [50]. While we
outperform existing solvers on many instances, it is clear that final performance of HGP solvers
heavily depends on the refinement. It is not the goal of this paper to outperform all existing
HGP solvers. Instead, we would like to demonstrate that given similar uncoarsening schemes,
the proposed coarsening schemes are at least as beneficial as traditional matching-based
approaches.

2 Preliminaries

A hypergraph is an ordered pair of sets (V,E), where V is the set of vertices and E is the
set of hyperedges. Each hyperedge e ∈ E is a nonempty subset of V . In this paper we
make use of a graph representation of a hypergraph called “star expansion”. Star expansion
graph (V ′, E′) of a hypergraph (V,E) is an undirected bipartite graph with hypergraph
vertices V on one side, hyperedges E on another and edges connecting hyperedges with the
vertices they contain. Concretely, V ′ = V ∪ E, E′ = {(v, e) | e ∈ E, v ∈ e ⊂ V }. We will be
referring to hyperedges as simply edges where it does not cause confusion. Both vertices and
edges of the hypergraph are positively weighted. By w(v) and w(e), we denote weighting
functions for nodes and edges, where v ∈ V and e ∈ E. For both nodes and edges, a weight
of zero practically means that corresponding nodes or edges do not exist (or do not affect
the optimization and solution).

2.1 Hypergraph partitioning

In hypergraph k-partitioning the goal is to split the set of vertices V into k disjoint subsets
(V1, . . . , Vk) such that a metric on the cut is minimized subject to imbalance constraint. Here
the cut is defined as the set of edges that span more than one partition, i.e.,

Ecut = {e ∈ E | ∃i 6= j and k 6= l for which vi, vj ∈ e, vi ∈ Vk and vj ∈ Vl}. (1)

There are multiple ways to define imbalance constraint. We will follow the definition
used by the developers of state-of-the-art hypergraph partitioner Zoltan [15]. The imbalance
is therefore defined as the ratio between the total weight of vertices in the largest partition
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Figure 1 Multilevel partitioning of a hypergraph constructed from LPnetlib/lp_scfxm2 matrix
from SuiteSparse Matrix Collection [14] using row-net model: each column becomes a vertex and
each row becomes a hyperedge. On the left side of the “V” the hypergraph (represented here as the
sparsity pattern of the underlying matrix) is iteratively coarsened. At the bottom of the “V” the
hypergraph is partitioned into two parts. This is represented by coloring the columns corresponding
to vertices from one part into blue and another into red. On the right side of the “V” the hypergraph
is uncoarsened and the partitioning is refined.

and the average sum of weights of vertices over all partitions. We define the imbalance as

imbal =
∑

v∈Vmax
w(v)

1
k

∑
v∈V w(v)

, (2)

where Vmax is the largest partition by weight (i.e.,
∑

v∈Vmax
w(v) = maxi

(∑
v∈Vi

w(v)
)
).

Imbalance constraint imposes a limit on the value of imbal, e.g., imbalance of 5% means
imbal < 1.05. The cut metric used in this paper is simply total weight of the cut edges,
namely,

∑
e∈Ecut

w(e).

2.2 Multilevel method
The main objective of multilevel methods is to construct a hierarchy of problems, each
approximating the original problem but with fewer degrees of freedom. This is achieved by
introducing a chain of successive restrictions of the problem domain into low-dimensional
or smaller-size domains (coarsening) and solving the coarse problems in them using local
processing (uncoarsening) [41]. The coarsening-uncoarsening pipeline is often referred to as
V-cycle. The multilevel frameworks combine solutions obtained by the local processing at
different levels of coarseness into one global solution. Typically, for combinatorial optimization
problems, the multilevel algorithms are suboptimal metaheuristics [53] that incorporate other
methods as refinement at all levels of coarseness. Except partitioning, examples can be found
in linear ordering [27, 43, 44, 46], clustering and community detection [42, 5], and traveling
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2:4 Aggregative Coarsening for Multilevel Hypergraph Partitioning

salesman problems [54]. In (H)GP, these algorithms were initially introduced to speed up
existing algorithms [4] but later proved to improve the quality of the solution [24, 31]. A
multilevel hypergraph partitioning of a hypergraph constructed from LPnetlib/lp_scfxm2
matrix is presented in Figure 1.

During the coarsening stage, for a hypergraph H = (V,E) a hierarchy of decreasing in size
hypergraphs H0 = (V 0, E0), . . . ,H l = (V l, El) is constructed. Here l denotes the number of
levels in multilevel hierarchy. During the initial partitioning stage, the coarsest hypergraph
H l = (V l, El) is partitioned. Finally, during the refinement stage the solution from coarser
levels is projected onto finer ones and refined, typically using a local search heuristic.

2.3 Algebraic distance
Algebraic distance for hypergraphs is a relaxation-based vertex similarity measure [50]. It
extends the algebraic distance for graphs [12, 41, 29] by taking into account the non-pairwise
nature of the connections between vertices in a hypergraph. Algebraic distance improves on
simpler similarity metrics, such as hyperedge weights, by incorporating information about
more distant vertex neighborhood, thus better capturing vertex’s place in the global structure
of the hypergraph. Algebraic distance is inspired by iterative techniques for solving linear
systems. An iterative method can be represented in a standard form:

x(i) = Hx(i−1) i = 1, 2, 3 . . . (3)

where H is the iteration matrix.
Similarly, algebraic distances are computed at each coarsening level using the following

stationary iterative relaxation. Let A ∈ R|E|×|V | be hypergraph incidence matrix, i.e.,
Aij = 1 if the hyperedge i contains the vertex j. Let Sv ∈ R|V |×|V | and Sh ∈ R|E|×|E| be
diagonal matrices such that

Sv
jj = w(vj) and Sh

ii = w(hi)
|hi|

, (4)

where |hi| denotes the cardinality of the ith hyperedge. Denote

W =
[

0 ATSh

ASv 0

]
(5)

and let D be the diagonal matrix with elements Djj =
∑

i Wij . Then the iterative step is
defined as

x(i) = 1
r − l

[
ωD−1Wx(i−1) + (1− ω)x(i−1)︸ ︷︷ ︸

x∗(i−1)

]
− r + l

2(r − l)1 (6)

where 1 is the vector of all ones, and r and l are the maximum and the minimum of the
elements in x∗(i−1), respectively. We can simplify the update formula as

x(i) = α(i−1)Hx(i−1) + β(i−1)1, (7)

where

H = ωD−1W + (1− ω)I, α(i−1) = 1
r − l

, and β(i−1) = − r + l

2(r − l) . (8)

The iterative scheme is performed multiple times for different random initial values
x

(0)
0 , . . . x

(0)
R (called test vectors in algebraic multigrid [34]) . Then, the algebraic distance

between vertices i and j is set to be the maximum over R random initializationsm namely,
algdistij = maxR |xi − xj |. For the detailed discussion of algebraic distances on hypergraphs
and for convergence analysis of the described iterative scheme the reader is referred to [50].
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Figure 2 An example demonstrating the limitations of schemes based on edge weights. Here the
“bridge” edge (green) connecting v1 and v2 has weight two and all other edges (red) have unitary
weights. The best cut is achieved by cutting the green “bridge” between v1 and v2 and therefore
matching v1 with one of the vertices on the left (v3,v4 or v5). However, matching schemes based on
edge weights can match v1 with v2 instead and increase the cut.

3 Related work

Practical approaches to solving HGP typically rely on heuristics. Many have been developed
over the years, but the most common approach is multilevel. It is implemented in many
state-of-the-art hypergraph partitioners including but not limited to Zoltan [15], hMetis [30],
KaHyPar [49] and PaToH [10]. In this section we will briefly describe the multilevel approach
used by those state-of-the-art partitioners and discuss existing advanced coarsening schemes
for hypergraphs. For a more detailed review of hypergraph partitioning, the reader is referred
to [2, 3, 39, 52].

3.1 Brief overview of multilevel hypergraph partitioning
The HGP multilevel frameworks consist of three stages: coarsening, initial partitioning and
uncoarsening with refinement. During the coarsening, the hypergraph is approximated via
a series of decreasing in size hypergraphs. At each coarsening step, the next hypergraph
is formed by matching a group of vertices into one, such that a set of vertices at level k
becomes one vertex at level k + 1. The decision as to which vertices to match is made based
on similarity metrics such as inner product (i.e., the total weight of hyperedges connecting
two vertices). However, simple metrics often result in a decision that ignores the structure of
the hypergraph. Consider the example in Figure 2. It shows two densely connected clusters,
separated by a “bridge” between vertices v1 and v2. Schemes that use naive similarity
metrics like hyperedge weights might match v1 with v2, whereas an algorithm that considers
larger neighborhoods to minimize a cut would prefer to match v1 with either v3, v4 or v5
instead. This example demonstrates the challenges of capturing the hypergraph structure by
using only local information. In the refinement stage all the aforementioned state-of-the-art
partitioners use a combination of Fiduccia-Mattheyses [18] or Kernighan-Lin [32] with the
exception of KaHyPar, which uses a novel localized adaptive local search heuristic [1].

3.2 Aggregative coarsening
The standard approach to coarsening used in most state-of-the-art hypergraph partitioners
is matching-based. Originally, this meant that at each level pairs of adjacent vertices are
selected to become one vertex at the next level. This technique has later been extended to
include non-pairwise matchings (i.e., more than two fine vertices can form a coarse vertex).
One of the alternative approaches is aggregative coarsening inspired by algebraic multigrid.
In aggregative coarsening, the set of vertices V is separated into disjoint sets of seeds and
non-seeds, namely, C and F such that F ∪C = V . The non-seed vertices aggregate themselves
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2:6 Aggregative Coarsening for Multilevel Hypergraph Partitioning

around the seeds (hence the name aggregative coarsening). The aggregation can be strict
(F -vertices are not split) and weighted (F -vertices can be split between multiple seeds with
vertex weight conservation). At the refinement stage, the partitioning decision (i.e., partition
assignment) is interpolated from each seed to the non-seeds in its aggregate. This separation
between seed and non-seeds helps to introduce additional guarantees. For example, on graphs
Safro et al. [45] introduce the notion of strong connection and guarantee that each vertex in
the graph is strongly connected to at least one seed. The weighted aggregation was initially
introduced for several cut problems on graphs [48, 41, 46] including GP [47]. There was an
unfinished attempt to extend this approach to hypergraphs. Buluç and Boman [7] describe
several challenges in applying aggregative coarsening to hypergraphs, as well as propose two
very similar coarsening schemes, strict and weighted. In this paper, we limit our discussion
to strict aggregation.

In aggregative coarsening, two main questions have to be addressed: seed selection and
aggregation of non-seeds around seeds. In the process of seed selection, Buluç and Boman [7]
follow Safro et al. [45] in using the concept of future volumes. Future volume is a measure of
how many vertices a seed can incorporate into itself (in other words, how large a vertex can
grow). They propose computing future volumes on the star expansion of the hypergraph
(thus limiting the complexity), then iteratively adding vertices with high future volumes to
the set of seeds C until |C| reaches a certain threshold. Aggregation rules are established
on the star expansion of the hypergraph. Seeds and non-seeds select a constant number of
adjacent hyperedges to “invade” based on the exclusive coarseness (a metric indicating how
many seeds an hyperedge contains).

4 Two Aggregation Algorithms

Our algorithm combines the ideas of aggregative coarsening described in [45] and [7] with
the algebraic distance [41, 50]. Aggregative coarsening is a two-step process, so we have
to address both the seed selection and the rules of aggregation. At each coarsening level, a
set of seeds is selected and each seed is assigned a set of non-seeds to form a cluster. The
cluster at a given coarsening level becomes one vertex at the next level.

Both introduced schemes utilize algebraic distances by augmenting hyperedge weights
with algebraic weights. We define the algebraic weight of hyperedge e as an inverse of the
algebraic distance between two farthest apart vertices in e, i.e.,

ρ(e) = 1 / max
i,j∈e

algdistij . (9)

4.1 Seed selection
For the seed selection we utilize two core concepts: future volumes and strong connection.
The main goal is to construct a set of seeds C such that every vertex in the graph is strongly
connected to C. We define strong connection as follows: the vertex i ∈ F is strongly connected
to C if the sum of algebraic weights of the edges connecting it to C is more than a certain
fraction of the total algebraic weight of incident edges:

i is strongly connected to C ⇐⇒ Σj∈Cρ(eij)
Σjρ(eij) > Q, (10)

where Q is a parameter (in our experiments Q = 0.5). The future volume of a vertex is a
measure of how large an aggregate seeded by it can grow. Intuitively, we want to add the
vertices with very high volume (or the ones that might become centers of the aggregates of
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Listing 1 Seed selection.
for i in V:

fv[i] = w[i] + Σj w[j](w[eij ] / Σk w[ejk ])
for i in V:

if fv[i] > mean(fv) + 2 * stdev(fv):
C. insert (i)

else:
F. remove (i)

for i in F:
fv[i] = w[i] + Σj∈F w[j](w[eij ] / Σk∈F w[ejk ])

for i in sort_indices (fv):
if Σj∈C w[eij ] / Σj w[eij ] < Q:

C. insert (i)
F. remove (i)

very high volume) to the set of seeds. Future volume of a vertex is defined as follows (note
that here we use the hyperedge weights w and not the algebraic weights ρ):

fv(i) = w(i) + Σjw(j) w(eij)
Σkw(ejk) . (11)

We begin the construction of set C by computing future volumes for all vertices. Then, we
initialize C with vertices with large future volumes (if mean future volume ismfv and standard
deviation of the distribution of future volumes is σfv, then i ∈ C ⇐⇒ fv(i) > mfv + 2σfv)
and initialize F with all other vertices, such that F ∪ C = V . After that the future volumes
of vertices in F are recomputed, only taking into account connections with other vertices
in F (i.e., in Equation (11) assume w(eij) = 0 if j ∈ C or i ∈ C). Finally, vertices in F are
visited in order of decreasing future volume and added to the set C if they are not strongly
connected to C. Note that at the end of this process each vertex in V is strongly connected
to the set C and F ∪ C = V . Pseudocode for this procedure is presented in Listing 1.

4.2 Aggregation
We investigate two approaches to establishing the rules of aggregation. First approach is a
scheme similar to inner-product matching used in Zoltan[11] and PaToH[10] but applied in
algebraic multigrid setting. Second approach consists of computing a stable assignment [23]
between vertices of C and F . Both approaches take advantage of algebraic distances as a
similarity measure when establishing aggregation rules.

Inner-product aggregation proceeds by visiting the non-seed vertices in the random
order. For each unmatched vertex v ∈ F , a neighboring seed u ∈ C with the highest inner
product is selected and v is added to the cluster Cu seeded by it. The inner product is
defined as the total algebraic weight of the edges connecting v with the seed u. Concretely,
ipm(v, u) = Σe|v,u∈e ρ(e). See Listing 2 for pseudocode. We experimented with visiting the
non-seeds in order of decreasing future volume and with using connectivity to make decisions
when establishing aggregation rules. These approaches are more computationally intensive
and do not produce better results (see Appendix B of full version [51] for the comparison of
different parameters).

Stable assignment aggregation begins by constructing preference lists. Each seed orders
adjacent non-seeds in the order of decreasing total algebraic weight of the hyperedges
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2:8 Aggregative Coarsening for Multilevel Hypergraph Partitioning

Listing 2 Inner-product aggregation.
for i in F:

j = argmaxu∈C ipm(v,u)
Cj. insert (i)

Listing 3 Stable matching aggregation.
def propose (i):

for j in pref_list [i]:
if waitlist [i]. size > threshold :

return
if propos [j] == -1: // j holds no proposal

propos [j] = i
waitlist [i]. push_back (j)
continue

if i is preferable to propos [j]:
rejected = propos [j]
propos [j] = i
waitlist [i]. push_back (j)
propose ( rejected )

// Step 1: compute preference lists
for i in F:

for j in seed_neighbors [i]:
pref[j] = Σρ(eij) // pref is a hashtable

for j in sort_by_value (pref ). keys ():
pref_list [i]. push_back (j)

for i in C:
for j in non_seed_neighbors [i]:

pref[j] = Σρ(eij)
for j in sort_by_value (pref ). keys ():

pref_list [i]. push_back (j)

// Step 2: compute stable assignment
for i in C:

propose (i)

connecting them (and vice versa): prefi(j) = Σρ(eij). Then the stable assignment is
computed using an algorithm similar to the classical one described in [19]. Each seed
in C proposes to non-seeds in its preference list. If the non-seed does not have a better
offer, it tentatively accepts the proposal and is put on the waitlist. If that non-seed later
receives a better offer (i.e., an offer from a seed that ranks higher on its preference list),
it rejects the current offer and the rejected seed proposes to the next candidate on its
preference list. To discourage the creation of very large clusters, we limit the size of waitlist
for a seed to the maximal vertex weight on a given coarsening level times three plus ten:
len(waitlist) = 3×max_vtx_wgt + 10. Procedure terminates when each non-seed has been
assigned to a waitlist or a seed has been rejected by every non-seed. At this point each seed
forms a cluster with all vertices on its waitlist, subject to size constraint (we guarantee that
no cluster can be larger than total vertex weight over the number of parts). The fact that
we use a classical problem as a subproblem in our heuristic allows us to potentially leverage
the previous work in optimizing and parallelizing stable assignment, such as [35],[36] and
[22]. The pseudocode is presented in Listing 3.
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5 Results

We implemented all algorithms described in this paper within Zoltan [15] package of the
Trilinos Project [26]. Zoltan is an open-source toolkit of parallel combinatorial scientific
computing algorithms [15]. It includes a hypergraph partitioning algorithm PHG (Parallel
HyperGraph partitioner) and interfaces to PaToH and hMetis2. We added our new coarsening
schemes and left other phases of the multilevel framework unchanged. Our implementation,
data, and full results are available at http://bit.ly/aggregative2018code.

The hypergraphs in our benchmark are generated from a selection of matrices using the
row-net model. In the row-net model, each column of the matrix represents a vertex, each
row represents an edge and a vertex j belongs to the hyperedge i if there is a non-zero element
at the intersection of j-th column and i-th row, i.e., Aij 6= 0. All matrices (more than 300)
were obtained from SuiteSparse Matrix Collection [14] that includes other collections. For
each combination of hypergraph/algorithm/set of parameters, we executed 20 experiments.

We compare our algorithm with four state-of-the-art partitioners: hMetis2 [30], PaToH
v3.2 [9], Zoltan PHG [15] and Zoltan-AlgD [50]. PaToH is used as a plug-in for Zoltan with
default parameters described in Zoltan’s User Guide [17]. hMetis2 is used in k-way mode
with all parameters set to default: greedy first-choice scheme for coarsening, random k-way
refinement, and min-cut objective function. The reason we run hMetis in k-way mode is
the way hMetis specifies imbalance constraint. In recursive bisection mode, the imbalance
constraint is applied at each bisection step, therefore relaxing the constraint as the number
of parts increases. We found it almost impossible to compare hMetis in recursive bisection
mode fairly (i.e., with the same imbalance) with other partitioners. Both Zoltan and PaToH
are used in serial mode.

Optimizing the constants in the running time of the proposed algorithms is beyond the
scope of this paper. Currently, for the existing unoptimized implementation the running
time of other state-of-the-art hypergraph partitioners is not improved except for those
that generate less levels in the hierarchy. In the experiments, the runtime of unoptimized
implementation of our algorithms is up to an order of magnitude larger than the runtime
of other state-of-the-art partitioners in worst cases. However, we must point out that our
algorithm utilizes the building blocks and ideas of algebraic multigrid, which makes it possible
to improve the runtime drastically by leveraging a plethora of existing research in optimizing
and parallelizing algebraic multigrid solvers(e.g. [25], [40]). Similarly, there exists extensive
research into optimizing the performance of stable matching solvers. Manne et al. [36]
demonstrate the connection between graph matchings and stable marriage and show the
scalability of Gale-Shapely type algorithms. Munera et al. [38] present an adaptive search
formulation of stable marriage problem and take advantage of a Cooperative Parallel Local
Search framework [37], achieving superlinear speedup. Gelain et al. [21] demonstrate a
different efficient local search method for stable marriage problem.

In Figures 3 and 4 the results are presented graphically. In the main body of the paper,
we only plot the results for 10% imbalance. For results for other imbalance factors please
refer to Appendix A of the full version [51]. In Figure 3, we show the results of inner-product
algebraic multirgid aggregation coarsening. In Figure 4, the stable matching aggregation is
demonstrated. We use frequency histograms to present the distribution of cut differences
between our methods and other state-of-the-art hypergraph partitioners. The value being
represented (see horizontal axes) is the ratio

ζ = cut obtained using another partitioner
cut obtained using our method . (12)
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Figure 3 Histogram of ζ for coarsening using algebraic multigrid inner-product aggregation. Blue
rectangle corresponds to PaToH, red to hMetis2, green to Zoltan PHG and cyan to Zoltan-AlgD.



R. Shaydulin and I. Safro 2:11

0

25

50

75

100

125

150

175

Number of parts: 2   Imbalance: 10% Number of parts: 4   Imbalance: 10%

0

25

50

75

100

125

150

175

200
Number of parts: 8   Imbalance: 10% Number of parts: 16   Imbalance: 10%

0

50

100

150

200

Number of parts: 32   Imbalance: 10% Number of parts: 64   Imbalance: 10%

0

50

100

150

200

250
Number of parts: 128   Imbalance: 10% Number of parts: 256   Imbalance: 10%

< 0.8 0.8..0.9 0.9..0.95 0.95..1.05 1.05..1.1 1.1..1.2 >1.2
0

25
50
75

100
125
150
175
200
225

Number of parts: 512   Imbalance: 10%

< 0.8 0.8..0.9 0.9..0.95 0.95..1.05 1.05..1.1 1.1..1.2 >1.2

Number of parts: 1024   Imbalance: 10%
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Each bin corresponds to a range of the ratios (for example, the middle bin corresponds
to the differences of less than ±5% and the rightmost to the improvements of > 20%).
Each rectangle corresponds to a partitioner: blue corresponds to PaToH, red corresponds to
hMetis2, green corresponds to Zoltan PHG and cyan corresponds to Zoltan-AlgD. For the
full results, please refer to http://bit.ly/aggregative2018results

The results demonstrate that given the same refinement, the proposed schemes are at
least as effective as traditional matching-based schemes, while outperforming them on many
instances. Both proposed coarsening schemes almost equally succeed in improving the quality
of solvers (see Appendix A of the full version [51] for comparison of the performance of two
algorithms). Further investigation of the difference between them is a very interesting future
research direction, because, in fact, they represent very different algorithms. Since Zoltan
utilizes recursive bisectioning scheme, we can see that improvements decrease as number of
parts increases. This can be attributed to refinement becoming more and more important as
number of parts increases.

6 Conclusion

We have presented two novel aggregative coarsening schemes for hypergraphs. The intro-
duced schemes incorporate ideas of algebraic multigrid and stable matching into multilevel
hypergraph partitioning framework. We have implemented the described algorithms within
state-of-the-art hypergraph partitioner Zoltan and compared their performance against a
number of other state-of-the-art partitioners on a large benchmark.

The experimental results demonstrate that given the same uncoarsening, the proposed
coarsening schemes perform at least as well as traditional matching-based schemes, while
outperforming them on many instances. This suggests that algebraic-multigrid-inspired
coarsening schemes have great potential when combined with appropriate refinement.
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1 Introduction

Graph clustering is the problem of detecting tightly connected regions of a graph. Depending
on the task, knowledge about the structure of the graph can reveal information such as voter
behavior, the formation of new trends, existing terrorist groups and recruitment [42] or a
natural partitioning of data records onto pages [17]. Further application areas include the
study of protein interaction [35], gene expression networks [48], fraud detection [1], program
optimization [29, 15] and the spread of epidemics [32] – possible applications are plentiful, as
almost all systems containing interacting or coexisting entities can be modeled as a graph.

It is common knowledge that there is no single best strategy for graph clustering, which
justifies a plethora of existing approaches. Moreover, most quality indices for graph clusterings
have turned out to be NP-hard to optimize and are rather resilient to effective approximations,
see e.g. [4, 12, 47], allowing only heuristic approaches for optimization. The majority of
algorithms for graph clustering are based on the paradigm of intra-cluster density versus
inter-cluster sparsity. One successful heuristic to cluster large graphs is the multi-level
approach [11], e.g. the Louvain method for the optimization of modularity [10]. Here, the
graph is recursively contracted to obtain smaller graphs which should reflect the same general
structure as the input. After applying an initial clustering algorithm to the smallest graph,
the contraction steps are undone and, at each level, a local search method is used to improve
the clustering induced by the coarser level w.r.t some objective function measuring the quality
of the clustering. The intuition behind this approach is that a good clustering at one level
of the hierarchy will also be a good clustering on the next finer level. Hence, depending on
the definition of the neighborhood, local search algorithms are able to explore local solution
spaces very effectively in this setting. However, these methods are also prone to get trapped
in local optima. The multi-level scheme can help to some extent since local search has a more
global view on the problem on the coarse levels and a very fine-grained view on the fine levels
of the multi-level hierarchy. In addition, as with many other randomized meta-heuristics,
several repeated runs can be made in order to improve the final result at the expense of
running time.

Still, even a large number of repeated executions can only scratch the surface of the
huge search space of possible clusterings. In order to explore the global solution space
extensively, we need more sophisticated meta-heuristics. This is where memetic algorithms
(MAs), i.e. genetic algorithms combined with local search [25], come into play. Memetic
algorithms allow for effective exploration (global search) and exploitation (local search) of
the solution space. The general idea behind genetic algorithms is to use mechanisms inspired
by biological evolution such as selection, mutation, recombination, and survival of the fittest.
A genetic algorithm (GA) starts with a population of individuals (in our case clusterings
of the graph) and evolves the population over several generational cycles (rounds). In each
round, the GA uses a selection rule to select good individuals and combines them to obtain
improved offspring [21]. When an offspring is generated an eviction rule is used to select a
member of the population to be replaced by the new offspring. For an evolutionary algorithm
it is of major importance to preserve diversity in the population [5], i.e., the individuals
should not become too similar in order to avoid a premature convergence of the algorithm.
This is usually achieved by using mutation operations and by using eviction rules that take
similarity of individuals into account.

In this paper, we present a general memetic algorithm, VieClus (Vienna Graph Clustering),
to tackle the graph clustering problem. This algorithm can be adapted to optimize different
objective functions simply by using a local search algorithm that optimizes the objective
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function desired by the user. A key component of our contribution are natural recombine
operators that employ ensemble clusterings as well as multi-level techniques. In machine
learning, ensemble methods combine multiple weak classification (or clustering) algorithms
to obtain a strong algorithm for classification (or clustering). More precisely, given a number
of clusterings, the overlay/ensemble clustering is a clustering in which two vertices belong to
the same cluster if and only if they belong to the same cluster in each of the input clusterings.
Our recombination operators use the overlay of two clusterings from the population to decide
whether pairs of vertices should belong to the same cluster [34, 43]. This is combined with a
local search algorithm to find further improvements and also embedded into a multi-level
algorithm to find even better clusterings. Our general principle is to randomize tie-breaking
whenever possible. This diversifies the search and also improves solutions. Lastly, we combine
these techniques with a scalable communication protocol, producing a system that is able to
compute high-quality solutions in a short amount of time. In our experimental evaluation, we
show that our algorithm successfully improves or reproduces all entries of the 10th DIMACS
implementation challenge under consideration in a small amount of time. In fact, for most
of the small instances, we can improve the old benchmark result in less than a minute.
Moreover, while the previous best result for different instances has been computed by a
variety of solvers, our algorithm can now be used as a single tool to compute the result.

2 Preliminaries

2.1 Basic Concepts
Let G = (V = {0, . . . , n − 1}, E) be an undirected graph and N(v) := {u : {v, u} ∈ E}
denote the neighbors of v. The degree of a vertex v is d(v) := |N(v)|. The problem that we
tackle in this paper is the graph clustering problem. A clustering C is a partition of the set of
vertices, i.e. a set of disjoint blocks/clusters of vertices V1,. . . ,Vk such that V1 ∪ · · · ∪ Vk = V .
However, k is usually not given in advance. The term C[v] refers to the cluster of a node v. A
size-constrained clustering constrains the size of the blocks of a clustering by a given upper
bound U . A clustering is trivial if there is only one block, or all clusters/blocks contain only
one element, i.e., are singletons. We identify a cluster Vi with its node-induced subgraph of
G. The set E(C) := E ∩ (∪iVi×Vi) is the set of intra-cluster edges, and E \E(C) is the set of
inter-cluster edges. We set |E(C)| =: m(C) and |E\E(C)| =: m(C). An edge running between
two blocks is called cut edge. There are different objective functions that are optimized
in the literature. We review some of them in Section 2.3. Our main focus in this work
is on modularity. However, our algorithm can be generalized to optimize other objective
functions. The graph partitioning problem is also looking for a partition of the vertices. Here,
a balancing constraint demands that all blocks have weight |Vi| ≤ (1 + ε)d |V |k e =: Lmax for
some imbalance parameter ε. A vertex is a boundary vertex if it is incident to a vertex in a
different block. The objective is to minimize the total cut |E ∩

⋃
i<j Vi × Vj |. Throughout

the paper, given a set S, the operator ∈rnd selects an element of S uniformly at random.

2.2 Ensemble/Overlay Clusterings
In machine learning, ensemble methods combine multiple weak classification algorithms to
obtain a strong classifier. These base clusterings are used to decide whether pairs of vertices
should belong to the same cluster [34, 44]. Given two clusterings, the overlay clustering is
a clustering in which two vertices belong to the same cluster if and only if they belong to
the same cluster in each of the input clusterings. More precisely, given two clusterings C1
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and C2 the overlay clustering is the clustering where each block corresponds to a connected
component of the graph GE = (V,E\E) where E is the union of the cut edges of C1 and C2,
i.e. all edges that run between blocks in either C1 or C2. Intuitively, if the input clusters
agree that two vertices belong to the same cluster, the two vertices belong together with
high confidence. It is easy to see that the number of clusters in the overlay clustering cannot
be smaller than the number of clusters in each of the input clusterings.

An overlay clustering can be computed in expected linear-time. More precisely, given
two clusterings {C1, C2}, we use the following approach to compute the overlay clustering.
Initially, the overlay clustering O is set to the clustering C1. We then iterate through the
remaining clusterings and incrementally update the current solution O. To this end, we
use pairs of cluster IDs (i, j) as a key in a hash map H, where i is a cluster ID of O and j
is a cluster ID of the current clustering C. We initialize H to be the empty hashmap and
set a counter c to zero. Then we iterate through the nodes. Let v be the current node.
If the pair (O[v], C[v]) is not contained in H, we set H(O[v], C[v]) to c and increment c by
one. Afterwards, we update the cluster ID of v in O to be H(O[v], C[v]). At the end of the
algorithm, c is equal to the number of clusters contained in the overlay clustering and each
vertex is labeled with its cluster ID in O.

2.3 Objective Functions
There are a variety of measures used to assess the quality of a clustering, such as cover-
age [11], performance [46], inter-cluster conductance [24], surprise [3], map equation [38] and
modularity [33]. The most simple index realizing a traditional measure of clustering quality
is coverage. The coverage of a graph clustering C is defined as the fraction of intra-cluster
edges within the complete set of edges cov(C) := m(C)

m . Intuitively, large values of coverage
correspond to a good quality of a clustering. However, one principal drawback of coverage is
that the converse is not necessarily true: coverage takes its largest value of 1 in the trivial
case where there is only one cluster. Modularity fixes this issue by comparing the coverage
of a clustering to the same value after rearranging edges randomly keeping node degrees.
Performance is the fraction of correctly classified vertex pairs, w.r.t the set of edges. Inter-
cluster conductance returns the worst (i.e. the thickest) bottleneck created by separating a
cluster from the rest of the graph. Surprise measures the probability that a random graph
R has more intra-cluster edges. Map equation is a flow-based and information-theoretic
method to assess clustering quality. Our focus in this work is on modularity as it is a widely
accepted quality function and has been the main objective function in the 10th DIMACS
implementation challenge [7]. For further discussions of these indices we refer the reader to
the given references, and simply state the formal definition of modularity here:

Q(C) := cov(C)− E[cov(C)] = m(C)
m
− 1

4m2

∑
Vi∈C

(∑
v∈Vi

d(v)
)2

2.4 Related Work
This paper is a summary and extension of the bachelor’s thesis by Sonja Biedermann [8].
There has been a significant amount of research on graph clustering. We refer the reader
to [20, 23] for thorough reviews of the results in this area. Here, we focus on results closely
related to our main contributions. It is common knowledge that there is no single best
strategy for graph clustering. Moreover, most quality indices for graph clusterings have
turned out to be NP-hard to optimize and rather resilient to effective approximations, see
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e.g. [4, 12, 47], allowing only heuristic approaches for optimization. Other approaches often
rely on specific strategies with high running times, e.g. the iterative removal of central
edges [33], or the direct identification of dense subgraphs [16]. Provably good methods with
a decent running time include algorithms that have a spectral embedding of the vertices
as the basis for a geometric clustering [13], min-cut tree clustering [19], a technique which
guarantees certain bounds on bottlenecks and an approach which relies on random walks in
graphs staying inside dense regions with high probabilities [46]. The Louvain method is a
multi-level clustering algorithm introduced by Blondel et al. [10] that optimizes modularity
as an objective function. As we use this method in our algorithm to create the initial
population as well as to improve individuals after recombination, we go into more detail for
that method in Section 2.6.

Recently, the 10th DIMACS challenge on graph partitioning and graph clustering com-
pared different state-of-the-art graph clustering algorithms w.r.t optimizing modularity [6].
Most of the best results have been obtained by Ovelgönne and Geyer-Schulz [34] as well as
Aloise et al. [2]. CGGC [34] used an ensemble learning strategy during the challenge. From
several weak clusterings an overlap clustering is computed and a more expensive clustering
algorithm is applied. VNS [2] applies the Variable Neighborhood Search heuristic to the
graph clustering problem. Later, Džamić et al. [18] outperformed VNS by proposing an
ascent-decent VNS. We compare ourselves to the results above in Section 4.

Evolutionary Graph Clustering. Tasgin and Bingol [45] introduce a genetic algorithm
using modularity as a quality measure. They chose an integer encoding for representing the
population clusterings. Individuals are randomly initialized, with some bias for assigning
direct neighbors to the same cluster. Recombination is done one way, i.e. instead of using
mutual exchange, clusters are transferred from a source individual to a target individual.
More precisely, the operation picks a random vertex in the source individual and clusters
all vertices of its cluster together in the destination individual. This is repeated several
times in one recombination operation. As for mutation, the authors chose to pick one vertex
and move it to a random cluster, which is almost guaranteed to decrease the fitness. This
approach does not use local search to improve individuals.

A mutation-less agglomerative hierarchical genetic algorithm is presented by Lipczak
and Milios in [27]. The authors represent each cluster as one individual and use one-point
and uniform crossovers in that representation. Two synthetic networks have been used for
the experimental evaluation. An important advantage of this algorithm is the possibility to
distribute its computations.

2.5 Karlsruhe High-Quality Partitioning
Within this work, we use the open source multi-level graph partitioning framework KaHIP [41]
(Karlsruhe High-Quality Partitioning). More precisely, we employ partitioning tools contained
therein to create high-quality partitions of the graphs. We shortly outline its main components.
KaHIP implements many different algorithms, for example, flow-based methods and more-
localized local searches within a multi-level framework, as well as several coarse-grained
parallel and sequential meta-heuristics. Recently, specialized methods to partition social
networks and web graphs have been included in the framework [30].

2.6 Multi-level Louvain Method
The Louvain method is a multi-level clustering algorithm introduced by Blondel et al. [10]. It
is an approach to graph clustering that optimizes modularity as an objective function. Since
we instantiate our memetic algorithm to optimize for modularity, we give more detail in
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order to be self-contained. The algorithm is organized in two phases: a local movement phase
and contraction/uncontraction phase. The first phase, local movement, works in rounds and
is done as follows: In the beginning, each vertex is a singleton cluster. Vertices are then
traversed in random order and always moved to the neighboring cluster yielding the highest
modularity increase. Computing the best move can be done in time proportional to the
degree of a vertex by storing cumulative vertex degrees of clusters. More precisely, the gain
in modularity by removing a vertex from a cluster can be computed by

∆Q(u) = s

m
+ d(u)

4m2 +
(
∑

v∈C d(v))2

4m2 −
(d(u) +

∑
v∈C d(v))2

4m2 .

A similar formula holds when adding a singleton vertex to a cluster. Once a vertex is moved,
the cumulated degrees of the affected clusters are updated. Hence, the best move can be
found in time proportional to the degree of a vertex. The local movement algorithm stops
when a local maximum of the modularity is attained, that is when no vertex move a yields
modularity gain. The second phase of the algorithm consists in contracting the clustering.
Contracting the clustering works as follows: each block of the clustering is contracted into a
single node. There is an edge between two vertices u and v in the contracted graph if the
two corresponding blocks in the clustering are adjacent to each other in G, i.e. block u and
block v are connected by at least one edge. The weight of an edge (A,B) is set to the sum of
the weight of the edges that run between block A and block B of the clustering. Moreover, a
self-loop is inserted for each vertex in the contracted graph. The weight of this edge is set to
be the cumulative weight of the edges in the respective cluster. Note that due to the way
the contraction is defined, a clustering of the coarse graph corresponds to a clustering of the
finer graph with the same objective. The algorithm then continues with the local movement
phase on the contracted graph. In the end, the clustering contractions are undone and at
each level local movement improves the current clustering w.r.t. modularity.

3 Memetic Graph Clustering

We now explain the components of our memetic graph clustering algorithm. Our algorithm
starts with a population of individuals (in our case one individual is a clustering of the graph)
and evolves the population into different populations over several rounds. In each round, the
GA uses a selection rule based on the fitness of the individuals (in our case the objective
function of the clustering problem under consideration) of the population to select good
individuals and recombine them to obtain improved offspring. Our selection process is based
on the tournament selection rule [31], i.e. C is the fittest out of two random individuals
R1, R2 from the population. When an offspring is generated an elimination rule is used to
select a member of the population and replace it with the new offspring. In general, one
has to take both into consideration, the fitness of an individual and the distance between
individuals in the population [36] in order to avoid premature convergence of the algorithm.
We evict the solution that is most similar with respect to the edges that run in between
clusters with the offspring among those individuals in the population that have a worse or
equal objective than the offspring itself. If there is no such individual, then the offspring
is rejected and not inserted into the population. The difference between two individuals is
defined as the size of the symmetric difference between their sets of cut edges. Our algorithm
generates only one offspring per generation.

The core of our algorithm are our novel recombination and mutation operations. We
provide two different kinds of operations, flat- and multi-level recombination operations.
We also define a mutation operator that splits clusters by employing graph partitioning
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techniques. In any case, the offspring is typically improved using a local search algorithm
that optimizes for the objective function of the graph clustering problem. We continue this
section by explaining the details of our algorithm with a focus on modularity – the results
are transferable to other clustering problems by using local search algorithms that optimize
the objective function of the problem under consideration.

3.1 Initialization/Creating Individuals
We initialize our population using the following modified Louvain algorithm. We also use the
following algorithm to create an individual in recombine and mutation operations. Depending
on the objective of the evolutionary algorithm, the choice of algorithms to initialize the
population may be different. We describe our scheme for modularity.

We mainly use the Louvain method to create clusterings. Due to the non-deterministic
nature of this algorithm – the order of nodes visited is randomized – we obtain different
initial graph clusterings and later on individuals. In order to introduce more diversification,
we modify the approach by using a different coarsening strategy based on the size-constrained
label propagation algorithm [30]. Label propagation works similar to the local movement
phase of the Louvain method. However, the objective of the algorithm is different. Without
size-constraints, it was proposed by Raghavan et al. [37]. Initially, each vertex is in its own
cluster/block, i.e. the initial block ID of a vertex is set to its vertex ID. The algorithm then
works in rounds. In each round, the vertices of the graph are traversed in a random order.
When a vertex v is visited, it is moved to the block that has the strongest connection to
v, i.e. it is moved to the cluster Vi that maximizes ω({(v, u) | u ∈ N(v) ∩ Vi}) whilst not
overloading the target cluster w.r.t to the size-constraint bound U . Ties are broken randomly.
The process is repeated until the process has converged. Here, we perform at most ` rounds of
the algorithm, where ` is a tuning parameter, and stop the algorithm if less than five percent
of the vertices changed its cluster during one round. One LPA round can be implemented to
run in O(n+m) time.

We modify the coarsening stage of the Louvain method using size-constrained label
propagation as follows: For the first λ ∈rnd [0, 4] levels of the multi-level hierarchy we use
size-constraint label propagation to compute the clustering to be contracted instead of the
local movement phase to compute a clustering. We choose U ∈rnd [n/10, n] in the beginning
of the multi-level algorithm. Afterwards, we switch to the local movement phase of the
Louvain method to compute a clustering to be contracted. Note that for λ = 0 the method
is the Louvain method. In any case, in the uncoarsening phase local movement improves the
current clustering by optimizing modularity.

3.2 Recombination
We define flat- and multi-level recombination operations which we are going to explain
now. Both operations use the notion of overlay clustering to pass on good parts of the
solutions to the offspring. Some of our recombination operators ensure that the offspring
has non-decreasing fitness. Moreover, our recombine operations can recombine a solution
from the population with an arbitrary clustering of the graph. Due to the fact that our local
search and multi-level algorithms are randomized, a recombine operation performed twice
using the same parents can yield different offsprings.

Flat Recombination. The basic flat recombination operation starts by taking two clusterings
C1, C2 from the population as input and computes its overlay. The overlay is then contracted
such that vertices represent blocks in the overlay clustering and edges represent edges between
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vertices of two blocks. Edge weights are equal to the summed weight of the edges that run
between the respective blocks, and self-loops are inserted with the edge weight being equal
to the summed internal edge weight of that corresponding block. Note that due to the
way contraction is defined, a clustering of the contracted graph can be transformed into a
clustering of the input network having the same modularity score. Hence, we use the Louvain
method to cluster the contracted graph, which then constitutes the offspring. Also, note
that the contraction of the overlay ensures that vertices that are clustered together in both
inputs will belong to the same cluster in the offspring. Only vertices which are split by one
of the input clusterings will be affected by the Louvain method. What follows are multiple
variations of the basic flat recombination method that ensure non-decreased fitness of the
input individual, i.e. the offspring has fitness at least as good as the better input individual.

Apply Input Clustering. This operator uses the better of the two parent clusterings as a
starting point for the Louvain method on the contracted graph. Due to the way contraction
is defined the objective function of the starting point on the contracted graph is the same as
of the corresponding clustering on the input network. The resulting offspring can be expected
to be less diverse than when using the plain recombination operator, but may significantly
more improve upon the parent.

Cluster-/Partition Recombination. This operator differs from the previous two operators
insofar that only one of the parents is selected from the population. The other parent is
manufactured on the spot by running either the size-constrained label propagation (SCLP)
or a graph partitioning algorithm on the input graph. The resulting clustering can be very
different from to the other parent. This introduces more diversification which helps local
search to explore a larger search space. When using SCLP clustering for the recombination,
we use the parameters as described in Section 3.1. When using a partition, we use the KaHIP
with the fastsocial preconfiguration using k ∈rnd [2, 64] and ε ∈rnd [0.03, 0.5].

Multi-level Recombination. We now explain our multi-level recombine operator. This
recombine operator also ensures that the solution quality of the offspring is at least as good as
the best of both parents. For our recombine operator, let C1 and C2 again be two individuals
from the population. Both individuals are used as input for the multi-level Louvain method
in the following sense. Let E be the set of edges that are cut edges, i.e. edges that run
between two blocks, in either C1 or C2. All edges in E are blocked during the coarsening phase,
i.e. they are not contracted during the coarsening phase. In other words, these edges cannot
be contracted during the multi-level scheme. We ensure this by modifying the local movement
phase of the Louvain method, i.e. clusters can only grow inside connected components of the
overlay (V,E\E). We stop contracting clusterings when no contractable edge is left.

When coarsening is stopped, we then apply the better out of both input individuals
w.r.t. the objective to the coarsest graph and use this as initial clustering instead of running
the Louvain method on the coarsest graph. However, during uncoarsening local search still
optimizes modularity on each level of the hierarchy. Note that this is possible since we did not
contract any cut edge of both inputs. Also, note that this way we obtain a clustering of the
coarse graph having a modularity score being equal to the better of both input individuals.
Local movement guarantees no worsening of the clustering. Hence, the offspring is at least
as good as the best input individual. Note that the coarsest graph is the same as the graph
obtained in a flat recombination. However, the operation now is able to pass on good parts
of the solution on multi-levels of the hierarchy during uncoarsening and hence has a more
fine-grained view on both individuals.
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3.3 Mutation

Our recombination operators can only decrease the number of clusters present in the solution.
To counteract this behavior, we define a mutation operator that selects a subset of clusters and
splits each of them in half. Splitting is done using the KaHIP graph partitioning framework.
The number of clusters to be split is set to ps|C| where ps is the splitting probability and |C|
is the number of clusters that the clustering selected from the population has. That means
that we split a cluster into two balanced blocks such that there are only a small amount of
edges running between them. We do this operation with two individuals from the population
that are found by tournament selection. This results in two output individuals which are
used as input to a multi-level recombination operation. The computed offspring of that
operation is then inserted into the population as described above.

3.4 Parallelization

We now explain the island-based parallelization that we use. We use a parallelization scheme
that has been successfully used in graph partitioning [40]. Each processing element (PE)
basically performs the same operations using different random seeds. First, we estimate
the population size S: each PE creates an individual and measures the time t spent. We
then choose S such that the time for creating S clusterings is approximately ttotal/c where
the fraction c is a tuning parameter and ttotal is the total running time that the algorithm
is given to produce a clustering of the graph. The minimum amount of individuals in the
population is set to 3, the maximum amount of the individuals in the population is set to
100. The lower bound on the population size is chosen to ensure a certain minimum of
diversity, while the upper bound is used to ensure convergence. Each PE then builds its
own population. Afterwards, the algorithm proceeds in rounds as long as time is left. Either
a mutation or recombination operation is performed. Over time, the best individuals are
exchanged between the PEs. Our communication protocol is similar to randomized rumor
spreading which has shown to be scalable in previous work [40]. We refer to the full version
of the paper [9] for a description of the communication protocol.

4 Experimental Evaluation

System and Methodology. We implemented the memetic algorithm described in the pre-
vious section within the KaHIP (Karlsruhe High Quality Partitioning) framework. The
code is written in C++ and MPI. It has been compiled using g++-5.2 with flags -O3 and
OpenMPI 1.6.5. We refer to the algorithm presented in this paper as VieClus. The code
is available at http://vieclus.taa.univie.ac.at/. Throughout this section, our main
objective is modularity. All experiments comparing VieClus with competing algorithms
are performed on a cluster with 512 nodes, where each node has two Intel Xeon E5-2670
Octa-Core (Sandy Bridge) processors clocked at 2.6 GHz, 64 GB main memory, 20 MB L3-
and 8x256 KB L2-Cache and runs RHEL 7.4. We use the arithmetic mean when averaging
over solutions of the same instance and the geometric mean when averaging over different
instances in order to give every instance a comparable influence on the final result. It is
well known that the algorithms that scored most of the points during the 10th DIMACS
challenge compute better results than the Louvain method. Hence, we refrain from doing
additional experiments with the Louvain method.
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Table 1 Results of our algorithm on the benchmark test set. Columns from left to right: average
modularity achieved by our algorithm (Avg. Q), t average time in minutes needed to beat the old
challenge result, the best score computed of our algorithm (Max. Q), the best scores achieved by
challenge participants, running time in minutes needed to create the previous best entry according
to [26] and reference to the solver that achieved the result during the 10th DIMACS challenge.

Graph Avg. Q t [m] Max. Q Q [7] tsol[m] Solver

Small Instances

as-22july06 0,679 391 <1 0,679 396 0,678 267 6,6 CGGC[34]
astro-ph 0,746 285 <1 0,746 292 0,744 621 11,9 VNS[2]
celegans_metabol 0,453 248 <1 0,453 248 0,453 248 <1 VNS[2]
cond-mat-2005 0,750 065 <1 0,750 171 0,746 254 40,9 CGGC[34]
email 0,582 829 <1 0,582 829 0,582 829 <1 VNS[2]
PGPgiantcompo 0,886 853 <1 0,886 853 0,886 564 1,9 CGGC[34]
polblogs 0,427 105 <1 0,427 105 0,427 105 <1 VNS[2]
power 0,940 975 <1 0,940 977 0,940 851 <1 VNS[2]
smallworld 0,793 186 <1 0,793 187 0,793 042 16,8 VNS[2]
memplus 0,701 242 2,6 0,701 275 0,700 473 3,2 CGGC[34]
G_n_pin_pout 0,500 457 3,9 0,500 466 0,500 098 64,8 CGGC[34]
caidaRouterLevel 0,872 804 5,0 0,872 828 0,872 042 81,0 CGGC[34]
rgg_n17 0,978 448 5,0 0,978 454 0,978 324 37,5 VNS[2]
luxembourg.osm 0,989 665 7,3 0,989 672 0,989 621 40,9 VNS[2]

Large Instances

coAuthorsCiteseer 0,906 804 3,9 0,906 830 0,905 297 91,3 CGGC[34]
citationCiteseer 0,825 518 12,9 0,825 545 0,823 930 77,6 CGGC[34]
coPapersDBLP 0,868 019 20,5 0,868 058 0,866 794 603,3 CGGC[34]
belgium.osm 0,995 062 29,5 0,995 064 0,994 940 102,9 CGGC[34]
ldoor 0,970 521 35,1 0,970 555 0,969 370 485,6 ParMod[14]
eu-2005 0,941 575 65,8 0,941 575 0,941 554 341,5 CGGC[34]
in-2004 0,980 684 237,4 0,980 690 0,980 622 244,0 CGGC[34]
333SP 0,989 316 297,1 0,989 356 0,989 095 976,9 ParMod[14]
prefAttachment 0,315 843 * 0,316 089 0,315 994 1 353,1 VNS[2]

Parameters. Our algorithm is not very sensitive to the precise choice parameters. We did
not perform a tuning of the parameters of the algorithm, rather we chose the parameters
described above and below to be reasonable and to introduce a large amount of diversification
or we chose parameters that were a good choice in previous evolutionary algorithms [40].
We expect the parameters to work well with a varity of instances. As our main design goal
is to introduce as much diversification as possible, we use all recombination and mutation
operations in our algorithm. The ratio of mutation to recombine operations has been set
to 1:9 as this has been a good choice in previous evolutionary algorithms [40]. When we
perform a recombine operation, we pick the recombine operation uniformly at random and
diversify the parameters as described above. When performing a mutation operation, we use
a splitting probability ps uniformly at random in [0.01, 0.1]. We invest 1/10 of the total time
to create the initial population.

Instances. We use the graphs that have been used for the 10th DIMACS implementation
challenge on graph clustering and graph partitioning [7]. A list of the instances as well
as the modularity scores that have been obtained during the challenge can be found in
Table 1. We exclude the instances cage15, audikw1, er-fact1.5-scale25, kron_*, uk-2002,
uk-2007-05 from the challenge testbed in our evaluation, because they are either too large to
be feasible for an evolutionary algorithm or they do not contain a significant cluster structure
as indicated by the reported modularity score [6].
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4.1 Evolutionary Graph Clustering

We now run our algorithm on all the DIMACS instances under consideration using the rules
used there, i.e. running time is not an issue but we want to achieve modularity values as
large as possible for each instance. On the small instances, we give our algorithm 2 hours of
time to compute a solution and on the large instances, we set the time limit to 16 hours. In
any case, we use 16 cores of our machine, i.e. one node of the machine. We perform the test
five times with different random seeds. Table 1 summaries the results of our experiment,
and the technical report [9] contains convergence plots for a selected subset of the instances.

First of all, on every instance under consideration, our algorithm is able to compute a
result that is better than the currently reported modularity value in literature. More precisely,
in 98 out of 115 runs of our algorithm, the previous benchmark result of the 10th DIMACS
implementation challenge is outperformed. In further 15 out of 115 runs, we reproduce the
results. This is the case for each of the runs for the graphs celegans_metabolic, email
and polblogs. The two cases in which our algorithm does not beat the previous best solver,
are 2 runs on the graph prefAttachment. The other 3 runs on that graph outperform the
previous result. The time needed to compute a clustering having a similar score on that
graph is roughly 95% of the total running time. Moreover, as convergence plots in [9] show
this may be fixable by giving the algorithm a larger amount of time to compute the solution.

Overall, the time needed to outperform the previous benchmark results ranges from less
than a minute to a couple of minutes on the small instances. On the large instances our
algorithm needs more time, but on most instances, the previous benchmark result can be
computed in roughly an hour. Table 1 also reports the running time of the solver that
obtained the result during the DIMACS challenge. Our algorithm is faster in every case
compared to the previous solver (eventually by more than an order of magnitude), however,
the machines used for the experiment are different and our algorithm is a parallel algorithm
whereas previous solvers are sequential. Note that the final improvements over the old result
are fairly small (<0.1% on average). This is not surprising, as previous solvers already
invested a large amount of time to compute the results. However, note that the previous
result has been computed by different solvers and our evolutionary algorithm can be seen as
a single tool to compute the result.

We now compare the results with recently published results [26, 22, 28, 39]. LaSalle [26]
reports results on all graphs from the DIMACS challenge subset. However, each of the
best computed result is worse than the result computed by the respective best algorithm
during the DIMACS challenge (and hence worse compared to our algorithm). Moreover,
LaSalle [26] reports that his Nerstrand algorithm is on average equal or slightly better than the
Louvain method on the instances used here. Lu et al. [28] present a result for coPapersDBLP
(Q = 0,858 088) and Ryu and Kim [39] report modularity for email (Q = 0,568) which
are worse compared to the results that we report here. Hamann et al. [22] report the
result for in-2004 (Q = 0,980) which is comparable to the result that we report here.
Džamić [18] build upon VNS proposing an ascent-decent VNS. Results are reported for
celegans_metabolic (Q = 0.453248), email (Q = 0,582 829), polblogs (Q = 0,427 105)
for which their algorithm computes the same results as all other tools reported in Table 1.
Moreover, the following best results are reported as-22july06 (Q = 0,678 381), astro-ph
(Q = 0,745 246), cond-mat-2005 (Q = 0,747 181), PGPgiantcompo (Q = 0.886647), as well
as power (Q = 0.940974) which are indeed better than the previous best result obtained
during the 10th DIMACS challenge, but still worse than average result of our algorithm in
every case. Hence, overall we consider our algorithm as a new state-of-the-art heuristic for
solving the modularity clustering problem.
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Table 2 Columns from left to right: the approximate bound computed with the heuristic algorithm
to balance cluster volumes and the ratio of our best value and the bound.

Graph B Q/B

Small Instances

as-22july06 0,973 684 0,697 758
astro-ph 0,999 070 0,746 987
celegans_metabol 0,888 889 0,509 904
cond-mat-2005 0,999 468 0,750 570
email 0,900 000 0,647 588
PGPgiantcompo 0,989 796 0,895 996
polblogs 0,996 168 0,428 748
power 0,975 610 0,964 501
smallworld 0,995 652 0,796 651
memplus 0,984 127 0,712 586
G_n_pin_pout 0,993 865 0,503 555
caidaRouterLevel 0,997 758 0,874 789
rgg_n17 0,992 537 0,985 811
luxembourg.osm 0,996 283 0,993 364

Large Instances

coAuthorsCiteseer 0,995 575 0,910 861
citationCiteseer 0,993 289 0,831 123
coPapersDBLP 0,995 283 0,872 172
belgium.osm 0,998 358 0,996 701
ldoor 0,989 796 0,980 561
eu-2005 0,996 564 0,944 821
in-2004 0,999 136 0,981 538
333SP 0,995 726 0,993 603
prefAttachment 0,875 000 0,361 245

4.2 Approximate Bound for Modularity

The modularity clustering problems seeks to maximize cov(C) - E[cov(C)]. However, the
problem is NP-complete and our algorithm heuristically finds solutions. Moreover, modularity
is trivially bounded by 1. The true optimum clustering, however, has typically a value below
that. Thus we try to find a bound or a value to normalize the score such that one gets a
clearer picture on how far away from the optimum score the achieved modularity value is.

To do so, let us define
∑

v∈Vi
d(v) to be the volume vol(Vi) of the cluster Vi. Note that

the formula 1
4m2

∑
Vi∈C vol(Vi)2 is minimized if all clusters have the same volume. But again,

finding the optimum value of this equation is hard. As
∑

Vi∈C vol(Vi) = 2m, the equation
is minimized when vol(Vi)= 2m/k ∀i = 1 . . . k, where k is the number of clusters. Thus it
follows that 1

4m2

∑
Vi∈C vol(Vi)2 ≥ 1

4m2 · k · ( 2m
k )2 = 1

k . This gives an upper of 1− 1
k for Q(C)

if the number of clusters is an input to the clustering problem. This upper bound is, however,
not very far from the trivial upper bound of large k.

Thus for each graph we also clustered the nodes into cluster Vi using the following
heuristic to try to balance the volumes of the resulting clusters as much as possible: We sort
the nodes in decreasing order of their degree and then assign them step by step to the cluster
having the smallest volume. We break ties by using the cluster with the smallest ID among
those having the smallest volume. For this heuristic, we use the number of clusters that our
algorithm has computed as value for k. For the resulting clustering C∗ we compute the value
E[cov(C∗)] and use B := 1 − E[cov(C∗)] as a value to normalize Q(C). Table 2 shows the
resulting bound and compares them against our results.
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5 Conclusion

We presented a parallel memetic algorithm, VieClus, that tackles the graph clustering
problem. A key component of our contribution are natural recombine operators that employ
ensemble clusterings as well as multi-level techniques. We combine these techniques with a
scalable communication protocol, producing a system that is able to reproduce or improve
previous all entries of the 10th DIMACS implementation challenge under consideration as
well as results recently reported in the literature in a short amount of time. Moreover, while
the previous best result for different instances has been computed by a variety of solvers,
our algorithm can now be used as a single tool to compute the result. Hence, overall we
consider our algorithm as a new state-of-the-art heuristic for solving the modularity clustering
problem. In the future, it may be interesting to instantiate our scheme for different objective
functions depending on the application domain or to use a more diverse set of initial solvers
to create the population. We also want to look at distributed memory parallel multi-level
algorithms for the problem that can use the depicted algorithm as an initial clustering scheme
on the coarsest level of the hierarchy.
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Abstract
Computing high-quality graph partitions is a challenging problem with numerous applications.
In this paper, we present a novel meta-heuristic for the balanced graph partitioning problem. Our
approach is based on integer linear programs that solve the partitioning problem to optimality.
However, since those programs typically do not scale to large inputs, we adapt them to heurist-
ically improve a given partition. We do so by defining a much smaller model that allows us to
use symmetry breaking and other techniques that make the approach scalable. For example, in
Walshaw’s well-known benchmark tables we are able to improve roughly half of all entries when
the number of blocks is high.
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1 Introduction

Balanced graph partitioning is an important problem in computer science and engineering
with an abundant amount of application domains, such as VLSI circuit design, data mining
and distributed systems [38]. It is well known that this problem is NP-complete [8] and
that no approximation algorithm with a constant ratio factor exists for general graphs
unless P=NP [8]. Still, there is a large amount of literature on methods (with worst-case
exponential time) that solve the graph partitioning problem to optimality. This includes
methods dedicated to the bipartitioning case [3, 4, 12, 13, 14, 15, 24, 21, 30, 39] and some
methods that solve the general graph partitioning problem [16, 40]. Most of these methods
rely on the branch-and-bound framework [28]. However, these methods can typically solve
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only very small problems as their running time grows exponentially, or if they can solve
large bipartitioning instances using a moderate amount of time [12, 13], the running time
highly depends on the bisection width of the graph. Methods that solve the general graph
partitioning problem [16, 40] have huge running times for graphs with up to a few hundred
vertices. Thus in practice mostly heuristic algorithms are used.

Typically the graph partitioning problem asks for a partition of a graph into k blocks of
about equal size such that there are few edges between them. Here, we focus on the case
when the bounds on the size are very strict, including the case of perfect balance when the
maximal block size has to equal the average block size.

Our focus in this paper is on solution quality, i.e. minimize the number of edges that run
between blocks. During the past two decades there have been numerous researchers trying to
improve the best graph partitions in Walshaw’s well-known partitioning benchmark [41, 42].
Overall there have been more than forty different approaches that participated in this
benchmark. Indeed, high solution quality is of major importance in applications such as
VLSI Design [1, 2] where even minor improvements in the objective can have a large impact
on the production costs and quality of a chip. High-quality solutions are also favorable
in applications where the graph needs to be partitioned only once and then the partition
is used over and over again, implying that the running time of the graph partitioning
algorithms is of a minor concern [11, 18, 27, 29, 32, 31]. Thirdly, high-quality solutions
are even important in areas in which the running time overhead is paramount [41], such as
finite element computations [37] or the direct solution of sparse linear systems [20]. Here,
high-quality graph partitions can be useful for benchmarking purposes, i.e. measuring how
much more running time can be saved by higher quality solutions.

In order to compute high-quality solutions, state-of-the-art local search algorithms
exchange vertices between blocks of the partition trying to decrease the cut size while
also maintaining balance. This highly restricts the set of possible improvements. Recently, we
introduced new techniques that relax the balance constraint for vertex movements but globally
maintain balance by combining multiple local searches [36]. This was done by reducing this
combination problem to finding negative cycles in a graph. In this paper, we extend the
neighborhood of the combination problem by employing integer linear programming. This
enables us to find even more complex combinations and hence to further improve solutions.
More precisely, our approach is based on integer linear programs that solve the partitioning
problem to optimality. However, out of the box those programs typically do not scale to
large inputs, in particular because the graph partitioning problem has a very large amount
of symmetry – given a partition of the graph, each permutation of the block IDs gives a
solution having the same objective and balance. Hence, we adapt the integer linear program
to improve a given input partition. We do so by defining a much smaller graph, called model,
and solve the graph partitioning problem on the model to optimality by the integer linear
program. More specifically, we select vertices close to the cut of the given input partition for
potential movement and contract all remaining vertices of a block into a single vertex. A
feasible partition of this model corresponds to a partition of the input graph having the same
balance and objective. Moreover, this model enables us to use symmetry breaking, which
allows us to scale to much larger inputs. To make the approach even faster, we combine it
with initial bounds on the objective provided by the input partition, as well as providing the
input partition to the integer linear program solver. Overall, we arrive at a system that is
able to improve more than half of all entries in Walshaw’s benchmark when the number of
blocks is high.

The rest of the paper is organized as follows. We begin in Section 2 by introducing
basic concepts. After presenting some related work in Section 3 we outline the integer linear
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program as well as our novel local search algorithm in Section 4. Here, we start by explaining
the very basic idea that allows us to find combinations of simple vertex movements. We
then explain our strategies to improve the running time of the solver and strategies to
select vertices for movement. A summary of extensive experiments done to evaluate the
performance of our algorithms is presented in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Basic concepts
Let G = (V = {0, . . . , n− 1}, E) be an undirected graph. We consider positive, real-valued
edge and vertex weight functions ω resp. c and extend them to sets, i.e., ω(E′) :=

∑
x∈E′ ω(x)

and c(V ′) :=
∑
x∈V ′ c(x). Let N(v) := {u : {v, u} ∈ E} denote the neighbors of v. The

degree of a vertex v is d(v) := |N(v)|. A vertex is a boundary vertex if it is incident to at
least one vertex in a different block. We are looking for disjoint blocks of vertices V1,. . . ,Vk
that partition V ; i.e., V1 ∪ · · · ∪ Vk = V . The balancing constraint demands that each block
has weight c(Vi) ≤ (1 + ε)d c(V )

k e =: Lmax for some imbalance parameter ε. We call a block Vi
overloaded if its weight exceeds Lmax. The objective of the problem is to minimize the total
cut ω(E ∩

⋃
i<j Vi × Vj) subject to the balancing constraints. We define the gain of a vertex

as the maximum decrease in the cut value when moving it to a different block.

3 Related Work

There has been a huge amount of research on graph partitioning and we refer the reader to the
surveys given in [6, 9, 37, 43] for most of the material. Here, we focus on issues closely related to
our main contributions. All general-purpose methods that are able to obtain good partitions
for large real-world graphs are based on the multi-level principle. Well-known software
packages based on this approach include Jostle [43], KaHIP [34], Metis [25] and Scotch [33].

Chris Walshaw’s well-known benchmark archive has been established in 2001 [41, 42].
Overall it contains 816 instances (34 graphs, 4 values of imbalance, and 6 values of k).
In this benchmark, the running time of the participating algorithms is not measured or
reported. Submitted partitions will be validated and added to the archive if they improve on
a particular result. This can either be an improvement in the number of cut edges or, if they
match the current best cut size, an improvement in the weight of the largest block. Most
entries in the benchmark have as of Feb. 2018 been obtained by Galinier et al. [19] (more
precisely an implementation of that approach by Frank Schneider), Hein and Seitzer [22] and
the Karlsruhe High-Quality Graph Partitioning (KaHIP) framework [36]. More precisely,
Galinier et al. [19] use a memetic algorithm that is combined with tabu search to compute
solutions and Hein and Seitzer [22] solve the graph partitioning problem by providing tight
relaxations of a semi-definite program into a continuous problem.

The Karlsruhe High-Quality Graph Partitioning (KaHIP) framework implements many
different algorithms, for example flow-based methods and more-localized local searches, as
well as several coarse-grained parallel and sequential meta-heuristics. KaBaPE [36] is a
coarse-grained parallel evolutionary algorithm, i.e. each processor has its own population
(set of partitions) and a copy of the graph. After initially creating the local population, each
processor performs multi-level combine and mutation operations on the local population.
This is combined with a meta-heuristic that combines local searches that individually violate
the balance constraint into a more global feasible improvement. For more details, we refer
the reader to [36].
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4 Local Search based on Integer Linear Programming

We now explain our algorithm that combines integer linear programming and local search.
We start by explaining the integer linear program that can solve the graph partitioning
problem to optimality. However, out-of-the-box this program does not scale to large inputs,
in particular because the graph partitioning problem has a very large amount of symmetry.
Thus, we reduce the size of the graph by first computing a partition using an existing
heuristic and based on it collapsing parts of the graph. Roughly speaking, we compute a
small graph, called model, in which we only keep a small number of selected vertices for
potential movement and perform graph contractions on the remaining ones. A partition of
the model corresponds to a partition of the input network having the same objective and
balance. The computed model is then solved to optimality using the integer linear program.
As we will see this process enables us to use symmetry breaking in the linear program, which
in turn drastically speeds up computation times.

4.1 Integer Linear Program for the Graph Partitioning Problem

We now introduce a generalization of an integer linear program formulation for balanced
bipartitioning [7] to the general graph partitioning problem. First, we introduce binary
decision variables for all edges and vertices of the graph. More precisely, for each edge
e = {u, v} ∈ E, we introduce the variable euv ∈ {0, 1} which is one if e is a cut edge and zero
otherwise. Moreover, for each v ∈ V and block k, we introduce the variable xv,k ∈ {0, 1}
which is one if v is in block k and zero otherwise. Hence, we have a total of |E| + k|V |
variables. We use the following constraints to ensure that the result is a valid k-partition:

∀{u, v} ∈ E,∀k : euv ≥ xu,k − xv,k (1)
∀{u, v} ∈ E,∀k : euv ≥ xv,k − xu,k (2)

∀k :
∑
v∈V

xv,kc(v) ≤ Lmax (3)

∀v ∈ V :
∑
k

xv,k = 1 (4)

The first two constraints ensure that euv is set to one if the vertices u and v are in
different blocks. For an edge {u, v} ∈ E and a block k, the right-hand side in this equation is
one if one of the vertices u and v is in block k and the other one is not. If both vertices are
in the same block then the right-hand side is zero for all values of k. Hence, the variable can
either be zero or one in this case. However, since the variable participates in the objective
function and the problem is a minimization problem, it will be zero in an optimum solution.

The third constraint ensures that the balance constraint is satisfied for each partition.
And finally, the last constraint ensures that each vertex is assigned to exactly one block.
To sum up, our program has 2k|E| + k + |V | constraints and k · (6|E| + 2|V |) non-zeros.
Since we want to minimize the weight of cut edges, the objective function of our program
is written as:

min
∑

{u,v}∈E

euv · ω({u, v}) (5)
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4.2 Local Search

The graph partitioning problem has a large amount of symmetry – each permutation of the
block IDs gives a solution with equal objective and balance. Hence, the integer linear program
described above will scan many branches that contain essentially the same solutions so that
the program does not scale to large instances. Moreover, it is not immediately clear how to
improve the scalability of the program by using symmetry breaking or other techniques.

Our goal in this section is to develop a local search algorithm using the integer linear
program above. Given a partition as input to be improved, our main idea is to contract
vertices “that are far away” from the cut of the partition. In other words, we want to
keep vertices close to the cut and contract all remaining vertices into one vertex for each
block of the input partition. This ensures that a partition of the contracted graph yields a
partition of the input graph with the same objective and balance. Hence, we apply the integer
linear program to the model and solve the partitioning problem on it to optimality. Note,
however, that due to the performed contractions this does not imply an optimal solution
on the input graph.

We now outline the details of the algorithm. Our local algorithm has two inputs, a
graph G and a partition V1, . . . , Vk of its vertices. For now assume that we have a set of
vertices K ⊂ V which we want to keep in the coarse model, i.e. a set of vertices which we
do not want to contract. We outline in Section 4.4 which strategies we have to select the
vertices K. For the purpose of contraction we define k sets Vi := Vi \ K. We obtain our
coarse model by contracting each of these vertex sets. The contraction of a vertex set Vi
works as follows: the set of vertices is contracted into a single vertex µi. The weight of µi is
set to the sum of the weight of all vertices in the set that is contracted. There is an edge
between two vertices µi and v in the contracted graph if there is an edge between a vertex of
the set and v in the original graph G. The weight of an edge (µi, v) is set to the sum of the
weight of edges that run between the vertices of the set and v. After all contractions have
been performed the coarse model contains k + |K| vertices, and potentially much less edges
than the input graph. Figure 1 gives an abstract example of our model.

There are two things that are important to see: first, due to the way we perform
contraction, the given partition of the input network yields a partition of our coarse model
that has the same objective and balance simply by putting µi into block i and keeping the
block of the input for the vertices in K. Moreover, if we compute a new partition of our
coarse model, we can build a partition in the original graph with the same properties by
putting the vertices Vi into the block of their coarse representative µi together with the
vertices of K that are in this block. Hence, we can solve the integer linear program on the
coarse model to compute a partition for the input graph. After the solver terminates, i.e.
found an optimum solution of our mode or has reached a predefined time limit T , we transfer
the best solution to the original graph. Note that the latter is possible since an integer linear
program solver typically computes intermediate solutions that may not be optimal.

4.3 Optimizations

Independent of the vertices K that are selected to be kept in the coarse model, the approach
above allows us to define optimizations to solve our integer linear program faster. We apply
four strategies: (i) symmetry breaking, (ii) providing a start solution to the solver, (iii) add
the objective of the input as a constraint as well as (iv) using the parallel solving facilities of
the underlying solver. We outline the first three strategies in greater detail:
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V1

V2

V3

V4

V1 \ K

V2 \ K

V3 \ K

V4 \ K

K K

Figure 1 From left to right: a graph that is partitioned into four blocks, the set K close to
the boundary that will stay in the model, and lastly the model in which the sets Vi \ K have
been contracted.

Symmetry Breaking. If the set K is small, then the solver will find a solution much faster.
Typically, our algorithms selects the vertices K such that c(µi) + c(µj) > Lmax. In other
words, no two contracted vertices can be clustered in one block. We can use this to break
symmetry in our integer linear programming by adding constraints that fix the block of µi
to block i, i.e. we set xµi,i = 1 and xµi,j = 0 for i 6= j. Moreover, for those vertices we can
remove the constraint which ensures that the vertex is assigned to a single unique block –
since we assigned those vertices to a block using the new additional constraints.

Providing a Start Solution to the Solver. The integer linear program performs a significant
amount of work in branches which correspond to solutions that are worse than the input
partitioning. Only very few - if any - solutions are better than the given partition. However,
we already know a fairly good partition (the given partition from the input) and give this
partition to the solver by setting according initial values for all variables. This ensures that
the integer linear program solver can omit many branches and hence speeds up the time
needed to solve the integer linear program.

Solution Quality as a Constraint. Since we are only interested in improved partitions, we
can add an additional constraint that disallows solutions which have a worse objective than
the input partition. Indeed, the objective function of the linear program is linear, and hence
the additional constraint is also linear. Depending on the objective value, this reduces the
number of branches that the linear program solver needs to look at. However, note that this
comes at the cost of an additional constraint that needs to be evaluated.

4.4 Vertex Selection Strategies
The algorithm above works for different vertex sets K that should be kept in the coarse
model. There is an obvious trade-off: on the one hand, the set K should not be too large,
otherwise the coarse model would be large and hence the linear programming solver needs a
large amount of time to find a solution. On the other hand, the set should also not be too
small, since this restricts the amount of possible vertex movements, and hence the approach
is unlikely to find an improved solution. We now explain different strategies to select the
vertex set K. In any case, while we add vertices to the set K, we compute the number of
non-zeros in the corresponding ILP. We stop to add vertices when the number of non-zeros
in the corresponding ILP is larger than a parameter N .

Vertices Close to Input Cut. The intuition of the first strategy, Boundary, is that changes
or improvements of the partition will occur reasonable close to the input partition. In
this simple strategy our algorithm tries to use all boundary vertices as the set K. In order
to adhere to the constraint on the number of non-zeros in the ILP, we add the vertices
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of the boundary uniformly at random and stop if the number of non-zeros N is reached.
If the algorithm managed to add all boundary vertices whilst not exceeding the specified
number of non-zeros, we do the following extension: we perform a breadth-first search that is
initialized with a random permutation of the boundary vertices. All additional vertices that
are reached by the BFS are added to K. As soon as the number of non-zeros N is reached,
the algorithm stops.

Start at Promising Vertices. Especially for high values of k the boundary contains many
vertices. The Boundary strategy quickly adds a lot of random vertices while ignoring vertices
that have high gain. However, note that even in good partitions it is possible that vertices
with positive gain exist but cannot be moved due to the balance constraint.

Hence, our second strategy, Gainρ, tries to fix this issue by starting a breadth-first search
initialized with only high gain vertices. More precisely, we initialize the BFS with each vertex
having gain ≥ ρ where ρ is a tuning parameter. Our last strategy, TopVerticesδ, starts by
sorting the boundary vertices by their gain. We break ties uniformly at random. Vertices
are then traversed in decreasing order (highest gain vertices first) and for each start vertex v
our algorithm adds all vertices with distance ≤ δ to the model. The algorithm stops as soon
as the number of non-zeros exceeds N .

Early gain-based local search heuristics for the ε-balanced graph partitioning problem
searched for pairwise swaps with positive gain [17, 26]. More recent algorithms generalized
this idea to also search for cycles or paths with positive total gain [36]. An important
advantage of our new approach is that we solve the combination problem to optimality, i.e.
our algorithm finds the best combination of vertex movements of the vertices in K w.r.t to the
input partition of the original graph. Therefore we can also find more complex optimizations
that cannot be reduced to positive gain cycles and paths.

5 Experiments

5.1 Experimental Setup and Methodology
We implemented the algorithms using C++-17 and compiled all codes using g++-7.2.0 with
full optimization (-O3). We use Gurobi 7.5.2 as an ILP solver and always use its parallel
version. All of our experiments were conducted on a machine with two Haswell Xeon E5-2697
v3 processors. The machine has 28 cores at 2.6GHz as well as 64GB of main memory and runs
the SUSE Linux Enterprise Server (SLES) operating system. Unless otherwise mentioned,
our approach uses the shared-memory parallel variant of Gurobi using all 28 cores. In general,
we perform five repetitions per instance and report the average running time as well as
cut. Unless otherwise mentioned, we use a time limit for the integer linear program. When
the time limit is passed, the integer linear program solver outputs the best solution that
has currently been discovered. This solution does not have to be optimal. Note that we
do not perform experiments with Metis [25] and Scotch [33] in here, since previous papers,
e.g. [34, 35], have already shown that solution quality obtained is much worse than results
achieved in the Walshaw benchmark. When averaging over multiple instances, we use the
geometric mean in order to give every instance the same influence on the final score.

Performance Plots. These plots relate the fastest running time to the running time of each
other ILP-based local search algorithm on a per-instance basis. For each algorithm, these
ratios are sorted in increasing order. The plots show the ratio tbest/talgorithm on the y-axis
to highlight the instances in which each algorithm performs badly. For plots in which we
measure solution quality, the y-axis shows the ratio cutbest/cutalgorithm. A point close to
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Table 1 Basic properties of the benchmark instances.

Graph n m Graph n m

Walshaw Graphs (Set B) Walshaw Graphs (Set B)
add20 2 395 7 462 wing 62 032 ≈ 121K
data 2 851 15 093 brack2 62 631 ≈ 366K
3elt 4 720 13 722 finan512 74 752 ≈ 261K
uk 4 824 6 837 fe_tooth 78 136 ≈ 452K
add32 4 960 9 462 fe_rotor 99 617 ≈ 662K
bcsstk33 8 738 ≈ 291K 598a 110 971 ≈ 741K
whitaker3 9 800 28 989 fe_ocean 143 437 ≈ 409K
crack 10 240 30 380 144 144 649 ≈ 1.1M
wing_nodal 10 937 75 488 wave 156 317 ≈ 1.1M
fe_4elt2 11 143 32 818 m14b 214 765 ≈ 1.7M
vibrobox 12 328 ≈ 165K auto 448 695 ≈ 3.3M
bcsstk29 13 992 ≈ 302K
4elt 15 606 45 878 Parameter Tuning (Set A)
fe_sphere 16 386 49 152 delaunay_n15 32 768 98 274
cti 16 840 48 232 rgg_15 32 768 ≈ 160K
memplus 17 758 54 196 2cubes_sphere 101 492 ≈ 772K
cs4 22 499 43 858 cfd2 123 440 ≈ 1.5M
bcsstk30 28 924 ≈ 1.0M boneS01 127 224 ≈ 3.3M
bcsstk31 35 588 ≈ 572K Dubcova3 146 689 ≈ 1.7M
fe_pwt 36 519 ≈ 144K G2_circuit 150 102 ≈ 288K
bcsstk32 44 609 ≈ 985K thermal2 1 227 087 ≈ 3.7M
fe_body 45 087 ≈ 163K as365 3 799 275 ≈ 11.4M
t60k 60 005 89 440 adaptive 6 815 744 ≈ 13.6M

zero indicates that the running time/quality of the algorithm was considerably worse than
the fastest/best algorithm on the same instance. A value of one therefore indicates that
the corresponding algorithm was one of the fastest/best algorithms to compute the solution.
Thus an algorithm is considered to outperform another algorithm if its corresponding ratio
values are above those of the other algorithm. In order to include instances that hit the time
limit, we set the corresponding values to a negative value for ratio computations.

Instances. We perform experiments on two sets of instances. Set A is used to determine the
performance of the integer linear programming optimizations and to tune the algorithm. We
obtained these instances from the Florida Sparse Matrix collection [10] and the 10th DIMACS
Implementation Challenge [5] to test our algorithm. Set B are all graphs from Chris
Walshaw’s graph partitioning benchmark archive [41, 42]. This archive is a collection of
instances from finite-element applications, VLSI design and is one of the default benchmarking
sets for graph partitioning.

Table 1 gives basic properties of the graphs from both benchmark sets. We ran the
unoptimized integer linear program that solves the graph partitioning problem to optimality
from Section 4.1 on the five smallest instances from the Walshaw benchmark set. With a
time limit of 30 minutes, the solver has only been able to compute a solution for the graphs
uk and add32 with k = 2. For higher values of k the solver was unable to find any solution in
the time limit. Even giving a starting solution does not increase the number of ILPs solved.
Hence, we omit further experiments in which we run an ILP solver on the full graph.

5.2 Impact of Optimizations
We now evaluate the impact of the optimization strategies for the ILP that we presented in
Section 4.3. In this section, we use the variant of our local search algorithm in which K is
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Figure 2 Left: performance plot for five variants of our algorithm: Basic does not contain
any optimizations; BasicSym enables symmetry breaking; BasicSymSSol additionally gives the
input partitioning to the ILP solver. The two variants BSSSConst= and BSSSConst< are the same
as BasicSymSSol with additional constraints: BSSSConst= has the additional constraint that the
objective has to be smaller or equal to the start solution, BSSSConst< has the constraint that the
solution must be better than the start solution. Right: performance of the slowest (Basic) and
fastest ILPs (BasicSymSSol) depending on the number of non-zeros in the ILP.

obtained by starting depth-one breadth-first search at the 25 highest gain vertices, and set
the limit on the non-zeros in the ILP to N =∞. However, due to preliminary experiments
we expect the results in terms of speedup to be similar for different vertex selection strategies.
To evaluate the ILP performance, we run KaFFPa using the strong preconfiguration on each
of the graphs from set A using ε = 0 and k ∈ {2, 4, 8, 16, 32, 64} and then use the computed
partition as input to each ILP (with the different optimizations). As the optimizations do
not change the objective value achieved in the ILP, we only report running times of our
different approaches. We set the time limit of the ILP solver to 30 minutes.

We use five variants of our algorithm: Basic does not contain any optimizations; BasicSym
enables symmetry breaking; BasicSymSSol additionally gives the input partitioning to the
ILP solver. The two variants BSSSConst= and BSSSConst< are the same as BasicSymSSol
with additional constraints: BSSSConst= has the additional constraint that the objective
has to be smaller or equal to the start solution, BSSSConst< has the constraint that the
objective value of a solution must be better than the objective value of the start solution.
Figure 2 summarises the results.

In our experiments, the basic configuration reaches the time limit in 95 out of the 300
runs. Overall, enabling symmetry breaking drastically speeds up computations. On all
of the instances which the Basic configuration could solve within the time limit, each
other configuration is faster than the Basic configuration. Symmetry breaking speeds up
computations by a factor of 41 in the geometric mean on those instances. The largest
obtained speedup on those instances was a factor of 5663 on the graph adaptive for k = 32.
The configuration solves all but the two instances (boneS01, k = 32) and (Dubcova3, k = 16)
within the time limit. Additionally providing the start solution (BasicSymSSol) gives an
addition speedup of 22% on average. Over the Basic configuration, the average speedup
is 50 with the largest speedup being 6495 and the smallest speedup being 47%. This
configuration can solve all instances within the time limit except the instance boneS01 for
k = 32. Providing the objective function as a constraint (or strictly smaller constraint) does
not further reduce the running time of the solver. Instead, the additional constraints even
increase the running time. We attribute this to the fact that the solver has to do additional
work to evaluate the constraint. We conclude that BasicSymSSol is the fastest configuration
of the ILP. Hence, we use this configuration in all the following experiments. Moreover, from
Figure 2 we can see that this configuration can solve most of the instance within the time
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Table 2 From top to bottom: Number of improvements found by different vertex selection rules
relative to the total number of instances, average running time of the strategy on the subset of
instances (graph, k) in which all strategies finished within the time limit, and the relative number of
instances in which the strategy computed the lowest cut. Best values are highlighted in bold.

Gain TopVertices Boundary
k ρ = 0 ρ = −1 ρ = −2 δ = 1 δ = 2 δ = 3

Relative Number of Improvements
2 70% 70% 70% 50% 70% 70% 70%
4 50% 60% 80% 70% 70% 70% 80%
8 50% 60% 78% 60% 60% 60% 48%
16 30% 50% 70% 40% 30% 30% 40%
32 60% 60% 46% 50% 50% 20% 20%
64 70% 70% 50% 30% 20% 20% 0%

Average Running Time
2 189.943s 292.573s 357.145s 34.045s 61.152s 92.452s 684.198s
4 996.934s 628.950s 428.353s 87.357s 255.223s 558.578s 1467.595s
8 552.183s 244.470s 244.046s 105.737s 167.164s 340.900s 96.763s
16 118.532s 52.547s 90.363s 53.385s 141.814s 243.957s 34.790s
32 40.300s 24.607s 94.146s 27.156s 80.252s 116.023s 7.596s
64 15.866s 21.908s 24.253s 14.627s 30.558s 44.813s 4.187s

Relative Number Best Algorithm
2 20% 60% 50% 10% 10% 0% 60%
4 10% 0% 50% 10% 0% 0% 30%
8 0% 20% 30% 10% 10% 10% 26%
16 0% 10% 54% 10% 0% 10% 20%
32 0% 8% 38% 0% 0% 0% 4%
64 0% 16% 36% 0% 0% 0% 0%

limit if the number of non-zeros in the ILP is below 106. Hence, we set the parameter N
to 106 in the following section.

5.3 Vertex Selection Rules
We now evaluate the vertex selection strategies to find the set of vertices K that model
the ILP. We look at all strategies described in Section 4.4, i.e. Boundary, Gainρ with the
parameter ρ ∈ {−2,−1, 0} as well as TopVerticesδ for δ ∈ {1, 2, 3}. To evaluate the different
selection strategies, we use the best of five runs of KaFFPa strong on each of the graphs
from set A using ε = 0 and k ∈ {2, 4, 8, 16, 32, 64} and then use the computed partition as
input to the ILP (with different sets K). Table 2 summarizes the results of the experiment,
i.e. the number of cases in which our algorithm was able to improve the result, the average
running time in seconds for these selection strategies as well as the number of cases in which
the strategy computed the best result (the partition having the lowest cut). We set the time
limit to 2 days to be able to finish almost all runs without running into timeout. For the
average running time we exclude all graphs in which at least one algorithm did not finish in
2 days (rgg_15 k = 16, delaunay_n15 k = 4, G2_circuit k = 4, 8). If multiple runs share the
best result, they are all counted. However, when no algorithm improves the input partition
on a graph, we do not count them.

Looking at the number of improvements, the Boundary strategy is able to improve the
input for small values of k, but with increasing number of blocks k improvements decrease
to no improvement in all runs with k = 64. Because of the limit on the number of non-zeros,
the ILP contains only random boundary vertices for large values of k in this case. Hence,
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Figure 3 Left: performance plot for all vertex selection strategies Right: cut value of vertex
selection strategies in comparison to the best result given by any strategy.

there are not sufficiently many high gain vertices in the model and fewer improvements for
large values of k are expected. For small values of k ∈ {2, 4}, the Boundary strategy can
improve as many as the Gainρ=−2 strategy but the average running times are higher.

For k = {2, 4, 8, 16}, the strategy Gainρ=−2 has the highest number of improvements, for
k = {32, 64} it is surpassed by the strategy Gainρ=−1. However, the strategy Gainρ=−2 finds
the best cuts in most cases among all tested strategies. Due to the way these strategies are
designed, they are able to put a lot of high gain vertices into the model as well as vertices
that can be used to balance vertex movements. The TopVertices strategies are overall also
able to find a large number of improvements. However, the found improvements are typically
smaller than the Gain strategies. This is due to the fact that the TopVertices strategies
grow BFS balls with a predefined depth around high gain vertices first, and later on are not
able to include vertices that could be used to balance their movement. Hence, there are less
potential vertex movements that could yield an improvement.

For almost all strategies, we can see that the average running time decreases as the
number of blocks k increases. This happens because we limit the number of non-zeros N
in our ILP. As the number of non-zeros grows linearly with the underlying model size, the
models are far smaller for higher values of k. Using symmetry breaking, we already fixed the
block of the k vertices µi which represent the vertices not part of K. Thus the ILP solver
can quickly prune branches which would place vertices connected heavily to one of these
vertices in a different block. Additionally, our data indicate that a large number of small
areas in our model results faster in solve times than when the model contains few large areas.
The performance plot in Figure 3 shows that the strategies Boundary, TopVerticesδ=1 and
Gainρ=−2 have lower running times than other strategies. These strategies all select a large
number of vertices to initialize the breadth-first search. Therefore they output a vertex set
K that is the union of many small areas around these vertices. Variants that initialize the
breadth-first search with fewer vertices have fewer areas, however each of the areas is larger.

5.4 Walshaw Benchmark

In this section, we present the results when running our best configuration on all graphs from
Walshaw’s benchmark archive. Note that the rules of the benchmark imply that running
time is not an issue, but algorithms should achieve the smallest possible cut value while
satisfying the balance constraint. We run our algorithm in the following setting: We take
existing partitions from the archive and use those as input to our algorithm. As indicated by
the experiments in Section 5.3, the vertex selection strategies Gainρ∈{−1,−2} perform best
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Table 3 Relative number of improved instances in the Walshaw Benchmark starting from current
entries reported in the Walshaw benchmark.

k\ε 0% 1% 3% 5%

2 6% 12% 6% 6%
4 18% 9% 6% 18%
8 26% 24% 12% 15%
16 50% 26% 29% 29%
32 62% 47% 47% 53%
64 68% 59% 71% 76%

overall 38% 29% 28% 33%

for different values of k. Thus we use the variant Gainρ=−2 for k ≤ 16 and both Gainρ=−2
and Gainρ=−1 otherwise in this section. We repeat the experiment once for each instance
(graph, k) and run our algorithm for k = {2, 4, 8, 16, 32, 64} and ε ∈ {0, 1%, 3%, 5%}. For
larger values of k ∈ {32, 64}, we strengthen our strategy and use N = 5 · 106 as a bound for
the number of non-zeros. Table 3 summarizes the results. Detailed per-instance results are
given in the full version of this paper [23].

When running our algorithm using the currently best partitions provided in the benchmark,
we are able to improve 38% of the currently reported perfectly balanced results. We are
able to improve a larger number of results for larger values of k, more specifically, out of the
partitions with k ≥ 16, we can improve 60% of all perfectly balanced partitions. This is due
to the fact that the graph partitioning problem becomes more difficult for larger values of k.
There is a wide range of improvements with the smallest improvement being 0.0008% for
graph auto with k = 32 and ε = 3% and with the largest improvement that we found being
1.72% for fe_body for k = 32 and ε = 0%. The largest absolute improvement we found is 117
for bcsstk32 with k = 64 and ε = 0%. In general, the total number of improvements is lower
if some imbalance is allowed. This is also expected since traditional local search methods
have a larger amount of freedom to move vertices. However, the number of improvements
still shows that the method is also able to improve a many partitions even if some imbalance
is allowed.

6 Conclusions and Future Work

We presented a novel meta-heuristic for the balanced graph partitioning problem. Our
approach is based on an integer linear program that solves a model to combine unconstrained
vertex movements into a global feasible improvement. Through a given input partition, we
were able to use symmetry breaking and other techniques that make the approach scale to
large inputs. In Walshaw’s benchmark, we were able to improve a large number of partitions.

We plan to further improve our implementation and integrate it into the KaHIP framework.
We would like to look at other objective functions as long as they can be modelled linearly.
Moreover, we want to investigate whether this kind of contractions can be useful for other
ILPs. It may be interesting to find cores for contraction by using the information provided an
evolutionary algorithm like KaFFPaE [35], i.e. if many of the individuals of the population of
the evolutionary algorithm agree that two vertices should be put together in a block then those
should be contracted in our model. Lastly, besides using other exact techniques like branch-
and-bound to solve the model, it may also be worthwhile to use a heuristic algorithm instead.
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Abstract
We consider a job scheduling problem under precedence constraints, a classical problem for a
single processor and multiple jobs to be done. The goal is, given processing time of n fixed
jobs and precedence constraints over jobs, to find a permutation of n jobs that minimizes the
total flow time, i.e., the sum of total wait time and processing times of all jobs, while satisfying
the precedence constraints. The problem is an integer program and is NP-hard in general. We
propose a decision diagram π-MDD, for solving the scheduling problem exactly. Our diagram is
suitable for solving linear optimization over permutations with precedence constraints. We show
the effectiveness of our approach on the experiments on large scale artificial scheduling problems.
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1 Introduction

Scheduling problems are typical problems which are known to be NP-hard in general. Hence,
practical fast approximate solvers for scheduling are quite useful in practice. Among them,
the job scheduling problem of a single machine with precedence constraints is a classical
one, where, given n fixed jobs and their processing times, as well as precedence constraints
over jobs (i.e., job i must be done prior to job j), the task is to find a permutation of
n jobs ( a schedule) which minimizes the sum of processing times and wait times (called
flow time) of all jobs among those permutations satisfying precedence constraints. This
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problem is NP-hard [15, 16] as well and 2-approximation polynomial time algorithms are
known [24, 11, 5, 17, 4]. For further details, see, e.g., [8, 2]. On the other hand, practical
exact algorithms are quite non-trivial to obtain; Naive algorithms using integer programming
solvers still take prohibitive time.

BDDs (Binary Decision Diagrams) [1, 3] and ZDDs (Zero Suppressed BDDs) [20, 21, 14] are
data structures which represent sets of binary vectors (or sets of fixed objects). BDDs/ZDDs
can compress sets succinctly and various functions over sets (such as union and intersection)
are efficiently computed using the data structures. In particular, ZDDs are suitable for
representing sparse sets and often advantageous in practice (see, e.g., [22, 12]). A variant of
ZDDs called πDDs are specially designed for representing permutations [23]. The structure
is suitable for counting or enumeration, but not designed for optimization. In addition, we
are not aware of other non-trivial applications of BDDs/ZDDs for the scheduling problem
with precedence constraints. MDDs (Multiple-Valued Decision Diagrams)[19] are of variants
of BDDs which can treat multiple values naturally and applications of MDDs to scheduling
problems are known [6, 7]. The scheduling problems considered are different from ours and
thus are not applicable.

In this paper, we propose a data structure π-MDD, which directly represents a set of
permutations over {1, . . . , n}1. A π-MDD is a DAG and each path in the DAG represents a
permutation. Using the data structure, we show an exact optimization scheme for the job
scheduling problem under precedence constraints. More specifically, our scheme consists of
the following two parts.
(i) We propose an algorithm which, when given a set of precedence constraints represented

by a DAG as input, constructs a π-MDD representing permutations satisfying the
precedence constraints in output-linear time. We show that the size of the π-MDD
made by the algorithm is O(h(G)(n/h(G) + 1)h(G)), where G is the DAG representing
precedence constraints and h(G) is the width of the graph.

(ii) Given a π-MDD which represents a set of permutations, and processing times of jobs,
we show a method for finding a permutation π optimizing the flow time among the
set which is a linear optimization over the permutations in the set. Like BDDs/ZDDs,
linear optimization of the set of interest can be reduced to the shortest path problem
over the corresponding MDD which represents the set. Thus the computation time for
the optimization is linear in the size of the π-MDD.

A potential advantage of our method (and other BDDs/ZDDs/MDDs based approaches)
over naive integer-programming based methods is that once we construct a π-MDD represent-
ing permutations satisfying precedence constraints, we can re-use it for different cost criteria
without reconstructing π-MDDs. This advantage is crucial for (i) the case where several
different cost criteria are considered and (ii) a repeated game version of the job scheduling
under fixed precedence constraints under uncertainty (see, e.g., [9]).

In our preliminary experiments over large artificial data sets of job scheduling under
precedence constraints, our method outperforms naive methods based on the integer pro-
gramming, especially when there are more precedence constraints.

1.1 Related Work
Note that the data structure π-MDD is a special case of MDDs and not new itself. Further-
more, the structure of π-MDD is quite similar to ones used in the previous work of Hadzic
et al. [10] and Ciré and van Hoeve [6, 7]. However, their approach to construct the data

1 More precisely, π-MDDs can deal with permutations over n fixed different numbers.



K. Matsumoto, K. Hatano, and E. Takimoto 5:3

structure is totally different from ours. Their approach is to construct a relaxed MDD which
represents a super set of the feasible solutions first and to solve the problem by refining
the MDD as well as filtering infeasible solutions. On the other hand, our approach directly
constructs the exact set of feasible solutions.

The technical contribution of the paper is not to derive a new data structure, but to
derive an efficient construction method of π-MDDs satisfying precedence constraints as well
as an efficient exact optimization of the job scheduling problem using the structure.

2 Preliminaries

2.1 Notations
Let [n] = {1, 2, ..., n} be the set of integers 1, . . . , n. A permutation π over [n] is a bijection
from [n] to [n]. Each permutation π can be represented as the corresponding vector π =
(π(1), . . . , π(n)). For convenience, for each i ∈ [n],let πi be the i-th element of π, and π−1

i

be the position of element i, respectively. Let S[n] be the set of permutations over [n]. For
example, S[3] = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

A directed graph (DAG) G = (V,E) is a pair, where V is the set of nodes and E ⊆ V ×V
is the set of directed edges in which there is no directed cycle, i.e., there is no sequence
(v1, v2), (v2, v3) . . . , (vk, vk+1) ∈ Ek with v1 = vk+1.

Let d+
v denote the out-degree of node v in V , that is d+

v = |{v′ ∈ V | (v, v′) ∈ E}|. We
say that a node v ∈ V is reachable from v′ ∈ V if there is a directed path starting from
v′ ending at v, i.e., a sequence of directed edges (v′, v1), (v1, v2), . . . , (vk−1, vk), (vk, v) ∈ E.
For a DAG G = (V,E), the width h(G) denote the maximum size of the set V ′ ⊆ V

where each pair of nodes are not reachable from each other. A partially ordered set (poset)
(P,R) is a pair, where P is a set and R ⊂ P × P is a binary relation satisfying reflexivity
(∀a ∈ P, aRa), transitivity (∀a, b, c ∈ P, aRb and bRc implies aRc), and antisymmetry
(∀a, b ∈ P, aRb and bRa implies a = b). A poset (P,R) can be viewed as a DAG G = (V,E)
with V = P and R = E and known as a Hasse diagram.

Let SV (G) denote the set of permutations over V ⊆ [n] satisfying the precedence
constraints corresponding to the DAG G = (V,E) and is defined as

SV (G) = {π ∈ SV | ∀(v, v′) ∈ E πv < πv′}.

Similarly, let S−1
V (G) the set of inverses of permutations in SV (G), i.e.,

S−1
V (G) = {π−1 ∈ SV | π ∈ SV (G)}

Note that, by definition of the inverse, S−1
V (G) = {π ∈ SV | ∀(v, v′) ∈ E π−1

v < π−1
v′ }. We

will make use of this property extensively in later discussions.

2.2 The job scheduling problem under precedence constraints
We consider the job scheduling problem of n jobs with a single machine under the precedence
constraints given as a DAG G = ([n], E). Given processing times of jobs represented as a
vector w ∈ Rn and the precedence constraints G, the task is to find a permutation over the
set [n] of jobs minimizing the sum of flow times (the sum of processing time and wait time)
of all jobs. For example, when n = 4, jobs 3, 2, 4, 1 are done successively, flow times of these
jobs are w3, w3 +w2, w3 +w2 +w4, w3 +w2 +w4 +w1, respectively and the sum of flow times
is 4w3 + 3w2 + 2w4 +w1. If we represent the schedule as a permutation π = (1, 3, 4, 2) (each
component i can be viewed as its priority), the sum of flow times of the schedule is exactly
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the inner product π ·w. This relationship holds in general. That is, a permutation π ∈ S[n]
represents a schedule where the priority of job i is πi (i.e., the job is the (n+ 1− πi)-th to
be done) and the sum of flow times is π ·w.

Now we define the job scheduling problem under the precedence constraints represented
as a DAG G = ([n], E) and w ∈ Rn as the following linear optimization problem:

Input : DAG G = ([n], E), w ∈ Rn

Output : π∗ = arg min
π∈S[n](G)

π ·w (1)

The problem can be formulated as an integer program where variables takes values in [n]
and it is NP-hard [15, 16]. We will solve this problem exactly using a new data structure
later.

This problem can be reduced to the 0-1 integer programs in two ways. The first reduction
represents a permutation as a permutation matrix as follows: Given a permutation π ∈ S[n],
the corresponding permutation matrix X ∈ {0, 1}n×n is defined as Xi,j = 1 if πj = i and
otherwise Xj = 0 for each j ∈ [n]. For example, for π = (2, 3, 1), the permutation matrix X
is

X =

0 0 1
1 0 0
0 1 0

 .
When we represent permutations as permutation matrices and we are given w ∈ Rn, let

W =


w1 w2 · · · wn
2w1 2w2 · · · 2wn
...

...
. . .

...
nw1 nw2 · · · nwn

 .
Then the problem can be given as the following integer program.

minimizeX∈{0,1}n×n

n∑
i=1

n∑
j=1

Xi,jWi,j

subject to (2a)

∀i ∈ [n]
n∑
j=1

Xi,j = 1 (2b)

∀j ∈ [n]
n∑
i=1

Xi,j = 1 (2c)

∀(v, v′) ∈ E ∀i ∈ [n]
n∑
j=i

Xj,v ≤
n∑
j=i

Xj,v′ (2d)

This formulation has n2 variables and n(|E|+ 2) linear constraints.
The second reduction to an 0-1 integer program uses a comparison matrix as a represent-

ation of a permutation. A comparison matrix Y ∈ {0, 1}n corresponding to a permutation π
is defined as

Yi,j =
{

0 (πi > πj)
1 (πi ≤ πj)

(3)
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By adopting the comparison matrix representation, the scheduling problem is given as the
following integer program with the input

W =


w1 w2 · · · wn
w1 w2 · · · wn
...

...
. . .

...
w1 w2 · · · wn

 .

minimizeY ∈{0,1}n×n

n∑
i=1

n∑
j=1

Yi,jWi,j

subject to
∀i, j, k ∈ [n] 1 ≥ Yi,j − Yi,k + Yj,k ≥ 0 (4a)

∀i, j ∈ [n]
{
Yi,j + Yj,i = 1 (i 6= j)
Yi,j = 1 (i = j) (4b)

∀(v, v′) ∈ E Yv,v′ = 1 (4c)

The optimum of the scheduling problem is the permutation represented by the solution Y .
This problem has n2 variables and 2n3 + n(n + 1)/2 + |E| constraints. This formulation
is well-known in the scheduling literature. For details, see, e.g.,the result of Chudak and
Hochbaum [5].

3 π-MDD

We propose π-MDD, a variant of MDD (Multiple-Valued Decision Diagram[18][19]). An
MDD is a data structure representing a set of vectors, while a π-MDD represents a set of
permutation vectors.

A π-MDD D = (VD, ED) over N ⊂ N, |N | = n is a DAG with the root node r whose
in-degree is 0 and the terminal node t whose out-degree is 0, where VD ⊆ 2N consists of sets
of nodes. Each node of VD corresponds to a subset of N . In particular, r = N and t = ∅.
The structure of a π-MDD has several layers. At the first layer, only the root r = N exists
and i-th layer consists of nodes u with size |u| = n− i+ 1 (i = 1, . . . , n). Edges of a π-MDD
appear only between consecutive layers. More precisely, (u, u′) ∈ ED if and only if u′ ⊂ u

and u and u′ differ in exactly one element. Each path from the root r to the terminal t has
length exactly n and each node u in VD with distance i from t corresponds to a set of size i,
that is |u| = i. Let PD be the set of all paths from the root r = N to the terminal t = ∅. For
convenience, we sometimes regard a path in PD as a sequence of vertices along the directed
path. That is, PD ⊂ (2N )n+1. Figure 1 illustrates a π-MDD. Given a π-MDD D, a path
p = (p1, . . . , pn+1) ∈ PD defines a permutation πp as follows:

πp = (πp,1, . . . , πp,n) s.t. πp,i ∈ pn−i+1 \ pn−i+2 (i = 1, . . . , n).

Note that the set pn−i+1 \ pn−i+2 is a singleton and thus the definition is well-defined. For
example, in Figure 1, for the path p = ({1, 2, 3, 4}, {2, 3, 4}, {3, 4}, {3}, ∅), the corresponding
permutation πp is (3, 4, 2, 1). Similarly, two sets of permutations associated with a π-MDD
D over N ⊂ N are defined as follows:

Π(D) = {πp |p ∈ PD}, and Π−1(D) = {π−1 | π ∈ Π(D)}.
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5:6 Decision Diagrams for Solving a Job Scheduling Problem

Figure 1 An illustration of a π-MDD D.

For the π-MDD in Figure 1, Π(D) = {(4, 1, 2, 3), (4, 1, 3, 2), (3, 4, 1, 2), (3, 4, 2, 1)}, and
Π−1(D) = {(2, 3, 4, 1), (2, 4, 3, 1), (3, 4, 1, 2), (4, 3, 1, 2)}. S−1

π (D) Sπ(D), respectively.
Now we propose a method to solve the scheduling problem using π-MDDs. The method

consists of two parts.

1. Given a DAG G = ([n], E) which represents precedence constraints, construct a π-MDD
D such that Π(D) = S−1

[n] (G). That is, the π-MDD D represents inverses of permutations
satisfying the constraints.

2. Given the π-MDD D over [n] and a weight vector w ∈ Rn, solve

π = arg min
π∈S[n](G)

π ·w.

3.1 Construction of a π-MDD

In this subsection, we consider the following problem:

Input : DAG G = ([n], E)
Output : π-MDD D s.t. Π(D) = S−1

[n] (G).

Let G(V ′) denote the subgraph of G induced by the vertex subset V ′, that is, G(V ′) =
(V ′, E′), where E′ = {(v, v′) ∈ V ′ | (v, v′) ∈ E}. Also, let E(V ′) = {(v, v′) ∈ V ′ | (v, v′) ∈ E}.
First, we describe the algorithm Makeπ-MDD in Algorithm 1.

The algorithm Makeπ-MDD recursively constructs a π-MDD from the root node r = [n]
to the terminal node t = ∅. For any π ∈ SV and an integer q, we denote πq as πq =
(π1, . . . , π|V |, q). For any set Y ⊆ Rn and any real number y ∈ R, let Y × y = {(y, y) ∈
Rn+1 | y ∈ Y }. Then we prove an important property of S−1

V (G).

I Lemma 1. For a DAG G = (V,E) and Q = {q ∈ V | d+
q = 0},

S−1
V (G) =

⋃
q∈Q

S−1
V \{q}(G(V \ {q}))× q. (5)
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Algorithm 1 Makeπ-MDD.
Require: DAG G = (V,E), where V ⊆ [n]
1: if V = ∅ then
2: return node ∅
3: else if have never memorized the π-MDD DG for G then
4: π-MDD D ← (VD, ED) with VD = {V } and ED = ∅.
5: for each v ∈ V whose out-degree is 0 in G = (V,E) do
6: V ′ ← V \ {v}
7: π-MDD D′ ← Makeπ-MDD(G(V ′)) // root node is V ′
8: D ← D with D′ and edge (V, V ′)
9: end for
10: memorize D as DG

11: end if
12: return DG

Proof. For any fixed q ∈ Q,

πq ∈ S−1
V \{q}(G(V \ {q}))× q

⇔ πq ∈ SV , ∀(v, v′) ∈ E(V \ {q}), π−1
v ≤ π−1

v

(by definition of S−1
V (G) and its property)

⇔ π′ = πq ∈ SV , ∀(v, v′) ∈ E(V \ {q}) ∪ {(i, q) ∈ V 2 | i ∈ V \ {q}}, π
′−1
v ≤ π

′−1
v

(since π|V | = q ⇔ π
′−1
q = |V | )

⇒ π′ = πq ∈ SV , ∀(v, v′) ∈ V, π
′−1
v ≤ π

′−1
v = S−1

V (G)
(since E ⊆ E(V \ {q}) ∪ {(i, q) ∈ V 2 | i ∈ V \ {q}}),

which implies that ∪q∈QS−1
V \{q}(G(V \ {q}))× q ⊆ S−1

V (G).

For the opposite direction, let π be any member of S−1
V (G). Then, by definition, for

any (v, v′) ∈ E, it holds that π−1
v ≤ π−1

v′ . Let q = π|V |. Then, we have π−1
q = |V | > π−1

v

for any v ∈ V \ {q}. Therefore, there is no out-going edge from q (if exists, it implies a
contradiction) and thus q ∈ Q. Together with the fact that π ∈ S−1

V \{q}(G(V \ {q}))× q, the
opposite direction also holds. J

The following lemma holds for Makeπ-MDD. Now we describe an important relationship
between the output of Makeπ-MDD and the input DAG G = (V,E). Roughly speaking, the
π-MDD made by the algorithm represents a set of inverses of permutations satisfying the
precedence constraints.

I Lemma 2. Makeπ-MDD constructs a π-MDD D such that Sπ(D) = S−1
V (G).

Proof. The proof is done by induction on the size k = |V | in the input DAG G = (V,E).
(i) For |V |=0, Makeπ-MDD outputs the π-MDD D = (VD, ED) with VD = {∅} and E = ∅.
Thus the statement is true. (ii) For |V | = k, assume that the statement is true. Let DG(V ′)
be the π-MDD made by Makeπ-MDD(G(V ′)). Then,
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5:8 Decision Diagrams for Solving a Job Scheduling Problem

Π(D) =
⋃
q∈Q

(Π(DG(V \{q}))× q)

=
⋃
q∈Q

(S−1
V \{q}(G(V \ {q}))× q) (by the inductive assumption)

=
⋃
q∈Q

({π ∈ SV \{q}| ∀(v, v′) ∈ E(V \ {q}) π−1
v < π−1

v′ } × q)

= S−1
V (G) (by Lemma 1), (6)

which completes the inductive proof. J

I Corollary 3. For the output D of Makeπ-MDD(G) with G = ([n], E), Π−1(D) = S[n](G).

The size of the π-MDD can be bounded based on the result of Inoue and Minato [13].

I Lemma 4. For a DAG G = (V,E), let h(G) be the width of G. Then, the size |D| of
π-MDD D obtained from Makeπ-MDD(G = (V,E)) is

|D| = O(h(G)(n/h(G) + 1)h(G)).

Proof. Let IS(G) be the set of DAGs which can be constructed by updating G = G(V \{v ∈
V | d+(v) = 0}) recursively. The total number of recursions in Makeπ-MDD is at most
|IS(G)|. It is known that the size |IS(G)| is at most (n/h(G) + 1)h(G) [13]. Since any pair
of elements in the set Q = {v ∈ V ′ | d+

v = 0} are not reachable to each other, |Q| ≤ h(G).
Therefore, at each recursion, at most h(G) edges are added, and thus the total edges in the
π-MDD made by the algorithm is O(h(G)(n/h(G) + 1)h(G)). J

3.2 Optimization over a π-MDD

We describe how to find an optimal solution of the scheduling problem (1) using a π-MDD.
More precisely, we deal with the following optimization problem.

Input : π-MDD D = (VD, ED) s.t. Π(D) = S−1
[n] (G) for some DAG G, and w ∈ Rn

Output : π = arg min
π∈S[n](G)

π ·w

We solve this problem by reducing it to the shortest path problem over the π-MDD D. The
reduction is as follows: For each edge (u, u′) ∈ ED, we set the cost L(u,u′) as

L(u,u′) = |u|wu\u′ .

The cost Lp of each path p ∈ PD is defined as Lp =
∑
i∈[n] L(pi,pi+1). Then we consider the

shortest path problem over D from the root r = [n] to the terminal t = ∅ with cost L(v,v′) for
each edge (v, v′) ∈ DE . This problem is can be solved in time O(|D|). We prove the following
relationship between the cost of each path p ∈ PD and its corresponding permutation.

I Lemma 5. For any p ∈ P (D),

Lp = π−1
p ·w.
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Proof.

Lp =
∑
i∈[n]

L(pi,pi+1)

= |p1|wp1\p2 + · · ·+ |pn|wpn\pn+1

= nwp1\p2 + · · ·+ wpn\pn+1

= nwπp,n
+ · · ·+ wπp,1

=
∑
i∈[n]

iwπp,i

=
∑
i∈[n]

i
∑
j∈[n]

1l[j = πp,i]wj

=
∑
i∈[n]

i
∑
j∈[n]

1l[π−1
p,j = i]wj

=
∑
j∈[n]

∑
i∈[n]

1l[π−1
p,j = i]iwj

=
∑
j∈[n]

π−1
pj wj

= π−1
p ·w J

By combining Lemma 2, 4, 5, we obtain the main result.

I Theorem 6. There is an algorithm that, given a DAG G = ([n], E) as precedence con-
straints, computes a solution of problem (1) in time O(h(G)(n/h(G) + 1)h(G)).

Proof. By Lemma 2, given a DAG G = ([n], E), Makeπ-MDD constructs a π-DD D such
that Π(D) = S−1

[n] (G). By Lemma 5, we can compute the linear optimization problem over
Π−1(D) = S[n](G). By Lemma 4, both constructing a π-MDD and solving the shortest path
problem take time O(h(G)(n/h(G) + 1)h(G)). J

4 Experimental Results

In this section, we show experimental results on artificial data. We construct the artificial
data sets of the scheduling problem with precedence constraints by generating DAGs and
weight vectors randomly. More precisely, given V = [n], for each (vi, vj) ∈ V × V (vi < vj),
we assign the edge (vi, vj) ∈ E with probability p (0 < p < 1). Note that, because of
the constraint that vi < vj , the resulting random graph is a DAG. We generate a random
weight vector by generating each wi according to the uniform distribution over [0, 1] for
i ∈ [n]. We use the parameters n = 25, and p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We compare the
proposed methods with π-MDD, and integer programming (IP) with permutation matrices
and comparison matrices, respectively. We implemented these methods in C++ and used the
Gurobi optimizer 6.5.0 to solve integer programs. We run them in a machine with Intel(R)
Xeon(R) CPU X5560 2.80GHz and 198GB memory.

Figure 2 shows the computation times of each method for different choices of p. The
shown results are obtained by averaging over 500 random instances for each fixed choice of p.

The proposed method is fastest among others when p > 0.15, i.e., precedence constraints
are not sparse. (Figure3 shows the detailed results). In particular, for p ≥ 0.2, the speed up
by the proposed method is 10 times w.r.t. the IP with comparison matrices and more than 20
times w.r.t. the IP with permutation matrices. Also, as can be seen in Figure 2, computation
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Figure 2 Average running time for n = 25.
Figure 3 Average running time for n = 25 in

details.

Table 1 Average number of constraints for n = 25.

k = 0.1 k = 0.3 k = 0.5 k = 0.7 k = 0.9
permutation matrix 799.3 2304.8 3801.9 5294.0 6803.4
comparison matrix 31580.0 31640.2 31700.1 31759.8 31820.1

Figure 4 Average computation time for optimization for n = 25.

time of the IP with permutation matrices is much larger than that of the IP with comparison
matrices by 10 times for p ≤ 0.5. In contrast, as in Table 1, the number of constraints used
in IP with comparison matrices is much larger. So, the number of constraints does not seem
to affect the computation time.

In general, if the DAG G = (V,E) is sparse, the width of G tends to be larger. In fact, for
p = 0.1, the average width of the random graph is 11.808, while for p = 0.5, the average width
is 3.596. Note that the worst case time complexity bound O(h(n/h+ 1)h) for constructing a
π-MDD depends on the width h.

Next, for sparse precedence constraints, we compare performances of our π-MDD based
method and the IP with comparison matrices. For n = 25, and p ∈ {0.06, 0.07, . . . , 0.30}, we
generate 500 random DAGs for precedence constraints, and run these algorithms for each
random instance. Figure3 shows averaged results. The average running time of the proposed
method becomes smaller than the IP-based method for p ≥ 0.13.
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Now we compare computation times of these methods for optimization only. Here we
separate computation time into preprocessing time and time for optimization. For our
π-MDD based method, time for constructing a π-MDD is for preprocessing and solving
the shortest path problem over the π-MDD corresponds to the optimization part. For IP
with comparison matrices, we regard time for constructing a problem instance (e.g., adding
constraints) as preproccessing time.

Figure 4 shows computation times of the proposed method and the IP with comparison
matrices for optimization only. For optimization, the proposed method is faster than the IP
for p ≥ 0.09. This result indicates that the proposed method is better suited when we solve
scheduling problems with the same precedence constraints and different weight vectors.
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Abstract
The problem of computing the dual of a monotone Boolean function f is a fundamental problem
in theoretical computer science with numerous applications. The related problem of duality
testing (given two monotone Boolean functions f and g, declare that they are dual or provide
a certificate that shows they are not) has a complexity that is not yet known. However, two
quasi-polynomial time algorithms for it, often referred to as FK-A and FK-B, were proposed by
Fredman and Khachiyan in 1996, with the latter having a better complexity guarantee. These
can be naturally used as a subroutine in computing the dual of f .

In this paper, we investigate this use of the FK-B algorithm for the computation of the dual
of a monotone Boolean function, and present practical improvements to its performance. First,
we show how FK-B can be modified to produce multiple certificates (Boolean vectors on which
the functions defined by the original f and the current dual g do not provide outputs consistent
with duality). Second, we show how the number of redundancy tests - one of the more costly and
time-consuming steps of FK-B - can be substantially reduced in this context. Lastly, we describe
a simple memoization technique that avoids the solution of multiple identical subproblems.

We test our approach on a number of inputs coming from computational biology as well
as combinatorics. These modifications provide a substantial speed-up, as much as an order of
magnitude, for FK-B dualization relative to a naive implementation. Although other methods
may end up being faster in practice, our work paves the way for a principled optimization process
for the generation of monotone Boolean functions and their duals from an oracle.
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1 Introduction

Boolean functions are a powerful modeling tool. In many applications, such as those described
in [9], the relevant Boolean functions have a natural monotone structure, and can thus be
understood and manipulated in terms of their minimal true and maximal false settings.
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Obtaining and translating between these representations is a challenging and deep theoretical
question. There are numerous applications to do this in areas such as graph theory (generating
the transversal of a hypergraph), combinatorics (finding minimal hitting sets), and machine
learning (model-based fault diagnosis). It is also of interest in more applied fields from
security to networking and from distributed systems to computational biology. Our interest
in the problem stems begins from computational biology, notably in computing elementary
flux modes (EFMs) and minimal cut sets (MCSs) following [13].

Given the list of minimal true settings, the problem of generating the list of maximal false
settings is the classical problem of hypergraph dualization, which has arisen in several contexts,
see for example [9] for a survey, but is not well understood theoretically. The problem of
jointly generating both lists when the function is presented as an oracle is an attractive
problem. Notably Fredman and Khachiyan [7] found two novel algorithms for dualization,
that, unlike other known algorithms for the problem, extend to oracle-based generation [10].
These algorithms, which we refer to as FK-A and FK-B, verify duality or generate new
clauses in incremental quasi-polynomial time No(log N2) and No(log N) respectively, where
N is the current joint size of the input and output lists. These algorithms are poorly
understood in theory and in practice. The only available open-source code for oracle-based
generation is cl-jointgen [12] for FK-A, though some experiments on FK-A and FK-B
are described in [11], and an FK-A based dualization algorithm by Elbassioni is also now
available [5]. Highly parallel FK-type algorithms were proposed by Elbassioni [6] and Boros
and Makino [1].

In this paper we address some of the computational challenges of using the FK-B
algorithm for dualizing a monotone Boolean function, although our techniques can also be
directly applied to the setting of jointly generating the minimal true and maximal false settings
of a monotone Boolean function given as an oracle. Our main contribution is an extension of
the basic FK-B algorithm to produce multiple conflicting assignments (abbreviated as CA)
in a single iteration. Our second contribution is a substantial reduction in the number of
redundancy tests (namely, a test to make sure that no clause is a strict superset of another
one, required to maintain correctness) during the execution of FK-B. Lastly, we find that a
number of the subproblems arising during the different calls to FK-B are identical, and this
leads to our final contribution - the use of a memoization technique to speed up dualization.
Each improvement alone produces a substantial speed-up, and in combination, they result in
an order of magnitude speed gain relative to a naive (unoptimized) implementation.

2 Definitions

Let n be fixed. We write B to denote the set {0, 1}. A Boolean function f : Bn → B is
monotone if f(s) ≤ f(t) for any two vectors s ≤ t ∈ Bn, where the inequality is interpreted
component-wise. In other words, replacing a 0 with a 1 in the input cannot decrease f ’s
value. Monotone functions are precisely those that can be constructed using the OR and
AND operations, without any NOT gates.

The dual of a Boolean function f is the function fd defined by:

fd(x) = f(x) (1)

for all x = (x1, x2, . . . , xn) ∈ {0, 1}n, where x̄ = (x̄1, x̄2, . . . , x̄n).
A monotone Boolean function f is said to be in Disjunctive Normal Form (DNF) if it is

represented as an OR of ANDs, i.e. as

f =
m∨

j=1
Mj , whereMj =

∧
i∈Tj

xi.
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Here, the monomials Mj are called implicants of f . If the underlying sets Tj satisfy the
Sperner property, i.e. Tj 6⊂ Tk whenever j 6= k, then each Mj is also called a prime implicant
of f and m is called the size of f . In this case, the point x defined by

xi =
{

1 if i ∈ Tj

0 otherwise

is a minimal true point of f ; indeed, for this x we have f(x) = 1 and f(y) = 0 for any y < x,
where y < x if and only if y ≤ x and y 6= x.

Similarly, a monotone Boolean function f is said to be in Conjunctive Normal Form
(CNF) if it is represented as an AND of ORs, i.e. as

f =
m∧

j=1
Cj , where Cj =

∨
i∈Sj

xi.

Here, the clauses Cj are called implicates of f . Once again, if the underlying sets Sj satisfy
the Sperner property, then each Cj is also called a prime implicate of f and m is called the
size of f . In this case, the point x defined by

xi =
{

0 if i ∈ Sj

1 otherwise

is a maximal false point of f ; indeed, for this x we have f(x) = 0 and f(y) = 1 for any y > x.
Lastly, we define the support of x, denoted supp(x), as the set {i ∈ {1, 2, . . . , n}|xi = 1}.
In the context of a metabolic network model M , which we use as one of the test cases

here, the monotone Boolean function f is defined on subsets of reactions via f(x) = 1 if and
only if the support of x enables biomass production. In this setting the minimal true points
of f are called elementary flux modes (EFMs) and the maximal false points of f are called
minimal cut sets (MCSs), see for example [20, 14].

We can define two related problems for monotone Boolean functions:
- testing the equivalence of two monotone Boolean functions defined by a DNF and a CNF;
- the dualization problem: computing the equivalent CNF when a monotone DNF is given.

These two problems can be easily transformed into one another. The dualization problem
is equivalent to Transversal Hypergraph Generation, also called the Minimal Hitting Set
Enumeration problem. For background on these problems and applications, we refer the
reader to [4, 11, 3, 9] and references therein.

The study of monotone Boolean functions is a vibrant area of ongoing research. The
algorithm with the best known worst-case performance guarantee for the dualization of a
monotone Boolean function f has incremental quasi-polynomial running time. More precisely,
starting from a description of f in DNF, each iteration obtains an additional clause of the
equivalent CNF, in NO(logN) time, where N is the total size of the DNF and the current,
possibly incomplete, CNF [7].

2.1 The F K-Dualization Algorithm
Algorithms 1 and 2 show the FK dualization and FK-B duality checking procedure respec-
tively, following the presentations of [3] and [15].

Let φ be a DNF or CNF, and let x be a splitting variable. Then φx
0 denotes the

formula that consists of the terms of φ from which x is removed: φx
0 = {t − {x} : t ∈ φ}.

Analogously, φx
1 denotes the formula that consists of all terms of φ that do not contain x:

φx
1 = {t : t ∈ φ and x /∈ t}.

SEA 2018
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Algorithm 1 Fredman-Khachiyan Dualization.
Input: A positive Boolean function f on Bn expressed by its complete DNF.
Output: The complete DNF of fd.
1: function FK_Dualization(f)

2: g = 0;
3: Call FKB on the pair (f, g);
4: if the returned value is “Yes" then
5: halt;
6: else
7: let X∗ ∈ Bn be the point returned by FKB ;
8: compute a maximal false point of f , say Y ∗, such that X∗ ≤ Y ∗;
9: g = g ∨

∧
j∈supp(Y ∗)xj ;

10: return to Step 3.

A variable x is called at most µ-frequent in D if its frequency in D is at most 1/µ(|D| · |C|),
i.e. |{m ∈ D : x ∈ m}|/|D| ≤ 1/µ(|D|·|C|) where µ(n) ∼ logn/ log logn. A similar definition
applies to C.

The original FK-B algorithm returns the first conflicting assignment (CA) that it finds
between the given CNF and DNF. Hence computing the dual of a given DNF requires
NCNF + 1 iterations, where NCNF is the size of the CNF that is dual to the given DNF.

3 Methods

3.1 Pre-processing and Post-processing Steps
When analyzing metabolic networks to obtain the MCSs from the EFMs, it is beneficial to
pre-process the given EFMs before starting the dualization procedure. The preprocessing
involves three steps:

removing any reactions that are not part of any EFMs (also known as blocked reactions
[2, 8]), which correspond to unused variables;
removing any reactions involved in all the EFMs (also referred to as essential reactions
[2, 8]), adding them as singleton MCSs in post-processing;
collapsing any set of k reactions whose presence/absence patterns in clauses are identical
(a special case of this is referred to as enzyme subsets [2, 8]) into a single reaction,
expanding each of the final MCSs involving this reaction into k copies in post-processing.

The pre-processing and post-processing steps are not necessary and can be ignored.
However, they reduce the original problem and make the dualization procedure faster, so we
routinely perform these steps.

3.2 Finding Multiple Conflicting Assignments
Given that we can use any conflicting assignment between the current CNF and DNF to
compute a new clause in CNF, we can find Multiple Conflicting Assignments (MCAs) at the
same time to generate more than one clause per iteration of the dualization procedure, and
reduce the running time of the algorithm by reducing the total number of required iterations.
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Algorithm 2 The Fredman-Khachiyan Algorithm B (FK-B).
Input: irredundant, monotone DNF D and CNF C.
Output: ∅ in case of equivalence; otherwise, assignment A with A(D) 6= A(C).

1: function FK-B(C,D)
2: make D and C irredundant;
3: if a necessary condition is violated then return conflicting assignment;
4: if min{|D|, |C|} ≤ 2 then return conflicting assignment found by a trivial check;
5: else
6: choose a splitting variable x from the formulae
7: if x is at most µ-frequent in D then
8: A ← FK-B(Dx

1 , C
x
0 ∧ Cx

1 ) // recursive call for x set to false
9: if A 6= ∅ then return A
10: for all clauses c ∈ Cx

0 do do
11: A ← FK-B(Dc,x

0 , Cc,x
1 ) // see 〈1〉

12: if A 6= ∅ then return A ∪ {x}
13: else if x is at most µ-frequent in C then
14: A← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to true

15: if A 6= ∅ then return A ∪ {x}
16: for all monomials m ∈ Dx

0 do do
17: A ← FK-B(Dm,x

1 , Cm,x
0 ) // see 〈2〉

18: if A 6= ∅ then return A ∪ {m}
19: else
20: A ← FK-B(Dx

1 , C
x
0 ∧ Cx

1 ) // recursive call for x set to false
21: if A = ∅ then
22: A← FK-B(Dx

0 ∨Dx
1 , C

x
1 ) // recursive call for x set to true

23: if A 6= ∅ then return A ∪ {x}
24: return A
〈1〉: Dx

1 ≡ Cx
0 ∧Cx

1 : recursive call for all maximal non-satisfying assignments of Cx
0 for x

set to true. Dc,x
0 and Cc,x

1 denote the formulae we obtain if we set all variables in c to
false.
〈2〉: Dx

0 ∨Dx
1 ≡ Cx

1 : recursive call for all minimal satisfying assignments of Dx
0 for x set

to false. Dm,x
1 and Cm,x

0 denote the formula we obtain if we set all variables in m to
true.

To this end, MCAs can be computed in the situations below without significant increase
of computational effort. The first two situations arise during the assessment of the first two
conditions necessary for equivalence in FK-B.

The first condition that we assess in the FK-B algorithm is the existence of a non-
empty intersection between every clause in CNF and every monomial in DNF. If there is no
intersection between monomial m ∈ DNF and clause c ∈ CNF , then m makes the DNF
true and the CNF false, so it is a CA. During the dualization procedure, especially early on,
many of the monomials and clauses have no intersection. We thus consider intersections
between every clause in the CNF and every monomial in the DNF at once and can return
more than one CA.

The second condition that we assess in the FK-B algorithm is the presence of exactly the
same variables in the CNF and the DNF. If this condition is not met, a CA is determined
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from the extra variable(s) in the CNF or the DNF. If multiple variables are present in exactly
one of the CNF and the DNF, we consider all possible conflicting assignments instead of
returning only one.

The third situation in which we compute MCAs is in the case where min(|C|, |D|) ≤ 2.
In such cases, the conflicting assignment is directly derived from Boolean algebra. We only
consider the case |C| ≤ 2 here; the case |D| ≤ 2 is symmetric and is processed analogously.

The following cases may happen during this step:
|C| = 1
Here, we look for a variable x in the unique CNF clause, denoted C[1], such that D does
not contain the singleton monomial x, in which case {x} is a conflicting assignment.
|C| = 2
In this case, we denote the two clauses by C[1] and C[2]. There are three sub-cases:

Let A0 := C[1] ∩ C[2]. If x ∈ A0 is a variable such that D does not contain the
singleton monomial x, then {x} is a conflicting assignment.
Let A1 := C[1]−C[2] and A2 := C[2]−C[1]. Note that A1, A2 6= ∅. If some monomial
m in D is a subset of one of the Ai’s, then {x|x ∈ m} is a conflicting assignment.
Let (x, y) ∈ A1 ×A2 (defined in the previous case). If no monomial in D is a subset of
{x, y} then {x, y} is a conflicting assignment.

In all the aforementioned cases, whenever there is more than one conflicting assignment
we return all of them. An issue regarding MCAs is that sometimes more than one CA can
be mapped to a single clause in the CNF.

In the following sections, we refer to this version of FK-B as FKM .

3.3 Reducing the Number of Redundancy Tests in the F K-B
Algorithm

In the original FK-B algorithm, Algorithm 2, the first two instructions (line 2) remove
redundancy in both the CNF and the DNF. During redundancy removal one performs an
all-pairs comparison of the clauses (the monomials) in the CNF (the DNF) and remove any
supersets found. In logic, removing redundancy is equivalent to applying the absorption rule
to simplify the Boolean function.

In the FK-B algorithm, this procedure is a bottleneck due to the large number of pairwise
comparisons that must be performed in each recursive call, and this is compounded by the
fact that when we perform dualization, the FK-B algorithm is iterated many times to find
the clauses of the CNF.

We reduce the number of redundancy tests performed in FK-B, and consequently in
FK-dualization, by noting that when we set a variable to true (false) in the CNF (DNF),
there is no need to check the redundancy of the CNF (DNF) in the next recursive call because
such a setting results in one or more clauses (monomials) in the CNF (DNF) being removed,
which cannot generate redundancy.

This can simply be implemented using two binary flags, which are respectively set if and
only if the redundancy in the CNF (the DNF) should be checked, and cleared otherwise.
For simplicity, we call this algorithm FKR. It differs from the baseline, algorithm 2, in
the following ways. First, the redundancy of the CNF (the DNF) is only checked if the
corresponding flag is set. Second, in lines 8 and 20, where a variable x is set to false, the
flag for the CNF is set and the flag for the DNF is cleared, since we only need to check the
redundancy in the CNF, not the DNF. Conversely, in lines 14 and 22, the variable x is set to
true, so the flag for the DNF is set and the flag for the CNF is cleared. Note that in lines
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11 and 17, it is assumed that variable x is respectively set to true and false, and then the
variables in c and m are respectively set to false and true. For this reason, redundancy can
be produced in those lines, so the next call to FKR needs to check the redundancy in both
the CNF and the DNF.

3.4 Dealing with Repeated subproblems
Given that the FK-B algorithm is a recursive algorithm which is called multiple times during
dualization, we encounter many subproblems solved in the previous recursive calls or past
iterations. In this case, memoizing (storing for future retrieval) these subproblems and their
solutions (in the form of CAs) is beneficial, as it can reduce the running time of both the
FK-B algorithm as well as FK-dualization as a whole.

To this end, we use a hash table whose keys are combination of the CNF and the DNF
and whose values are the CAs between them. To implement this idea, we compute the key
for a given CNF and DNF prior to calling the FK algorithm. If it is already in the hash
table, we retrieve the value, i.e. the corresponding CAs, bypassing a recursive call to FK.
Otherwise, we call FK and store the computed CAs as a new record in the hash table.

As we experimented with different settings in implementation of the memoization idea,
we realized that solving small subproblems, with |C| < 3 and |D| < 3, from scratch was faster
than storing them in the hash table and retrieving the CAs. Thus, in our implementation we
do not use the hashing technique for small subproblems. The method that uses hashing in
the FK-B algorithm is referred to as FKH .

4 Experimental Results

To assess the proposed algorithms, we run them on 12 problems including seven biological
(metabolic network) models downloaded from the BioModels database3 as well as 5 synthetic
models. The code and examples that we used are available on GitHub [16].

We first parsed the biological models using the SBML parser in MATLAB to obtain a
stoichiometric matrix containing the reactions and the metabolites, then applied EFMTool
[18]/FluxModeCalculator [19] to extract the EFMs into a matrix. We converted this matrix
into a binary one by setting all non-zero values to one, and used this as the input DNF, as is
standard when looking for MCSs. We have chosen models with small to medium sizes.

The synthetic models included in our experiments are the 3× 3 magic squares, called ‘ms-
33’, 3× 3 semi-magic squares, called ‘sms-33’, and three problems ‘ac-200k’, ‘SDFP16’, and
‘SDFP23’ taken from the Hypergraph Dualization Repository4. ‘ac-200k’ is the complement
of the set of maximal frequent itemsets with support threshold 200, 000 from the “accident"
dataset. ‘SDFP16’ and ‘SDFP23’ are the Self-Dual Fano Plane hypergraphs with respectively
n = 16 and n = 23 vertices, and (kn − 2)2/4 + kn/2 + 1 hyperedges, where kn = (n− 2)/7.

4.1 Evaluating the Speed of the Algorithms
To measure the running time of the proposed algorithms we used the timeit function
in MATLAB, which measures the typical running time of functions in seconds. timeit
automatically repeats the input function in a timing loop a number of runs determined by a
built-in heuristic method, and returns the median value across the runs.

3 http://www.ebi.ac.uk/biomodels-main/publmodels
4 http://research.nii.ac.jp/~uno/dualization.html
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Table 1 Characteristics of models; nmetab: number of metabolites, nEF M : number of elementary
flux modes or monomials in DNF, n<pre

r : Number of reactions/variables before preprocessing steps,
n>pre

r : Number of reactions/variables after preprocessing, n<post
MCS : Number of minimal cut sets or

clauses in CNF before postprocessing, n>post
MCS : Number of minimal cut sets or clauses in CNF after

post-processing.

Model nmetab nEF M n<pre
r n>pre

r n<post
MCS n>post

MCS

BIOMD0000000048 23 63 25 14 320 12960
BIOMD0000000093 34 24 46 24 293 2001
BIOMD0000000094 34 23 45 23 293 667
BIOMD0000000089 16 20 36 28 192 15552
BIOMD0000000228 9 13 22 20 128 512
BIOMD0000000034 9 13 22 22 56 56
BIOMD0000000042 15 35 25 20 56 188

sms_33 - 48 9 9 81 81
ms_33 - 40 9 9 76 76
ac_200k - 81 64 21 210 253
SDFP16 - 64 16 16 64 64
SDFP23 - 365 23 23 365 365

Table 2 Running time in seconds; FKM : FK-dualization algorithm that returns multiple
conflicting assignments, FKR: Variant of FK with a reduction in the number of redundancy tests,
FKMHR: Variant of FKM with a reduction in the number of redundancy tests that stores solved
subproblems in a hash table, FKMHCR: Variant of FKMHR that stores solved subproblems in a
hash table and uses the canonical form for small ones. In the last four columns, τ is the threshold
such that if |C| < τ and |D| < τ , the hash table is not used (when τ = 0 it is always used).

FK FKM FKR
FKMHR

(τ = 0)
FKMHR

(τ = 3)
FKMHCR

(τ = 0)
FKMHCR

(τ = 3)

BIOMD0000000048 119.06 62.71 86.13 12.82 12.67 17.29 12.80
BIOMD0000000093 136.68 88.69 117.54 14.44 15.84 25.24 15.92
BIOMD0000000094 140.37 78.81 122.28 19.31 21.69 37.71 21.81
BIOMD0000000089 31.27 26.6 25.96 9.59 8.52 15.62 8.57
BIOMD0000000228 9.30 6.41 7.82 2.42 2.81 5.57 3.06
BIOMD0000000034 1.56 1.34 1.36 0.45 0.42 1.05 0.43
BIOMD0000000042 7.74 3.72 7.24 0.19 0.19 0.20 0.22

sms_33 3.95 1.72 3.27 0.46 0.55 3.06 2.45
ms_33 2.90 1.26 2.28 0.46 0.64 2.79 2.17
ac_200k 311.57 35.22 305.69 7.13 7.85 13.44 11.65
SDFP16 6.67 2.80 5.86 0.40 0.58 1.90 0.56
SDFP23 648.59 251.05 504.30 103.66 108.98 130.81 108.67

Table 2 shows the running time of finding the dual of a given DNF. The time measurements
only show the time required for dualization, exclusive of pre- and post-processing.
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Figure 1 Size of the CNF versus number of iterations in FK-dualization and FKM−dualization.

4.2 Reducing the Number of Iterations in F K-dualization Using F KM

To show how effective FKM -dualization is in comparison to FK-dualization we run both
methods on our 12 problems and stored the size of the CNF in each iteration of the algorithms.
Figure 1 shows the results. As can be seen in this figure, FKM -dualization constructs the
final CNF faster and requires as few as half the iterations in comparison to FK-dualization.

We have also counted the number of recursive calls to FK and FKM in their corresponding
dualization procedures. It turns out that by returning multiple conflicting assignments, FKM

requires fewer recursive calls than FK for every problem except ‘ac-200k’, as illustrated in
Figure 2. Although finding multiple conflicting assignments always reduces the total number
of iterations (except for one of the metabolic models, where it stays the same, as shown
in Figure 1), the number of recursive calls to FKM can occasionally exceed the number of
recursive calls to FK, presumably due to changes in the traversal of the assignment tree.
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Figure 2 Comparing the number of recursive calls to FK and FKM during dualization.
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Figure 3 Comparing the number of redundancy tests in FK and FKR dualization.

4.3 Reducing the Number of Redundancy Tests in the F K-B
Algorithm

In this experiment, we show how using the two flags in the FKR algorithm in comparison
with FK reduces the number of redundancy tests in both the CNF and the DNF. To this
end we count the number of calls to the redundancy testing function.

Figure 3 shows the results. As expected, using the two redundancy flags reduces the
number of redundancy tests in the FKR algorithm relative to the baseline FK algorithm.

In small problems, the reduction is not significant, however, in large problems like
BIOMD0000000048, the number of redundancy tests in FKR is about 2

3 of what it is in FK.
Given that the procedure of redundancy test is a bottleneck of the FK algorithm, fewer
calls to this function reduces the time required to find the dual of a given monotone Boolean
function.
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4.4 Dealing with Repeated subproblems Using a Hash Table

In this experiment we show the efficiency of using a hash table for dualization. We count
the number of successful key and value retrievals from the hash table. Figure 4 shows
the characteristics of the subproblems, e.g. the frequency and the size of the subproblem,
corresponding to the first five most popular keys in FKMH dualization. For each model
there are two figures, corresponding to τ = 0 and τ = 3, meaning that we use the hash table
only for subproblems with |C| > τ and |D| > τ .

Comparing the figures in columns with τ = 0 to the figures in columns with τ = 3
demonstrates that when we use hash table for every subproblem, i.e. τ = 0, the size of
frequent subproblems is very small while in the other case, i.e. τ = 3, the size of the frequent
subproblems is larger.

Since there is the possibility that some of the frequently occurring Boolean functions
differ only by a permutation of the variables, we have implemented a simple scheme for
reducing functions of up to seven variables to a canonical form as is done in Stephen and
Yusun [17]. We found that the most popular keys in the implementation of the hash table
with and without the canonical form are the same, thus, we only present the results without
the canonical form here, as FKMH .

5 Discussion

The FK-B algorithm was a theoretical breakthrough at the time of its discovery in 1996,
showing for the first time that the problem of testing the duality of two monotone Boolean
functions could be solved in quasi-polynomial time. Because of its ability to produce a
certificate of non-duality, this also means that, given a Boolean function in explicit form,
its dual can be generated in incremental quasi-polynomial time. In addition, the FK-B
algorithm also applies to joint generation, namely, an explicit description of the function f
and of its dual in the case where f is given implicitly by an oracle (an algorithm that, given
an input x, returns the value f(x)) - with the same complexity guarantees provided that the
oracle runs in polynomial time.

However, despite these exciting developments the FK-B algorithm is not easily usable
for generating the dual of a large monotone Boolean function in practice. In this paper
we provided several improvements that reduce the overall running time by an order of
magnitude on most of the examples we considered. Although they do not change the worst-
case algorithmic complexity of dualization via the FK-B algorithm, they take it closer to
being usable in practice on medium-to-large-scale problems.

All our techniques also apply directly to the problem of joint generation. The generation
of multiple conflicting assignments per iteration, the reduction in the number of redundancy
tests, and the use of memoization could all turn out to be beneficial in this scenario as well.
One of our future directions is to explore how helpful these techniques are in the context
of joint generation (which, for metabolic network models, would amount to simultaneously
generating the elementary modes and the minimal cut sets of the network).

In conclusion, our work paves the way for a systematic exploration of algorithmic
improvements to Monotone boolean function dualization and joint generation algorithms
that use a duality testing algorithm such as FK-B as a subroutine. We expect that, with
additional algorithmic improvements, this approach will ultimately result in a practical
method for solving this important problem.
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Figure 4 Characteristics of most frequent subproblems in the hash table in FKMH dualization.
In this set of experiments, hash table has been used for subproblems with |C| > τ and |D| > τ .
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Abstract
This study concentrates on the security of high-entropy volumes, where entropy–encoded mul-
timedia files or compressed text sequences are the most typical sources. We consider a system
in which the cost of encryption is hefty in terms of some metric (e.g., time, memory, energy,
or bandwidth), and thus, creates a bottleneck. With the aim of reducing the encryption cost
on such a system, we propose a data coding scheme to achieve the data security by encrypting
significantly less data than the original size without sacrifice in secrecy. The main idea of the
proposed technique is to represent the input sequence by not uniquely–decodable codewords. The
proposed coding scheme splits a given input into two partitions as the payload, which consists of
the ambiguous codeword sequence, and the disambiguation information, which is the necessary
knowledge to properly decode the payload. Under the assumed condition that the input data
is the output of an entropy-encoder, and thus, on ideal case independently and identically dis-
tributed, the payload occupies ≈ (d−2)

d , and the disambiguation information takes ≈ 2
d of the

encoded stream, where d > 2 denotes a chosen parameter typically between 6 to 20. We propose
to encrypt the payload and keep the disambiguation information in plain to reduce the amount
of data to be encrypted, where recursive representation of the payload with the proposed coding
can decrease the to-be-encrypted volume further. When 2 · 2d ≤ n ≤ τ · d · 2d, for τ = d−1.44

2 , we
show that the contraction of the possible message space 2n due to the public disambiguation in-
formation is accommodated by keeping the codeword set secret. We discuss possible applications
of the proposed scheme in practice.
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1 Introduction

Achieving security of massive data volumes with less encryption makes sense on platforms
where the cost of encryption defines a bottleneck as being heavy according to some metrics,
e.g., time, memory, energy, or bandwidth. For example, let us assume a system at which
the items in a queue are waiting for the encryption/decryption unit to get processed, and
consequently delays occur. One simple solution might be to increase the number of the
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serving units, but on the other hand usually the congestion only appears at certain times,
and the expense of the additional unit may not be feasible. While waiting on the queue,
the items can be encoded such that the amount of data to-be-encrypted is reduced, and the
items are processed more quickly in the system. Such a reduction can simply improve the
throughput of a security pipeline without a need to upgrade the infrastructure.

Similarly, in battery-constrained environments such as mobile devices [9], sensor networks
[3], or unmanned aerial vehicles [18], performing less encryption may also help to increase
the battery life. It had been shown that symmetric security algorithms roughly doubles the
energy consumption of normal operation in those environments, and asymmetric security
algorithms increase the energy usage per bit in order of magnitudes (around 5 fold) [14].

Previously, selective encryption schemes [12] have been proposed to reduce the encryption
load, particularly on transmission of video/image files [19, 11, 8]. In selective encryption,
segments of the data, which are assumed to include important information, e.g., the I-frames
in a video stream, are encrypted, while rest of the data is kept plain. We introduce an
alternative approach to reduce the amount of encryption required to secure a source data.
As opposed to the partial security provided by the selective encryption schemes, we aim
to provide the security of the whole data by benefiting from the intrinsic ambiguity of
non-prefix-free (NPF) coding.

In NPF coding a codeword may be a prefix of some others, and thus, the nice self-
delimiting property of the prefix–free schemes [2] does not apply. Therefore, the codeword
boundaries on the encoded stream should be explicitly specified for correct decoding. In
other words, the disambiguation information required to decode an NPF codewords stream
is the identification of the codeword boundaries on that sequence.

The NPF coding has not been addressed much in the literature except a few studies
[4, 10, 1] due to that unique decodability problem, which limits, if not totally removes,
its possible usage in practical applications, particularly in data compression. However, we
consider that this lack of unique decodability in NPF coding may provide us an interesting
opportunity in terms of security. It is noteworthy that the hardness of decoding an encoded
data without the knowledge of the used codeword set had been addressed as early as in 1979
[15], and later by others [6, 7]. More recently, non-prefix-free codes have also been mentioned
[13] in that sense.

The main idea of the proposed technique here is to represent the input sequence by not
uniquely–decodable codewords, which can be summarized as follows. We process the n bit
long input bit sequence in blocks of d bits according to a predetermined d parameter such
that d · 2d ≤ n. Due to some limitations that will be described in the paper, typically d
is expected to be between 6 and 20. We create 2d non-prefix codewords by using a secret
permutation of the numbers [1 . . . 2d], and then replace every d-bits long symbol in the input
with its corresponding NPF codeword of varying bit-length in between 1 to d. We call
the resulting bit stream the payload since it includes the actual information of the source.
This sequence is not decodable without the codeword boundaries. Therefore, we need to
maintain an efficient representation of the codeword boundaries on the payload. This second
stream is referred as the disambiguation information throughout the study. The total space
consumed by the payload and the disambiguation information introduces an overhead of
2(d − 1)/d · 2d ≈ 1

2d−1 bits per each original bit, which becomes negligible as d increases,
for example, it is less than 7 bits per a thousand bit when d = 8. Thus, proposed scheme
actually splits the input into two partitions, which occupy almost the same space.

We prove that the payload occupies ≈ (d−2)
d , and the disambiguation information takes

≈ 2
d of the final volume. When the payload, which is the main source information, is
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encrypted and disambiguation information is stored in plain, the amount of to-be-encrypted
volume decreases by 2/d of the original size, e.g., for d = 8, 25% of the data is not required
to be encrypted. The payload can be subject to the same process recursively, which gives
us the opportunity to tune the size of the encrypted volume with processing power. For
instance, in case d = 8, a second level of encoding of the first level’s payload increases the
gain in encryption from 25% to 43%.

In this scenario, it is important to analyze the information leakage by the plain disambig-
uation information. Since the payload is encrypted, it should not be easier for an attacker to
guess the payload from the disambiguation information rather than breaking the ciphered
payload. When 2 · 2d ≤ n ≤ τ · d · 2d, for τ = d−1.44

2 , we show that the contraction of the
possible message space 2n due to the public disambiguation information is accommodated by
keeping the codeword set secret.

It might have captured the attention of the reader that the analysis assumes the input
bit stream to be uniformly i.i.d., which seems a bit restrictive at a first glance. However, the
target data types of the introduced method are mainly the sources that have been previously
entropy encoded 2 such as the video files in mpeg4 format, sound files in mp3, and similar
others. The output of the compression tools squeezing data down to its entropy actually is
actually quite nice input for our proposal. We support this observation by the experiments
performed on various compressed file types showed that the results on real data is very close
to the theoretical bounds computed by the uniformly i.i.d. assumption.

The outline of the paper is as follows. In Section 2 we introduce the proposed ambiguous
encoding method based on the non–prefix–free codes, and analyze its basic properties mostly
focusing on the space consumption of the partitions. We also provide verification of the
theoretical claims based on uniformly i.i.d. assumption on some files that are already
entropy-encoded. Section 3 focuses on using the ambiguous coding to reduce the number
of encryption operations, and investigates the information leakage by the disambiguation
information, which is proposed to be stored in plain format without encryption. We finalize
our study by summarizing the results and discussing further related research avenues.

2 Ambiguous Data Coding

Let A = a1a2 . . . an denotes a uniformly independently and identically distributed bit
sequence, and d > 1 is a predetermined block length. Without loss of generality we assume
n is divisible by d. Otherwise, it is padded with random bits. A can be represented
as B = b1b2 . . . br, for r = n

d such that each d–bits long bi in B is from the alphabet
Σ = {0, 1, 2, . . . 2d − 1}.

We will first define the minimum binary representation of an integer, and then use this
definition to state our encoding scheme.

I Definition 1. The minimum binary representation (MBR) of an integer i ≥ 2 is its
binary representation without the leftmost 1 bit.

As an example, MBR(21) = 0101 by omitting the leftmost set bit in its binary represent-
ation as 21 = (�10101)2.

2 Any lossless data compression scheme, where each symbol is represented by minimum number of bits
close to the entropy of the symbol according to Shannon’s theorem [17].
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Σ = 0 1 2 3 4 5 6 7
Σ′ = 6 0 5 1 7 2 4 3

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

w1 w2 w3 w4 w5 w6 w7 w8
W = {000,011,100,111} 0 11 1 {001,010,101,110} 00 10 01

A = 001 110 101 011 010 111 100 000
B = 1 6 5 3 2 7 4 0

NPF (A) = w2 w7 w6 w4 w3 w8 w5 w1
NPF (A) = 0 10 00 1 11 01 101 000

DisInfo(A) = 01 1 1 01 1 1 00 00

Figure 1 A simple sketch of the non-prefix-free coding of an input bit sequence A, where B is the
representation of A with the block length d = 3. Σ′ is a random permutation of the corresponding
alphabet Σ, and W is the non-prefix-free codeword set generated for Σ′ according to Definition 2.
The disambiguation information DisInfo(A) is computed according to Lemma 5.

I Definition 2. Let Σ′ = {ε1, ε2, . . . ε2d} be a permutation of the given alphabet Σ =
{0, 1, 2, . . . , 2d − 1}, and W = {w1, w2, . . . , w2d} is a codeword set such that

wi =


MBR(2 + εi) ,if εi < 2d − 2
{MBR(2d + ζ) : ∀ζ ∈ {0, 1, . . . , 2d − 1},where ζ = {0, 3} mod 4} ,if εi = 2d − 2
{MBR(2d + ζ) : ∀ζ ∈ {0, 1, . . . , 2d − 1},where ζ = {1, 2} mod 4} ,if εi = 2d − 1

The representation of the input A = B = b1b2 . . . br with the non–prefix–free codeword
setW is shown by NPF (A) = c1c2 . . . cr such that ci = w1+bi

. When a codeword ci has
multiple options, a randomly selected one among the possibilities is used.

The NPF coding of a sample sequence according to the Definitions 1 and 2 with the para-
meter d = 3 is shown in Figure 1. The codewords w1 and w5 are sets as their corresponding
ε1 = 6 and ε5 = 7 values are greater than or equal to 6 = 23 − 2. Thus, when ci = w1 or
ci = w5, a randomly selected codeword respectively from sets w1 or w5, is inserted.

I Proposition 3. In a codeword set W that is generated for a block length d > 1 according
to Definition 2, the lengths of the codewords in bits range from 1 to d, where the number of
`–bits long codewords for each ` ∈ {1, 2, . . . , d− 1} is 2`, and for ` = d there exist 2 sets of
codewords each of which includes 2d−1 elements.

Proof. According to Definition 2, the entities in W are minimum binary representations of
numbers {2, 3, . . . , 2d+1 − 1}. Since the MBR bit-lengths of those numbers range from 1 to
d, there are d distinct codeword lengths in W .

Each codeword length ` ∈ {1, 2, . . . , d− 1} defines 2` distinct codewords, and thus, total
number of codewords defined by all possible ` < d values becomes

∑d−1
i=1 2i = 2d − 2. The

remaining 2 codewords out of the |W | = 2d items require d–bits long bit sequences.
For example, when d = 3, the W includes 2(= 21) codewords of 1-bit long, 4(= 22)

codewords of length 2, and 2(= 23−6) codeword sets of length 3-bits as shown in Figure 1. J

I Lemma 4. The NPF (A) is expected to occupy n·
(
1− 2

d + 2(d+1)
d·2d

)
bits space for a uniformly

i.i.d. input A of length n = r · d bits.

Proof. The total bit length of the NPF codewords is simply
∑d
`=1 C` ·`, where C` denotes the

number of occurrences of the bi values represented by `–bits long codewords in B. Assuming
the uniform distribution of B, each bi ∈ {0, 1, 2, . . . , 2d − 1} appears r

2d times. The number
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Codelength # of occurrences represented by space consumption

d− 1 r
2 = r

2d · 2d−1 1 1 · r2
d− 2 r

4 = r
2d · 2d−2 01 2 · r4

d− 3 r
8 = r

2d · 2d−3 001 3 · r8
. . . . . . . . . . . .

1 r
2d−1 = r

2d · 2 00 . . . 1 (d− 1) · r
2d−1

d r
2d−1 = r

2d · 2 00 . . . 0 (d− 1) · r
2d−1

Total space occupied: r
(
2− 1

2d−2

)
Figure 2 The representation of the codeword lengths to specify the codeword boundaries on the

NPF stream.

of distinct bi values represented by a codeword of length ` is 2` for 1 ≤ ` < d, and two of the
bi values require ` = d bit long codewords as stated in Proposition 3. Thus, C` = r

2d · 2` for
1 ≤ ` < d, and Cd = r

2d · 2. The length of the NPF (B) bit-stream can then be computed by

|NPF (A)| = r

2d ·
(
1 · 2 + 2 · 22 + . . .+ (d− 1) · 2d−1 + d · 2

)
(1)

= r

2d ·
(
2d+

d−1∑
i=1

i · 2i
)

= r

2d ·
(
2d+ 2d · (d− 2) + 2

)
(2)

= r

2d ·
(
2d(d− 2) + 2(d+ 1)

)
(3)

= r · d− r ·
(
2− d+ 1

2d−1

)
(4)

= r ·
(
d− 2 + d+ 1

2d−1

)
(5)

= n

d
·
(
d− 2 + d+ 1

2d−1

)
(6)

= n ·
(
1− 2

d
+ 2(d+ 1)

d · 2d
)

(7)

While computing the summation term in equation (2), we use the formula from basic
algebra that

∑p
i=1 i · 2i = 2p+1(p− 1) + 2, and substitute p = d− 1. J

The input sequence A is originally n bit long, and the NPF coding reduces that space
by n ·

( 2
d −

2(d+1)
2d

)
bits. However, since non-prefix-free codes are not uniquely decodable,

NPF (A) cannot be decoded back correctly in absence of the codeword boundaries. Therefore,
we need to represent these boundary positions on NPF (A). Lemma 5 states an efficient
method to achieve this task.

I Lemma 5. The expected number of bits to specify the codeword boundaries in the NPF (A)
is n ·

( 2
d −

4
d·2d

)
, where |A| = n = r · d.

Proof. Due to Proposition 3 there are 2` distinct codewords with length ` for ` ∈ {1, 2, . . . , d−
1} and 2 codewords (sets) are generated for ` = d. Since each d-bits block has equal probability
of appearance on A, the number of occurrences of codewords having length ` ∈ {1, 2, . . . , d−1}
is r

2d · 2`. The most frequent codeword length is (d − 1), which appears at half of the r
codewords as r

2d · 2d−1 = r
2 . It is followed by the codeword length (d− 2) that is observed
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Table 1 The payload, disambiguation information, and overhead bits per each original bit
introduced by the proposed ambiguous coding for some selected d values.

d = 4 6 8 10 12 14 16 20
Overhead per bit

d−1
d·2d−1 ≈ 0,094 0,026 0,007 0,002 1.1 · 10−4 4.4 · 10−4 2, 8 · 10−5 1.8 · 10−6

Payload per bit
1− 2

d + 2(d+1)
d·2d ≈ 0.656 0.703 0.759 0.802 0.834 0.857 0.875 0.900

Dis.Info. per bit
2
d −

4
d·2d ≈ 0,438 0.323 0.248 0.200 0.167 0.143 0.125 0.100

r
4 times. When we examine the number of codewords with length ` ∈ {1, 2, . . . , d− 1}, we
see that this distribution is geometric, as depicted in Figure 2. The optimal prefix-free
codes for the codeword lengths are then {1, 01, 001, . . . , 0d−21, 0d−1}, which correspond
to codeword lengths {d − 1, d − 2, d − 3, . . . , 1, d} respectively. Thus, codeword length
` = (d− i) ∈ {1, 2, . . . , d− 1}, which appears r

2d · 2d−i times on A, can be shown by i bits.
We use (d− 1) consecutive zeros to represent the codeword length ` = 2 as the number of
occurrences of d–bits long codewords is equal to the number of 1 bit long codewords on A.
Notice that the representation of the codeword lengths are prefix-free that can be uniquely
decoded.

Total number of bits required to represent the individual lengths of the codewords can be
computed by

r

2d
(
2(d− 1) +

d−1∑
i=1

i · 2d−i
)

= r ·
(2(d− 1)

2d +
d−1∑
i=1

i · 2−i
)

(8)

= r
(d− 1

2d−1 + 2d − d− 1
2d−1

)
(9)

= r
(
2− 1

2d−2

)
(10)

= n

d
·
(
2− 1

2d−2

)
(11)

= n
(2
d
− 4
d · 2d

)
(12)

J

I Theorem 6. The ambiguous encoding of n bit long uniformly i.i.d. input A sequence is
achieved with 2(d−1)

d·2d bits overhead per each original bit.

Proof. Total overhead can be computed by subtracting the original length n from the sum
of the space consumption described in Lemmas 4 and 5. Dividing this value by the n returns
the overhead per bit as shown below.

1
n
·
[
n ·
(
1− 2

d
+ 2(d+ 1)

d · 2d
)

+ n ·
(2
d
− 4
d · 2d

)
− n

]
= d− 1
d · 2d−1 = 2(d− 1)

d · 2d (13)

J

Table 1 summarizes the amount of extra bits introduced by the proposed encoding per
each original bit in A. A large overhead, which seems significant for small d, e.g., d < 8, may
inhibit the usage of the method. However, thanks to the to the exponentially increasing
denominator (2d) in the overhead amount that the extra space consumption quickly becomes
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very small, and even negligible. For instance, when d = 8, the method produces only 6.8
extra bits per a thousand bit. Similarly, the overhead becomes less than 3 bits per 100K
bits, and less than 2 bits per a million bits for the values of d = 16 and d = 20, respectively.
Thus, for d ≥ 8, an input uniformly i.i.d. bit sequence can be represented with a negligible
space overhead by the proposed ambiguous encoding scheme.

2.1 Experimental Verification

During the calculations of the payload and disambiguation information sizes as well as the
overhead, the input data has been assumed to be independently and identically distributed.
In practice, the input to the proposed method is supposed to be the output of an entropy
coder, where the distribution of d–bits long items in such a file may deviate from the perfect
assumptions. We would like to evaluate whether such entropy-encoded files still provide
enough good uniformity close to the theoretical claims based on uniformly i.i.d. assumption.
Therefore, we have conducted experiments on different compressed files to observe how much
these theoretical values are caught in practice.

We have selected 16 publicly available files3 , where the first ten are gzip compressed
data from different sources and the remaining six are multimedia files of mp3, mp4, jpg,
webm, ogv, and flv formats. The first d · 2d bits of each file is inspected for distinct values of
d = {8, 12, 16, 20}, and the corresponding observed payload and disambiguation information
sizes are computed as well as the overhead bits in each case.

Table 2 includes the comparisons of the observed and theoretical values on each analyzed
dimension. The payload size, which is the total length of the concatenated NPF codewords,
and the disambiguation information size, which is the total length of the prefix–free encoded
codeword lengths, are both observed to be compatible with the theoretical claims. This is
also reflected on the overhead bits as a consequence. Thus, in terms of space consumption,
the experimental results on compressed data support the theoretical findings based on perfect
uniformly i.i.d. input data assumption.

3 Data Security with Reduced Encryption Operations

Given a high-entropy input bit-streamM, two secret keys K1 and K2, and a properly chosen
d parameter, the data security scheme S(K1,K2,M, d) aiming reduced encryption operations
starts with generating the permutation Σ′ = {ε1, ε2, . . . , ε2d} via a cryptographically secure
pseudo-random number generator seeded with the secret key K1. The input dataM is then
encoded with the ambiguous coding described in previous section. This encoding generates
the payload, which is the concatenated NPF codewords, and the disambiguation information,
which simply specifies the lengths of individual codewords via an optimal prefix-free code.
The payload is encrypted with some selected encryption algorithm by using the key K2,
where the disambiguation information is kept in plain. Hence, we need to analyze how much
information is revealed by the public disambiguation information, and show that the leakage
by the disambiguation information section does not provide an advantage for an attacker to
break the cipher on the payload.

3 First ten files are available from http://corpus.canterbury.ac.nz. and http://people.unipmn.
it/~manzini/lightweight/corpus/. The multimedia files are from https://github.com/johndyer/
mediaelement-files.
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Table 2 Verification of the theoretical claims on selected files for d = {8, 12, 16, 20}.

File Payload Disambiguation Overhead
name Size Information Size Bits

Thr. Obs. Thr. Obs. Thr. Obs.
chr22 1555 500 7
etext99 1515 533 0
gcc 1491 578 21

howtobwt 1510 538 0
howto 1551 511 14
jdk 1522 540 14
rctail 1535 527 14
rfc 1554 1522 508 526 14 0

sprot34 1538 524 14
w3c2 1529 519 0
mp3 1470 585 7
jpg 1426 636 14
mp4 1415 654 21
webm 1496 566 14
ogv 1456 592 0
flv 1571 484 7

chr22 40961 8213 22
etext99 41103 8060 11
gcc 40764 8410 22

howtobwt 41058 8127 33
howto 41079 8095 22
jdk 41074 8122 44
rctail 41075 8088 11
rfc 40986 40769 8188 8394 22 11

sprot34 41049 8125 22
w3c2 41016 8158 22
mp3 41021 8131 0
jpg 40819 8344 11
mp4 41373 7779 0
webm 40835 8317 0
ogv 40985 8189 22
flv 40796 8367 11

chr22 917579 131027 30
etext99 917289 131302 15
gcc 917397 131209 30

howtobwt 917518 131088 30
howto 917812 130794 30
jdk 917412 131179 15
rctail 917139 131437 0
rfc 917538 917346 131068 131275 30 45

sprot34 918158 130433 15
w3c2 917707 130899 30
mp3 914926 133695 45
jpg 915821 132770 15
mp4 905887 142689 0
webm 917075 131561 60
ogv 916558 132108 90
flv 915335 133286 45

chr22 18873040 2098575 95
etext99 18872686 2098853 19
gcc 18879975 2091602 57

howtobwt 18875332 2096207 19
howto 18875502 2096037 19
jdk 18873190 2098406 76
rctail 18876497 2095042 19
rfc 18874410 18873175 2097148 2098364 38 19

sprot34 18878705 2092891 76
w3c2 18876613 2094945 38
mp3 18863837 2107721 38
jpg 18878914 2092625 19
mp4 18898789 2072826 95
webm 18873348 2098210 38
ogv 18875407 2096208 95
flv 18909861 2061735 76
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I Lemma 7. The number of distinct messages that can be generated from a given disambigu-
ation information is 2n−

2n
d + 4n

d2d by assuming the codeword set W , parameter d, and message
length n are known.

Proof. A codeword length ` = d− i appears r
2i times in the disambiguation information for

i = 1 to d− 1, and represents 2` distinct symbols. The d bit long codewords appear r
2d−1

times, and represent two distinct symbols. Thus, the total number of distinct sequences that
can be generated from a known disambiguation information can be counted by

2
r(d−1)

2 · 2
r(d−2)

4 · . . . · 2
r

2d−1 · 2
r

2d−1 = 2rd
∑d−1

i=1
2−i

· 2r
∑d−1

i=1
i2−i

· 2
r

2d−1 (14)

= 2
rd(2d−1−1)−r(2d−d−1)+1

2d−1 (15)

= 2r(d−2+ 4
2d ) (16)

= 2n−
2n
d + 4n

d2d (17)

J

The result of Lemma 7 is consistent with previous Lemma 5 such that the disambiguation
information is not squeezing the possible message space by more than its size. In other words,
when the codeword set W is known, plain disambiguation information reduces the possible
2n message space to 2n−ε, where ε = n( 2

d −
4

d·2d ).
However, in the proposed scheme, W is private, and we need to investigate whether

that secrecy of W accommodates the loss of information by the public disambiguation data.
Lemma 8 shows that for an attacker using the knowledge revealed by the disambiguation
information does not provide an advantage over breaking the encryption on the payload as
long as the codeword set W is kept secret.

I Lemma 8. The shrinkage in the possible message space due to public disambiguation
information can be accommodated by keeping the codeword set W secret in the ambiguous
coding of n ≤ τ · d · 2d bit long data for τ = d−1.44

2 .

Proof. W is a secret permutation of the set {0, 1, 2, . . . , 2d−1} containing 2d numbers. Thus,
there are 2d! distinct possibilities, which corresponds to log 2d! bits of information. On
the other hand, the amount of revealed knowledge about the n bit long input by the
disambiguation information is n( 2

d −
4

d·2d ) bits. The advantage gained by keeping W secret
should accommodate the loss by making disambiguation information public. This simply
yields the following equation.

log(2d!) ≥ n ·
(2
d
− 4
d · 2d

)
(18)

ln(2d!)
ln 2 ≈ 2d · ln 2d − 2d

ln 2 ≥ n · 2
d

(19)

2d · d · ln 2− 2d

ln 2 ≥ n · 2
d

(20)

2d(d− 1.44) ≥ n · 2
d

(21)

d · 2d ·
(d− 1.44

2

)
≥ n (22)

J
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Table 3 The minimum (d · 2d) and maximum (d · 2d · ( d−1.44
2 ) block sizes that are appropriate

according to the proposed ambiguous coding scheme for selected d values.

Block Size in bits Block Size in bits
d min max d min max
6 384 875 14 230K 144K
8 2K 6.7K 16 1M 7M
10 10K 43K 18 4.7M 39M
12 49K 256K 20 21M 194M

Input

Dis.Info Payload

Dis.Info Payload

Dis.Info. Payload

Figure 3 Sketch of three rounds recursive application of the proposed scheme for further reduction
in encryption amount.

Yet another point not to neglect in practice is to choose d such that 2d! is no smaller than
2K1 . This is to make sure that it should not be easier to try all possible permutations than
breaking the secret key (K1) of the pseudo-random number generator used in creating the
permutation. Assuming the keys used in symmetric encryption schemes are at least 256 bits,
d ≥ 6 seems a lower bound for a security level provided by a 256 bit symmetric encryption
since 26! > 2295 > 2256.

Due to Lemma 8, the choice of d creates an upper bound on the size of the input data
that will be subject to the proposed ambiguous coding scheme. On the other hand, it would
be appropriate to select d such that the input size is at least d · 2d bits to confirm with
the computations in the size arguments of the payload and the disambiguation information,
which assumed all possible 2d symbols are uniformly i.i.d. on the input. The minimum and
maximum block sizes defined by the d parameter are listed in Table 3 considering these facts.
Therefore, given an input bit string A, the ambiguous encoding to be achieved in blocks of
the any preferred size in between these values seems appropriate in practice.

The value of d plays a crucial role both in the security and in the to-be-encrypted data
size. It is good to choose large d for better security with less (even negligible when d > 8)
overhead. On the other hand, the payload size is inversely proportional with d, and thus,
the reduction in the data volume to be encrypted decreases when d increases.

Thus, to achieve better reductions in the encryption amount, the ambiguous coding can
be recursively applied on the payload generated after the first round. Figure 3 sketches
this by considering three rounds and Table 4 lists the percentage of gain for each level. For
instance, when d = 8, the gain in to-be-encrypted volume is around 25 percent. If the
payload, which is roughly 75 percent of the original data at the end of this round, is again
encoded with the proposed scheme, then gain is improved to more than 40 percent. Even
one more round reaches near 60 percent less encryption requirement. Notice that in case
of multiple application of the ambiguous coding, the latest payload is encrypted and the
remaining disambiguation information are kept plain.
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Table 4 Percentages of the disambiguation and payload data with 3 rounds of recursion for various
d values calculated according to the lemmas 4 and 5. The bold values represents the percentage of
the data to be encrypted.

d : 6 8 10 12 14 16
Dis. Info. 32.29 24.80 19.96 16.66 14.28 12.50

1st Round Payload 70.31 75.88 80.21 83.39 85.73 87.50
Overhead 2.60 0.68 0.18 0.04 0.01 0.00
Dis. Info. 22.71 18.82 16.01 13.89 12.25 10.94

2nd Round Payload 49.44 57.58 64.34 69.53 73.49 76.57
Overhead 4.44 1.20 0.32 0.08 0.02 0.01
Dis. Info. 15.96 14.28 12.84 11.58 10.50 9.57

3rd Round Payload 34.76 43.69 51.61 57.98 63.00 67.00
Overhead 5.72 1.60 0.43 0.11 0.03 0.01

4 Conclusions

We have presented an ambiguous coding scheme based on variable–length non–prefix–free
codes that splits an input bit-stream into two as the payload and the disambiguation
information. We have proved that the overhead at the end of this coding becomes negligible,
particularly when d ≥ 8. The encryption of the payload is supposed to be performed by
standard ways, and the disambiguation information is kept plain. Thus, there appears a
gain in the amount to be encrypted, which is equal to the disambiguation information size.
Proposed ambiguous coding can be applied recursively on the payload generated as depicted
in Figure 3 to increase that gain in encryption amount.

We assumed that the input to the ambiguous encoder is uniformly i.i.d. in ideal case, and
empirically verified that the compressed volumes ensures the mentioned results. Actually,
applying entropy coding before the encryption is a common daily practice, which makes the
proposed method to be directly integrated. The mpeg4 video streams, jpg images, compressed
text sequences, or mp3 songs are all typical data sources of high-entropy. Related previous
work [5, 16] had stated that although the perfect security of an input data requires a key
length equal to its size (one-time pad), high-entropy data can be perfectly secured with much
shorter keys. This study addresses another dimension and investigates achieving security of
such volumes by encrypting less than their original sizes by using the introduced ambiguous
coding scheme.

Reducing the amount of data to-be-encrypted can make sense in scenarios where the
encryption process defines a bottleneck in terms of some metrics. Ambiguous coding becomes
particularly efficient on securing large collections over power–limited devices, where the cost
of encryption becomes heavy in terms of energy. This reduction also helps to increase the
throughput of a security pipeline without a need to expand the relatively expensive security
hardware. For instance, let’s assume a case where the data is waiting to be processed by
a hardware security unit. When the amount of data exceeds the capacity of this unit, a
bottleneck appears, which can be resolved by increasing the number of such security units.
However, adding and managing more security units is costly, particularly when the bottleneck
is not so frequent, but only appearing at some time. An alternative solution is to use the
proposed ambiguous coding, where instead of expanding the security units, data can be
processed appropriately while waiting in the queue, and the amount to be encrypted can
be reduced up to desired level by applying the scheme recursively if needed. Notice that as
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opposed to previous selective encryption schemes,ambiguous coding supports the security of
the whole file instead of securing only the selected partitions. Besides massive multimedia
files, small public key files around a few kilobytes that are used in asymmetric encryption
schemes are also very suitable inputs for the ambiguous coding. The exchange of public keys
via symmetric ciphers can also benefit from the reduction introduced.

The non-prefix-free codes have not received much attention in the literature due to their
intrinsic decodability problem. However, such a disadvantage may turn to be an advantage
in terms of security systems as investigated in this study. Further security applications based
on such ambiguous codes have the potential to be out-of-the box solutions particularly in
privacy preserving information retrieval and secure text processing applications.
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Abstract
The Student-Project Allocation problem with lecturer preferences over Students (spa-s) comprises
three sets of agents, namely students, projects and lecturers, where students have preferences over
projects and lecturers have preferences over students. In this scenario we seek a stable matching,
that is, an assignment of students to projects such that there is no student and lecturer who
have an incentive to deviate from their assignee/s. We study spa-st, the extension of spa-s
in which the preference lists of students and lecturers need not be strictly ordered, and may
contain ties. In this scenario, stable matchings may be of different sizes, and it is known that
max spa-st, the problem of finding a maximum stable matching in spa-st, is NP-hard. We
present a linear-time 3

2 -approximation algorithm for max spa-st and an Integer Programming
(IP) model to solve max spa-st optimally. We compare the approximation algorithm with the
IP model experimentally using randomly-generated data. We find that the performance of the
approximation algorithm easily surpassed the 3

2 bound, constructing a stable matching within
92% of optimal in all cases, with the percentage being far higher for many instances.
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1 Introduction

Background and motivation. In universities all over the world, students need to be assigned
to projects as part of their degree programmes. Lecturers typically offer a range of projects,
and students may rank a subset of the available projects in preference order. Lecturers
may have preferences over students, or over the projects they offer, or they may not have
explicit preferences at all. There may also be capacity constraints on the maximum numbers
of students that can be allocated to each project and lecturer. The problem of allocating
students to projects subject to these preference and capacity constraints is called the Student-
Project Allocation problem (spa) [7, Section 5.5][2, 3]. Variants of this problem can be defined
for the cases that lecturers have preferences over the students that rank their projects [1],
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or over the projects they offer [9], or not at all [6]. In this paper we focus on the first of
these cases, where lecturers have preferences over students – the so-called Student-Project
Allocation problem with lecturer preferences over Students (spa-s).

Finding an optimal allocation of students to projects manually is time-consuming and error-
prone. Consequently many universities automate the allocation process using a centralised
algorithm. Given the typical sizes of problem instances (e.g., 130 students at the University
of Glasgow, School of Computing Science), the efficiency of the matching algorithm is of
paramount importance. In the case of spa-s, the desired matching must be stable with
respect to the given preference lists, meaning that no student and lecturer have an incentive
to deviate from the given allocation and form an assignment with one another [10].

Abraham et al. [1] described a linear-time algorithm to find a stable matching in an
instance I of spa-s when all preference lists in I are strictly ordered. They also showed that,
under this condition, all stable matchings in I are of the same size. In this paper we focus on
the variant of spa-s in which preference lists of students and lecturers can contain ties, which
we refer to as the Student-Project Allocation problem with lecturer preferences over Students
including Ties (spa-st). Ties allow both students and lecturers to express indifference in
their preference lists (in practice, for example, lecturers may be unable to distinguish between
certain groups of students). A stable matching in an instance of spa-st can be found in
linear time by breaking the ties arbitrarily and using the algorithm of Abraham et al. [1].

The Stable Marriage problem with Ties and Incomplete lists (smti) is a special case of
spa-st in which each project and lecturer has capacity 1, and each lecturer offers one project.
Given an instance of smti, it is known that stable matchings can have different sizes [8], and
thus the same is true for spa-st. Yet in practical applications it is desirable to match as
many students to projects as possible. This motivates max spa-st, the problem of finding a
maximum (cardinality) stable matching in an instance of spa-st. This problem is NP-hard,
since the corresponding optimisation problem restricted to smti, which we refer to as max
smti, is NP-hard [8]. Király [5] described a 3

2 -approximation algorithm for max smti. He
also showed how to extend this algorithm to the case of the Hospitals-Residents problem with
Ties (hrt), where hrt is the special case of spa-st in which each lecturer l offers one project
p, and the capacities of l and p are equal. Yanagisawa [11] showed that max smti is not
approximable within a factor of 33

29 unless P=NP; the same bound applies to max spa-st.

Our contribution. In this paper we describe a linear-time 3
2 -approximation algorithm for

max spa-st. This algorithm is a non-trivial extension of Király’s approximation algorithm
for hrt as mentioned above. We also describe an Integer Programming (IP) model to solve
max spa-st optimally. Through a series of experiments on randomly-generated data, we then
compare the sizes of stable matchings output by our approximation algorithm with the sizes
of optimal solutions obtained from our IP model. Our main finding is that the performance
of the approximation algorithm easily surpassed the 3

2 bound on the generated instances,
constructing a stable matching within 92% of optimal in all cases, with the percentage being
far higher for many instances.

Note that a natural “cloning” technique, involving transforming an instance I of spa-st
into an instance I ′ of smti, and then using Király’s 3

2 -approximation algorithm for smti [5]
in order to obtain a similar approximation in spa-st, does not work in general, as shown in
[4, Appendix A]. This motivates the need for a bespoke algorithm for the spa-st case.

Structure of this paper. Section 2 gives a formal definition of spa-st. Section 3 describes
the 3

2 -approximation algorithm, and the IP model for max spa-st is given in Section 4. The
experimental evaluation is described in Section 5, and Section 6 discusses future work.
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2 Formal definition of SPA-ST

An instance I of spa-st comprises a set S = {s1, s2, ..., sn1} of students, a set P =
{p1, p2, ..., pn2} of projects, and a set L = {l1, l2, ..., ln3} of lecturers. Each project is offered by
one lecturer, and each lecturer lk offers a set of projects Pk ⊆ P , where P1, . . . , Pk partitions
P . Each project pj ∈ P has a capacity cj ∈ Z+

0 , and similarly each lecturer lk ∈ L has a
capacity dk ∈ Z+

0 . Each student si ∈ S has a set Ai ⊆ P of acceptable projects that they
rank in order of preference. Ties are allowed in preference lists, where a tie t in a student
si’s list indicates that si is indifferent between all projects in t. Each lecturer lk ∈ L has a
preference list over the students si for which Ai ∩ Pk 6= ∅. Ties may also exist in lecturer
preference lists. The rank of project pj on student si’s list, denoted rank(si, pj), is defined
as 1 plus the number of projects that si strictly prefers to pj . An analogous definition exists
for the rank of a student on a lecturer’s list, denoted rank(lk, si).

An assignment M in I is a subset of S ×P such that, for each pair (si, pj) ∈M , pj ∈ Ai,
that is, si finds pj acceptable. Let M(si) denote the set of projects assigned to a student
si ∈ S, let M(pj) denote the set of students assigned to a project pj ∈ P , and let M(lk)
denote the set of students assigned to projects in Pk for a given lecturer lk ∈ L. A matching
M is an assignment such that |M(si)| ≤ 1 for all si ∈ S, |M(pj)| ≤ cj for all pj ∈ P and
|M(lk)| ≤ dk for all lk ∈ L. If si ∈ S is assigned in a matching M , we let M(si) denote si’s
assigned project, otherwise M(si) is empty.

Given a matching M in I, let (si, pj) ∈ (S ×P )\M be a student-project pair, where pj is
offered by lecturer lk. Then (si, pj) is a blocking pair of M [1] if 1, 2 and 3 hold as follows:
1. si finds pj acceptable;
2. si either prefers pj to M(si) or is unassigned in M ;
3. Either a, b or c holds as follows:

a. pj is undersubscribed (i.e., |M(pj)| < cj) and lk is undersubscribed (i.e., |M(lk)| < dk);
b. pj is undersubscribed, lk is full and either si ∈ M(lk) or lk prefers si to the worst

student in M(lk);
c. pj is full and lk prefers si to the worst student in M(pj).

Let (si, pj) be a blocking pair of M . Then we say that (si, pj) is of type (3x) if 1, 2 and
3x are true in the above definition, where x ∈ {a, b, c}. In order to more easily describe
certain stages of the approximation algorithm, blocking pairs of type (3b) are split into two
subtypes as follows. (3bi) defines a blocking pair of type (3b) where si is already assigned to
another project of lk’s. (3bii) defines a blocking pair of type (3b) where this is not the case.

A matching M in an instance I of spa-st is stable if it admits no blocking pair. Define
max spa-st to be the problem of finding a maximum stable matching in spa-st and let
Mopt denote a maximum stable matching for a given instance. Similarly, let min spa-st be
the problem of finding a minimum stable matching in spa-st.

3 Approximation algorithm

3.1 Introduction and preliminary definitions
We begin by defining key terminology before describing the approximation algorithm itself
in Section 3.2, which is a non-trivial extension of Király’s hrt algorithm [5].

A student si ∈ S is either in phase 1, 2 or 3. In phase 1 there are still projects on si’s list
that they have not applied to. In phase 2, si has iterated once through their list and are
doing so again whilst a priority is given to si on each lecturer’s preference list, compared to

SEA 2018



8:4 A 3
2 -Approximation Algorithm for the Student-Project Allocation problem

other students who tie with si. In phase 3, si is considered unassigned and carries out no
more applications. A project pj is fully available if pj and lk are both undersubscribed, where
lecturer lk offers pj . A student si meta-prefers project pj1 to pj2 if either (i) rank(si, pj1) <
rank(si, pj2), or (ii) rank(si, pj1) = rank(si, pj2) and pj1 is fully available, whereas pj2 is not.
In phase 1 or 2, si may be either available, provisionally assigned or confirmed. Student si

is available if they are not assigned to a project. Student si is provisionally assigned if si

has been assigned in phase 1 and there is a project still on si’s list that meta-prefers to pj .
Otherwise, si is confirmed.

If a student si is a provisionally assigned to project pj , then (si, pj) is said to be precarious.
A project pj is precarious if it is assigned a student si such that (si, pj) is precarious. A
lecturer is precarious if they offer a project pj that is precarious. Lecturer lk meta-prefers si1

to si2 if either (i) rank(lk, si1) < rank(lk, si2), or (ii) rank(lk, si1) = rank(lk, si2) and si1 is in
phase 2, whereas si2 is not. The favourite projects Fi of a student si are defined as the set of
projects on si’s preference list for which there is no other project on si’s list meta-preferred
to any project in Fi. A worst assignee of lecturer lk is defined to be a student in M(lk) of
worst rank, with priority given to phase 1 students over phase 2 students. Similarly, a worst
assignee of lecturer lk in M(pj) is defined to be a student in M(pj) of worst rank, prioritising
phase 1 over phase 2 students, where lk offers pj .

We remark that some of the above terms such as favourite and precarious have been
defined for the spa-st setting by extending the definitions of the corresponding terms as
given by Király in the hrt context [5].

3.2 Description of the algorithm

Algorithm 1 begins with an empty matching M which will be built up over the course of
the algorithm’s execution. All students are initially set to be available and in phase 1. The
algorithm proceeds as follows. While there are still available students in phase 1 or 2, choose
some such student si. Student si applies to a favourite project pj at the head of their list,
that is, there is no project on si’s list that si meta-prefers to pj . Let lk be the lecturer who
offers pj . We consider the following cases.

If pj and lk are both undersubscribed then (si, pj) is added to M . Clearly if (si, pj) were
not added to M , it would potentially be a blocking pair of type (3a).
If pj is undersubscribed, lk is full and lk is precarious where precarious pair (si′ , pj′) ∈M
for some project p′

j offered by lk, then we remove (si′ , pj′) from M and add pair (si, pj).
This notion of precariousness allows us to find a stable matching of sufficient size even
when there are ties in student preference lists (there may also be ties in lecturer preference
lists). Allowing a pair (si′ , pj′) ∈ M to be precarious means that we are noting that
si′ has other fully available project options in their preference list at equal rank to pj′ .
Hence, if another student applies to pj′ when pj′ is full, or to a project offered by lk
where lk is full, we allow this assignment to happen removing (si′ , pj′) from M , since
there is a chance that the size of the resultant matching could be increased.
If on the other hand pj is undersubscribed, lk is full and lk meta-prefers si to a worst
assignee si′ , where (si′ , pj′) ∈ M for some project pj′ offered by lk, then we remove
(si′ , pj′) fromM and add pair (si, pj). It makes intuitive sense that if lk is full and gets an
offer to an undersubscribed project from a student si that they prefer to a worst assigned
student si′ , then lk would want to remove si′ from pj′ and take on si for pj′ . Student si′

will subsequently remove pj′ from their preference list as lk will not want to assign to
them on re-application. This is done via the Remove-pref method (Algorithm 2).
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Algorithm 1 3/2-approximation algorithm for spa-st.
Require: An instance I of spa-st
Ensure: Return a stable matching M where |M | ≥ 2

3 |Mopt|
1: M ← ∅
2: all students are initially set to be available and in phase 1
3: while there exists an available student si ∈ S who is in phase 1 or 2 do
4: let lk be the lecturer who offers pj

5: si applies to a favourite project pj ∈ A(si)
6: if pj is fully available then
7: M ←M ∪ {(si, pj)}
8: else if pj is undersubscribed, lk is full and (lk is precarious or lk meta-prefers si to

a worst assignee) then . according to the worst assignee definition in Section 3.1
9: if lk is precarious then

10: let pj′ be a project in Pk such that there exists (si′ , pj′) ∈M that is precarious
11: else . lk is not precarious
12: let si′ be a worst assignee of lk such that lk meta-prefers si to si′ and let

pj′ = M(si′)
13: Remove-Pref(si′ , pj′)
14: end if
15: M ←M\{(si′ , pj′)}
16: M ←M ∪ {(si, pj)}
17: else if pj is full and (pj is precarious or lk meta-prefers si to a worst assignee in

M(pj)) then
18: if pj is precarious then
19: identify a student si′ ∈M(pj) such that (si′ , pj) is precarious
20: else . pj is not precarious
21: let si′ be a worst assignee of lk in M(pj) such that lk meta-prefers si to si′

22: Remove-Pref(si′ , pj)
23: end if
24: M ←M\{(si′ , pj)}
25: M ←M ∪ {(si, pj)}
26: else
27: Remove-Pref(si, pj)
28: end if
29: end while
30: Promote-students(M)
31: return M ;

If pj is full and precarious then pair (si, pj) is added to M while precarious pair (si′ , pj)
is removed. As before, this allows si′ to potentially assign to other fully available projects
at the same rank as pj on their list. Since si′ does not remove pj from their preference
list, si′ will get another chance to assign to pj if these other applications to fully available
projects at the same rank are not successful.
If pj is full and lk meta-prefers si to a worst assignee si′ in M(pj), then pair (si, pj) is
added toM while (si′ , pj) is removed. As this lecturer’s project is full (and not precarious)
the only time they will want to add a student si to this project (meaning the removal
of another student) is if si is preferred to a worst student si′ assigned to that project.
Similar to before, si′ will not subsequently be able to assign to this project and so removes
it from their preference list via the Remove-pref method (Algorithm 2).
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Algorithm 2 Remove-Pref(si, pj) – remove a project from a student’s preference list.
Require: An instance I of spa-st and a student si and project pj

Ensure: Return an instance I where pj is removed from si’s preference list
1: remove pj from si’s preference list
2: if si’s preference list is empty then
3: reinstate si’s preference list
4: if si is in phase 1 then
5: move si to phase 2
6: else if si is in phase 2 then
7: move si to phase 3
8: end if
9: end if

10: return instance I

Algorithm 3 Promote-students(M) – remove all blocking pairs of type (3bi).
Require: SPA-ST instance I and matching M that does not contain blocking pairs of type

(3a), (3bii) or (3c).
Ensure: Return a stable matching M .

1: while there are still blocking pairs of type (3bi) do
2: Let (si, pj′) be a blocking pair of type (3bi)
3: M ←M\{(si,M(si))}
4: M ←M ∪ {(si, pj′)}
5: end while
6: return M

When removing a project from a student si’s preference list (the Remove-pref operation
of Algorithm 2), if si has removed all projects from their preference list and is in phase 1
then their preference list is reinstated and they are set to be in phase 2. If on the other
hand they were already in phase 2, then they are set to be in phase 3 and are hence inactive.
The proof that Algorithm 1 produces a stable matching (see [4, Appendix B]) relies only
on the fact that a student iterates once through their preference list. Allowing students to
iterate through their preference lists a second time when in phase 2 allows us to find a stable
matching of sufficient size when there are ties in lecturer preference lists (there may also be
ties in student preference lists). This is due to the meta-prefers definition where a lecturer
favours one student si over another si′ if they are the same rank and si is in phase 2 whereas
si′ is not. Similar to above, this then allows si to steal a position from si′ with the chance
that si′ may find another assignment and increase the size of the resultant matching.

After the main while loop has terminated, the final part of the algorithm begins where all
blocking pairs of type (3bi) are removed using the Promote-students method (Algorithm 3).

3.3 Proof of correctness
I Theorem 1. Let M be a matching found by Algorithm 1 for an instance I of spa-st. Then
M is stable and |M | ≥ 2

3 |Mopt|, where Mopt is a maximum stable matching in I.

Proof. Theorems 18, 22 and Theorem 30, proved in [4, Appendix B], show that M is stable,
and that Algorithm 1 runs in polynomial time and has performance guarantee 3

2 . The proofs
required for this algorithm are naturally longer and more complex than given by Király [5]
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for smti, as spa-st generalises smti to the case that lecturers can offer multiple projects,
and projects and lecturers may have capacities greater than 1. These extensions add extra
components to the definition of a blocking pair (given in Section 2) which in turn adds
complexity to the algorithm and its proof of correctness. J

Appendix B.5 in [4] gives a simple example instance where a matching found by Algorithm
1 is exactly 2

3 times the optimal size, hence the analysis of the performance guarantee is tight.

4 IP model

In this section we present an IP model for max spa-st. For the stability constraints in
the model, it is advantageous to use an equivalent condition for stability, as given by the
following lemma, whose proof can be found in [4, Appendix C].

I Lemma 2. Let I be an instance of SPA-ST and let M be a matching in I. Then M is
stable if and only if the following condition, referred to as condition (*) holds: For each
student si ∈ S and project pj ∈ P , if si is unassigned in M and finds pj acceptable, or si

prefers pj to M(si), then either:
lk is full, si /∈ M(lk) and lk prefers the worst student in M(lk) to si or is indifferent
between them, or;
pj is full and lk prefers the worst student in M(pj) to si or is indifferent between them,
where lk is the lecturer offering pj.

The key variables in the model are binary-valued variables xij , defined for each si ∈ S
and pj ∈ P , where xij = 1 if and only if student si is assigned to project pj . Additionally, we
have binary-valued variables αij and βij for each si ∈ S and pj ∈ P . These variables allow
us to more easily describe the stability constraints below. For each si ∈ S and lk ∈ L, let

Tik = {su ∈ S : rank(lk, su) ≤ rank(lk, si) ∧ su 6= si}.

That is, Tik is the set of students ranked at least as highly as student si in lecturer lk’s
preference list not including si. Also, for each pj ∈ P , let

Tijk = {su ∈ S : rank(lk, su) ≤ rank(lk, si) ∧ su 6= si ∧ pj ∈ A(su)}.

That is, Tijk is the set of students su ranked at least as highly as student si in lecturer
lk’s preference list, such that project pj is acceptable to su, not including si. Finally, let
Sij = {pr ∈ P : rank(si, pr) ≤ rank(si, pj)}, that is, Sij is the set of projects ranked at least
as highly as project pj in student si’s preference list, including pj . Figure 1 shows the IP
model for max spa-st.

Equation (1) enforces xij = 0 if si finds pj unacceptable. Inequality (2) ensures that
a student may be assigned to a maximum of one project. Inequalities (3) and (4) ensure
that project and lecturer capacities are enforced. In the left hand side of Inequality (5), if
1−

∑
pr∈Sij

xir = 1, then either si is unmatched or si prefers pj to M(si). This also ensures
that either αij = 1 or βij = 1, described in Inequalities (6) and (7). Inequality (6) ensures
that, if αij = 1, the number of students ranked at least as highly as student si by lk (not
including si) and assigned to lk must be at least lk’s capacity dk. Inequality (7) ensures that,
if βij = 1, the number of students ranked at least as highly as student si in lecturer lk’s
preference list (not including si) and assigned to pj must be at least pj ’s capacity cj .

Finally, for our optimisation we maximise the sum of all xij variables in order to maximise
the number of students assigned. The following result, proved in [4, Appendix C], establishes
the correctness of the IP model.
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maximise:
∑
si∈S

∑
pj∈P

xij

subject to:
1. xij = 0 ∀si ∈ S ∀pj ∈ P , pj /∈ A(si)

2.
∑

pj∈P

xij ≤ 1 ∀si ∈ S

3.
∑
si∈S

xij ≤ cj ∀pj ∈ P

4.
∑
si∈S

∑
pj∈Pk

xij ≤ dk ∀lk ∈ L

5. 1−
∑

pr∈Sij

xir ≤ αij + βij ∀si ∈ S ∀pj ∈ P

6.
∑

su∈Tik

∑
pr∈Pk

xur ≥ dkαij ∀si ∈ S ∀pj ∈ P

7.
∑

su∈Tijk

xuj ≥ cjβij ∀si ∈ S ∀pj ∈ P

xij ∈ {0, 1}, αij ∈ {0, 1}, βij ∈ {0, 1} ∀si ∈ S ∀pj ∈ P

Figure 1 IP model for max spa-st.

I Theorem 3. Given an instance I of spa-st, let J be the IP model as defined in Figure 1.
A maximum stable matching in I corresponds to an optimal solution in J and vice versa.

5 Experimental evaluation

5.1 Methodology
Experiments were conducted on the approximation algorithm and the IP model using
randomly-generated data in order to measure the effects on matching statistics when changing
parameter values relating to (1) instance size, (2) probability of ties in preference lists, and (3)
preference list lengths. Two further experiments (referred to as (4) and (5) below) explored
scalability properties for both techniques. Instances were generated using both existing and
new software. The existing software is known as the Matching Algorithm Toolkit and is a
collaborative project developed by students and staff at the University of Glasgow.

For a given spa-st instance, let the total project and lecturer capacities be denoted by
cP and dL, respectively. Note that these capacities were distributed randomly, subject to
there being a maximum difference of 1 between the capacities of any two projects or any two
lecturers (to ensure uniformity). The minimum and maximum size of student preference lists
is given by lmin and lmax, and ts represents the probability that a project on a student’s
preference list is tied with the next project. Lecturer preference lists were generated initially
from the student preference lists, where a lecturer lk must rank a student if a student ranks
a project offered by lk. These lists were randomly shuffled and tl denotes the ties probability
for lecturer preference lists. A linear distribution was used to make some projects more
popular than others and in all experiments the most popular project is around 5 times more
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popular than the least. This distribution influenced the likelihood of a student finding a
given project acceptable. Parameter details for each experiment are given below.
(1) Increasing instance size: 10 sets of 10, 000 instances were created (labelled SIZE1,

..., SIZE10). The number of students n1 increased from 100 to 1000 in steps of 100, with
n2 = 0.6n1, n3 = 0.4n1, cP = 1.4n1, dL = 1.2n1. The probabilities of ties in preference
lists were ts = tl = 0.2 throughout all instance sets. Lengths of preference lists lmin = 3
and lmax = 5 also remained the same and were kept low to ensure a wide variability in
stable matching size per instance.

(2) Increasing probability of ties: 11 sets of 10, 000 instances were created (labelled
TIES1, ..., TIES11). Throughout all instance sets n1 = 300, n2 = 250, n3 = 120,
cP = 420, dL = 360, lmin = 3 and lmax = 5. The probabilities of ties in student and
lecturer preference lists increased from ts = tl = 0.0 to ts = tl = 0.5 in steps of 0.05.

(3) Increasing preference list lengths: 10 sets of 10, 000 instances were generated
(labelled PREF1, ..., PREF10). Similar to the TIES cases, throughout all instance sets
n1 = 300, n2 = 250, n3 = 120, cP = 420 and dL = 360. Additionally, ts = tl = 0.2.
Preference list lengths increased from lmin = lmax = 1 to lmin = lmax = 10 in steps of 1.

(4) Instance size scalability: 5 sets of 10 instances were generated (labelled SCALS1, ...,
SCALS5). All instance sets in this experiment used the same parameter values as the
SIZE experiment, except the number of students n1 increased from 10, 000 to 50, 000 in
steps of 10, 000.

(5) Preference list scalability: Finally, 6 sets of 10 instances were created (labelled
SCALP1, ..., SCALP6). Throughout all instance sets n1 = 500 with the same values
for other parameters as the SIZE experiment. However in this case ties were fixed at
ts = tl = 0.4, and lmin = lmax increasing from 25 to 150 in steps of 25.

For each generated instance, we ran the 3
2 -approximation algorithm and then used the IP

model to find a maximum stable matching. We also computed a minimum stable matching
using a simple adaptation of our IP model for max spa-st, in order to measure the spread
in the sizes of stable matchings. A timeout of 1800 seconds (30 minutes) was imposed on all
instance runs. All experiments were conducted using a machine with 32 cores, 8×64GB RAM
and Dual Intel® Xeon® CPU E5-2697A v4 processors. The operating system was Ubuntu
version 17.04 with all code compiled in Java version 1.8, where the IP models were solved
using Gurobi version 7.5.2. Each approximation algorithm instance was run on a single thread
while each IP instance was run on two threads. No attempt was made to parallelise Java
garbage collection. Repositories for the code and data can be found at https://doi.org/
10.5281/zenodo.1183221 and https://doi.org/10.5281/zenodo.1186823 respectively.

Correctness testing was conducted over all generated instances. This consisted of (1)
ensuring that each matching produced by the approximation algorithm was at least 2

3 the
size of maximum stable matching, as found by the IP, and, (2) testing that a given allocation
was stable and adhered to all project and lecturer capacities. This was run over all output
from both the approximation algorithm and the IP-based algorithm.

5.2 Experimental results
Experimental results can be seen in Tables 1, 2, 3 and 4. Tables 1, 2 and 3 show the
results from Experiments 1, 2 and 3 respectively (in which the instance size, probability of
ties and preference list lengths were increased, respectively). From this point onwards an
optimal matching refers to a maximum stable matching. In these tables, column ‘minimum
A/Max’ gives the minimum ratio of approximation algorithm matching size to optimal
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matching size that occurred, ‘% A=Max’ displays the percentage of times the approximation
algorithm achieved an optimal result, and ‘% A≥ 0.98Max’ shows the percentage of times
the approximation algorithm achieved a result at least 98% of optimal. The ‘average size’
columns are somewhat self explanatory, with sub-columns ‘A/Max’ and ‘Min/Max’ showing
the average approximation algorithm matching size and minimum stable matching size as a
fraction of optimal. Finally, ‘average total time’ indicates the time taken for model creation,
solving and outputting results per instance. The main findings are summarised below.

The approximation algorithm consistently far exceeds its 3
2 bound. Considering the column

labelled ‘minimum A/Max’ in Tables 1, 2 and 3, we see that the smallest value was within
the SIZE1 instance set with a ratio of 0.9286. This is well above the required bound of 2

3 .

On average the approximation algorithm provides results that are closer in size to the
average maximum stable matching than the minimum stable matching. The columns
‘A/Max’ and ‘Min/Max’ show that, on average, for each instance set, the approximation
algorithm produces a solution that is within 98% of maximum and far closer to the
maximum size than to the minimum size.

Table 4 shows the scalability results for increasing instance sizes (Experiment 4) and
increasing preference list lengths (Experiment 5). The ‘instances completed’ column indicates
the number of instances completed before timeout occurred. In addition to showing the
average total time taken (where ‘total’ includes model creation time and solution time), the
column ‘average solve time’ displays the time taken to either execute the approximation
algorithm, or solve the IP model (in both cases, model creation time is excluded).

For Experiment 4, the number of instances solved within the 30-minute timeout reduced
from 10 to 0 for the IP-based algorithm finding the maximum stable matching. However,
even for the largest instance set sizes the approximation algorithm was able to solve all
instances on average within a total of 21 seconds (0.8 seconds of which was used to actually
execute the algorithm).

For Experiment 5, with a higher probability of ties and increasing preference list lengths,
the IP-based algorithm was only able to solve all the instances of one instance set (SCALP2)
within 30 minutes each, however the approximation algorithm took less than 0.3 seconds on
average to return a solution for each instance. This shows that the approximation algorithm
is useful for either larger or more complex instances than the IP-based algorithm can handle,
motivating its use for real world scenarios.

6 Future work

This paper has described a 3
2 -approximation algorithm for max spa-st. It remains open to

describe an approximation algorithm that has a better performance guarantee, and/or to
prove a stronger lower bound on the inapproximability of the problem than the current best
bound of 33

29 [11]. Further experiments could also measure the extent to which the order that
students apply to projects in Algorithm 1 affects the size of the stable matching generated.

The work in this paper has mainly focused on the size of stable matchings. However, it is
possible for a stable matching to admit a blocking coalition, where a permutation of student
assignments could improve the allocations of the students and lecturers involved without
harming anyone else. Since permutations of this kind cannot change the size of the matching
they are not studied further here, but would be of interest for future work.
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Abstract
In this paper, we consider the Hospital Residents problem (HR) and the Hospital Residents
problem with Lower Quotas (HRLQ). In this model with two sided preferences, stability is
a well accepted notion of optimality. However, in the presence of lower quotas, a stable and
feasible matching need not exist. For the HRLQ problem, our goal therefore is to output a good
feasible matching assuming that a feasible matching exists. Computing matchings with minimum
number of blocking pairs (Min-BP) and minimum number of blocking residents (Min-BR) are
known to be NP-Complete. The only approximation algorithms for these problems work under
severe restrictions on the preference lists. We present an algorithm which circumvents this
restriction and computes a popular matching in the HRLQ instance. We show that on data-sets
generated using various generators, our algorithm performs very well in terms of blocking pairs
and blocking residents. Yokoi [20] recently studied envy-free matchings for the HRLQ problem.
We propose a simple modification to Yokoi’s algorithm to output a maximal envy-free matching.
We observe that popular matchings outperform envy-free matchings on several parameters of
practical importance, like size, number of blocking pairs, number of blocking residents.

In the absence of lower quotas, that is, in the Hospital Residents (HR) problem, stable match-
ings are guaranteed to exist. Even in this case, we show that popularity is a practical alternative
to stability. For instance, on synthetic data-sets generated using a particular model, as well
as on real world data-sets, a popular matching is on an average 8-10% larger in size, matches
more number of residents to their top-choice, and more residents prefer the popular matching as
compared to a stable matching. Our comprehensive study reveals the practical appeal of popular
matchings for the HR and HRLQ problems. To the best of our knowledge, this is the first study
on the empirical evaluation of popular matchings in this setting.
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r1 : h1 h2

r2 : h1 h2

r3 : h1

[0, 2] h1 : r1 r2 r3

[1, 1] h2 : r2 r1

Figure 1 A hospital residents instance G with R = {r1, r2, r3} and H = {h1, h2}. The quotas of
the hospitals are q−(h1) = 0, q+(h1) = 2, q−(h2) = q+(h2) = 1. The preferences can be read from
the tables as follows: r1 prefers h1 over h2 and so on. The three matchings M1, M2 and M3 are
shown below. M2 and M3 are feasible but unstable since (r2, h1) blocks M2 and (r1, h1) blocks M3.
M1 = {(r1, h1), (r2, h1)} M2 = {(r1, h1), (r2, h2), (r3, h1)} M3 = {(r1, h2), (r2, h1), (r3, h1)}.

Related Version A full version of the paper is available at
http://www.cse.iitm.ac.in/~meghana/papers/SEA-full-version.pdf.

Supplement Material Data [1], http://www.cse.iitm.ac.in/~meghana/projects/datasets/
popular.zip, Code [5], https://github.com/rawatamit/GraphMatching

1 Introduction

In this paper, we study two problems – the Hospital Residents (HR) problem and the Hospital
Residents problem with Lower Quotas (HRLQ). The input to the HR problem is a bipartite
graph G = (R ∪ H, E) where R denotes a set of residents, H denotes a set of hospitals,
and an edge (r, h) ∈ E denotes that r and h are acceptable to each other. Each vertex has
a preference list which is a strict ordering on its neighbors. Further, each hospital has a
positive upper-quota q+(h). In the HRLQ problem, additionally, a hospital has a non-negative
lower-quota q−(h). A matching M is a subset of E such that every resident is assigned at
most one hospital and every hospital is assigned at most upper-quota many residents. Let
M(r) denote the hospital to which resident r is matched in M . Analogously, let M(h) denote
the set of residents that are matched to h in M . A matching M in an HRLQ instance is
feasible if for every hospital h, q−(h) ≤ |M(h)| ≤ q+(h). The goal is to compute a feasible
matching that is optimal with respect to the preferences of the residents and the hospitals.
When both sides of the bipartition express preferences, stability is a well-accepted notion of
optimality. A stable matching is defined by the absence of a blocking pair.

I Definition 1. A pair (r, h) ∈ E \M blocks M if either r is unmatched in M or r prefers
h over M(r) and either |M(h)| < q+(h) or h prefers r over some r′ ∈M(h). A matching M

is stable if there does not exist any blocking pair w.r.t. M , else M is unstable.

From the seminal result of Gale and Shapley [12], it is known that every instance of the
HR problem admits a stable matching and such a matching can be computed in linear time
in the size of the instance. In contrast, there exist simple instances of the HRLQ problem
which do not admit any matching that is both feasible and stable.

Figure 1 shows an HRLQ instance where h2 has a lower-quota of 1. The instance admits
a unique stable matching M1 which is not feasible. The instance admits two maximum
cardinality matchings M2 and M3, both of which are feasible but unstable. This raises the
question what is an optimal feasible matching in the HRLQ setting?

Our goal in this paper is to propose popularity as a viable option in the HRLQ setting,
and compare and contrast it by an extensive experimental evaluation with other approaches
proposed for this problem. Before giving a formal definition of popularity, we describe some
approaches from the literature to the HRLQ problem.

http://www.cse.iitm.ac.in/~meghana/papers/SEA-full-version.pdf
http://www.cse.iitm.ac.in/~meghana/projects/datasets/popular.zip
http://www.cse.iitm.ac.in/~meghana/projects/datasets/popular.zip
https://github.com/rawatamit/GraphMatching


Krishnapriya A M, M. Nasre, P. Nimbhorkar, and A. Rawat 9:3

Hamada et al. [14] proposed the optimality notions (i) minimum number of blocking pairs
(Min-BP) or (ii) minimum number of residents that participate in any blocking pair (Min-BR).
Unfortunately, computing a matching which is optimal according to any of the two notions
is NP-Hard as proved by Hamada et al. [14]. On the positive side, they give approximation
algorithms for a special case of HRLQ, complemented by matching inapproximability results.
Their approximation algorithms require that all the hospitals with non-zero lower-quota have
complete preference lists (CL-restriction).

There are two recent works [18, 20] which circumvent the CL-restriction and work with
the natural assumption that the HRLQ instance admits some feasible matching. Nasre and
Nimbhorkar [18] consider the notion of popularity and show how to compute a feasible
matching which is a maximum cardinality popular matching in the set of feasible matchings.
Yokoi [20] considers the notion of envy-freeness in the HRLQ setting. We define both
popularity and envy-freeness below.

Popular matchings. Popular matchings are defined based on comparison of two matchings
with respect to votes of the participants. To define popular matchings, first we describe how
residents and hospitals vote between two matchings M and M ′. We use the definition from
[18]. For a resident r unmatched in M , we set M(r) = ⊥ and assume that r prefers to be
matched to any hospital in his preference list (set of acceptable hospitals) over ⊥. Similarly,
for a hospital h with capacity q+(h), we set the positions q+(h)− |M(h)| in M(h) to ⊥, so
that |M(h)| is always equal to q+(h). For a vertex u ∈ R ∪H, voteu(x, y) = 1 if u prefers
x over y, voteu(x, y) = −1 if u prefers y over x and voteu(x, y) = 0 if x = y. Thus, for a
resident r, voter(M, M ′) = voter(M(r), M ′(r)).

Voting for a hospital. A hospital h is assigned q+(h)-many votes to compare two matchings
M and M ′; this can be viewed as one vote per position of the hospital. A hospital is indifferent
between M and M ′ as far as its |M(h) ∩M ′(h)| positions are concerned. For the remaining
positions of hospital h, the hospital defines a function corrh. This function allows h to
decide any pairing of residents in M(h) \M ′(h) to residents in M ′(h) \M(h). Under this
pairing, for a resident r ∈ M(h) \M ′(h), corrh(r, M, M ′) is the resident in M ′(h) \M(h)
corresponding to r. Then voteh(M, M ′) =

∑
r∈M(h)\M ′(h) voteh(r, corrh(r, M, M ′)). As an

example, consider q+(h) = 3 and M(h) = {r1, r2, r3} and M ′(h) = {r3, r4, r5}. To decide its
votes, h compares between {r1, r2} and {r4, r5} and one possible corrh is to pair r1 with r4
and r2 with r5. Another corrh function is to pair r1 with r5 and r2 with r4. The choice of
the pairing of residents using corrh is determined by the hospital h. With the voting scheme
as above, popularity can be defined as follows:

I Definition 2. A matching M is more popular than M ′ if
∑

u∈R∪H voteu(M, M ′) >∑
u∈R∪H voteu(M ′, M). A matching M is popular if there is no matching M ′ more popular

than M .

It is interesting to note that the algorithms for computing popular matchings do not need
the corr function as an input. The matching produced by the algorithms presented in this
paper is popular for any corr function that is chosen.

I Definition 3. Given a feasible matching M in an HRLQ instance, a resident r has justified
envy towards r′ with M(r′) = h if h prefers r over r′ and r is either unmatched or prefers h

over M(r). A matching is envy-free if there is no resident that has a justified envy towards
another resident.
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Thus envy-freeness is a relaxation of stability. A matching that is popular amongst feasible
matchings always exists [18], but there exist simple instances of the HRLQ problem that
admit a feasible matching but do not admit a feasible envy-free matching. Yokoi [20] gave
a characterization of HRLQ instances that admit an envy-free matching and an efficient
algorithm to compute some envy-free matching.

An envy-free matching need not even be maximal. In the example in Figure 1 the
matching M = {(r2, h2)} is envy-free. Note that M is not maximal, and not even a maximal
envy-free matching. The matching M ′ = {(r1, h1), (r2, h2)} is a maximal envy-free matching,
since addition of any edge to M ′ violates the envy-free property. The matchings M2 and M3
shown in Figure 1 are not envy-free, since r2 has justified envy towards r3 in M2 whereas r1
has a justified envy towards r3 in M3. The algorithm in [20] outputs the matching M which
need not even be maximal; Algorithm 2 in Section 2.2 outputs M ′ which is guaranteed to be
maximal envy-free. Finally, the Algorithm 1 in Section 2.1 outputs M2 (see Figure 1) which
is both maximum cardinality as well as popular.

Popularity is an interesting alternative to stability even in the absence of lower-quotas, that
is, in the HR problem. The HR problem is motivated by large scale real-world applications like
the National Residency Matching Program (NRMP) in US [3] and the Scottish Foundation
Allocation Scheme (SFAS) in Europe [4]. In applications like NRMP and SFAS it is desirable
from the social perspective to match as many residents as possible so as to reduce the number
of unemployed residents and to provide better staffing to hospitals. Birò et al. [7] report that
for the SFAS data-set (2006–2007) the administrators were interested in knowing if relaxing
stability would lead to gains in the size of the matching output. It is known that the size
of a stable matching could be half that of the maximum cardinality matching M∗, whereas
the size of a maximum cardinality popular matching is at least 2

3 |M
∗| (see e.g. [16]). Thus,

theoretically, popular matchings give an attractive alternative to stable matchings.
Popular matchings have gained lot of attention and there have been several interesting

results in the recent past [6, 8, 10, 9, 16, 18, 19]. The algorithms used and developed in this
paper, are inspired by a series of papers [9, 11, 16, 18, 19]. One of the goals in this paper
is to complement these theoretical results with an extensive experimental evaluation of the
quality of popular matchings. We now summarize our contributions below:

1.1 Our contribution
Results for HRLQ Algorithm for popular matchings. We propose a variant of the algorithm
in [18]. Whenever the input HRLQ instance admits a feasible matching, our algorithm outputs
a (feasible) popular matching amongst all feasible matchings. We report the following
experimental findings:

Min-BP and Min-BR objectives: In all the data-sets, the matching output by our
algorithm is at most 3 times the optimal for the Min-BP problem and very close to
optimal for the Min-BR problem. In the HRLQ setting, no previous approximation
algorithm is known for incomplete preference lists. The only known algorithms which
output matchings with theoretical guarantees for the Min-BP and Min-BR problems work
under the CL-restricted model [14]. We remark that the algorithm of [18] can not provide
any bounded approximation ratio for Min-BP and Min-BR problems as it may output a
feasible matching with non-zero blocking pairs and non-zero blocking residents even when
the instance admits a stable feasible matching.
Comparison with envy-free matchings: Based on the algorithm by Yokoi [20], we give
an algorithm to compute a maximal envy-free matching, if it exists, and compare its
quality with a popular matching. Besides the fact that popular matchings exist whenever
feasible matchings exist, which is not the case with envy-free matchings, our experiments
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illustrate that, compared to an envy-free matching, a popular matching is about 32%–43%
larger, matches about 15%–38% more residents to their top choice and has an order of
magnitude fewer blocking pairs and blocking residents.

Empirical Evaluation of known algorithms for HR. For the HR problem, we implement
and extensively evaluate known algorithms for maximum cardinality popular matching and
popular amongst maximum cardinality matching on synthetic data-sets as well as limited
number of real-world data-sets.

Our experiments show that a maximum cardinality popular matching, as well as popular
amongst maximum cardinality matchings are 8–10% larger in size than a stable matching.
We also observe that a maximum cardinality popular matching almost always fares better
than a stable matching with respect to the number of residents matched to their rank-1
hospitals, and the number of residents favoring a maximum cardinality popular matching
over a stable matching.

We note that these properties cannot be proven theoretically as there are instances where
they do not hold. Despite these counter-examples (omitted in the interest of space), our
empirical results show that the desirable properties hold on synthetic as well as real-world
instances. Hence we believe that popular matchings are a very good practical alternative.

Organization of the paper. In Section 2.1, we present our algorithm to compute a matching
that is popular amongst feasible matchings for the HRLQ problem. Our algorithm for
computing a maximal envy-free matching is described in Section 2.2. In Section 3 we give
details of our experimental setup and the data-generation models developed by us. Section 4
gives our empirical results for the HRLQ and HR problems. We refer the reader to [9, 19] for
known algorithms for computing popular matchings in the HR problem.

2 Algorithms for HRLQ problem

In Section 2.1, we present our algorithm to compute a popular matching in the HRLQ problem.
As mentioned earlier, our algorithm is a variant of the algorithms in [18]. The algorithm to
find a maximal envy-free matching is given in Section 2.2, and its output is a superset of the
envy-free matching computed by Yokoi’s algorithm [20].

2.1 Algorithm for Popular matching in HRLQ
In this section, we present an algorithm (Algorithm 1) that outputs a feasible matching M

in a given HRLQ instance G, such that M is popular amongst all the feasible matchings in G.
We assume that G admits a feasible matching, which can be checked in polynomial time [14].

Algorithm 1 is a modification of the standard hospital-proposing Gale and Shapley
algorithm [12] and can be viewed as a two-phase algorithm. The first phase simply computes
a stable matching Ms in the input instance ignoring lower quotas. If Ms satisfies the
lower quotas of all the hospitals, it just outputs Ms. Otherwise hospitals that are deficient
in Ms propose with increased priority. A hospital h is deficient w.r.t. a matching M if
|M(h)| < q−(h). We implement the increased priority by assigning a level to each hospital,
so that higher level corresponds to higher priority. A resident always prefers a higher level
hospital in its preference list to a lower level hospital, irrespective of their relative positions
in its preference list. We show that at most |R| levels suffice to output a feasible matching
in the instance, if one exists. We give a detailed description below.
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Algorithm 1 Popular matching in HRLQ.
1: Input : G = (R∪H, E)
2: set M = ∅; Q = ∅;
3: for each h ∈ H do set level(h) = 0; add h to Q;
4: for each r ∈ R do set level(r) = -1;
5: while Q is not empty do
6: let h = head(Q);
7: let Sh = residents to whom h has not yet proposed with level(h);
8: if Sh 6= ∅ then
9: let r be the most preferred resident in Sh

10: if r is matched in M (to say h′) then
11: if pref(r, h, h′) == 0 then
12: add h to Q; goto Step 5;
13: else
14: M = M \ {(r, h′)};
15: add h′ to Q if h′ is not present in Q;
16: M = M ∪ {(r, h)}; level(r) = level(h);
17: if level(h) == 0 and |M(h)| < q+(h) then
18: add h to Q;
19: else if h ∈ Hlq and |M(h)| < q−(h) then
20: add h to Q;
21: else if h ∈ Hlq and level(h) < |R| then
22: level(h) = level(h)+1; add h to Q;
23: // h starts proposing from the beginning of the preference list.

Let G = (R ∪ H, E) be the given HRLQ instance. Let Hlq denote the set of hospitals
which have non-zero lower quota – we call h ∈ Hlq a lower-quota hospital; we call h /∈ Hlq a
non-lower quota hospital.

Algorithm 1 begins by initializing the matching M and a queue Q of hospitals to be
empty (Step 2). As described above, level of a hospital denotes its current priority, and
initially all the hospitals have level 0. All hospitals are added to Q (Step 3). We also assign
a level to each resident r, which stores the level of the hospital M(r) at the time when r gets
matched to M(r). Initially, all residents are assigned level −1 (Step 4). The main while loop
of the algorithm (Step 5) executes as long as Q is non-empty. Steps 6–16 are similar to the
execution of the hospital-proposing Gale-Shapley algorithm [13]. When a matched resident r

gets a proposal from a hospital h, r compares its current match h′ with h using pref(r, h, h′).
We define pref (r, h, h′) = 1 if (i) level(r) < level(h), which means h proposes to r with a
higher priority than h′ did, or (ii) level(r) = level(h) and h has a higher position than h′ in
the preference list of r. We define pref (r, h, h′) = 0 otherwise. Thus matched resident r

accepts the proposal of h and rejects h′ if and only if pref (r, h, h′) = 1. In case the edge
(r, h) is added to M (Step 16), the algorithm also sets the level of r equal to the level(h).

When a hospital h finishes proposing all the residents on its preference list with level(h) = i

and still |M(h)| < q−(h), level(h) is incremented by 1 and h is added back to Q. This is
done in Step 21. Now h restarts proposing all the residents in its preference list with the
new value of level(h).

Running time and correctness. To see that the algorithm terminates we observe that every
non-lower quota hospital proposes to residents in its preference list at most once. Every
lower-quota hospital proposes to residents on its preference list at most |R| times. Thus
the running time of our algorithm is O((|R|+ |H|+ |E|) · |R|). To see the correctness note
that when G admits a feasible stable matching our algorithm degenerates to the standard
Gale-Shapley hospital proposing algorithm. As proved in [19], a stable matching is popular
amongst the set of feasible matchings. In case G admits a feasible matching but no feasible
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Algorithm 2 Maximal envy-free matching in HRLQ.
1: Input : G = (R∪H, E)
2: Compute a matching M1 by Yokoi’s algorithm.
3: if Yokoi’s algorithm declares “no envy-free matching” then
4: Return M = ∅.
5: Let R′ be the set of residents unmatched in M1.
6: Let H′ be the set of hospitals such that |M1(h)| < q+(h) in G.
7: Let G′ = (R′ ∪ H′, E′) be an induced subgraph of G, where E′ = {(r, h) | r ∈ R′, h ∈
H′, h prefers r over its threshold resident rh}. Set q+(h) in G′ as q+(h)− q−(h) in G.

8: Each h has the same relative ordering on its neighbors in G′ as in G.
9: M2 = stable matching in G′ = (R′ ∪H′, E′).
10: Return M = M1 ∪M2.

stable matching, techniques as in [18] can be employed to show that the output is popular
amongst the set of feasible matchings.

I Theorem 4. In an HRLQ instance G, Algorithm 1 outputs a matching that is feasible and
popular amongst the set of feasible matchings. If G admits a feasible and stable matching,
then Algorithm 1 outputs a stable matching.

2.2 Algorithm for Maximal Envy-free Matching
Yokoi [20] has given an algorithm to compute an envy-free matching in an HRLQ instance
G = (R∪H, E). Yokoi’s algorithm works in the following steps:
1. Set the upper quota of each hospital to its lower quota.
2. Set the lower quota of each hospital to 0, call this modified instance G1.
3. Find a stable matching M1 in the modified instance.
4. Return M1, if every hospital gets matched to as many residents as its upper quota in G1,

otherwise declare that there is no envy-free matching in G.

It can be seen that Yokoi’s algorithm, as stated above, does not return a maximal envy-free
matching. In particular, any hospital with lower-quota 0 does not get matched to any resident
in Yokoi’s algorithm. Hence we propose a simple extension of Yokoi’s algorithm to compute
a maximal envy-free matching, which contains the matching output by Yokoi’s algorithm.
We call a matching M in G maximal envy-free if, for any edge e = (r, h) ∈ E \M , M ∪ {e}
is not envy-free. The following definition with respect to Yokoi’s output matching M1 is
useful for our algorithm. Our algorithm is described as Algorithm 2.

I Definition 5. Let h be a hospital that is under-subscribed in G with respect to M1, that
is |M1(h)| < q+(h). A threshold resident rh for h, if one exists, is the most preferred resident
in the preference list of h such that (i) rh is matched in M1, to say h′, and (ii) rh prefers h

over h′. If no such resident exists, we assume a unique dummy resident rh at the end of h’s
preference list to be the threshold resident for h.

Below we prove that the output of Algorithm 2 is a maximal envy-free matching.

I Theorem 6. If G admits an envy-free matching, then Algorithm 2 outputs M which is
maximal envy-free in G.

Proof. Since G admits an envy-free matching, M1 output by Yokoi’s algorithm is non-empty.
We prove that M is an envy-free feasible matching, and for each edge e ∈ E \M , M ∪ {e} is
not an envy-free matching.
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M is envy-free: Assume, for the sake of contradiction, that a resident r′ has a justified envy
towards a resident r with respect to M . Thus r′ prefers h = M(r) over h′ = M(r′), and
h prefers r′ over r. The edge (r, h) ∈ M and hence either (r, h) ∈ M1 or (r, h) ∈ M2.
Suppose (r, h) ∈M1. Recall that M1 is stable in the instance G1 used in Yokoi’s algorithm.
In this case, the edge (r′, h) blocks M1 in G1 a contradiction to the stability of M1 in G1.
Thus, if possible, let (r, h) ∈M2, and hence (r, h) ∈ E′. If r′ is unmatched in M1, then
(r′, h) ∈ E′ and (r′, h) blocks M2 in G′, contradicting the stability of M2 in G′. If r′ is
matched in M1 then r′ /∈ R′ and hence (r′, h) /∈ E′. In this case, the threshold resident
rh of h is either same as r′ or is a resident whom h prefers over r′. Since h prefers r′

over r, h prefers rh over r. Therefore (r, h) can not be in E′ by construction, and hence
(r, h) /∈M2. This proves that M is envy-free.

M is maximal envy-free: We now prove that, for any e = (r, h) /∈ M , M ∪ {e} is not
envy-free. Let e = (r, h), h ∈ H, r ∈ R. Clearly, h must be under-subscribed in M i.e.
|M(h)| < q+(h), and r must be unmatched in M , otherwise M ∪ {e} is not a valid
matching in G. Let rh be the threshold resident of h with respect to M1. Since r is
unmatched in M and hence in M1, r ∈ R′. (i) If h prefers r over rh, then (r, h) ∈ E′

blocks M2 in G′, which contradicts the stability of M2 in G′. (ii) If h prefers rh over
r, then adding the edge (r, h) to M makes rh have a justified envy towards r. Thus,
M ∪ {(r, h)} is not envy-free. J

3 Experimental Setup

The experiments were performed on a machine with a single Intel Core i7-4770 CPU running
at 3.40GHz, with 32GB of DDR3 RAM at 1600MHz. The OS was Linux (Kubuntu 16.04.2,
64 bit) running kernel 4.4.0-59. The code [5] is developed in C++ and was compiled using
the clang-3.8 compiler with -O3 optimization level. To evaluate the performance of our
algorithms, we developed data generators which model preferences of the participants in
real-world instances. We use a limited number of publicly available data-sets as well as
real-world data-sets from elective allocation at IIT-Madras. All the data-sets generated and
used by us are available at [1].

3.1 Data generation models and available data-sets

There are a variety of parameters and all of them could be varied to generate synthetic
data-sets. We focus on four prominent parameters – (i) the number of residents |R|, (ii)
the number of hospitals |H|, (iii) the length of the preference list of each resident k, (iv)
capacity of every hospital cap (by default cap = |R|/|H|). In the synthetic data-sets, all
hospitals have uniform capacity and all residents have the same length of preference list. We
use the following three models of data generation, and data-sets publicly available from [2].
1. Master: Here, we model the real-world scenario that there are some hospitals which

are in high demand among residents and hence have a larger chance of appearing in the
preference list of a resident. Hospitals on the other hand, rely on some global criteria to
rank residents. We set up a geometric probability distribution with p = 0.10 over the
hospitals which denotes the probability with which a hospital is chosen for being included
in the preference list of a resident. Each resident samples k hospitals according to the
distribution and orders them arbitrarily. We also assume that there exists a master list
over the set of residents. For all the neighbours of a hospital, the hospital ranks them
according to the master list of residents.
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2. Shuffle: This model is similar to the first model except that we do not assume a master
list on the residents. The residents draw their preference lists as above. Every hospital
orders its neighbours uniformly at random. This models the scenario that hospitals may
have custom defined ranking criteria. Our Shuffle model is closely inspired by the one
described by Mahdian and Immorlica [15].

3. Publicly available HR with couples data-set: Other than generating data-sets
using the three models described above, we used a freely available data-set [2] by Man-
love et al. [17] for the HR problem with couples (HRC problem). The instances were only
modified with respect to the preference list of residents that participate in a couple, all
other aspects of the instance remain the same. Residents participating in a couple can
have different copies of a same hospitals on their preference list which are not necessarily
contiguous. The preference list is created by only keeping the first unique copy of a
hospital in the preference list of a resident.

4. Elective allocation data from IIT-M: We use a limited number of real-world data-sets
available from the IIT Madras elective allocation. The data-sets are obtained from the
SEAT (Student Elective Allocation Tool) which allocates humanities electives and outside
department electives for under-graduate students across the institute every semester. The
input consists of a set of students and a set of courses with capacities (upper-quotas).
Every student submits a preference ordering over a subset of courses and every course
ranks students based on custom ranking criteria. This is exactly the HR problem.

HRLQ instances. The above three data-generation models (Master, Shuffle, and Random)
are common for generating preferences in HRLQ and HR data-sets. For HRLQ data-sets we
additionally need lower quotas. In all our data-sets, around 90% of the hospitals had lower
quota at least 1. This is to ensure that the instances are HRLQ instances rather than nearly
HR instances. Also, the sum of the lower quota of all the hospitals was kept around 50%
of the total number of positions available. This ensures that at least half of the residents
must be matched to a lower quota hospital. Lastly, we consider only those HRLQ instances
which admit a feasible matching but no stable feasible matching. This is done by simply
discarding instances that admit a feasible stable matching. We discard such instances because
if an instance with feasible stable matching, the stable matching is optimal with respect to
popularity, envy-freeness and min-BP and min-BR objectives.

Methodology. For reporting our results, we fix a model of generation and the parameters
|R|, |H|, k, cap. For the chosen model and the parameters, we generate 10 data-sets and
report arithmetic average for all output parameters on these data-sets.

4 Empirical Evaluation

Here, we present our empirical observations on HRLQ and HR instances. In each case, we
define set of parameters on the basis of which we evaluate the quality of our matchings.

4.1 HRLQ instances
In this section we show the performance of Algorithm 1 and Algorithm 2 on data-sets
generated using models described earlier. Let G be an instance of the HRLQ problem, and
Ms be the stable matching in the instance ignoring lower-quotas. For all our instances Ms is
infeasible. Let Mp denote a popular matching output Algorithm 1 in G. Let Me denote a
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Table 1 Data generated using the Master model. All values are absolute. |R| = 1000, k = 5.

|H| Def(Ms, G) S(M) ↑ BP C(M) ↓ BR(M) ↓ R1(M) ↑

Mp Me Mp Me Mp Me Mp Me

100 30.80 885.40 559.00 78.50 2747.00 34.80 822.00 554.10 174.00
20 23.60 897.90 510.66 67.70 3067.33 27.50 803.66 570.40 195.33
10 27.50 912.80 535.50 85.10 2945.00 31.10 770.87 600.40 226.87

Table 2 Data generated using the Shuffle model. All values are absolute. |R| = 1000, k = 5.

|H| Def(Ms, G) S(M) ↑ BP C(M) ↓ BR(M) ↓ R1(M) ↑

Mp Me Mp Me Mp Me Mp Me

100 17.00 892.70 – 27.20 – 19.40 – 350.30 –
20 20.60 915.30 547.00 34.40 2838.20 23.60 808.00 343.90 185.80
10 35.40 930.00 490.33 57.80 3388.00 35.40 853.00 309.30 147.00

maximal envy-free matching output by Algorithm 2. Both Mp and Me are feasible for G

and hence unstable.

Parameters of interest. We now define the parameters of the matching that are of interest
in the HRLQ problem. For M ∈ {Mp, Me} we compute the following.

S(M) : size of the matching M in G.
BPC(M) : number of blocking pairs w.r.t. M in G. Since M is not stable in G, this
parameter is expected to be positive; however we would like this parameter to be small.
BR(M) : number of residents that participate in at least one blocking pair w.r.t. M .
R1(M) : number of residents matched to their rank-1 hospitals in M .

We additionally compute the deficiency of the stable matching Ms. Hamada et al. [14]
showed that Def(Ms, G) is a lower bound on the number of blocking pairs and the number
of blocking residents in an HRLQ instance. To analyze the goodness of Mp and Me w.r.t.
the Min-BP and Min-BR objectives, we compare the number of blocking pairs and blocking
residents with the lower bound of Def(Ms, G).

Def(Ms, G) : This parameter denotes the deficiency of the stable (but not feasible)
matching Ms in G. For every hospital h, let def(Ms, h) = max{0, q−(h)− |Ms(h)|}. The
deficiency of the instance G is the sum of the deficiencies of all hospitals.

We now describe our observations for the data-sets generated using various models. For
a particular model, we vary the parameters |R|, |H|, k, cap to generate HRLQ data-sets using
the different models. In all our tables a column with the legend ↑ implies that larger values
are better. Analogously, a column with the legend ↓ implies smaller values are better.

4.1.1 Popular Matchings versus Maximal Envy-free Matchings
Here we report the quality of popular matchings and envy-free matchings on the parameters
of interest listed above on different models.

Table 1 shows the results for popular matchings (Mp) and maximal envy-free matchings
(Me) on data-sets generated using the Master model.

Table 2 shows the results for popular matchings (Mp) and maximal envy-free matchings
(Me) on data-sets generated using the Shuffle model.

We observe the following from the above two tables.



Krishnapriya A M, M. Nasre, P. Nimbhorkar, and A. Rawat 9:11

Guaranteed existence: As noted earlier, envy-free matchings are not guaranteed to
exist in contrast to popular matchings which always exist in HRLQ instances. For instance,
in the Shuffle model, for |R| = 1000, |H| = 100, k = 5 (Table 2, Row 1) none of the
instances admit an envy-free matching. Thus, for the columns Me we take an average
over the instances that admit an envy-free matching.
Size: It is evident from the tables that in terms of size popular matchings are about
32%–43% larger as compared to envy-free matchings (when they exist). See Column
S(M) in Table 1 and Table 2.
BPC and BR: In terms of the blocking pairs and blocking residents, popular matchings
beat envy-free matchings by over an order of magnitude. We remark that to ensure envy-
freeness, several hospitals may to be left under-subscribed. This explains the unusually
large blocking pairs and blocking residents in envy-free matchings. Furthermore, note
that Def(Ms, G) is a lower-bound on both the number of blocking pairs and blocking
residents. On all instances, for popular matchings the number of blocking pairs (BPC) is
at most 3 times the optimal whereas the number of blocking residents (BR) is close to
the optimal value.
Number of Envy-pairs: Although we do not report it explicitly, the number of envy
pairs in an envy-free matching is trivially zero and for any matching it is upper bounded
by the number of blocking pairs. Since the number of blocking pairs is significantly small
for popular matchings, we conclude that the number of envy-pairs is also small.
Number of residents matched to rank-1 hospitals: For any matching, a desirable
criteria is to match as many participants to their top-choice. Again on this count, we
see that popular matchings match about 15%–38% more residents to their top choice
hospital (See Column R1(M) in the above tables).

4.2 Results on HR instances
To analyze the quality of popular matchings on various data-sets, we generate an HR instance
G = (H ∪R, E), compute a resident optimal stable matching Ms, a maximum cardinality
popular matching Mp and a popular matching among maximum cardinality matchings
Mm. The matchings Mp and Mm are generated by creating reduced instances G2 and G|R|
respectively, and executing the resident proposing Gale-Shapley algorithm in the respective
instance. Theoretically, we need to construct G|R| for computing Mm, practically we observe
that almost always a constant number suffices say constructing G10 suffices. We now describe
our output parameters.

Parameters of interest. For any matching M , let R1(M) denote the number of residents
matched to rank-1 hospitals in M . For two matchings M and M ′, let VR(M, M ′) denote the
number of residents that prefer M over M ′. For each instance we compute the following:

S(Ms) : size of the stable matching Ms in G.
For M to be one of Mp or Mm define:

∆ : |M |−|Ms|
|Ms| × 100. This denotes the percentage increase in size of Ms when compared

to M . When comparing Ms with either Mp or Mm, ∆ is guaranteed to be non-negative.
The larger this value, the better the matching in terms of size as compared to Ms.
∆1 : R1(M)−R1(Ms)

R1(Ms) × 100. This denotes the percentage increase in number of rank-1
residents of Ms when compared to M . As discussed in the Introduction, there is no
guarantee that this value is non-negative. However, we prefer that the value is as large
as possible.
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Table 3 Data generated using the Master model. All values except S(Ms) are percentages.

|R| = 1000, k = 5 Mp vs Ms Mm vs Ms

|H| S(Ms) ∆ ↑ BP (Mp) ↓ ∆1 ↑ ∆R ↑ ∆ ↑ BP (Mm) ↓ ∆1 ↑ ∆R ↑
1000 757.90 11.81 4.66 -3.49 5.25 12.79 5.34 -4.02 6.41
100 823.50 12.93 8.57 -1.64 7.41 13.99 9.96 -2.80 8.58
20 870.70 11.65 12.22 0.24 7.32 12.25 14.47 -0.36 7.47
10 890.00 10.68 16.32 0.76 2.37 10.80 16.57 0.73 2.64

∆R : VR(M,Ms)−VR(Ms,M)
|R| × 100. This denotes the percentage increase in number of

resident votes of M when compared to Ms. Similar to ∆1, there is no apriori guarantee
that more residents prefer M over Ms. A positive value for this parameter indicates
that M is more resident popular as compared to Ms. That is, in an election where
only residents vote, a majority of the residents would like to move from Ms to M .
BP (M) : number of blocking pairs in M

|E|−|M | × 100. The minimum value for BP (M) can
be 0 (for a stable matching) and the maximum value can be 100, due to the choice
of the denominator (|E| − |M |). Since matchings Mm and Mp are not stable, this
parameter is expected to be positive and we consider it as the price we pay to get
positive values for ∆, ∆1 and ∆R.

We now present our results on data-sets generated using different models. In each case
we start with a stable marriage instance (with |R| = |H|) and gradually increase the capacity.
As before, a column with the legend ↑ implies that larger values are better for that column.
Analogously, a column with the legend ↓ implies smaller values are better.

Master. Table 3 shows our results on data-sets generated using the Master model. Here,
we see that for all data-sets we get at least 10.5% increase in the size when comparing Ms

vs Mp (column 3) and Ms vs Mm (column 7). The negative value of ∆1 (columns 5 and 9)
indicates that we reduce the number of residents matched to their rank-1 hospitals by at
most 4.02% in our experiments and we also marginally gain for smaller values of |H|. The
parameter ∆R is observed to be positive which shows that a majority of residents prefer
Mp over Ms (column 6) and also prefer Mm over Ms (column 10). Finally, the value of BP

(columns 4 and 8) goes on increasing as we reduce the value of |H|.

Shuffle. The results obtained on data-sets generated using the Shuffle model are presented
in Table 4. The size gains are at least 6% when comparing Ms with Mp (column 3) and
Mm (column 7). Looking at the values of ∆1 from column 5 and column 9 we see that the
number of residents matched to their rank-1 hospitals are almost always more, with up to
18% getting their rank-1 choices. We also observe that ∆R is always positive, which implies
that majority of the residents prefer Mp and Mm over Ms.

Processed HR couples data-set. Table 5 shows our results on publicly available HR with
couples data-set [2]. As seen from the columns with different ∆ values, popular matchings
perform favourably on all desired parameters on these data-sets. This is similar to our
observations on data generated using the Shuffle model. We also investigated the relation
between data generated using Shuffle model and the data used in this experiment and
found that the data-sets are similar in their characteristics. This confirms that Shuffle is a
reasonable model. Our results on these data-sets confirm that popular matchings perform
favourably on variants of the Shuffle model.
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Table 4 Data generated using the Shuffle model. All values except S(Ms) are percentages.

|R| = 1000, k = 5 Mp vs Ms Mm vs Ms

|H| S(Ms) ∆ ↑ BP (Mp) ↓ ∆1 ↑ ∆R ↑ ∆ ↑ BP (Mm) ↓ ∆1 ↑ ∆R ↑
1000 776.80 9.39 2.33 0.52 4.27 10.20 2.80 -0.14 5.39
100 856.00 8.56 3.55 8.72 7.80 9.23 4.13 9.79 9.38
20 900.80 7.10 5.50 13.87 9.86 7.52 6.01 15.55 11.37
10 935.40 6.03 16.57 17.35 5.77 6.15 16.76 18.02 6.32

Table 5 Processed data-sets from [2]. All values except S(Ms) are percentages.

|R| = 100, k = 3 . . . 5 Mp vs Ms Mm vs Ms

|H| S(Ms) ∆ ↑ BP (Mp) ↓ ∆1 ↑ ∆R ↑ ∆ ↑ BP (Mm) ↓ ∆1 ↑ ∆R ↑
90 84.67 10.10 6.26 2.79 4.62 11.81 8.55 1.20 7.16
50 87.19 9.61 8.25 4.53 4.99 11.01 10.77 3.12 6.47
20 91.35 7.92 13.57 9.30 4.28 8.41 14.93 8.22 3.86
10 93.53 6.61 19.94 5.34 -1.86 6.73 20.43 4.99 -2.00

Real world data-sets from IIT-M. Table 6 shows our results on data-sets obtained from
the IIT-M elective allocation (the three rows in the table correspond to the Aug–Nov 2016,
Jan–May 2017 and Aug–Nov 2017 humanities elective allocation data respectively).

For each data-set we list the number of students (|R|), the number of courses (|H|), the
sum of total preferences (m) and the average preference list over the set of students (apl).
On an average, each course has a capacity of 50. For each course a custom ranking criteria is
used to rank students who have expressed preference in the course. As seen in Table 6, for
the Jan–May 2017 (row 2) and Aug–Nov 2017 (row 3) data-sets, popular matchings perform
very favourably as compared to stable matching.
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Abstract
In recent years, algorithmic breakthroughs in stringology, computational social choice, scheduling,
etc., were achieved by applying the theory of so-called n-fold integer programming. An n-fold
integer program (IP) has a highly uniform block structured constraint matrix. Hemmecke, Onn,
and Romanchuk [Math. Programming, 2013] showed an algorithm with runtime aO(rst+r2s)n3,
where a is the largest coefficient, r, s, and t are dimensions of blocks of the constraint matrix
and n is the total dimension of the IP; thus, an algorithm efficient if the blocks are of small size
and with small coefficients. The algorithm works by iteratively improving a feasible solution with
augmenting steps, and n-fold IPs have the special property that augmenting steps are guaranteed
to exist in a not-too-large neighborhood. However, this algorithm has never been implemented
and evaluated.

We have implemented the algorithm and learned the following along the way. The original
algorithm is practically unusable, but we discover a series of improvements which make its eval-
uation possible. Crucially, we observe that a certain constant in the algorithm can be treated
as a tuning parameter, which yields an efficient heuristic (essentially searching in a smaller-than-
guaranteed neighborhood). Furthermore, the algorithm uses an overly expensive strategy to find
a “best” step, while finding only an “approximatelly best” step is much cheaper, yet sufficient
for quick convergence. Using this insight, we improve the asymptotic dependence on n from n3

to n2 logn which yields the currently asymptotically fastest algorithm for n-fold IP.
Finally, we tested the behavior of the algorithm with various values of the tuning parameter

and different strategies of finding improving steps. First, we show that decreasing the tuning
parameter initially leads to an increased number of iterations needed for convergence and even-
tually to getting stuck in local optima, as expected. However, surprisingly small values of the
parameter already exhibit good behavior. Second, our new strategy for finding “approximatelly
best” steps wildly outperforms the original construction.
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1 Introduction

In this article we consider the general integer linear programming (ILP) problem in standard
form,

min {wx | Ax = b , l ≤ x ≤ u , x ∈ Zn} . (ILP)

with A an integer m× n matrix, b ∈ Zm, w ∈ Zn, l,u ∈ (Z ∪ {±∞})n. It is well known to
be strongly NP-hard, but models many important problems in combinatorial optimization
such as planning [28], scheduling [13] and transportation [4] and thus powerful generic solvers
have been developed for it [25]. Still, theory is motivated to search for tractable special cases
One such special case is when the constraint matrix A has a so-called N -fold structure:

A = E(N) =


E1 E1 · · · E1
E2 0 · · · 0
0 E2 · · · 0
...

... . . . ...
0 0 · · · E2

 .

Here, r, s, t,N ∈ N, u, l,w ∈ ZNt, b ∈ Zr+Ns, E(N) is an (r +Ns)×Nt-matrix, E1 ∈ Zr×t
is an r × t-matrix and E2 ∈ Zs×t is an s × t-matrix. We call E(N) the N-fold product of
E =

(
E1
E2

)
. Problem (ILP) with A = E(N) is known as N -fold integer programming (N -fold

IP). Hemmecke, Onn, and Romanchuk [16] prove the following.

I Proposition 1 ([16, Theorem 6.2]). There is an algorithm that solves4 (ILP) with A = E(N)

encoded with L bits in time ∆O(trs+t2s) · n3L, where ∆ = 1 + max{‖E1‖∞, ‖E2‖∞}.

Recently, algorithmic breakthroughs in stringology [20], computational social choice [21],
scheduling [5, 18, 22], etc., were achieved by applying this algorithm and its subsequent
non-trivial improvements.

The algorithm belongs to the larger family of augmentation (primal) algorithms. It
starts with an initial feasible solution x0 ∈ ZNt and produces a sequence of increasingly
better solutions x1, . . . ,xs (better means wxs < wxs−1 < · · · < wx0). It is guaranteed that
the algorithm terminates, that xs is an optimal solution, and that the algorithm converges
quickly, i.e., s is polynomial in the length of the input. A key property of N -fold IPs is
that, if an augmenting step exists, then it can be decomposed into a bounded number of
elements of the so-called Graver basis of A, which in turn makes it possible to compute it
using dynamic programming [16, Lemma 3.1]. In a sense, this property makes the algorithm
a local search algorithm which is always guaranteed to find an improvement in a not-too-large
neighborhood. The bound on the number of elements or the size of the neighborhood which

4 Given an IP, we say that to solve it is to either (i) declare it infeasible or unbounded or (ii) find a
minimizer of it.

http://dx.doi.org/10.4230/LIPIcs.SEA.2018.10
https://github.com/katealtmanova/nfoldexperiment


K. Altmanová, D. Knop, and M. Koutecký 10:3

needs to be searched is called the Graver complexity of E. This, in turn, implies that, if an
augmenting step exists, then there is always one with small `1-norm; for a matrix A, we
denote this bound g1(A) = maxg∈G(A) ‖g‖1 [24, Theorem 4]. However, the algorithm has
never been implemented and evaluated.

1.1 Our Contributions

We have implemented the algorithm and tested it on two problems for which n-fold formula-
tions were known: makespan minimization on uniformly related machines (Q||Cmax) and
Closest String; we have used randomly generated instances.

In the course of implementing the algorithm we learn the following. The algorithm in its
initial form is practically unusable due to an a priori construction of the Graver basis G(E2)
of size exponential in r, s, t and a related (even larger) set Z(E). However, we discover a
series of improvements (some building on recent insights [24]) which avoid the construction
of these two sets. Moreover, we adjust the algorithm to treat g1(A) as a tuning parameter
g1, which turns it into a heuristic.

We also study the augmentation strategy, which is the way the algorithm chooses an
augmenting step among all the possible options. The original algorithm uses an overly
expensive strategy to find a “best” step, which means that a large number of possible steps
is evaluated in each iteration. We show that finding only an “approximatelly best” step is
sufficient to obtain asymptotically equivalent convergence rate, and the work per iteration
decreases exponentially. Using this insight, we improve the asymptotic dependence on N from
N3 to N2 logN . Together with recent improvements, this yields the currently asymptotically
fastest algorithm for N -fold IP:

I Theorem 2. Problem (ILP) with A = E(N) can be solved in time ∆r2s+rs2(Nt)2 log(Nt)M ,
where M = log(wx∗ −wx0) for some minimizer x∗ of wx.

Finally, we evaluate the behavior of the algorithm. We ask how is the performance of the
algorithm (in terms of number of dynamic programming calls and quality of the returned
solution) influenced by
1. the choice of the tuning parameter 1 < g1 ≤ g1(A)?
2. the choice of the augmentation strategy between “best step”, “approximate best step”

and “any step”?
As expected, as g1 moves from g1(A) to 1, we first see an increase in the number of iterations
needed for convergence and eventually the algorithm gets stuck in local optima. However,
surprisingly small values (e.g. g1 = 5 when g1(A) > 105) of the parameter already exhibit
close to optimal behavior. Second, our new strategy for finding “approximatelly best” steps
outperforms the original construction by orders of magnitude, while the naive “any step”
strategy behaves erratically.

We note that at this stage we are not (yet) interested in showing supremacy over existing
algorithms; we simply want to understand the practical behavior of an algorithm whose
theoretical importance was recently highlighted. For this reasons our experimental focus is
on the two aforementioned questions rather than simply measuring the time. Similarly, due
to the rigid format of E(N) we are limited to few problems for which N -fold formulations are
known. For Closest String we use the same instances as Chimani et al. [6]; for Makespan
Minimization we generate our own data because standard benchmarks are not limited to
short jobs or few types of jobs.
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1.2 Related Work
Our work mainly relates to primal heuristics [3] for MIPs which are used to help reach opti-
mality faster and provide good feasible solutions early in the termination process. Specifically,
our algorithm is a neighborhood (or local) search algorithm. The standard paradigm is Large
Neighborhood Search (LNS) [27] with specializations such as for example Relaxation Induced
Neighborhood Search (RINS) [7] and Feasibility Pump [2]. Using this paradigm, our proposed
algorithm searches in the neighborhood induced by the `1-distance from the current feasible
solution and the search procedure is formulated as an ILP subproblem with the additional
constraint ‖x‖1 ≤ g1. In this sense the closest technique to ours is local branching [11] which
also searches in the `1-neighborhood; however, we treat a discovered step as a direction and
apply it exhaustively, so, unlike in local branching, we make long steps. Moreover, local
branching was mainly applied to binary programs without any additional structure of the
constraint matrix.

On the theoretical side, very recently Koutecký et al. [24] have studied parameterized
strongly polynomial algorithms for various block-structured ILPs, not just N -fold IP. Eisen-
brand et al. [9] independently (and using slightly different techniques) arrive at the same
complexity of N -fold IP as our Theorem 2.

2 Preliminaries

For positive integers m,n we set [m,n] = {m, . . . , n} and [n] = [1, n]. We write vectors in
boldface (e.g., x,y) and their entries in normal font (e.g., the i-th entry of x is xi). Given
the problem (ILP), we say that x is feasible for (ILP) if Ax = b and l ≤ x ≤ u.

Graver bases and augmentation. Let us now introduce Graver bases and discuss how they
can be used for optimization. We also recall N -fold IPs; for background, we refer to the
books of Onn [26] and De Loera et al. [8].

Let x,y be n-dimensional integer vectors. We call x,y sign-compatible if they lie in
the same orthant, that is, for each i ∈ [n] the sign of xi and yi is the same. We call∑
i gi a sign-compatible sum if all gi are pair-wise sign-compatible. Moreover, we write

y v x if x and y are sign-compatible and |yi| ≤ |xi| for each i ∈ [n]. Clearly, v imposes
a partial order called “conformal order” on n-dimensional vectors. For an integer matrix
A ∈ Zm×n, its Graver basis G(A) is the set of v-minimal non-zero elements of the lattice of
A, kerZ(A) = {z ∈ Zn | Az = 0}. An important property of G(A) is the following.

I Proposition 3 ([26, Lemma 3.4]). Every integer vector x 6= 0 with Ax = 0 is a sign-com-
patible sum x =

∑t
i=1 αigi, αi ∈ N, gi ∈ G(A) and t ≤ 2n− 2.

Let x be a feasible solution to (ILP). We call g an x-feasible step (or simply feasible
if x is clear) if x + g is feasible for (ILP). Further, we call a feasible step g augmenting
if w(x + g) < wx; note that g decreases the objective by wg. An augmenting step g
and a step length γ ∈ N form an x-feasible step pair with respect to a feasible solution x
if l ≤ x + γg ≤ u. A pair (γ,g) ∈ (N× G(A)) is a γ-Graver-best step pair and γg is a
γ-Graver-best step if it is feasible and for every feasible step pair (γ,g′), g′ ∈ G(A), we have
wγg ≤ wγg′. An augmenting step g and a step length γ ∈ N form a Graver-best step pair if
it is γ-Graver-best and it minimizes wγ′g′ over all γ′ ∈ N, where (γ′,g′) is a γ′-Graver-best
step pair. We say that γg is a Graver-best step if (γ,g) is a Graver-best step pair.
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The Graver-best augmentation procedure for (ILP) with a given feasible solution x0 and
initial value i = 0 works as follows:
1. If there is no Graver-best step for xi, return it as optimal.
2. If a Graver-best step γg for xi exists, set xi+1 := xi + γg, i := i+ 1, and go to 1.

I Proposition 4 (Convergence bound [26, Lemma 3.10]). Given a feasible solution x0 for (ILP),
the Graver-best augmentation procedure finds an optimum in at most (2n− 2) logM steps,
where M = w(x0 − x∗) and x∗ is any minimizer of wx.

By standard techniques (detecting unboundedness etc.) we can ensure that logM ≤ L.

N -fold IP. The structure of E(N) allows us to divide the Nt variables of x into N bricks
of size t. We use subscripts to index within a brick and superscripts to denote the index of
the brick, i.e., xij is the j-th variable of the i-th brick with j ∈ [t] and i ∈ [N ].

3 Approximate Graver-best Steps

In this section we introduce the notion of a c-approximate Graver-best step (Definition 5),
show that such steps exhibit good convergence (Lemma 6), can be easily obtained (Lemma 7),
and result in a significant speed-up of the N -fold IP algorithm (Theorem 2).

I Definition 5 (c-approximate Graver-best step). Let c ∈ R, c ≥ 1. Given an instance of (ILP)
and a feasible solution x, we say that h is a c-approximate Graver-best step for x if, for every
x-feasible step pair (γ,g) ∈ (N× G(A)), we have wh ≤ 1

c · γwg.

Recall the Graver-best augmentation procedure. We call its analogue where we replace
a Graver-best step with a c-approximate Graver-best step the c-approximate Graver-best
augmentation procedure.

I Lemma 6 (c-approximate convergence bound). Given a feasible solution x0 for (ILP), the
c-approximate Graver-best augmentation procedure finds an optimum of (ILP) in at most
c · (2n− 2) logM steps, where M = w(x0 − x∗) and x∗ is any minimizer of wx.

Proof. The proof is a straightforward adaptation of the proof of Proposition 4. Let x∗ be
a minimizer and let h = x∗ − x0. Since Ah = 0, by Proposition 3, h =

∑2n−2
i=1 αigi for

some αi ∈ N, gi ∈ G(A), i ∈ [2n − 2]. Thus, an x-feasible step pair (γ,g) such that γg is
a Graver-best step must satisfy wγg ≤ 1

2n−2M . In other words, any Graver-best step pair
improves the objective function by at least a 1

2n−2 -fraction of the total optimality gap M ,
and thus (2n− 2) logM steps suffice to reach an optimum. It is straightforward to see that a
c-approximate Graver-best step satisfies wx−w(x+γg) ≤ c

2n−2M , and thus c(2n−2) logM
steps suffice. J

I Remark. Lemma 6 extends naturally to separable objectives; see the original proof [26,
Lemma 3.10].

I Lemma 7 (Powers of c step lengths). Let c ∈ N, x be a feasible solution of (ILP), and let

Γc-apx =
{
ci | ∃g ∈ G(A) : l ≤ x + cig ≤ u

}
.

Let (γ,g) ∈ (Γc-apx × G(A)) be an x-feasible step pair such that γg ≤ γ′g′ for any x-feasible
step pair (γ′,g′) ∈ (Γc-apx × G(A)). Then γg is a c-approximate Graver-best step.

SEA 2018



10:6 Evaluating and Tuning n-fold Integer Programming

Proof. Let (γ,g) satisfy the assumptions, and let (γ̃, g̃) ∈ (N× G(A)) be a Graver-best step
pair. Let γ′ be a nearest smaller power of c from γ̃, and observe that γ′g̃ is a c-approximate
Graver-best step because γ′ ≥ γ̃

c . On the other hand, since γg is a γ-Graver-best step, we
have γg ≤ γ′g̃ and thus γg is also a c-approximate Graver-best step. J

I Theorem 2 (restated). Problem (ILP) with A = E(N) can be solved in time
∆O(r2s+rs2)(Nt)2 log(Nt)M , where M = log(wx∗ −wx0) for some minimizer x∗ of wx.

Proof. Recall that ∆ = ‖A‖∞+1. Koutecký et al. [24, Theorem 2] show that a γ-Graver-best
step can be found in time ∆r2s+rs2

Nt. Moreover, Hemmecke et al. [15] prove a proximity
theorem which allows the reduction of an instance of (ILP) to an equivalent instance with
new bounds l′,u′ satisfying ‖u′ − l′‖∞ ≤ Ntg∞, with

g∞ = max
g∈G(A)

‖g‖∞ ≤ max
g∈G(A)

‖g‖1 ≤ (∆rs)O(rs) ,

where the last inequality can be found in the proof of [24, Theorem 4]. This bound implies
that Γ2-apx from in Lemma 7 satisfies |Γ2-apx| ≤ rs log(∆Ntrs). By Lemma 7, finding
a γ-Graver-best for each γ ∈ Γ2-apx and picking the minimum results in a 2-approximate
Graver-best step, and can be done in time ∆r2s+rs2(Nt) log(Nt). By Lemma 6, (4n−4) logM
steps suffice to reach the optimum. J

4 Implementation

We first give an overview of the original algorithm, which is our starting point. Then we
discuss our specific improvements and mention a few details of the software implementation.

4.1 Overview of the Original Algorithm
The key property of the N -fold product E(N) is that, for any N ∈ N, the number of nonzero
bricks of any g ∈ G(E(N)) is bounded by some constant g(E) called the Graver complexity
of E, and, moreover, that the sum of all non-zero bricks of g can be decomposed into at most
g(E) elements of G(E2) [16, Lemma 3.1]. This facilitates the following construction. Let

Z(E) =
{

z ∈ Zt | ∃g1, . . . ,gk ∈ G(E2), k ≤ g(E), z =
k∑
i=1

gi
}

.

Then, every prefix sum of the bricks of g ∈ G(E(N)) is contained in Z(E) and a γ-Graver-best
step, γ ∈ N, can be found using dynamic programming over the elements of Z(E).

To ensure that a Graver-best step is found, a set of step-lengths Γbest is constructed as
follows. Observe that any Graver-best (and thus feasible) step pair (γ,g) ∈

(
N× G(E(N))

)
,

must satisfy that in at least one brick i ∈ [n] it is “tight”, that is, (γ,g) is x-feasible while
(γ + 1,g) is not specifically because li ≤ x + γg ≤ ui holds but li ≤ x + (γ + 1)g ≤ ui does
not. Thus, for each z ∈ Z(E) and each i ∈ [n], we find all the potentially “tight” step lengths
γ and add them to Γbest, which results in a bound of |Γbest| ≤ |Z(E)| · n.

4.2 Replacing Dynamic Programming with ILP
We have started off by implementing the algorithm exactly as it is described by Hemmecke et
al. [16]. The first obstacle is encountered almost immediately and is contained in the constant
g(E). This constant can be computed, but the computation is extremely difficult [10, 14].



K. Altmanová, D. Knop, and M. Koutecký 10:7

Algorithm 1: Pseudocode of the algorithm of Hemmecke, Onn, and Romanchuk.
input :matrices E1, E2, positive integer N , and vectors b, l,u,w
output : optimal solution to (ILP) with A = E(N)

1 g = GraverComplexity(E1, E2);
2 x0 = FindFeasibleSolution(E,b, l,u,w), i = 0;
3 G(E1) = GraverBasis(E1, g);
4 Z(E) = DynamicProgramStates(G(E1), g);
5 do
6 Γ = BuildGamma(xi);
7 i = i+ 1;
8 foreach γ ∈ Γ do
9 gγ = gammaBestStep(γ,g);

10 xi = xi−1 + argmin{gγ |γ∈Γ}wgγ ;
11 while xi−1 6= xi;
12 return xi;

Another possibility is to estimate it, in which case it is almost always larger than N and
thus is essentially meaningless. Finally, one can take the approach partially suggested in [16,
Section 7], where we consider g(E) in the construction of Z(E) to be a tuning parameter
and consider the approximate set Zgc(E), gc ∈ N, obtained by taking sums of at most gc
elements of G(E2). This makes the algorithm more practical, but turns it into a heuristic.

In spite of this sacrifice, already for small (r = 3, s = 1, t = 7, n = 10) instances and
extremely small value of gc = 3, the dynamic programming based on the Zgc(E) construction
was taking an unreasonably long time (over one minute). Admittedly this could be improved;
however, already for gc > 5, it becomes infeasible to compute Zgc(E), and for larger instances
(r > 5, t > 12) it becomes very difficult to compute even G(E2). For these reasons we sought
to completely replace the dynamic program involving Z(E).

Koutecký et al. [24] show that all instances of (ILP) with the property that the so-called
dual treedepth tdD(A) of A is bounded and the largest coefficient ‖A‖∞ is bounded also have
the property that g1(A) = maxg∈G(A) ‖g‖1 is bounded, which implies that augmenting steps
can be found efficiently. This class of ILPs contains N -fold IP.

The interpretation of the above fact is that, in order to solve (ILP), it is sufficient to
repeatedly (for different x and γ) solve an auxiliary instance

min {wh | Ah = 0, l ≤ x + γh ≤ u, ‖h‖1 ≤ g1(A)} (AugILP)

in order to find good augmenting steps; we note that the constraint ‖h‖1 ≤ g1(A) can be
linearized [24, Lemma 25]. The heuristic approach outlined above transfers easily: we replace
g1(A) in (AugILP) with some integer g1, 1 < g1 ≤ g1(A); this makes (AugILP) easier to
solve at the cost of losing the guarantee that an augmenting step is found if one exists. In
theory, solving (AugILP) should be easier than solving the original instance (ILP) due to the
special structure of A [24, Lemma 25]. Our approach here is to simply invoke an industrial
MILP solver on (AugILP) in order to find a γ-Graver-best step.

4.3 Augmentation Strategy: Step Lengths
Logarithmic Γ. The majority of algorithms based on Graver basis augmentation rely on
the Graver-best augmentation procedure [5, 8, 16, 20, 22, 26] and thus require finding
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Algorithm 2: Pseudocode of our new heuristic algorithm. The algorithm is exact
if g1 ≥ g1(A) = maxg∈G(A) ‖g‖1.

input :matrices E1, E2, positive integers N , c, and g1, and vectors b, l,u,w
output : a feasible solution to (ILP) with A = E(N)

1 x0 = FindFeasibleSolution(E,b, l,u,w), i = 0;
2 do
3 Γ = ∅; j = 0, i = i+ 1;
4 do
5 γ = cj ;
6 gγ = min{wγg | Ag = 0, l ≤ x + γg ≤ u, ‖g‖1 ≤ g1, g ∈ ZNt};
7 γ′ = ExhaustDirection(gγ);
8 Γ = Γ ∪ {γ′}, j = j + 1;
9 while gγ 6= 0;

10 xi = xi−1 + argmin{gγ |γ∈Γ}wgγ ;
11 while xi−1 6= xi;
12 return xi

(exact) Graver-best steps. In the aforementioned algorithms this is always done using the
construction of a set Γbest mentioned above, which is of size f(k) · n where k is the relevant
parameter (e.g., (ars)O(rst+st2) in the original algorithm for N -fold IP). We replace this
construction with Γ2-apx = {1, 2, 4, 8, . . . } which, combined with the proximity technique, is
only of size O(logn) (Theorem 2); in particular, independent of the function f(k).

Exhausting γ. Moreover, we have noticed that sometimes the algorithm finds a step g for
γ = 2k which is not tight in any brick, and then repeatedly applies it for shorter step-lengths
γ′ < γ. In other words, the discovered direction g is not exhausted. Thus, for each γ ∈ N,
upon finding the γ-Graver-best step g, we replace γ with the largest γ′ ≥ γ for which (γ′,g)
is still x-feasible.

Early termination. Another observation is that in any given iteration of the algorithm, if
γ > 1 then some augmenting step has been found and if the computation is taking too long,
we might terminate it and simply apply the best step found so far.

4.4 Software and Hardware
We have implemented our solver in the SageMath computer algebra system [31]. This was a
convenient choice for several reasons. The SageMath system offers an interactive notebook-
style web-based interface, which allows rapid prototyping and debugging. Data types for
vectors and matrices, Graver basis algorithms [1], and a unified interface for MILP solvers
are also readily available. We have experimented with the open-source solvers GLPK [30],
Coin-OR CBC [29], and the commercial solver Gurobi [12] and have settled for using the
latter since it performs the best. The downside of SageMath is that an implementation of
the original dynamic program is likely much slower than a similar implementation in C;
however this DP is impractical anyway as explained in Section 4.2. For random instance
generation and subsequent data evaluation and graphing, we have used the Jupyter notebook
environment [19] and Matplotlib library [17]. The computations were performed on a
computer with an Intel® Xeon® E5-2630 v3 (2.40GHz) CPU and 128 GB RAM.
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5 Evaluation

We begin our evaluation with two main questions, specifically, how is the performance of
the algorithm (both in terms of the number of iterations and the quality of the returned
solution) influenced by:
1. the tuning parameter g1 and
2. the augmentation strategy?

Regarding our first question, theoretically we should see either an increase in the number
of iterations, a decrease in the quality of the returned solution, or both. However, the range
of the tuning parameter g1 is quite large: any number between 2 and g1(A) is a valid choice,
and in all our scenarios the true value of g1(A) exceeds 300. Thus, we are interested in the
threshold values of g1 when the algorithm no longer finds the true optimum or when its
convergence rate drops significantly.

Regarding our second question, there are two main candidates for the set of step-lengths
Γ. We can either use the “best step” construction Γbest of the original algorithm, which
assures that we always make a Graver-best step before moving to the next iteration. Or,
we can use the “approximate best step” construction Γ2-apx of Theorem 2, which provides a
2-approximate Graver-best step. To make this comparison more interesting, we also consider
Γ5-apx and also the trivial “any step” strategy where we always make the 1-Graver-best step,
which corresponds to taking Γany = {1}. Recall that due to the trick of always exhausting
the discovered direction, this strategy actually has a chance at quick convergence, unlike if
we only made the step with γ = 1.

5.1 Instances
We choose two problems for which N -fold IP formulations were shown in the literature,
namely the Q||Cmax scheduling problem [22] and the Closest String problem [20].

Uniformly related machines makespan minimization (Q||Cmax)
Input: Set of m machines M , each with a speed si ∈ N. A set of n jobs J , each with a

processing time pj ∈ N.
Find: Find an assignment of jobs to machines such that the time when last job finishes (the

makespan) is minimized; a job j scheduled on a machine i takes time pj/si to execute.

Closest String
Input: A set of k strings s1, . . . , sk of length L over an alphabet Σ.
Find: Find a string y ∈ ΣL minimizing maxk

i=1 dH(si, y), where dH is the Hamming distance.

For both problems we generate random instances as follows.

Scheduling. We view the problem as a decision problem where, given a number B, we
ask whether a schedule of makespan at most B exists. This is equivalent to the multi-sized
bin packing problem, where we have m bins of various capacities instead of m machines
of different speeds, and we adopt this view as it is more convenient. We also view it as a
high-multiplicity problem where the items are not given explicitely as a list of item sizes,
but succinctly by a vector of item multiplicities. Because the algorithm is primarily an
optimization algorithm, we follow the standard approach [16, Lemma 3.8] and turn the
feasibility problem into an auxiliary optimization instance where finding a starting feasible
solution is easy. Specifically for Q||Cmax this means introducing auxiliary slack variables for
“not-yet-scheduled” jobs and minimizing the total “not-yet-scheduled” length.
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The input parameters of the instance generation are number of bins m, the smallest
and largest capacities S and L, respectively, item sizes p1, . . . , pk and probability weights
w1, . . . , wk, W =

∑k
i=1 wi, and a slack ratio σ. The instance is then generated as follows.

First, we choose m capacities from [S,L] uniformly at random. This determines the total
capacity of the bins C. Our goal is to generate items whose total size is roughly σ · C.
We do this by repeatedly picking an item length from p1, . . . , pk, where pj is selected with
probability wj/W , until the total size of items picked so far exceeds σ ·C, when we terminate
and return the generated instance.

Closest String. As before, we view the problem as a decision problem: given a number
d ∈ N, decide whether there is a string y with maxki=1 dH(si, y) ≤ d. The random instance is
generated exactly as done by Chimani et al. [6]: first, we generate a random “target” string
y ∈ ΣL and create k copies s1, . . . , sk of it; then, we make α random changes in s1, . . . , sk.
This way, we have an upper bound α on the optimum. The input parameters of the instace
generation are thus k, L,Σ and the distance ratio r such α = n/r. Again, we solve an auxiliary
instance where we essentially start with a string of “all blanks” and try to fill in all the
blanks while staying in the specified distance d; the objective is thus the remaining number
of blanks.

5.2 Results
Here we demonstrate the overall behavior of the algorithm on three selected instances; we en-
courage the reader to see the full data (incl. plots) at https://github.com/katealtmanova/
nfoldexperiment. We have determined that the sensible range of values of g1 is between
2 and roughly 100 and beyond that the behavior does not change significantly. For all
augmentation strategies there are values of g1 which take much longer to converge than any
other values; because of these outliers we clip our figures. To expose the behavior of the
algorithm we use two types of figures.

Outer loop. In the outer loop figure we focus on the behavior of the algorithm with respect
to the loop starting at line 2 of Algorithm 2, i.e., where each iteration corresponds to making
an augmenting step. There is a line plot for each tested value of g1. The x axis shows the
iteration, the y axis shows the objective value attained in this iteration, i.e.,wxi for iteration
i. We indicate the expensiveness of computing one augmentation by the thickness of the line
in a given iteration – the thicker the line, the more times the (AugILP) has been solved in
this iteration. The legend indicates the exact number of times (AugILP) has been solved for
this value of g1.

Inner loop. In the inner loop figure we focus on the loop starting at line 4 of Algorithm 2,
i.e., where iterations correspond to solutions of (AugILP). As before, each color corresponds
to a tested value of g1. There is a line plot displaying the minimum over augmenting steps
found in each outer iteration; however now there is also a semiopaque region above this line,
indicating the values of all the augmenting steps (including the non-minimal ones) found in
this iteration.

We chose two instances among the tested once as representative of the overall behavior:
Our first instance is Q||Cmax with parameters m = 15, S = 2000, L = 10000, item sizes
(2, 3, 13, 35) (so that we have an instance with nontrivial ‖A‖∞), and weights (6, 13, 2, 1)
and σ = 0.45. The theoretical upper bound on g1(A) is (rs‖A‖∞ + 1)O(rs), and here we

https://github.com/katealtmanova/nfoldexperiment
https://github.com/katealtmanova/nfoldexperiment
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Figure 1 Outer loop results for Makespan Minimization when using (left to right) Γbest, Γ2-apx,
Γ5-apx, and Γany; clipped to 40 outer iterations.

have r = 4, s = 1 and ‖A‖∞ = 35; thus, without computing g1(A) exactly, we should
consider it to be at least (4 · 36)4. See Figures 1 and 2.
The third instance is Closest String with parameters k = 5, |Σ| = 2, L = 10000 and
r = 1. The N -fold model has r = 5, s = 1 and ‖A‖∞ = 1, thus, without computing g1(A)
exactly, we should consider it to be at least (2 · 5)5. See Figure 3.

5.3 Conclusions
Our main takeaway regarding Question #1 is that, while the theoretical upper bounds
for g1(A) are huge, already small values of g1 (g1 > 5 for Closest String and g1 > 20
for Makespan Minimization) are sufficient for convergence. We remark that, in the
case of Closest String, this hints at the possibility that the maximum value of any
feasible augmenting step g ∈ G(A) is bounded by kO(1) rather than kO(k), which would
imply an algorithm with runtime kO(k) logL while the currently best algorithm runs in time
kO(k2) logL [20].

Regarding Question #2, we see that Γ2-apx provides essentially the same convergence
rate as Γbest but is orders of magnitude cheaper to compute. The “any step” augmentation
strategy Γany usually converges surprisingly quickly, but our results make it clear that its
behavior is erratic and unpredictable. The inner loop Figure 2 reveals that a good step
(close to a Graver-best step) is usually found for larger step-length γ; this motivates adding
the Γ5-apx augmentation strategy to the comparison, as it spends less time on short step-
lengths than Γ2-apx. Figure 1 shows that using 5-approximate Graver-best steps instead of
2-approximate does not affect the outer loop convergence much, and Figure 2 shows that in
terms of the total number of (AugILP) calls it performs better.
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Figure 2 Inner loop results for Makespan Minimization when using (left to right) Γbest, Γ2-apx,
Γ5-apx, and Γany; clipped to 100 inner iterations.
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Figure 3 Outer loop results for the Closest String instance when using (left to right) Γbest,
Γ2-apx, and Γany.

Furthermore, we observe that solving (AugILP) using a MILP solver such as Gurobi
typically takes essentially as much time as solving (ILP) itself; in other words, current MILP
solvers are (without tuning) unable to make any use neither of the extra structure of E(N),
nor the fact that we are seeking a solution with small `1 norm and the right hand side
is 0. Moreover, with a growing number of bricks N , the time to solve (AugILP) using a
MILP solver grows superlinearly, suggesting that, for large enough N , a specialized dynamic
programming algorithm might be competitive with generic MILP solvers.

6 Outlook

We have initiated an experimental investigation of certain subclasses of ILP with block
structured constraint matrices. Our results show that, as theory suggests, for such ILPs
a primal algorithm always augmenting with steps of small `1 norm converges quickly. We
close with a few interesting research directions. First, is there a way to tune generic MILP
solvers to solve (AugILP) significantly faster than (ILP)? Second, what is the behavior of



K. Altmanová, D. Knop, and M. Koutecký 10:13

our algorithm on instances other than N -fold IP? For example, how large must be g1 in
order to attain the optimum quickly for standard benchmark instances, e.g. MIPLIB [23]?
Third, the approach of Koutecký et al. [24] suggests that a key property for the efficient
solvability of (AugILP) is a certain “sparsity” and “shallowness” (formally captured by the
graph parameter tree-depth) of graphs related to A; what are “natural” instances with small
tree-depth?
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Abstract
In Dantzig-Wolfe reformulation of an integer program one convexifies a subset of the constraints,
leading to potentially stronger dual bounds from the respective linear programming relaxation.
As the subset can be chosen arbitrarily, this includes the trivial cases of convexifying no and all
constraints, resulting in a weakest and strongest reformulation, respectively. Our computational
study aims at better understanding of what happens in between these extremes. For a collection of
integer programs with few constraints we compute, optimally solve, and evaluate the relaxations
of all possible (exponentially many) Dantzig-Wolfe reformulations (with mild extensions to larger
models from the MIPLIBs). We observe that only a tiny number of different dual bounds actually
occur and that only a few inclusion-wise minimal representatives exist for each. This aligns
with considerably different impacts of individual constraints on the strengthening the relaxation,
some of which have almost no influence. In contrast, types of constraints that are convexified in
textbook reformulations have a larger effect. We relate our experiments to what could be called
a hierarchy of Dantzig-Wolfe reformulations.
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Keywords and phrases Dantzig-Wolfe reformulation, strength of reformulations, Lagrangean
relaxation, partial convexification, column generation, hierarchy of relaxations
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1 Motivation

The strength of formulations is a central topic in integer programming, and expressed via
the quality of the dual bound obtained from the respective linear programming relaxation.
It is well-known that a Dantzig-Wolfe (DW) reformulation of an integer program, the
convexification of a subset of the constraints, may yield strong dual bounds. Therefore, such
reformulations have been proposed in the literature for many models stemming from various
applications. Even though a DW reformulation follows a certain mechanics that exploits the
structure of the model, this is by far not unique. Technically, every subset of constraints
gives rise to its own DW reformulation, including the two trivial cases: convexifying no or all
constraints, implying the weakest and strongest possible dual bounds, respectively.
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Because of this freedom, speaking of “the” strength of DW reformulations in general is
not useful. Instead, a differentiation is necessary, but theoretical results are very scarce (we
mention two exceptions later). In order to make progress on this topic our study provides
some general computational intuition. To the best of our knowledge, it is the first of its kind.

Brief Background on Dantzig-Wolfe Reformulation

We sketch the basics of DW reformulating an integer linear program (including the mixed-
integer case), mainly to introduce our notation and conventions. We consider

zIP = min cT x

s. t. aT
i x ≥ bi ∀i ∈ I

x ∈ Zn ,

(1)

where I denotes a finite index set, n ∈ Z>0, c, ai ∈ Qn, and bi ∈ Q for i ∈ I. We identify
constraints with their respective index i ∈ I. When we speak of relaxations, we always refer to
the linear programming relaxation, obtained by dropping the integrality requirement on the
variables. We denote the optimum of the relaxation of (1) by zLP . The DW reformulation
(“convexification”) of a subset I ′ ⊆ I of constraints amounts to (implicitly) additionally
require in (1) that x ∈ conv

{
x̃ ∈ Zn : aT

i x̃ ≥ bi ∀i ∈ I ′
}
. It is irrelevant here (but very well

understood) how this is technically achieved (see Vanderbeck [13] for details on Dantzig-Wolfe
reformulation and the relation to Lagrangean relaxation). This reformulation has the same
integer feasible solutions as (1), but the relaxation

zDW (I ′) = min cT x

s. t. aT
i x ≥ bi ∀i ∈ I \ I ′

x ∈ conv
{

x̃ ∈ Zn : aT
i x̃ ≥ bi ∀i ∈ I ′

}
x ∈ Rn

(2)

is potentially stronger than that of (1), i.e.,

zIP ≥ zDW (I ′) ≥ zLP ∀I ′ ⊆ I . (3)

This relation is a main reason for performing a DW reformulation in the first place. For
convenience we identify a DW reformulation of constraints I ′ ⊆ I with I ′ itself. We formally
repeat that both extreme cases zIP = zDW (I) and zLP = zDW (∅) are possible. Therefore,
the notion of strength of a DW reformulation must necessarily relate to I ′ [14]. Geoffrion [7]
gave as necessary condition for zDW (I ′)  zLP that conv

{
x̃ ∈ Zn : aT

i x̃ ≥ bi ∀i ∈ I ′
}
({

x̃ ∈ Rn : aT
i x̃ ≥ bi ∀i ∈ I ′

}
. The condition is not sufficient; in particular, the actual strength-

ening may depend on the objective function. For the stable set (and related) problems we
recently characterized DW reformulations I ′ ⊆ I for which zIP = zDW (I ′) or zLP = zDW (I ′)
independently of the objective function [14]. A generalization does not seem to be in reach
and nothing is known about what happens “in between.”

Our Approach

For each instance, taken from a set of small models of different problem classes, we compute
the dual bounds zDW (I ′) from all 2|I| DW reformulations I ′ ⊆ I and collect some statistics
about the respective DW reformulations. We then report these statistics for each problem
class. When we plot figures, this is usually only for one representative of each class, because
they look similar for the other problems of this class.
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2 Instances and Experimental Setup

In order to keep the task of evaluating all (exponentially many) DW reformulations of an
integer program manageable, we only consider very small models with up to 18 constraints.
We first consider instances of problems where DW reformulation classically applies well
(we call these models structured): bin packing (bpp), vertex coloring, capacitated p-median
(cpmp), single-source capacitated facility location (cflp), generalized assigment (gap), and
capacitated vehicle routing problems with time windows (vrp) problems. We used an instance
generator to create small bin packing problems [12] and created 3 vertex coloring instances on
connected graphs with 2 or 3 vertices (yielding integer programs with up to 15 constraints).
Furthermore, we created 2 instances for the capacitated vehicle routing problem with time
windows consisting of a single depot, 2 customers, and 2 vehicles (yielding mixed integer
programs with up to 18 constraints). For all other problems, we took instances from the
literature [4, 5, 8, 10, 11] and modified them to reduce the number of constraints. We chose
standard textbook formulations for all problems with as few constraints as possible (e.g.,
by using formulations with few but relatively weak coupling constraints). Additionally, we
consider very small and easy-to-solve instances from MIPLIB 3 [3], namely flugpl, mod008,
and p0033. Although the instances markshare1, markshare2, mas74, and mas76 have only
a small number of constraints, they turned out to be too hard to solve in preliminary
experiments. All our instances have a positive integrality gap, i.e., zLP < zIP .

For the experiments, we use a development version of the generic branch-price-and-cut
solver GCG [6], see www.or.rwth-aachen.de/gcg for the current released version 2.1.4. We
implemented a so-called detector that creates, for each instance, all possible DW reformula-
tions I ′ ⊆ I and solve their relaxations optimally by column generation to obtain zDW (I ′).
We turned off separation of cutting planes as well as the internal handling of problems with
integral optimum (this would lead to only integer dual bounds dzDW (I ′)e for I ′ ⊆ I). For
the structured models we also disabled presolving. The MIPLIB instances were presolved,
i.e., the number of constraints and variables can differ from the original instance.

The total computation time spend for optimally solving over one million relaxations by
column generation was approximately 100 hours. These numbers do not include the time
spent for creating the decompositions and evaluating the computations.

3 Number and Frequency of Distinct Dual Bounds

This section is motivated by hierarchies of relaxations which are, roughly speaking, finite
chains of (nested) stronger and stronger relaxations (of the same type), starting from the
linear programming relaxation and arriving at the convex hull of integer feasible solutions.
Several of these hierarchies are known, e.g., the Chvátal-Gomory procedure produces one.

Let I = 2I denote the powerset of I. Consider the partially ordered set P = (I,⊆)
consisting of all 2|I| DW reformulations and their partial order induced by set inclusion.
The empty set ∅ is the unique minimal element and I is the unique maximal element of P .
Every chain ∅ = I0 ⊆ I1 ⊆ · · · ⊆ Im = I in P obviously defines a hierarchy of relaxations
with zLP = zDW (I0) ≤ zDW (I1) ≤ · · · ≤ zDW (Im) = zIP , where the inequalities need not
be (all) strict. That is, a chain may induce fewer than |I|+ 1 dual bounds. We call a DW
reformulation I ′ minimal if there does not exist any I ′′ ( I ′ with zDW (I ′′) = zDW (I ′).

Our first experiment reveals for every given instance how many distinct dual bounds
actually occur and in what frequencies. In particular, what is the distribution of dual bounds
in [zLP , zIP ] and what can we learn about minimal DW reformulations?
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Table 1 For each (toy) instance, we state the type (binary, general integer, or mixed integer
variables); the number of constraints (nconss); the number of variables (nvars); the number of DW
reformulations (nrefs); the number of distinct dual bounds (ndbs); the number of minimal DW
reformulations (nmin); as well as the average (cavg), the minimum (cmin), and the maximum (cmax)
number of distinct dual bounds in a chain.

Instance type nconss nvars nrefs ndbs nmin cavg cmin cmax
bpp1 BP 12 42 4096 5 27 3.318 3.0 4.0
bpp2 BP 10 30 1024 5 18 3.375 3.0 4.0
bpp3 BP 14 56 16384 6 38 3.765 3.0 5.0
cflp1 BP 14 45 16384 49 66 5.283 4.0 7.0
cflp2 BP 14 44 16384 77 90 6.400 5.0 7.0
cflp3 BP 14 44 16384 83 86 6.367 5.0 7.0
coloring1 BP 15 12 32768 16 835 4.172 2.0 8.0
coloring2 BP 12 12 4096 7 75 2.399 2.0 4.0
coloring3 BP 6 6 64 4 8 1.800 1.0 3.0
cpmp1 BP 11 30 2048 42 46 5.733 5.0 9.0
cpmp2 BP 11 30 2048 46 52 5.597 5.0 9.0
cpmp3 BP 11 30 2048 31 32 4.481 4.0 6.0
gap1 BP 15 50 32768 26 44 3.122 2.0 6.0
gap2 BP 15 50 32768 28 67 3.016 3.0 7.0
gap3 BP 15 50 32768 40 56 4.441 3.0 9.0
vrp1 MIP 18 18 262144 20 3008 3.828 2.0 8.0
vrp2 MIP 18 18 262144 12 208 3.753 2.0 7.0
flugpl IP 12 14 4096 48 65 4.050 3.0 7.0
mod008 BP 6 319 64 51 51 5.517 4.0 6.0
p0033 BP 13 28 8192 9 9 3.183 2.0 4.0

3.1 Toy Instances

In Table 1, we list some statistics on the instances and their DW reformulations. The
number of distinct dual bounds (ndbs) is usually much smaller than the number of all DW
reformulations, i.e., many I ′ ⊆ I yield the same zDW (I ′). The only exception is MIPLIB
instance mod008 which has a much higher number of variables relative to |I|. Even more
interestingly, also the number of minimal DW reformulations is very small, often not much
larger than ndbs. This could hint at many chains in P with only a small number of distinct
dual bounds, i.e., with many non-minimal DW reformulations. The numbers cmin, cavg,
cmax give some distribution information about the number of distinct dual bounds in a
chain.

Figure 1 shows histograms of the number of distinct dual bounds which often occur
with the same frequencies (and often enough, these are powers of 2). This also supports
the existence of constraints that do not have an influence on the dual bound in most DW
reformulations. For example in the capacitated p-median instance cpmp1, there exist 5 set
partitioning constraints (forcing each location to be assigned to exactly one median) and a
cardinality constraint (forcing to choose exactly p locations as medians). In Section 4 we will
see that often these constraints do not improve the dual bound when added to the set of
convexified constraints, which explains why the frequency 26 = 64 occurs multiple times in
the histogram of the instance cpmp1 in Figure 1(c).
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Figure 1 Histogram for the number of DW reformulations with different dual bounds. On the
x-axis we see the (discrete) spectrum of potential dual bounds from weakest zLP to strongest zIP

and the y-axis displays the respective frequencies of dual bounds.

The histograms give the impression that weak(er) dual bounds are more frequent than
strong(er) ones. Therefore, we analyze how many “good” DW reformulations exist. We
normalize the dual bounds, which helps us to compare them across different models: We
define the integrality gap that was closed by DW reformulation I ′ ⊆ I as

gap_cl(I ′) := zDW (I ′)− zLP

zIP − zLP
. (4)

Note that gap_cl(I ′) = 0 ⇐⇒ zDW (I ′) = zLP and gap_cl(I ′) = 1 ⇐⇒ zDW (I ′) = zIP .
In Figure 2, we depict the gaps that were closed for all DW reformulations of a particular

instance. The plots for instances of different problems have some common features. There
are (many) more DW reformulations I ′ ⊆ I that close only a small amount of the gap than
there are DW reformulations with gap_cl(I ′) ≈ 1. This is particularly pronounced for bin
packing, vertex coloring, and vehicle routing instances for which a huge portion of DW
reformulations are weakest possible (for the considered objective function). Note that these
instances are highly symmetric; the experiments suggest that this results in many symmetric
DW reformulations yielding the same dual bound. This statement is endorsed by the fact
that instances of the capacitated p-median and the capacitated facility location problem,
which are more general, less symmetric variants of the bin packing problem, induce more
distinct dual bounds than the bin packing instances.

Nevertheless, we notice that most DW reformulations are “in between” the weakest
and strongest possible DW reformulations, i.e., for most subsets I ′ ⊆ I it holds that
zLP < zDW (I ′) < zIP . Finally, we look at the number of convexified constraints in Figure 2.
The plots illustrate that the pure number |I ′| is not a good indicator for the strength of the
DW reformulation: in the majority of the instances there exist weak DW reformulations with
a relatively large number of convexified constraints. Moreover, as the number of minimal
DW reformulations is usually not much larger than the number of distinct dual bounds, for
each “plateau” of the blue curve there are only few minimal DW reformulations, probably
with relatively few convexified constraints (see lowest brown line for each plateau).
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Figure 2 The x-axis shows for each instance all DW reformulations I ′ ⊆ I, sorted by dual bound
(in case of ties sorted by |I ′|). The gap closed (4) by each DW reformulation is shown on the y-axis.
The secondary y-axis displays the number of convexified constraints of each DW reformulation.

3.2 Extensions to larger Instances?

Our conjecture that |{zDW (I ′) : I ′ ⊆ I}| � 2|I| is impractical to verify on instances with
larger |I|. Unfortunately, there is little hope that we even obtain a statistical statement
from a random sampling of DW reformulations unless we have further information about the
structure of the model: the sample size would need to be too large.

The underlying statistics relates to the distinct elements problem, which in our context
reads as: Given ` randomly drawn DW reformulations (and the corresponding dual bounds)
from the set of all 2|I| DW reformulations, estimate the total number of distinct dual bounds
occurring among all DW reformulations. The minimum sample size ` needed to estimate
this number (with high probability) within a given additive error tolerance ∆ = c2|I| for any
small constant c is in Θ( 2|I|

|I| ) [15] which is not much smaller than Θ(2|I|).

4 The Influence of Individual Constraints on Dual Bounds

We have seen that the number of minimal DW reformulations is very small and the frequency
of distinct dual bounds is often (close to) a power of 2. This hints at constraints that do
not (or rarely) improve the dual bound when additionally convexified in particular DW
reformulations. This individual impact is analyzed next.
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We first introduce some notation. For each constraint i ∈ I, we investigate how the dual
bound zDW (I ′) changes for subsets I ′ ⊆ I with i /∈ I ′ if we add the constraint i to the set I ′

of convexified constraints, i.e., we compare zDW (I ′) and zDW (I ′ ∪ {i}). We define the gain
of a constraint i ∈ I when added to the set of convexified constraints I ′ ⊆ I with i /∈ I ′ as

gain(i, I ′) := zDW (I ′ ∪ {i})− zDW (I ′)
zIP − zLP

. (5)

The normalization to the integrality gap helps again to compare the gains of constraints
from different instances. Correspondingly, we define the average gain of constraint i ∈ I as

gain(i) :=
∑

I′⊆I:i/∈I′ gain(i, I ′)
|{I ′ ⊆ I : i /∈ I ′}|

. (6)

Let DW reformulation I ′ belong to level ` = 0, . . . , |I| if |I ′| = `. We want to analyze the
gain of a constraint when added to the set of convexified constraints of a DW reformulation
in a given level. We define the (average) gain of constraint i ∈ I in level ` = 0, . . . , |I| − 1 as

gain`(i) :=
∑

I′⊆I:|I′|=`,i/∈I′ gain(i, I ′)
|{I ′ ⊆ I : |I ′| = `, i /∈ I ′}|

. (7)

Similarly, the (average) gain of constraint i ∈ I up to level ` = 0, . . . , |I| − 1 is defined as

gain≤`(i) :=
∑

I′⊆I:|I′|≤`,i/∈I′ gain(i, I ′)
|{I ′ ⊆ I : |I ′| ≤ `, i /∈ I ′}|

. (8)

Obviously, all gains defined in (5)–(8) range in [0, 1]. We depict the distribution of gains
(defined in Equation (5)) for all constraints in Figure 3. As additional information, we include
the constraint types as defined in the MIPLIB [9]. Notice that the lines corresponding to
different constraints cross only occasionally. This can be interpreted as follows: Whenever
the highest gain of constraint i is higher than the highest gain of constraint i′, the overall
gain of constraint i is higher than the overall gain of constraint i′. Hence, the average gain
should give a sufficiently accurate view on which constraints have a significant effect on the
dual bounds when considering all DW reformulations. Moreover, we observed that for each
constraint i ∈ I the sum of (average) gains across all levels

∑m−1
`=0 gain`(i) behaves similarly

as the average gain gain(i), which is why we only depict the (average) gain per level including
their sum in Figure 4.

The difference in gain of constraints corresponding to different types of constraints is
remarkably huge, as can be seen in Figure 4. In particular, bin packing (BIN) and knapsack
(KNA) constraints, which are convexified in textbook DW reformulations, have a much larger
gain than the other types. This holds not only for the sum of (average) gains in each level,
but also for the individual gain in each level as well as the overall gain distribution.

Additionally, we observe that a large gain in low levels is a good indicator for a large gain
in higher levels, and hence, a good indicator for a large average gain as well. This correlation
becomes visible in Figure 5. The scale of the x-axis in Figure 5 is not uniform since we are
only interested in whether there is a correlation between the gain in level ` and the average
gain independently for each level ` at all. The correlation in the bin packing and vertex
coloring instances (not shown in Figure 5) is not as high as in the other instances: In several
low levels (the exact number depends on the instance) no constraint has positive gain. We
assume that this is due to the high symmetry in these instances and that in an optimal LP
solution not all bins/colors are used. Apart from this, it seems that the magnitude of the
gain in low levels predicts the average gain quite well, which is rather remarkable.
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Figure 3 For each constraint i ∈ I (a line of a particular color) the DW reformulations I ′ ⊆ I

(on the x-axis) are sorted by non-decreasing gain(i, I ′), which is shown on the y-axis. The legend
lists the constraint’s name and type according to the MIPLIB constraint types [9], separated by a
colon. The cardinality (CAR) constraints in vehicle routing problems are actually flow conservation
constraints (this is called “upgrading” in SCIP/GCG by negating variables).

4.1 Extensions to larger Instances from the MIPLIBs

Figure 5 suggests a correlation between the gain in low levels and the average gain. Since it
is intractable to compute the gains in larger instances even for levels 1 or 2, we focus on the
gain in level 0, i.e., on larger instances we compute gain0(i) for each constraint i ∈ I.

We investigate instances from MIPLIB 2003 and 2010 [1, 9] for which relaxations of DW
reformulations were already computed by column generation in [2]. On 12 out of these 38
instances (we excluded mine-166-5 because some DW reformulations failed to solve) there
exist constraints having positive gain0(i); Figure 6 depicts the number of constraints with
positive gain0(i) as well as the average gain0(i) for each constraint type on these 12 instances.

First of all, we note that set partitioning/packing/covering (PAR/PAC/COV), cardinality
(CAR), and invariant knapsack (IVK) constraints cannot have positive gain in level 0 due to
Geoffrion’s result [7], which can also be seen in Figure 6. For all other types that occur on the
MIPLIB instances there exist some constraints having positive gain in level 0. Furthermore,
bin packing (BIN) and knapsack (KNA) constraints often have positive, relatively large
gain in level 0 compared to other constraints. As in the toy instances, this suggests that
convexifying these constraints might give strong dual bounds.
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Figure 4 For each constraint (x-axis) the gain summed over all levels is displayed (y-axis). More
precisely, the gains of different levels are stacked by increasing level and depicted in different colors.

5 What we have learned and what lies ahead

Because of Geoffrion’s result [7] one formulates carefully that a DW reformulation potentially
gives a stronger dual bound than zLP . Figure 2 suggests that for most instances a random
DW reformulation will give some improvement over zLP . As the actual improvement depends
on the objective function, repeating our experiments with several (randomly drawn) objective
functions per instance should be interesting.

This is not to say that picking a DW reformulation at random will give one with a strong
dual bound; actually, Figure 2 shows that this is rather unlikely. This is particularly visible
for bin packing, but also for coloring and vehicle routing. It is fair to say that for bin packing
using “the correct” DW reformulation is crucial for obtaining a strong dual bound – and this
is precisely a reformulation that we would find in a textbook.

We started this experiment with the sense that there should be some sort of hierarchy
of DW reformulations (other than the powerset of I). This is strongly supported (much
stronger than we expected) by two experimental results we got: First, only a tiny fraction of
the possible 2|I| distinct dual bounds actually occurs, which is also true for the number of
minimal DW reformulation which is very small (we would love to see geometric/polyhedral
explanations for this). Second, individual (types of) constraints have considerably different
impacts on strengthening an existing DW reformulation. Some of them seem to have almost
no influence at all.
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(j) mod008: gain≤0 vs. gain
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Figure 5 For each constraint i ∈ I (colored dots), the gain≤`(i) in levels up to ` = 0, 1, 2 (x-axis)
is plotted against the average gain(i) (y-axis), suggesting a correlation. The colors corresponding to
the constraints are identical to the ones in Figure 3.
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(a) Relative number of constraints with positive
gain0(i) (y-axis); the secondary x-axis shows the
total number of each type.
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Figure 6 Constraint types (c.f. [9]) that occur in the 12 MIPLIB instances of our testset (from [2])
which contain constraints with positive gain0(i) (x-axis); in particular, BIN is bin packing, KNA is
knapsack, M01 is mixed binary, and GEN is general.

We conjecture that the poset of DW reformulations defined in Section 3 contains a (very)
sparse substructure that “represents” all DW reformulations for a given instance. A starting
point could consist of the set I∗ ⊆ 2I of minimal DW reformulations partially ordered by
set inclusion (remember that in our experiments |I∗| � 2|I|). This again gives a poset
P ∗ = (I∗,⊆) of height at most |I| (and by Dilworth’s theorem of width at least |I∗|/|I|),
but our experiments show that the height can actually be smaller, c.f. numbers cmin, cavg,
cmax in Table 1. Could studying the structure and properties of such a poset yield insights
into DW reformulations and maybe explain the special behavior of bin packing and coloring
instances? Even if we could characterize a meaningful substructure of P , would we be able
to (efficiently) compute it? Are we able to (efficiently) recognize that a DW reformulation is
minimal once we have optimally solved it? Even only answering this for particular problem
classes would be valuable. It is interesting in this context whether there exist pathological
instances (like the Klee-Minty cubes in linear programming) with 2|I| DW reformulations.
If so, one might seek output sensitive algorithms for computing e.g., P ∗ whose complexity
depends on the size of the output (here |P ∗|) to account for the cases (we observed) in which
the number of minimal DW reformulations is small.

Equipped with such questions we are optimistic that our experimental work spawns
mathematical, algorithmic, and computational questions that hopefully guide us to a better
insight into the nature of DW reformulations in general.
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Abstract
Feedback Vertex Set is a classic combinatorial optimization problem that asks for a minimum
set of vertices in a given graph whose deletion makes the graph acyclic. From the point of view
of parameterized algorithms and fixed-parameter tractability, Feedback Vertex Set is one of
the landmark problems: a long line of study resulted in multiple algorithmic approaches and deep
understanding of the combinatorics of the problem. Because of its central role in parameterized
complexity, the first edition of the Parameterized Algorithms and Computational Experiments
Challenge (PACE) in 2016 featured Feedback Vertex Set as the problem of choice in one of
its tracks. The results of PACE 2016 on one hand showed large discrepancy between performance
of different classic approaches to the problem, and on the other hand indicated a new approach
based on half-integral relaxations of the problem as probably the most efficient approach to the
problem. In this paper we provide an exhaustive experimental evaluation of fixed-parameter and
branching algorithms for Feedback Vertex Set.
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1 Introduction

The Feedback Vertex Set problem asks to delete from a given graph a minimum number
of vertices to make it acyclic. It is one of the classic graph optimization problems, appearing
already on Karp’s list of 21 NP-hard problems [24]. In this work, we are mostly focusing on
fixed-parameter algorithms for the problem, that is, exact (and thus exponential-time, as we
are dealing with an NP-hard problem) algorithms whose exponential blow-up in the running
time bound is confined by a proper parameterization. More formally, a fixed-parameter
algorithm on an instance of size n with parameter value k runs in time bounded by f(k) · nc

for some computable (usually exponential) function f and a constant c independent of k.
Feedback Vertex Set is one of the most-studied problems from the point of view

of parameterized algorithms. A long line of research [4, 15, 16, 29, 23, 12, 18, 9, 8, 3, 11]
lead to a very good understanding of the combinatorics of the problem, multiple known
algorithmic approaches, and a long “race” for the fastest parameterized algorithm under the
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parameterization of the solution size (i.e., the parameter k equals the size of the solution we
are looking for). Among many approaches, one can find the following:
1. A classic randomized algorithm of Becker et al. [3] with expected running time 4knO(1).

This algorithm is based on the following observation: after performing a set of simple
reductions that reduce the graph to minimum degree at least 3, at least half of the edges
of the graph are incident with solution vertices, so a random endpoint of an edge choosen
uniformly at random is in the solution with probability at least 1/4.

2. A line of research of branching algorithms based on iterative compression and an intricate
measure to bound the size of the branching tree [9, 8, 26], leading to a simple 3.62knO(1)-
time deterministic algorithm [26].
These algorithms solve a “disjoint” version of the problem where, given a set U ⊆ V (G)
such that G− U is a forest, one seeks for a solution disjoint with U of size at most k. A
branching algorithm picks a vertex v ∈ V (G) \ U and includes it in the solution (deletes
and decreases k by one) or moves to U . The crucial observation is that here, apart from
k, the number of connected components of G[U ] is a useful potential to measure the
progress of a branching algorithm: if the branching pivot v has many neighbors in U ,
then moving it to U decreases the number of connected components significantly.

3. A polynomial-time algorithm for Feedback Vertex Set in subcubic graphs [8] (see
also [26] for a simpler proof), used heavily in other approaches as a subroutine.
The algorithm build on a reduction from Feedback Vertex Set in cubic graphs to the
matroid matching problem in graphic matroids, which is polynomial-time solvable.

4. A Monte Carlo algorithm running in time 3knO(1) via the Cut&Count technique [11].
The Cut&Count technique is a generic framework for turning algorithms with running
time 2O(t log t)nO(1) for connectivity problems in graphs of treewidth bounded by t into
Monte-Carlo algorithms with running time bounds ctnO(1) by changing the “connectivity”
requirement into a modulo-2 counting requirement. For Feedback Vertex Set, the
base of the exponent has been optimized to c = 3, and has been proven to be optimal
under the Strong Exponential Time Hypothesis.

5. A surprisingly simple branching algorithm by Cao [7] with a running time bound 8knO(1).
Cao [7] shown that the following algorithm has running time bounded by 8knO(1): after
applying simple reduction rules, one either branch on maximum-degree vertex or, if the
maximum degree is at most 3, solve the instance in polynomial time.

6. A branching algorithm based on intricate half-integral relaxation due to Imanishi and
Iwata [19, 20] with running time bound 4kkO(1)n.
The work of Iwata, Wahlström, and Yoshida [21] showed a generic framework for branching
algorithms for various graph separation problems. In the case of Feedback Vertex
Set, [21] shows that the following local problem has a polynomial-time solvable half-
integral relaxation: given a root vertex s ∈ V (G), find a minimum-size set X ⊆ V (G)\{s}
such that the connected component of G −X that contains s is a tree. Imanishi and
Iwata [19, 20] showed a linear-time combinatorial algorithm that solves this half-integral
relaxation. The final algorithm follows the framework of [21]: it branches on vertices for
which the half-integral relaxation solution was undecided (i.e., gave it the non-integral
value of 1/2).

Another line of research concerns so-called polynomial kernels for the problem [6, 5, 30, 20].
Parameterized Algorithms and Computational Experiments challenge is an annual pro-

gramming challenge started in 2016 that aims to “investigate the applicability of algorithmic
ideas studied and developed in the subfields of multivariate, fine-grained, parameterized, or
fixed-parameter tractable algorithms”. With two successful editions so far [13, 14] and the
third one currently being conducted, PACE continues to bring together theory and practice
in parameterized algorithms community.
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The first edition of PACE in 2016 featured Feedback Vertex Set as the problem of
choice in Track B. The winning entry by Imanishi and Iwata, implementing the aforementioned
algorithm based on half-integral relaxation, turned out to outperform the second entry by
the second author of this work [28], based on the algorithm of Cao [7]. The winning margin
has been substantial: out of 130 test cases, the winning entry solved 84, while the second
entry solved 66.

These results indicated the branching algorithms based on half-integral relaxation of
the problem as potentially most efficient approach to Feedback Vertex Set in practice.
Furthermore, experimental results of Akiba and Iwata [2] showed big potential in a branching
algorithm based on the same principle for the Vertex Cover problem.

In the light of the above, we see the need to rigorously experimentally evaluate different
approaches to Feedback Vertex Set. While the results of PACE 2016 indicate algorithms
based on half-integral relaxation as potentially fastest, a lot of differences may come from
the use of different preprocessing routines, different choice of lower bounding or prunning
techniques, or even simply different data structures handling basic graph operations.1

In this work, we offer such a comparison. We implement a number of branching strategies
mentioned above. Our implementations use the same data structures for handling graphs,
the same implementations of basic graph operations, the same basic reduction rules such
as suppressing degree-2 vertices, and the same branching framework. Most of the tested
approaches differ only at a small fraction of code: they usually differ by the choice of the
branching pivot, and some use one or more approach-specific reduction rules.

In our experiments, we follow up the set up of PACE 2016: we take their 230 instances
(100 public and 130 hidden, on which evaluation took place) as our benchmark set, allow
each algorithm to run for 30 minutes on each test instance.

The paper is organized as follows. In Section 2 we discuss the studied approaches and
some technical details of the implementations. Section 3 discusses the setup of the experiment.
Section 4 presents results, while Section 5 concludes the paper.

2 Studied algorithms

Most of the known branching algorithm for Feedback Vertex Set, in particular all
algorithms studied in our work, follow the following general framework.

Every instance to be solved by a recursive branching algorithm constists of a multigraph
G, a set U ⊆ V (G) of undeletable vertices and allowed budget k for solution size. The goal is
to find a set X ⊆ V (G) \ U of size at most k such that G−X is a forest. Each branching
step consists of picking a vertex v ∈ V (G) \ U and branching into two cases: either v gets
picked to a solution (and the algorithm recurses on the instance (G−{v}, U, k−1)) or moved
to set U (and the algorithm recurses on the instance (G, U ∪ {v}, k)).

The intuition of the progress of the algorithm is as follows. In the first branch, the budget
k gets decreased. For the second branch, note that the algorithm can safely terminate for
instances with G[U ] not being acyclic. Thus, if the branching pivot v has d neighbors in U ,

1 A good example here is as follows. In Feedback Vertex Set, it is natural to keep the graph in the
form of adjacency lists, as the considered graphs are usually of constant average degree. However, given
an edge uv, it is not clear whether the vertex u in its adjacency list should only store the vertex v, or
also a pointer to the position where v keeps u in its adjacency list. On one hand, such pointers greatly
simplify the operations of deleting a vertex or contracting an edge. On the other hand, they effectively
double the size of the graph data structure, increasing the cost of copying the graph in the branching
step.
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then the number of connected components of G[U ∪ {v}] decreases by (d− 1) as compared
to G[U ].

Between branching step, the algorithm is allowed to perform a number of reduction
(preprocessing) steps. In the literature, a number of simple reduction steps are known that
are performed by all our algorithms:
1. If k gets negative or G[U ] is not acyclic, stop.
2. Remove all vertices of degree at most 1.
3. If two vertices are connected by more than 2 parallel edges, reduce their multiplicity to 2.
4. If there exists a vertex v that has a self-loop, or there exists a single connected component

D of G[U ] more than one edge incident with v and a vertex of D (i.e., there exists a cycle
C in G with v being the only vertex of V (C) \U), then greedily include it in the solution
(i.e., delete it and decrease k by one).

5. Suppress vertices of degree 2. That is, if a vertex v is of degree 2 with incident edges vu

and vw is present, delete v and replace it with an edge uw.
6. If there exists a vertex v with two neighbors u and w, such that vu is a single edge and

vw is a double edge, greedily include w in the solution.
For efficiency, the above reduction rules are implemented in the form of a queue of vertices
to reduce: when the number of distinct neighbors of a vertex drop to two or less, or a vertex
gets a self-loop, it is enqueued, and preprocessing routines start by clearing up the queue.

Other preprocessing steps used by some of our algorithms are:
Split into connected components. If the instance becomes disconnected, solve each connec-

ted component independently.
Solving subcubic instances. As proven by [8], if every vertex v ∈ V (G) \ U is of degree at

most three, then the corresponding instance is polynomial-time solvable. Kociumaka and
Pilipczuk [26] provided a simpler proof of this result via a reduction to the matroid parity
problem in graphic matroids, which proceeds as follows. First, apply the known reduction
rules that reduce the problem to the case when every v ∈ V (G) \ U is of degree exactly
three. Second, subdivide every edge uv ∈ E(G− U) with a new vertex xuv ∈ U , so that
V (G) \U is an independent set. Third, for every v ∈ V (G) \U , pick two out of the three
edges incident to v as a pair Pv. Let Q = E(G) \

⋃
v∈V (G)\U Pv be the remaining edges;

note that every v ∈ V (G) \ U is of degree exactly 1 in the graph (V (G), Q). Then, it is
easy to observe that the Feedback Vertex Set problem is equivalent to picking a set
Y ⊆ V (G) \ U of maximum cardinality such that (V (G), Q ∪

⋃
v∈Y Pv) is a forest. This

condition is the same as requiring Y to me a maximum matching in the graphic matroid
of the graph G/Q (G with edges of Q contracted) with pairs (Pv)v∈V (G)\U .
In some of our algorithms, we use the approach of [26] to solve such instances. As
the underlying solver to the matroid matching problem, we use the augmenting path
algorithm of Gabow and Stallmann [17].

Solution lower bound. Consider an instance (G, U, k) and let v1, v2, . . . be the vertices of
V (G) \ U in the nonincreasing order of degrees in G. If (G, U, k) admits a solution X

of size j, then G−X has at least |E(G)| −
∑j

i=1 degG(vi) edges. On the other hand, if
G−X is a forest, it has less than |V (G)| − j edges. Consequently, we can safely stop if
for all 0 ≤ j ≤ k we have that

|E(G)| −
j∑

i=1
degG(vi) ≥ |V (G)| − j.

The above prunning strategy has been used in the entry of Imanishi and Iwata [19].
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Unless otherwise noted, all our implementations split instances into connected components.
We also compare a number of selected approaches without this preprocessing step to see its
impact on performance.

The algorithm of Cao [7] uses all aforementioned simple reduction rules as well as the
solver of subcubic instances. On a branching step, it simply chooses the vertex of highest
degree. As shown by Cao, such an algorithm has running time bound 8knO(1). We also test
a variant of the algorithm of Cao that first branches on vertices incident with double edges, a
variant that does not use the subcubic instance solver, and a variant that prunes the search
tree via the aforementioned lower bound.

2.1 Approximation and iterative compression
The algorithms of [9, 8, 26] operate in the framework of iterative compression. That is, their
central subroutine solves a seemingly simpler problem, where additionally a slightly too large
solution Y is given, and the algorithm first branches on the vertices of Y (putting each y ∈ Y

into the solution or into set U). Since at the beginning G− Y is a forest, and every vertex
of Y is either deleted or put into U , we obtain the property that G − U is a forest. This
greatly helps in the analysis.

In the literature, the set Y is traditionally taken from the iterative compression step. One
picks an order V (G) = {v1, v2, . . . , vn} and solves iteratively Feedback Vertex Set on
graphs Gi = G[{v1, v2, . . . , vi}]. Given a solution Xi−1 to Gi−1, one can set Y = Xi−1 ∪{vi}
for Gi.

However, such an approach leads to multiple invocation of the same algorithm, and a
substantial multiplicative overhead in the running time bound. In our algorithms, we instead
find Y via a simple heuristic: reduce the graph via simple reductions as long as possible and,
when impossible, delete the vertex of highest degree. In Section 4 we discuss the performance
of this heuristic on our test data.

Our branching framework keeps a queue of branching hints and, if nonempty, the
algorithm always branches on a vertex from the queue. For algorithms based on iterative
compression, the queue is initiated by an approximate solution found by our heuristic. This
corresponds to passing the set Y to the algorithms based on iterative compression, but allows
to reduce some of the vertices of the set Y by reductions after a number of branching steps.
If an algorithm does not use iterative compression, the queue is empty through the entire
run of the algorithm.

The algorithm of [9] implements the iterative compression framework and branches on a
vertex of V (G) \ U that is incident to maximum number of edges leading to U . As shown
in [9], such an algorithm has 5knO(1) time bound guarantee.

The algorithm of [26] is arguably a simplification of the arguments of [8], so we implement
only the first one. It modifies the algorithm of [9] in the following way:

It leaves alone vertices v ∈ V (G) \ U that are of degree 3 and all their incident edges
lead to U (such vertices are called henceforth tents). The crux is that if every vertex
v ∈ V (G) \U is a tent, then we can apply the polynomial-time algorithm of [8, 26] to the
instance. In other words, tents form a “polynomial-time solvable” part of the instance.
Given a vertex v ∈ V (G) \ U of degree 3 with exactly one neighbor u in V (G) \ U (and
other 2 neighbors in U), it proceeds as follows:

subdivide the edge uv with a new vertex w ∈ U ; note that this does not change the
set of feasible solutions to the Feedback Vertex Set problem;
marks w irreducible for the reduction suppressing degree-2 vertices.
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Note that this operation turns v into a tent, while reducing the number of vertices of
V (G) \ U that are not tents.

It applies the solver for subcubic instances if every vertex of V (G) \ U is a tent.
As shown in [26], such an algorithm has 3.62knO(1) time bound guarantee.

Inspired by the methods of choice of branching pivots of the algorithms [9, 8, 26], we also
test a variant of Cao’s algorithm where the choice of the branching pivot is as in [9]: vertex
with maximum number of neighbors in U (but, contrary to [9], no iterative compression).

Additionally, we check how much the algorithms can be sped up by adding prunning
via the aforementioned lower bound and if the Cao’s algorithm can benefit from the use of
iterative compression.

2.2 Branching based on half-integral relaxation

Iwata, Wahlström, and Yoshida showed a generic approach to numerous transversal problems
via half-integral relaxations [21]. They are all based on the following principle: a half-integral
relaxation of a variant of the problem is defined and shown to be polynomial-time solvable.
Furthermore, the solution to the half-integral relaxation has some persistency property: it
either indicates some greedy choice for the integral problem, or indicates a good branching
pivot. In this approach, the time needed to find a solution of the half-integral relaxation is
critical.

The algorithms of [21] run in linear time for edge deletion problems, but unfortunately
for vertex-deletion problems the subroutine that finds the half-integral relaxation requires
solving linear programs. The main contribution of Iwata [20] (implemented in the PACE 2016
entry by Iminishi and Iwata [19]) is a combinatorial linear-time solver for the half-integral
relaxation in the special case of Feedback Vertex Set. We reimplement this solver in our
branching framework.

Iwata [20] also observed that the half-integral relaxation can be used to find a polynomial
kernel for the problem, improving the previous seminal kernel of Thomassé [30]. Apart
from the reduction rules mentioned before, this kernel employs another involved reduction
rule, applicable on vertices of degree more than 2k. All our implementations based on a
half-integral relaxation implement this preprocessing step as well.

The half-integral relaxation of [21, 20] does not solve Feedback Vertex Set directly, but
rather given an undeletable vertex u ∈ U , tries to separate an acyclic connected component
(i.e., a tree) containing u from the rest of the graph. On high level, the branching strategy
of the algorithm is as follows. If U = ∅, we branch on any vertex; we choose one of highest
degree here for efficiency. Otherwise, we use a vertex u ∈ U as a root for the half-integral
relaxation. The persistence properties of the relaxation ensure that we can perform a greedy
step unless the relaxation put values 0.5 on all neighbors of u. If this is the case, we branch
on a neighbor of u; we choose highest-degree neighbor here for efficiency. Note that once a
tree component with u gets separated, simple reduction rules delete it from the graph.

Since the kernelization routine of [20] is computationally expensive, it is not obvious
if one should apply it at every step. We experiment with two variants: when we run the
kernelization step at every step, or only at steps with U = ∅. Furthermore, we also check
how much prunning with the lower bound heuristic or solver of subcubic instances helps.
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Table 1 Comparison of the size of the approximate and exact solution found on 127 instances.

difference approximation minus optimum 0 1 2 >2 > 10% · optimum
number of instances 89 30 4 4 5

3 Experiment setup

3.1 Hardware and code

The experiments have been performed on a cluster of 16 computers at the Institute of
Informatics, University of Warsaw. Each machine was equipped with Intel Xeon E3-1240v6
3.70GHz processor and 16 GB RAM. All machines shared the same NFS drive. Since the
size of the inputs and outputs to the programs is small, the network communication was
negligible during the process.

The code has been writen in C++ and is available at [25] or at project’s webpage [1].

3.2 Test cases

As discussed in the introduction, we repeat the setup of the PACE 2016 challenge [13]. At
PACE 2016, the organizers gathered 230 graphs from different sources [27]. A subset of 100
of them has been made public prior to the competition deadline, and the final evaluation has
been made on the hidden 130 instances. We run every tested algorithm on each of the 230
instances with 30 minutes timeout.

Our of the test instances, we gathered two subsets to compare actual running times of
the algorithm. The first set, A, consists of test cases solved by all algorithms, but with
substantial running time of some of them. The second set, B, is defined similarly, but with
regards only to the algorithms that use prunning via the lower bound. More precisely, set A

consists of the following 14 tests:
hidden_001 hidden_007 hidden_012 hidden_056 hidden_065 hidden_083 hidden_099
hidden_106 public_011 public_014 public_037 public_069 public_076 public_086

The set B consists of the following 7 tests:
hidden_022 hidden_041 hidden_068 hidden_088 public_035 public_066 public_067

We also gather sizes of approximate solution found by our heuristic and compare it with the
optimal size found by the algorithm.

4 Results

A full table with running times of each program at each test can be found at project’s
website [1].

4.1 Performance of the approximation heuristic

We compared the performance of the approximation heuristic discussed in Section 2.1 (i.e.,
greedily take the largest-degree vertex after applying the simple reduction rules) with the
size of the optimum solution that was known to us on 127 instances. The results are in
Table 1. On only 8 instances, the approximate solution was more than one vertex larger
than the optimum one. Consequently, the approximate solution can serve well as the basis
for iterative compression.
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Table 2 Comparison of different algorithms. The first column indicates the base of the algorithm:
Cao’s [7], CFLLV for Chen et al. [9], KP for Kociumaka and Pilipczuk [26], and II for Imanishi
and Iwata [19, 20]. II/kernel stands for the algorithm of [19, 20] that runs the kernelization step
more often, namely at every branching step. Cao/double stands for the algorithm of [7] that first
branches on double edges. Cao/undel stands for the algorithm of [7] that chooses branching pivot
with regards to maximum degree to undeletable vertices. In the optimizations columns, CC stands
for splitting into connected components, deg3 for the use of solver of subcubic instances, LB for the
use of prunning with the lower bound, and IC stands for iterative compression.

algorithm optimizations solved instances total time (MM:SS.ms)
CC deg3 LB IC all public hidden set A set B

Cao + 100 48 52 35:17.21 -
CFLLV + 91 44 47 35:16.06 -
KP + + 101 49 52 36:22.48 -
Cao + + 101 48 53 37:31.83 -
CFLLV + + 91 44 47 31:23.63 -
KP + + + 101 49 52 32:00.49 -
Cao + 91 43 48 38:00.78 -
II + 92 46 46 34:51.17 -
II/kernel + 90 45 45 75:11.16 -
Cao + + + 123 62 61 0:19.28 10:38.88
Cao/double + + + 122 62 60 3:22.52 21:31.54
Cao/undel + + + 118 58 60 0:35.67 8:39.05
Cao + + + + 123 62 61 0:19.99 10:37.88
Cao/double + + + + 122 62 60 3:13.71 14:31.66
Cao/undel + + + + 118 58 60 0:36.88 8:12.80
CFLLV + + + 117 57 60 0:37.61 8:12.88
KP + + + + 118 58 60 0:38.95 8:28.46
Cao + + 122 61 61 0:22.94 10:28.32
II + + 117 58 59 1:36.79 25:31.95
II + + + 118 59 59 1:37.08 25:33.76
II/kernel + + 109 55 54 7:24.42 -

4.2 Comparison

We have run 21 different algorithms on the whole test data. A CSV file with full results is
available at the project’s webpage [1]. Table 2 contains aggregated values: number of solved
test instances within the time limit (30 minutes per instance) and the total running time on
sets A and B. Please see the caption of Table 2 for description of the notation used in the
table.

The first nine algorithms do not use prunning via the lower bounding technique, and
the first three do not use splitting into connected components. They are mostly meant to
compare basic approaches.

Without the lower bound prunning, the best approaches are Cao’s [7] and Kociumaka-
Pilipczuk [26], and they seem to be rather incomparable. The other algorithm based on
iterative compression of Chen et al. [9] is clearly outperformed by the other two, and the
same holds for the branching algorithm based on half-integral relaxation [19, 20].

The first three rows differ from rows 4-6 by the usage of splitting into connected com-
ponents. They show that the effect of this improvement is small, and even hurt a bit Cao’s
algorithm [7].
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The 7th row treats Cao’s algorithm [7] without the solver of the subcubic instances. It
indicates that this solver is essential for the performance of Cao’s algorithm.

The 9th row treats the Imanishi-Iwata algorithm [19, 20] with more often application of
the kernelization step, namely at every branching step (not only at the ones with U = ∅). It
shows that the step is too expensive to execute it that often.

Let us now discuss the algorithms with the lower bound prunning step. First, the results
show that the prunning step greatly improves performance for all algorithms.

With regards to the variants of Cao’s algorithm [7], the results show that any mutation of
the branching pivot rule here is undesirable. Also, adding the iterative compression step does
not seem to have any particular impact on the performace. Interestingly, the negative effect
of dropping the solver of the subcubic instances mostly disapper if one adds the prunning
step.

For the branching algorithm based on the half-integral relaxation [19, 20], the last three
rows of Table 2 again confirm the corollary that more often application of the kernelization
step is undesirable. There is little difference with addition of the solver of subcubic instances
(the main difference comes from the fact that the test set contains one huge cubic graph,
public_84, which is not amenable to any branching technique we tested).

Finally, in our experiments the best variant of Cao’s algorithm [7] with the prunning
slightly outperforms the best variant of the branching algorithm based on half-integral
relaxations [19, 20]. However, the difference (5 tests more and roughly 3× speed-up on sets
A and B) is not big enough to decisively conjecture its advantage.

First, it is possible that a 3× speed-up can be gained by low-level optimizations of the
solver of the half-integral relaxations. Arguably, Cao’s algorithm [7] is much simpler and
thus easier to optimize. Second, it may be also an artifact of the chosen test data: there are
5 tests in the data set that were solved by the penultimate algorithm in Table 2, but not by
the 10th (and 10 tests vice-versa). That is, there are types of instances solved significantly
faster by one of the approaches but not by another.

We conclude with a remark about comparison with PACE’16 results [13], where the
entry of Imanishi and Iwata [19] solved 84 hidden instances while the entry of the second
author [28], based on Cao’s algorithm [7], solved 66. While this data seemingly stands
in contradiction with the results in Table 2, one should note that the two entries differ
significantly in other internals. Most importantly, the first entry used prunning with the
lower bound, while the second one did not. Other difference includes: removal of bridges
in the first entry vs splitting into 2-connected components in the second, and the use of
bounded treewidth subroutine in the second entry. In other words, our results indicate that
the big difference in the performance of the first two entries at PACE 2016 were mainly
caused by the difference in preprocessing routines and prunning heuristics (and possibly
low-level optimizations) rather than in the underlying base branching algorithm.

5 Conclusions

We have conducted a thorough experimental evaluation of various parameterized algorithms
for the Feedback Vertex Set problem, following the setup of Parameterized Algorithms
and Computational Experiments Challenge from 2016 [13]. Our results does not confirm
greater advantage of the approach based on half-integral relaxations that was suggested
by PACE’16 results, but rather suggest that lower bounding techniques and low-level
optimizations were decisive at PACE’16.
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On the other hand, the approach via half-integral relaxation turned out to be almost on
par with the best variant of Cao’s algorithm [7]. This still indicates big potential in this
approach, in particular in the light of the recent (theoretical) generalization of this approach
to other problems [22]. In particular, it would be interesting to see an experimental evaluation
of parameterized algorithms for Multiway Cut with the comparison of the approach of [22]
with the more classic ones via so-called important separators (see Chapter 8 of [10]). Other
interesting problem to study is Odd Cycle Transversal and its edge-deletion variant
Edge Bipartization, where again both classic and half-integral relaxation-based approaches
are known.
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Abstract
In the present paper, we propose an efficient local search for the minimum independent domin-
ating set problem. We consider a local search that uses k-swap as the neighborhood operation.
Given a feasible solution S, it is the operation of obtaining another feasible solution by dropping
exactly k vertices from S and then by adding any number of vertices to it. We show that, when
k = 2, (resp., k = 3 and a given solution is minimal with respect to 2-swap), we can find an
improved solution in the neighborhood or conclude that no such solution exists in O(n∆) (resp.,
O(n∆3)) time, where n denotes the number of vertices and ∆ denotes the maximum degree. We
develop a metaheuristic algorithm that repeats the proposed local search and the plateau search
iteratively, where the plateau search examines solutions of the same size as the current solution
that are obtainable by exchanging a solution vertex and a non-solution vertex. The algorithm
is so effective that, among 80 DIMACS graphs, it updates the best-known solution size for five
graphs and performs as well as existing methods for the remaining graphs.
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Supplement Material The source code of the proposed algorithm is written in C++ and available
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1 Introduction

Let G = (V,E) be a graph such that V is the vertex set and E is the edge set. Let n = |V |
and m = |E|. A vertex subset S (S ⊆ V ) is independent if no two vertices in S are adjacent,
and dominating if every vertex in V \ S is adjacent to at least one vertex in S. Given a
graph, the minimum independent dominating set (MinIDS) problem asks for a smallest
vertex subset that is dominating as well as independent. The MinIDS problem has many
practical applications in data communication and networks [13].

There is much literature on the MinIDS problem in the field of discrete mathematics [8].
The problem is NP-hard [6] and also hard even to approximate; there is no constant ε > 0
such that the problem can be approximated within a factor of n1−ε in polynomial time,
unless P=NP [11].

For algorithmic perspective, Liu and Song [15] and Bourgeois et al. [4] proposed exact
algorithms with polynomial space. The running times of Liu and Song’s algorithms are
bounded by O∗(20.465n) and O∗(20.620n), and the running time of Bourgeois et al.’s algorithm
is bounded by O∗(20.417n), where O∗(·) is introduced to ignore polynomial factors. Laforest
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and Phan [14] proposed an exact algorithm based on clique partition, and made empirical
comparison with one of the Liu and Song’s algorithms, in terms of the computation time.
Davidson et al. [5] proposed an integer linear optimization model for the weighted version
of the MinIDS problem (i.e., weights are given to edges as well as vertices, and the weight
of an edge vx is counted as cost if the edge vx is used to assign a non-solution vertex v to
a solution vertex x; every non-solution vertex v is automatically assigned to an adjacent
solution vertex x such that the weight of vx is the minimum) and performed experimental
validation for random graphs. Recently, Wang et al. [20] proposed a tabu-search based
memetic algorithm and Wang et al. [21] proposed a metaheuristic algorithm based on
GRASP (greedy randomized adaptive search procedure). They showed their effectiveness on
DIMACS instances, in comparison with CPLEX12.6 and LocalSolver5.5.

A vertex subset S is an IDS iff it is a maximal independent set with respect to set-
inclusion [2]. Then one can readily see that the MinIDS problem is equivalent to the
maximum minimal vertex cover (MMVC) problem and the minimum maximal clique problem.
Zehavi [22] studied the MMVC problem, which has applications to wireless ad hoc networks,
from the viewpoint of fixed-parameter-tractability.

For a combinatorially hard problem like the MinIDS problem, it is practically meaningful
to develop a heuristic algorithm to obtain a nearly-optimal solution in reasonable time. In
the present paper, we propose an efficient local search for the MinIDS problem. By the
term “efficient”, we mean that the proposed local search has a better time bound than one
naïvely implemented. The local search can serve as a key tool of local improvement in a
metaheuristic algorithm, or can be used in an initial solution generator for an exact algorithm.
We may also expect that it is extended to the weighted version of the MinIDS problem in
the future work.

Our strategy is to search for a smallest maximal independent set. Hereafter, we may call
a maximal independent set simply a solution. In the proposed local search, we use k-swap for
the neighborhood operation. Given a solution S, k-swap refers to the operation of obtaining
another solution by dropping exactly k vertices from S and then by adding any number of
vertices to it. The k-neighborhood of S is the set of all solutions that can be obtained by
performing k-swap on S. We call S k-minimal if its k-neighborhood contains no S′ such that
|S′| < |S|.

To speed up the local search, one should search the neighborhood for an improved solution
as efficiently as possible. For this, we propose k-neighborhood search algorithms for k = 2
and 3. When k = 2 (resp., k = 3 and a given solution is 2-minimal), the algorithm finds an
improved solution or decides that no such solution exists in O(n∆) (resp., O(n∆3)) time,
where ∆ denotes the maximum degree in the input graph.

Furthermore, we develop a metaheuristic algorithm named ILPS (Iterated Local & Plateau
Search) that repeats the proposed local search and the plateau search iteratively. ILPS is so
effective that, among 80 DIMACS graphs, it updates the best-known solution size for five
graphs and performs as well as existing methods for the remaining graphs.

The paper is organized as follows. Making preparations in Section 2, we present k-
neighborhood search algorithms for k = 2 and 3 in Section 3 and describe ILPS in Section 4.
We show computational results in Section 5 and then give concluding remark in Section 6.
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2 Preliminaries

2.1 Notation and Terminologies
For a vertex v ∈ V , we denote by deg(v) the degree of v, and by N(v) the set of neighbors
of v, i.e., N(v) = {u | vu ∈ E}. For S ⊆ V , we define N(S) = (

⋃
v∈S N(v)) \ S. We denote

by G[S] the subgraph induced by S. The S is called a k-subset if |S| = k.
Suppose that S is an independent set. The tightness of v /∈ S is the number of neighbors

of v that belong to S, i.e., |N(v)∩S|. We call the v t-tight if its tightness is t. In particular, a
0-tight vertex is called free. We denote by Tt the set of t-tight vertices. Then V is partitioned
into V = S ∪ T0 ∪ · · · ∪ Tn−1, where Tt may be empty. Let T≥t denote the set of vertices
that have the tightness no less than t, that is, T≥t = Tt ∪ Tt+1 ∪ · · · ∪ Tn−1.

An independent set S is a solution (i.e., a maximal independent set) iff T0 = ∅. We call
x ∈ S a solution vertex and v /∈ S a non-solution vertex. When a solution vertex x ∈ S and
a t-tight vertex v /∈ S are adjacent, x is a solution neighbor of v, or equivalently, v is a t-tight
neighbor of x.

A k-swap on a solution S is the operation of obtaining another solution (S \D) ∪A such
that D is a k-subset of S and that A is a non-empty subset of V \ S. We call D a dropped
subset and A an added subset. The k-neighborhood of S is the set of all solutions obtained
by performing a k-swap on S. A solution S is k-minimal if the k-neighborhood contains no
improved solution S′ such that |S′| < |S|. Note that every solution is 1-minimal.

If a k-subset D is dropped from S, then trivially, the k solution vertices in D become
free, and some non-solution vertices may also become free. Observe that a non-solution
vertex becomes free if the solution neighbors are completely contained in D. We denote
by F (D) the set of such vertices and it is defined as F (D) = {v ∈ V \ S | N(v) ∩ S ⊆ D}.
Clearly the added subset A should be a maximal independent set in G[D ∪ F (D)]. We have
F (D) ⊆ N(D), and the tightness of any vertex in F (D) is at most k (at the time before
dropping D from S).

2.2 Data Structure
We store the input graph by means of the typical adjacency list. We maintain a solution
based on the data structure that Andrade et al. [1] invented for the maximum independent
set problem. For the current solution S, we have an ordering π : V → {1, . . . , n} on all
vertices in V such that;

π(x) < π(v) whenever x ∈ S and v /∈ S;
π(v) < π(v′) whenever v ∈ T0 and v′ ∈ T≥1;
π(v′) < π(v′′) whenever v′ ∈ T1 and v′′ ∈ T≥2;
π(v′′) < π(v′′′) whenever v′′ ∈ T2 and v′′′ ∈ T≥3.

Note that the ordering is partitioned into five sections; S, T0, T1, T2 and T≥3. In each section,
the vertices are arranged arbitrarily. We also maintain the number of vertices in each section
and the tightness τ(v) for every non-solution vertex v /∈ S.

Let us describe the time complexities of some elementary operations. We can scan each
vertex section in linear time. We can pick up a free vertex (if exists) in O(1) time. We
can drop (resp., add) a vertex v from (resp., to) the solution in O(deg(v)) time. See [1] for
details.

Before closing this preparatory section, we mention the time complexities of two essential
operations.

I Proposition 1. Let D be a k-subset of S. We can list all vertices in F (D) in O(k∆) time.
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Proof. We let every v ∈ V have an integral counter, which we denote by c(v). It suffices to
scan vertices in N(D) twice. In the first scan, we initialize the counter value as c(u) ← 0
for every neighbor u ∈ N(x) of every solution vertex x ∈ D. In the second, we increase the
counter of u by one (i.e., c(u)← c(u) + 1) when u is searched in the adjacency list of x ∈ D.
Then, if c(u) = τ(u) holds, we output u as a member of F (D) since the equality represents
that every solution neighbor of u is contained in D. Obviously the time bound is O(k∆). J

I Proposition 2. Let D be a k-subset of S. For any non-solution vertex v ∈ F (D), we can
decide whether v is adjacent to all vertices in F (D) \ {v} in O(k∆) time.

Proof. We use the algorithm of Proposition 1. As preprocessing of the algorithm, we set
the counter c(u) of each u ∈ N(v) to 0, i.e., c(u)← 0, which can be done in O(deg(v)) time.
After we acquire F (D) by running the algorithm of Proposition 1, we can see if v is adjacent
to all other vertices in F (D) in O(deg(v)) time by counting the number of vertices u ∈ N(v)
such that τ(u) ∈ {1, . . . , k} and c(u) = τ(u). If the number equals to (resp., does not equal
to) |F (D)| − 1, then we can conclude that it is true (resp., false). J

3 Local Search

Assume that, for some k ≥ 2, a given solution S is k′-minimal for every k′ ∈ {1, . . . , k − 1}.
Such k always exists, e.g., k = 2. In this section, we consider how we find an improved
solution in the k-neighborhood of S or conclude that S is k-minimal efficiently.

Let us describe how time-consuming naïve implementation is. In naïve implementation,
we search all k-subsets of S as candidates of the dropped subset D, where the number of
them is O(nk). Furthermore, for each D, there are O(nk−1) candidates of the added subset
A. The number of possible pairs (D,A) is up to O(n2k−1).

In the proposed neighborhood search algorithm, we do not search dropped subsets but
added subsets; we generate a dropped subset from each added subset. When k ∈ {2, 3}, the
added subsets can be searched more efficiently than the dropped subsets. This search strategy
stems from Proposition 3, a necessary condition of a k-subset D that the improvement is
possible by a k-swap that drops D. We introduce the condition in Section 3.1.

Then in Section 3.2 (resp., 3.3), we present a k-neighborhood search algorithm that finds
an improved solution or decides that no such solution exists for k = 2 (resp., 3), which runs
in O(n∆) (resp., O(n∆3)) time.

3.1 A Necessary Condition for Improvement
LetD be a k-subset of S. If there is a subset A ⊆ F (D) such that A is maximal independent in
G[D∪F (D)] and |A| < |D|, then we have an improved solution (S \D)∪A. The connectivity
of G[D∪F (D)] is necessary for the existence of such A, as stated in the following proposition.

I Proposition 3. Suppose that a solution S is k′-minimal for every k′ ∈ {1, . . . , k − 1} for
some integer k ≥ 2. Let D be a k-subset of S. There is a maximal independent set A in
G[D ∪ F (D)] such that A ⊆ F (D) and |A| < |D| only when the subgraph is connected.

Proof. Suppose that G[D ∪ F (D)] is not connected. Let q be the number of connected
components and D(p) ∪ F (p)(D) be the subset of vertices in the p-th component (q ≥ 2,
p = 1, . . . , q, D(p) ⊆ D, F (p)(D) ⊆ F (D)). Each D(p) is not empty since otherwise there
would be an isolated vertex in F (p)(D). It is a free vertex with respect to S, which contradicts
that S is a solution. Then we have 1 ≤ |D(p)| < k.
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The maximal independent set A is a subset of F (D). We partition A into A = A(1)∪· · ·∪
A(q), where A(p) = A ∩ F (p)(D). Each A(p) is maximal independent for the p-th component.
As |A| < |D|, |A(p)| < |D(p)| holds for some p. Then we can construct an improved solution
(S \D(p)) ∪A(p), which contradicts the k′-minimality of S. J

3.2 2-Neighborhood Search
Applying Proposition 3 to the case of k = 2, we have the following proposition.

I Proposition 4. Let D be a 2-subset of S. There is a non-solution vertex v in F (D) such
that (S \D) ∪ {v} is a solution only when there is a 2-tight vertex in F (D).

We can say more on Proposition 4. The vertex v should be 2-tight since, if not so (i.e., v
is 1-tight), {v} would not be maximal independent for G[D ∪ F (D)]; v is adjacent to only
one of D = {x, y} from the definition of 1-tightness.

In summary, if there is an improved solution (S \D) ∪ {v}, then v is 2-tight and has x
and y as the solution neighbors. Instead of searching all 2-subsets of S, we scan all 2-tight
vertices, and for each 2-tight vertex v, we take D = {x, y} as the candidate of the dropped
set. We have the following theorem.

I Theorem 5. Given a solution S, we can find an improved solution in the 2-neighborhood
or conclude that S is 2-maximal in O(n∆) time.

Proof. Since we maintain the solution by means of the vertex ordering, we can scan all the
2-tight vertices in O(|T2|) time. For each 2-tight v, we can detect the two solution neighbors,
say x and y, in O(deg(v)) time.

Let D = {x, y}. The singleton {v} is maximal independent for G[D ∪ F (D)] and thus
we have an improved solution (S \D) ∪ {v} iff v is adjacent to all other vertices in F (D).
Whether v is adjacent to all other vertices in F (D) is decided in O(∆) time, as we stated in
Proposition 2. If it is the case, then we can construct an improved solution (S \D) ∪ {v}
in O(deg(x) + deg(y) + deg(v)) = O(∆) time as the vertex ordering takes O(deg(x)) time
to drop x from S and O(deg(v)) time to add v to it [1]. Otherwise, we can conclude that
(S \D) ∪ {v} is not a solution because some vertices in F (D) are not dominated.

We have seen that, for each 2-tight vertex v, it takes O(∆) time to find an improved
solution (S \D) ∪ {v} or to conclude that it is not a solution. Therefore, the overall running
time is bounded by O(|T2|∆) = O(n∆). J

3.3 3-Neighborhood Search
We have the following proposition by applying Proposition 3 to the case of k = 3.

I Proposition 6. Suppose that S is a 2-minimal solution and that D = {x, y, z} is a 3-subset
of S. There is a subset A of F (D) such that A is maximal independent in G[D ∪ F (D)] and
|A| < |D| only when either of the followings holds:
(a) there is a 3-tight vertex in F (D) that has x, y and z as the solution neighbors;
(b) there are two 2-tight vertices in F (D) such that one has x and y as the solution neighbors

and the other has x and z as the solution neighbors.

Let us make observation on the added subset. Suppose that, for an arbitrary 3-subset
D ⊆ S, there is A ⊆ F (D) such that A is maximal independent in G[D∪F (D)] and |A| < |D|.
When |A| = 1, the only vertex in A is 3-tight since otherwise some vertex in D would not be
dominated. When |A| = 2, at least one of the two vertices in A is either 2-tight or 3-tight; if
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D

a

F(D)

b

a a b a

b

(i) A = {a} (ii) A = {a, b} (iii) A = {a, b} (iv) A = {a, b}

Figure 1 Illustration of a dropped set D and an added set A for (i) to (iv) in Section 3.3: For
clarity of the figure, we draw only edges that are incident to the vertices a and b. Note that every
vertex in F (D) is adjacent to at least one vertex in D.

both are 1-tight, one vertex of D would not be dominated. Concerning the tightness, the
following four situations are possible:
(i) A = {a} and a is 3-tight;
(ii) A = {a, b}, a is 3-tight, and b is t-tight such that t ∈ {1, 2, 3};
(iii) A = {a, b}, a is 2-tight, and b is 2-tight;
(iv) A = {a, b}, a is 2-tight, and b is 1-tight.
From (ii) to (iv), the vertices a and b are not adjacent. We illustrate (i) to (iv) in Figure 1.

Based on the above, we summarize the search strategy as follows. In order to generate
all 3-subsets D of S such that F (D) satisfies either (a) or (b) of Proposition 6, we scan all
3-tight vertices u (Proposition 6 (a)) and all pairs of 2-tight vertices, say v and w, such that
|(N(v)∪N(w))∩S| = 3 (Proposition 6 (b)). For (a), we take D = N(u)∩S and search F (D)
for a 1- or 2-subset A that is maximal independent in G[D ∪ F (D)], regarding the 3-tight
vertex u as the vertex a in (i) and (ii). Similarly, for (b), we take D = (N(v) ∪N(w)) ∩ S
and search F (D) for a 2-subset A that is maximal independent in G[D ∪ F (D)], regarding
the 2-tight vertex v as the vertex a in (iii) and (iv).

We have the following theorem on the time complexity of 3-neighborhood search. We
omit the proof due to space limitation.

I Theorem 7. Given a 2-minimal solution S, we can find an improved solution in the
3-neighborhood or conclude that S is 3-maximal in O(n∆3) time.

4 Iterated Local & Plateau Search

In this section, we present a metaheuristic algorithm named ILPS (Iterated Local & Plateau
Search) that repeats the proposed local search and the plateau search iteratively.

We show the pseudo code of ILPS in Algorithm 1. The ILPS has four parameters, that
is S, k, δ and ν, where S is an initial solution, k is the order of the local search (i.e., a
k-minimal solution is searched by LocalSearch(S, k) in Line 6), and δ and ν are integers.
The roles of the last two parameters are mentioned in Section 4.2.

The LocalSearch(S, k) in Line 6 is the subroutine that returns a k-minimal solution
from an initial solution S, where k is set to either two or three. When k = 2, it determines a 2-
minimal solution by moving to an improved solution repeatedly as long as the 2-neighborhood
search algorithm delivers one. When k = 3, it first finds a 2-minimal solution, and then runs
the 3-neighborhood search algorithm. If an improved solution is delivered, then the local
search moves to the improved solution and seeks a 2-minimal one again since the solution is
not necessarily 2-minimal. Otherwise, the current solution is 3-minimal.
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Algorithm 1 Iterated Local & Plateau Search (ILPS).
1: function ILPS(S, k, δ, ν)
2: S∗ ← S . S∗ is used to store the incumbent solution
3: ρ← a penalty function such that ρ(v) = 0 for all v ∈ V
4: ρ← UpdatePenalty(S, ρ, δ)
5: while termination condition is not satisfied do
6: S ← LocalSearch(S, k) . The local search returns a k-minimal solution
7: S ← PlateauSearch(S, k) . The plateau search returns a k-minimal solution
8: if |S| ≤ |S∗| then
9: S∗ ← S

10: end if
11: S ← Kick(S∗, ρ, ν) . The initial solution of the next iteration is generated
12: ρ← UpdatePenalty(S, ρ, δ) . The penalty function is updated
13: end while
14: return S∗

15: end function

Below we explain two key ingredients: the plateau search and the vertex penalty. We
describe these in Sections 4.1 and 4.2 respectively. We remark that they are inspired by
Dynamic Local Search for the maximum clique problem [19] and Phased Local Search for the
unweighted/weighted maximum independent set and minimum vertex cover [18].

4.1 Plateau Search
In the plateau search (referred to as PlateauSearch(S, k) in Line 7), we search solutions
of the size |S| that can be obtained by swapping a solution vertex x ∈ S and a non-solution
vertex v /∈ S. Let P(S) be the collection of all solutions that are obtainable in this way.
The size of any solution in P(S) is |S|. We execute LocalSearch(S′, k) for every solution
S′ ∈ P(S), and if we find an improved solution S′′ such that |S′′| < |S′| = |S|, then we do
the same for S′′, i.e., we execute LocalSearch(P, k) for every solution P ∈ P(S′′). We
repeat this until no improved solution is found and employ a best solution among those
searched as the output of the plateau search.

We emphasize the efficiency of the plateau search; all solutions in P(S) can be listed in
O(|T1|∆) time. Observe that (S \ {x}) ∪ {v} is a solution iff v is 1-tight such that x is the
only solution neighbor of v, and v is adjacent to all vertices in F ({x}) other than v. We can
scan all 1-tight vertices in O(|T1|) time. For each 1-tight vertex v, the solution neighbor x is
detected in O(deg(v)) time, and whether the last condition is satisfied or not is identified in
O(∆) time from Proposition 2. Dropping x from S and adding v to S \ {x} can be done in
O(∆) time.

4.2 Vertex Penalty
In order to avoid the search stagnation, one possible approach is to apply a variety of initial
solutions. To realize this, we introduce a penalty function ρ : V → Z+ ∪ {0} on the vertices.
The penalty function ρ is initialized so that ρ(v) = 0 for all v ∈ V (Line 3). During the
algorithm, ρ is managed by the subroutine UpdatePenalty (Lines 4 and 12). When the
initial solution S of the next local search is determined, it increases the penalty ρ(v) of every
vertex v ∈ S by one, i.e., ρ(v)← ρ(v) + 1. Furthermore, to “forget” the search history long
ago, it reduces ρ(v) to bmin{ρ(v), δ}/2c for all v ∈ V in every δ iterations. This δ is the
third parameter of ILPS and called the penalty delay.
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The ρ is used in the subroutine Kick (Line 11), the initial solution generator, so that
vertices with fewer penalties are more likely to be included in the initial solution. Kick
generates an initial solution by adding non-solution vertices (with respect to the incumbent
solution S∗) “forcibly” to S∗. The added vertices are chosen one by one as follows; in one
trial, Kick picks up one non-solution vertex. It then goes on to the next trial with the
probability (ν − 1)/ν or stops the selection with the probability 1/ν, where ν is the fourth
parameter of ILPS. Observe that ν specifies the expected number of added vertices. In the
first trial, Kick randomly picks up a non-solution vertex that has the fewest penalty. In a
subsequent r-th trial (r = 2, 3, . . . ), let R = {v1, . . . , vr−1} be the set of vertices chosen so
far. Kick samples three vertices randomly from V \ (S∗ ∪R ∪N(R)), and picks up the one
that has the fewest penalty among the three. Suppose that R = {v1, . . . , vr} has been picked
up as the result of r trials. Then we construct an independent set S = (S∗ \ N(R)) ∪ R.
The S may not be a solution as there may remain free vertices. If so, we repeatedly pick up
free vertices by the maximum-degree greedy method until S becomes a solution. We use the
acquired S as the initial solution of the next local search.

5 Computational Results

We report some experimental results in this section. In Section 5.1, to gain insights into what
kind of instance is difficult, we examine the phase transition of difficulty with respect to the
edge density. The next two subsections are devoted to observation on the behavior of the
proposed method. In Section 5.2, we show how a single run of LocalSearch(S, k) improves
a given initial solution. In Section 5.3, we show how the penalty delay δ affects the search.
Finally in Section 5.4, we compare ILPS with the memetic algorithm [20], GRASP+PC [21],
CPLEX12.6 [12] and LocalSolver5.5 [16] in terms of the solution size, using DIMACS graphs.

All the experiments are conducted on a workstation that carries an Intel Core i7-4770
Processor (up to 3.90GHz by means of Turbo Boost Technology) and 8GB main memory.
The installed OS is Ubuntu 16.04. Under this environment, it takes 0.25 s, 1.54 s and 5.90 s
approximately to execute dmclique (http://dimacs.rutgers.edu/pub/dsj/clique/) for
instances r300.5.b, r400.5.b and r500.5.b, respectively. The ILPS algorithm is imple-
mented in C++ and compiled by the g++ compiler (ver. 5.4.0) with -O2 option.

5.1 Phase Transition of Difficulty

The phase transition has been observed for many combinatorial problems [7, 9, 10]. Roughly,
it is said that over-constrained and under-constrained instances are relatively easy, and that
intermediately constrained ones tend to be more difficult.

In the MinIDS problem, the amount of constraints is proportional to the edge density
p. We examine the change of difficulty with respect to p. We estimate the difficulty of an
instance by how long CPLEX12.8 takes to solve it.

For each (n, p) ∈ {100, 150, 200} × {0.00, 0.05, . . . , 1.00}, we generate 100 random graphs
(Erdös-Rényi model) with n vertices and the edge density p, i.e., an edge is drawn between
two vertices with probability p. We solve the 100 instances by CPLEX12.8 and take the
averaged computation time. We set the time limit of each run to 60 s. If CPLEX12.8
terminates by the time limit, then we regard the computation time as 60 s.

Figure 2 shows the result. We may say that instances with the edge densities from 0.1 to
0.4 are likely to be more difficult than others. In fact, the experiments in [5, 14] mainly deal
with random graphs with the edge densities in this range.

http://dimacs.rutgers.edu/pub/dsj/clique/
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Figure 2 Computation time of CPLEX12.8 for random graphs.

Table 1 Averaged sizes of random, 2-minimal and 3-minimal solutions in random graphs with
103 vertices.

p = .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 .99
random 44.57 24.42 16.70 12.50 9.66 7.70 6.12 4.84 3.62 3.00 2.12

2-minimal 37.37 20.36 13.84 10.18 7.86 6.12 4.95 3.95 2.99 2.00 1.95
3-minimal 35.44 19.04 12.74 9.28 7.01 5.64 4.06 3.02 2.15 2.00 1.95

5.2 A Single Run of Local Search
We show how a single run of LocalSearch(S, k) improves an initial solution S. Again
we take a random graph. We fix the number n of vertices to 103. For every p ∈
{0.1, . . . , 0.9, 0.95, 0.99}, we generate 100 random graphs. Then for each graph, we run
LocalSearch(S, k) five times, where we use different random seeds in each time and
construct the initial solution S randomly.

We show the averaged sizes of random, 2-minimal and 3-minimal solutions in Table 1.
We see that, the larger the edge density p is, the fewer the solution size becomes. The
local search improves a random solution to some extent. LocalSearch(S, 3) improves the
solution more than LocalSearch(S, 2). The difference between the two local searches is
the largest when p = 0.1, that is 37.37− 35.44 = 1.93. The difference gets smaller when p
gets larger. In particular, when p > 0.9, we see no difference.

Let us discuss computation time. In the left of Figure 3, we show how the aver-
aged computation time changes with respect to p. We see that the computation time of
LocalSearch(S, 3) is tens to thousands of times the computation time of LocalSearch(S, 2).
However, it does not necessarily diminish the value of the 3-neighborhood search. As will be
shown in Section 5.4, when k = 3, ILPS can find such a good solution that is not obtained
by k = 2.

In general, for a fixed k, it takes more computation time when p is larger. Recall
Theorem 5 (resp., 7); when k = 2 (resp., 3), the k-neighborhood search algorithm finds an
improved solution for the current solution S or concludes that S is k-minimal in O(n∆)
(resp., O(n∆3)) time. Roughly, ∆ is increasing as p gets larger.

For k = 3, we attribute the peak at p = 0.8 to the number of 3-tight vertices. In the
right of Figure 3, We show the averaged numbers of 2- and 3-tight vertices with respect to
3-minimal solutions. The 3-neighborhood search algorithm searches 2- and 3-tight vertices.
The numbers of both vertices are generally non-decreasing from p = 0.1 to 0.8, but when
p > 0.8, the number of 3-tight vertices decreases dramatically. This is due to the solution
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size. The solution size gives an upper bound on the tightness of any non-solution vertex, and
when p > 0.8, the averaged size of a 3-minimal solution is less than three; see Table 1. Since
most of the non-solution vertices are either 1- or 2-tight, we hardly handle the situations (i)
and (ii) in Section 3.3.

5.3 Penalty Delay
We introduced the notion of vertex penalty to control the search diversification. When the
penalty delay δ is larger, more varieties of initial solutions are expected to be tested in ILPS.

To illustrate the expectation, we evaluate how many iterations ILPS takes until all
vertices are covered by the initial solutions, that is, used in the initial solutions at least once.
The solid line in Figure 4 shows the number of iterations taken to cover all vertices. The
graph we employ here is a 10 × 10 grid graph such that each vertex is associated with a
2D integral point (i, j) ∈ {1, . . . , 10}2, and that two vertices (i, j) and (i′, j′) are adjacent
iff |i− i′|+ |j − j′| = 1. For each δ, the number of iterations is averaged over 500 runs of
ILPS with different random seeds, where we fix (k, ν) = (2, 1) and construct the first initial
solution S by the maximum-degree greedy algorithm.

The observed phenomenon meets our expectation; The number is non-increasing with
respect to δ and saturated for δ ≥ 30. In other words, when δ is larger, more varieties of
initial solutions are generated in a given number of iterations.

However, setting δ to a large value does not necessarily lead to discovery of better solutions.
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The dashed line in Figure 4 shows the averaged number of iterations that ILPS takes to find
an optimal solution; we know that the optimal size is 24 since we solve the instance optimally
by CPLEX. When δ ≤ 40, the number is approximately decreasing and takes the minimum
at δ = 40, but a larger δ does not make any improvement. Hence, given an instance, we need
to choose an appropriate value of δ carefully.

5.4 Performance Validation
We run ILPS algorithm for 80 DIMACS instances that are downloadable from [17]. We
generate the first initial solution S by the maximum-degree greedy method, and fix the
parameter ν to three. For (k, δ), all pairs in {2, 3}×{20, . . . , 26} are tested. For each instance
and each (k, δ), we run ILPS algorithm 10 times, using different random seeds. We terminate
the algorithm by the time limit. The time limit is set to 200 s. When k = 3, we modify
Algorithm 1 so that PlateauSearch(S, k) in Line 7 is called only when |S| ≤ |S∗|+ 2 as
the plateau search is rather time-consuming.

We take four competitors from [20] and [21]. The first is MEM, a tabu-search based
memetic algorithm in [20]. The second is GP, the GRASP+PC algorithm in [21]. The third
is CP, which stands for CPLEX12.6 [12] that solves an integer optimization model of the
MinIDS problem. The fourth is LS, which stands for LocalSolver5.5 [16], a general discrete
optimization solver based on local search. MEM is run on a computer with a 2.0GHz CPU
and a 4GB memory, whereas the other competitors are run on computers with a 2.3GHz
CPU and an 8GB memory. The time limit of MEM and GP is set to 200 s, and that of CP
and LS is set to 3600 s.

In Table 2, we show the results on selected instances. The columns “n” and “p” indicate
the number of vertices and the edge density, respectively. The edge density is between 0.1
and 0.5 in all instances except hamming8-2. In our context, the instances are expected to
be difficult. For ILPS, we show the results for (k, δ) = (2, 26) in detail, regarding this pair
as the representative. The columns “Min” and “Max” indicate the minimum/maximum
solution size over 10 runs, and the column “Avg” indicates the average. The column “TTB”
indicates the time to best (in seconds), that is, the average of the computation time that
ILPS takes to find the solution of the size “Min”. The symbol ε represents that the time
is less than 0.1 s. The column “Best” indicates the minimum solution size attained over all
(k, δ) ∈ {2, 3} × {20, . . . , 26}. The rightmost four columns indicate the solution size attained
by the competitors. The symbol ∗ before the instance name indicates that the solution size
attained by CPLEX is optimal.

The table contains only results on the 13 selected instances such that the solutions sizes
attained by “Best”, “MEM” and “GP” are not-all-equal, except hamming8-2. We guarantee
that, for the remaining 67 instances, ILPS’s “Best” is as good as any competitor. The
boldface indicates that the solution size is strictly smaller than those of the competitors.
Then we update the best-known solution size in five graphs. These show the effectiveness of
the proposed local search and the ILPS algorithm.

For hamming8-2, when k = 2, ILPS cannot find a solution of the optimal size 32 for any
penalty delay δ ∈ {20, . . . , 26}. However, when k = 3, ILPS finds an optimal solution with
δ = 20, 21 and 22.

Before closing this section, let us report our preliminary results briefly.
A preliminary version of ILPS happened to find a solution of the size 31 for C2000.9 and
a solution of the size 15 for keller6.
Let us consider a finer swap operation, (j, k)-swap, that obtains another solution by
dropping exactly k vertices from the current one and then by adding exactly j vertices
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Table 2 Selected results from the validation experiments on DIMACS graphs.

n p ILPS [20] [21]
(k = 2, ν = 26) MEM GP CP LS

Min Avg Max TTB Best
brock400_2 400 .25 10 10.0 10 1.1 9 9 10 10 11
C1000.9 1000 .10 27 27.8 29 0.0 26 27 27 29 30
∗C125.9 125 .10 14 14.0 14 0.1 14 14 15 14 14
C2000.9 2000 .10 32 33.6 35 12.1 32 33 33 48 36
C4000.5 4000 .50 7 7.9 8 49.7 7 8 8 - -
C500.9 500 .10 22 22.2 23 92.3 21 22 23 23 22
gen400_p0.9_55 400 .10 20 20.1 21 39.4 20 20 21 22 22
gen400_p0.9_65 400 .10 20 20.7 21 99.0 20 20 21 21 22
∗hamming8-2 256 .03 36 36.0 36 0.0 32 N/A 32 32 32
keller6 3361 .18 18 18.0 18 26.1 16 18 18 32 19
∗san200_0.7_1 200 .30 6 6.1 7 85.9 6 6 7 6 7
∗san200_0.9_1 200 .10 15 15.0 15 16.7 15 15 16 15 16
san400_0.7_3 400 .30 7 7.8 8 106.6 7 7 8 8 9

to it. One can prove that, given a solution S and a constant k, we can improve S by
(1, k)-swap or conclude that it is not possible in O(n∆) time. We implemented (1, k)-swap
in a preliminary version of ILPS, but it does not yield significant improvement even when
k is set to a constant larger than three.
We tested Laforest and Phan’s exact algorithm [14], and found that the algorithm is not
suitable for a task of finding a good solution quickly. The source code is available at
http://todo.lamsade.dauphine.fr/spip.php?article42.
BHOSLIB [3] is another well-known collection of benchmark instances. It contains 36
instances such that n is between 450 and 4000 and that p is no less than 0.82. Hence, the
BHOSLIB instances are expected to be easy in our context. The ILPS with (k, δ) = (2, 26)
finds a solution of the size three for all the instances. We also run CPLEX12.8 for 200 s,
generating an initial solution by the maximum-degree greedy algorithm. CPLEX12.8
finds a solution of the size five for frb100-40, and a solution of the size three for the
other instances. In addition, the solution of the size three is proved to be optimal for 15
instances whose names start with frb30, frb35 and frb40.

6 Concluding Remark

We have considered an efficient local search for the MinIDS problem. We proposed fast
k-neighborhood search algorithms for k = 2 and 3, and developed a metaheuristic algorithm
named ILPS that repeats the local search and the plateau search iteratively. ILPS is so
effective that it updates the best-known solution size in five DIMACS graphs.

The proposed local search is applicable to other metaheuristics such as genetic algorithms,
as a key tool of local improvement. The future work includes an extension of the local search
to a weighted version of the MinIDS problem.

References
1 D.V. Andrade, M.G.C. Resende, and R.F. Werneck. Fast local search for the maximum

independent set problem. Journal of Heuristics, 18:525–547, 2012.

http://todo.lamsade.dauphine.fr/spip.php?article42


K. Haraguchi 13:13

2 C. Berge. Theory of Graphs and its Applications. Methuen, London, 1962.
3 BHOSLIB: Benchmarks with hidden optimum solutions for graph problems. http://sites.

nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm. accessed on February
1, 2018.

4 N. Bourgeois, F.D. Croce, B. Escoffier, and V.Th. Paschos. Fast algorithms for MIN
independent dominating set. Discrete Applied Mathematics, 161(4):558–572, 2013.

5 P.P. Davidson, C. Blum, and J. Lozano. The weighted independent domination problem:
ILP model and algorithmic approaches. In Proc. EvoCOP 2017, pages 201–214, 2017.
doi:10.1007/978-3-319-55453-2_14.

6 M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Company, 1979.

7 I.P. Gent and T. Walsh. The SAT phase transition. In Proc. ECAI-94, pages 105–109,
1994.

8 W. Goddard and M.A. Henning. Independent domination in graphs: A survey and recent
results. Discrete Mathematics, 313:839–854, 2013.

9 C.P. Gomes and B. Selman. Problem structure in the presence of perturbations. In
Proc. AAAI-97, pages 221–227, 1997.

10 C.P. Gomes and D.B. Shmoys. Completing quasigroups or latin squares: a structured graph
coloring problem. In Proc. Computational Symposium on Graph Coloring and Generaliza-
tions, 2002.

11 M.M. Halldórsson. Approximating the minimum maximal independence number. Inform-
ation Processing Letters, 46(4):169–172, 1993.

12 IBM ILOG CPLEX. https://www.ibm.com/analytics/data-science/
prescriptive-analytics/cplex-optimizer. accessed on February 1, 2018.

13 F. Kuhn, T. Nieberg, T. Moscibroda, and R. Wattenhofer. Local approximation schemes
for ad hoc and sensor networks. In Proc. the 2005 Joint Workshop on Foundations of
Mobile Computing, pages 97–103, 2005.

14 C. Laforest and R. Phan. Solving the minimum independent domination set problem in
graphs by exact algorithm and greedy heuristic. RAIRO-Operations Research, 47(3):199–
221, 2013.

15 C. Liu and Y. Song. Exact algorithms for finding the minimum independent dominating
set in graphs. In Proc. ISAAC 2006, LNCS 4288, pages 439–448, 2006.

16 LocalSolver. http://www.localsolver.com/. accessed on February 1, 2018.
17 F. Mascia. dimacs benchmark set. http://iridia.ulb.ac.be/~fmascia/maximum_

clique/DIMACS-benchmark. accessed on February 1, 2018.
18 W. Pullan. Optimisation of unweighted/weighted maximum independent sets and minimum

vertex covers. Discrete Optimization, 6(2):214–219, 2009.
19 W. Pullan and H.H. Hoos. Dynamic local search for the maximum clique problem. Journal

of Artificial Intelligence Research, 25:159–185, 2006.
20 Y. Wang, J. Chen, H. Sun, and M. Yin. A memetic algorithm for minimum independent

dominating set problem. Neural Computing and Applications, in press. doi:10.1007/
s00521-016-2813-7.

21 Y. Wang, R. Li, Y. Zhou, and M. Yin. A path cost-based grasp for minimum independent
dominating set problem. Neural Computing and Applications, 28(1):143–151, 2017. doi:
10.1007/s00521-016-2324-6.

22 M. Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM Journal
on Discrete Mathematics, 31(4):2440–2456, 2017.

SEA 2018

http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://dx.doi.org/10.1007/978-3-319-55453-2_14
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://www.localsolver.com/
http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://dx.doi.org/10.1007/s00521-016-2813-7
http://dx.doi.org/10.1007/s00521-016-2813-7
http://dx.doi.org/10.1007/s00521-016-2324-6
http://dx.doi.org/10.1007/s00521-016-2324-6




Empirical Evaluation of Approximation Algorithms
for Generalized Graph Coloring and Uniform
Quasi-Wideness
Wojciech Nadara1

Institute of Informatics, University of Warsaw, Poland
wn341489@students.mimuw.edu.pl

Marcin Pilipczuk2

Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

Roman Rabinovich3

Lehrstuhl für Logic und Semantik, Technische Universität Berlin, Germany
roman.rabinovich@tu-berlin.de

Felix Reidl
Department of Computer Science, Royal Holloway University of London, UK
felix.reidl@rhul.ac.uk

Sebastian Siebertz4

Institute of Informatics, University of Warsaw, Poland
siebertz@mimuw.edu.pl

Abstract
The notions of bounded expansion and nowhere denseness not only offer robust and general
definitions of uniform sparseness of graphs, they also describe the tractability boundary for
several important algorithmic questions. In this paper we study two structural properties of
these graph classes that are of particular importance in this context, namely the property of
having bounded generalized coloring numbers and the property of being uniformly quasi-wide.
We provide experimental evaluations of several algorithms that approximate these parameters on
real-world graphs. On the theoretical side, we provide a new algorithm for uniform quasi-wideness
with polynomial size guarantees in graph classes of bounded expansion and show a lower bound
indicating that the guarantees of this algorithm are close to optimal in graph classes with fixed
excluded minor.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Empirical Evaluation of Algorithms, Sparse Graph Classes, Generalized
Coloring Numbers, Uniform Quasi-Wideness

1 Supported by the “Recent trends in kernelization: theory and experimental evaluation” project, carried
out within the Homing programme of the Foundation for Polish Science co-financed by the European
Union under the European Regional Development Fund.

2 Supported by the “Recent trends in kernelization: theory and experimental evaluation” project, carried
out within the Homing programme of the Foundation for Polish Science co-financed by the European
Union under the European Regional Development Fund.

3 Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (ERC Consolidator Grant DISTRUCT, grant agreement No 648527).

4 Supported by the National Science Centre of Poland via POLONEZ grant agreement UMO-
2015/19/P/ST6/03998, which has received funding from the European Union’s Horizon 2020
research and innovation programme (Marie Skłodowska-Curie grant agreement No. 665778).

© Wojciech Nadara, Marcin Pilipczuk, Roman Rabinovich, Felix Reidl, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wn341489@students.mimuw.edu.pl
mailto:malcin@mimuw.edu.pl
mailto:roman.rabinovich@tu-berlin.de
mailto:felix.reidl@rhul.ac.uk
mailto:siebertz@mimuw.edu.pl
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 Approximation Alg. for Generalized Graph Coloring and Uniform Quasi-Wideness

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.14

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
09801.

Acknowledgements We thank Christoph Dittmann for providing us with his code for the mfcs
algorithm, which we partially used for our implementation. We thank Michał Pilipczuk for many
hours of fruitful discussions.

1 Introduction

The exploitation of structural properties found in sparse graphs has a long and fruitful history
in the design of efficient algorithms. Besides the long list of results on planar graphs and
graphs of bounded degree (which are too numerous to fairly represent here), the celebrated
structure theory of graphs with excluded minors, developed by Robertson and Seymour [57]
falls into this category. It not only had an immense influence on the design of efficient
algorithms (see e.g. [18, 19]) it further introduced the now widely used notion of treewidth
(see e.g. [8]) and gave rise to the field of parameterized complexity: “In the beginning, all
we did was graph minors” (M. Fellows, pers. comm.). As such, the impact of the theory of
sparse graphs on algorithmic research cannot be overstated.

Many of the algorithmic results concerning classes excluding a minor or a topological
minor are in some way based on topological arguments, depending on the structure theorems
(e.g. decompositions) for the class under consideration. A complete paradigm shift was
initiated by Nešetřil and Ossona de Mendez with their foundational work and introduction of
the notions of bounded expansion [42, 43, 44] and nowhere denseness [46]. These graph classes
extend and properly contain all the aforementioned sparse classes and many arguments based
on topology can be replaced by more general, and surprisingly often much simpler, arguments
based on density. We refer to the textbook [47] for extensive background on the theory of
sparse graph classes.

The rich structural theory for bounded expansion and nowhere dense graph classes has
been successfully applied to design efficient algorithms for hard computational problems
on specific sparse classes of graphs, see e.g. [6, 16, 21, 22, 23, 24, 25, 28, 30, 63]. On the
other hand, several results indicate that nowhere dense graph classes form a natural limit for
algorithmic methods based on sparseness arguments, see e.g. [21, 23].

One core strength of the bounded expansion/nowhere dense framework is that there
exists a multitude of equivalent definitions that provide complementing perspectives. Here,
we study two structural properties of these classes that are of particular importance in the
algorithmic context, namely the property of having bounded generalized coloring numbers
and the property of being uniformly quasi-wide. The generalized coloring numbers intuitively
measure reachability properties in a linear vertex ordering of a given graph. Such an
ordering yields a very weak and local form of a graph decomposition which can be exploited
combinatorially [24, 54] and algorithmically [6, 21, 22, 30]. Uniform quasi-wideness was
originally introduced in finite model theory [15], and soon found combinatorial and algorithmic
applications on nowhere dense classes [16, 24, 28, 35, 45, 52, 60].

Even though the above results render many problems tractable in theory, many of the
known algorithms have worst-case running times that involve huge constant factors and
combinatorial explosions with respect to the discussed parameters. The central question
of our work here is to investigate how the generalized coloring numbers and uniform quasi-
wideness behave on real-world graphs, an endeavor which so far has only been conducted
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for a single notion of bounded expansion and on a smaller scale [20]. Controllable numbers
would be a prerequisite for practical implementations of these algorithms based on such
structural approaches. We provide an experimental evaluation of several algorithms that
approximate these parameters on real world graphs.

On the theoretical side, we provide a new algorithm for uniform quasi-wideness with
polynomial size guarantees in graph classes of bounded expansion and show a lower bound
indicating that the guarantees of this algorithm are close to optimal in graph classes with
fixed excluded minor.

2 Basic definitions

Graphs. All graphs in this paper are finite, undirected and simple, that is, they do not have
loops or multiple edges between the same pair of vertices. For a graph G, we denote by V (G)
the vertex set of G and by E(G) its edge set. The distance between a vertex v and a vertex w
is the length (that is, the number of edges) of a shortest path between v and w. For a vertex v
of G, we write NG(v) for the set of all neighbors of v, NG(v) = {u ∈ V (G) | {u, v} ∈ E(G) },
and for r ∈ N we denote by NG

r [v] the closed r-neighborhood of v, that is, the set of vertices
of G at distance at most r from v. Note that we always have v ∈ NG

r [v]. The radius of
a connected graph G is the minimum integer r such that there exists v ∈ V (G) with the
property that all vertices of G have distance at most r to v. A set A is r-independent if all
distinct vertices of A have distance greater than r.

Bounded expansion and nowhere denseness. A minor model of a graph H in a graph G
is a family (Iu)u∈V (H) of pairwise vertex-disjoint connected subgraphs of G, called branch
sets, such that whenever uv is an edge in H, there are u′ ∈ V (Iu) and v′ ∈ V (Iv) for which
u′v′ is an edge in G. The graph H is a depth-r minor of G, denoted H 4r G, if there is
a minor model (Iu)u∈V (H) of H in G such that each Iu has radius at most r. A class C of
graphs is nowhere dense if there is a function t : N→ N such that for all r ∈ N it holds that
Kt(r) 64r G for all G ∈ C, where Kt(r) denotes the clique on t(r) vertices. The class C has
bounded expansion if there is a function d : N→ N such that for all r ∈ N and all H 4r G

with G ∈ C, the edge density of H, i.e. |E(H)|/|V (H)|, is bounded by d(r).

Weak coloring numbers. The weak coloring numbers wcolr were introduced by Kierstead
and Yang [31] and intuitively measure reachability properties in a linear vertex ordering of a
given graph. Formally, they are a series of numbers, parameterized by a positive integer r,
which denotes the radius of the considered ordering. Let Π(G) be the set of all linear orders
of the vertices of the graph G, and let L ∈ Π(G). Let u, v ∈ V (G). For a positive integer r,
we say that u is weakly r-reachable from v with respect to L, if there exists a path P of
length `, 0 ≤ ` ≤ r, between u and v such that u is minimum among the vertices of P (with
respect to L). Let WReachr[G,L, v] be the set of vertices that are weakly r-reachable from v

with respect to L. Note that v ∈WReachr[G,L, v]. The weak r-coloring number wcolr(G)
of G is defined as

wcolr(G) := min
L∈Π(G)

max
v∈V (G)

∣∣WReachr[G,L, v]
∣∣ .

As proved by Zhu [67], the weak coloring numbers can be used to characterize bounded
expansion and nowhere dense classes of graphs.
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Uniform quasi-wideness. Intuitively, a class of graphs is wide if for every graph G from the
class, every radius r ∈ N and every large subset A ⊆ V (G) of vertices one can find a large
r-independent subset B ⊆ A. The notion of uniform quasi-wideness allows to additionally
delete a small number of vertices to make B r-independent. The following definition formalizes
the meaning of “large” and “small”.

I Definition 2.1. A class C of graphs is uniformly quasi-wide if for every m ∈ N and every
r ∈ N there exist numbers N(m, r) and s(r) such that the following holds.

Let G ∈ C and let A ⊆ V (G) with |A| ≥ N(m, r). Then there exists a set S ⊆ V (G)
with |S| ≤ s(r) and a set B ⊆ A\S of size at least m such that for all distinct u, v ∈ B
we have distG−S(u, v) > r.

Uniform quasi-wideness was introduced by Dawar in [15] and it was proved by Nešetřil and
Ossona de Mendez in [45] that uniform quasi-wideness is equivalent to nowhere denseness.

3 Weak coloring numbers

We experiment with the following approximation algorithms of weak coloring numbers. We
here only briefly list them and give necessary definitions to discuss studied variants; a more
exhaustive presentation can be found in the full version of the paper.

Distance-constrained transitive fraternal augmentations. We can approximate the weak
coloring numbers by orienting the input graph G and iteratively inserting arcs according to
certain rules. Such transitive-fraternal augmentations (tf-augmentations) were studied first
in [43]. We work with an optimized version, called distance-constrained tf-augmentations
(dtf-augmentations) which were introduced in [53].

Flat decompositions. The following algorithm was introduced in [62]. It provides a way of
constructing an order with bounded wcolr numbers on class of graphs with excluded minors.

Consider the following procedure for computing a vertex ordering of G. At each step, we
maintain a family of blobs B1, B2, . . . , Bp ⊆ V (G), which are pairwise disjoint and connected,
and we let U := V (G) \

⋃p
i=1Bi be the vertices which are not yet contained in any blob. We

call vertices in U unprocessed and vertices in V (G) \ U processed. To create the next blob,
we let u be any vertex of U and let C be the connected component of G[U ] that contains u.
Create blob Bp+1 as follows: start with {u}, and for every blob Bi that is adjacent to C,
pick any vertex v ∈ C adjacent to Bi, and add to Bp+1 any shortest path from u to v within
C. Finally, when all vertices are subsumed in the blobs, order vertices from different blobs
according to the creation time of their blobs, and vertices from the same blob arbitrarily.

As shown in [62], if Kt 64 G, then the above procedure produces an order that certifies that
wcolr(G) ∈ O(r t−1). Note that this algorithm leaves a lot of room for heuristic optimizations:
we can first vary the order of vertices within the blobs and we can vary the choice of the
vertex u. As it is not clear which choices would be the best, we decided to create a few sets
of rules for both choices and evaluate every combination of them. Within one blob we can
order vertices (1) according to a BFS, (2) according to a DFS, (3) in the order of descending
degree (motivated by the results of another heuristic). In the tables presented in Section 6,
these rules will be abbreviated as BFS, DFS and SORT, respectively. Moreover, each of these
orders can be reversed; reversed orders are denoted with an overline over their acronym.

As the next unprocessed vertex u we can choose a vertex (1) with the largest number of
processed neighbours, (2) with the largest degree among all unprocessed vertices, (3) with
the largest degree among all unprocessed vertices with a processed neighbor. Later, we refer
to these rules by their numbers.
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Treedepth heuristic. Since the ‘limit’ of weak-coloring numbers is exactly the treedepth of a
graph, i.e. wcol∞(G) = td(G), we consider computing a treedepth decomposition and using an
ordering derived from the decomposition. Our algorithm of choice, developed by Sanchez [59]
and implemented by Oelschlägel [51], recursively extracts separators from the graph.

Treewidth heuristic. A well-known approach to compute a treewidth decomposition of a
graph is to find a linear order of the vertices, an elimination order, of possibly small maximum
so-called “back-degree”. There is a number of heuristics to produce good elimination orders.
We chose one that is simple, fast and that gives rather good results for treewidth: the
so-called minimum-degree heuristic [9].

Other simple heuristics. Apart from algorithms with theoretical guarantees we also com-
pared several naive heuristics.

For r = 1 an optimal order is a degeneracy order, which can be easily computed. We can
check if this order produces reasonable results for higher values of r as well.
Intuitively, it makes sense to sort vertices by descending degree (ties are broken arbitrarily)
because from vertices of high degree more vertices can be reached in one step.
A simple idea of generalizing the above heuristics to bigger values of r is to apply
them to the rth power Gr of G (Gr is defined as the graph with V (Gr) = V (G) and
uv ∈ E(Gr)⇔ distG(u, v) ≤ r).
As a baseline we also included random ordering of vertices.

The intuition behind using a degree-ordering is further supported by a popular network
model: Chung–Lu random graphs which sample graphs with a fixed degree distribution
and succesfully replicate several statistics exhibited by real-world networks [12, 13]. In this
model, vertices are assigned weights (corresponding to their expected degree) and edges are
sampled independently but biased according to the endpoints weights. Therefore vertices of
the same degree are exchangable and the one ordering we can choose to minimize the number
of r-reachable vertices is simply the descending degree ordering. It follows that if Chug–Lu
graphs are a resonable approximation of real-world networks, then the degree ordering should
a good choice.

3.1 Local search
In addition to all these approaches we can try to improve their results by local search, a
technique where we make small changes to a candidate solution. We applied the following
local changes and tested whether they caused improvements to the current order L.

Swap a vertex v that has biggest WReachr[G,L, v] with a random vertex that is smaller
with respect to L.
Swap a vertex v that has biggest WReachr[G,L, v] with its direct predecessor u in L.

Both heuristics try to place a vertex with many weakly reachable vertices earlier in the order
and thus to make them non-weakly reachable. The advantage of the second rule is that
WReachr[G,L, v] is trivial to recompute and the only computationally heavy update is for
the new WReachr[G,L, u]. For the first rule, recomputing WReach sets is more expensive.
However, the disadvantage of the second rule is that it does not lead to further improvements
quickly, hence applications of only the first rule give better results than applications of the
second rule only. In our implementation we did a few optimizations in order to improve the
results of second rule, but we refrain from describing them in detail. The final algorithm
conducting local search firstly performs a round of applications of the first rule and when
they no longer improve results it performs a round of applications of the second rule. Such
combination turned out to be empirically most effective.
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4 Uniform quasi-wideness

We experiment with the following algorithms for uniform quasi-wideness. We here only
briefly list them and give necessary definitions to discuss studied variants; more exhaustive
presentation can be found in the full version of the paper.

Distance trees. [52] introduced a method for showing uniform quasi-wideness of nowhere
dense graphs by iteratively building r-independent sets for increasing values of r. The critical
part is an algorithm that, given an (1-)independent set A in a graph G, finds a (small) set S
and a 2-independent set B ⊆ A in G− S. An involved combinatorial argument shows the
following: either such set B can be already found for the tentative S, or there exists a vertex
v ∈ V (G) with many neighbors in A; then one includes v in S and restrict A to N(v) ∩A.
The final restriction is critical for the proof of the bound on the final set S.

We have implemented three variants of this algorithm, denoted later tree1, tree2, and
ld_it. tree2 is the original algorithm of [52], while tree1 is a variant that, in the step
when the set A is restricted to N(v) ∩ A, tries to preserve some vertices of A \ N(v) for
future use. Finally, ld_it is a variant that replaces every execution of the method of [52]
with greedy approach to search for large 2-independent set B ⊆ A.

From weak coloring numbers to uniform quasi-wideness. First, we implemented an ap-
proach of [34] which is designed for classes of bounded expansion and combines the weak
coloring numbers with uniform quasi-wideness. This algorithms is later referred to as mfcs.

Second, motivated by the rather conservative character of the algorithm of [34], we
propose here a new algorithm (albeit inspired by [34]), proving the following.

I Theorem 4.1. Assume we are given a graph G, a set A ⊆ V (G), integers r ≥ 1 and
m ≥ 2, and an ordering L of V (G) with c = maxv∈V (G) |WReachr[G,L, v]|. Furthermore,
assume that |A| ≥ 4 · (2cm)c. Then in polynomial time, one can compute sets S ⊆ V (G) and
B ⊆ A \ S such that |S| ≤ c, |B| ≥ m, and B is r-independent in G− S.

We implemented three variants of the above algorithm, new1, new2, and new_ld. The first
two differ in some minor internal details, whereas new_ld extends new2 as follows: at every
step it attempts to complete the currently handled partial r-independent set in a greedy
manner, and at the end returns the best solution found during the entire execution.

Other naive approaches and heuristic optimizations. Since computing uniform quasi-
wideness for r = 1 is equivalent to finding independent sets, it is sensible to include
independent set heuristics as a baseline. Moreover, the approach based on distance trees
computes independent sets as a subroutine. We used a simple greedy algorithm to find
independent sets: As long as our graph is nonempty, take a vertex of minumun degree, add
it to the independent set and remove its closed neighborhood from the graph.

The following algorithm is what we came up with as a naive but reasonable heuristic for
larger values of r. For every number k ∈ {0, 1, . . . ,K} (where K is some hardcoded constant)
compute the biggest independent set in graph (G − Sk)r[A] using the greedy procedure
described above, where Sk is a set of k vertices with biggest degrees. This heuristic is based
on the fact that independent sets in Gr correspond to r-independent sets in G. Without any
further knowledge about the graph, vertices with the biggest degree seem to be the best
candidates to be removed. In the end, we output the best solution obtained in this manner.
In the following, we abbreviate this approach as ld (least degree on power graph).
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4.1 Score: Comparing different results
Uniform quasi-wideness is a two-dimensional measure: we have to measure both the size m
of the r-independent set B which we desire to find, as well as the size s(r) of vertices
to be deleted. In order to compare the performance of our studied methods we propose
the following approach that arises from applications of uniform quasi-wideness in several
algorithms [16, 21, 24, 52, 60].

Let G,A ⊆ V (G), r ∈ N be an input to any of our algorithms (note that none of our
algorithms takes the target size m of the r-independent set as input, we rather try to
maximize its size) and let S ⊆ V (G) and B ⊆ A \ S such that B is r-independent in G− S
be its output. Let us define πr[v, S] – the r-distance profile of v on S – as the function
from S to {0, 1, . . . , r,∞} so that πr[v, S](a) = distG(v, a) if this distance is at most r, and
πr[v, S](a) =∞ otherwise. The performance of the algorithms [16, 21, 24, 52, 60] strongly
depends on the size of the largest equivalence class on B defined by u ∼ v if πr[u, S] = πr[v, S]
for u, v ∈ B.

We hence decided to use the size of the largest equivalence class in the above relation as
the scoring function to measure the performance of our algorithms. Note that number of
different r-distance profiles is bounded by (r + 2)|S|, so if r is fixed and |S| is bounded then
the number of different r-distance profiles is also bounded, so having a big r-independent set
implies having a big subset of this set with equal r-distance profiles on S.

This well defined scoring function makes it possible to compare the results of the algorithms.
Furthermore, in our code the implementation of the scoring function can be easily exchanged,
so if different scoring functions are preferred, re-evaluation is easily possible.

5 Experimental setup

5.1 Hard- and Software
The experiments on generalized coloring numbers has been performed on an Asus K53SC
laptop with Intel® Core™ i3-2330M CPU @ 2.20GHz x 2 processor and with 7.7GiB of
RAM. Weak coloring numbers of a larger number of graphs for the statistics in Section 6.4
(presented without running times) were produced on a cluster at the Logic and Semantics
Research Group, Technische Universität Berlin. The experiments on uniform quasi-wideness
have been performed on a cluster of 16 computers at the Institute of Informatics, University
of Warsaw. Each machine was equipped with Intel Xeon E3-1240v6 3.70GHz processor and
16 GB RAM. All machines shared the same NFS drive. Since the size of the inputs and
outputs to the programs is relatively small, the network communication was neglible for tests
with substantial running times. The dtf implementation has been done in Python, while all
other code in C++ or C. The code is available at [41, 3].

5.2 Test data
Our dataset consists of a number of graphs from different sources.
Real-world data. We collected appropriately-sized networks from several collections [1, 33,

39, 7, 58, 36]. Our selection contains classic social networks [66, 11], collaboration networks
[38, 49, 48] contact networks [61, 40], communication patterns [38, 56, 32, 37, 55, 4],
protein-protein interaction [10], gene expression [27], infrastructure [64], tournament data
[26], and neural networks [65]. We kept the names assigned to these files by the respective
source.
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PACE 2016 Feedback Vertex Set. The Parameterized Algorithms and Computational Ex-
periments Challenge is an annual programming challenge started in 2016 that aims at
investigate the applicability of algorithmic ideas studied and developed in the subfields of
multivariate, fine-grained, parameterized, or fixed-parameter tractable algorithms (from
the PACE webpage). In the first edition, one of the tracks focused on the Feedback
Vertex Set problem [17], providing 230 instances from various sources and of different
sizes. We have chosen a number of instances with small feedback vertex set number,
guaranteeing their very strong sparsity properties (in particular, low treewidth). In
our result tables, they are named fvs???, where ??? is the number in the PACE 2016
dataset.

Random planar graphs. In their seminal paper, Alber, Fellows, and Niedermeier [5] initiated
the very fruitful direction of developing of polynomial kernels (preprocessing routines
rigorously analyzed through the framework of parameterized complexity) in sparse graph
classes by providing a linear kernel for Dominating Set in planar graphs. In [5], an
experimental evaluation is conducted on random planar graphs generated by the LEDA
library [2]. We followed their setup and included a number of random planar graphs with
various size and average degree. In our result tables, they are named planarN, where N
stands for the number of vertices.

Random graphs with bounded expansion. A number of random graph models has been
shown to produce almost surely graphs of bounded expansion [20]. We include a number
of graphs generated by O’Brien and Sullivan [50] using the following models: the stochastic
block model (sb-? in our dataset) [29] and the Chung-Lu model with households (clh-?)
and without households (cl-?) [14]. We refer to [20, 50] for more discussion on these
sources.

The graphs have been partitioned into four groups, depending on their size: the small group
gathers graphs up to 1 000 edges, medium between 1 000 and 10 000 edges, big between 10 000
and 48 000 edges, and huge above 48 000 edges. The random planar graphs in every test
group have respectively 900, 3 900, 21 000, and 150 000 edges. The whole dataset is available
for download at [3].

6 Weak coloring numbers: results

6.1 Fine-tuning flat decompositions
As discussed in Section 3, we have experimented with a number of variants of the flat
decompositions approach, with regards to the choice of the next root vertex and the internal
order of the vertices of the next Bi. The results for the big dataset are presented in Table 1.
They clearly indicate that (a) all reversed orders performed much worse, and (b) among
other options, the best is to sort the vertices of a new Bi nonincreasingly by degree and
choose as the next root the vertex of maximum degree. In the subsequent tests, we use this
best configuration for comparison with other approaches.

6.2 Comparison of all approaches
Table 2 presents the results of our experiments on all test instances and all approaches,
summarized as follows:
dtf dtf-augmentations with the respective radius r supplied as the distance bound;
flat the best configuration of the flat decompositions approach (see previous section);
treedepth the treedepth approximation heuristic;
treewidth the treewidth heuristic;
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Table 1 Comparison of different flat decomposition variants: sorting vertices of the new blobs
Bi by the BFS, DFS, by degree (nonincreasing), or these orders reversed; the second coordinate
refers to the choice of the root vertex: (1) maximizing the number of neighbors already processed,
(2) maximizing degree in U , (3) as previous, but only among neighbors of already processed vertices.
The value is the average of the approximation ratios to the best generalized coloring numbers found
by all versions of this algorithm.

option
average

appx. ratio option
average

appx. ratio option
average

appx. ratio
BFS/(1) 1.159 DFS/(1) 1.156 SORT/(1) 1.072
BFS/(2) 1.131 DFS/(2) 1.117 SORT/(2) 1.039
BFS/(3) 1.147 DFS/(3) 1.135 SORT/(3) 1.054

BFS/(1) 1.363 DFS/(1) 1.368 SORT/(1) 1.41
BFS/(2) 1.277 DFS/(2) 1.291 SORT/(2) 1.329
BFS/(3) 1.309 DFS/(3) 1.324 SORT/(3) 1.36

Table 2 Gray columns: Comparison of the main approaches and their average approximation
ratio to the best found coloring number. Some of the approaches did not finish in time on larger
graphs or ran out of memory. White columns: Total running time of the main approaches. Note
that for some approaches the ordering (and thus running time) is independent of the radius.

tests r dtf flat treedepth treewidth degree sort

small

2 1.19 0:04.20 1.2

0:00.16

1.408

0:08.97

1.12

0:00.34

1.179

0:00.093 1.439 0:05.08 1.239 1.438 1.124 1.211
4 1.558 0:05.74 1.288 1.384 1.135 1.213
5 1.718 0:06.55 1.353 1.414 1.167 1.263

medium

2 1.177 0:27.97 1.362

0:01.97

2.171

—

1.524

0:23.64

1.142

0:00.563 1.258 1:02.31 1.43 1.918 1.283 1.102
4 1.499 1:53.21 1.451 1.698 1.159 1.113
5 1.595 2:15.04 1.469 1.612 1.093 1.149

big

2 1.107 0:32.82 1.43

0:19.08

—

—

2.278

—

1.183

0:03.303 1.243 — 1.419 — 1.895 1.088
4 — — 1.414 — 1.434 1.079
5 — — 1.415 — 1.189 1.065

huge

2 — — 1.727

—

—

—

—

—

1.152

—3 — — 2.156 — — 1.031
4 — — 2.13 — — 1.032
5 — — 2.095 — — 1.029

degree sort the heuristic which sorts the vertices nonincreasing by degree.
Out of all simple heuristics (c.f. Section 3) the degree sorting was supreme and we skip
the results of inferior heuristics (see [41, 3] for full data). Interestingly, this heuristic also
outperformed all other (much more involved) approaches on larger graphs. On small graphs,
the treewidth heuristic takes the lead. An explanation why the treewidth heuristic is better on
smaller graphs G might be that tw(G) = col∞(G) and on small graphs the difference between
col∞(G) and colr(G) for the considered r is not that big. However, this does not explain
why treedepth does not perform better than treewidth. (Recall that td(G) = wcol∞(G).)
It is worth observing that on larger graphs (the big group) the performance of the flat
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Table 3 Gray columns: Comparison of average approximation ratio after local search. White
columns: Relative improvement of local search for ordering output by the studied approaches.

tests radius dtf flat treedepth treewidth degree sort

small

2 1.126

16.7%

1.032

16.9%

1.142

15.2%

1.059

7.0%

1.025

16.2%3 1.227 1.076 1.235 1.098 1.044
4 1.327 1.091 1.281 1.131 1.053
5 1.466 1.135 1.311 1.154 1.088

medium

2 1.192

13.9%

1.138

21.4%

1.206

30.9%

1.135

15.3%

1.011

17.1%3 1.204 1.115 1.303 1.121 1.023
4 1.444 1.28 1.349 1.139 1.017
5 1.482 1.325 1.401 1.134 1.034

big

2 1.12

—

1.142

24.4%

—

—

1.201

24.3%

1.045

18.3%3 1.218 1.14 — 1.29 1.015
4 — 1.223 — 1.27 1.017
5 — 1.257 — 1.212 1.022

decomposition matches or outperforms the one of the treewidth heuristic for radii r = 2, 3, 4.
However, the treewidth heuristic outperforms all approaches with proved guarantees for
r = 5 on test sets up to the big group.

Table 2 gathers total running time of our programs on discussed data sets. These results
clearly indicate large discrepancy between consumed resources for different approaches.
Out of the approaches with provable guarantees on the output coloring number, the flat
decompositions approach is clearly the most efficient.

Note that we applied different timeout policies for generating different data. For generating
time of execution and for applying local search we set timeout to be 1 minute, however for
generating orders and wcol numbers we set timeout to be 5 minutes, but for the sake of
completeness we sometimes allowed some programs to run longer.

In summary, on our data sets the simple heuristic is consistently the fastest and produces
the best results, save for the smallest graphs on which the treewidth heuristic won. We
remark here that it is simple to “fool” the degree-sorting heuristic by adding multiple pendant
vertices of degree one and thus forcing it to take arbitrarily bad ordering, but such adversarial
obstacles seem to be absent in real-world graphs. If one is to choose an algorithm with
provable guarantees, the discussed variant of the flat decompositions approach appears to be
the best choice.

6.3 Local search
In a second round of experiments we applied a simple local-search routine that, given an
ordering output by one of the approaches, tries to improve it by moving vertices with the
largest weakly reachable sets earlier in the ordering. The white columns in Table 3 show how
local search improved orderings output by discussed approaches, and the gray columns show
average approximation ratios of orderings improved by local search. Two remarks are in place.
First, regardless of how the ordering was computed, a local search step always significantly
improves the ordering (we have no good explanation on why local search is significantly less
effective on the orderings output by the treewidth heuristic for bigger radii). Second, the
local search step does not improve the orderings enough to change the relative order of the
performance of the base approaches except for one remarkable case. On medium group the
treewidth heuristic gave best results on r = 5, however degree sort regained the lead after



W. Nadara, M. Ł. Pilipczuk, R. Rabinovich, F. Reidl, and S. Siebertz 14:11

Figure 1 Correlation of wcol (computed using the degree sort heuristic) with graph size, maximum
degree and average degree of 1675 real-world graphs. The background shade and number reflect the
correlation of the two respective measures, superimposed is a log-log plot of the measurements. The
yellow lines are linear regressions with dark shaded confidence intervals.

application of local search due to its low performance on larger radii for treewidth heuristic.
We therefore recommend the local search improvement as a relatively cheap post-processing
improvement to any existing algorithm.

6.4 Correlation of weak coloring numbers with other parameters

While it is undeniable that weak coloring numbers have immense algorithmic power from a
theoretical perspective, the efficient computation of such weak coloring orders is only one
component to leverage them in practice: we also need these numbers to be reasonably low.
So far, this had only been established on a smaller scale [20, 53] for a related measure. Here,
we computed the weak coloring number for r ∈ {1, . . . , 5} for 1675 real-world networks from
various sources [36, 39, 58, 7, 1]. Figure 1 summarizes our findings: for r ∈ {1, . . . , 3} we
find a modest correlation with n and a significant correlation with m. The correlation with n
becomes quite pronounced for r = 5; the probable reason being that for all networks involved
logn ≤ 10. Still, even in the worst examples wcol5 is at least one order of magnitude smaller
than n or m. We further see a high correlation between wcol1 and the average degree d̄
which vanishes for larger radii. It is no big surprise that d̄ and the degeneracy wcol1 are
highly correlated since these values are only far apart in graphs with highly inhomogeneous
densities.

The low dependence on the maximum degree confirms the findings of [20]: the exact
shape of the degree distribution’s tail is much more relevant than the singular value of the
maximum degree. Finally, note that in our graphs the degeneracy wcol1 practically does not
grow with n.
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Table 4 Aggregated results of uniform quasi-wideness on medium set for r = 3 and r = 5 (values
for r = 2 and r = 4 can be found in the full version of the paper): total size of all deleted and
independent sets, total score (total size of largest equivalance classes w.r.t. deleted vertices), and
total running time.

r algorithm start with whole V (G) start with 20% of V (G)
deleted independent score time deleted independent score time

3

mfcs 5076 11471 2153 0:01.25 1922 3459 1135 0:00.48
new1 78 2345 2211 0:37.53 49 1192 1159 0:29.96
new2 84 3820 3673 0:34.34 49 2132 2096 0:23.36
new_ld — — — — 5 2926 2873 11:10.63
tree1 7 6072 5686 0:02.77 4 2652 2598 0:00.48
tree2 5 5645 5645 0:01.00 4 2603 2603 0:00.38
ld_it 7 6136 5748 0:01.71 4 2741 2688 0:00.39
ld 5 6471 6296 0:08.13 6 2972 2871 0:02.01

5

mfcs 7946 15773 1164 0:01.93 4057 4396 594 0:00.67
new1 115 1623 1445 4:38.57 84 709 676 3:20.15
new2 122 2079 1888 4:19.50 103 1036 982 3:07.82
new_ld — — — — — — — —
tree1 11 2988 2643 0:02.85 4 1325 1282 0:00.53
tree2 5 2603 2603 0:01.05 4 1284 1284 0:00.45
ld_it 12 3102 2752 0:01.84 5 1380 1336 0:00.64
ld 7 3192 3043 0:29.32 5 1517 1473 0:07.15

7 Uniform quasi wideness: results

Table 4 gathers aggregated data from our experiments on medium dataset. (Full data can be
downloaded from [41, 3].) Every tested algorithm has been run on every test with timeout
10 minutes and with radii r ∈ {2, 3, 4, 5} and with the starting set either A = V (G) or a
random subset of 20% of vertices of V (G).

Data indicate the simple heuristic, ld, as the best choice in most scenarios, as it has
always best or nearly-best total score and runs relatively quickly. The third variant of the
new algorithm new_ld has comparable results, but is inefficient and does not finish within
the timeout. Other variants new1 and new2 as well as mfcs are significantly outperformed
by other approaches. Out of other approaches with provable guarantees, the variants tree1,
tree2, and ld_it provide results in most cases less than 10% worse than the heuristic ld,
with tree2 being consistently worse.

To sum up, our experiments show that the simple heuristic ld gives best results, but if
one is interested in algorithm with provable guarantees, one should choose one of the variant
tree1 over mfcs or new1/new2.

8 Conclusions

We have conducted a thorough empirical evaluation of algorithms for computing generalized
coloring numbers and uniform quasi-wideness. In both cases, one of the simplest heuristics,
without any theoretical guarantees, outperformed the rest. In particular, our new algorithm
for uniform quasi-wideness, whose development was motivated by conservativeness of the
previous approach of [34], performed rather poorly in the experiments. From the algorithms



W. Nadara, M. Ł. Pilipczuk, R. Rabinovich, F. Reidl, and S. Siebertz 14:13

with provable guarantees, the experiments indicated a variant of the algorithm of [62] as the
algorithm of choice for generalized coloring numbers and a variant of the algorithm of [52] as
the algorithm of choice for uniform quasi-wideness.
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Our combined algorithm outperforms the others both in theory and in practice when the num-
ber of levels is small (k ≤ 22), which works well for applications such as designing multi-level
infrastructure or network visualization.
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1 Introduction

Let G = (V,E) be an undirected, connected graph with non-negative edge costs c : E → R+,
and let T ⊆ V be a set of vertices called terminals. A Steiner tree is a tree in G that spans T .
The network (graph) Steiner tree problem (ST) is to find a minimum-cost Steiner tree E′ ⊆ E,
where the cost of E′ is c(E′) =

∑
e∈E′ c(e). ST is one of Karp’s initial NP-hard problems [13];

see also a survey [23], an online compendium [12], and a textbook [20].
Due to its practical importance in many domains, there is a long history of exact and

approximation algorithms for the problem. The classical 2-approximation algorithm for
ST [11] uses the metric closure of G, i.e., the complete edge-weighted graph G∗ with vertex
set T in which, for every edge uv, the cost of uv equals the length of a shortest u–v path
in G. A minimum spanning tree of G∗ corresponds to a 2-approximate Steiner tree in G.

Currently, the last in a long list of improvements is the LP-based approximation algorithm
of Byrka et al. [6], which has a ratio of ln(4) + ε < 1.39. Their algorithm uses a new iterative
randomized rounding technique. Note that ST is APX-hard [5]; more concretely, it is NP-hard
to approximate the problem within a factor of 96/95 [8]. This is in contrast to the geometric
variant of the problem, where terminals correspond to points in the Euclidean or rectilinear
plane. Both variants admit polynomial-time approximation schemes (PTAS) [2,16], while
this is not true for the general metric case [5].

In this paper, we consider a natural generalization of ST where the terminals appear on
“levels” and must be connected by edges of appropriate levels. We propose new approximation
algorithms and compare them to existing ones both theoretically and experimentally.

I Definition 1 (Multi-Level Steiner Tree (MLST) Problem). Given a connected, undirected
graphG = (V,E) with edge weights c : E → R+ and k nested terminal sets T1 ⊂ · · · ⊂ Tk ⊆ V ,
a multi-level Steiner tree consists of k nested edge sets E1 ⊆ · · · ⊆ Ek ⊆ E such that E1
spans T1, . . . , Ek spans Tk. The cost of an MLST is defined by c(E1) + c(E2) + · · ·+ c(Ek).
The MLST problem is to find an MLST EOPT,1 ⊆ · · · ⊆ EOPT,k ⊆ E with minimum cost.

Since the edge sets are nested, we can also express the cost of an MLST as follows:

kc(E1) + (k − 1)c(E2\E1) + · · ·+ c(Ek\Ek−1).

http://dx.doi.org/10.4230/LIPIcs.SEA.2018.15
https://arxiv.org/abs/1804.02627


R. Ahmed et al. 15:3

Figure 1 An illustration of a 3-level MLST for the graph at the right. Solid and open circles
represent terminal and non-terminal nodes, respectively. Note that the level 1 tree (left) is contained
in the level 2 tree (mid), which is in turn contained in the level 3 tree (right).

This emphasizes that the total cost c(e) of an edge that appears at level ` is (k − `+ 1)c(e).
We denote the cost of an optimal MLST by OPT. We can write

OPT = kOPT1 + (k − 1)OPT2 + · · ·+ OPTk

where OPT1 = c(EOPT,1) and OPT` = c(EOPT,`\EOPT,`−1) for 2 ≤ ` ≤ k. Thus OPT`

represents the cost of edges on level ` but not on level ` − 1 in the minimum cost MLST.
Figure 1 shows an example of an MLST for k = 3.

Applications. This problem has natural applications in designing multi-level infrastructure
of low cost. Apart from this application in network design, multi-scale representations of
graphs are useful in applications such as network visualization, where the goal is to represent
a given graph at different levels of detail.

Previous Work. Variants of the MLST problem have been studied previously under various
names, such as Multi-Level Network Design (MLND) [3], Multi-Tier Tree (MTT) [15],
Quality-of-Service (QoS) Multicast Tree [7], and Priority-Steiner Tree [9].

In MLND, the vertices of the given graph are partitioned into k levels, and the task is to
construct a k-level network. For 1 ≤ ` ≤ k, let c`(e) be the cost of edge e if it is in level `.
The vertices on each level must be connected by edges of the corresponding level or higher,
and edges of higher level are more costly, that is, 0 ≤ ck(e) ≤ · · · ≤ c1(e) for any edge e. The
cost of an edge partition is the sum of all edge costs, and the task is to find a partition of
minimum cost. Let ρ be the ratio of the best approximation algorithm for (single-level) ST,
that is, currently ρ = ln(4) + ε < 1.39. Balakrishnan et al. [3] gave a 4/3ρ-approximation
algorithm for 2-level MLND with proportional edge costs, that is, c`(e) = ck(e)(k − `+ 1).
Note that the definitions of MLND and MLST treat the bottom level differently. While
MLND requires that all vertices are connected eventually, this is not the case for MLST.
In this respect, MLST is more general than MLND, which makes it harder to approximate.
On the other hand, MLND is more flexible in terms of edge costs. Whereas the Steiner tree
problem is a special case of the MLST problem for k = 1, the same problem is a special case
of MLND for k = 2, by setting c2(e) = 0.

For MTT, which is equivalent to MLND, Mirchandani [15] presented a recursive algorithm
that involves 2k Steiner tree computations. For k = 3, the algorithm achieves an approxima-
tion ratio of 1.522ρ independently of the edge costs c1, . . . , ck : E → R+. For proportional
edge costs, Mirchandani’s analysis yields even an approximation ratio of 1.5ρ for k = 3.
Recall, however, that this assumes Tk = V , and setting the edge costs on the bottom level to
zero means that edge costs are not proportional.

In the QoS Multicast Tree problem [7] one is given a graph, a source vertex s, and
a level between 1 and k for each terminal (1 meaning important). The task is to find a
minimum-cost Steiner tree that connects all terminals to s. The level of an edge e in this
tree is the minimum over the levels of the terminals that are connected to s via e. The cost
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of the edges and of the tree are as above. As a special case, Charikar et al. [7] study the rate
model, where edge costs are proportional, and show that the problem remains NP-hard if all
vertices (except the source) are terminals (at some level). Note that if we choose as source
any vertex at the top level T1, then MLST can be seen as an instance of the rate model.

Charikar et al. [7] gave a simple 4ρ-approximation algorithm for the rate model. Given
an instance ϕ, their algorithm constructs an instance ϕ′ where the levels of all vertices are
rounded up to the nearest power of 2. Then the algorithm simply computes a Steiner tree at
each level of ϕ′ and prunes the union of these Steiner trees into a single tree. The ratio can
be improved to eρ, where e is the base of the natural logarithm, using randomized doubling.

Instead of taking the union of the Steiner trees on each rounded level, Karpinski et al. [14]
contract them into the source in each step, which yields a 2.454ρ-approximation. They also
gave a (1.265+ε)ρ-approximation for the 2-level case. (Since these results are not stated with
respect to ρ, but depend on several Steiner tree approximation algorithms – among them the
best approximation algorithm with ratio 1.549 [21] available at the time – we obtained the
numbers given here by dividing their results by 1.549 and stating the factor ρ.)

For the more general Priority-Steiner Tree problem, where edge costs are not necessarily
proportional, Charikar et al. [7] gave a min{2 ln |T |, kρ}-approximation algorithm. Chuzhoy
et al. [9] showed that Priority-Steiner Tree does not admit an O(log logn)-approximation
algorithm unless NP⊆DTIME(nO(log log log n)). For Euclidean MLST, Xue at al. [24] gave a
recursive algorithm that uses any algorithm for Euclidean Steiner Tree (EST) as a subroutine.
With a PTAS [2, 16] for EST, the approximation ratio of their algorithm is 4/3 + ε for k = 2
and (5 + 4

√
2)/7 + ε ≈ 1.5224 + ε for k = 3.

Our Contribution. We introduce and analyze two intuitive approximation algorithms for
MLST – bottom-up and top-down; see Section 2.1. The bottom-up heuristic uses a Steiner
tree at the bottom level for the higher levels after pruning unnecessary edges at each level.
The top-down heuristic first computes a Steiner tree on the top level. Then it passes edges
down from level to level until the bottom level terminals are spanned.

We then propose a composite heuristic that generalizes these and examines all possible
2k−1 (partial) top-down and bottom-up combinations and returns the one with the lowest
cost; see Section 2.2. We propose a linear program that finds the approximation ratio of the
composite heuristic for any fixed value of k. We compute the explicit approximation ratios
for up to 22 levels, which turn out to be better than those of previously known algorithms.
The composite heuristic requires, however, 2k ST computations.

Therefore, we propose a procedure that achieves the same approximation ratio as the
composite heuristic but needs only 2k ST computations. In particular, it achieves a ratio of
1.5ρ for k = 3 levels, which settles a question posed by Karpinski et al. [14] who were asking
whether the 1.5224 + ε-approximation of Xue at al. [24] can be improved for k = 3. Note
that Xue et al. treated the Euclidean case, so their ratio does not include the factor ρ. We
generalize an integer linear programming (ILP) formulation for ST [19] to obtain an exact
algorithm for MLST; see Section 3. We experimentally evaluate several approximation and
exact algorithms on a wide range of problem instances; see Section 4. The results show that
the new algorithms are also surprisingly good in practice. We conclude in Section 5.

2 Approximation Algorithms

In this section we propose several approximation algorithms for MLST. In Section 2.1, we
show that the natural approach of computing edge sets either from top to bottom or vice versa,
already give O(k)-approximations; we call these two approaches top-down and bottom-up,
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and denote their cost by TOP and BOT, respectively. Then, we show that running the two
approaches and selecting the solution with minimum cost produces a better approximation
ratio than either top-down or bottom-up.

In Section 2.2, we propose a composite approach that mixes the top-down and bottom-up
approaches by solving ST on a certain subset of levels, then propagating the chosen edges
to higher and lower levels in a way similar to the previous approaches. We then run the
algorithm for each of the 2k−1 possible subsets, and select the solution with minimum cost.
For relatively small values of k (k ≤ 22), our results improve over the state of the art.

2.1 Top-Down and Bottom-Up Approaches
We present top-down and bottom-up approaches for computing approximate multi-level
Steiner trees. The approaches are similar to the MST and Forward Steiner Tree (FST)
heuristics by Balakrishnan et al. [3]; however, we generalize the analysis to an arbitrary
number of levels.

In the top-down approach, we compute an exact or approximate Steiner tree ETOP,1
spanning T1. Then we modify the edge weights by setting c(e) := 0 for every edge e ∈ ETOP,1.
In the resulting graph, we compute a Steiner tree ETOP,2 spanning T2. This extends ETOP,1
in a greedy way to span the terminals in T2 not already spanned by ETOP,1. Iterating this
procedure for all levels yields a solution ETOP,1 ⊆ · · · ⊆ ETOP,k ⊆ E with cost TOP.

In the bottom-up approach, we compute a Steiner tree EBOT,k spanning the terminals Tk

in level k. Then, for each level `, we obtain EBOT,` as the smallest subtree of EBOT,k that
spans all the terminals in T`, giving a solution with cost BOT.

A natural approach is to run both top-down and bottom-up approaches and select the
solution with minimum cost. This yields an approximation ratio better than those from
top-down or bottom-up. Let ρ ≥ 1 denote the approximation ratio for ST (that is, ρ = 1
corresponds to using an exact ST subroutine).

I Theorem 2. For k ≥ 2 levels, the top-down approach is a k+1
2 ρ-approximation to MLST,

the bottom-up approach is a kρ-approximation, and taking the minimum of TOP and BOT
is a k+2

3 ρ-approximation.

Proof. We give the proof for an arbitrary number of levels in the full version [1]; here
we treat only the case k = 2. We have OPT = 2OPT1 + OPT2. Let TOP be the total
cost produced by the top-down approach, and let TOP` = c(ETOP,`\ETOP,`−1) denote the
cost of edges on level ` but not level ` − 1, produced by the top-down approach, so that
TOP = 2TOP1 + TOP2. Define BOT and BOT` analogously. Let MIN` denote the cost of
a minimum Steiner tree over terminals T` with original edge weights, independently of other
levels, so that MIN1 ≤ MIN2 ≤ . . . ≤ MINk.

I Lemma 3. The following inequalities relate TOP with OPT:

TOP1 ≤ ρOPT1 (1)
TOP2 ≤ ρ(OPT1 + OPT2) (2)

Proof. (1) follows from the fact that ETOP,1 is a ρ-approximation for ST over T1, that is,
TOP1 ≤ ρMIN1 ≤ ρOPT1. To show (2), note that TOP2 is at most ρ times the cost (denote
MIN′2) of a minimum Steiner tree over T2 in the instance obtained by setting c(e) = 0 for
each e ∈ ETOP,1. Thus, TOP2 ≤ ρMIN′2 ≤ ρMIN2. Additionally, since EOPT,2 spans T2 by
definition, we have MIN2 ≤ OPT1 + OPT2, so TOP2 ≤ ρ(OPT1 + OPT2) as desired. J
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Figure 2 The analysis of the top-down approach (light and dark blue) is asymptotically tight
for two layers (optimal solution in light and dark red). The dark vertices and edges are on the
top level, the white vertices and light edges are on the bottom level. Here, OPT = 2`, while
TOP = 2(`− ε) + `− 1 = 3`− 2ε− 1.

1

1

1

1

1 + ε

︸
︷︷

︸

`
ed
g
es

(a) (b) (c) (d) (e)

Figure 3 The analysis of the bottom-up approach (light and dark green) is asymptotically tight
for two layers (optimal solution in light and dark red). Here, OPT = `+ 1 + 2ε, while BOT = 2`.

Combining (1) and (2), we have TOP = 2TOP1 + TOP2 ≤ 3ρOPT1 + ρOPT2 ≤ 3ρOPT1 +
3
2ρOPT2 = 3

2ρOPT, and hence the top-down approach provides a 3
2ρ-approximation when

k = 2. In Fig. 2 we provide an example showing that our analysis is tight for ρ = 1.

I Lemma 4. The following inequality relates BOT with OPT:

BOT1 + BOT2 ≤ ρ(OPT1 + OPT2)

Proof. This follows from the fact that BOT1 + BOT2 ≤ ρMIN2, and that the tree with cost
OPT1 + OPT2 spans T2 with cost at least MIN2. J

Hence, BOT = 2BOT1 +BOT2 ≤ 2(BOT1 +BOT2) ≤ 2ρ(OPT1 +OPT2) ≤ 2ρ(2OPT1 +
OPT2) = 2ρOPT. Again, the approximation ratio of 2 (for ρ = 1) is asymptotically tight;
see Figure 3.

We show that taking the better of the two solutions returned by the top-down and the
bottom-up approach provides a 4

3ρ-approximation to MLST for k = 2. To prove this, we use
the fact that min{x, y} ≤ αx+ (1− α)y for any real numbers x, y, and α ∈ [0, 1]. Thus,

min{TOP,BOT} ≤ α(3ρOPT1 + ρOPT2) + (1− α)(2ρOPT1 + 2ρOPT2)
= (2 + α)ρOPT1 + (2− α)ρOPT2

Setting α = 2
3 gives min{TOP,BOT} ≤ 8

3ρOPT1 + 4
3ρOPT2 = 4

3ρOPT. Combining the
graphs in Figures 2 and 3, we can show that, asymptotically, the ratio 4

3 is tight.
For k > 2 levels, the inequalities in Lemmas 3 and 4 generalize; we provide the proof in

the full version [1]. J
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Q = {7 = k}

Q = {1, 2, . . . , 7 = k}

`1= k

`1=1

`1=2Q = {2, 6, 7 = k}
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Level:

Bottom-up:
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Figure 4 Illustration of a composite heuristic for an arbitrary choice of Q = {`1, `2, · · · , `m}.
Blue arrows pointing right indicate bottom-up propagations (prune E`i to get E`i−1). Orange
curved arrows pointing left indicate top-down propagations (set to 0 the cost of edges in E`i when
computing E`i+1). Red arrows indicate where the algorithms starts. Bottom-up and top-down
heuristics are special cases with Q = {k}, and Q = {1, 2, . . . , k}, respectively.

2.2 Composite Algorithm
We describe an approach that generalizes the above approaches in order to obtain a better
approximation ratio for k > 2 levels. The main idea behind this composite approach is the
following: In the top-down approach, we choose a set of edges ETOP,1 that spans T1, and
then propagate this choice to levels 2, . . . , k by setting the cost of these edges to 0. On the
other hand, in the bottom-up approach, we choose a set of edges EBOT,k that spans Tk,
which is propagated to levels k − 1, . . . , 1. The idea is that for k > 2, we can choose a set of
intermediate levels and propagate our choices between these levels in a top-down manner,
and to the levels lying in between them in a bottom-up manner.

Formally, let Q = {`1, `2, . . . , `m} with 1 ≤ `1 < `2 < · · · < `m = k be a subset of levels
sorted in increasing order. We first compute a Steiner tree E`1 = ST (G,T`1) for level `1,
and then use it to construct trees E`1−1, . . . , E1 similarly to the bottom-up approach. Then,
we set the weights of E`1 to zero (as in the top-down approach) and compute a Steiner tree
E`2 = ST (G′, T`2) for level `2 in the reweighed graph. Again, we can use E`2 to construct
the trees E`2−1 to E`1+1. Repeating this procedure until spanning E`m = Ek results in
a solution to MLST. Note that the top-down and bottom-up heuristics are special cases
of this approach, with Q = {1, 2, . . . , k} and Q = {k}, respectively. Figure 4 provides an
illustration of the propagations in the top-down, in the bottom-up, and in a general heuristic.
Let CMP(Q) be the cost of the MLST returned by the composite approach over some set Q.

For any choice of Q, we have CMP(Q) ≤ ρ
∑m

i=1(k − `i−1)MIN`i , with the convention
`0 = 0. The proof of this claim is similar to that of Lemma 3: when we compute E`1 and
propagate its edges to all levels, we incur a cost of at most ρkMIN`1 . When we compute E`2 ,
we also construct the trees E`2−1, . . . , E`1+1. Using the lower bound OPT ≥

∑k
`=1 MIN`, we

can find an upper bound for the approximation ratio t. Without loss of generality, assume∑k
`=1 MIN` = 1, so that OPT ≥ 1. Also, since all the equations and inequalities scale by ρ,

we let ρ = 1. Hence, we have

t = CMP(Q)
OPT ≤

ρ
∑m

i=1(k − `i−1)MIN`i∑k
`=1 MIN`

=
m∑

i=1
(k − `i−1)MIN`i

.

As observed above, both the top-down and the bottom-up approaches (which, due to
Theorem 2, are k+1

2 - and k-approximations, respectively) are two of the 2k−1 heuristics
possible in the composite approach. For the top-down heuristic, TOP = CMP({1, 2, . . . , k}) ≤
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kMIN1 + (k − 1)MIN2 + . . . + MINk ≤ k+1
2 , with equality when MIN1 = MIN2 = . . . =

MINk = 1
k . For the bottom-up heuristic, BOT = CMP({k}) ≤ kMINk ≤ k.

An important choice ofQ isQ = {k−2q+1 : 0 ≤ q ≤ qmax = blog2 kc}. For k = 2qmax+1−1,
the weakest upper bound occurs when MIN1 = · · · = MINk−2qmax = 0 and MINk−2q

max+1 =
· · · = MINk = 1/2qmax resulting in t ≤

∑qmax
q=0 2q+1 − 1/2qmax ≤ 2qmax+2/2qmax = 4. Indeed,

this choice of Q produces the 4ρ-approximation (QoS) given by Charikar et al. [7].
When k = 2, the only 22−1 = 2 composite heuristics are top-down and bottom-up (see

Section 2.1). For k ≥ 2, the set {1, . . . , k} has 2k−1 subsets that contain k, so there are 2k−1

different choices of Q. The composite algorithm executes all of them and picks the solution
with minimum cost (denoted CMP):

CMP = min
Q⊆{1,...,k}

k∈Q

CMP(Q).

More generally, for k ≥ 2, the composite heuristic produces a t-approximation, where t is
the largest real number that simultaneously satisfies the 2k−1 inequalities

t ≤
m∑

i=1
(k − `i−1)MIN`i

,

for all subsets {`1, . . . , `m} ⊆ {1, 2, . . . , k} that contain k and for all choices of MIN1, . . . ,

MINk such that MIN1 ≤ MIN2 ≤ · · · ≤ MINk and
∑k

`=1 MIN` = 1. The system of 2k−1

inequalities can be expressed in matrix form as

Mks ≥ t · 12k−1×1,

where s = [MIN1,MIN2, · · · ,MINk]T and Mk is a (2k−1× k)-matrix that can be constructed
recursively as

Mk =
[
k · 12k−2×1 Mk−1

02k−2×1 Pk−1 +Mk−1

]
with Pk =

[
12k−2×1 02k−2×(k−1)
02k−2×1 Pk−1

]
,

starting with the 1× 1 matrices M1 = [1] and P1 = [1]. Therefore, for each value of k, we
can find the approximation ratio of the composite algorithm by solving a linear program
(LP). We summarize our discussion as follows.

I Theorem 5. For any k = 2, . . . , 22, the composite algorithm yields a t-approximation to
MLST, where the values of t are listed in Figure 5.

Neglecting the factor ρ for now, the approximation ratio t = 3/2 for k = 3 is better than
the ratio of (5 + 4

√
2)/7 + ε ≈ 1.5224 + ε guaranteed by Xue et al. [24] for the Euclidean case.

(The additive constant ε in their ratio stems from using Arora’s PTAS as a subroutine for
Euclidean ST, which corresponds to the multiplicative constant ρ for using an ST algorithm
as a subroutine for MLST.) Recall that an improvement for k = 3 was posed as an open
problem by Karpinski et al. [14]. Also, for each of the cases 4 ≤ k ≤ 22 our results in
Theorem 5 improve the approximation ratios of eρ ≈ 2.718ρ and 2.454ρ guaranteed by
Charikar et al. [7] and by Karpinski et al. [14], respectively. On the other hand, our ratios
increase with k, while their results hold for every k. The graph of the approximation ratio
of the composite algorithm (see Figure 5) for k = 1, . . . , 22 suggests that it will stay below
2.454ρ for values of k much larger than 22.

Since the number of heuristics in the composite algorithm grows exponentially with k, it
is computationally efficient only for small k. Indeed, for k levels, the composite heuristic
requires 2k ST computations. In the following, we show that we can achieve the same
approximation guarantee with at most 2k ST computations.
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k t/ρ

1 1.000
2 1.333
3 1.500
4 1.630
5 1.713
6 1.778
7 1.828
8 1.869
9 1.905

10 1.936
11 1.963

k t/ρ

12 1.986
13 2.007
14 2.025
15 2.041
16 2.056
17 2.070
18 2.083
19 2.094
20 2.106
21 2.116
22 2.125

Figure 5 Approximation ratios for the composite algorithm for k = 1, . . . , 22 (blue curve),
compared to the ratio t/ρ = e (red dashed line) guaranteed by the algorithm of Charikar et al. [7]
and t/ρ = 2.454 (green dashed line) guaranteed by the algorithm of Karpinski et al. [14]. The table
to the right lists the exact values for the ratio t/ρ.

I Theorem 6. For a given instance of the MLST problem, a specific choice of Q∗ can be found
through k ST computations for which CMP(Q∗) is guaranteed the theoretical approximation
ratio of the composite heuristic.

Proof. Given a graph G = (V,E) with cost function c, and terminal sets T1 ⊂ T2 ⊂
· · · ⊂ Tk ⊆ V , compute a Steiner tree on each level and set MIN` = c(ST (G,T`)). Since
s = [MIN1, . . . ,MINk]T is not necessarily the optimal solution to the LP for computing the
approximation ratio t, there must be at least one constraint for which

∑m
i=1(k−`i−1)MIN`i

≤
t
∑k

`=1 MIN`. The minimum entry in the vector Mks corresponds to such a constraint. Let
q ∈ {1, . . . , 2k−1} be the index of this entry, and let Q∗ ⊆ {1, . . . , k} be the index set
corresponding to non-zero entries in the qth row of Mk. Then we have CMP(Q∗)/OPT ≤
(
∑m

i=1(k − `i−1)MIN`i
)/(
∑k

`=1 MIN`), which yields CMP(Q∗) ≤ t ·OPT. J

3 Exact Algorithm

Recall the well-known flow formulation for ST [3, 19]. It assumes that the input graph is
directed, which we can achieve by simply replacing each undirected edge by two directed
edges in opposite directions of the same cost. Recall that T is the set of terminals. Let s be
a fixed terminal node, the source. Then the ILP formulation for ST is as follows.

Minimize
∑

(u,v)∈E

c(u, v) · yuv

subject to
∑

vw∈E

xvw −
∑

uv∈E

xuv =


|T | − 1 if v = s

−1 if v ∈ T \ {s} for v ∈ V
0 else

0 ≤ xuv ≤ (|T | − 1) · yuv, and yuv ∈ {0, 1}
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In MLST, if an edge is selected on level `, it must be selected on all levels below, that is, on
levels `+ 1, . . . , k. The flow variables x`

uv and the binary variables y`
uv are now additionally

indexed by the level `. The intended meaning of y`
uv = 1 is that edge uv is selected on level `.

We constrain the graph on level ` to be a subgraph of the graph on level `+ 1 as follows:

y`+1
uv ≥ y`

uv for ` ∈ {1, 2, . . . , k − 1} and (u, v) ∈ E

We also modify the objective function in the natural way:

Minimize
k∑

`=1

∑
uv∈E

c(u, v) · y`
uv

In the full version of our paper [1], we provide two further ILP formulations of MLST. Among
the three, the above formulation uses the smallest number of constraints.

4 Experimental Results

Graph Data Synthesis. The graph data we used in our experiment are synthesized from
graph generative models. In particular, we used four random network generation models:
Erdős–Renyi [10], random geometric [18], Watts–Strogatz [22], and Barabási–Albert [4].
These networks are very well studied in the literature [17].

In each graph instance, we assign integer edge weights c(e) randomly and uniformly
between 1 and 10 inclusive. Even though the generated graphs are almost surely connected, it
is possible to get a disconnected graph. Therefore, in our experiment, we only use connected
graphs and discard the rest. Computational challenges of solving an ILP limit the size of the
graphs to a few hundred in practice.

Selection of Levels and Terminal Nodes. For each generated graph, we generated MLST
instances with k = 2, 3, 4, 5 levels. We adopted two strategies for selecting the terminals on
the k levels: linear vs. exponential. In the linear scenario, we select the terminals on each level
by randomly sampling b|V |(`+ 1)/(k+1)c nodes on level ` so that |T`+1|−|T`| ≈ |T`|−|T`−1|.
In the exponential case, we select the terminals at each layer by sampling uniformly randomly
b|V |/2k−`c nodes so that |Tl+1|/|Tl| ≈ |Tl|/|Tl−1|.

To summarize, a single instance of an input to MLST is characterized by four parameters:
network generation model NGM ∈ {ER,RG,WS,BA}, number of nodes |V |, number of
levels k, and the terminal selection method TSM ∈ {Linear,Exponential}.

Algorithms and Outputs. We implemented the bottom-up, top-down, and composite
heuristics described in Section 2 and the simple 4ρ-approximation algorithm by Charikar et
al. [7] for the QoS Multicast Tree problem, all in Python.

For evaluating the heuristcs, we also implemented the ILP described in Section 3 using
CPLEX 12.6.2 as ILP solver. We distributed the experiment on a high performance computer
(HPC) into multiple tasks. A single task performs the computation of 5 to 50 graphs. The
number of graphs varies because for smaller graphs we can combine more graphs in a single
task. For larger graphs, however, the time limit for a single task is not enough if the number
of graphs is too large.

For each instance of MLST, we compute the costs of the MLST from the ILP solution
(OPT), the bottom-up solution (BOT), the top-down solution (TOP), the composite heuristic
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(a) Barabási–Albert (b) Erdős–Rényi (c) Geometric (d) Watts–Strogatz

Figure 6 Performance of BOT, TOP, CMP, and CMP(Q∗) w.r.t. the number k of levels.

(a) Barabási–Albert (b) Erdős–Rényi (c) Geometric (d) Watts–Strogatz

Figure 7 Performance of BOT, TOP, CMP, and CMP(Q∗) w.r.t. the terminal selection method.

(CMP), the guaranteed performance heuristic (CMP(Q∗)) heuristic, and the simple 4ρ-
approximate Quality-of-Service heuristic (QoS) of Charikar et al. [7]. For the ST computation
we used the 2-approximation algorithm of Gilbert and Pollak [11].

After completing the experiment, we compared the results of the heuristics with exact
solutions. We show the performance ratio APP/OPT for each heuristic, and how they depend
on parameters of the experiment setup. For example, we investigate how the performance ratio
changes as |V | increases. Since each instance of the experiment setup involves randomness at
different steps, we generated 5 instances for any fixed setup (e.g., Geometric graph, |V | = 100,
5 levels, linear terminal selection).

We did not compare the running times of our implementations in detail since our Python
code is not optimized in this respect. As a rough measure, however, we list the number of
Steiner tree computations performed by each algorithm in the worst case – BOT: 1, TOP: k,
CMP: 2k, CMP(Q∗): 2k, and QoS: k.

Results. First, we examined how the performance of the heuristics compared with the exact
solution as the number of the levels k changed. In our experiments, k varies between 2
and 5. We show the results using box plots in Figure 6. As expected, the performance of
the heuristics gets slightly worse as k increases. The bottom-up approach had the worst
performance, while the composite heuristic performed very well in practice.

Second, we examined how the performance of the heuristics compared with the exact
solution for different terminal selection methods, either linear or exponential. We show
the results using box plots in Figure 7. Overall, the heuristics performed worse when the
sizes of the terminal sets decrease exponentially.

Third, we investigated how the heuristics perform with respect to the graph size |V |, for
each of the network models ER, RG, WS, and BA; see Figures 8–11. Note that the y-axes of
the graphs in these figures have a different scale than the graphs in Figures 6 and 7. Since
several instances share the same network size, we show minimum, maximum, and mean
values. Overall, the performance of the heuristics slightly deteriorated as |V | increased. Due
to lack of space, we omit the bottom-up heuristic here, which tends to be comparable to
or slightly worse than the top-down heuristic. Again, the composite heuristic yielded the
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(a) Top-down (b) Composite (c) CMP(Q∗)

Figure 8 Performance of TOP, CMP, and CMP(Q∗) on Erdős–Rényi graphs.

(a) Top-down (b) Composite (c) CMP(Q∗)

Figure 9 Performance of TOP, CMP, and CMP(Q∗) on Geometric graphs.

(a) Top-down (b) Composite (c) CMP(Q∗)

Figure 10 Performance of TOP, CMP, and CMP(Q∗) on Watts–Strogatz graphs.

(a) Top-down (b) Composite (c) CMP(Q∗)

Figure 11 Performance of TOP, CMP, and CMP(Q∗) on Barabási–Albert graphs.
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best performance; top-down and CMP(Q∗) were comparable. Data for the other heuristics
is available in the full version [1].

5 Conclusions

We presented several heuristics for the MLST problem and analyzed them both theoretically
and experimentally. Natural open problems include determining inapproximability results for
MLST, determining a closed-form expression for the approximation ratio of the composite
heuristic (Section 2.2), and generalizing the notion of multi-level graphs to related problems
(such as the node-weighted Steiner tree problem).
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Abstract
An elastic-degenerate string is a sequence of n sets of strings of total length N . It has been
introduced to represent multiple sequence alignments of closely-related sequences in a compact
form. For a standard pattern of length m, pattern matching in an elastic-degenerate text can be
solved on-line in time O(nm2 +N) with pre-processing time and space O(m) (Grossi et al., CPM
2017). A fast bit-vector algorithm requiring time O(N · dm

w e) with pre-processing time and space
O(m·dm

w e), where w is the size of the computer word, was also presented. In this paper we consider
the same problem for a set of patterns of total length M . A straightforward generalization of
the existing bit-vector algorithm would require time O(N · dM

w e) with pre-processing time and
space O(M · dM

w e), which is prohibitive in practice. We present a new on-line O(N · dM
w e)-time

algorithm with pre-processing time and space O(M). We present experimental results using both
synthetic and real data demonstrating the performance of the algorithm. We further demonstrate
a real application of our algorithm in a pipeline for discovery and verification of minimal absent
words (MAWs) in the human genome showing that a significant number of previously discovered
MAWs are in fact false-positives when a population’s variants are considered.
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1 Introduction

A set of closely-related sequences can be represented in different ways to reduce its size and
improve search performance. DNA sequences of the same species or closely-related species can
be combined into a pan-genome [17, 24, 13, 20], the result of a multiple sequence alignment
(MSA) of these sequences. Most regions in the DNA sequences are in consensus but they
exhibit differences at some positions consisting of letter substitutions, insertions or deletions.
Various data structures have been proposed for storing pan-genomes [8, 2, 22, 24] – many
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designs are realized from observing the result of aligning the related sequences in an MSA
fashion. Consider the following example.

ATGCAACGGGTA--TTTTA
ATGCAACGGGTATATTTTA
ATGCACCTGG----TTTTA

The first five columns of the MSA all match, so when this is compacted, it creates a
deterministic segment with a single string: ATGCA. The next letter in the MSA is A for the
first and second sequence but C for the third, making it the site of a variant. The second
variant in the example is similarly a single-base substitution variant. But the third variant
site consists of insertions and deletions. These are represented differently in state-of-the-art
data structures for the purpose of storage and indexing for on-line pattern searches.

Some researchers choose to represent the variants in the combined sequence in the form
of De Bruijn graphs [24] or specialized implementations of the data structure – Variation
Graphs [22]. Other researchers use Trie-based data structures such as the Bloom Filter Trie
in [8] or compressed Suffix Tree data structures [2]. All of these are indexes constructed
mainly for fast searching of patterns; and thus much effort has gone into solving this off-line
version of the problem through pre-processing the set of similar sequences [9, 14, 22, 15].
Less research to-date has gone into the on-line version of this problem [19, 12, 7, 3, 18].

A text-based, on-line searchable representation for a set of similar sequences was suggested
in [12], namely, the notion of elastic-degenerate string (ED string). Specifically, aligned
sequences can be compacted into one sequence made up of deterministic and non-deterministic
(or degenerate) segments. Deterministic segments contain letters that are in perfect conformity
among the different sequences, meaning all the letters match, while degenerate segments
mark polymorphic sites containing substitutions, insertions or deletions.

The MSA above can be converted into an ED string by representing the first deterministic
segment with the single string ATGCA, and representing the next segment, which happens to
be degenerate, with the set {A,C}. An empty string marker ε is used to represent a deletion,
as is done for the third degenerate site in the MSA, consisting of the set {TA,TATA,ε}. The
resulting ED string of the MSA above example is as follows.

T̃ =
{

ATGCA
}
·
{

A
C

}
·
{

C
}
·
{

G
T

}
·
{

GG
}
·


TA

TATA
ε

 · { TTTTA
}

The motivation for solving the on-line version of the problem is to remove the burden of
building disk-based indexes or rebuilding them with every update in the sequences. Indexes
are often cumbersome, take a lot of time and space to build, and require lots of disk space
to be stored. Their usage carries the assumption that the data is static or changes very
infrequently. Solutions to the on-line version can be beneficial for a number of reasons:
(a) efficient on-line solutions can be used in combination with partial indexes as practical
trade-offs; (b) efficient on-line solutions for exact pattern matching can be applied for fast
average-case approximate pattern matching, similar to standard strings; (c) on-line solutions
can be useful when one wants to search for a few patterns in many ED texts.

Variant Call Format (VCF) is a file format that has become the standard way of storing
variants for pan-genomes and in next-generation sequencing. These specially-formatted, often
compressed text files, in combination with a reference genome, are able to document all
insertions, deletions and substitutions that occur in a population. While it is possible – for
the purpose of searching for patterns – to recreate the genome of all individuals (samples)
in the pan-genome as deterministic strings, it is very impractical and requires a lot of
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processing power and disk space. It also defeats the purpose of storing the information in
the VCF format in the first place. We were motivated to make it possible to do on-line
searching of one or more patterns in a pan-genome without extracting sample sequences.
Our solution takes the position of variants in the VCF file and encodes them as degenerate
segments of an ED text. In this way, we are able to search a pan-genome on-line given the
reference sequence and the associated VCF files. We created a tool EDSO (available at https:
//github.com/webmasterar/edso) for creating ED files which are directly searchable.

Our Contributions. Our focus in this paper is extending existing solutions for exact on-line
pattern matching in ED texts, specifically, the algorithm of [7] through adding the ability to
search for multiple patterns simultaneously. Grossi et al. [7] presented an algorithm requiring
time O(N · dm

w e) with pre-processing time and space O(m · dm
w e), where m is the length of

the single pattern and w is the size of the computer word. A straightforward generalization
of the existing bit-vector algorithm for a set of patterns of total length M would require time
O(N · dM

w e) with pre-processing time and space O(M · dM
w e), which is prohibitive in practice.

In this paper we present a new algorithm requiring time O(N · dM
w e) with pre-processing

time and space O(M). We present experimental results using both synthetic and real data
demonstrating the performance of our algorithm. Finally, we present a real application of
our algorithm’s use as part of identifying and verifying minimal absent words (MAWs) in the
Homo sapiens pan-genome with data in the VCF taken from the 1000 Genomes Project [23].
Specifically, we show that a significant number of previously discovered MAWs are in fact
false-positives when a population of genomes is considered.

2 Definitions and Notation

2.1 Strings

We begin with a few definitions from [4]. An alphabet Σ is a non-empty finite set of letters of
size σ = |Σ|. A (deterministic) string on a given alphabet Σ is a finite sequence of letters of
Σ. For this work, we assume that the alphabet is fixed, i.e. σ = O(1). The length of a string
x is denoted by |x|. For two positions i and j on x, we denote by x[i . . j] = x[i] . . x[j] the
factor (sometimes called substring) of x that starts at position i and ends at position j (it is
empty if j < i), and by ε we denote the empty string. The set of all strings on an alphabet
Σ (including the empty string ε) is denoted by Σ∗. For any string y = uxv, where u and v
are strings, if u = ε then x is a prefix of y. Similarly, if v = ε then x is a suffix of y. If u and
v are non-empty strings, we call x an infix of y. We say that x is a proper factor of y if x is
a factor (resp. prefix/suffix) of y distinct from y.

We say that the string x is an absent word of string y if x does not occur in y. We
consider absent words of length at least 2 only. An absent word x of length m, m ≥ 2, of y
is minimal if and only if all its proper factors occur in y. This is equivalent to saying that a
minimal absent word (MAW) of y is of the form aub, a, b ∈ Σ, u ∈ Σ∗, such that au and ub
are factors of y but aub is not.

I Example 1. Let y = ABAACA. Its factors of lengths 1 and 2 are A, B, C, AA, AB, AC,
BA, and CA. The set of MAWs of y is obtained by combining the aforementioned factors:
{BB, BC, CB, CC, AAA, AAB, BAB, BAC, CAA, CAB, CAC}.
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2.2 Elastic-Degenerate Strings
An elastic-degenerate string (ED string) X̃ = X̃[0]X̃[1] . . . X̃[n − 1], of length n, on an
alphabet Σ, is a finite sequence of n degenerate letters. Every degenerate letter X̃[i], for all
0 ≤ i < n, is a non-empty set of strings X̃[i][j], with 0 ≤ j < |X̃[i]|, where each X̃[i][j] is a
deterministic string on Σ. The total size of X̃ is defined as

N =
n−1∑
i=0

|X̃[i]|−1∑
j=0

|X̃[i][j]|.

Only for the purpose of computing N , |ε| = 1. We remark that, for an ED string X̃, the size
and the length are two distinct concepts.

We say that a string y matches an ED string X̃ = X̃[0] . . . X̃[m′ − 1] of length m′ > 1,
denoted by y ≈ X̃, if and only if string y can be decomposed into y0 . . . ym′−1, yi ∈ Σ∗, such
that:
1. there exists a string s ∈ X̃[0] such that a suffix of s is y0 6= ε;
2. if m′ > 2, there exists s ∈ X̃[i], for all 1 ≤ i ≤ m′ − 2, such that s = yi;
3. there exists a string s ∈ X̃[m′ − 1] such that a prefix of s is ym′−1 6= ε.

Note that, in the above definition, we require that both y0 and ym′−1 are non-empty
to avoid spurious matches at the beginning or end of an occurrence. A string y is said to
have an occurrence ending at position j in an ED string T̃ if there exist i < j such that
T̃ [i] . . . T̃ [j] ≈ y, or, if there exists s ∈ T̃ [j] such that y occurs in s.

I Example 2. Suppose we have a pattern p = ACACA of length m = 5 and an ED string T̃
of length n = 6 and total size N = 18; the first occurrence of p starts at position 1 and ends
at position 2 of T̃ ; and the second one starts at position 2 and ends at position 4.

T̃ =
{

C
}
·
{

A
C

}
·


AC
ACC
CACA

 ·
{

C
ε

}
·
{

A
AC

}
·
{

C
}

We are now in a position to formally define the main problem of this paper.

Multiple Elastic-Degenerate String Matching (MEDSM )
Input: A set P of strings of total length M and an ED string T̃ of length n and total
size N .
Output: All pairs (p, j): an occurrence of string p ∈ P ends at position j in T̃ .

3 Algorithmic Toolbox

3.1 Suffix Tree
Let x be a string of length n > 0. The suffix tree ST x of string x is a compacted trie
representing all suffixes of x. The nodes of the trie which become nodes of the suffix tree are
called explicit nodes, while the other nodes are called implicit. Each edge of the suffix tree
can be viewed as an upward maximal path of implicit nodes starting with an explicit node.
Moreover, each node belongs to a unique path of that kind. Thus, each node of the trie can be
represented in the suffix tree by the edge it belongs to and an index within the corresponding
path. The label of an edge is its first letter. We let L(v) denote the path-label of a node v,
i.e. the concatenation of the edge labels along the path from the root to v. We say that v is
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path-labelled L(v). Additionally, D(v) = |L(v)| is used to denote the string-depth of node
v. Node v is a terminal node if its path-label is a suffix of x, that is, L(v) = x[i . . n − 1]
for some 0 ≤ i < n; here v is also labelled with index i. It should be clear that each factor
of x is uniquely represented by either an explicit or an implicit node of ST x. Once ST x is
constructed, it can be traversed in a depth-first manner to compute D(v) for each node v.

I Fact 3 ([5, 4]). Given a string x of length n, ST x can be constructed in time and space
O(n). Finding all Occp occurrences of a string p of length m in x can be performed in time
O(m+ Occp) using ST x.

3.2 The Shift-And Algorithm

The Shift-And algorithm is an exact pattern matching algorithm that takes advantage of the
parallelism of bitwise operations performed on a computer word [16]. It works by simulating
a Nondeterministic Finite Automaton (NFA) and uses bit-level operations to simultaneously
update the states of the NFA in a single CPU cycle. This offers speed-ups bounded by the
number of bits in a computer word w, where, typically, on modern computer architectures,
we have that w = 64. For short patterns, where m = O(w), searching a text of length n runs
in O(n) time but for longer patterns, the search takes O(n · dm

w e) time. The pre-processing
time of the algorithm is O(σ · dm

w e + m) = O(m) thus making it suitable for small-sized
alphabets and short patterns. The Shift-And algorithm can be easily generalized for a set of
patterns; it is then known as the Multiple Shift-And algorithm [16].

I Fact 4 ([16]). Given a set P of strings of total length M , a string x of length N , and
a computer word of size w, finding all occurrences of the patterns in P in x takes time
O(N · dM

w e) after pre-processing time O(M).

In addition to using the Shift-And algorithm for searching whole patterns, we take
advantage of its ability to compute suffix/prefix overlaps between string s ∈ T̃ [i], where T̃ [i]
is the ith set arriving on-line, and the set P of patterns we are searching for. Given s, we
can find all the prefixes of a pattern p ∈ P of length m by searching s[|s| −m+ 1 . . |s| − 1]
if |s| ≥ m or s[0 . . |s| − 1], otherwise. This updates the NFA to mark any prefixes of the
patterns occurring as suffixes of s. We store the states in a bit vector which we bitwise-OR
to itself for each string s ∈ T̃ [i]. The resulting state bit vector memorizes all the prefixes
ending at position i in T̃ , and we then use Shift-And in the searching stage of the algorithm
to search the (i+ 1)th set to find a suffix, that either completes the match for some pattern
in P , or further extends some prefix of a pattern, in which case the algorithm updates the
search state. We summarize the above description in the following fact.

I Fact 5. Given a set S of strings of total length N =
∑

s∈S |s| and a set P of strings of
total length M =

∑
p∈P |p|, computing the suffix/prefix overlaps of S and P can be done in

time O(N · dM
w e).

4 The Multi-EDSM Algorithm

4.1 Our Data Structure

We define the following auxiliary problem of independent interest.
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Occurrences Vector Data Structure (OccVec)
Input: A string x of length n.
Query: Given a string α on-line, return a pointer to a bit vector B, with B[i] = 1 if and
only if α occurs at starting position i of x, and otherwise B[i] = 0.

In what follows, we show the following lemma.

I Lemma 6. Given a parameter 1 ≤ τ ≤ dn/we, a data structure of size O(dn/τe · dn/we)
can be constructed in time and space O(dn/τe · dn/we) answering OccVec queries in time
O(|α|+ τ).

Let us denote the data structure of Lemma 6 over string x by Occ-Vectorx. Observe
that, if we set τ = 1, we essentially have the O(n · dn/we)-sized data structure proposed by
Grossi et al in [7], which is constructible in time and space O(n · dn/we).

Construction. We start by constructing the suffix tree ST x of x. By Fact 3, this can be
done in time and space O(n).

We next convert ST x to a binary tree using a standard procedure (see [6], for instance).
We process each explicit node of ST x with out-degree k > 2 as follows. Let v be a node
with children u1, . . . , uk, and k ≥ 3. We replace v with k − 1 new nodes v1, . . . , vk−1; make
u1 and u2 be the left and right children of v1, respectively; and for each ` = 2, . . . , k − 1, we
make v`−1 and u`+1 be the left and right children of v`, respectively. If v is not the root of
ST x then we set the parent of vk−1 to be the parent of v; otherwise, vk−1 is the root. This
procedure can at most double the size of ST x so still is in O(n). For clarity of presentation,
in what follows, we use ST x to refer to the resulting binary tree. (Note that we can keep a
copy of the original ST x and a pointer for each node from the original to its binary version).

We next rely on the classic notion of micro-macro tree decomposition [1]. We apply this
decomposition on (the binary version of) ST x. Let τ be some input parameter, 1 ≤ τ ≤ dn/we.
We decompose ST x in O(n/τ) disjoint subgraphs called micro trees. Each micro tree is of
size at most τ and contains at most two boundary nodes that are adjacent to nodes in other
micro trees. The topmost of these boundary nodes is the root of the whole micro tree, and
the other one is called the bottom boundary node. Such a decomposition is always possible
and can be found in time O(n) (see [1] for more details).

For each boundary node v of a micro tree, we store a bit vector bv, where bv[i] = 1, if the
terminal node representing the ith suffix of x is a descendant of v, and otherwise bv[i] = 0.
For the bottom boundary node v of micro tree t, bv can be computed by merging the bit
vectors from the roots of the micro trees that are adjacent to v and then add manually the
terminal nodes within t for the root boundary node of t. By the above description and
the fact that we have O(n/τ) micro trees, the total size of Occ-Vectorx, and therefore
the time to construct it, are bounded by O(n + dn/τe · dn/we) = O(dn/τe · dn/we), for
1 ≤ τ ≤ dn/we. Occ-Vectorx also includes a linked-list L of integers from [0, n− 1] used
to maintain the bit vectors when a new query arrives. This completes the construction.

Querying. Given a pattern α, we spell the pattern from the root of ST x until we reach the
last explicit node v. This takes time O(|α|) for constant-sized alphabets. There are then two
cases to consider:

If v is a boundary node of some micro tree, we simply return a pointer to bv; this takes
constant time.
If v is not a boundary node, we first need to obtain the starting positions (labels) of all
terminal nodes of the micro tree in the subtree rooted at v, and set the corresponding
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v

u

Figure 1 Three micro trees: the topmost in light blue and the bottommost ones in light red and
light green. If the query reaches node v, then the terminal node in the subtree rooted at v in the
topmost micro tree must be combined with the bit vector stored in the bottom boundary node u.

bits on in the bit vector bu, where u is the bottom boundary node of the micro tree. We
then return a pointer to the updated bu. (If no such node u exists, we simply set these
bits on in an empty bit vector.) The whole process takes time O(τ): traverse the micro
tree and set the bits on. We also need to store these starting positions in L for the next
query. In the beginning of the next query we will need to set the bits at these indices off
from bu and empty L. This maintenance cost requires time O(τ) due to the size of the
micro trees and so we charge it to this query. Inspect Figure 1 in this regard.

Hence any query requires time O(|α|+ τ). By the above description we ultimately arrive
at Lemma 6.

4.2 Pre-Processing Stage
The pre-processing stage of our algorithm consists in pre-processing the set P of our patterns.
We view the set P as the concatenation of its elements to form a new string y of length M .

The first step is the pre-processing of the pattern set P of combined length M in the
Mutiple Shift-And algorithm [16]. We create σ bit vectors of size dM

w e and for each letter
a in Σ we set Ia[i] = 1 if y[i] = a. Therefore this first step requires time and extra space
O(M + σ · dM

w e) = O(M), for constant-sized alphabets.
The second step is a simple application of Lemma 6 over string y of length M with the

additional steps of filtering out non-infix positions and subtracting 1 from the index positions.
This makes it possible to maintain infix extensions during the search stage. We build the
Occ-VectorP data structure by setting τ = dM

w e, thus restricting its size and construction
time to O(M), resulting also in O(|α|+ dM

w e) query time for the search stage.
The total time and space for the pre-processing stage are thus in O(M).

4.3 On-line Searching Stage
After the pre-processing stage, every degenerate letter S of text T̃ can be searched one after
the other in an on-line manner by passing them to the Search function (see Algorithm 1).
We maintain the state of the search in bit vector B in between searches and use temporary
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Algorithm 1 Multiple Elastic-Degenerate String Matching search function.
1: procedure Search(S)
2: if isFirstSegment(S) then
3: for s ∈ S do
4: if |s| ≥ mmin and s 6= ε then
5: B3 ← 0
6: Multi-Shift-And-Search(s, B3)
7: Report any matches found
8: B ← Overlaps(S)
9: else
10: B1 ← Overlaps(S)
11: if ε ∈ S then
12: B1 ← B1 | B
13: for s ∈ S and s 6= ε do
14: . Pattern suffix completion / full pattern searching
15: B2 ← B

16: Multi-Shift-And-Search(s, B2)
17: Report any matches found
18: . Maintain valid infix positions
19: if |s| ≤ mmax − 2 then
20: B3 ← B & Occ-VectorP (s)
21: B1 ← B1 | Left-Shift(B3, |s|)
22: B ← B1

bit vectors B1, B2 and B3 to update the state during processing. By mmin and mmax we
denote the length of the shortest and longest patterns in pattern set P , respectively.

In the first degenerate letter, for every string s ∈ S of length |s| ≥ mmin, we call the
Multi-Shift-And-Search function with a fresh state to find any patterns that occur in
s. In any case, the Overlaps function is called for computing the suffix/prefix overlaps
between every string s ∈ S and the set P of patterns we are searching for. The function
essentially memorises the prefixes starting in the current segment using B. By Facts 4 and 5,
lines 2-8 require O(||S|| · dM

w e) time. For subsequent degenerate letters, we use the state of B
from the previously searched letter to continue the search with Multi-Shift-And-Search.
This time the function is called regardless of the length of s because it is used to find whole
patterns as well as prefixes of patterns that began in the previously searched letters and
whose suffixes end in the current letter. By Facts 4 and 5, this requires O(||S|| · dM

w e) time.
Then we consider how to handle infixes (see line 19). We only need to process strings short

enough to be considered as infixes of a pattern and we query them with the Occ-VectorP

data structure to mark the positions where each infix starts. Querying Occ-VectorP for
a string s requires O(|s|+ τ) = O(|s|+ dM

w e) time by Lemma 6. We bitwise-AND the bit
vector it returns with B to maintain only the states started or continued from the previous
letter. On the next line, we use the Left-Shift function to update the position of the bits
to reflect the state of the search while ensuring that the bits are not shifted past the end of a
pattern. What bits remain as 1s are bitwise-ORed with B1 to update the state to maintain
partial search states. This takes time O(dM

w e).
The final line of the algorithm saves the final search state of the segment to bit vector

B, ready for the next on-line letter to be sent to the Search function. A full illustrative
example of the search stage is provided below.
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With the above description we arrive at the main result of this paper.

I Theorem 7. Algorithm Multi-EDSM solves the MEDSM problem in an on-line manner in
time O(N · dM

w e). Algorithm Multi-EDSM requires pre-processing time and space O(M).

Notably, our algorithm improves on the pre-processing time and space of [7] by a factor
of O(dm

w e); namely, it improves on the algorithm for a single pattern (EDSM problem [7]).

I Corollary 8. Algorithm Multi-EDSM solves the EDSM problem in an on-line manner in
time O(N · dm

w e). Algorithm Multi-EDSM requires pre-processing time and space O(m).

I Example 9. Given an ED string T̃ as shown below, we wish to search for the patterns
in set P = {ATAT, TAGA} of total length M = 8. A collection I of σ bit vectors are created
during the Shift-And pre-processing stage marking the positions of the letters in Σ of the
concatenated patterns. We also build Occ-VectorP . Note that the bit vectors are read
from right to left and recall that Occ-VectorP subtracts 1 from the index positions.

T̃ =
{

AT
A

}
·
{

AT
TA

}
·
{

TTTA
AGA

} IA 1010 0101
IC 0000 0000
IG 0100 0000
IT 0001 1010

The algorithm starts with T̃ [0], skips the Shift-And search of the strings in the segment
because they are too short, and computes bit vector B = 0001 0011 = Overlaps(T̃ [0]) on
line 8. The Overlaps function memorises the prefixes starting in the current segment using
B.

Then, the next segment is considered; on line 10 we compute the bit vector B1 =
0011 0011 = Overlaps(T̃ [1]). The next step is to check each string s ∈ T̃ [1] and after doing
Multi-Shift-And-Search(AT, B2) with state B (from T̃ [0]) it discovers a match for P [0]
and reports it. This time the Shift-And search function is called regardless of the length of s
because it is used to find whole patterns as well as suffixes of patterns that began in the
previous segments. The function completes the suffix by matching AT at positions IA[2] and
IT[3] to spell out P [0].

Then we consider how to handle infixes on line 19. We only need to process strings short
enough to be considered as infixes of a pattern and we query them with the Occ-VectorP

data structure to mark the positions where each infix starts. Calling Occ-VectorP (AT)
finds infix position 2 and returns 0000 0010. So B3 = 0000 0010 = B & 0000 0010, thus
maintaining the active search state. The Left-Shift function does bitwise left-shift of B3
by |s| positions whilst ensuring no 1s end up at or beyond the ending position of each pattern
in the set. What bits remain as 1s are bitwise-ORed with B1 to update the state to maintain
partial search states, but in this case, the 1 is shifted too far and B1 remains unchanged.

In the next iteration, we do Multi-Shift-And-Search(TA, B2) yielding no match. Then
we call Occ-VectorP (TA) which finds infix position 1 and returns 0000 0001 which we
bitwise-AND with B to take B3 = 0000 0001. Then Left-Shift is performed on B3 and
bitwise-ORing its result with B1 makes B1 = 0011 0111 because no boundaries are crossed.
Having searched all the strings in the segment, we save the state of the search to B on line 22
and observe that we have thus far matched ATA of P [0] spanning across T̃ [0] and T̃ [1].

Now we go ahead and search the final segment T̃ [2] of our example. We compute B1 =
0010 0001 = Overlaps(T̃ [2]) first and then by calling Multi-Shift-And-Search(TTTA,
B2) with the state B2 = B from the previous segment, we complete the partial match and
report finding P [0] in this segment. Calling this function again for the next string in the
segment, Multi-Shift-And-Search(AGA, B2) also completes the suffix for P [1], and we
report it.
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On the very last line of the algorithm we save the final search state of the segment to bit
vector B, ready for the next on-line letter to be sent to the Search function.

5 Experiments

Multi-EDSM code was written in C++ and compiled with g++ version 5.4.0 at optimization
level 3 (-O3) and scripts were written in Python 2.7. A simpler version of the Occ-VectorP

data structure has been implemented in which the user can set a memory limit to be used by
the program and then the analogous number of bit vectors are stored in the explicit nodes of
the suffix tree that are closer to the root. This is because the vast majority of the variation
strings to be queried in real datasets are rather short.

The following experiments were conducted on a desktop computer using one core of
Intel® CoreTM i7-2600S CPU at 2.8GHz and 8GB of RAM under 64-bit GNU/Linux. The
Multi-EDSM application code and generated experimental datasets and scripts are licensed
under the GNU General Public License (GPL-3.0); they are all freely available from https:
//github.com/webmasterar/multi-edsm.

5.1 Time Performance
To test the time performance of Multi-EDSM application, we devised two experiments. In
both experiments we set the memory limit of Multi-EDSM to 4GB for the program to use as
much memory as necessary.

In Figure 2a we measured the processing time when searching a randomly-generated
fixed ED text of length n = 1600000 (N = 5700610) over the DNA alphabet with randomly-
generated pattern sets doubling in length from length M = 1600 to M = 102400. The
text searched contains 10% degenerate segments and within each degenerate segment there
are 2 to 10 random strings of length 1 to 10 each. Similarly, in Figure 2b we measured
the processing time when searching randomly generated ED texts doubling in size from
N = 100000 to N = 6400000 with a fixed set of randomly-generated patterns of length
M = 3000. The text had 10% degenerate positions representing single-base substitutions.
(Uniform distribution has been used in all randomizations.)

As can be seen from the charts, the change in performance, whether it be an increase in
the patterns total length M or the total text size N , causes a linear increase in processing
time, which conforms to our theoretical findings (Theorem 7).

5.2 Comparison to EDSM-BV
To test the performance of Multi-EDSM compared against EDSM-BV [7] we searched the
same randomly-generated ED text of length n = 1600000 (N = 5700610) mentioned above
against multiple sets of randomly-generated patterns of length 40 each. First we tested with
a single pattern of length 40 and then the number of patterns in each set was incremented
in steps of 10 from 10 to 100 patterns of length 40 each. EDSM-BV is only able to search
one pattern at a time so we searched each pattern in a set individually and summed-up the
total time spent. We see from the chart in Figure 3 that for a single pattern the EDSM-BV
algorithm is fast, but it becomes immediately clear that for dictionary searching of even a
handful of patterns, Multi-EDSM becomes orders of magnitude faster.

5.3 Real Application
We designed a three stage pipeline for determining the validity of MAWs discovered in
the human genome. We obtained the GRCh37 chromosome sequences from Ensembl [10]

https://github.com/webmasterar/multi-edsm
https://github.com/webmasterar/multi-edsm
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(a) Processing time with increasing patterns total length on a fixed ED text of length
n = 1600000 (N = 5700610).
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(b) Processing time with increasing ED total text size on a fixed set of patterns of
total length M = 3000.

Figure 2 Time performance of Multi-EDSM.

and the associated phase 3 VCF files were obtained from the 1000 Genomes project [23]
on-line repositories. Phase 3 of the 1000 Genomes project contains 2504 individuals from
26 populations whose variants are encoded in VCF files. The first step in the pipeline was
to use emMAW [11] to extract MAWs of length between 3 and 12 from a concatenated
file of the 22 autosomes and two sex chromosomes. The filtered list of MAWs contained
161565 patterns with combined length M = 1937789. The second stage was to use the tool
EDSO to combine the reference chromosome sequences and the variants in the VCF files into
searchable ED string (EDS) format files. Then Multi-EDSM was used to search each of the
EDS files against the MAW patterns to produce a list of tuples marking the position of the
match and pattern id. The final stage was validation. A script was written to validate each
match, verifying a MAW genuinely exists for an individual at the identified position in the
chromosome. We have found that for each chromosome more than half the MAWs discovered
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Figure 3 Elapsed-time comparison of Multi-EDSM and EDSM-BV with an ED text of total size
N = 5700610 and sets of randomly-generated patterns of length 40 each.

Table 1 Ebola sequences absent from human reference genome but present in human pan-genome.

id sequence position variant id sample id ethnicity
RAW1 TTTCGCCCGACT 6:93819539 rs569027564 NA18606 Han Chinese
RAW2 TACGCCCTATCG 1:74075482 rs578167440 HG02146 Peruvian
RAW3 CCTACGCGCAAA 15:71003880 rs564150197 HG03598 Bengali

using Multi-EDSM exist in one or more individuals and are subsequently disqualified, i.e.
they are not really MAWs. Our compiled summary of the results show that 73% of MAWs
were disqualified, leaving only 43722 of 161565 potential MAWs remaining.

We applied the results of this pipeline to validate the work of Silva et. al. in [21] to
identify MAWs in Ebola virus genomes that are absent from the human genome. They
identify three MAWs of length 12, called RAW1, RAW2 and RAW3, that are not present
in the reference human genome sequence. These MAWs could be used to verify an Ebola
infection in a patient. However, we discovered from our results that each of the three MAWS
do in fact occur in one or more individuals in the 1000 Genomes dataset, although indeed
they are not that common. This means that they cannot be used as perfect identifiers for
Ebola virus infection and perhaps longer unique MAWs should be used instead. In Table 1
we list the position of the discovery of each MAW as well as information about the variant
and the id of one individual they occur in.

6 Final Remarks

It would be relevant [9] to investigate the problem of dictionary matching in elastic-degenerate
texts under the Hamming or edit distance models (see [3] for a single pattern).
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Abstract
Computing the matching statistics of a string S with respect to a string T on an alphabet of size
σ is a fundamental primitive for a number of large-scale string analysis applications, including the
comparison of entire genomes, for which space is a pressing issue. This paper takes from theory
to practice an existing algorithm that uses just O(|T | log σ) bits of space, and that computes a
compact encoding of the matching statistics array in O(|S| log σ) time. The techniques used to
speed up the algorithm are of general interest, since they optimize queries on the existence of
a Weiner link from a node of the suffix tree, and parent operations after unsuccessful Weiner
links. Thus, they can be applied to other matching statistics algorithms, as well as to any suffix
tree traversal that relies on such calls. Some of our optimizations yield a matching statistics
implementation that is up to three times faster than a plain version of the algorithm, depending
on the similarity between S and T . In genomic datasets of practical significance we achieve
speedups of up to 1.8, but our fastest implementations take on average twice the time of an
existing code based on the LCP array. The key advantage is that our implementations need
between one half and one fifth of the competitor’s memory, and they approach comparable
running times when S and T are very similar.
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1 Introduction

The matching statistics of a string S, called the query, with respect to another string T ,
called the text, is an array MSS,T [1..|S|] such that MSS,T [i] is the length of the longest prefix
of S[i..|S|] that occurs in T . MS is almost as old as the suffix tree itself, with applications
that include file transmission [26], the detection of sequencing errors and single-nucleotide
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variations in read collections [17], the computation of substring kernels between two sequences
by indexing just one of them [15, 22], and the construction of whole-genome phylogenies
[5, 25] using the average value of MS as a proxy for the cross-entropy of random sources [6].
The effectiveness of matching statistics in alignment-free phylogenetics has also motivated
variants that allow for a user-specified number of mismatches (see e.g. [1, 11, 18, 23, 24] and
references therein). Despite the typical input being of genomic scale, however, few of these
methods are explicitly designed for space efficiency.

Computing MSS,T is a classical problem in string processing. In most practical cases, a
large number of queries S are asked to a constant T , motivating the construction of an index
on T . The textbook solution scans S from left to right while traversing suffix links and child
links in the suffix tree of T , spending a total O(|S| log σ) time 1. Symmetrically, S can be
scanned from right to left, while taking Weiner links and parent links in the (compressed)
suffix tree of T [15]. Both ways require access to the string depth of a suffix tree node, which
can be encoded implicitly in Θ(|T | log |T |) bits of total space in the longest common prefix
(LCP) array of T , and decoded in constant time per node using range-minimum queries on
the array [15]. In some practical datasets, most LCP values are small and can be encoded in
less than one byte. Alternatively, each depth value can be extracted from a compressed suffix
array. If such array is encoded in O(|T | log σ) bits, the best known time complexity for this
operation is O(logε |T |), which is often fast enough in practice [19]. Asymptotic complexity
increases when the compressed suffix array is encoded in |T | log σ+o(|T |)+O(min(σ, |T | log σ))
bits or in |T | log σ(1 + o(1)) +O(min(σ, |T | log σ)) bits. A third approach does not require
access to string depths at all, and achieves O(|T | log σ) bits of peak space while keeping
running time to O(|S| log σ) given the indexes [3]. Such asymptotic performance is attractive
for datasets, like whole genomes or collections of genomes, with large overall size and long
repeats. The algorithm in [3] has an additional feature that is useful for large datasets: it
does not output MSS,T itself, which takes |S| log |S| bits, but an encoding that takes just
2|S| bits, and that allows one to later retrieve MS[i] in constant time for any i, using just
o(|S|) more bits.

This paper studies a number of practical variants of the algorithm described in [3], which
use the same data structures as in the original paper, but improve on its speed. As customary,
since indexing T is performed only once and requires standard data structures, we disregard
index construction and focus just on the time for computing MSS,T given the indexes.

2 Preliminaries

2.1 Strings
Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let T = [1..σ]n−1#
be a string. Given a string W ∈ [1..σ]k, we call the reverse of W the string W obtained
by reading W from right to left. For a string W ∈ [1..σ]k# we abuse notation, denoting
by W the string W [1..k]#. We call repeat a substring W of T that occurs more than once
in T , and we call left-extensions (respectively, right-extensions) of W the set of distinct
characters that precede (respectively, follow) the occurrences of W in T . A repeat W is
left-maximal (respectively, right-maximal) iff it has more than one left-extension (respectively,
right-extension). A maximal repeat of T is a repeat that is both left- and right-maximal.

1 Here σ denotes the size of the alphabet from which strings S and T are drawn. We assume throughout
this paper that σ is at most polynomial in max(|T |, |S|).



D. Belazzougui, F. Cunial, and O. Denas 17:3

For reasons of space we assume the reader to be familiar with the notion of suffix tree
STT = (V,E) of T , which we do not define here. We denote by `(v) the string label of node
v ∈ V . It is well known that a substring W of T is right-maximal iff W = `(v) for some
internal node v of the suffix tree. It is also known that the maximal repeats of T form a
subset of the internal nodes of STT that is closed under ancestor operation, in the sense
that if the label of an internal node v is a maximal repeat of T , then the labels of all the
ancestors of v are also maximal repeats of T . We assume the reader to be familiar with the
notion of suffix link connecting a node v with `(v) = aW for some a ∈ [0..σ], to a node w
with `(w) = W . Here we just recall that inverting the direction of all suffix links yields the
so-called explicit Weiner links. Given an internal node v of STT and a symbol a ∈ [0..σ], it
might happen that string a`(v) does occur in T , but that it is not right-maximal, i.e. it is
not the label of any internal node: all such left extensions of internal nodes that end in the
middle of an edge or at a leaf are called implicit Weiner links. Note that an internal node
of STT can have more than one outgoing Weiner link, and that all such Weiner links have
distinct labels.

We assume the reader to be familiar also with the Burrows-Wheeler transform of T
(denoted BWTT in what follows), including the notions of lexicographic interval of the label
of a node of STT , backward step, rank and select queries on bitvectors, wavelet trees, and
rank queries on wavelet trees. Finally, we call suffix tree topology any data structure that
supports the following operations on STT : parent(id(v)), which returns the identifier of the
parent of a node v with identifier id(v); lca(id(u), id(v)), which returns the identifier of the
lowest common ancestor of nodes u and v; leftmostLeaf(id(v)) and rightmostLeaf(id(v)),
which compute the identifier of the leftmost (respectively, rightmost) leaf in the subtree
rooted at node v; selectLeaf(i), which returns the identifier of the i-th leaf in preorder
traversal; leafRank(id(v)), which computes the number of leaves that occur before leaf v in
preorder traversal; isAncestor(id(u), id(v)), which tells whether u is an ancestor of v. For
brevity, we write just v rather than id(v) in all such operations in what follows. It is known
that the topology of an ordered tree with n nodes can be represented using 2n+ o(n) bits
as a sequence of 2n balanced parentheses, and that 2n+ o(n) more bits suffice to support
the operations described above in constant time [12, 21]. We drop subscripts whenever the
reference strings are clear from the context.

2.2 Matching statistics in small space
MSS,T can be represented as a bitvector ms of 2|S| or 2|S|−1 bits, which is built by appending,
for each i ∈ [0..|S| − 1] in increasing order, MSS,T [i]−MSS,T [i− 1] + 1 zeros followed by a
one [3] (MSS,T [−1] is set to one for convenience). Since the number of zeros before the i-th
one in ms equals i+ MSS,T [i], one can compute MSS,T [i] for any i ∈ [0..|S| − 1] using select
operations on ms. The algorithm described in [3] computes ms using both a backward and
a forward scan over S, and it needs in each scan just BWTT with rank support, and the
topology of STT , or just BWTT with rank support, and the topology of STT . The two phases
are connected via a bitvector runs[1..|T | − 1], such that runs[i] = 1 iff MS[i] = MS[i− 1]− 1,
i.e. iff there is no zero between the i-th and the (i− 1)-th ones in ms.

First, we scan S from right to left, using BWTT with rank support, and the suffix tree
topology of T , to determine the runs of consecutive ones in ms. Assume that we know the
interval [i..j] in BWTT that corresponds to substring W = S[k..k + MS[k]− 1], as well as
the identifier of the proper locus v of W in the topology of STT . We try to perform a
backward step using character a = S[k − 1]: if the resulting interval [i′..j′] is nonempty, we
set runs[k] = 1 and we reset [i..j] to [i′..j′]. Otherwise, we set runs[k] = 0, we update the
BWT interval to the interval of parent(v) using the topology, and we try another backward
step with character a.
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In the second phase we scan S from left to right, using BWTT with rank support, a
representation of the suffix tree topology of T , and bitvector runs, to build ms. Assume that
we know the interval [i..j] in BWTT that corresponds to substring W = S[k..h− 1] such that
MS[k − 1] = h− k but MS[k] ≥ h− k. We try to perform a backward step with character
S[h]: if the backward step succeeds, we continue issuing backward steps with the following
characters of S, until we reach a position h∗ in S such that a backward step with character
S[h∗] from the interval [i∗..j∗] of substring W ∗ = S[k..h∗ − 1] in BWTT fails. At this point
we know that MS[k] = h∗ − k, so we append h∗ − k −MS[k − 1] + 1 = h∗ − h+ 1 zeros and
a one to ms. Moreover, we iteratively reset the current interval in BWTT to the interval of
parent(v∗), where v∗ is the proper locus of W ∗ in STT , and we try another backward step
with character S[h∗], until we reach an interval [i′..j′] for which the backward step succeeds.
Let this interval correspond to substringW ′ = S[k′..h∗−1]. Note that MS[k′] > MS[k′−1]−1
and MS[x] = MS[x− 1]− 1 for all x ∈ [k + 1..k′ − 1], thus k′ is the position of the first zero
to the right of position k in runs, and we can append k′ − k − 1 ones to ms. Finally, we
repeat the whole process from substring S[k′..h∗] and its interval in BWTT .

Note that S is read sequentially in both phases, runs and ms are built by iteratively
appending bits at one of their ends, and runs is read sequentially in the second phase. Thus,
there is no need to keep any of these vectors fully in memory, and they can be streamed to
or from disk in practice.

3 Fast matching statistics in small space

We assume that each BWT is represented as a wavelet tree, and that each suffix tree topology
is represented as a sequence of balanced parentheses. Thus, a node of a suffix tree is described
by two intervals: its interval in the BWT, and the pair of open and closed parentheses in
the sequence of balanced parentheses. We can derive the identifier in the topology from the
BWT interval, by issuing two selectLeaf operations followed by one lca operation. Vice
versa, we can derive the BWT interval from the identifier in the topology, by issuing one
leftmostLeaf and one rightmostLeaf operation, followed by two leafRank operations. As
a baseline, we consider an implementation of the algorithm in Section 2.2 in which both
the BWT interval and the identifier in the topology are updated at every step; in such
implementation, taking a Weiner link from a node involves calling nine functions provided
by the wavelet tree or the topology.

The two phases of the algorithm in Section 2.2 are symmetrical, thus the optimizations
described in this section apply equally to both and have similar effects in practice.

3.1 Faster Weiner links
Following a Weiner link with label c from a node v of the suffix tree requires issuing two
rank queries, for the same character, on the BWT interval [i..j] of v. Such queries traverse
the same nodes of the wavelet tree and, in the bitvector of each node, they access positions
whose distance is at most j − i, and potentially decreases as the search goes deeper in the
wavelet tree. Our first optimization consists in merging the two rank queries into a single
doubleRank query, which, when the distance between its arguments is small, invokes just
once some instructions (like counting the number of ones in some memory words) that would
be executed twice by two distinct rank calls.

Note that the algorithm uses rank queries on the BWT interval of v also to decide whether
a Weiner link with character c starts from v or not. The other advantage of merging the
two rank queries is that we can detect whether the current interval is empty at each level
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of the wavelet tree, and if so we can quit the traversal immediately. We call this further
optimization doubleRankAndFail.

If node v has indeed a Weiner link labeled by c, we need to derive, from the BWT interval
that results from taking such Weiner link, the identifier of the corresponding node v′ in the
suffix tree topology. However, the identifier of v′ in the topology is used by our algorithm only
if, in the following iteration, we need to move to the parent of v′, and in turn this happens
only when taking a Weiner link from v′ fails. In other words, inside a maximal sequence of
successful Weiner links, we need just to update one BWT interval per iteration, and this costs
just one doubleRank operation per iteration; we call this optimization lazyWeinerLink.

Knowing the repeat structure of T allows one to optimize Weiner links even further.
Specifically, if v is not a maximal repeat of T , its BWT interval contains exactly one distinct
character, thus it suffices to check whether e.g. the last position of the interval is equal to
c, and if so to issue just one rank operation. We call this optimization maxrepWeinerLink.
Even more aggressively, we can implement a rankAndCheck query which, in a single operation,
checks whether the last position of the BWT interval matches c, stops the traversal of the
wavelet tree as soon as it detects an empty interval, and returns the rank in case of success.
The same optimization can be applied to intervals of size one. We detect whether a node
is a maximal repeat by building a bitvector marked[1..|T |], where we set marked[i] = 1
and marked[j] = 1 for every interval [i..j] of a maximal repeat of T . We build marked by
traversing the suffix tree topology depth-first, avoiding to explore the subtree of a node that
is not a maximal repeat since it cannot contain other maximal repeats. To determine whether
a given interval [i..j] with j > i corresponds to a maximal repeat, we just check whether
marked[i] = 1 and marked[j] = 1. Recall that, if a node of the suffix tree is a maximal
repeat, then all its ancestors in the suffix tree are also maximal repeats. This implies that
the interval of a node that is not a maximal repeat is properly contained inside the interval
of a maximal repeat, and it does not contain the interval of any maximal repeat, thus it
must have either its first bit or its last bit equal to zero. If i = j, the interval is not a repeat.

3.2 Faster parent operations
Recall that, when a Weiner link labeled by character c fails from a node v, we iteratively
issue a parent operation on the topology, we convert the node identifier in the topology to
its BWT interval, and we check whether c occurs inside such interval. Knowing whether a
node is a maximal repeat or not enables once again a number of optimizations. First, if v is
not a maximal repeat, then none of its ancestors that are not themselves maximal repeats
have a Weiner link labeled with character c, so we can avoid trying the Weiner link from
an ancestor of v that is not a maximal repeat. Moreover, as soon as an ancestor u of v is
a maximal repeat, every one of the ancestors of u is a maximal repeat as well, so we do
not need to check whether the current node is a maximal repeat after the following parent
operations, if any.

Even more aggressively, when a Weiner link fails, we could directly move from node v
with BWT interval [i..j], to its lowest ancestor that is a maximal repeat, by taking the LCA
between the rightmost one up to i in the marked bitvector, and the leftmost one starting
from j. A further step along this line consists in moving directly to the lowest ancestor vc
of v whose BWT interval contains c: such ancestor, if any, is necessarily a maximal repeat.
This technique, which we call parentShortcut, can be implemented as follows. We move
to the rightmost occurrence of c before the interval of v (if any), by issuing a rank and a
select query on the BWT, then we move to the corresponding leaf w of the suffix tree by
issuing a selectLeaf query on the topology, and we compute the identifier of the ancestor
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p = lca(v, w) of v. We do the same for the leftmost occurrence of c to the right of the
interval of v (if any), computing the identifier of an ancestor q of v. Finally, we set vc to
the lowest of p and q, by issuing one isAncestor query provided by the topology. The
implementation of parentShortcut can be further optimized in practice. For example, if the
interval of p ends at the same position as the interval of v, we don’t even need to compute
the leftmost occurrence of c after the interval of v. And if the interval of p does not contain
the leftmost occurrence of c after the interval of v, we can just return p.

We briefly note that, in addition to being useful in practice, the parentShortcut technique
implies also an on-line algorithm for matching statistics:

I Lemma 1. There is an online algorithm that computes MSS,T in O(log σ) time per
character of S, and in |T | log σ(1 + o(1)) +O(min(σ, |T | log σ)) bits of space, by scanning S
from right to left.

Proof. The algorithm has the same structure as the one described in [15], but it spends a
bounded amount of time per character of S. Recall that rank queries can be implemented in
O(log σ) time with a wavelet tree, that select queries can be implemented in O(log σ) time
as well using additional |T |o(log σ) bits, and that parentShortcut takes constant time in
addition to select queries. Since the node reached by parentShortcut is a maximal repeat,
we just need to compute the string depth of maximal repeats throughout the algorithm. This
can be done in constant time, by storing also the topology of the suffix-link tree of T and
suitable bitvectors to commute between maximal repeats in the two topologies, as described
in [4, Section 6]. J

3.2.1 Selecting the next occurrence of a character
Selecting the previous or the next occurrence of a character from a given position of the BWT
of T lies at the core of the parentShortcut operation of Section 3.2, and it is a primitive
of independent interest. We implement a generalization selectNextT (i, j, c), which returns
the j-th occurrence of character c strictly to the right of position i, in a string T that is
assumed to be represented as a wavelet tree. For brevity we focus here just on the case in
which T [i] = c, since the case in which T [i] 6= c can be handled similarly.

We move from the root of the wavelet tree to a leaf, as in the rank operation at position
i, remembering the position ik that we reach in the bitvector of each level k. We invoke
jk = selectNext(ik, j, ck) on the bitvector of the leaf, where ck is the k-th bit in the
binary representation of c, then we move up to the bitvector of the parent and we invoke
jk−1 = selectNext(ik−1, jk − ik, ck−1); we continue in this way until we reach the root. A
version of selectNext for bitvectors that uses a sequential, word-based scan, was already
described in [9]. We take a similar approach, issuing a select operation on the bits of the
computer word that contains position ik, and on the following word if necessary (using class
bits in SDSL). In case such selects fail, we issue a standard select operation on the whole
bitvector. Note that the number of words that we check explicitly, in addition to the one
containing ik, could be bigger for bitvectors that are closer to the root of the wavelet tree:
we leave such variant to the full version of the paper.

A more advanced strategy could consist in dividing the bitvector of length |T | into blocks
of size B each, keeping an auxiliary bitvector pure[1..|T |/B] to mark the blocks that contain
just one distinct bit. Given a position i in the original bitvector, we could compute the
block b that contains it, and we could check pure[b] to see if such block is pure. If this is
the case we could return i + 1, or keep scanning pure[b + 1..|T |/B] until we find either a
pure block with the correct value, or an impure block. If block b is impure, we could scan it
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starting from position i and, in case of failure, we could continue as above. To speed up the
search even further, we could introduce block clusters of size B2, storing for each cluster the
position of the next pure cluster and of the next impure cluster. We leave the study of these
and other variants to the full version of the paper.

Recall that we use selectNext when a Weiner link fails from a BWT interval [i..j]. Thus,
one could create a doubleRankAndSelectNext operation that reuses the work performed by
doubleRank when going down the wavelet tree in selectNext. Specifically, the only overhead
of this operation, compared to a successful doubleRankAndFail, is saving the positions to
which i and j are projected in each bitvector. In case of failure, the procedure does not
abort but keeps going down to a leaf, from which it finally moves up, selecting both the next
occurrence (from j) and the previous occurrence (from i). As with doubleRank, performing
both selections at each level might save time by executing some instructions common to
them only once. In case of success, the bottom-up phase is not executed. For reasons of time,
we leave a full experimental study of doubleRankAndSelectNext to the full version of the
paper.

Finally, note that a fast implementation of selectNext can be useful for answering range
matching statistics queries on bitvector ms, i.e. queries that ask for all MS[k] values for k in
a user-specified [i..j], or for the average or maximum of such values, since one could replace
j − i+ 1 select operations with one select operation and j − i selectNext operations. We
leave the experimental study of range MS queries to the full version of the paper.

4 Implementation

Our C++ implementation, available at https://github.com/odenas/indexed_ms, is based
on the SDSL library [8], which we adapt to our purposes. Specifically, we modify the following
parts of SDSL: (1) the rank data structure rank_support_v; (2) the implementation wt_pc of
the wavelet tree for byte sequences (using other wavelet tree variants, e.g. Huffman-shaped, is
beyond the scope of this paper); (3) the implementation csa_wt of the compressed suffix array
based on a wavelet tree; (4) the code for select operations on bitvectors select_support_mcl.
We build the BWT with dbwt [16], and the other parts of the index by using csa_wt to
represent a compressed suffix array without samples, and by stripping down the compressed
suffix tree code in cst_sct3 (among other things, by removing the LCP array). We represent
the suffix tree topology explicitly with balanced parentheses, using a simplified version of
bp_support_sada that supports just the parent operation. Recall that bp_support_sada
is based on [20, 21], and that SDSL provides other representations bp_support_gg and
bp_support_g based instead on [7, 14]. We use bp_support_sada because it turned out to
be the fastest in preliminary experiments. We use cst_sct3, based on [13], rather than the
other compressed suffix tree representation provided by SDSL, because its topology takes
less space (3|T | bits, rather than 4|T | bits of e.g. cst_sada), at the cost of slower parent
operations. One could use more efficient algorithms to build the indexes, for example [2] for
the suffix tree topology; we do not try to optimize construction in this paper.

5 Experimental results

5.1 Artificial strings
We use a number of artificial strings to evaluate the effect of the optimizations in Section 3.
We resort to artificial strings because our optimizations are not designed for a particular class
of inputs, and because the magnitude of their speedups might be affected by the similarity
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between S and T , by the repetitiveness of T , and by the alphabet size, over which we need
control. In Section 5.2 we study performance on a dataset that approximates a real use case
in phylogeny reconstruction by average matching statistics. Since our artificial strings do not
cover the space of all possible input classes, the speedups we report should not be interpreted
as upper bounds.

To measure the effect of the Weiner link optimizations in Section 3.1, we consider four
types of (S, T ) pairs, corresponding to repetitive or random T , and to a query S that is either
similar to T or random (by random we mean a string generated by a source that assigns
uniform probability to every character of the alphabet). A repetitive string is generated as
follows: we take an initial random string W of length 104, and we concatenate it with 104

copies of itself, containing each 10 random positions that mismatch with W . We create a
string S that is similar to T by introducing mismatches in 5 · 103 random positions of a copy
of T , and by taking a prefix of such copy of length 5 · 105, and we experiment with alphabet
size 4 and 20. We measure the total time to compute ms and runs on a machine with one
Intel Core i7-6600U processor with two cores. Its L3 cache is 4MB, thus T does not fit in
cache. Throughout the section we call speedup the ratio between the time to build the ms and
runs bitvectors with a baseline implementation that is clear from the context, and the time
to build the same vectors with an implementation with specific optimizations turned on.

The doubleRank optimization tends to give median speedups smaller than 1.05 with
respect to an implementation that uses two rank operations per Weiner link, both for small
and for large alphabet, and it rarely degrades performance. Using doubleRankAndFail
gives further speedups between 1.01 and 1.02 with respect to doubleRank, mostly when S is
not similar to T ; when S is similar to T instead, performance tends to degrade by similar
amounts. This is expected, since this optimization targets cases in which Weiner link calls
are unsuccessful, and this is more likely to happen when S is not similar to T . If a Weiner
link is successful, doubleRankAndFail is actually introducing an overhead. The early failure
strategy might also be useful for representations in which the wavelet tree is not full, e.g.
when it has a Huffman shape: we leave this study to the full version of the paper.

As expected, lazyWeinerLink is most effective when S is similar to T , since it optimizes
successful Weiner links. When the alphabet is small, we observe median speedups of 3.2 for
repetitive T and of 2.4 for random T (Figure 1). For large alphabets the median speedups
become approximately 2.4 and 1.6, respectively. When S is not similar to T , the speedups
are approximately equal to 1.1 and never smaller than one.

Conversely, it turns out that exploiting maximal repeat information in Weiner links
is beneficial when S is not similar to T , and especially so when the alphabet is large.
maxrepWeinerLink provides median speedups of 2.1 and 2.6 when T is repetitive (depending
on alphabet size), and of 1.7 and 2.2 when T is random (Figure 2), compared to an
implementation with just doubleRankAndFail. If S is similar to T , maxrepWeinerLink tends
to degrade performance, and the median speedup can drop down to approximately 0.8. With
respect to maxrepWeinerLink, rankAndCheck provides median speedups of approximately
1.01 when T is repetitive, and of 1.04 and 1.07 when T is random, depending on alphabet
size, but only when S is not similar to T . The fact that maximal repeats are not useful when
S is similar to T might be explained by the fact that the overhead of checking whether a
node is a maximal repeat or not is compensated by a faster fail when a Weiner link is not
successful, but it is not compensated in case of a successful Weiner link. One might try to
reduce the cost of accessing the marked bitvector by interleaving it with the bitvector of the
root of the wavelet tree: we leave such extension to the full version of the paper.
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Figure 1 Speedup of lazyWeinerLink with respect to an implementation with no optimization,
for different input types (horizontal axis). Gray points are single measurements. Black points are
medians. Black bars indicate the first and third quartiles of ten experiments.
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Figure 2 Speedup of doubleRankAndFail and maxrepWeinerLink, with respect to an implement-
ation with just doubleRankAndFail. The plots follow the conventions of Figure 1.
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Figure 3 Speedup of parentShortcut with respect to a baseline with all optimizations turned
off (vertical axis), for different settings of k (horizontal axis). The plot follows the conventions of
Figure 1.

To measure the effect of the parentShortcut optimization of Section 3.2, we create pairs
(S, T ) in which the baseline algorithm is forced to issue long sequences of parent operations.
Specifically, we build a repetitive T as described above, starting from a random string W of
length 200 on alphabet size 6, and concatenating to it 5000− 1 copies of itself, containing
each k random positions that mismatch with W . The resulting T takes 10MB and does not
fit in cache. We build T repetitive to have nodes with large tree depth in STT and STT . We
build S by concatenating labels of nodes of STT with large tree depth (at least 10) but not
too large string length (at most 170), separated by a character that does not occur in T , to
enforce enough parent operations per successful Weiner link. We experiment with values
of k ranging from one to 200, and at low values of k a large fraction of parent sequences
has indeed large length. Using parentShortcut gives overall speedups between 1.8 and 2.3,
depending on the value of k, with respect to an implementation with no optimization (Figure
3).

5.2 Biological strings

We use a dataset of 24 eukaryotic species with relatively large genomes that has been used
for whole-genome phylogeny reconstruction by average matching statistics before [5]. The
dataset contains both pairs of very similar and of very different genomes2. We experiment
with both genomes and proteomes to study the effect of alphabet size (4 and 20, respectively).

2 We download the latest assemblies from NCBI, and we concatenate all sequences that belong to the
genome or proteome of the same species using a separator character not in the alphabet, replacing runs
of undetermined characters with a single occurrence of the separator. We run our experiments on a
machine with 256GB of RAM and with one Intel Xeon E5-2680v3 processor, which has two sockets
and 12 cores per socket. We pin our sequential program to a single socket using numactl -N0 -m0.
The L3 cache of the processor is 30MB, and its L2 cache is 256KB, thus the indexes for genomes and
bacteria do not fit in cache, the indexes for proteomes do not fit in the L2 cache, and the indexes of
some proteomes can fit in the L3 cache. We measure wall clock time with standard C++ methods, and
we measure peak memory by reading the maximum resident set size reported by /usr/bin/time.
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The resulting genome files range from approximately 87 million to 5.8 billion characters,
and proteome files range from approximately 4 million to 74 million characters. For reasons
of time, we compute the matching statistics just between the genome of a fixed species,
chosen arbitrarily (Oryzias latipes), and every other genome, and just between the proteome
of a fixed species, chosen arbitrarily (Homo sapiens), and every other proteome. We call
this setup Experiment 1. We also study the performance of our algorithms when T is
repetitive and S is similar to T . Specifically, we download the genomes and proteomes of all
the 8658 bacteria currently in NCBI: we build a query that consists of the concatenation
of the genomes (respectively, proteomes) of 839 bacteria randomly sampled from the set,
and a text that consists of the concatenation of the genomes (respectively, proteomes) of
all remaining bacteria. The resulting text files contain approximately 30 and 8.5 billion
characters, respectively, and the resulting query files contain approximately 3 billion and 980
million characters, respectively. We call this setup Experiment 2. As customary, we measure
peak memory and running time just for computing matching statistics given the indexes. We
define speedup as in Section 5.1, with respect to a version of our code with no optimization.

It turns out that lazyWeinerLink is the most effective optimization in both Experiment 1
and Experiment 2, providing approximately a 1.25 speedup for both genomes and proteomes
in the first case, and a 1.75 speedup for genomes and a 1.5 speedup for proteomes in the second
case. Using doubleRankAndFail in addition to lazyWeinerLink yields minor improvements
and the fastest implementation. Speedups are greater when S is similar to T , with the largest
speedups observed in Experiment 2 and for the pair of proteomes Homo sapiens and Pan
troglodytes (see Figure 4).

We compare our implementations to the one described in [15], which builds essentially the
same compressed suffix tree as SDSL’s cst_sct3, with csa_wt representing the compressed
suffix array, but which includes a compressed LCP array3 storing all values that are at most
254 in one byte, and longer values in log |T | bits [10]. As expected, our implementation is
more space-efficient, taking from approximately half to one-fifth of the space of the competitor
in both genomes and proteomes (Figure 5). Not surprisingly, however, our implementation
is also slower than the competitor, taking e.g. approximately twice its time for proteomes
(Figure 5). Recall that the fact that the algorithm in [15] performs just one pass over S
might contribute to this slowdown. However, for approximately half of the pairs of genomes
in Experiment 1, and for the pair of genomes in Experiment 2, our implementation is faster
than the competitor, with speedups up to 1.4.

The eight pairs of sibling leaves4 in the phylogenetic tree of [5, Figure 1] correspond to
similar species with short divergence times, and we observed before that our implementation
gives larger speedups for similar strings. We call Experiment 3 the comparison of our
implementation with doubleRankAndFail and lazyWeinerLink enabled, to the one in [15],
limited to such pairs. It turns out that our implementation is faster than or as fast as the
competitor for all but one such pairs of genomes, with speedups up to two, while still taking
between one fourth and one fifth of the competitor’s space (Figure 5). For pairs of proteomes,
however, our implementation remains slower.

3 The index contains also (unused) samples of the suffix array of T and of T , but the sampling rate
(104) makes their space negligible in practice. The code of [15] does not work with long strings, thus
we take prefixes of length 800 million of the strings it cannot handle. We use a version of the two
implementations in which they do not write any output. For each (S, T ) pair, we compare the fastest of
our implementations to the competitor.

4 Arabidopsis lyrata-Arabidopsis thaliana; Zea mays-Oryza sativa; Rattus norvegicus-Mus musculus; Gallus
gallus-Taeniopygia guttata; Brugia malayi-Caenorhabditis elegans; Drosophila melanogaster-Anopheles
gambiae.
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Figure 4 Effect of our optimizations (horizontal axis) on Experiment 1 (gray circles) and on
Experiment 2 (red circles). DR: doubleRank, F_DR: doubleRankAndFail, M: maxrepWeinerLink,
MC: rankAndCheck, LZ: lazyWeinerLink, P: parentShortcut. The largest speedups in the plot on
the right correspond to pair Homo sapiens and Pan troglodytes.
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Figure 5 The fastest of our implementations, compared to the implementation in [15]. “Genome”,
“Proteome”: Experiment 1 (gray circles) and Experiment 2 (red circles). “Genome similar”, “Proteome
similar”: Experiment 3. The plot follows the conventions of Figure 1.
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Abstract

Given a set P of words, the Shortest Linear Superstring (SLS) problem is an optimisation
problem that asks for a superstring of P of minimal length. SLS has applications in data compres-
sion, where a superstring is a compact representation of P , and in bioinformatics where it models
the first step of genome assembly. Unfortunately SLS is hard to solve (NP-hard) and to closely
approximate (MAX-SNP-hard). If numerous polynomial time approximation algorithms have
been devised, few articles report on their practical performance. We lack knowledge about how
closely an approximate superstring can be from an optimal one in practice. Here, we exhibit
a linear time algorithm that reports an upper and a lower bound on the length of an optimal
superstring. The upper bound is the length of an approximate superstring. This algorithm can
be used to evaluate beforehand whether one can get an approximate superstring whose length is
close to the optimum for a given instance. Experimental results suggest that its approximation
performance is orders of magnitude better than previously reported practical values. Moreover,
the proposed algorithm remainso efficient even on large instances and can serve to explore in
practice the approximability of SLS.
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18:2 Practical lower and upper bounds for the Shortest Linear Superstring

1 Introduction

Let P := {s1, . . . , s|P |} be a set of input words, whose sum of lengths is denoted by ||P ||. A
superstring of P is a string that contains each of the input words as substrings. Without
loss of generality, we assume that P is factor free, i.e., that no word of P is substring of
another word of P . The Shortest Linear Superstring (SLS) problem – also known as Shortest
Common Superstring –, asks for a superstring of P of minimal length.

A recent survey gives an idea of the variety of applications of SLS: from the most known
ones, DNA assembly or text compression, to job scheduling or viral genomes compression
[10]. Several variations of SLS have also been investigated in theory, e.g., with reversals
[13, 9], with strings of DNA [14, 4], with multiplicities [8, 7]. SLS, which is studied since
the 80’s, has been proven NP-hard even for instances containing only words of length 3,
and difficult to approximate (MAX-SNP-hard) [10]. Several polynomial time approximation
algorithms with constant ratios have been designed for SLS, and among them, the Greedy
algorithm, which, unlike most other approximation algorithms for SLS, admits a linear time
implementation [21]. Currently, the approximation ratio of the Greedy algorithm is proven
to be 3.5 [23] (see Algorithm Greedy in Appendix). The 28 years old, so called, Greedy
conjecture states that the Greedy algorithm achieves an approximation ratio of 2, which
is better than the best known approximation ratio of 2 + 11/30 [16, 17], the latter being
achieved by a polynomial, but not linear time algorithm. Another example of approximation
algorithm is Concat-Cycles, which linearises and concatenates the cyclic words obtained
by solving the Shortest Cyclic Cover of Strings problem (SCCS) on the instance;
Concat-Cycles has an approximation ratio of 4 [2].

Importantly, algorithm Greedy for SLS breaks ties randomly, and is thus not deterministic.
Example 1 illustrates the consequences of this non determinism in terms of approximation
ratio.

I Example 1. On the classical instance (with k > 0) P := {abk, bk+1, bkc}, Greedy can
output either wb := abkcbk+1 or wg := abk+1c as a superstring of P . The second one is
optimal, while the first is the worst greedy superstring. This instance is the one used in [20]
to bound the approximation ratio of Greedy by 2 (which tends to 2 when k →∞).

Some recent works have developed theoretical arguments suggesting that the Greedy
algorithm achieves good approximation in general [15]. Experimental assessments on instances
up to 1, 000 words of length up to 50 have shown that two approximation algorithms for SLS
with ratio 3 and 4 return solutions within 1.28 times the optimal superstring length [19]. To
our knowledge, this article gives the only experimental results published so far, and clearly
emphasises the gap between lower and upper bounds, as well as between theory and practice.
Although the algorithms used in [19] ran in short time on relatively small instances, their
running times seem to increase non linearly with the instance size [19, Figure 5], indicating
their limited scalability.

It would be useful to be able to determine rapidly, and before hand, whether an approxi-
mation algorithm would return a good approximate solution for a given instance. Obviously,
such an algorithm should have a reasonable worst case approximation ratio, the best possible
approximation in practice, should take linear time and be efficient enough to process large
instances.

We propose an algorithm to compute a lower and an upper-bound on the size of an
optimal solution for SLS. These two bounds, denoted respectively `min and `max, are defined
in Section 3.

We shall obtain the following theorem.
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I Theorem 2. Let P be a set of strings and let wopt denote an optimal solution of SLS of
P . We can compute in linear time in ||P || the values `min and `max such that:

`min ≤ |wopt| ≤ `max and
`max
`min

≤ 4.

Contributions. Here, we exhibit a linear time algorithm to compute a lower and an upper
bound, respectively `min and `max, on the size of a shortest superstring of P . Then we present
experimental results of this algorithm on a series of instances of increasing sizes. These results
show that `min and `max are extremely close to each other in practice. For more details,
please see the web appendix at http://www.lirmm.fr/~rivals/res/superstring/.

Notation. We consider finite words over a finite alphabet Σ. The set of all finite words
over Σ is denoted by Σ?, and ε denotes the empty word. For a word x, |x| denotes the length
of x. Given two words x and y, we denote by xy the concatenation of x and y.

Let s, t, u be three strings of Σ?. We say that s overlaps t if and only if a suffix of s
also is a prefix of t. We denote by ov(s, t) the longest overlap from s over t (also termed
maximum overlap); let pr(s, t) be the prefix of s such that s = pr(s, t)ov(s, t), and let su(s, t)
be suffix of t such that t = ov(s, t)su(s, t). The merge of s over t is the word pr(s, t)t. Note
that neither the overlap nor the agglomeration are symmetrical.

I Example 3. Consider two strings S := actgct and T := tgcttac. Then the longest overlap
ov(S, T ) = tgct, but the substring t also is an overlap from S over T . Then pr(S, T ) = ac

and su(S, T ) = tac. Moreover, we see that ov(T, S) = ac, which differs from ov(S, T ).

Throughout the article, the input is P := {s1, . . . , s|P |} a set of input words, and without
loss of generality, we assume that P is substring free, i.e., no word of P is substring of
another word of P .

2 Related Works

Significant research effort has been dedicated to designing approximation algorithms for SLS
and to finding the best theoretical approximation ratios (see [11] for a list of algorithms).
Both upper and lower bounds of approximation ratios have been studied [22] (see Figure 1).

A crucial result regarding the design approximation algorithms for SLS is that a variant
of SLS called, Shortest Cyclic Cover of Strings (SCCS), can be solved exactly and
returns a set of cycling strings covering the words of P . This set of cyclic strings can in turn
be linearised and combined in various ways to form good linear superstrings [2]. A cover
C is a set of strings such that any si is a substring of at least one string of C. An optimal
cover can be obtained by computing a cyclic cover on the distance graph, a complete digraph
representing the words of P and their maximum overlaps, using the Hungarian algorithm
in O(||P ||+ |P |3) time once the graph is built [18]. Blum et al. also state in their seminal
article that a greedy algorithm computes a minimal cover of strings of P [2]. Recently, it was
shown how to implement this greedy algorithm for SCCS in linear time in ||P || [6, Theorem
6]; see Algorithm 1. Algorithm 1, called CGreedy, minimises the norm of the Cyclic Cover of
Strings, but also its cardinality, that is its number of cyclic words [6, Theorem 7].

Cyclic cover based approximation algorithms. The first approximation algorithm based
on a shortest cyclic cover is Concat-Cycles from [2]. Concat-Cycles computes C a Shortest
Cyclic Cover of P . For 1 ≤ i ≤ |C|, each cyclic string ci of C covers a subset of words of
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Figure 1 All the ratios of approximation (in blue) and inapproximation (in red) for the problem
SLS by year.

Algorithm 1: Algorithm CGreedy. We denote any cyclic string w by 〈w〉.
1 Input: a set of strings P ; Output: C, a Cyclic Cover of Strings of P ;
2 C := ∅;
3 while |P | > 0 do
4 u and v in P (not necessarily distinct) such that ov(u, v) is maximised;
5 if u = v then C := C ∪ {〈pr(u, v)〉};
6 else P := P \ {u, v} ∪ {pr(u, v)ov(u, v)su(u, v)};
7 return C

P ; let us denote this subset Pi := {sj1 , . . . , sj|ci|
}. For each ci, it derives a linear string wi,

which is a partial superstring of Pi, by breaking ci between two words of Pi, say sjk
and

sjk+1 , by concatenating pr(sjk
, sjk+1). Hence, |wi| ≤ |ci| +

∣∣sjk+1

∣∣. Then, Concat-Cycles
concatenates the words wi for 1 ≤ i ≤ |C| in an arbitrary order, which yields a superstring
of P . Concat-Cycles achieves an approximation ratio of 4 for SLS [2, Theorem 8].

Blum et al. also proposes an improvement of this strategy: each cycle can be broken at
an optimal point so as to create the shortest wi for ci. As the cycle word ci defines an order
of occurrence for each word of Pi in ci, this only requires to test any pair of successive words
which is linear in ||Pi||. They show that a variant of the greedy algorithm for SLS, which
they call MGreedy, does exactly that [2]. In fact, we view MGreedy (see the web appendix)
as an application of Algorithm LCGreedy, followed by a concatenation. In other words,
MGreedy builds a linear cover of P (which is made of linear, rather than cyclic, strings), and
concatenate those linear strings arbitrarily into a single linear superstring of P . Blum et al.
show that this linear superstring is shorter than the one output by Concat-Cycles [2].

In these two algorithms Concat-Cycles and MGreedy, each cycle contributes to adding
some symbols to the final superstring. We propose to optimise such procedure by minimising
the number of cycles in the Shortest Cyclic Cover obtained by a greedy algorithm for SCCS.
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Remark on non-determinism. As indicated in introduction, all mentioned greedy algorithms
– Greedy, SCGreedy, LCGreedy or MGreedy – break ties randomly when choosing the next
overlap to use. Hence, none of these algorithms are deterministic, implying that two distinct
executions may produce superstrings of different lengths or cyclic covers with different number
of cycles. To our knowledge, most approximation algorithms designed to date use at least a
greedy solution for SCCS to start with, and inherit from non-determinism.

Lower and upper bounds. Among others, Vassilevska has proven new lower bounds for
the approximation ratio of SLS. She noticed the huge gap separating the best upper bounds
and lower bounds [22].

3 Algorithm LCGreedyMin

Overview. Compared to Concat-Cycles or MGreedy [2], our algorithm builds a superstring
based on a Shortest Cyclic Cover of P having a minimal number of cycles. Our algorithm
proceeds as follows. First, it builds the Extended Hierarchical Overlap Graph (EHOG), a
graph that encodes all overlaps between words of P but takes linear space. Embedded
in the EHOG, it computes the Superstring Graph of P , which encodes the paths of all
greedy solutions for SCCS. By finding an Eulerian path on each connected component of the
Superstring Graph, it determines the node of minimal word depth of the component, and the
shortest linearisation of each cyclic string. Moreover, this set of Eulerian paths constitutes
an optimal Shortest Cyclic Cover of P ; more precisely, we get the permutation indicating in
which order the words of P are merged in each component to form the cyclic strings. Then,
we then compute `min and `max. We call our algorithm LCGreedyMin.

Below, we describe the graphs needed by LCGreedyMin and the algorithm.

3.1 EHOG
We denote by Ov+(P ) the set of all overlaps between two (not necessarily distinct) strings of
P , i.e. Ov+(P ) := {w | ∃ u and v ∈ P such that w is a prefix of u and w is a suffix of v}.

I Definition 4. The Extended Hierarchical Overlap Graph of P , denoted by EHOG(P ), is
the directed graph (VE , PE ∪ SE) where VE = P ∪ Ov+(P ), while PE is the set:
{(x, y) ∈ (P ∪ Ov+(P ))2 such that x is the longest proper prefix of y} and SE is the set:
{(x, y) ∈ (P ∪ Ov+(P ))2 such that y is the longest proper suffix of x}.

The EHOG has a node for each word of P and a node for any string that is an overlap
between words of P . It can be seen that both types of nodes are also nodes of the Generalised
Suffix Tree of P [12] – a Suffix Tree is a data structure that indexes all substrings of a
text, while the Generalised Suffix Tree is the version that indexes several texts concatenated.
Additionally, there are two types of arcs: one for recording the longest suffix relationship
between nodes of VE , the other for the longest prefix relationship. The first type can be
seen as the arcs of the generalised suffix tree, while the second type corresponds to its Suffix
Links. It follows that the EHOG occupies less space than the Generalised Suffix Tree of P .
Examples of EHOG can be viewed in [5].

Rationale of the EHOG. The words of P and all their overlaps (i.e., Ov+(P )) are nodes
of the EHOG. Consider u, v two words of P . Following arcs of SE from u, one visits all its
right overlaps in order of decreasing length. The first of such nodes that is an ancestor of
v represents ov(u, v,). Hence, the merge of (u, v) is (bijectively) associated to the shortest
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18:6 Practical lower and upper bounds for the Shortest Linear Superstring

path from u to v through ov(u, v,) in EHOG(P ). Call this the merging path from u to v.
As any superstring (that does not waste any symbol) is determined by the order in which
words of P are merged (solely using maximum overlaps between successive words), we see
that it corresponds to a unique succession of merging paths in the EHOG. Similarly, any
cyclic cover of strings of P is uniquely associated with a collection of merging cycles that
visit all nodes of P once in the EHOG. In fact, EHOG(P ) encode all possible, interesting
superstrings and cyclic covers of P .

3.2 Superstring Graph
Consider a shortest cyclic cover of strings of P found by algorithm CGreedy. Its cyclic strings
induce merging cycles in EHOG(P ), and hence a permutation of P representing the order
in which words are merged. The Superstring Graph is the subgraph of EHOG(P ) visited
by such a shortest cyclic cover of strings of P (since it is shown in [6, Proposition 3] that all
greedy shortest cyclic covers of P visit the same subgraph). This is the intuitive rationale of
the Superstring Graph, for which now we provide a formal definition.

I Definition 5. The Superstring Graph of a set of strings P is the sub-graph of EHOG(P ) =
(VE , PE , SE) represented by the weight functions n and d on the nodes of VE such that:

(
n(u), d(u)

)
=


(
1, 1
)

If u ∈ P,(
0,−difn,d(u)

)
If u /∈ P and difn,d(u) ≤ 0,(

difn,d(u), 0
)

If u /∈ P and difn,d(u) > 0,

where

difn,d(u) =
∑

(v,u)∈SE

n(v)−
∑

(u,v)∈PE

d(v).

Among all overlaps stored in the EHOG, a shortest cyclic cover of P will use some overlaps
to merge words, eventually more than once. An overlap is used if the cycles traversed the
corresponding EHOG node. While building the SG, we compute a function OvSG that
indicates how many times a shortest cyclic cover use an overlap. Precisely, we define OvSG
as the function from the set of nodes of EHOG(P ) = (VE , PE , SE) to N, such that

OvSG(u) = min(
∑

(v,u)∈SE

n(v),
∑

(u,v)∈PE

d(v)).

Algorithm 2 computes the superstring graph as well as the function OvSG. The idea of
the algorithm is to traverse the EHOG in reverse depth order and to compute the different
weight functions (n, d, and OvSG). Indeed, the weights (n, d, and OvSG) of a node only
depends on the weights of deeper nodes in the EHOG. Each node represents a string: the
substring built by concatenating the labels from the root to that node. With deeper, we refer
to the string depth of a node.

In [6], we gave a proof that the Superstring Graph is a graph that represents all greedy
solutions of SCCS. Because the Superstring Graph is Eulerian, it has the following property:

I Proposition 6 ([6]). Let P be a set of strings. One can compute in O(||P ||) time a greedy
solution of SCCS with the least number of cyclic strings by computing an Eulerian path on
each connected component of the Superstring Graph.

Indeed, taking a single cyclic path to cover each of its connected component is possible (a
component could be covered by combining several cycles instead of only one); finding those
paths takes a time that is linear in the number of nodes of the Superstring Graph.
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3.3 Linearisation of cycles and computation of the bounds
Algorithm MGreedy [2] first computes an optimal cycle cover of P , linearises each cycle
optimally, and then concatenates the resulting linear strings. As above mentioned, it is
not deterministic and instances like the one given in Example 1 shows that the resulting
superstring may vary a lot. Indeed, the linearisation of each cycle increases the size of the
final superstring. We introduce a variant of MGreedy, called MGreedyMin, which chooses a
greedy (and thus optimal) solution of SCCS with the least number of cycles. We compute the
bounds of Theorem 2 (`min and `max) based on such a cyclic cover of minimal cardinality.

Computation of `min. The norm of a set Z of cyclic strings, denoted ||Z||, is the sum of
the length of strings in Z.

I Proposition 7. Let C be a solution of the greedy algorithm for SCCS on P :

||C|| = ||P || −
∑

u∈VE

OvSG(u)× |u| .

Proof. Given a string v of P , we denote by nextC(v) the string of P which follows directly
v in the cyclic cover of strings C. As each greedy solution of SCCS is embedded in the
Superstring Graph, we have

||C|| =
∑

v∈P |v| − |ov(v, nextC(v))|
=

∑
v∈P |v| −

∑
v∈P |ov(v, nextC(v))|

= ||P || −
∑

u∈VE
|u| × |{v ∈ P | u = ov(v, nextC(v))}|

= ||P || −
∑

u∈VE
|u| ×OvSG(u).

J

By nature, the norm of C is smaller than an optimal shortest superstring of P . But for
some instances, their difference can be as large as desired (can tend to infinity when the norm
of the input tends to infinity). Thus defining `min as the norm of C would not guarantee
that `min and `max are close. We define `min as the maximum between 1/4 of `max and the
norm of C, which is an optimal cyclic cover for P .

Computation of `max. By definition, the Superstring Graph is a sub-graph of the EHOG.
Denoting by G1, . . . , Gm the different connected components of the Superstring Graph, we
get that G1, . . . , Gm partition the node set of the Superstring Graph. We define Cut(P ) as
the sum of the string depths (i.e., the length of the string represented by a node) of the

smallest node of each connected component, i.e., Cut(P ) =
m∑

i=1
min
u∈Gi

|u|.

I Proposition 8. Let w a solution of MGreedyMin. We have that :

|w| = ||P || −
∑

u∈VE

OvSG(u)× |u|+ Cut(P ).

Proof. Let wg be a solution of MGreedyMin given by a greedy solution cmin of SCCS with
the least number of cycles. By the property of the Superstring Graph, cmin = {c1, . . . , cm},
where for all i between 1 and m, ci is the cyclic string representing a Eulerian cycle in Gi

and ci is a cyclic superstring of a subset of Pi of P . By the definition of MGreedyMin, we
take wi the minimal linearisation of ci, i.e.

wi ∈ Arg min
(sjk

,sjk+1 )∈Pi×Pi

∣∣Linearisation(ci, sjk
, sjk+1)

∣∣
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18:8 Practical lower and upper bounds for the Shortest Linear Superstring

where Linearisation(ci, sjk
, sjk+1) is the string obtain by breaking ci between sjk

and sjk+1

where sjk
and sjk+1 are successive in ci.

Hence, we have

|wg| =
∑m

i=1 |wi|
=

∑m
i=1 min(sjk

,sjk+1 )∈Pi×Pi

∣∣Linearisation(ci, sjk
, sjk+1)

∣∣
=

∑m
i=1 min(sjk

,sjk+1 )∈Pi×Pi

(
|ci|+

∣∣ov(sjk
, sjk+1)

∣∣ )
=

∑m
i=1 |ci|+ min(sjk

,sjk+1 )∈Pi×Pi

∣∣ov(sjk
, sjk+1)

∣∣
=

∑m
i=1 |ci|+ minu∈Gi

|u|
=

∑m
i=1 |ci|+

∑m
i=1 minu∈Gi

|u|
= ||cmin||+ Cut(P )
= ||P || −

∑
u∈VE

OvSG(u)× |u|+ Cut(P ).

Indeed, by Proposition 7, we have ||cmin|| = ||P || −
∑

u∈VE
OvSG(u)× |u|. J

By Proposition 8, we get that all solutions of MGreedyMin have the same length; we
denote this length by `max.

Clearly, as a solution of MGreedyMin is also a solution of MGreedy, it follows that
|wopt| ≤ `max ≤ 4 × |wopt|, where wopt denotes any optimal solution of SLS. This yields
Theorem 2.

Difference between `min and `max. We have defined `max as the length of a solution of the
algorithm MGreedyMin, i.e.

`max = ||P || −
∑

u∈VE

OvSG(u)× |u|+ Cut(P ).

The value of `min is the maximum between the norm of an optimal solution of SCCS and
`max/4, i.e.

`min = max
(`max

4 , ||P || −
∑

u∈VE

OvSG(u)× |u|
)
.

With these definitions, we obtain the following proposition.

I Proposition 9. Let P be a set of strings. The bounds `min and `max are invariant and
`max − `min ≤ Cut(P ).

By invariant, we mean that their computation is deterministic. Hence, although `min and `max
depend on the instance P , their values do not vary upon the execution of MGreedyMin, unlike
the solutions computed by Greedy, MGreedy, Concat-Cycles, and other approximation
algorithms.

4 Implementation and experimental results

Here, we explain how each step of Algorithm MGreedyMin is implemented. First it builds
the EHOG of P in memory: for this, we rely on the data structure named COvI, a compact
implementation of the EHOG that can be used as an indexing and supports queries on
overlaps [3]. The algorithm that builds COvI, first builds a compact version of the Aho-
Corasick automaton of P [1], then prunes its set of states (or nodes in the tree) to keep only
nodes that represent overlaps between words of P . When visiting a node of the EHOG, we
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Algorithm 2: Computing the Superstring Graph.
1 Input: EHOG(P ); Output: VSG, n(VE), d(VE) and OvSG(VE);
2 VSG ← ∅;
3 ∀u ∈ VE : OvSG

′(u)← 0; n′(u)← 0; d′(u)← 0;
4 Q← a reverse depth order on the nodes of EHOG(P );
5 for u ∈ Q do
6 (s, p)←

(
psu(u), ppr(u)

)
;

7 if u is a leaf then
8 (n′(u), d′(u))← (1, 1);
9 else

10 OvSG
′(u)← min

(
n′(u), d′(u)

)
;

11 if n′(u) > d′(u) then
(
n′(u), d′(u)

)
←
(
n′(u)− d′(u), 0

)
;

12 else
(
n′(u), d′(u)

)
←
(
0, d′(u)− n′(u)

)
;

13 n′(s)← n′(s) + n′(u);
14 d′(p)← d′(p) + d′(u);
15 if d′(u) 6= 0 or n′(u) 6= 0 then VSG ← VSG ∪ {u} ;
16 return VSG, n′, d′ and OvSG

′

need to know the length of the substring it represents. In COvI, for each node this length is
accessible in constant time. For a node u of the EHOG, we can also access in constant time
ppr(u) (resp. psu(u)), which denotes the node of the EHOG corresponding to the longest
prefix (resp. suffix) of u.

Then, computing the Superstring Graph from the EHOG is done with Algorithm 2.

I Proposition 10. Algorithm 2 builds a superstring graph in time linear in ||P ||.

Proof. Complexity : Finding a reverse depth order on the nodes of EHOG(P ) may be done
in linear time. The for loop is executed once for each node of EHOG(P ), and there are at
most ||P || nodes. All operations inside the loop are assignations or comparisons of integers.
Correctness : Since when starting the for loop (line 5), we have n′(u) =

∑
(v,u)∈SE

n(v)
and d′(u) =

∑
(u,v)∈PE

d(v), at the end of the loop (line 15), we get n′(u) = n(u) and
d′(u) = d(u). J

Let Comp be the table of size |VE | that maps each node of the superstring graph to its
connected component, and all other nodes to 0.

I Proposition 11. Algorithm 3 computes Comp in time linear in ||P ||.

Proof. The superstring graph being Eulerian, if there is a path q from a node u to a node v,
there is another path from v to u that do not share any edge with q. Using this property, it
is possible to recursively follow all paths in the superstring graph from a node to itself while
marking all traversed nodes. Applying this process on every node of graph allows to discover
all its connected components. The number of arcs of the superstring graph is linear in ||P ||,
and during the whole process each arc of the superstring graph is visited once and only once,
implying that Algorithm 4 takes linear time. J

I Proposition 12. Let P be a set of strings. We can compute Cut(P ) in linear time in ||P ||.

SEA 2018
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Algorithm 3: Algorithm to build the table Comp.
1 Input: EHOG(P ), VSG, n(VE) and d(VE); Output: Comp;
2 Comp← Table of size |VE | initialised to 0;
3 nb← 1;
4 for u ∈ VE do
5 Update_Component_Table(u, Comp, nb);
6 nb← nb+ 1;
7 return Comp

Algorithm 4: Algorithm Update_Component_Table.
1 Input: T : an integer table, u: element of T , k: an integer; Output: T updated;
2 if T [u] = 0 then
3 if n(u) 6= 0 then
4 T [u]← k;
5 v ← Parent of u in (VE , SE);
6 Update_Component_Table(v, T, k);
7 for all children v of u in (VE , PE) do
8 if d(v) 6= 0 then
9 T [u]← k;

10 Update_Component_Table(v, T, k);

Proof. By Proposition 11, we can compute the table Comp in linear time. Using Comp, we
can easily obtain the node with the least string depth of each connected component. J

I Proposition 13. Let P be a set of strings. We can compute `min and `max in linear time
in ||P ||.

Proof. By Proposition 8, we have that `max = ||P || −
∑

u∈VE
OvSG(u)× |u|+ Cut(P ). By

Proposition 10, Algorithm 2 computes OvSG(VE) in linear time in ||P ||. By Proposition 12,
we can compute Cut(P ) in linear time in ||P ||. Hence, it follows that we can compute `max
in linear time in ||P ||.

By Proposition 7, we have that `min := max
(

`max
4 , ||P || −

∑
u∈VE

OvSG(u)× |u|
)
can be

computed in linear time in ||P ||. J

4.1 Empirical results
We performed experimental tests to check how close the bounds `min and `max are from an
optimal superstring length. We used one synthetic dataset and one real dataset from a genomic
experiment on the E. coli genome (Strain K-12 substrain MG1655); the data is available at
https://github.com/PacificBiosciences/DevNet/wiki/EcoliK12MG1655HybridAssembly.

Results on synthetic data. We randomly generated large sets of words of length 100 for a
DNA alphabet (4 symbols). The model for random words is an unbiased Bernoulli model.
The instances have an increasing number of words.

https://github.com/PacificBiosciences/DevNet/wiki/E coli K12 MG1655 Hybrid Assembly
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Figure 2 Execution times in function of the norm of the input set for i/ building the index (red
dots) and for ii/ computing the Superstring graph and the solution (blue dots).

1. From 200, 000 to 4, 000, 000 words with a step of 200, 000 words. The norm of such
instances goes from 20 to 400 million symbols. For each size of instances, we ran 10
generations and executions, and took the average times, and memory usages.

2. Then instances of 500, 700, 900, 1, 000, 1, 200 and 1, 500 million words of length 100.
Test were run using a single core on a desktop machine (x86_64 processor) running Linux
4.13.0-26-generic with 32 gigabytes of RAM.

Running times are displayed in Figure 2, and for each run, the largest memory consumption
over the entire execution is shown in Figure 3. Most of the time is spent, and most of the
memory used, while building the EHOG with COvI. Comparatively, the computation of `min
and `max becomes rapidly at least an order of magnitude faster than COvIconstruction. The
peak of memory for the largest instance, with 1.5 billion words, reached 22 gigabytes. In
turn, COvIconstruction spends most of its time and space while building the Aho-Corasick
automaton [3]. Thus, it would be advantageous to build the EHOG from a compressible and
more compact index than COvI. However, the linear increases of running time and memory
usage with the norm of the instances suggest that LCGreedyMin is very efficient and scalable.

Our algorithm computes the length of an approximate superstring. However, with some
modifications, it could also output the computed superstring rather than only its length.
Surprisingly, for 67% of the instances `min and `max are equal. In the remaining instances
their difference (i.e., `max− `min) is at most 0.0001% of the norm of the instance. This shows
that most instances are entirely or almost "solved" with LCGreedyMin. This is coherent with
theoretical results [15].

Results on real data. We used a publicly available set of genomic reads obtained from an
Illumina sequencing machine. The reads of length 100 make up a coverage on the E. coli
genome of 50x, meaning that every position appears on average in 50 reads. Such data are
designed for genome assembly purposes and thus contain a huge number of overlaps between
the reads. The set contains 4, 503, 422 reads for a norm of 454, 845, 622 symbols.
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Figure 3 Memory peak (black dots) during execution in function of the norm of the input set.

Our algorithm ran on a simple core of a standard laptop equipped with 8 gigabytes of
RAM; it took 272 seconds and used less than 5.5 gigabytes of memory. The EHOG had
46, 566, 901 nodes. The Shortest Cyclic Cover had length 187, 250, 434, `min was equal to
187, 250, 434, while `max was 187, 250, 672 symbols long (41% of ||P ||), making a difference
of 710 symbols. Hence, the results on real data confirm our observations on synthetic data.

5 Conclusions

Here, we provide an algorithm to compute practical lower and upper bounds on the length
of an optimal superstring. Importantly, those bounds are computed in a deterministic way.
They appear to be very tight in practice on synthetic and genomic data (although there is
little to compare to due to the lack of published experiments on approximation of known
algorithms). Theorem 2 gives an upper bound of 4 for the ratio between `max and `min.
Empirically, this ratio is several orders of magnitude lower, meaning that the superstring is
very close to the optimum. This result does not contradict the existence of a lower bound for
SLS approximation ratio (see Figure 1 or [22]). For SLS, improving MGreedy into TGreedy
algorithm led to an approximation ratio of 3. The same improvement is possible with our
algorithm MGreedyMin and also would lead to the same ratio. This is left for future work.

Unfortunately, it is complex to understand why MGreedyMin yields an empirical ratio so
close to the optimum. Several factors come into play. First, it turns out that the Shortest
Cyclic Cover of P often contains a single cyclic word. In that case, this optimal cyclic
cover also is an optimal cyclic superstring, which is necessarily shorter than the optimal
linear superstring. Second, the cyclic superstring often corresponds to a path that uses
the empty word as an overlap. In that case, the cyclic superstring can be cut between the
two corresponding words and makes up a shortest linear superstring of exactly the same
length, which is then optimal [6]. Another fact is important: if a cyclic string ck of the cyclic
cover merges at least two words of P , say si and sj , then the difference between a shortest
superstring of these words and ck is smaller than the shortest word occurring in ck.
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The fact that MGreedyMin concatenates in an arbitrary order the linear strings to form
a superstring makes no sense in DNA assembly or in genomics applications. The order of
strings obtained by merging reads (which are called contigs) are determined a posteriori by
a subsequent step of assembly pipelines named scaffolding using additional data like optical
or genomic maps, long reads, or chromosomal capture data (Hi-C).
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Abstract

The compressed stack is a data structure designed by Barba et al. (Algorithmica 2015) that
allows to reduce the amount of memory needed by a certain class of algorithms at the cost of
increasing its runtime. In this paper we introduce the first implementation of this data structure
and make its source code publicly available.

Together with the implementation we analyse the performance of the compressed stack. In
our synthetic experiments, considering different test scenarios and using data sizes ranging up to
230 elements, we compare it with the classic (uncompressed) stack, both in terms of runtime and
memory used.

Our experiments show that the compressed stack needs significantly less memory than the
usual stack (this difference is significant for inputs containing 2000 or more elements). Overall,
with a proper choice of parameters, we can save a significant amount of space (from two to four
orders of magnitude) with a small increase in the runtime (2.32 times slower on average than the
classic stack). These results hold even in test scenarios specifically designed to be challenging for
the compressed stack.
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1 Introduction

Small computing devices have greatly increased their presence in our everyday lives in recent
years. Most notably smartphones have become ubiquitous, but other devices such as sensors
or security cameras have dramatically increased their number and everyday uses. These
devices often have memory availability and computational power constraints due to price
consideration, technology limitations or in order to discourage theft.

This growth tendency has coupled with the longstanding theoretical interest within the
theoretical computer science community in the issue of memory usage in algorithmic design.
This has yielded the creation of time-space trade-off algorithms [4]). These algorithms are
designed so they work regardless of the amount of memory available but their performance
improves with memory availability. We refer the interested reader to [15] for a survey on the
different models that have been proposed to handle space constraints.

The major interest from a theoretical point of view is the relationship between time and
space. In most cases, the dependency has been linear or almost linear [2, 3, 11, 16, 17]: that
is, when we double the amount of available space we expect the runtime to more or less halve.
However, several exceptions are known. For example, the best algorithm for the well-studied
minimum spanning tree problem (given a set of points in the plane, embed a tree that spans
all of them with the shortest possible length) needs cubic time to be solved in the presence
of space constraints [5] (whereas it is solved in almost linear time when sufficient memory is
available [13]).

On the positive side, for some problems we know that the dependency can be exponential.
The focus of this paper is the compressed stack data structure introduced by Barba et al. [10].
This data structure applies to any deterministic incremental algorithm whose internal
structure is a stack (more details below). When the space available is very small (say, s
words of space for some s that is less than logarithmic in size when compared to the input),
then the runtime is O(n2 logn/2s). Notice that the dependency is exponential: increasing
the memory by a small constant we can halve the runtime. When the amount of space grows
the dependency quickly becomes logarithmic (we need to double the amount of space to see
any difference in the runtimes).

Another interesting property of the structure is that, if properly implemented, the
algorithm is unaware of which data structure it utilizes: we only need to replace the classic
(uncompressed) stack data structure with a compressed stack to obtain an algorithm that
uses less memory. This modular transparency makes it very easy for users to adopt. More
interestingly, it provides the ideal setting for comparison purposes.

We believe that this (theoretical) exponential dependency shows potential for usability in
practical applications. In this paper we take a more hands-on approach on the topic. Rather
than studying theoretical dependency, we implement the compressed stack and thoroughly
assess its behavior when executed using benchmark data of varying difficulty. Specifically,
we are interested in seeing how close the theoretical bound is to real runtimes, and if so
what would be a good balance between time and space (that is, how much can we reduce the
amount of memory consumed while making sure that runtimes remain reasonable). In order
to tell the full story, it is also important to state that the use of the compressed stack is
circumscribed to situations of high memory consumption. Thus those are the situations that
we will consider throughout the paper. In those situations where the number of elements
present in the stack is low enough not to ever represent a memory problem one should just
use the classic stack.
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Thus, our study has two objectives. First, to verify that the theoretical dependency
between time and space actually matches practice. Also, we want to provide some guidelines
on how to find this breakpoint in the dependency so that the user can choose the right
amount of memory to achieve the fastest algorithm that fits their memory constraints.

1.1 Results and Paper Organization
Our main contribution is the implementation of the compressed stack data structure of Barba
et al. [10]. This implementation is freely available at [6]. With the use of this library, one can
implement any algorithm that uses this data structure quickly and efficiently (see examples
as Problem 1 and in [8, Subsection 3.6]).

In Section 2 we give a brief overview of stack algorithms and the compressed stack
data structure. In Section 3 we give a brief overview of our library. Due to lack of space,
further description of the library as well as discussion of the minor differences between our
implementation and the theoretical formulation by Barba et al. is available in [8, Section 3].

In Section 4 we present a thorough study on the behaviour of the compressed stack. Our
study is based on two scenarios (one favourable and one unfavourable for the compressed
stack). In our experiments we decided to use synthetic data. The main reason for this is that
synthetic data allows us to focus only on the time and amount of memory needed by the
stack data structure. Stack algorithms perform other computations apart from handling of
the stack itself. For example, when computing the convex hull of a set of points we need to
do triple orientation checks to decide if a point is popped from the stack (see Subsection 2.1
for a description of the problem and overview of the algorithm). These checks compute the
determinant of a small matrix and when all of them are put together, they have a significant
impact on the runtime. Although it is technically feasible to measure the computation time
spent only in handling the stack for any given algorithm, this introduces precision errors
and complicates the discussion of results. Furthermore using artificial data allows us to fully
control the parameters in our experiments (input size, number of pushes and pops...). This
allows us to focus on the properties that we want to study and give a clear view of the strong
and weak points of the compressed stack.

As expected, the compressed stack structure uses significantly less memory than the
classic stack. From the theory we know that the running times must increase, but only
the asymptotic trend can be also empirically observed. From the experiments done in this
paper we can deduce more clear guidelines for prospective users so that they can drastically
reduce the amount of memory consumed while we keep the runtimes relatively low. Further
discussion about parameter settings is done in Section 5.

2 Preliminaries

The compressed stack data structure can only be used with a certain family of algorithms
(called stack algorithms). This class includes widely used algorithms addressing problems such
as computing the convex hull of a set of points, approximating a histogram by a unimodal
function, or computing the visibility region of a point inside a polygonal domain. See [9, 10]
for more examples of stack algorithms.

In full generality, we look at algorithms whose input is a list of elements I = {a1, . . . , an},
and the goal is to find a subset of I that satisfies a previously defined property. In a nutshell,
we are looking at deterministic incremental algorithms that use a stack, and possibly other
small data structures Ccal (this additional structure is called the context and ideally only
consists of a few integers).
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A stack algorithm solves the problem in an incremental fashion, scanning the elements of
I one by one. At any point during the execution, the stack keeps the values that form the
solution up to that point. For each new element a that is taken from I, the algorithm pops
all values of the stack that do not satisfy a predefined “pop condition" and if a meets some
other “push condition", it is pushed into the stack. The algorithm then proceeds to the next
element in I until all elements have been processed. The final result is normally contained in
the stack, and at the end it is reported. This is done by simply reporting the top of the stack,
popping the top vertex, and repeating until the stack is empty. Thus, an algorithm A that
follows this scheme is called a stack algorithm (see the pseudo-code in [8, Algorithm 1]).

2.1 Sample problem: convex hull computation
A typical example of a stack algorithm is the convex hull problem: given a list of points
p1, . . . , pn in the plane sorted in increasing values of their x-coordinate, we want to compute
their convex hull, i.e., the smallest convex set that encloses all of them. Among the many
algorithms that solve this problem, [1]4, the one by Lee [18] falls in the class of stack
algorithms.

The algorithm processes the points sequentially and stores the elements that are currently
candidates for being in the convex hull. For simplicity, we discuss how to compute the upper
hull (i.e., points that are in the convex hull and are above the line passing through the
rightmost and leftmost point) of a set of points5.

When a new element is processed it may be witness to several points that were previously
in the upper hull and should not be there any more (see [8, Figure 1]). The key property is
that those points must be the last ones that were considered as candidates. Consequently,
they are removed in reverse order of insertion and thus a stack is the perfect data structure
to store the list of candidates.

We refer the interested reader to [14] for more details on the convex hull problem and its
applications. As an illustration on the simplicity in implementing stack algorithms, we have
implemented this algorithm as part of our library (details are given in [8, Subsection 3.6]).

2.2 Compressed Stack Overview
During the execution of a stack algorithm, one may have many elements of the input in the
stack. In a classic stack these elements are stored explicitly, which may cause high memory
requirements.

In the compressed stack structure we do not explicitly store all elements. First, the user
chooses a parameter p to indicate the amount of space that the algorithm is allowed to
use (the larger the p, the more memory it will use). Then the input is split into p blocks.
Whenever a block has been fully processed (i.e., the incremental algorithm has scanned the
last element of the block) we compress the block: rather than explicitly storing whatever
part of it has been pushed into the stack, we store a small amount of information that can
be used to afterwards determine exactly which elements were pushed.

4 The algorithms in this survey actually compute a slightly more general problem: computing the convex
hull of a simple polygon, but both problems are almost identical. The simple polygon case has a few
more difficult cases (such as when the polygon spirals around itself), but they have no impact on the
way in which the stack is handled. Thus, for simplicity we only describe the simpler case.

5 The traditional algorithm scans once the input to compute the upper hull and a second time to compute
the lower hull, but we note that the same algorithm can be modified to work in one pass by using two
stacks. In any case, neither of these two options have a large impact on the overall working of the stack
algorithm, so we ignore this and focus in the upper hull only.
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Naturally, this saves a lot of memory, since a block could have many elements in the stack
but only a fixed amount of information per block is stored instead. Since we scan the input
in a monotone fashion only one block is partially processed at any instant of time. We store
that block and its preceding block in uncompressed format (i.e., almost explicitly), while all
other ones are compressed6.

Stack algorithms have access only to the top of the stack at any given time. Since the
top element is part of an explicitly stored block, its information is always known and can be
accessed as with a usual stack. Eventually, the algorithm may pop many elements, and then
the information inside a block that was compressed will be needed. This information can
be reconstructed by re-executing the same algorithm, but only restricted to a portion of the
input. The key trick to keeping the runtime small is to make sure that few reconstructions
are needed, and always restricted to small portions of the input.

We emphasize that the working of the compressed stack is transparent to the algorithm.
The algorithm is running, does some push and pop operations as well as reading the top
of the stack. The stack data structure handles compression of information independently.
Sometime during the execution, a pop will trigger a reconstruction. In this moment, the
algorithm is paused and we launch a copy of the same algorithm (with a smaller input).
Once the small execution ends, the needed information is available in memory, and we can
resume with the main execution.

From a theory standpoint, when the memory available is very small (i.e, we can only use s
words of space for some s ∈ o(logn)), stack algorithms run in O(n2 logn/2s) time. When the
space available becomes Θ(logn) the dependency in the runtime changes; the algorithm runs
in O(n1+ 1

log p ) time using O(p logp n) space for any parameter p ∈ {2, . . . n}. In particular,
when p is a relatively large number (say, p = 500) the algorithm runs in slightly superlinear
time, and uses logarithmic space. On the other hand, when p = nε the algorithm runs in
linear time and uses O(nε) space. For comparison purposes, the usual stack runs in linear
time and uses linear space, so the latter case consumes more memory without reducing the
runtime (this is of course from a theoretical point of view. Since additional reconstructions
are needed the runtime will increase).

3 Implementation

In this section we give a brief overview of the CompressedStacks.cpp library. A complete
description is given in [8, Section 3]. This library was implemented following the C++11
standard, and is available at [6] as an open source library under the MIT license.

Our stack algorithm library consists of three main classes: the Data class that handles the
input, the CompressedStack class that instantiates transparently a space-optimized stack
structure, and the StackAlgorithm class itself.

The CompressedStack implements the compressed stack data structure. As such, it
handles push and pop operations (as well as all extra computations needed for compression).
See Figure 1 for an overview of how data is stored in this class. The key trick of saving
space is to partition the input into blocks, that are recursively partitioned into blocks, and
so on. As introduced by Barba et al. [10], a block may be stored explicitly (if it stores all
elements of the block that have been pushed into the stack), partially compressed (which
allows reconstructing any portion of the block) or fully compressed (which allows fully
reconstructing the block). This data structure compresses information that is further down

6 There are two ways in which the block can be compressed, but this is is not relevant for the overview.
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Figure 1 General sketch of a Compressed Stack: red boxes are blocks, green boxes are levels
(vector of blocks), blue boxes are explicit values, plain arrows shows the partial compression (p.c.) of
a level i + 1 into a block at level i. Recall that p is a parameter set by the user (denoting how much
to compress the data), and that h ≈ logpn will denote in how many levels we subdivide the input.

in the stack, thus unlikely to be accessed in the near future. Depending on the value of
the parameter p (set by the user) we may compress more or fewer blocks. For comparison
purposes we also provide an implementation of a classic stack that stores the input explicitly
(and does not do any data compression).

The StackAlgorithm is a class used for solving the different stack algorithms. This is
the class that the user needs to implement depending on his or her application. This class
must be inherited and then a few operations like pushCondition or popCondition must be
implemented (see more details in [8, Section 3]). The implementation pays special attention
to modularity, so the stack algorithm is transparent to the kind of stack that is actually
being used. That is, the algorithm sends push and pop requests and need not know if they
are being handled by a regular or a compressed stack.

All modifications needed to deal with space constraints (if used) are handled by the
compressed stack class. Our library contains two examples of compressed stack algorithms.
One is the upper hull problem (described in section 2.1) and the other is a synthetic problem
described below.

I Problem 1 (Test Run). This is an artificial stack algorithm for experimental and debugging
purposes. It reads the whole input and executes push and pop operations as requested. The
data type D is a pair of positive integers separated by a comma. The first number indicates
the value to be pushed into the stack whereas the second indicates the number of pops that
should be done after processing the first value (in lines 4-13 of [8, Algorithm 2]).
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4 Experimental Results

4.1 Data and evaluation measures
As mentioned in the introduction our experiments use synthetic data. Keeping in mind that
our aim is to measure the differences between using a regular and a compressed stack we
have tried to keep additional overhead to a minimum. In general, stack algorithms spend
a significant amount of time in computations related to the problem being solved, but not
related to the stack data structure being used. For example, in the upper hull algorithm,
the popCondition operation must compute the determinant of a 3× 3 matrix in order to
determine whether a point is a candidate to belong to the upper hull. These computations
can affect the leading term for the running time, obscuring the difference in performance of
both stack types. Consequently, we present experiments using the testrun problem described
as Problem 1 in Section 3 (an artificial problem with the smallest possible overhead).

Another interesting property of synthetic data is that it gives us full control over the
conditions in which both stacks have to work (for example, we can control the sparsity of
the data and number of reconstructions that will be executed). We use this to our advantage
and create two completely different scenarios in terms of the difficulty of data compression.
The first experiment represents a very favourable situation for the compressed stack: a case
in which data is accessed almost sequentially (and thus it is ideal for compression purposes).
The goal in this case is to show the potential of memory saving that this data structure can
achieve. The second test aims at setting a much more challenging scenario: continuous pops
are set in a way such that scattered positions of the input file are accessed. This forces the
compressed stack to repeatedly reconstruct portions of the input, and thus potentially lose a
lot of time when compared to the classic stack.

For comparison purposes, all problem instances generated are solved with both the classic
and compressed stack. In order to measure the performance we focused on two quantities:
the maximum amount of memory used by the algorithm and the running time. To measure
the first, we used a heap profiler called massif [19] belonging to the Valgrind software suite.
This software keeps track of the memory allocated in the execution heap at intervals of
predefined length and outputs detailed heap memory usage. While this software allowed
us to measure maximum memory usage, its use made the running of the algorithms much
slower.

The second quantity that we were interested in was run-time, we needed to make two
separate runs for every test case. In the first execution, we run massif alongside our code,
obtaining memory usage data. In the second execution we run the test code alone in order
to obtain unadulterated run-time readings. Consequently, in this section we present memory
usage readings as reported by massif (in bytes) as well as the times of the algorithms (in
seconds) when run without massif. In order to be able to present values for widely different
sizes, in each execution, we doubled the size of the input n (of size n = 2i for increasing
values of i).

The behaviour of the compressed stack highly depends on the ‘p’ parameter introduced
in Subsection 2.2. For the purposes of this experiment, it suffices to know that the larger p
is, the more space is used by the compressed stack (and fewer reconstructions are needed).

In order to illustrate the effect of this parameter in the performance of the compressed
stack, we present results for eight different values of p. Specifically, the first four values
are fixed (10, 50, 100 and 500) while the other four change with the size of the input n:√
n, 4
√
n, 8
√
n and logn. Fixed values allow us to illustrate how an imbalance between n and p

may result in very high running times (or memory requirements). In order to obtain more
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(a) Memory comparison classic vs compressed.
For ease of visualization, a logarithmic scale was
used in both axes.
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(b) Time comparison classic vs compressed. No
scaling in either axis is done for this figure.

Figure 2 As expected from theory, the classic stack uses a linear amount of space in a linear-space
problem instance. In comparison, the compressed stack only uses a logarithmic space. Regarding
runtime, the classic stack has, as expected, the best performance of all. However, for large values of
p the running time is almost the same as of the classic stack (indeed, on average the compressed
stack with p =

√
n is only 1.031 times slower than the classic stack).

balanced values for all size ranges, we use varying values for p (as a function of n). In order
to keep the section within reasonable length limits, we only present summary figures of
memory usage and running times. Detailed tables can be downloaded at [6, wiki section].

4.2 Linear sized stack
In this first test we aim at creating a scenario that maximised the possibility of memory
saving by the compressed stack with minor impact on the runtime. We consider the case in
which the stack contains a linear fraction of the input. Specifically, fix a probability ρ ∈ [0, 1];
then every element of the input is pushed, and a pop will be executed with probability 1− ρ.
In terms of the testrun problem defined, this stood for an input made up of a text file with a
list of pairs of integers. The first integer is the actual number that will be pushed into the
stack (whose exact value is irrelevant and thus was a random integer) and the second was
chosen to be equal to one with probability 1− ρ, or zero otherwise (recall that the second
number is the number of pops to be executed).

After processing the whole input, the expected number of elements in the stack is ρn, and
thus the memory used by the classic stack will be linear. Instead, the compressed stack will
only store a logarithmic amount of elements (the exact number will depend on the value of
the p parameter). Figures 2b and 2a show the memory used and runtime of our experiments
for the case in which ρ = 1 (and thus no pops are ever executed).

While we acknowledge that this is not a realistic situation, it does highlight the potential
saving of space achieved by the compressed stack in cases where a large portion of it does not
change. Moreover, in order to simulate more realistic situations we repeated the experiment
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with different values of ρ. In all cases, the tendencies observed were similar to the case
without pops: the larger the value of ρ the fewer pops are executed, thus the more memory
is needed (for example, the compressed stack with p = 4

√
n the memory used when ρ = 1, is

between 1.6 and 2 times that of ρ = 0.1).
Figure 2a depicts the maximum amount of memory needed in this test. A logarithmic

scale (of base 2 for the x axis and base 10 for the y axis) is used for ease of visualization.
The figure shows how in this test the classic stack needs much more memory than any of
the compressed variants. Note that, as expected, the memory consumed by the classic stack
grows linearly with the input size.

There are two exceptional cases in which the classic stack uses less memory than a
compressed stack algorithm, but it only happens for extremely large values of p when
compared to the input size (specifically, the compressed stack with p = 500 and input sizes of
210, 211). This shows how the choice of parameter p is important to optimize the performance
of the compressed stack. In both cases p is too close to n (n = 210 = 1024) and the structure
of the stack is wasted as most values are kept explicitly nonetheless.

The memory needed by the normal stack exceeds that of any compressed variant by two
orders of magnitude already by size 219. This difference grows together with n (reaching
four orders of magnitude for 229). The maximum memory needed by the classic stack in the
test was over 25 Gigabytes for an input file of size 230 (over 1000 million). Conversely, the
compressed stack, in the worst case, only needed 5.8 Megabytes.

If we compare the different values of p for the compressed stack, we observe that, as
expected, smaller values of p result in lower memory usage. Moreover, the results of
algorithms with fixed values of p match the ones of variable p at expected values (for
example, the algorithm with p = 500 should perform like the algorithm with p =

√
n when√

n = 500← n = 250000 ≈ 219, and the two curves meet around that value). For fixed values
of p it is easy to see that the memory grows logarithmically (specifically, we see a bump
in the memory requirements when the value of dlogp ne changes), whereas the growth is
smoother for variable values of p. In both cases the growth is very monotone, which matches
the expectation from theory.

The downside of using a small value of p is that the running time will increase. The effect
of the growth of p is only mildly visible in Figures 2a and 2b but will be more evident in
Subsection 4.3. The reason for this is that the number of times that the reconstruct function
is invoked is small, and the major time sink of the compressed stack is in the reconstruct
operation. We defer a deeper analysis on runtime to the next experiment.

4.3 A challenging scenario for the compressed stack
We now consider a different test scenario that is tailored to be difficult for the compressed
stack: we set the input to produce push-pop cycles in a way that forces many reconstructions.
Moreover, the values that are pushed are at non-contiguous positions, making it difficult for
the information to be compressed. We can also observe how the overall data that needs to
be stored grows, but not at a linear rate. This is again a very artificial construction, but
we believe that it shows that even under difficult conditions the compressed stack performs
reasonably well. In order to create this setting, the instance forces the following operations
into the stack:

Push 8 elements, pop half of them (4).
Repeat the previous step 8 times. At this point we have processed 64 elements and keep
half of them (32) in the stack.
Pop half of the stack, resulting in a stack of 16 elements.
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Repeat this double loop 8 times, resulting in 128 elements in the stack after 512 elements
have been processed.
We again pop half of the stack, keeping only 64 elements in the stack.
Repeat now the triple loop 8 times, and so on

This procedure keeps adding cycles of increasing length until the desired input size n
is reached. The stack stores 4 elements that are consecutive in the input, but the spacing
between numbers to store grows exponentially, creating a very difficult situation for the
compressed stack (since reconstruction operations will have to scan large portions of the
input for just a few elements that are stored explicitly in the regular stack).

We call this test the Christmas tree test (because the height of the stack forms a Christmas
tree-like shape, see [8, Figure 9] for a graphical representation on the number of elements
present in the stack as a function of the input size. As in the first scenario, we run Christmas
tree instances whose total number of elements is a power of two. Note that the choice of
making loops with 8 iterations (and popping half of the stack at each step) is arbitrary.

The main advantage of using a power of 2 for the number of iterations is that the memory
usage patterns become easier to predict: imagine that for some value of n, the problem
instance finished with a large pop removing half of the elements in its stack. When we double
the instance size, the second half of the execution is spent in filling in the stack. Because the
stack had been emptied, both executions are expected to use the same amount of memory.

Figure 3a shows the memory used in the Christmas tree test by all different stacks. Notice
that the previously described stepwise pattern in memory usage is clearly visible. We also
note that the amount of memory used by the classic stack is significantly lower than in the
previous experiment. Again, this is because of significantly fewer elements are added into
the stack: every factor of eight that the input grows, the space requirements only grow by a
factor of 4, hence the stack has roughly n2/3 elements.

We observe that at the amount of memory needed by the different parameters of the
compressed stack is very similar to the one needed in the previous experiment. Indeed, for
fixed values of n and p, the ratio of memory consumption in a linear-sized instance by the
one needed by a Christmas-tree instance is very close to 1 (it depends on the exact value
of n and p, but the average is 1.05 and variance is 0.1 or lower). This is consistent with
the inner working of the compressed stack. Indeed, regardless of how many elements have
been pushed, the compressed stack just stores a small amount of them explicitly (the exact
amount will depend on n and p). The variation between the amount of memory needed by
different instances happens because our implementation prioritizes saving as much memory
as possible. Thus, if some block is empty we release that block of memory (and memory
used by the smaller blocks nested inside).

The amount of memory saved by the compressed stack is significantly smaller than in
the previous problem instance. This is to be expected, since fewer elements are pushed into
the stack (and thus the classic stack needs less space). Indeed, for small values of n and
extreme values of p the compressed stack even needs more memory than the classic stack.
However, even in such an ill conceived example, when we use proper parameters of p is used
(for example p =

√
n), the maximum memory required by a compressed stack is two orders

of magnitude smaller than the classic stack.
The Christmas tree instance is specifically designed to force a lot of reconstructions.

These reconstructions are computationally expensive, and as such we see a larger difference
in runtimes between the classic stack and the compressed one (see Figure 3b). We observe
that, although for small values of p the running times become infeasible, for larger values the
runtime is comparable to the one of a regular stack. For example, for p = 4

√
n, the runtime

is in average 2.32 times slower than the classic stack (4.50 times slower in the worst case).
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Figure 3 Christmas Tree experiments. In this test, designed to be challenging for the compressed
stack, the memory saving in respect to the classic stack is much smaller (and in a few instances the
classic stack even needs less memory than some compressed stacks). Concerning time, the constant
calls to the reconstruct function make the compressed stack much slower (as exemplified, for example
by the behavior of the compressed stack with p = 10. However, even in this tailored scenario, we can
see how the compressed stack maintains a capped memory usage as well as relatively low running
times if the value of p is chosen appropriately (as can be seen for example, in the values of p = 4√n).

4.4 Choosing the right value of p

From a theoretical point of view, setting p to be equal to a large constant gives the best
performance for the compressed stack: a fixed value of p increases runtime over the classic
stack by a logarithmic factor whereas space constraints are exponentially decreased. Values
of p that depend on n have a worse time-space product.

Although this may be true in theory, in our experiments we have seen that a fixed value
does not always perform well (for too small instances it may consume even more memory
than the classic stack, and for larger instances the runtime may increase too much). We
believe that in practical applications the value of p should depend on n. In this section we
use the previous experiments to give guidelines on how to choose the correct value of p.

Naturally, the compressed stack is only recommended for cases in which the stack contains
many elements (since otherwise a classic stack would be good enough). Now, assuming that
the stack is going to be majorly full, there are two settings in which the compressed stack
shines. In the first one we have a hard cap on the amount of memory available, and we need
to make sure that the algorithms does not exceed that amount. In this case, we naturally
want the largest possible value of p that keeps the memory requirements below the threshold.

A simple way to make sure this happens is to combine the compressed stack with a
heap profiler. If at any point the memory constraints are exceeded, we stop and restart
the algorithm with a smaller value of p. Although it will certainly work, such a brute force
approach is not needed. In our experiments we observed that the memory used by the
compressed stack is almost constant regardless of the scenario. We can use this to predict
the amount of memory used without having to resort to a heap profiler. In our experiments,
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we have observed that the amount of memory used is slightly below 300pdlogp ne bytes. Of
course, this value is not static and will depend on many parameters (such as operating
system, compiler used, and so on).

More importantly, the exact constant will also depend in the type of elements that are
pushed into the stack; For example, in our experiments we push integers. Our implementation
of the compressed stack is abstract and can handle any data type, but the exact data type
chosen will have an impact in the memory needed by the algorithms. In any case, given the
stability of the space constraints of a compressed stack, it is not hard to predict the memory
requirements of the compressed stack from a small sample of experiments.

Another scenario for the compressed stack to shine is when we want to overall keep
memory requirements low, but no hard caps in the space requirements are present. In
such cases, we believe that a practical compromise is obtained by fixing p = 4

√
n: even

in unfavourable scenarios it has a drastic reduction in memory consumption (orders of
magnitude in difference as early as n ≈ 215 ≈ 32.000) while it only brings a small increase in
the runtime (in average 2.32 times slower than the classic stack).

5 Conclusions

Other than our preliminary implementation [7], this is the very first implementation of the
compressed stack data structure. The source code along with the data from the experiments
presented in this paper is available for download as [6]. Parallel to our work, a similar
experimental study for another time-space trade-off problem previously only studied from a
theoretical standpoint was done by [12]. Specifically, they studied the time-space dependency
for the problem of computing the shortest path between two points in a simple polygon. We
believe that a trend of similar studies will soon follow for these or related problems.

The reduction of memory of this data structure is undeniable, even in the very unfavourable
scenario of the Christmas tree. Specifically, Subsection 4.2 presented a (synthetic) situation
where a normal stack needed 25 Gigabytes of memory while compressed stack implementations
needed at most 5.8 Megabytes. This situation represents a challenge for current desktop
computers and is infeasible in even the more advanced mobile phones (Apple’s Iphone 7, for
example has 2 Gigabytes of RAM memory). Although this was a tailor-made case, it still
showcases how the compressed stack nicely limits memory usage.

The drawback of the compressed stack is the increase in runtime when compared to a
classic stack as known from its theoretical design. In this paper we have quantified how much
of a penalty to expect as a function of p. This has allowed us to find a balance between the
amount of memory saved and the increase in runtime. Most interestingly, we have observed
that the amount of memory needed by the compressed stack is very stable regardless of the
actual scenario. This makes the compressed stack very robust at holding memory limitations,
even for situations in which we do not know much about the structure of the input.
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Abstract
In the field of robust geometric computation it is often necessary to make exact decisions based
on inexact floating-point arithmetic. One common approach is to store the computation history
in an arithmetic expression dag and to re-evaluate the expression with increasing precision until
an exact decision can be made. We show that exact-decisions number types based on expression
dags can be evaluated faster in practice through parallelization on multiple cores. We compare
the impact of several restructuring methods for the expression dag on its running time in a
parallel environment.
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1 Introduction

In Computational Geometry, many algorithms rely on the correctness of geometric predicates,
such as orientation tests or incircle tests, and may fail or produce drastically wrong output
if they do not return the correct result [9]. The Exact Geometric Computation Paradigm
establishes a framework for guaranteeing exact decisions based on inexact arithmetic, as it is
present in real processors [13]. In accordance with this paradigm, many exact-decisions number
types have been developed, such as leda::real [4], Core::Expr [5, 14], Real_algebraic [7]
and LEA [1]. All four named number types are based on arithmetic expression dags, i.e.,
they store the computation history in a directed acyclic graph and use this data structure to
adaptively (re-)evaluate the expression when a decision has to be made.

While all of these number types are able to make exact decisions, they are also very
slow compared to standard floating point arithmetic. Therefore continuous effort is taken to
make these data types more efficient. However, none of these number types implements a
strategy to take advantage of multiple cores yet. In this work, we show that multithreading
can improve the performance of expression-dag-based number types by presenting the design
of a multithreaded implementation for Real_algebraic, as well as experimental results
comparing it to its single-threaded version.

To enable an efficient parallelization, we implement several restructuring methods for the
underlying data structure and compare them with respect to their effect on multithreading.
We aim for using these techniques in a general purpose number type, for which the user need
not worry about implementation details. Therefore we look specifically at situations in which
restructuring increases the running time. We propose a new approach to avoid some of these
situations and thus to lower the risk of worsening the performance.

© Martin Wilhelm;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 20; pp. 20:1–20:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.wilhelm@ovgu.de
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


20:2 Restructuring Expression Dags for Efficient Parallelization

1.1 Preliminaries
An (arithmetic) expression dag is a rooted ordered directed acyclic graph that is either
1. A single node containing a number or
2. A node representing a unary operation ( n

√
,−) with one, or a binary operation (+,−, ∗, /)

with two, not necessarily disjoint, arithmetic expression dags as children.
The number type Real_algebraic is based on the concept of accuracy-driven computa-
tion1 [13]. Applying operations leads to the creation of an expression dag instead of the
calculation of an approximation. When a decision has to be made, the maximum accuracy
needed for the decision to be exact is determined and each node is (re)computed with a
precision that is sufficient to guarantee the desired final accuracy2.

Let val(E) be the value represented by an expression dag E. When an approximation for
val(E) is computed, then for each node v in E, approximations for the children of v, and
consequently for all of its descendants, must be computed before v itself can be processed.
Hence the computations we have to perform are highly dependent on each other. Whether the
evaluation of an expression dag can be efficiently parallelized is therefore largely determined
by its structure. Generally, a shallower, more balanced structure leads to less dependencies
and can be expected to facilitate a more efficient parallel evaluation.

1.2 Related work
Few attempts have been made to restructure arithmetic expression dags. Richard Brent
showed in 1974 how to restructure arithmetic expression trees to guarantee optimal parallel
evaluation time [2]. In 1985, Miller and Reif improved this strategy by showing how the
restructuring process itself can be done in optimal time [6]. In our previous work, arithmetic
expression dags are restructured to improve single-threaded performance by replacing tree-like
substructures, containing only additions or only multiplications, by equivalent balanced
trees [11]. We call this method AM-Balancing.

We implement a variation of Brent’s approach for tree-like substructures in arithmetic
expression dags and compare it with AM-Balancing. Furthermore, we refine the algorithm
based on practical observations. We do not use the strategy by Miller and Reif, since restruc-
turing the expression dag is very cheap compared to the evaluation of bigfloat operations
and therefore only minor performance gain, if any3, is to be expected.

2 Design

In this section we briefly describe our implementation of parallel evaluation and restructur-
ing for the dag-based number type Real_algebraic. A more detailed description of the
parallelization can be found in the associated technical report [12].

2.1 Parallelization
The running time for the evaluation of expression dags is dominated by the execution of
bigfloat operations. They usually sum up to around 95% of the total running time. Therefore

1 Also known, less accurately, by the name “Precision-driven computation”
2 Actually, this is an iterative process with increasing accuracy and checks for exactness after each

iteration.
3 Considerable effort would be needed to even neutralize the overhead from creating and managing

different threads.
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we focus on parallelizing bigfloat operations and allow for serial preprocessing. Accuracy-
driven evaluation is usually done recursively with possible re-evaluations of single nodes.
For an efficient parallelization, it is necessary to eliminate recalculations to avoid expensive
lock-usage. Therefore we assign the required precision to each node in a (serial) preprocessing
step and afterwards evaluate the nodes in topological order as proposed by Mörig et al. [8].

In our approach, we assign one task to every bigfloat operation. Tasks that can be solved
independently are then sorted into a task pool, where they may be executed in parallel. Each
dependent task is assigned a dependency counter, which gets reduced as soon as the tasks on
which they depend are finished. When the dependency counter reaches zero, the task gets
sorted into the task pool. With this strategy we reduce the shared data to a minimum, such
that atomic operations can be facilitated at critical points to eliminate race conditions.

The maximum number of threads working in the task pool can be adjusted, depending
on the hardware available. Our tests are run with a maximum number of four threads
simultaneously working on the tasks plus the main thread, which stays locked during the
computation.

2.2 Restructuring
In AM-Balancing, so-called “operator trees”, i.e., connected subgraphs consisting of operator
nodes with only one predecessor, are replaced by equivalent balanced trees if they represent
a large sum or a large product. Since sums and products are associative, this can be done
without increasing the total number of operations and therefore without a large risk of
significantly increasing the running time, aside from some subtleties [11].

In this work we extend AM-Balancing, based on the tree restructuring by Brent [2]. In
Section 2.2.2 we consider operator trees consisting of all basic arithmetic operations except
roots and reduce their depth by continuously splitting long paths and moving the lower half
to the top. In Section 2.2.3 we describe a modification to this algorithm, which avoids some
steps that are particularly expensive.

2.2.1 Notation
Let E be an expression dag. We call a subgraph T an operator tree if T is a maximal
connected subgraph of E, consisting of nodes of type {+,−, ∗, /, - (unary)} such that no node
except the root of T has more than one parent. We denote the set of operator nodes having
one of the allowed operator types Vop. We call the children of the leaves of an operator tree
T its operands and let φ(T ) denote their number.

An operator tree is always a tree and all operator trees in an expression E are disjoint.
Therefore each node v ∈ Vop is part of exactly one operator tree T (v). For each v ∈ Vop we
call the operands of T (v) that are part of the subtree rooted at v the operands of v and
denote their number by φ(v). We call a path from the root of an operator tree to a leaf
critical if each node on the path has at least as many operands as its siblings.

2.2.2 Move-To-Root Restructuring
We briefly describe our variation of Brent’s algorithm, which we refer to as Move-To-Root
(MTR) Restructuring. Each operator tree T in an expression dag E is restructured separately.
In each node v in T we store φ(v), i.e., the number of operands of v. Then we search for a
split node vs on a critical path of T , such that φ(vs) ≤ 1

2φ(T ) < φ(parent(vs)).
Let X be the subexpression at vs. We restructure T , such that it now represents an

equivalent expression of the form AX+B
CX+D with (maybe trivial) subexpressions A,B,C,D.
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Figure 1 Incorporating an addition into an expression of the form (AX + B)/(CX + D). The
main structure of the expression is highlighted before and after the restructuring. The expression
dag grows by two additional multiplications and one additional addition due to the denominator.

Starting with the expression X at vs, we raise vs to the top of the tree while maintaining the
form AX+B

CX+D . We say that we incorporate the operations along the way from vs to the root
into the expression. The restructuring needed to incorporate an addition is shown exemplarly
in Figure 1.

After restructuring, the length of the path from the root to vs is reduced to a constant.
The same applies to the respective root nodes for the expressions A, B, C and D. The
algorithm then recurses on these nodes, i.e., the operator trees representing X,A,B,C,D
are restructured.

2.2.2.1 Comparison to Brent’s algorithm

Like MTR Restructuring, Brent’s original algorithm searches for a split node vs on a critical
path and raises it to the top of the expression tree. However, it does so in a more sophisticated
manner by repeatedly splitting the path from the root to vs in half and at the same time
balancing the “upper half” of the tree, i.e., the part of the tree that is left when removing
the subtree rooted at vs. MTR Restructuring uses a simpler approach, which moves the split
node to the top first and balances the remaining parts afterwards. It is easier to implement,
but leads to an increased depth when subexpressions are reused, since nodes cannot be
restructured as part of a larger operator tree if they have multiple parents. We chose this
approach, since it is better suited to test possible improvements and can still be expected to
behave similar to Brent’s algorithm in many situations.

2.2.3 Parameterization of MTR Restructuring
Different operations on bigfloats have different costs4. In the algorithm introduced in the
previous section, divisions in the upper half of a critical path are risen to the top. Since
divisions are expensive, this is beneficial if two divisions fuse and one of them can be replaced
by a multiplication. However, each addition or subtraction that is passed adds one or two
expensive multiplications to the expression (cf. Figure 1).

If this affects a large number of additions and subtractions, the benefit of raising the
division vanishes. If the number of cores and therefore the expected gain from an optimal

4 In our tests on mpfr bigfloats, multiplications take on average 10-20 times as long as subtractions or
additions and divisions take 1.5-2 times as long as multiplications. Interestingly, this behavior appears
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Algorithm 1: The main part of Parameterized MTR Restructuring. A counter for
the number of additions and subtractions above the current node is maintained,
which may lead to a split at division nodes. If the current node is a split node,
an expression of the form (AX + B)/(CX + D) gets initialized. Otherwise the
recursion continues and the node gets incorporated into the expression of the child
(cf. Figure 1). Finally the root node (i.e. the operator tree) gets replaced by the new
expression dag and the subexpressions get restructured.

1 Function restructure(root):
2 if root can be restructured then
3 exp = raise(root, root, 0)
4 set root to exp
5 restructure(exp.A); restructure(exp.B); restructure(exp.C);

restructure(exp.D); restructure(exp.X)
6 end
7

8 Function raise(node, root, counter):
9 Create new Expression exp

10 if φ(node) ≤ φ(root)/2 or node is division and counter > THRESHOLD then
11 exp.init(node)
12 else
13 if node is addition or subtraction then
14 counter++
15 end
16 if node is division then
17 counter = 0
18 end
19 if node has no right child or φ(node.left) ≥ φ(node.right) then
20 exp =raise(node.left,root,counter)
21 else
22 exp =raise(node.right,root,counter)
23 end
24 exp.incorporate(node)
25 end
26 return exp

parallelization is small, it might be worthwile to allow for an increased depth to save
multiplications. Our modified algorithm works the same as the algorithm described in
Section 2.2.2, except it counts the number of additions and subtractions along a critical path
and splits at a division node if their number surpasses a certain threshold, even if the division
node still contains more than half of the operands of the operator tree. If a division node is
passed while the counter is still smaller than the threshold, the counter is reset to zero, since
then the additions and subtractions above the division node cause additional multiplications
anyway. We refer to this strategy as Parameterized MTR Restructuring. A sketch of the
main method is shown in Algorithm 1.

to be almost independent of the size of the bigfloats.
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In the worst case, we may split at a linear number of division nodes if between two
division nodes are just enough additions or subtractions to pass the threshold. Then the
height of the operator tree, and therefore the running time with arbitrarily many processors,
grows by a linear amount. However, each split increases the height of the tree only by a
constant. We expect a similar strategy to be applicable to Brent’s original algorithm, where
divisions are risen to the top as well. Since a more complex counting procedure would be
necessary to adapt the parameterization, this hypothesis is not evaluated in more detail in
this paper.

3 Experiments

We perform several experiments on a dual core machine (named dual_core) with an Intel
Core i5 660, 8GB RAM and a quad core machine (named quad_core) with an Intel Core
i7-4700MQ, 16GB RAM. For Real_algebraic we use Boost interval arithmetic as floating-
point-filter and MPFR bigfloats for the bigfloat arithmetic. The code is compiled on Ubuntu
17.10 using g++ 7.2.0 with C++11 on optimization level O3 and linked against Boost 1.62.0
and MPFR 3.1.0. Test results are averaged over 25 runs each. The variance for each data
point is small (the total range is usually in ±5% of its value). In each experiment the real
value of the respective expression is computed to |q| = 50000 binary places.

We analyze four different restructuring strategies: No restructuring (def), AM-Balancing
(amb), MTR Restructuring (mtr) and Parameterized MTR Restructuring with a threshold
of five (mtr[5]). In all of the four strategies the evaluation is done in topological order to
avoid distortion of the results. For each strategy we compare the results with and without
multithreading (m).

3.1 Binomial coefficient
The AM-Balancing method is particularly effective if the expression contains large sums
or large products. It was conjectured that applying this restructuring method makes an
expression dag more suitable for a parallel evaluation. We calculate the generalized binomial
coefficient(√

13
n

)
=
√

13(
√

13− 1) · · · (
√

13− n+ 1)
n(n− 1) · · · 1

iteratively as in the AM-Balancing paper (cf. [11]).

template <c l a s s NT> void bin_coeff ( const i n t n , const long q ) {
NT b = sqrt ( NT (13) ) ; NT num = NT (1 ) ; NT denom = NT (1 ) ;
f o r ( i n t i = 0 ; i < n ; ++i ) { num ∗= b − NT (i ) ; denom ∗= NT (i+1) ; }
NT bc = num/denom ;
bc . guarantee_absolute_error_two_to (q ) ;

}

In this method, both the numerator and the denominator of bc are large, sequentially
computed products. Both of them can be balanced without adding additional operations
because of the associativity of the multiplication. We run bin_coeff in our test environment.

The results are shown in Figure 2. Switching to multithreading while retaining the
structure of the expression dag does not have a positive effect on the performance, since
the operator nodes are highly dependent on each other. Applying AM-Balancing does not
only directly increase the performance, but also makes the structure much more favorable
for parallel evaluation. On the dual core machine the maximal possible performance gain is
achieved. With a quad core we still get an improvement, but only by a factor of about 2.8.
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Figure 2 The results of the binomial coefficient test for dual_core (left) and quad_core (right).
The original structure of the expression dag is not suited for a parallel evaluation. AM-Balancing
leads to a beneficial structure. MTR Restructuring and Parameterized MTR Restructuring have a
similar effect as AM-Balancing.

For large additions and large multiplications, MTR Restructuring behaves similar to
AM-Balancing in the sense that it builds an (almost) balanced tree. So, unsurprisingly,
the running times for MTR Restructuring and Parameterized MTR Restructuring closely
resemble the results for AM-Balancing.

3.2 Random operations
A different behavior of the restructuring methods is to be expected if algorithms use many
different operators in varying order. We simulate this behavior by performing random
operations on an expression.

template <c l a s s NT> void random_operations ( const i n t n , const long q , ←↩
const i n t FADD = 1 , const i n t FSUB = 1 , const i n t FMUL = 1 , const i n t←↩

FDIV = 1) {
std : : random_device rd ; std : : mt19937 gen ( rd ( ) ) ;
std : : uniform_int_distribution<> idis (0 , FADD+FSUB+FMUL+FDIV−1) ;
std : : exponential_distribution<> rdis (1 ) ;

double r ; NT result = NT (1 ) ;
f o r ( i n t i = 0 ; i < n ; ++i ) {

const i n t nbr = idis ( gen ) ;
do { r = rdis ( gen ) ; } whi l e (r == 0) ;

i f ( nbr < FADD ) result += sqrt ( NT (r ) ) ;
e l s e i f ( nbr < FADD+FSUB ) result −= sqrt ( NT (r ) ) ;
e l s e i f ( nbr < FADD+FSUB+FMUL ) result ∗= sqrt ( NT (r ) ) ;
e l s e result /= sqrt ( NT (r ) ) ;

}
result . guarantee_absolute_error_two_to (q ) ;

}

We exploit two kinds of randomness in this test. First, we randomly choose one of the
operators {+,−, ∗, /}. The parameters FADD, FSUB, FMUL and FDIV determine their respective
fractions of the total number of operators. If all of them are set to one, the operations are
equally distributed. Second, we randomly choose a real positive number on which to apply
the operator. We use an exponential distribution with a mean of one instead of a uniform
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def defm amb ambm mtr mtrm mtr[5] mtrm[5] def defm amb ambm mtr mtrm mtr[5] mtrm[5]
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Figure 3 Results for performing random operations uniformly distributed on dual_core (left) and
quad_core (right). AM-Balancing has no significant effect. MTR Restructuring and Parameterized
MTR Restructuring worsen the single-threaded performance for small numbers of operands, but
improve the multithreaded performance. Parameterized MTR Restructuring performs better than
MTR Restructuring in all cases.

distribution. Real_algebraic behaves differently for very large or very small numbers. In a
uniform distribution most of the random numbers are larger than one. Therefore through
repeated multiplication (division) numbers get very large (very small). Since we want to be
able to compare the actual costs of multiplications and divisions, we have to avoid distorting
the results through side effects of the experiment.

In our test we use the square roots of the random floating point numbers we get to
generate numbers with an infinite floating point representation. When performing a division,
Real_algebraic must check whether the denominator is zero. So it must decide at which
point the established accuracy is sufficient to guarantee that the value of an expression is zero.
This decision is made by comparing the current error bound to a separation bound, which
is a number sep(X) for an expression X, for which | value(X)| > 0⇒ | value(X)| > sep(X).
The separation bound we use is a variation of the separation bound by Burnikel et al. [3, 10].
It relies on having a meaningful bound for the algebraic degree of an expression, which we
cannot provide in an expression with a lot of square roots. However, since we know that none
of the denominators we get during our experiments can become zero, we can safely set the
separation bound to zero and stop computing as soon as we can separate our denominator
from zero with an error bound.

The results for a uniform distribution of operators are shown in Figure 3. Although the
structure of the dag is largely unsuited for parallelization, we can see a significant difference
between the single-threaded and the multi-threaded variant even without restructuring due
to the parallel evaluation of the square root operations. AM-Balancing shows no effect at all
on the overall performance.

For smaller inputs, MTR Restructuring has a negative effect on the single-threaded
performance. The predominant cause of this is the propagation of divisions as described
in Section 2.2, which results on average in about nine multiplications per processed divi-
sion. Parameterized MTR Restructuring reduces this ratio to about 5.5 multiplications per
processed division by leaving about one tenth of them unprocessed. For large inputs, MTR
Restructuring has a positive effect even without multithreading due to the decrease in depth
of the main operator tree and, consequently, a decrease in the maximum accuracy needed for
the square root operations in its leaves (cf. [11]).
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Figure 4 Test results for random operations with mostly divisions on dual_core (left) and
quad_core (right). MTR Restructuring causes an enormous increase in performance. The large jump
between single- and multithreading can be partially ascribed to a slight change in implementation
that shows a positive effect on the restructured expression dag. Applying this change without
multithreading leads to the results shown in defs and mtrs. Parameterized MTR Restructuring
behaves similar to MTR Restructuring.

In the case of multithreading, both approaches based on Brent’s algorithm show the
desired effect, increasing the speedup for the dual core from around 1.7 to an optimal 2 and
for the quad core from around 1.8 to about 2.8. As a consequence, they are able to beat
direct parallelization in every test case. Parameterized MTR Restructuring performs slightly
better than MTR Restructuring due to the increase in single-threaded performance while
maintaining the same speedup.

3.3 Random operations with mostly divisions
Raising divisions to the top is bad only if many additions and subtractions are passed during
the procedure. If instead divisions can be combined and therefore replaced by multiplications,
the overall effect is positive. We test this by shifting the operator distribution such that
nine out of ten operators are divisions, i.e., by setting FADD = 1, FSUB = 1, FMUL = 1,
FDIV = 27. Since AM-Balancing shows no differences compared to the default number type,
we exclude it from further experiments.

Considering the results shown in Figure 4 it becomes evident that restructuring alone
reduces the running time significantly in this situation. When switching to multithreading we
get an even bigger improvement, which, however, can not be explained by parallelizing alone.
Instead about half of the improvement stems from an implementation detail when computing
the separation bound for separating denominators from zero in the multithreaded version.
The change usually leads to a slight overhead, but also happens to prevent a slow-down if
many checks have to be made. It is explained in detail in the associated technical report [12].
After restructuring we have many big denominators, for which a separation bound must be
computed and therefore we get an improvement. The default number type, on the other
hand, does not benefit from the new separation bound computation strategy. The data
points for defs and mtrs represent the test results for single-threaded evaluation with the
change in separation bound computation applied.

In contrast to our previous test, Parameterized MTR Restructuring does not perform
better than MTR Restructuring, since there are few to none situations in which the condition
for the improvement gets triggered. However, more importantly, the modified algorithm also
does not perform worse than the original one.
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Figure 5 Test results for random operations with few divisions on dual_core (left) and quad_core
(right). MTR Restructuring worsens the single-threaded performance and is not able to outperform
direct multithreading for smaller inputs. Parameterized MTR Restructuring peforms better in all
tests, although having a worse speedup factor on the quad core.

3.4 Random operations with few divisions
With few divisions, compared to the number of additions and subtractions, we should
expect the opposite effect from the previous experiment. MTR Restructuring should lead to
an decrease in singlethreaded performance and Parameterized MTR Restructuring should
perform better than MTR Restructuring. We set our input parameters to FADD = 3,
FSUB = 3, FMUL = 3, FDIV = 1, such that only one out of ten operations is a division.

Our test results confirm these expectations (cf. Figure 5). For small inputs, MTR Restruc-
turing performs worse than no restructuring even in a parallel environment. Parameterized
MTR Restructuring on the other hand performs better than the default in all parallel
tests except for the test with the smallest number of operands on a dual core. This effect
strengthens when the number of divisions further decreases.

However, it should be noted that while on a dual core the speedup through parallelization
is optimal for both variants, on a quad core MTR Restructuring allows for a speedup of
about 3, whereas Parameterized MTR Restructuring only reaches a speedup of around 2.7.
The modified algorithm leaves about forty percent of the divisions untouched for this
operator distribution, which manifests in a significant effect on the expression dag’s degree
of independence.

3.5 Parameter-dependence of Parameterized MTR Restructuring
In the experiments in the previous sections we set the threshold k for Parameterized MTR
Restructuring to five without an explanation. In this section we make evident that, while
there is always an optimal choice for this parameter, most choices are not actually bad
compared to standard MTR Restructuring.

The threshold indicates the number of additions and subtractions that are affected by
incorporating a division node into the new structure and therefore sets the benefit from raising
a division to the top in relation to the number of additional multiplication nodes it causes
(cf. Section 2.2.3). If k = 0, restructuring never incorporates divisions in its expressions,
therefore all expressions are of the form AX +B. For k = 1 divisions are only incorporated
if they are followed exclusively by divisions, multiplications or negations. With increasing k
it becomes less frequent that a division cannot be passed during restructuring, leading to
Parameterized MTR Restructuring behaving more and more similar to MTR Restructuring.
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Figure 6 Comparison of different parameter choices for Parameterized MTR Restructuring with
n = 20000 random operations on quad_core. For large values of k, the parameterized approach
becomes increasingly similar to MTR Restructuring. For small values of k the original approach is
slightly better in the multithreaded version. The optimal choice for k depends on the division ratio.

In Figure 6 the running time for the experiments from Section 3.2 and Section 3.3 for
different values of k are shown. For the second experiment, we use the modified separation
bound computation strategy to ensure comparability (cf. Section 3.3). The results demonstrate
that most of the choices for k improve the performance of the algorithm. Also, they confirm
that for high k the parameterized approach is almost identical to the original algorithm.

For k = 0 the parameterized approach performs worse in both experiments in the parallel
version, although slightly increasing the single-threaded performance for uniformly distributed
operators. Surprisingly, Parameterized MTR Restructuring is faster than MTR Restructuring
for k = 1 when nine out of ten operators are divisions, despite in this case restructuring tends
to replace divisions by multiplications, which then can be balanced due to their associativity.
However, since only one out of fifteen operations is an addition or subtraction, the loss of
independence is small compared to the gain from avoiding additional multiplications.

The optimal choice for k depends on the ratio between divisions and additions/subtractions.
If this ratio gets smaller, the optimal k increases. At the same time, the difference between
different choices for k decreases. Therefore for a small ratio and smaller values of k the
parameterized approach still performs better than the original version.

4 Summary

Multithreading can be an effective tool to speed up the performance of expression-dag-based
number types. Applying MTR Restructuring to expression dags allows us to benefit from
multithreading even when faced with a structure with a high number of dependencies,
although bearing the risk of lowering the performance. AM-Balancing can create favorable
structures with low risk of worsening the end result, but is not widely applicable. The
parameterized version of MTR Restructuring lowers the risk of significant performance loss,
while at the same time maintaining most of the benefits of the original algorithm. In a
general purpose number type, we therefore suggest using Parameterized MTR Restructuring,
with a sensible choice of k, if the evaluation should be done in parallel. For k, a small number
greater than zero is advisable.
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5 Future Work

This work addresses parallelization on multiple CPUs. While it seems unlikely that complex
expression dags can be efficiently parallelized on a GPU, it may be possible to do so for the
underlying bigfloats. Since bigfloat operations still constitute the most expensive part of
exact-decisions number types, this may lead to a significant speedup. Furthermore in this
work we only restructure tree-like subgraphs to avoid (possibly exponential) blow-up of our
structure. However, with a larger number of cores it might be worthwile to split up some
nodes with multiple parents to eliminate or shorten critical paths or at least weigh such
nodes accordingly in the higher-level operator trees. Finally, the performance gain due to the
parameterization cannot be fully attributed to interactions between divisions and additions.
It may prove useful to extend the new strategy to consider multiplications over large sums.
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Abstract
Partitioning a graph into balanced components is important for several applications. For multi-
objective problems, it is useful not only to find one solution but also to enumerate all the solutions
with good values of objectives. However, there are a vast number of graph partitions in a graph,
and thus it is difficult to enumerate desired graph partitions efficiently. In this paper, an algorithm
to enumerate all the graph partitions such that all the weights of the connected components are
at least a specified value is proposed. To deal with a large search space, we use zero-suppressed
binary decision diagrams (ZDDs) to represent sets of graph partitions and we design a new
algorithm based on frontier-based search, which is a framework to directly construct a ZDD.
Our algorithm utilizes not only ZDDs but also ternary decision diagrams (TDDs) and realizes an
operation which seems difficult to be designed only by ZDDs. Experimental results show that the
proposed algorithm runs up to tens of times faster than an existing state-of-the-art algorithm.
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1 Introduction

Partitioning a graph is a fundamental problem in computer science and has several important
applications such as evacuation planning, political redistricting, VLSI design, and so on.
In some applications among them, it is often required to balance the weights of connected
components in a partition. For example, the task of the evacuation planning is to design
which evacuation shelter inhabitants escape to. This problem is formulated as a graph
partitioning problem, and it is important to obtain a graph partition consisting of balanced
connected components (each of which contains a shelter and satisfies some conditions).
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Another example is political redistricting, the purpose of which is to divide a region (such as
a prefecture) into several balanced political districts for fairness.

There are a vast number of studies for graph optimization problems. An approach is to
use a zero-suppressed binary decision diagram (ZDD) [12], which has originally been proposed
as a compressed representation of a family of sets. A distinguished characteristic of the
approach is not only to compute the single optimal solution but also to enumerate all the
feasible solutions in the form of a ZDD. In addition, using several queries for a family of sets
provided by ZDDs, we can impose various constraint conditions on solutions represented
by a ZDD. Using this approach, Inoue et al. [4] designed an algorithm that constructs the
ZDD representing the set of rooted spanning forests and utilized it to minimize the loss
of electricity in an electrical distribution network under complex conditions, e.g., voltage,
electric current and phase. There are other applications such as solving a variant of the
longest path problem [8], reliability evaluation [2, 3], some puzzle problems [16], and exact
calculation of impact diffusion in Web [11].

For balanced graph partitioning, Kawahara et al. [6] proposed an algorithm to construct
a ZDD representing the set of balanced graph partitions by frontier-based search [7, 10, 14],
which is a framework to directly construct a ZDD, and applied it to political redistricting.
However, their method stores the weights of connected components, represented as integers,
into the ZDD, which generates a not compressed ZDD. As a result, the computation is
tractable only for graphs only with less than 100 vertices. Nakahata et al. [13] proposed an
algorithm to construct the ZDD representing the set of partitions such that all the weights of
connected components are bounded by a given upper threshold (and applied it to evacuation
planning). Their approach enumerates connected components with weight more than the
upper threshold as a ZDD, say forbidden components, and constructs a ZDD representing
partitions not containing any forbidden component as a subgraph by set operations, which
are performed by so-called apply-like methods [1]. However, it seems difficult to directly use
their method to obtain balanced partitions by letting connected components with weight
less than a lower threshold be forbidden components because partitions not containing any
forbidden component as a connected component (i.e., one of parts in a partition coincides a
forbidden component) cannot be obtained by apply-like methods.

In this paper, for a ZDD ZA and an integer L, we propose a novel algorithm to construct
the ZDD representing the set of graph partitions such that the partitions are represented by
ZA and all the weights of the connected components in the partitions are at least L. The
input ZDD ZA can be the sets of spanning forests used for evacuation planning (e.g., [13]),
rooted spanning forests used for power distribution networks (e.g., [4]), and simply connected
components representing regions (e.g., [6]), all of which satisfy complex conditions according
to problems. We generically call these structures “partitions.” Roughly speaking, our
algorithm excludes partitions containing any forbidden component as a connected component
from ZA. We first construct the ZDD, say ZS , representing the set of forbidden components,
each of which has weight less than L. Then, for a component in ZS , we consider the cutset
that separates the input graph into the component and the rest. We represent the set of
pairs of every component in ZS and its cutset as a ternary decision diagram (TDD) [15], say
TS± . We propose a method to construct the TDD TS± from ZS by frontier-based search. By
using the TDD TS± , we show how to obtain partitions each of which belongs to ZA, contains
all the edges in a component of a pair in TS± and contains no edge in the cutset of the pair.
Finally, we exclude such partitions from ZA and obtain the desired partitions. By numerical
experiments, we show that the proposed algorithm runs up to tens of times faster than an
existing state-of-the-art algorithm.
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Figure 1 The ZDD representing the family
{{1, 3}, {2, 3}, {3}}. A square represents a
terminal node. A circle is a non-terminal
node and the number in it is a label. A solid
arc is a 1-arc and a dashed arc is a 0-arc.

Figure 2 The TDD representing the signed
family {{+1,−2}, {+1,−3}, {−2, +3}}. A
dashed arc is a ZERO-arc, a solid single arc is
a POS-arc and a solid double arc is NEG-arc.
For simplicity, ⊥ and the arcs pointing at it
are omitted.

This paper is organized as follows. In Sec. 2, we give some preliminaries and explain
ZDDs, TDDs, and frontier-based search. We describe an overview of our algorithm in Sec. 3.1,
and the detail in the rest of Sec. 3. Section 4 gives experimental results. The conclusion is
described in Sec. 5.

2 Preliminaries

2.1 Notation

Let Z+ be the set of positive integers. For k ∈ Z+, we define [k] = {1, 2, . . . , k}. In this
paper, we deal with a vertex-weighted undirected graph G = (V,E, p), where V = [n] is
the vertex set and E = {e1, e2, . . . , em} ⊆ {{u, v} | u, v ∈ V } is the edge set. The function
p : V → Z+ gives the weights of the vertices. We often drop p from (V,E, p) when there is
no ambiguity. For an edge set E′ ⊆ E, we call the subgraph (V,E′) a graph partition. We
often identify the edge set E′ with the partition (V,E′) by fixing the graph G. For edge
sets E′, E′′ with E′′ ⊆ E′ ⊆ E and a vertex set V ′′ ⊆ V , we say that (V ′′, E′′) is included in
the partition (V,E′) as a subgraph. The subgraph (V ′′, E′′) is called a connected component
in the partition (V,E′) if V ′′ = dom(E′′) holds, there is no edge in E′ \E′′ incident with a
vertex in V ′′, and for any two distinct vertices u, v ∈ V ′′, there is a u-v path on (V ′′, E′′),
where dom(E′′) is the set of vertices which are endpoints of at least one edge in E′′. In this
case, we say that (V ′′, E′′) is included in the partition (V,E′) as a connected component. We
denote the neighborhood of a vertex v in a partition E′ ⊆ E by N(E′, v) = {u | {u, v} ∈ E′}.
For i ∈ [m], E≤i denotes the set of edges whose indices are at most i. We define E<i, E≥i

and E>i in the same way.

For a set U , let U+ = {+e | e ∈ U}, U− = {−e | e ∈ U} and U± = U+ ∪ U−. A signed
set is a subset of U± such that, for all e ∈ U , the set contains at most one of +e and −e.
For example, when U = [3], both {+1,−2} and {−3} are signed sets but {+1,−1,+3} is
not. A signed family is a family of signed sets. In particular, when U = E, we sometimes
call a signed set a signed subgraph and call a signed family a set of signed subgraphs. For a
signed set S±, we define abs(S±) = {e | (+e ∈ S±) ∨ (−e ∈ S±)}.
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2.2 Zero-suppressed binary decision diagram
A zero-suppressed binary decision diagram (ZDD) [12] is a directed acyclic graph Z =
(NZ , AZ) representing a family of sets. Here NZ is the set of nodes and AZ is the set of
arcs.1 NZ contains two terminal nodes > and ⊥. The other nodes than the terminal nodes
are called non-terminal nodes. Each non-terminal node α has the 0-arc, the 1-arc, and the
label corresponding to an item in the universe set. For x ∈ {0, 1}, we call the destination
of the x-arc of a non-terminal node α the x-child of α. We denote the label of α by l(α)
and in this paper, assume that l(α) ∈ Z+ ∪ {∞} for any α ∈ NZ . For convenience, we let
l(>) = l(⊥) =∞. For each directed arc (α, β) ∈ AZ , the inequality l(α) < l(β) holds, which
ensures that Z is acyclic. There is exactly one node whose in-degree is zero, called the root
node and denoted by rZ . The number of the non-terminal nodes of Z is called the size of Z
and denoted by |Z|.

Z represents the family of sets in the following way. Let PZ be the set of all the
directed paths from rZ to >. For a directed path p = (n1, a1, n2, a2, . . . , nk, ak,>) ∈ PZ

with ni ∈ NZ , ai ∈ AZ and n1 = rZ , we define Sp = {l(ni) | ai ∈ AZ,1, i ∈ [k]}, where AZ,1
is the set of the 1-arcs of Z. We interpret that Z represents the family {Sp | p ∈ PZ}. In
other words, a directed path from rZ to > corresponds to a set in the family represented
by Z. As an example, we illustrate the ZDD representing the family {{1, 3}, {2, 3}, {3}}
in Fig. 1. In the figure, a dashed arc (99K) and a solid arc (→) are a 0-arc and a 1-arc,
respectively. On the ZDD in Fig. 1, there are three directed paths from the root node to
>: 1→ 3→ >, 1 99K 2→ 3→ >, and 1 99K 2 99K 3→ >, which correspond to {1, 3}, {2, 3},
and {3}, respectively. We denote a ZDD representing a family F by ZF .

2.3 Ternary decision diagram
A ternary decision diagram (TDD) [15] is a directed acyclic graph T = (NT , AT ) representing
a signed family. A TDD shares many concepts with a ZDD, and thus we use the same
notation as a ZDD for a TDD. The difference between a ZDD and a TDD is that, while a
node of the former has two arcs, that of the latter has three, which are called the ZERO-arc,
the POS-arc, and the NEG-arc.

T represents the signed family in the following way. For a directed path
p = (n1, a1, n2, a2, . . . , nk, ak,>) ∈ PT with ni ∈ NZ , ai ∈ AT and n1 = rT , we define
S±p = {+l(ni) | ai ∈ AT,+, i ∈ [k]} ∪ {−l(ni) | ai ∈ AT,−, i ∈ [k]}, where AT,+ and AT,− are
the set of the POS-arcs of T and the set of the NEG-arcs of T , respectively. We interpret
that T represents the signed family {S±p | p ∈ PT }. We illustrate the TDD representing the
signed family {{+1,−2}, {+1,−3}, {−2,+3}} in Fig. 2 for example. In the figure, a dashed
arc (99K), a solid single arc (→), and a solid double arc (⇒) are a ZERO-arc, a POS-arc,
and a NEG-arc, respectively. The TDD in the figure has three directed paths from the root
node to >: 1 → 2 ⇒ >, 1 → 2 99K 3 ⇒ >, and 1 99K 2 ⇒ 3 → >, which correspond to
{+1,−2}, {+1,−3}, and {−2,+3}, respectively.

2.4 Frontier-based search
Frontier-based search [7, 10, 14] is a framework of algorithms that efficiently construct a
decision diagram representing the set of subgraphs satisfying given constraints of an input
graph. We explain the general framework of frontier-based search. Given a graph G, let

1 To avoid confusion, we use the words “vertex” and “edge” for input graphs and “nodes” and “arcs” for
decision diagrams.
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M be a class of subgraphs we would like to enumerate (for example, M is the set of all
the s-t paths on G). Frontier-based search constructs the ZDD representing the familyM
of subgraphs. By fixing G, a subgraph is identified with the edge set the subgraph has,
and thus the ZDD represents the family of edge sets actually. Non-terminal nodes of ZDDs
constructed by frontier-based search have labels e1, . . . , em. We identify ei with the integer i.
We assume that it is determined in advance which edge in G has which index i of ei.

We directly construct the ZDD in a breadth-first manner. We first create the root
node of the ZDD, make it have label e1, and then we carry out the following procedure for
i = 1, . . . ,m. For each node ni with label ei, we create two nodes, each of which is either a
terminal node or a non-terminal node whose label is ei+1 (if i = m, the candidate is only a
terminal node), as the 0-child and the 1-child of ni.

Which node the x-arc of a node ni with label ei points at is determined by a function,
called MakeNewNode, of which we design the detail according toM, i.e., what subgraphs
we want to enumerate. Here we describe the generalized nature that MakeNewNode must
possess. The node ni represents the set of the subgraphs, denoted by G(ni), corresponding to
the set of the directed paths from the root node to ni. Each subgraph in G(ni) contains only
edges in E<i. Note that G(>) is the desired set of subgraphs represented by the ZDD after
the construction finishes. To decide which node the x-arc of ni points at without traversing
the ZDD (under construction), we make each node ni have the information ni.conf, which
is shared by all the subgraphs in G(ni). The content of ni.conf also depends on M (for
example, in the case of s-t paths, we store degrees and components of the subgraphs in G(ni)
into ni.conf). MakeNewNode creates a new node, say nnew, with label ei+1 and must
behave in the following manner.

1. For all edge sets S≤i ∈ G(nnew), if there is no edge set S>i ⊆ E>i such that S≤i∪S>i ∈M,
the function discards nnew and returns ⊥ to avoid redundant expansion of nodes. (pruning)

2. Otherwise, if i = m, the function returns >.

3. Otherwise, the function calculates nnew.conf from ni.conf. If there is a node ni+1 such
that whose label is ei+1 and nnew.conf = ni+1.conf, the function abandons nnew and
returns ni+1. (node merging) If not, the function returns nnew.

We make the x-arc of ni point at the node returned by MakeNewNode.

As for ni.conf, in the case of several kinds of subgraphs such as paths and cycles, it is
known that we only have to store states relating to the vertices to which both an edge in
E<i and an edge in E≥i are incident into each node [10] (in the case of s-t paths, we store
degrees and components of such vertices into each node). The set of the vertices are called
the frontier. More precisely, the i-th frontier is defined as Fi = (

⋃i−1
j=1 ej) ∩ (

⋃m
k=i ek). For

convenience, we define F0 = Fm = ∅. States of vertices in Fi−1 are stored into ni.conf. By
limiting the domain of the information to the frontier, we can reduce memory consumption
and share more nodes, which leads to a more efficient algorithm.

The efficiency of an algorithm based on frontier-based search is often evaluated by the
width of a ZDD constructed by the algorithm. The width WZ of a ZDD Z is defined as
WZ = max{|Ni| | i ∈ [m]}, where Ni denotes the set of nodes whose labels are ei. Using
WZ , the number of nodes in Z can be written as |Z| = O(mWZ) and the time complexity of
the algorithm is O(τ |Z|), where τ denotes the time complexity of MakeNewNode for one
node.
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3 Algorithms

3.1 Overview of the proposed algorithms
In this section, for a ZDD ZA and L ∈ Z+, we propose a novel algorithm to construct the
ZDD representing the set of graph partitions such that the partitions are represented by ZA
and each connected component in the partitions has weight at least L. In general, there
are two techniques to obtain ZDDs having desired conditions. One is frontier-based search,
described in the previous section. The method proposed by Kawahara et al. [6] directly
stores the weight of each component into ZDD nodes (as conf) and prunes a node when it is
determined that the weight of a component is less than L. However, for two nodes, if the
weight of a single component on the one node differs from that on the other node, the two
nodes cannot be merged. Consequently, node merging rarely occurs in Kawahara et al.’s
method and thus the size of the resulting ZDD is too large to construct it if the input graph
has more than 100 vertices.

The other technique is the usage of the recursive structure of a ZDD. Methods based on
the recursive structure are called apply-like methods [1]. For each node α of a ZDD, the
nodes and arcs reachable from α compose another ZDD, whose root is α. For a ZDD Z

and x ∈ {0, 1}, let cx(Z) be the ZDD composed by the nodes and arcs reachable from the
x-child of the root. For (one or more) ZDDs F (and G), an apply-like method constructs a
target ZDD by recursively calling itself against c0(F ) and c1(F ) (and c0(G) and c1(G)). For
example, the ZDD representing F ∩G can be computed from c0(F )∩c0(G) and c1(F )∩c1(G).
Apply-like methods support various set operations [1, 10].

Nakahata et al. [13] developed an algorithm to upperbound the weights of connected
components in each partition, i.e., to construct the ZDD representing the set A of partitions
included in a given ZDD and the weights of all the components in the partitions are at most
H ∈ Z+. Their algorithm first constructs the ZDD ZS representing the set of forbidden
components (described in the introduction) with weight more than H by frontier-based
search. Then, the algorithm constructs the ZDD representing {A ∈ A | ∃S ∈ S, A ⊇ S},
written as ZA.restrict(ZS), which means the set of all the partitions each of which includes a
component in S as a subgraph, in a way of apply-like methods. Finally, we extract subgraphs
not in ZA.restrict(ZS) from ZA by the set difference operation ZA \ (ZA.restrict(ZS)) [12],
which is also an apply-like method.

In our case, lowerbounding the weights of components, it is difficult to compute desired
partitions by the above approach because a partition including a forbidden component (i.e.,
weight less than L) as a subgraph can be a feasible solution. We want to obtain a partition
including a forbidden component as a connected component. Although we can perform
various set operations by designing apply-like methods, it seems difficult to obtain such
partitions by direct set operations.

Our idea in this paper is to employ the family of signed sets to represent the set of pairs
of every forbidden component and its cutset. We use the following observation.

I Observation 1. Let A be a graph partition of G = (V,E) and S ⊆ E be an edge set
such that (dom(S), S) is connected. The partition A contains (dom(S), S) as a connected
component if and only if both of the following hold.
1. A contains all the edges in S.
2. A does not contain any edge e in E \ S such that e has at least one vertex in dom(S).
Based on Observation 1, we associate a signed subgraph S± with a connected subgraph
(dom(S), S):
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Figure 3 A graph partition A and a con-
nected subgraph S. Bold lines are edges con-
tained in the partition or the subgraph. Val-
ues in vertices are its weights. A contains S

as a connected component. The weight of S

is 1 + 3 = 4 < 5, and thus, when L = 5, A

does not satisfy the lower bound constraint.

Figure 4 A signed subgraph S± with min-
imal cutset corresponding to S in Fig. 3. Thin
single lines, bold single lines, and doubled
lines are zero edges, positive edges, and neg-
ative edges, respectively.

S± = S+ ∪ S−, (1)
S+ = {+e | e ∈ S}, (2)
S− = {−e | (e ∈ E \ S) ∧ (e ∩ dom(S) 6= ∅)}. (3)

S± is a signed subgraph such that abs(S+) and abs(S−) are sets of edges satisfying Conditions
1 and 2 in Observation 1, respectively. Note that abs(S−) is a cutset of G, that is, removing
the edges in abs(S−) separates G into the connected component (dom(abs(S+)), abs(S+))
and the rest. In addition, abs(S−) is minimal among such cutsets. In this sense, we say that
S± is a signed subgraph with minimal cutset for S.

Hereinafter, we call edges in abs(S+) positive edges, abs(S−) negative edges and the other
edges zero edges. Figure 4 shows S± associated with S in Fig. 3. The partition A in Fig. 3
indeed contains all the edges in abs(S+) and does not contain any edges in abs(S−). For a
graph partition E′ ⊆ E, when the weights of all the connected components of E′ is at least
L, we say that E′ satisfies the lower bound constraint. To extract partitions not satisfying
the lower bound constraint from an input ZDD, we compute the set of partitions each of
which has all the edges in abs(S+) and no edge in abs(S−) for some S ∈ S.

The overview of the proposed method is as follows. In the following, let A be the set of
graph partitions represented by the input ZDD and B be the set of graph partitions each of
which belongs to A and satisfies the lower bound constraint.
1. We construct the ZDD ZS representing the set S of forbidden components, where S is

the set of the connected components of G whose weights are less than L.
2. Using ZS , we construct the TDD TS± , where S± is a set of signed subgraphs with minimal

cutset corresponding to S by a way of frontier-based search.
3. Using TS± , we construct the ZDD ZS↑ , where S↑ is the set of partitions each of which

contains at least one forbidden component in S as a connected component.
4. We obtain the ZDD ZB by the set difference operation ZA \ ZS↑ [12].

In the rest of this section, we describe each step from 1 to 3.
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3.2 Constructing ZS

We describe how to construct ZS , which represents the set S of forbidden subgraphs whose
weights are less than L. In this subsection, we consider only forbidden components with at
least one edge. Note that a component with only one vertex cannot be distinguished by sets
of edges because all such subgraphs are represented by the empty edge set. We show how to
deal with components having only one vertex in Sec. 3.4.

We can construct ZS using frontier-based search. Due to the page restriction, we describe
a brief overview. To construct ZS , in the frontier-based search, it suffices to ensure that
every enumerated subgraph has only one connected component and its weight is less than L.
The former can be dealt by storing the connectivity of the vertices in the frontier as comp [7].
The latter can be checked by managing the total weight of vertices such that at least one
edge is incident to as weight.

Let us analyze the width of ZS . For nodes with the same label, there are O(Bf ) different
states for comp [6], where, for k ∈ Z+, Bk is the k-th Bell number and f = max{|Fi| | i ∈ [m]}.
As for weight, when weight exceeds L, we can immediately conclude that the subgraphs
whose weights are less than L are generated no more. If we prune such cases, there are O(L)
different states for weight. As a result, we can obtain the following lemma on the width of
ZS .

I Lemma 2. The width of ZS is O(BfL), where f = max{|Fi| | i ∈ [m]}.

3.3 Constructing TS±

In this subsection, we propose an algorithm to construct TS± . First, we show how to construct
the TDD representing the set of all the signed subgraphs with minimal cutset, including a
disconnected one. Next, we describe the method to construct TS± using ZS .

Let S± = S+ ∪ S− be a signed subgraph. Our algorithm uses the following observation
on signed subgraphs with minimal cutset.

I Observation 3. A signed subgraph S± is a signed subgraph with minimal cutset if and
only if the following two conditions hold:
1. For all v ∈ V , at most one of a zero edge or a positive edge is incident to v.
2. For all the negative edges {u, v}, a positive edge is incident to at least one of u and v.
Conditions 1 and 2 in Observation 3 ensure that abs(S−) is a cutset such that removing it
leaves the connected component whose edge set is abs(S+) and the minimality of abs(S−).
This shows the correctness of the observation. We design an algorithm based on frontier-
based search to construct a TDD representing the set of all the signed subgraphs satisfying
Conditions 1 and 2 in Observation 3.

First, we consider Condition 1. To ensure Condition 1, we store an array colors : V →
2{0,+,−} into each TDD node. For all v ∈ Fi−1, we manage ni.colors[v] so that it is equal
to the set of types of edges incident to v. For example, if a zero edge and a positive edge are
incident to v and no negative edges are, colors[v] must be {0,+}. We can prune the case
such that Condition 1 is violated using colors, which ensures Condition 1.

Next, we consider Condition 2. Let {u, v} be a negative edge. When u and v leave the
frontier at the same time, we check if Condition 2 is satisfied from colors[u] and colors[v]
and, if not, we prune the case. When one of u or v leaves the frontier (without loss of
generality, we assume the vertex is u), if no positive edges are incident to u, at least one
positive edge must be incident to v later. To deal with this situation, we store an array
reserved : V → {0, 1} into each TDD node. For all v ∈ Fi−1, we manage reserved[v] so
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that reserved[v] = 1 if and only if at least one positive edge must be incident to v later. We
can prune the cases such that v ∈ V is leaving the frontier and both reserved[v] = 1 and
+ /∈ colors[v] hold, which violate Condition 2. We show pseudocode of MakeNewNode
function in Appendix of the full version.

We give the following lemma on the width of a ZDD constructed by the algorithm. We
show a proof of the lemma in the full version.

I Lemma 4. The width WT of a ZDD constructed by the above algorithm is WT = O(6f ).

Next, we show how to construct TS± using ZS . We can achieve this goal using subsetting
technique [5] with the above algorithm. Subsetting technique is a framework to construct
a decision diagram corresponding to another decision diagram. We ensure that, for all
S± = S+ ∪ S− ∈ S±, there exists S ∈ S such that abs(S+) = S in the construction of TS±
using subsetting technique.

3.4 Constructing ZS↑

In this section, we show how to construct ZS↑ and how to deal with forbidden components
consisting only of one vertex whose weight is less than L, which was left as a problem in
Sec. 3.2. From Observation 1 and Eqs. (1)–(3), S↑ can be written as

S↑ = {E′ ⊆ E | ∃S± ∈ S±, (∀+ e ∈ S±, e ∈ E′) ∧ (∀ − e ∈ S±, e /∈ E′)}. (4)

Using TS± , we can construct ZS by the existing algorithm [9].
Finally, we show how to deal with a graph partition containing a single vertex v such that

p(v) < L as a connected component, i.e., a partition has an isolated vertex with small weight.
Let Fv be the set of graph partitions containing ({v}, ∅) as a connected component. A graph
partition E′ ⊆ E belongs to Fv if and only if E′ does not contain any edge incident to v.
Using this, we can construct the ZDD Zv representing Fv in O(m) time. For each v ∈ V
such that p(v) < L, we construct Zv and update ZS↑ ← ZS↑ ∪ Zv. In this way, we can deal
with all the graph partitions containing a connected component whose weight is less than L.
We show an example of execution of the whole algorithm in Appendix of the full version.

4 Experimental results

We conducted computational experiments to evaluate the proposed algorithm and to compare
it with the existing state-of-the-art algorithm of Kawahara et al [6]. We used a machine with
an Intel Xeon Processor E5-2690v2 (3.00 GHz) CPU and a 64 GB memory (Oracle Linux 6)
for the experiments. We have implemented the algorithms in C++ and compiled them by
g++ with the -O3 optimization option. In the implementation, we used the TdZdd library [5]
and the SAPPORO_BDD library.2 The timeout is set to be an hour.

We used graphs representing some prefectures in Japan for the input graphs. The vertices
represent cities and there is an edge between two cities if and only if they have the common
border. The weight of a vertex represents the number of residents living in the city represented
by the vertex. As for the input ZDD ZA, we adopted three types of graph partitions: graph
partitions such that each connected component is an induced subgraph [6], which we call
induced partition, forests, and rooted forests. There is a one-to-one correspondence between

2 Although the SAPPORO_BDD library is not released officially, you can see the code in https://github.
com/takemaru/graphillion/tree/master/src/SAPPOROBDD.
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Table 1 Summary of input graphs and input graph partitions.

Induced partition Forest Rooted forest
Name n m k |ZA| |A| |ZA| |A| |ZA| |A|
G1 (Gumma) 37 80 4 10236 1.25× 108 26361 1.01× 1019 8957 1.66× 1016

G2 (Ibaraki) 44 95 7 17107 6.38× 1013 15553 6.14× 1023 3238 1.94× 1019

G3 (Chiba) 60 134 14 301946 6.69× 1022 213773 4.86× 1033 15741 5.04× 1025

G4 (Aichi) 69 173 17 1598213 9.26× 1029 879361 1.78× 1042 43465 3.10× 1030

G5 (Nagano) 77 185 5 13203 2.77× 1017 44804 2.95× 1043 26476 7.66× 1039

induced partitions and partitions of the vertex set. A rooted forest is a forest such that
each tree in the forest has exactly one specified vertex. We chose special vertices for each
graph randomly. A summary of input graphs and input graph partitions is in Tab. 1. In
the table, we show graph names and the prefecture represented by the graph, the number
of vertices (n), edges (m) and connected components (k) in graph partitions. The groups
of columns “Induced partition”, “Forest”, and “Rooted forest” indicate the types of input
graph partitions. Inside each of them, we show the size (the number of non-terminal nodes)
of ZA and the cardinality of A.

The lower bounds of weights are determined as follows. Let k be the number of connected
components in a graph partition and r be the maximum ratio of the weights of two connected
components in the graph partition. From k and r, we can derive the necessary condition
that the weight of every connected component must be at least L(k, r) = P/(r(k − 1) + 1),
where P =

∑
v∈V p(v) [6]. We used L(k, r) as the lower bound of weights in the experiment.

For each graph, we run the algorithms in r = 1.1, 1.2, 1.3, 1.4, and 1.5.
We show the experimental results in Tab. 2. In the table, we show the graph name, the

value of r and L(k, r), and the execution time of Alg. N, the proposed algorithm, and Alg. K,
the algorithm of Kawahara et al. The size of ZB and the cardinality of B are also shown.
“OOM” means out of memory and “-” means both algorithms failed to construct the ZDD
(due to timeout or out of memory). We marked the values of the time of the algorithm which
finished faster as bold.

First, we analyze the results for induced partitions. For the input graphs from G1 to
G4, both Alg. N and Alg. K succeeded in constructing ZB, except when r = 1.1 in G4 for
Alg. K. In cases where both algorithms succeeded in constructing ZB, the time for Alg. N to
construct the ZDD is 2–32 times shorter than that for Alg. K. In addition, Alg. N succeeded
in constructing the ZDD when r = 1.1 in G4, where Alg. K failed to construct the ZDD
because of out of memory. These results show the efficiency of our algorithm. In contrast,
for G5, although both algorithms failed to construct the ZDD when r = 1.1, 1.2, 1.3 and 1.4,
only Alg. K succeeded when r = 1.5. In this case, the size of the ZDD constructed by Alg. N
did stay in the limitation of memory while, in our algorithm, the size of ZS↑ exceeded the
limitation of memory.

Second, we investigate the results for forests. Both Alg. N and Alg. K succeeded in
constructing ZB for the input graph from G1 to G4. In all those cases, Alg. N was faster than
Alg. K. Comparing the results with those of induced partitions, we found that the execution
time of Alg. K depends on the input partitions more than Alg. N does. For example, for G1,
while the execution time of Alg. N is almost irrelevant to the types of input ZDDs, that of
Alg. K differ up to about five times. This is because the efficiency of Alg. K strongly depends
on the sizes of input ZDDs. This makes the sizes of output ZDDs constructed by Alg. K
large, which implies the increase in the execution time of Alg. K. In contrast, the execution
time of Alg. N does not depend on the sizes of input ZDDs in many cases because Alg. N
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Table 3 Detailed experimental results of the proposed algorithm for G3 (Chiba) and G4 (Aichi)
when the input graph partitions are induced partitions.

ZS TS± ZS↑ ZA \ ZS↑

r time node card time node time node card time

G3

1.1 1.90 54745 4.24× 108 0.93 99057 75.88 2117874 2.17532× 1040 5.05
1.2 1.01 39845 1.67× 108 0.69 75581 27.94 977840 2.17528× 1040 3.23
1.3 0.58 31030 6.62× 107 0.51 60034 18.83 814538 2.17498× 1040 3.41
1.4 0.34 24066 3.30× 107 0.38 48818 8.49 490753 2.17490× 1040 2.87
1.5 0.25 19877 1.42× 107 0.34 40340 7.23 410152 2.17486× 1040 2.99

G4

1.1 0.02 2376 2.09× 104 0.32 11109 80.03 3074734 1.19200× 1052 74.68
1.2 0.01 1686 1.03× 104 0.20 8511 22.24 1205320 1.19174× 1052 64.46
1.3 0.01 1235 6.11× 103 0.17 6935 11.51 692798 1.19170× 1052 113.37
1.4 < 0.01 961 3.67× 103 0.14 5808 8.30 529214 1.19164× 1052 99.81
1.5 < 0.01 756 2.67× 103 0.13 4930 5.30 348832 1.19153× 1052 23.70

uses the input ZDD only in the set difference operation, which is executed in the last of the
algorithm (by the existing apply-like method). As we show later, the bottleneck of Alg. N is
the construction of ZS↑ . Therefore, in many cases, the sizes of input ZDDs do not change
the execution time of Alg. N.

Third, we examine the results when the input graph partitions are rooted forests. There
are 13 cases such that Alg. K was faster than Alg. N. In the cases, the sizes of input ZDDs
and output ZDDs are small, that is, thousands, or even zero. These results show that Alg. K
tends to be faster when the sizes of input ZDDs and output ZDDs are small.

In order to assess the efficiency of our algorithm in each step, we show detailed experimental
results for G3 and G4 when the input graph partitions are induced partitions in Tab. 3. In
the table, we show the time to construct decision diagrams, the size of decision diagrams, and
the cardinality of the family represented by ZDDs. The cardinality of S± is omitted because
it is equal to that of S. The size and cardinality for ZA \ ZS↑ are also omitted because they
are the same as |ZB| and |B|, which are shown in Tab. 2. For both G3 and G4, the time
to construct ZS and TS± are within one or two seconds. The most time-consuming parts
are the construction of ZS↑ in G3 and ZS↑ or ZA \ ZS↑ in G4. The set difference operation
in G4 took a lot of time because the sizes of ZA and ZS↑ are large, that is, more than a
hundred. The reason why the construction of ZS↑ takes a lot of time is the increase in the
sizes of decision diagrams. While the size of TS± is only 2–7 times larger than that of ZS ,
that of ZS↑ is about 10–276 times larger than that of TS± . This also made the execution of
the algorithm in G5 impossible.

5 Conclusion

In this paper, we have proposed an algorithm to construct a ZDD representing all the graph
partitions such that all the weights of its connected components are at least a given value.
As shown in the experimental results, the proposed algorithm has succeeded in constructing
a ZDD representing a set of more than 1012 graph partitions in ten seconds, which is 30
times faster than the existing state-of-the-art algorithm. Future work is devising a more
memory efficient algorithm that enables us to deal with larger graphs, that is, graphs with
hundreds of vertices. It is also important to seek for efficient algorithms to deal with other
constraints on weights such that the ratio of the maximum and the minimum of weights is at
most a specified value.
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Abstract
Given a graph G, the NP-hard Maximum Planar Subgraph problem asks for a planar subgraph
of G with the maximum number of edges. The only known non-trivial exact algorithm utilizes
Kuratowski’s famous planarity criterion and can be formulated as an integer linear program (ILP)
or a pseudo-boolean satisfiability problem (PBS). We examine three alternative characterizations
of planarity regarding their applicability to model maximum planar subgraphs. For each, we
consider both ILP and PBS variants, investigate diverse formulation aspects, and evaluate their
practical performance.
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1 Introduction

The NP-hard Maximum Planar Subgraph Problem (MPS) is a long known problem in graph
theory, already discussed in the classical textbook by Garey and Johnson [16,24]. Given a
graph G = (V,E), we ask for a largest edge subset F ⊆ E such that the graph induced by
F is planar. The closely related maximal planar subgraph problem asks for a set of edges
that we cannot extend without violating planarity and is trivially solvable in polynomial
time. Sometimes, the inverse measure skewness skew(G) is considered, where we ask for the
minimum number of edges to delete until obtaining planarity. MPS has received significant
attention for diverse reasons. Firstly, skewness is considered a very natural measure of
non-planarity and resides among the most common ones (such as crossing number and
genus). Secondly, determining a large planar subgraph is the foundation of the planarization
method [1,8] that is heavily employed in graph drawing: during planarization, one draws a
large – favorably maximum – planar subgraph and re-inserts the deleted edges, usually to

1 Supported by the German Research Foundation (DFG) project CH 897/2-1.

© Markus Chimani, Ivo Hedtke, and Tilo Wiedera;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:markus.chimani@uni-osnabrueck.de
https://orcid.org/0000-0002-4681-5550
mailto:ivo.hedtke@dbschenker.com
https://orcid.org/0000-0003-0335-7825
mailto:tilo.wiedera@uni-osnabrueck.de
https://orcid.org/0000-0002-5923-4114
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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obtain a low number of overall crossings. In fact, this gives an approximation algorithm with
ratio roughly O (∆ · skew(G)) [10], where ∆ denotes the maximum node degree. Thirdly,
there are graph problems that become easier when the skewness of the input is small or
constant. E.g., we can compute a maximum flow in time O

(
skew(G)3 · |V | log |V |

)
[19], i.e.,

for constant skewness we obtain the same runtime complexity as on planar graphs.
On the positive side, we know that a spanning tree already approximates MPS by

1/3. The best known approximation algorithm is due to Călinescu et al., achieving an
approximation ratio of 4/9 [4]. On the downside, Călinescu et al. also show that the problem
is MaxSNP-hard, i.e., there is an upper bound < 1 on the obtainable approximation ratio
unless P = NP. Just recently, a new algorithm with approximation ratio 13/33 [6] was
discovered. The only non-trivial algorithm in literature for exactly computing a maximum
planar subgraph is based on integer linear programming and Kuratowski’s characterization
of planarity [26]. Since its inception over two decades ago, no other exact algorithm has been
proposed, and only few related algorithmic advances improved its performance, see [11].

Besides this famous K5-K3,3-subdivision criteria by Kuratowski [22] (see Section 2) there
is an abundance of planarity criteria. A (non-complete) list can be found in [23, 31]. In
this paper, we aim at evaluating planarity criteria regarding their usefulness in ILP/PBS
formulations to obtain new, alternative exact MPS algorithms. Naturally, we restrict ourselves
to a subset of criteria that we deem promising for this investigation. We hope to pinpoint
new possible ways of considering the problem, to gain new insight into the structure of the
MPS, and to lay the groundwork for developing faster exact algorithms. We present our three
new models in Sections 3–5. For each of the possible formulations, there are several options
and parameter choices. We report on algorithmic and experimental decisions thereto directly
after their description, based on pilot studies2. In Section 6 we present a full comparison of
the best parameterization for each formulation.

2 Preliminaries

In Linear Programming (LP), one is given a vector c ∈ Rd, a set of linear inequalities that
define a polyhedron P in Rd, and asked to find an element x ∈ P that maximizes cᵀx.
Integer Linear Programming (ILP) additionally requires the components of x to be integral.
Closely related is the concept of Pseudo Boolean Satisfiability (PBS), sometimes referred to
as 0-1-integer linear programming (a special form of ILP: the given polyhedron is a subset
of [0, 1]d), but typically described as a generalization of SAT: its describing constraints are
called clauses and usually have the form of first order Boolean formulae. Modern solvers
directly support clauses that require a certain number of literals (instead of just one) to be
true. The main difference between PBS and 0-1-ILP is the solution strategy: the first uses
fast enumeration and clause learning, whereas the latter employs LP-relaxations. We use
these concepts to design models for MPS that can be solved by arbitrary ILP/PBS solvers.

It often is beneficial to not add all constraints to a program but instead identify a relevant
subset of constraints in the solving process. This is usually referred to as the Cutting-Plane
Method. We utilize it in branch-and-cut-based ILP solving either on fractional or integral
solutions. In PBS solvers, one has to rely on a less sophisticated approach that iteratively
solves the PBS formula, adds new constraints as appropriate, and re-solves the extended
formula while maintaining some information from the previous runs. We refer to clauses that
are added iteratively to a PBS formula as lazy constraints.

2 The experimental setting is the same as discussed in Section 6.
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2.1 Notation

Throughout this paper, our input graph G = (V,E) is undirected and simple with n := |V |
andm := |E|. For general graphs H, we refer to its nodes as V (H) and its edges as E(H). For
a directed graph H ′ we denote the arcs by A(H ′) and may write E(H ′) whenever considering
H ′ undirected. For any k ∈ N, we denote the set {0, 1, . . . , k − 1} by [k] and operations on
the members are to be understood modulo k. For any edge e of G, let V e := V \ e denote
the nodes that are not incident with e. Given a node v, its neighbors are denoted by N(v).
In a directed graph, we refer to the outgoing (incoming) arcs of a node v as δ+(v) (δ−(v),
respectively). For any two nodes u and v, we denote an arc from u to v by uv. If unambiguous,
we might also refer to an undirected edge {u, v} as uv. We denote the undirected counterpart
of an arc a as e(a). Given an arc a = uv, we define its reversal rev(a) := vu. Given a set X,
the set of all ordered k-tuples (all k-cardinality subsets) consisting of elements from X is
referred to as X(k) (X{k}, respectively). We abbreviate pairwise different by p.d.

2.2 Common Foundation of Models

We assume our input graph G to be biconnected non-planar, with edge weights w : E(G)→ N
and minimum node degree 3. This can be achieved in linear time using the Non-Planar Core
reduction [7] as a preprocessing, without changing the graph’s skewness.

All models are presented as ILPs. Since the PBS counterparts directly map to the
ILPs where clauses naturally correspond to constraints, we do not explicitly list the PBS
formulations. We highlight optional constraints that we include in the hope to help quickly
finding strong dual bounds with the symbol ?. We use solution variables se ∈ {0, 1} (for all
e ∈ E(G)) that are 1 if and only if edge e is in the planar subgraph. The objective is given by

max
∑

e∈E(G)
w(e) · se.

We always use Euler’s bound on the number of edges in planar graphs:∑
e∈E(G)

se ≤ 3n− 6.

2.3 Known Formulation: Kuratowski Subdivisions

I Theorem 1 (Kuratowski’s Theorem [22]). A graph is planar if and only if it neither contains
a subdivision of a K5 nor that of a K3,3.

Hence, it suffices to ask for any member of the (exponentially sized) set K(G) of all Kuratowski
subdivisions that at least one of its edges is deleted:∑

e∈E(K)
se ≤ |E(K)| − 1 ∀K ∈ K(G).

This formulation is due to Mutzel [26]. Later, Jünger and Mutzel showed that these constraints
form facets of the planar subgraph polytope [20]. Clearly, we cannot solve the model by
writing down every constraint explicitly. Instead, a sufficiently large but in many practical
cases small subset of constraints is identified by a (heuristic) separation procedure. Over the
years, the performance of this approach was improved by strong preprocessing [7], finding
multiple violated constraints in linear time [12], and good heuristics [11].
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Algorithm engineering and preliminary benchmarks. Using an ILP solver, we separate on
LP-solutions by rounding the computed fractional values, thus obtaining a graph H ⊂ G

and extracting Kuratowski subdivisions from H. Our experiments indicate that rounding
down values that are smaller than 0.99 (and 0.9 in a second round), yields locally optimal
(w.r.t. the algorithm’s parameter space) results. We use a heap to collect 50 most violated
constraints per LP-solution while maintaining linear runtime for the extraction of up to 250
Kuratowski subdivisions. For the PBS solver, we iteratively search for satisfying variable
assignments and check each for planarity, adding up to 50 lazy Kuratowski constraints each.

3 Facial Walks

For any connected planar graph, there is an embedding Π, i.e., a cyclic order of edges around
the nodes while the graph is drawn planarly. The regions bounded by the edges are the faces
of Π. The facial walk model is based on an idea developed in [2] for computing the genus of
a graph; it constitutes the only known model for the latter problem. It simulates the face
tracing algorithm that visits each face, traversing their borders in clockwise order. Let f̄ be
an upper bound on the number of attainable faces. Let A denote the bidirected counterpart
of the undirected edges of G. We add the following binary variables:

xi ∀i ∈ [f̄ ] Has value 1 iff face i exists.
cia ∀a ∈ A, i ∈ [f̄ ] Has value 1 iff arc a bounds face i: traversing i in clockiwse

order visits e(a) in the orientation of a.
pvu,w ∀v ∈ V, u, w ∈ N(v) Has value 1 iff w is the direct successor of u in the cyclic

order around v.
We define the following short-hand notations:

pv(U ×W ) :=
∑
u∈U

∑
w∈W pvu,w, x(I) :=

∑
i∈I xi,

sv(W ) :=
∑
w∈W svw, cI(J) :=

∑
i∈I
∑
j∈J c

i
j .

We then complete our model with the constraints below:

n+ x([f̄ ]) = 2 +
∑
e∈E se (1a)

xi = 1 ∀i ∈ [3] ? (1b)
xi ≥ xi+1 ∀i ∈ [f̄ − 1] ? (1c)

xi ≤ c{i}(A)/3 ∀i ∈ [f̄ ] (1d)
cia ≤ xi ∀a ∈ A, i ∈ [f̄ ]] (1e)

c[f̄ ](a) = se(a) ∀a ∈ A (1f)

c{i}(δ−(v)) = c{i}(δ+(v)) ∀i ∈ [f̄ ], v ∈ V (1g)
civw ≥ ciuv + pvu,w − 1 ∀i ∈ [f̄ ], v ∈ V, u, w ∈ N(v) (1h)
ciuv ≥ civw + pvu,w − 1 ∀i ∈ [f̄ ], v ∈ V, u, w ∈ N(v) (1i)

pv(u×N(v)) = svu ∀vu ∈ A (1j)
pv(N(v)× w) = svw ∀vw ∈ A (1k)

pv(U ×N(v)\U) ≥ sv({u, ũ})− 1 ∀v ∈ V, ∅6=U(N(v), u ∈ U, ũ ∈ N(v)\U (1l)

Inequality (1a) ensures that the number of nodes, faces, and edges satisfy Euler’s polyhedron
formula. Constraints (1d) account for the fact that each face needs at least three arcs.
Conversely, for any arc to be assigned to a face, the face needs to exists (→1e). For any arc
whose edge is in the planar subgraph there must exist exactly one face that contains the
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arc (→1f). Constraints (1g) ensure that the number of inbound arcs equals the number of
outbound arcs at a fixed node in a fixed face. By adding constraints (1h,1i), we make sure
to respect the successor-variables. Constraints (1j,1k) ensure there are successor variables
selected for any edge that is in the solution. The exponentially large set of cut constraints (1l)
prohibits multiple cycles in the successor relation. Optionally, we can force the use of at least
the first 3 faces (→1b), otherwise the solution is outerplanar and thus not maximal; and we
can use faces in order of their indices (→1c) to break symmetries.

Special variables/constraints for degree-3 nodes. Consider any degree-3 node v with
neighbors uv0, uv1, uv2. If all its incident edges are in the solution, we have two possible
cyclic orders. Otherwise, the cyclic order is even unique. Thus, instead of introducing six
successor-variables pv... and constraints (1h–1l), we can use a single binary variable pv, and
straight-forwardly simplified constraints, for all i ∈ [f̄ ], j ∈ [3], and all degree-3 nodes v:

civuv
j+1
≥ ciuv

j
v + (pv−1) + (svuv

j+1
−1) civuv

j+2
≥ ciuv

j
v + (pv−1) + (svuv

j+2
−1)− svuv

j+1

ciuv
j
v ≥ civuv

j+1
+ (pv−1) + (suv

j
v−1) ciuv

j
v ≥ civuv

j+2
+ (pv−1) + (suv

j
v−1)− svuv

j+1

civuv
j
≥ ciuv

j+1v
− pv + (svuv

j
−1) civuv

j
≥ ciuv

j+2v
− pv + (svuv

j
−1)− svuv

j+1

ciuv
j+1v
≥ civuv

j
− pv + (suv

j+1v
−1) ciuv

j+2v
≥ civuv

j
− pv + (svuv

j+2
−1)− svuv

j+1

It can be easily verified by a case analysis that the above inequalities cover every possible
configuration of neighbors, where we might assume that there is at least one neighbor since
every maximal solution must be connected.

Algorithm engineering and preliminary benchmarks. In our experiments, the special
degree-3 node model did not solve more instances but resulted in a marginal reduction
(0.8%) of runtime; so we use it. The PBS variant on the other hand suffers from the special
degree-3 model, solving 9.38% less instances. An ILP variant where we eliminate the solution
variables se (directly using the containment variables cia instead) solved 3.29% less instances.
We refrain from testing polynomially sized models (betweenness- and index-based instead of
constraints (1h–1l)) as our exact genus experiments suggest this does not pay off [2].

4 Schnyder Orders

A partially ordered set (poset) is a pair P = (S,≺) where ≺ is a strict partial order (transitive,
irreflexive, binary relation) over the elements of S. Every poset has a realizer, i.e., a set R
of total orders (transitive, antisymmetric, total, binary relation) on S whose intersection
is ≺ [30]. This means that x ≺ y if and only if x <i y for all <i ∈ R. The Dushnik-Miller
dimension dimP of P is the minimum cardinality over all realizers of P [15]. We associate
a poset PG = (V ∪ E,≺G) to G such that x ≺G y if and only if y = {v, w} ∈ E and x ∈ y.
The dimension of G is defined as the Dushnik-Miller dimension of PG. We have

I Theorem 2 (Schnyder’s Theorem, 4.1 and 6.2 of [28]). A graph is planar if and only if its
dimension is at most three.

In fact, a graph with dimension 1 (2) is an isolated node (path, respectively). Therefore,
we propose a model to check for dimension three. While we could directly use the above
criterion for an ILP, Schnyder provides another, related and favorable, characterization:

I Lemma 3 (Lemma 2.1 of [28]). A graph G = (V,E) has dimension at most d if and only
if there exists a set of total orders <1, . . . , <d on V such that
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1. the intersection of <1, . . . , <d is empty; and
2. for each edge {x, y} ∈ E and each node z /∈ {x, y} of G, there is at least one order <i

such that x <i z and y <i z.

To use this criterion, we add (additionally to se, ∀e ∈ E) the following binary variables:
tiu,v ∀i ∈ [3],∀u, v ∈ V : u 6= v Has value 1 iff u <i v.
aie,v ∀i ∈ [3], e ∈ E, v ∈ V e Can have value 1 only if u <i v ∀u ∈ e.

We are now able to complete the Schnyder orders ILP by adding:

se ≤
∑2
i=0 a

i
e,v ∀e ∈ E, v ∈ V e (2a)

aie,v ≤ tiu,v ∀i ∈ [3], e ∈ E, u ∈ e, v ∈ V e (2b)∑2
i=0 t

i
u,v ≤ 2 ∀u, v ∈ V : u 6= v ? (2c)

tiu,v + tiv,w − 1 ≤ tiu,w ∀i ∈ [3], p.d. u, v, w ∈ V (2d)
tiu,v + tiv,u = 1 ∀i ∈ [3], u, v ∈ V : u 6= v (2e)

Constraints (2a) ensure that for any edge in the solution the Schnyder-property for any
non-incident node is satisfied by at least one of the three orders. By inequalities (2b), we
make sure that the second requirement of the Schnyder-property is respected. Transitivity of
the total orders is obtained by (2d). Finally, we require totality by adding (2e).

As Schnyder states [28], we may omit the intersection criterion (2c) as this is satisfied by
any non-trivial solution. Note that for any two adjacent edges uv, vw in the solution and any
i ∈ [3], we cannot have aiuv,w = aivw,u = 1, since the orders induced by the a-variables are
conflicting. Hence, we might pick a single triangle T = {e1, e2, e3} in the input graph and
assign realizing orders to each edge; thereby vi denotes the node incident to both of T \ {ei}:∑

j∈[3]\{i} a
j
ei,vi

= 0 ∀i ∈ [3] ? (2f)

Analogously, we might apply the same symmetry breaking constraint to two adjacent edges if
the graph is triangle-free. (Then e3 /∈ E, we let i ∈ [2] but retain the subscript at the sum.)

Algorithm engineering and preliminary benchmarks. We tested omitting the symmetry
breaking constraints (2f) (9.12% less solved instances), omitting intersection constraints (2c)
(0.85% less), manually separating the transitivity constraints (which does not change the
overall number of solved instances but increases runtime by 4.00%), and using Theorem 2
– the partial order on V ∪ E – instead (leading to a related but different model that we
do not describe here), where we solve 39.89% fewer instances (each when using an ILP
solver). Employing the PBS solver, we obtain similar results for omitting symmetry breaking
constraints (9.37% less) and for omitting intersection constraints (0.79% less). In contrast to
above, using lazy transitivity constraints leads to 5.24% fewer solved instances. We did not
investigate a PBS variant based on Theorem 2 as the ILP performance was already strikingly
underwhelming. We did consider a variant where we use betweenness variables [5] to describe
each of the three total orders. This allows us to omit the a-variables, but it did not yield
satisfactory runtime already on rather trivial instances.

5 Left-Right Edge Coloring

A Trémaux tree T is a rooted tree in a graph H such that for any cotree edge {u, v} ∈ ETH :=
E(H) \ E(T ), we can traverse the nodes of the tree-path between u and v, such that the
levels of the nodes (i.e., their distances in T to the root) are strictly increasing. Any DFS-tree
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(depth-first-search-tree), rooted at the start node, is a Trémaux tree. For any edge e we refer
to the node closer to the root of T as ◦

e and the other one as  

e (this is unique by the Trémaux
property). Any Trémaux tree T defines a partial order on the nodes: for each edge e ∈ E(T )
we set ◦

e ≺  

e, the partial order is obtained by extending this relationship to its transitive hull.

I Definition 4 (T -alike and T -opposite relations). We denote the meet (closest common
ancestor) of two nodes u, v in ≺ by u ∧ v. De Fraysseix and Rosenstiehl [13] define binary
relations between cotree edges as follows:
P1. For any α, β, γ ∈ ETH such that ◦

γ ≺ ◦
α ≤

◦
β ≺  

α ∧
 

β ∧  

γ ≺  

α ∧
 

β, α and β are T -alike.
P2. For any α, β, γ ∈ ETH such that ◦

γ ≺ ◦
α ≺

◦
β ≺  

α ∧
 

β ∧  

γ ≺
 

β ∧  

γ, α and β are T -opposite.
P3. For any α, β, γ, δ ∈ ETH such that ◦

γ =
◦
δ ≺ ◦

α =
◦
β ≺  

α ∧
 

β ≺  

α ∧  

γ, and  

α ∧
 

β ≺
 

β ∧  

γ, α
and β are T -opposite.

I Theorem 5 (Section 2 of [13]). A connected graph H with a Trémaux tree T is planar if
and only if there exists a partition of ETH into two classes, such that any two edges which are
T -alike (T -opposite) belong to the same class (different classes, respectively).

Using this characterization, we design a model that describes a Trémaux tree with a
feasible bicoloring of cotree edges for any connected, planar subgraph. We introduce the
following set of binary variables, additionally to se for all e ∈ E:

td ∀d ∈ A Has value 1 iff arc d is in the Trémaux tree T .
`uv ∀u, v ∈ V Has value 1 iff node u lies on the path from the root to node v in T .

Always true for u = v and whenever u is the root of T .
Models the partial Trémaux ordering u ≺ v ⇐⇒ `uv = 1.

re ∀e ∈ E Has value 1 iff edge e is colored red (otherwise colored blue).

First, we establish a Trémaux tree. It has n − 1 edges (→3a), chosen from the planar
subgraph (→3b). Its edges seed the partial order on the nodes (→3c). To make sure the
order described by the `-variables is exactly the transitive hull of the tree, we need that
nodes with the same parent in the tree are not comparable (→3d). Whenever two nodes u, v
are smaller than a third one, u must be comparable to v (→3e). Constraints (3f), (3h), and
(3g) model transitivity, reflexity, and antisymmetry, respectively. Finally, the Trémaux tree
property – any edge of the planar solution being incident with two comparable nodes – is
enforced by constraints (3i). Note that the t-variables will always describe a tree, i.e., there
are no cycles as this would conflict with the induced partial order by (3c,3f,3g).∑

d∈A td = |V | − 1 (3a)
td ≤ se(d) ∀d ∈ A (3b)
td ≤ `d ∀d ∈ A (3c)

`vw + `wv + tuv + tuw ≤ 2 ∀u ∈ V, {uv, uw} ∈ A{2} (3d)

`uw + `vw ≤ 1 + `uv + `vu ∀(u, v, w) ∈ V (3) (3e)

`uv + `vw ≤ `uw + 1 ∀(u, v, w) ∈ V (3) (3f)

`uv + `vu ≤ 1 ∀{u, v} ∈ V {2} (3g)
`vv = 1 ∀v ∈ V (3h)
se ≤ `  

e + `◦
e ∀e ∈ E (3i)
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Aiming at cutting off some symmetrical solutions, we may demand that tree edges and
deleted edges are colored blue:

t◦
e

 

e + t  

e
◦
e + re ≤ 1 ∀e ∈ E ? (3j)

re ≤ se ∀e ∈ E ? (3k)

We may also enforce a unique Trémaux tree for each given assignment of s-variables: pick
an arbitrary root node r ∈ V , set its incoming arcs to 0 and those of every other node
to 1 (→3l,3m). Let <π denote a fixed non-cyclic order on the adjacency entries for each
node. We may demand that the first feasible edge in this order is always picked for the tree,
thus obtaining a distinct feasible DFS-tree for each assignment of s-variables (→3n).∑

wr∈A twv = 0 ? (3l)∑
wv∈A twv = 1 ∀v ∈ V \ {r} ? (3m)

tuw + `wv + suv ≤ 2 ∀uv <π uw ∈ A ? (3n)

We now establish a feasible bicoloring of the cotree edges. We define Ru,vα,β,γ := C{α,β,γ} +
`◦
γ

◦
α + `uv − 2, where CF :=

∑
d∈F

(
`d + se(d) − td − trev(d) − 2

)
for any F ⊆ A.

P 1
α,β(γ, u, v) := Ru,vα,β,γ + `◦

α
◦
β

+ ` ◦
βu

+ `u  

γ − `v  

γ + `v  

α + `
v

 

β
− 5,

P 2
α,β(γ, u, v) := Ru,vα,β,γ + `◦

α
◦
β

+ ` ◦
βu

+ `u  

α − `v  

α + `
v

 

β
+ `v  

γ − 5,

P 3
α,β(γ, δ, u, v, w) := Ru,vα,β,γ + C{δ} + `◦

αu + `uv + `uw + `u  

α + `
u

 

β

+ `v  

α − `v  

β
+ `v  

γ − `v  

δ
− `w  

α + `
w

 

β
− `w  

γ + `
w

 

δ
− 9.

We model coloring restrictions of type P1 (T -alike), P2 (T -opposite by one other cotree
edge), and P3 (T -opposite by two other cotree edges) by constraints (3o–3q), respectively:

re(α) − re(β) ≥ P 1
α,β(γ, u, v)

re(β) − re(α) ≥ P 1
α,β(γ, u, v)

∀ arcs α, β, γ ∈ A of p.d. edges,
u 6= v ∈ V : ◦

γ 6= ◦
α ∧

◦
β 6= u

(3o)

re(α) + re(β) ≥ 1 + P 2
α,β(γ, u, v)

re(α) + re(β) ≤ 1− P 2
α,β(γ, u, v)

∀ arcs α, β, γ ∈ A of p.d. edges,
u 6= v ∈ V : ◦

γ 6= ◦
α 6=

◦
β 6= u

(3p)

re(α) + re(β) ≥ 1 + P 3
α,β(γ, δ, u, v, w)

re(α) + re(β) ≤ 1− P 3
α,β(γ, δ, u, v, w)

∀ arcs α, β, γ, δ ∈ A of p.d. edges,
u, v, w ∈ V : v 6= w and
◦
α =

◦
β ∧ ◦

γ =
◦
δ ∧ ◦

γ 6= ◦
α 6= u

(3q)

To comprehend the latter three constraint classes (3o–3q), one first needs to understand that
for any F ⊆ A : − CF ∈ N by definition (for any feasible variable assignment) and CF = 0
if and only if each arc of F is a cotree edge of the subgraph induced by the s-variables
and directed from the smaller to the larger node. Following this pattern, we define the
terms P 1

α,β(γ, u, v), P 2
α,β(γ, u, v), P 3

α,β(γ, δ, u, v, w) each equal to 0 if and only if we have a
configuration of type P1, P2, or P3, respectively, and smaller than or equal to −1 otherwise.
Using these terms we can enforce T -alike- and T -oppositeness for any pair α, β as given by
constraints (3o–3q); see Figure 1 for the selection of nodes u, v, and w.

DFS-based branching rule. Apart from a traditional automatic selection of branching
variables by the ILP solver, we consider a more specialized scheme. Given a vertex in the
branch-and-bound (B&B) tree, we traverse the locally non-deleted edges of G (i.e., the edges
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}
}u

v

 

α ∧
 

β

(a) type P1

...

...

...

...

γ

β

α

}
}u

v

 

β ∧  

γ

(b) type P2

...

...

...
...

γ δ

α β}

} }

u

v

w

 

α ∧  

γ
 

β ∧
 

δ

(c) type P3

Figure 1 Schematics of configurations inducing T -alike and T -opposite with ranges to pick
nodes u, v, w from, such that constraints (3o–3q) are tight. Nodes at the bottom are (closest to) the
root. Tree paths are straight (cotree edges are bent), partially dotted lines. Subgraphs of arbitrary
structure (possibly just a single node) are shaded in gray.

that have a local upper bound of 1) in their unique DFS order until we find an edge e that is
not yet chosen to be in the DFS-tree (i.e., the lower bound of the respective arc variable is
not 1). We spawn two new B&B subproblems, where e either is deleted or in the DFS-tree,
respectively. While we lose the potential benefit of always branching on a strongly fractional
value, we can fix two instead of just one free variable in both new B&B branches.

Algorithm engineering and preliminary benchmarks. Since we cannot hope to explicitly
write down all coloring constraints (3o–3q), we separate on integral ILP solutions and use
lazy constraints in the PBS variant. We use a simple O(n4) routine that identifies all violated
bicoloring constraints for a given non-planar subgraph. We can terminate this routine
prematurely if we consider the set of identified constraints to be locally sufficient.

We evaluated ILP variants where we omitted the symmetry breaking constraints (3l–3n)
(49.91% less solved instances), use our custom branch rule while limiting its application
to B&B-depth at most 6 (13.22% more) as well as without this limit (32.40% more), and
increased the limit of added constraints per LP run from the default of 100 to 1000 (0.93%
more). Using the PBS solver, we obtain similar results when omitting symmetry breaking
constraints (65.74% less). Furthermore, we investigated a separation routine based on directed
cuts3 to cut off infeasible t-variable assignments; this does not seem to be beneficial.

6 Experimental Evaluation

Setup. All our programs are implemented in C++, compiled with GCC 6.3.0, and use the
OGDF (version based on snapshot 2017-07-23) [9]. We use SCIP 4.0.1 for solving ILPs with
CPLEX 12.7.1 as the underlying LP solver [25]. For PBS-based algorithms, we utilize Clasp
3.3.3 [17]. Each MPS-computation uses a single physical core of a Xeon Gold 6134 CPU
(3.2 GHz) with a memory speed of 2666 MHz. We apply a time limit of 20 minutes and
a memory limit of 8 GB per computation. Our instances and results, giving runtime and
skewness (if solved), are available for download at http://tcs.uos.de/research/mps.

3 Directed cut constraints of the form
∑

w∈W,v∈V \W
twv ≥ 1 for all W with {r} ⊆W ( V.
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Table 1 Ratios of solved instances. The Kuratowski ILP dominates all other algorithms.

Rome North Expanders SteinLib
# instances 8249 423 480 105

ILP Kuratowski 85.70% 73.75% 22.75% 9.52%
ILP Facial Walks 17.82% 29.78% 4.31% 2.85%
ILP Schnyder Orders 21.69% 48.22% 8.96% 3.80%
ILP Left-Right Coloring 36.64% 60.75% 12.93% 3.80%

PBS Kuratowski 77.43% 69.73% 10.34% 9.52%
PBS Facial Walks 15.21% 30.02% 0.68% 0.95%
PBS Schnyder Orders 46.24% 61.93% 6.89% 5.71%
PBS Left-Right Coloring 65.07% 66.43% 10.00% 7.61%

Instances and configurations. We use the non-planar graphs of the established benchmark
sets North [27], Rome [14, Section 3.2], and a subset of the SteinLib [21] all of which include
real-world instances. In addition, we generated a set of random regular [29] graphs that are
expander graphs with high probability. In [11] it was observed that such graphs seem to be
especially hard at least for the Kuratowski formulation. For formulations that allow multiple
configurations, we determined the most promising one in a preliminary benchmark on a set
of 1224 Rome and North graphs, as reported in the previous sections. This fixed subset of
instances was sampled by partitioning the instances into buckets based on the number of
nodes and choosing a fixed number of graphs from each bucket with uniform probability.

For parameters where we had a non-binary choice (e.g., heap size in ILP separation) we
rely mostly on the values identified in [18].

Our algorithms use strong primal heuristics, whose common foundation is a maximal
planar subgraph algorithm based on the simpler cactus algorithm by Călinescu et al., with
approximation ratio 7/18, that was identified in [11, denoted by C+] to be among the
practically best heuristics.

Results. Table 1 summarizes the ratios of solved instances. Evidently, the Kuratowski ILP
dominates all implementations. To our surprise, the rather intricate left-right edge coloring
model constitutes the most successful one among the new variants. The facial walk model
falls behind all other formulations. A similar picture is obtained from a more detailed look at
the success rates. In Figure 2a (2b), we show the relative number of solved instances among
the Rome graphs over the nodes in the input (resp. number of edges in the non-planar core),
clustered to the nearest multiple of five. As expected, the more edges there are in the core,
the harder the instance is in practice. This is particularly clear on the Rome graphs and
becomes a little distorted on the North graphs, see Figures 2c and 2d, that include some
instances where we have to delete very few edges to obtain a (near) triangulation with an
(almost) trivial upper bound. Figures 2e and 2f show the number of solved instances over our
total runtime. The runtime is represented logarithmically. Again, the Kuratowski ILP is the
clear winner and solves more instances than any other variant at any point in time. While
the number of solved instances for all algorithms skyrockets in the first milliseconds and
only very slowly increases over the course of 20 minutes, we can see that some algorithms
gain more than others from an increase in runtime. Surprisingly, the Schnyder orders ILP
seems to benefit only on the considerably harder North graphs from increasing the runtime.
In most cases, particularly on the Rome and North instances, the PBS variant is stronger
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Figure 2 Success rate and runtime.
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Figure 3 Relation of skewness (bounds) and success rate on Rome graphs. The same legend as
in Figure 2 applies.

than its ILP counterpart, with a clear exception for the Kuratowski model. Finally, Figure 3
relates upper bounds on the skewness with the number of solved instances. We can see that
there is little success on graphs with a skewness larger than 12, on both the Rome and North
set. The same holds, although not as clear cut, for the other instance sets.

7 Findings and Conclusion

The main goal of this paper was to investigate novel ways of approaching the MPS problem,
after over two decades of no progress w.r.t. exact models. We succeeded in the sense that we
showed that there are indeed viable alternatives. However, we also showed experimentally
that a modern implementation of the old Kuratowski formulation remains the strongest
option to solve MPS in practice. Although negative, this is an interesting observation.

We should keep in mind that the thereby required efficient separation builds upon years
of algorithmic development [3,12], and it is the only ILP where we currently know how to
(heuristically) separate on fractional solutions. Equipped with similar tools, i.e., a sensible
rounding scheme and a linear time separation routine (a modified left-right planarity test),
the left-right edge coloring formulation might yield very competitive performance. This, in
fact, may be a reasonable target for future research.

For the genus problem, a facial walk model similar to our MPS formulation is the only
known feasible approach. However, we clearly see that it is not favorable for MPS as we have
stronger and more direct options at our disposal. The facial walk model optimizes over all
possible embeddings (there are exponentially many already for a fixed subgraph) of all planar
subgraphs, which might help explain its underwhelming performance. The Schnyder orders
model does not perform very well in practice despite its very elegant characterization. This
might be due to the fact that in contrast to the left-right edge coloring, we search for three
feasible orders on the planar subgraph instead of just one (the partial order corresponding
to the Trémaux tree). To solve the Schnyder orders model efficiently, a fast solver for
linear ordering problems seems to be required. The Schnyder and left-right edge coloring
PBS formulations usually beat their ILP counterparts, indicating that their LP relaxations
are rather weak. As expected, the expander graphs constitute a particularly hard class of
instances and may be a good starting point for tuning and extending our algorithms.

Finally, the strong performance of the Kuratowski model (in particular the ILP variant)
is a clear indication that it deserves more attention in the future. The fact that no additional
strong constraint classes have been identified for more than two decades is provocative.
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Abstract
In this paper we study the problem of efficiently and effectively extracting induced planar sub-
graphs. Edwards and Farr proposed an algorithm with O(mn) time complexity to find an induced
planar subgraph of at least 3n/(d+ 1) vertices in a graph of maximum degree d. They also pro-
posed an alternative algorithm with O(mn) time complexity to find an induced planar subgraph
graph of at least 3n/(d̄+1) vertices, where d̄ is the average degree of the graph. These two meth-
ods appear to be best known when d and d̄ are small. Unfortunately, they sacrifice accuracy for
lower time complexity by using indirect indicators of planarity. A limitation of those approaches
is that the algorithms do not implicitly test for planarity, and the additional costs of this test
can be significant in large graphs. In contrast, we propose a linear-time algorithm that finds an
induced planar subgraph of n − ν vertices in a graph of n vertices, where ν denotes the total
number of vertices shared by the detected Kuratowski subdivisions. An added benefit of our
approach is that we are able to detect when a graph is planar, and terminate the reduction. The
resulting planar subgraphs also do not have any rigid constraints on the maximum degree of the
induced subgraph. The experiment results show that our method achieves better performance
than current methods on graphs with small skewness.
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1 Introduction

A graph is planar if it admits a planar drawing which means that the graph can be drawn
on the plane such that its edges only intersect at their endpoints. The goal of the graph
planarization problem is to find a planar subgraph by removing edges or vertices from an input
graph. It can be applied in many areas, such as facility layout design [8], circuit design [18],
graph drawing [15], and automated graphical display systems [28]. One popular reformulation
of the graph planarization problem, called the Maximum Induced Planar Subgraph (MIPS)
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problem, aims to find the largest number of vertices which induce a planar subgraph. This
problem is known to be NP-hard, and also surprisingly hard to approximate [19, 23, 26].
The MIPS problem can also be used to compute the coefficient of fragmentability of a class
of graphs, which is the proportion of vertices necessary to produce subgraphs of a bounded
size [11].

Related Work. In this paper, we study the MIPS problem and we assume that the reader
is familiar with basic graph theory (see for example [13, 30]). No graphs being considered
contain edge loops, n denotes the number of vertices, m denotes the number of edges, d
denotes the maximum degree, and d̄ denotes the average degree in a graph.

Halldórsson and Lau [14] proposed a linear-time algorithm (denoted as HL) for the MIPS
problem with a performance ratio of 1/d(d+ 1)/3e in a graph G. They presented several
practical algorithms for partitioning graphs into a fixed number of vertex-disjoint subgraphs
with degree constraints. In order to solve the problem, they capitalize on the Lovász [25]
Theorem: Let a1, a2, ..., ak be non-negative integers such that

∑k
i=1(ai + 1)− 1 = d. Then G

can be partitioned into k induced subgraphs G1, G2, . . . , Gk such that the maximum degree
of Gi is not greater than ai. With this theorem, a graph can be partitioned into at most
d(d+ 1)/3e induced subgraphs of degree at most 2, and the largest subgraph is the planarized
result. The approach of Halldórsson and Lau can induce such a partition in linear time.
However, the maximum degree of the planarization result is restricted to be at most 2.

Edwards and Farr [10] proposed an algorithm (denoted as Vertex Addition) to find
an induced planar subgraph of at least 3n/(d + 1) vertices in O(mn) time, which has a
performance ratio of at least 3/(d+ 1). Compared to the algorithm of Halldósson and Lau,
the performance ratio is improved when d 6≡ 2 (mod 3). The induced planar subgraphs
found by this algorithm is also not constrained to have maximum degree of 2. The algorithm
works as follows. Suppose that P is an initially empty set and R = V (G)\P , this algorithm
works by adding vertices from R one by one into P while maintaining the planarity of 〈P 〉.
In some instances, a vertex from R is swapped with one from P . The restrictions on the
swapping operations are stricter than that on maintaining planarity. By doing this, some
properties in the graph are maintained, which allows the performance of the algorithm to be
analyzed. For further information, please see [11, 10]. This leads to a fact that sometimes it
still swaps some vertices even if planarity could be maintained when all vertices involved in
the swapping operations are included in the planarization result.

Edwards and Farr [11] propose another algorithm (denoted as Vertex Removal) with time
complexity O(mn) for the MIPS problem in a graph of average degree d̄, which achieves a
performance ratio of at least 3/(d̄+ 1) when d̄ ≥ 4 or a graph is connected and d̄ ≥ 2. This
algorithm begins by removing any isolated vertex, any vertex of degree 1, and any vertex of
degree 2. For a vertex of degree 2, if its neighbours are not adjacent, they are joined by an
extra edge. Then a reduced graph is obtained by repeating the operations above until no
further changes are possible. Then, it proceeds to remove the vertex of the highest degree
in the reduced graph iteratively. In order to reduce complexity and improve efficiency, this
algorithm avoids the planarity test in each iteration. Instead, a loose upper bound of the
number of vertices to be removed is computed, which can result in the algorithm continuing
to remove vertices until the upper bound is reached, regardless of whether the current result
is already planar or not. Morgan and Farr [27] later proposed a modified algorithm (denoted
as Vertex Subset Removal) which instead iteratively removes a vertex v with the largest
number of neighbors with degree less than the degree of v in the reduced graph. There
is no known investigation of the impact of the different vertex removal strategies on the
planarization results [24].
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There is a simple example made by Morgan and Farr [27], which roughly summarizes a
limitation shared by all methods mentioned above — all previous methods fail to leave K4
minors in the induced planar subgraph even though K4 is already planar. For a K5 graph,
they can only find an induced planar subgraph of size at most degree 3.

Preliminaries. We now review key definitions before introducing our contributions. Accord-
ing to Kuratowski [21], a graph is planar if and only if it does not contain a Kuratowski
subdivision which can be any subdivision of K5 (a complete graph of size 5) or of K3,3 (a
complete bipartite graph of size 6). A subdivision of a graph G is a graph resulting from
the subdivision of edges in G. The subdivision of an edge e with endpoints (u, v) yields a
graph containing one new vertex w, with an edge set replacing e by two new edges, (u,w)
and (w, v). The skewness of a graph is the minimum number of edges whose removal results
in a planar graph [6].

A graph is a nearly planar graph if it is a k-graph (contains most k edge crossings) or
a k-skewness graph when k is small. Several previous studies have studied graphs with
similar properties in the context of straight-line drawing [17], visualization [12, 9, 7], and
edge intersection [5]. Applications may also require non-planar graphs to be drawn on a
plane even if edge crossings cannot be avoided [1, 8]. So it is naturally desirable to draw
graphs as close to planar as possible. We therefore focus on these cases in our experiments.

Contributions and Outline. We present an algorithm including planarity test to solve the
MIPS problem that does not remove any additional vertices once the graph becomes planar.
An additional benefit of our approach is that the maximum degree of the planarization result
is not constrained, which overcomes some of the limitations of previous work in this area.
The algorithm runs in O(n+m+ E(S)) time, with S being the set of detected Kuratowski
subdivisions, and E(S) being the sum of the number of edges in the subdivisions. The time
complexity is linear w.r.t. E(S), and graph size. The induced planar subgraph produced
by our algorithm is of size n− ν, with ν being the total number of vertices shared by the
Kuratowski subdivisions detected. We conduct several experiments to show that our method
outperforms all other methods for graphs with small skewness.

In Section 2, we first introduce a planarity test algorithm which is the basis of our
approach. Next, we describe our planarization algorithm and proofs of correctness. In
Section 3, we conduct intensive experiments on real-world graphs. Finally, we conclude this
paper in Section 4.

2 Motivation and Approach

Planarity Testing. Our work is based on one of the most efficient planarity test algorithms,
originally presented by Boyer and Myrvold [3]. For more detailed information, please refer
to the original work [3]. The algorithm, denoted as detect, works by checking if a graph
produces a planar drawing. detect begins by creating a depth first search tree (DFS tree)
of the graph. Each vertex is assigned to a depth first index (DFI), and edges are divided
into tree edges forming the DFS tree and backedges (the remaining edges). In this paper,
let v be the vertex currently being processed and Ḡ be the plane for embedding the graph.
Initially, the DFS tree is embedded in Ḡ. detect processes vertices in descending DFI order.
In each iteration of v, detect attempts to embed each backedge (u, v), where u has a larger
DFI than v, while maintaining planarity.
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Figure 1 An example illustrating the detect algorithm.

Initially, each tree edge (z, v) is represented as an independent biconnected component
(z, vz) formed by the vertex with a largest DFI and a virtual vertex. The vertex z is a DFS
child of v, and we denote this virtual vertex as vz to distinguish it from other copies of v.
We use v′ to denote a virtual vertex whose child is not specified. We say that the vertex vz

is the root of this biconnected component. Biconnected components are merged to form a
larger subgraph as backedges are embedded.

Each iteration involves two processes: a Walkup and a Walkdown. A Walkup
identifies relevant biconnected components for a backedge embedding, and classifies vertices
as follows. A vertex w is pertinent if there is a backedge (w, v) to be embedded, or it
has a child biconnected component in Ḡ which contains a pertinent vertex. A backedge
(w, v) is pertinent if w is pertinent and w is marked with an EdgeFlag. A biconnected
component is pertinent if it contains a pertinent vertex. A vertex w is external if there is a
backedge (w, u) to be embedded later, where u has a smaller DFI than v, or it has a child
biconnected component in Ḡ which contains an external vertex. Each vertex is equipped
with a PertinentRoots list that stores the roots of its pertinent child components. For every
backedge (w, u), Walkup traverses from w to u along the paths on the external face of the
biconnected components.

A Walkdown then embeds pertinent backedges and merges relevant biconnected com-
ponents traversed by the Walkup. The process is initiated with two traversals for each
biconnected child component rooted by a virtual point v′: one in the clockwise direction
along the external faces of the biconnected child component, and a second one in the opposite
direction. When Walkdown reaches a pertinent vertex u with an EdgeFlag, the relevant
components are merged, and the backedge (u, v) is embedded. The process continues until
reaching an external but non-pertinent vertex (denoted as stopping vertex), or v′ is found
again. This is the halting condition for the algorithm, and is the only possible indicator of
non-embeddability of backedges. If a pertinent backedge cannot be embedded, the graph is
not planar, as detect has identified a Kuratowski subdivision.

A Linear Time Solution for The MIPS Problem. detect terminates when a pertinent
backedge exists that is not embedded due to a stopping vertex s – meaning the graph is
non-planar. The reason is that if the algorithm embedded an edge after passing s, then s
cannot remain on the outer face of the graph. The embedding of a backedge (s, u) in a later
iteration would result in intersecting edges, which cannot admit a planar drawing.

Let s be a stopping vertex, and the influenced region of s be the collection of paths which
can be visited by a Walkdown only after it has visited s. The vertex v being processed is
an obstruction vertex if there exists at least one pertinent unembedded backedge. We observe
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Algorithm 1: PlanarizationByRegionSkip(G).
Input :A graph G
Output :An induced planar subgraph P

1 Construct a DFS tree of G ;
2 Initialize the embedding structure Ḡ;
3 Initialize ObstructionsList ;
4 for each vertex v in descending DFI order do
5 foreach backedge (w, v) of G where w > v do
6 if w is not an obstruction then
7 Walkup(Ḡ, v, w);
8 foreach DFS child c of v in G do
9 WalkdownWithSkips(Ḡ, vc);

10 foreach back edge (w, v) of G where w > v do
11 if (w, v) not in Ḡ then
12 ObstructionsList[v.index]← v.DFI;
13 break;
14 graph P ← RemoveObstructions(ObstructionsList, G);
15 return P ;

that a stopping vertex s only influences the embedding of a backedge (w, v) when w is in the
influenced region of s. We therefore propose the algorithm PlanarizationByRegionSkip
which embeds all possible pertinent backedges in each iteration by skipping influenced regions
of stopping vertices encountered during the Walkdown. When the embedding process
is completed, all obstruction vertices are removed from the input graph, which produces
an induced planar subgraph. This observation produces an algorithm which can test for
planarity and produce a solution for the MIPS problem simultaneously.

Solution Overview. Algorithm 1 presents our solution for finding an induced planar sub-
graph. It begins by building a DFS tree, and initializing the embedding structure Ḡ (line
1 to 2). Then we use an ObstructionsList to store the indexes of obstruction vertices in
an adjacency list. Each element is initialized to −1 (line 3). Next, the embedding loop is
initiated (line 4 to 12). Obstruction vertices identified in each iteration are excluded from
the Walkup process (line 7). Details of Walkup are described in previous work [3].

In the WalkDownWithSkips, traversals for each biconnected child component rooted
by the virtual point vc are initiated. This process embeds all of the pertinent backedges
which are not influenced by stopping vertices with skipping operations over the influenced
regions (line 9). Then, v is added into the ObstructionsList if there exists an unembedded
pertinent backedge. When the main loop finishes, all obstruction vertices are removed from
the graph.

The WalkdownWithSkips algorithm. As previously discussed, in order to embed backedges
that are not influenced by stopping vertices, we need to perform skipping operations. The
process WaldownWithSkips terminates when it reaches v′ or a stopping vertex on the
component whose root is v′. We denote such a component as a root component. If the stopping
vertex encountered is not on a root component, a skipping operation needs to be performed.
When a traversal descends from vertex r to root vertex r′ of a non-root component, it needs
to choose a direction to proceed. Boyer and Myrvold [3] proposed short circuit edges
which enable r′ to be directly connected to neighbors such that they are either pertinent or a
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Algorithm 2: WalkdownWithSkips(Ḡ, vc).
Input :The embedding structure Ḡ and a virtual vertex vc.

1 foreach traversal from vc do
2 w ←The successor along the external face;
3 while w is not vc do
4 if w has an EdgeFlag then
5 Merge involved components;
6 Embed the backedge (w, vc) and clear w′s EdgeFlag;
7 w ← The successor along the external faces;
8 if w.PertinentRoots is not empty then
9 r ←w.PertinentRoots[0];

10 Traverse down to the component rooted by r;
11 w ← The successor along the external faces;
12 if w is a stopping vertex then
13 if w is on the root component then
14 Embed the Short Circuit Edge (w, vc);
15 break;
16 else
17 x← Another neighbor of r, the root of the current component;
18 if x is a stopping vertex then
19 Skip the components rooted by r;
20 else w ← x;
21 else w ← The successor along the external faces;

stopping vertex. Each short circuit edge is embedded in a previous iteration p between
p′ and the stopping vertex. This forms a new face such that interceding inactive vertices
are removed from the external face. For more detailed information, please refer to Boyer
and Myrvold [3]. For our purposes, when the WalkdownWithSkips encounters a stopping
vertex, it checks if another neighbor of r′ is not a stopping vertex. If so, it skips to this
neighbor. Otherwise, it skips the components rooted by r′ which is then deleted from the
PertinentRoots of r, and returns to the parent component. The algorithm terminates on
the stopping vertex on the root component since there does not exist a parent component
for the process to ascend to.

Algorithm 2 describes the rationale of the WalkdownWithSkips. The algorithm begins
a single traversal in a clockwise or counterclockwise direction (line 2). Let w be the next
successor along the external face. If w has an EdgeFlag, the backedge (w, vc) is embedded
after the relevant components are merged (line 4 to 7). Then the traversal proceeds to the
successor. When it encounters a pertinent vertex whose PertinentRoots list is not empty,
it descends to the component rooted by the first element r in the list, and visits one of its
neighbors (line 8 to 11). If w is a stopping vertex in the root component, a short circuit
edge is embedded, and the traversal stops, after which another traversal is initiated from vc

in the opposite direction (line 13 to 15). Otherwise, the traversal performs a skip based on
whether another neighbour of r is a stopping vertex (line 17 to 20).

Example of the Embedding Process. It is instructive to see an example of the embedding
process on the pertinent subgraph in an iteration of c. The Walkup process is invoked
for each vertex with an EdgeFlags. Two parallel traversals are started from each vertex
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face1

face2

Figure 2 An example of the Walkup.

Figure 3 The WalkdownWithSkips in
the iteration of c.

Figure 4 The status after the embedding.

and stops when either of them reaches the root of the current biconnected component.
Afterwards, Walkup starts another two parallel traversals on the parent components. The
process terminates when a traversal reaches c or a vertex that has been visited before is
encountered.

Figure 2 shows the process of the Walkup of an example set of biconnected components
(diamonds), external and pertinent vertices (dashed squares), stopping vertices (solid squares)
and pertinent vertices with EdgeFlags. Only the traversals that reach root vertices first are
shown. Walkup begins at f . When it reaches de, de is then added to the PertinentRoots
of d, and it starts traversals at d until reaching c. Then the Walkup traversals of i are
initiated. The vertex gh is added to the PertinentRoots of g after being visited. When
it reaches g, the traversal terminates since g has been visited before. The main purpose
of Walkup is to determine which components are involved in the embedding. Hence the
traversals initiated from i do not have to continue. This process is repeated until all vertices
with EdgeFlags have all done a Walkup.

The main purpose of the WalkdownWithSkips is to embed as many pertinent backedges
as possible by skipping the influenced regions of the stopping vertices, and identify if the
vertex being processed is an obstruction. Figure 3 describes WalkdownWithSkips on the
same example set of biconnected components as Walkup. A traversal starts in one direction
of the child component of c. Then it descends to the component rooted by de which is the
first element in the PertinentRoots of d. Which direction to go from de depends on the
types of the neighbors: a neighbor can be pertinent but not external, pertinent and external,
or a stopping vertex (external but non-pertinent). The direction towards the neighbor of
the first type is preferred, and the direction towards a stopping vertex will be chosen if no
neighbors of the first two types exist. Since both e and g are of the same type, a neighbor g
is randomly selected.
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Afterwards, the algorithm descends to the component rooted by gh which is deleted
from the PertinentRoots of g, and then returns to g because it cannot reach i without
passing a stopping vertex. Next a skip to another neighbor e of de is initiated, and the
process is repeated. Since external and pertinent vertices are stopping vertices once their
PertinentRoots lists become empty, the traversal cannot reach f . So the components
rooted by de are skipped and deleted from PertinentRoots of d, and processing returns
to d. Then the algorithm descends to the component rooted by the next element dk in
the PertinentRoots of d. The backedge (m, cd) is embedded and the relevant components
rooted by cd and dk respectively are merged. The traversal terminates at k after embedding
the short circuit edge (k, cd) since k is on the root component after merging operations.
Another traversal begins from cd, and the process is repeated until a termination condition
is reached.

Figure 4 shows the embedding for this example. The dashed edges refer to backedges
which will be embedded by the algorithm. The vertices which still have EdgeFlags correspond
to unembedded backedges in the last iteration. As we can see, the component rooted by
cd is larger after merging, and backedges (m, cd) and (n, cd) have been embedded. The
embeddings of any other backedges in this figure would result in an intersection with the
dashed edges. Thus, they cannot be embedded. Since there exist unembedded backedges,
the vertex c is added to the ObstructionsList.

Removing Obstruction Vertices. After the main loop of the embedding process, the ob-
struction vertices are collected, which need to be removed from the graph to induce the
planar subgraph (line 13 in Algorithm 1). The input graph is represented as an adjacency
list, which is a collection of vertex lists. The first vertex in each vertex list is adjacent to
the rest of the vertices. We denote a vertex list E as a list of e1 if the vertex e1 is the first
element in E.

As discussed in Section 2, each index of the ObstructionsList refers to the index of a
vertex in the adjacency list, and the its content is initialized to −1. Since we assume that
all index values are non-negative, after the main loop, we can identify which vertex is an
obstruction based on whether the content of the corresponding vertex is non-negative. For
each vertex list of e1 where ObstructionsList[e1] ≥ 0, we just remove them directly from
the adjacency list. For each vertex list of e1 where ObstructionsList[e1] ≤ 0, we process
each of the rest elements ei in the vertex list of e1 by checking ObstructionsList[ei]. If
ObstructionsList[ei] ≤ 0, we leave this element and process the next one. Otherwise,
this element is deleted from this vertex list and we continue processing. After all vertex
lists have been processed, the adjacency list is an induced graph where each obstruction
vertex o (ObstructionsList[o] ≥ 0) has been removed. The overall cost includes the O(n)
vertex lists, and the total number of elements in vertex lists are O(m). Since each element is
processed in O(1), the total time complexity is O(n+m).

Proof of Correctness. In this section, we prove that the induced subgraph found by our
algorithm is planar and has a linear time complexity.

I Lemma 1. Given a graph G, the main embedding loop finds a planar subgraph of G.

Proof. Boyer and Myrvold [3] have proved that, in the iteration of v, Kuratowski subdivisions
will occur if and only if the Walkdown passes stopping vertices to embed backedges. Since
the embedding process works by skipping the influenced regions of stopping vertices in each
iteration, any Kuratowski subdivision cannot exist in the graph. Kuratowski [21] proved that
a graph is not planar if and only if it contains a Kuratowski subdivision. The embedding
loop preserves planarity since no Kuratowski subdivisions exist in the graph. J
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I Theorem 2. Given a graph G, removal of obstruction vertices leads to an induced planar
subgraph of G.

Proof. Although the graph is already planar after the embedding process, it is not an induced
graph since we only remove certain edges. In order to have an induced planar subgraph, we
need to remove one of two endpoints of each removed edge. Since all removed edges were
connected to obstruction vertices, the removal of such vertices leads to an induced planar
subgraph. J

I Theorem 3. Given a graph G with n vertices and m edges, our algorithm is bounded by
O(n+m+ E(S)) and therefore linear.

Proof. The construction of the DFS tree can be accomplished in linear time with a well-known
algorithm [29]. The initialization of the embedding structure Ḡ and the ObstructionsList
is also a linear time process. During the main backedge embedding loop, embedding edges
runs in linear time since the cost of embedding each edge is O(1). If the input graph is
planar, the cost of Walkup is bounded by the faces formed by the embedded edges. The
faces formed by the embedded backedges and short circuit edges bound the cost of the
WalkdownWithSkips. Thus the cost of Walkup and Walkdown is linear since the
number of faces is at most twice the number of edges in the graph. So, each edge can only
be traversed at most two times throughout the entire embedding loop. However, if the
input graph is not planar, the cost of Walkup and Walkdown cannot be bounded by
the faces formed by backedges since some of the backedges are unembedded in order to
preserve planarity. This means that some edges along the external faces of the graph are
traversed multiple times before new external faces are formed, which then includes these
edges in the internal faces. Such an edge is traversed at most k times where k denotes
the number of Kuratowski Subdivisions which contain this edge. If S is a collection of all
Kuratowski Subdivisions detected in the entire embedding process, and E(S) denotes the
size of subdivisions in S, then our algorithm runs in O(n+m+E(S)) time, which is output
sensitive, and linear w.r.t. E(S) and the graph size. J

3 Experimental Evaluation

In this section, we compare our PlanarizationByRegionSkip algorithm (RS) with the
baselines described in Section 1: HL [14], Vertex Addition (VA) [10], Vertex Removal (VR) [11],
and Vertex Subset Removal (VSR) [27]. All baselines were implemented by Morgan and Farr
[27], and are publicly available. Morgan and Farr [27] also proposed additional algorithms for
the MIPS problem. We have selected the subset of algorithms listed above for the following
reasons: 1. VR is best known for average degree d, and it achieved second best accuracy in
the original work [27]. 2. VSR, as a modified algorithm of VR, has the same approximate
ratio as VR, and achieved the best accuracy previously. 3. VA is best known for maximum
degree d̄. 4. HL has linear-time complexity and was the most efficient. Note that we do not
include the EPS algorithm as it is a post-processing enhancement [27]. This operation can be
applied to the planarization result of any of the algorithms explored in this work to improve
the approximation ratio further.

All programs are implemented in C, compiled using GCC 4.2.1, and are available online1.
All experiments are performed on a machine with two Intel Core i5 (2.6 GHz) and 8 GB RAM.

1 https://github.com/rmitbggroup/GraphPlanarization
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Table 1 Basic properties of the test collections.

Dataset nnn mmm Description

RT 1,379,917 1,921,660 The planar road network of Texas.
RD 1,088,092 1,541,898 The planar road network of Pennsylvania.
IN 26,475 53,581 Non-planar network of autonomous systems in the CAIDA project.
PG 10,680 24,316 A non-planar social network of the Pretty Good Privacy algorithm.
UG 4,941 6,594 The non-planar power grid network of the Western States in US.
MP 212 244 A non-planar network of protein-protein interactions from PDZBase.
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Figure 5 Experiments on RT5000 with edge insertion. The left figure shows the percentage
achieved by different algorithms (HL achieves 35% on average, and is not shown on the graph). The
right figure shows the running time of different algorithms (VA requires 24,888 ms on average, and is
not shown).

In this section, we use the term Percentage to describe how many vertices from the input
graph are retained in the planarization result. We conduct experiments on real-world graphs
collected from KONECT [20] and SNAP [22]. Table 1 summarizes the basic properties of
the datasets. For detailed information about the chosen datasets, please refer to KONECT2.

Experiments on graphs with small skewness. In this section, we conduct experiments on
two datasets: RT5000 which contains 5,000 vertices from RT, and RD100000 which contains
100,000 vertices from RD. We construct the graphs of increased skewness by randomly
inserting edges between existing vertices. We insert edges up to 0.1% of the input graph
size. Figure 5 shows the experimental results on RT5000. As we can see, even if the graph
is already planar (no edge insertions), only RS achieves a percentage of 100%. All other
methods remove vertices based on the requirements of their corresponding indirect indicators
of planarity. With incremental edge insertions, the performance of RS can vary significantly
since each inserted edge may introduce multiple Kuratowski subdivisions. This behavior also
indicates that the performance of RS is related to the direct indicator of planarity. On the
other hand, the performance of other methods do not change much since a small number of
edge insertions do not change the size of graph in any meaningful way. VSR only achieves
around 0.2% percentage more than VR on average. In term of efficiency, the running time
of RS grows linearly, which indicates that its performance is linearly associated with the
Kuratowski subdivisions detected in the graph since the graph sizes are similar. Figure 6

2 http://konect.uni-koblenz.de/
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Figure 6 Experiments on RD100000 with edge insertion excluding VA. The left figure shows the
percentage achieved by the algorithms (HL achieves 34% on average, and is not shown). The right
figure shows the running time achieved by all of the algorithms.

Table 2 Experimental results on almost planar graphs using the RD dataset.

Vertex Increase (%) Percentage (%) Time (s)
RS VSR VR HL RS VSR VR HL

10 99.99 88.29 88.13 34.28 0.07 17.61 4.51 0.06
20 99.99 89.13 88.97 34.31 0.11 67.03 16.64 0.12
30 99.99 89.28 89.14 34.33 0.20 148.58 34.63 0.18
40 99.99 89.95 89.75 34.35 0.28 272.61 62.98 0.22

shows the experiment results on RD100000, and produces similar observations. As the graph
size increases, the superiority of the efficiency of HL becomes more pronounced.

We also perform experiments on almost planar graphs which belong to a special class of
graphs with skewness equal to one [16]. Previous studies working on almost planar graphs
have taken a similar approach [16, 2, 4]. We construct almost planar graphs based on the
RD dataset. The number of vertices of those graphs range from 10% to 40% of RD. As we
can see in Table 2, RS always achieves a percentage of 99.99%, which corresponds with the
definition of almost planar graphs. The percentage achieved by other methods are all below
90%, and are sensitive to graph size, which reflects the over-reliance on the indirect indicators
of planarity used by these methods. The average running time of HL and RS are 0.15 s and
0.17 s respectively. Performance of RS varies little since Kuratowski subdivisions are rarely
introduced, and this is the main property which affects its performance. On average, RS is
150 times faster than VR and 640 times faster than VSR.

Experiments on non-planar graphs. In this section, we explore the performance on real-
world non-planar graphs: MP, UG, PG and IN. Based on each graph, we construct graphs
by removing a certain percentage of vertices from the original graphs in descending order
of the maximum degree. When the skewness of the input graph is not small, VR and VSR
tend to perform well since they iteratively remove a vertex with the maximum degree, and
this has the same effect as removing multiple Kuratowski subdivisions at once. On the other
hand, RS consistently achieves a local optima by removing the obstruction vertex shared by
Kuratowski subdivisions detected in each iteration. Due to limited space, we use only MP
and IN to demonstrate this effect. Additional results are in the Appendix.

Figure 7 shows the results on the dataset MP. RS always achieves the best percentage,
and reaches 100% when the vertex removal rate is 3.5%. Other methods cannot achieve
100% even though the graph is already planar. The performance of VR and VSR are almost
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Figure 7 Experiments on MP with vertex removal. The left figure shows the percentages achieved
by different algorithms (HL achieves only 25% on average and is not shown). The right figure shows
the Efficiency / Effectiveness relationship (the running time of HL is 356 ms on average and not
shown).
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Figure 8 Experiments on IN with vertex removal. The left figure shows the percentages achieved
by different algorithms (HL achieves 9% on average and is not shown). The right figure shows the
Efficiency / Effectiveness relationship (the running time of HL is 10 ms on average and not shown).

the same. VSR achieves at most 0.001% more than VR. Methods such as VA and VR exhibit
higher efficiency than HL, and VA is more efficient than RS in many cases. The reason is
that the graph size is so small that these methods converge very quickly. For example, the
reduced graph mentioned in Section 1 is so small that VR only has to remove a few vertices
from the graph. On this dataset, RS and VSR outperforms all other approaches if both
accuracy and efficiency are considered.

Figure 8 shows experimental results on IN. Initially, RS achieves 1.2% less than VSR and
0.3% less than VA. As the percentage of vertex removals increases, the gap between RS and
VSR is narrowed and RS outperforms all other methods when 2% of vertices are removed. A
higher percentage indicates a higher vertex removal rate, which also indicates a smaller graph
size. From the right figure, it is worth noting that there is a rapid change of efficiency of
VR and VSR when the vertex removal rate increases to 0.2%. The increased cost in VR and
VSR are caused by the iterative removal of maximum degree vertices. Since, we have already
removed vertices of the maximum degree before the algorithms are initialized, their costs
are therefore greatly reduced. Another behavior needs worth noting is that VA runs slower
even though the graph size is smaller when the vertex removal rate increases to 0.2%. The
performance of VA cannot be predicted based on the graph size since it depends on finding
paths between vertices, which can vary significantly based on the connectivity in the graph.
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Small changes in the overall structure of the graph can lead to large changes in efficiency.
In summary, RS outperforms all other methods on nearly planar graphs. When the graph
is not ‘close to’ planar, RS provides a good option when a tradeoff between efficiency and
accuracy needs to be made since RS is more efficient than all previous methods, and its
accuracy is still competitive.

4 Conclusion

In this paper, we studied the Maximum Induced Planar Subgraph (MIPS) problem which
aims to find the largest size of vertices which induce a planar subgraph. As in many
related problems, there is a trade-off between the quality of the approximation and the
efficiency of the algorithm. By observing that both planarity testing and planarization can
be accomplished simultaneously, we were able to produce a linear time algorithm for the
MIPS problem, and the new approach is competitive in both efficiency and effectiveness.
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A Experiments on non-planar graphs

Figure 9 and Figure 10 show experimental results for UG and PG respectively. As in the
experiments on MP and IN, when the vertex removal rate increases, the gaps between the
percentages achieved by VA and VSR are reduced, and VA outperforms the other methods
once the vertex removal rate is high. Even though the graph size of UG is smaller than IN,
VA runs around five times slower on UG than on IN. The efficiency of VA is remarkably
unstable on PG as the vertex removal rate increases.

http://snap.stanford.edu/data
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Figure 9 Vertex Removal experiments on the UG dataset. The left figure shows the percentage
achieved by different algorithms (HL achieves 28% on average and is not shown). The right figure
shows the Effectiveness / Efficiency trade-off (the running time of HL is 4 ms, and VA is 1,526 ms
on average – neither are shown to maintain the graph scale).
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Figure 10 Vertex removal experiments on the PG dataset. The left figure shows the percentage
achieved by the algorithms (HL achieves 12% on average and is not shown). The right figure shows
the Effectiveness / Efficiency trade-off (the running time of HL is 10 ms on average and not shown).
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Abstract
We consider the problem of computing a spherical crossing-free geodesic drawing of a planar
graph: this problem, as well as the closely related spherical parameterization problem, has at-
tracted a lot of attention in the last two decades both in theory and in practice, motivated
by a number of applications ranging from texture mapping to mesh remeshing and morphing.
Our main concern is to design and implement a linear time algorithm for the computation of
spherical drawings provided with theoretical guarantees. While not being aesthetically pleasing,
our method is extremely fast and can be used as initial placer for spherical iterative methods
and spring embedders. We provide experimental comparison with initial placers based on planar
Tutte parameterization. Finally we explore the use of spherical drawings as initial layouts for
(Euclidean) spring embedders: experimental evidence shows that this greatly helps to untangle
the layout and to reach better local minima.
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1 Introduction

In this work we consider the problem of computing in a fast and robust way a spherical layout
(crossing-free geodesic spherical drawing) of a genus 0 simple triangulation. Several solutions
have been developed in the computer graphics and geometry processing communities [1, 2, 3,
15, 18, 26, 29, 32] for this problem, and a few recent works [6, 7, 8, 11, 22] attempted to extend
standard tools from graph drawing to deal with graphs on surfaces. On one hand, force-
directed methods and iterative solvers are successful to obtain very nice layouts achieving
several desirable aesthetic criteria, such as uniform edge lengths, low angle distortion or
even the preservation of symmetries. Their main drawbacks rely on the lack of rigorous
theoretical guarantees and on their expensive runtime costs, since their implementation
requires linear solvers (for large sparse matrices) or sometimes non-linear optimization
methods, making these approaches slower and less robust than combinatorial graph drawing
tools. On the other hand, some well known combinatorial drawing tools (e.g. linear-time
grid embeddings [10, 27]) are provided with worst-case theoretical guarantees allowing us to
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compute in a fast and robust way a crossing-free layout with bounded resolution: just observe
that their practical performances allow processing several millions of vertices per second on
a standard (single-core) CPU. Unfortunately, the resulting layouts are rather unpleasing and
fail to achieve some basic aesthetic criteria that help readability (they often have long edges
and large clusters of tiny triangles).

Motivation. It is commonly assumed that starting from a good initial layout (called initial
guess in [26]) is crucial for both iterative methods and spring embedders (we refer to [23]
for a more comprehensive discussion). A nice initial configuration, closer to the final result,
should help to obtain nicer layouts: this was explored in [13] for the planar case. This could
be even more relevant for the spherical case, where an initial layout with many edge-crossings
can be difficult to unfold in order to obtain a valid spherical drawing. Moreover, the absence
of boundary constraints on the sphere prevents in some cases from eliminating all crossings
before the layouts collapse to a degenerate configuration. One of the motivations of this work
is to get benefit of a prior knowledge of the graph structure: if its combinatorics is known
in advance, then one can make use of fast graph drawing tools and compute a crossing-free
layout to be used as starting point for running more expensive force-directed tools.

Related works. A first approach for computing a spherical drawing consists in projecting
a (convex) polyhedral representation of the input graph on the unit sphere: one of the
first works [28] provided a constructive version of Steinitz theorem (unfortunately its time
complexity was quadratic). Another very simple approach consists in planarizing the graph
and to apply well known tools from mesh parameterizations (see Section 2.1 for more details):
the main drawback is that, after spherical projection, the layout does not always remain
crossing-free. Along another line of research, several works proposed generalizations of the
barycentric Tutte parameterization to the sphere. Unlike the planar case, where boundary
constraints guarantee the existence of crossing-free layouts, in the spherical case both the
theoretical analysis and the practical implementations are much more challenging. Several
works in the geometry processing community [3, 15, 26, 32] expressed the layout problem
as an energy minimization problem (with non-linear constraints) and proposed a variety of
iterative or optimization methods to solve the spherical Tutte equations: while achieving nice
results on the tested 3D meshes, these methods lack rigorous theoretical guarantees on the
quality of the layout in the worst case (for a discussion on the existence of non degenerate
solutions of the spherical Tutte equations we refer to [18]). A very recent work [1] proposed an
adaptation of the approach based on the Euclidean orbifold Tutte parameterization [2] to the
spherical case: the experimental results are very promising and come with some theoretical
guarantees (a couple of weak assumptions are still necessary to guarantee the validity of the
drawing). However the layout computation becomes much more expensive since it involves
solving non-linear problems, as reported in [1]. A few papers in the graph drawing domain
also considered the spherical drawing problem. Fowler and Kobourov proposed a framework
to adapt force-directed methods [16] to spherical geometry, and a few recent works [6, 7, 8, 11]
extend some combinatorial tools to produce planar layouts of non-planar graphs: some of
these tools can be combined to deal with the spherical case, as we will show in this work (as
far as we know, there are not existing implementations of these algorithms).

Our contributions. Our first main contribution is to design and implement a fast algorithm
for the computation of spherical drawings. We make use of several ingredients [6, 7, 11]
involving the well-known canonical orderings and exploit an adaptation of the shift paradigm
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Tutte 2D layout ofseparating cycle Spherical parameterization
the south hemisphere

Polar-to-cartesian mapping

inverse stereo projection

Projected Gauss-Seidel(x0, λ, ε)
r = 0; // iteration counter
do {

} while (‖xr − xr−1‖ > ε))

for(i = 1; i ≤ n; i++) {
s = (1− λ)xr(vi) + λ

∑
j wijx

r(vj)
xr+1(vi) =

s
‖s‖

}
r++;

Figure 1 (left) Two spherical parameterizations of the gourd graph obtained via Tutte’s planar
parameterization. (right) The pseudo-code of the Projected Gauss-Seidel method.

proposed by de Fraysseix, Pach and Pollack [10]. As illustrated by our experiments, our
procedure is extremely fast, with theoretical guarantees on both the runtime complexity and
the layout resolution.

While not being aesthetically pleasing (as in the planar case), our layouts can be used as
initial vertex placement for iterative parameterization methods [3, 26] or spherical spring
embedders [22]. Following the approach suggested by Fowler and Kobourov [13], we compare
our combinatorial algorithm with two standard initial placers used in previous existing
works [26, 32] relying on Tutte planar parameterizations: our experimental evaluations
involve runtime performances and statistics concerning edge lengths.

As an application, we show in Section 5 how spherical drawings can be used as initial
layouts for (Euclidean) spring embedders: as illustrated by our tests, starting from a spherical
drawing greatly helps to untangle the layout and to escape from bad local minima.

2 Preliminaries

Planar graphs and spherical drawings. In this work we deal with planar maps (graphs
endowed with a combinatorial planar embedding), and we consider in particular planar
triangulations which are simple genus 0 maps where all faces are triangles (they correspond
to the combinatorics underlying genus 0 3D triangle meshes). Given a graph G = (V,E) we
denote by n = |V | (resp. by |F (G)|) the number of its vertices (resp. faces) and by N(vi)
the set of neighbors of vertex vi; x(vi) will denote the Euclidean coordinates of vertex vi.

The notion of planar drawings can be naturally generalized to the spherical case: the
main difference is that edges are mapped to geodesic arcs on the unit sphere S2, which are
minor arcs of great circles (obtained as intersection of S2 with a hyperplane passing through
the origin). A geodesic drawing of a map should preserve the cyclic order of neighbors around
each vertex (such an embedding is unique for triangulations, up to reflexions of the sphere).
As in the planar case, we would aim to obtain crossing-free geodesic drawings, where geodesic
arcs do not intersect (except at their extremities). In the rest of this work we will make
use of the term spherical drawings when referring to drawings satisfying the requirements
above. Sometimes, the weaker notion of spherical parameterization (an homeomorphism
between an input mesh and S2) is considered for dealing with applications in the geometry
processing domain (such as mesh morphing): while the bijectivity between the mesh and S2 is
guaranteed, there are no guarantees that the triangle faces are mapped to spherical triangles
with no overlaps (obviously a spherical drawing leads to a spherical parameterization).

2.1 Initial Layouts
Part of this work will be devoted to comparing our drawing algorithm (Section 3) to two
spherical parameterization methods involving Tutte planar parameterization: both methods
have been used as initial placers for more sophisticated iterative spherical layout algorithms.
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Inverse Stereo Projection layout (ISP). For the first initial placer, we follow the approach
suggested in [26] (see Fig. 1). The faces of the input graph G are partitioned into two
components homeomorphic to a disk: this is achieved by computing a vertex separator
defining a simple cycle of small size (having O(

√
n) vertices) whose removal produces a

balanced partition (GS , GN ) of the faces of G. The two graphs GS and GN are then drawn
in the plane using Tutte’s barycentric method: boundary vertices lying on the separator are
mapped on the unit disk. Combining a Moebius inversion with the inverse of a stereographic
projection we obtain a spherical parameterization of the input graph: while preserving some
of the aesthetic appeal of Tutte’s planar drawings, this map is bijective but cannot produce in
general a crossing-free spherical drawing (straight-line segments in the plane are not mapped
to geodesics by inverse stereographic projection). In our experiments we adopt a growing-
region heuristic to compute a simple separating cycle: while not having theoretical guarantees,
our approach is simple to implement and very fast, achieving balanced partitions in practice
(separators are of size roughly Θ(

√
n) and the balance ratio % = min(|F (GS)|,|F (GN )|)

|F (G)| is always
between 0.39 and 0.49 for the tested data)1.

Polar-to-Cartesian layout (PC). The approach adopted in [32] consists in planarizing the
graph by cutting the edges along a simple path from a south pole vS to a north pole vN . A
planar rectangular layout is computed by applying Tutte parameterization with respect to the
azimuthal angle θ ∈ (0, 2π) and to the polar angle φ ∈ [0, π]: the spherical layout, obtained
by the polar-to-cartesian projection, is bijective but not guaranteed to be crossing-free.

2.2 Spherical drawings and parameterizations
The spherical layouts described above can be used as initial guess for more sophisticated
iterative schemes and force-directed methods for computing spherical drawings. For the sake
of completeness we provide an overview of the algorithms that will be tested in Section 4.

Iterative relaxation: projected Gauss-Seidel. The first method can be viewed as an ad-
aptation of the iterative scheme solving Tutte equations (see Fig. 1). This scheme consists in
moving points on the sphere in tangential direction in order to minimize the spring energy

E = 1
2

n∑
i=1

∑
j∈N(i)

wij‖x(vi)− x(vj)‖2 (1)

with the only constraint ‖x(vi)‖ = 1 for i = 1 . . . n (in this work we consider uniform weights
wij , as in Tutte’s work). As opposed to the planar case, there are no boundary constraints on
the sphere, which makes the resulting layouts collapse in many cases to degenerate solutions.
As observed in [18, 26] this method does not always converge to a valid spherical drawing,
and its practical performance strongly depends on the geometry of the starting initial layout
x0. While not having theoretical guarantees, this method is quite fast allowing to quickly
decrease the residual error: it thus can be used in a first phase and combined with more
stable iterative schemes leading in practice to better convergence results [26] (still lacking of
rigorous theoretical guarantees).

1 The computation of small cycle separators for planar triangulations is a very challenging task. This
work does not focus on this problem: we refer to recent results [14] providing the first practical
implementations with theoretical guarantees.
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G

3 disjoint paths 3 rivers

M

GC
0

GC
1

GC
2

Figure 2 Computation of a spherical drawing based on a prism layout of the gourd graph (326
vertices). Three vertex-disjoint chord-free paths lead to the partition of the faces of G into three
regions which are each separated by one river (green faces). Our variant of the FPP algorithm
allows to produce three rectangular layouts, where boundary vertex locations do match on identified
(horizontal) sides. One can thus glue the planar layouts to obtain a 3D prism: its central projection
on the sphere produces a spherical drawing. Edge colors (blue, red and black) are assigned during
the incremental computation of a canonical labeling [11], according to the Schnyder wood local rule.

Alexa’s method. In order to avoid the collapse of the layout, without using artificial
constraints, Alexa [3] modified the iterative relaxation above by penalizing long edges (tending
to move vertices in a same hemisphere). More precisely, the vertex vi is moved according to
a displacement 4i = c 1

deg(vi)
∑

j(x(vi)− x(vj))‖x(vi)− x(vj)‖ and then reprojected on the
sphere. The parameter c regulates the step length, and can be chosen to be proportional to
the inverse of the longest edge incident to a vertex, improving the convergence speed.

(Spherical) Spring Embedders. While spring embedders are originally designed to produce
2D or 3D layouts, one can adapt them to non euclidean geometries. We have implemented
the standard spring-electrical model introduced in [16] (referred to as FR), and the spherical
version following the framework described by Kobourov and Wampler [22] (called Spherical
FR). As in [16] we compute attractive forces (between adjacent vertices) and repulsive forces
(for any pair of vertices) acting on vertex u, defined by:

Fa(u) =
∑

(u,v)∈E

‖x(u)− x(v)‖
K

(x(u)− x(v)), Fr(u) =
∑

v∈V,v 6=u

−CK2(x(v)− x(u))
‖x(u)− x(v)‖2

where the values C (the strength of the forces) and K (the optimal distance) are scale
parameters. In the spherical case, we shift the repulsive forces by a constant term, making
the force acting on pairs of antipodal vertices zero.

3 Fast spherical embedding with theoretical guarantees: SFPP layout

We now provide an overview of our algorithm for computing a spherical drawing of a planar
triangulation G in linear time, called SFPP layout (see Fig. 2 for an illustration). We make
use of an adaptation of the shift method used in the incremental algorithm of de Fraysseix,
Pach and Pollack [10] (referred to as FPP layout): our solution relies on the combination of
several ideas developed in [11, 6, 7]. A more detailed presentation can be found in [5].

Mesh segmentation. Assuming that there are two non-adjacent faces fN and fS , one can
find 3 disjoint and chord-free paths P0, P1 and P2 from fS to fN (planar triangulations are
3-connected). Denote by uN

0 , uN
1 and uN

2 the three vertices of fN on P0, P1 and P2 (define
similarly the three neighbors uS

0 , u
S
1 , u

S
2 of the face fS). We first compute a partition of the
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faces of G into 3 regions, cutting G along the paths above and removing fS and fN . We
thus have three quasi-triangulations GC

0 , GC
1 and GC

2 that are planar maps whose inner faces
are triangles, and where the edges on the outer boundary are partitioned into four sides.
The first pair of opposite sides only consist of an edge (drawn as vertical segment in Fig. 2),
while the remaining pair of opposite sides contains vertices lying on Pi and Pi+1 respectively
(indices being modulo 3): according to these definitions, GC

i and GC
i+1 share the vertices

lying on Pi+1 (drawn as a path of horizontal segments in Fig. 2).

Grid drawing of rectangular frames. We apply the algorithm described in [11] to obtain
three rectangular layouts of GC

0 , GC
1 and GC

2 : this algorithm first separates each GC
i into two

sub-graphs by removing a so-called river : an outer-planar graph consisting of a face-connected
set of triangles which corresponds to a simple path in the dual graph, starting at fS and
going toward fN . The two-subgraphs are then processed making use of the canonical labeling
defined in [11]: the resulting layouts are stretched and then merged with the set of edges in
the river, in order to fit into a rectangular frame. Just observe that in our case a pair of
opposite sides only consists of two edges, which leads to an algorithm considerably simpler
to implement in practice. Finally, we apply the two-phases adaptation of the shift algorithm
described in [6] to obtain a planar grid drawing of each map GC

i , such that the positions
of vertices on the path Pi in GC

i do match the positions of corresponding vertices on Pi in
GC

i+1. The grid size of drawing of GC
i is O(n)×O(n) (using the fact that the two opposite

sides (uN
i , . . . , u

S
i ) and (uN

i+1, . . . , u
S
i+1) of GC

i are at distance 1).

Spherical layout. To conclude, we glue together the drawings of GC
0 , GC

1 and GC
2 computed

above in order to obtain a drawing of G on a triangular prism. By a translation within the
3D ambient space we can make the origin coincides with the center of mass of the prism
(upon seeing it as a solid polyhedron). Then a central projection from the origin maps each
vertex onM to a point on the sphere: each edge (u, v) is mapped to a geodesic arc, obtained
by intersecting the sphere with the plane passing trough the origin and the segment relying
u and v on the prism (crossings are forbidden since the map is bijective).

I Theorem 1. Let G be a planar triangulation of size n, having two non-adjacent faces fS

and fN . Then one can compute in O(n) time a spherical drawing of G, where edges are
drawn as (non-crossing) geodesic arcs of length Ω( 1

n ).

Some heuristics. We use as last initial placer our combinatorial algorithm of Section 3.
For the computation of the three disjoint paths P0, P1 and P2, we adopt again a heuristic
based on a growing-region approach: while not having theoretical guarantees on the quality
of the partition and the length of the paths, our results suggest that well balanced partitions
are achieved for most tested graphs. A crucial point to obtain a nice layout resides in the
choice of the canonical labeling (its computation is performed with an incremental approach
based on vertex removal). A bad canonical labeling could lead to unpleasant configurations,
where a large number of vertices on the boundaries of the bottom and top sub-regions of
each graph Gi are drawn along the same direction: as side effects, a few triangles use a lot of
area, and the set of interior chordal edges in the river can be highly stretched, especially
those close to the south and north poles. To partially address this problem, we design a
few heuristics during the computation of the canonical labeling, in order to obtain more
balanced layouts. Firstly, we delay the conquest of the vertices which are close to the south
and north poles: this way these extremal vertices are assigned low labels (in the canonical
labeling), leading to smaller and thicker triangles close to the poles. Moreover the selection
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of the vertices is done so as to keep the height of the triangle caps more balanced in the final
layout. Finally, we adjust the horizontal stretch of the edges, to get more equally spaced
vertices on the paths P0, P1 and P2.

4 Experimental results and comparison

Experimental settings and datasets. In order to obtain a fair comparison of runtime
performances, we have written pure Java implementations of all algorithms and drawing
methods presented in this work2. Our tests involve two dozen of graphs, including the
1-skeleton of 3D models (made available by the AIM@SHAPE repository) as well as random
planar triangulations obtained with an uniform random sampler [25]. In our tests we take as
an input the combinatorial structure of a planar map encoded in OFF format: nevertheless
we do not make any assumption on the geometric realization of the input triangulation in 2D
or 3D space. Observe that the fact of knowing the combinatorial embedding of a graph G
(the set of its faces) is a weak assumption, since such an embedding is essentially unique for
planar triangulations and it can be retrieved from the graph connectivity in linear time [24].
We run our experiments on a HP EliteBook, equipped with an Intel Core i7 2.60GHz (with
Ubuntu 16.04, Java 1.8 64-bit, using a single core, and 4GB of RAM for the JVM).

4.1 Quantitative evaluation of aesthetic criteria
In order to obtain a quantitative evaluation of the layout quality we compute the spring
energy E defined by Eq. 1 and two metrics measuring the edge lengths and the triangle areas.
As suggested in [13] we compute the average percent deviation of edge lengths, according to

el := 1 −
(

1
|E|

∑
e∈E

|lg(e)− lavg|
max(lavg, lmax − lavg)

)
where lg(e) denotes the geodesic distance of the edge e, and lavg (resp. lmax) is the average
geodesic edge length (resp. maximal geodesic edge length) in the layout. In a similar manner
we compute the average percent deviation of triangle areas, denoted by a. The metrics el and
a take values in [0 . . . 1], and higher values indicate more uniform edge lengths and triangle
areas 3.

4.2 Timing performances: comparison
The runtime performances reported in Table 1 clearly show that our SFPP algorithm has an
asymptotic linear-time behavior and in practice is much faster than ISP and PC. For instance
the ISP layout adopted in [26] requires to solve large linear systems: among the tested Java
libraries (MTJ, Colt, PColt, Jama), we found that the linear solvers of the MTJ have the best
runtime performances for the solution of large sparse linear systems (in our tests we run
the conjugate gradient solver, setting a numeric tolerance of 10−6). Observe that a slightly
better performance can be achieved with more sophisticated schemes or tools (e.g. Matlab
solvers) as done in [2, 26]. Nevertheless the timing cost still remains much larger than ours:
as reported in [2] the orbifold parameterization of the dragon graph requires 19 seconds (for
solving the linear systems, on a 3.5GHz Intel i7 CPU).

2 Datasets, source codes and runnable Java applications are available http://www.lix.polytechnique.
fr/~amturing/software.html

3 Observe that one common metric considered in the geometric processing community is the (angle)
distortion: in our case this metric cannot be taken into account since our input is a combinatorial
structure (without any geometric embedding).
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Table 1 This table reports the runtime performance of all steps involved in the computation
of the SFPP layout obtained with the algorithm of Section 3. The overall cost (red chart) includes
the preprocessing phase (computing the three rivers and the canonical labeling) and the layout
computation (running the two-phases shift algorithm, constructing and projecting the prism). The
last two columns report the timing cost for solving the linear systems for the ISP and PC layouts
(see blue/green charts), using the MTJ conjugate gradient solver. All results are expressed in seconds.

preprocessing Layout computation PC ISP
mesh vertices faces rivers canonical shift prism linear linear

comput. labeling algorithm projection solver solver
Egea 8268 16K 0.015 0.017 0.005 0.017 0.24 0.16

Gargoyle 10002 20K 0.016 0.018 0.007 0.025 0.26 0.22
Bunny 26002 52K 0.017 0.031 0.019 0.036 1.14 0.75

Iphigenia 49922 99K 0.023 0.049 0.025 0.046 2.38 1.44
Camille’s hand 195557 391K 0.076 0.121 0.073 0.125 17.02 7.92

Eros 476596 950K 0.162 0.260 0.132 0.255 50.54 29.99
Chinese dragon 655980 1.3M 0.174 0.314 0.157 0.433 89.64 53.12

vertices
200k 400k 600k
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4.3 Evaluation of the layout quality: interpretation and comparisons
All our tests confirm that starting with random vertex locations is almost always a bad choice,
since iterative methods lead in most cases to a collapse before reaching a valid spherical
drawing (spherical spring embedders do not have this problem, but cannot always eliminate
edge crossings, see Fig. 4). Our experiments (see Fig. 3 and 4) also confirm a well known fact:
Alexa’s method is more robust compared to the projected Gauss-Seidel relaxation, leading
almost always to a valid configuration without collapsing (more tests and statistics can be
found in the longer version [5]).

Layout of mesh-like graphs. For the case of mesh-like structures, the ISP and PC methods
always provide nicer initial layouts (Fig. 3 show the layout of the dog mesh). The drawings
are rather pleasing, capturing the structure of the input graph and being not too far from the
final spherical Tutte layout: we mention that the results obtained in our experiments strongly
depend on the quality of the separator cycle (or cutting path). Our SFPP initial layout clearly
fails to achieve similar aesthetic criteria: nevertheless, even not being pleasing in the first few
iterations, it is possible to reach very often a valid final configuration (crossing-free) without
collapsing, and whose quality is very close, in terms of energy and edge lengths and area
statistics, to the ones obtained starting from the ISP or PC layouts (this is illustrated by the
charts in Fig. 3). As we observed for many of the tested graphs, when starting from the SFPP
layout the number of iterations required to reach a spherical drawing with good aesthetics is
larger than starting from an ISP or PC layout. But the convergence speed can be slightly
better in a few cases: Fig. 3 shows a valid spherical layout computed after 1058 iterations of
the Gauss-Seidel relaxation (1190 iterations are required when starting from the ISP layout).
We also observed that when starting from a PC layout it is sometimes impossible to eliminate
all edge-crossings before collapsing (with Gauss-Seidel iteration): the layouts collapse more
seldom in the case of ISP and SFPP, as the vertices are likely to be distributed in a more
balanced way on the sphere.

The charts in Fig. 3 show that our SFPP has higher values of the edge lengths and
area statistics in the first iterations: this reflects the fact that our layout has a polynomial
resolution and thus triangles have a bounded aspect ratio and side lengths. When applying
methods based on planar parameterization (ISP or PC) there could be a large number of tiny
triangles clustered in some small regions (the size of coordinates could be exponentially small
as n grows).
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Figure 3 These pictures illustrate the use of different initial placers as starting layouts for two
iterative schemes on the dog graph (1480 vertices). For each initial layout, we first run 50 iterations
of the projected Gauss-Seidel and Alexa method, and then we run the two methods until a valid
spherical drawing (crossing free) is reach. The charts below show the energy, area and edge length
statistics obtained running 1600 iterations of the projected Gauss-Seidel and Alexa methods.

Layout of random triangulations. When drawing random triangulations the behavior is
somehow different: the performances obtained starting from our SFPP layout are often better
than the ones achieved using the ISP layout (and similar to the ones of the PC layout). As
illustrated by the pictures in Fig. 4 and 6, Alexa’s method is able to reach a non-crossing
configuration requiring less iterations when using our SFPP layout instead of ISP layout: this
is observed in most of our experiments, and clearly confirmed by the plots of the energy and
statistics el and a that converge faster to the values of the final layout (see charts in Fig. 4).

5 Spherical preprocessing for Euclidean spring embedders

In this section we investigate the use of spherical drawings as initial placers for spring
embedders in 3D space. The fact of recovering the original topological shape of the graph, at
least in the case of graphs that have a clear underlying geometric structure, is an important
and well known ability of spring embedders. This occurs for the case of regular graphs used
in Geometry Processing (the pictures in Fig. 5 show a few force-directed layouts of the cow
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Figure 4 Spherical layouts of a random triangulation with 1K faces. While the projected Gauss-
Seidel relaxation always collapses, Alexa method is more robust, but also fails when starting from a
random initial layout. When using the ISP, PC or our SFPP layouts Alexa method converges toward
a crossing-free layout: starting from the SFPP layout allows getting the same aesthetic criteria as the
ISP or the PC layouts (with even less iterations). Spring embedders [13] (Spherical FR) prevent
from reaching a degenerate configuration, but have some difficulties to unfold the layout. The charts
on the right show the plot of the energy, edge lengths and areas statistics computed when running
800 iterations of Alexa method (we compute these statistics every 10 iterations).

graph), and also for many mesh-like complex networks involved in physical and real-world
applications (such as the networks made available by the Sparse Matrix Collection [9]).
In the case of uniformly random embedded graphs (called maps) of a large size n on a fixed
surface S, the spring embedding algorithms (applied in the 3D ambient space) yield graph
layouts that greatly capture the topological and structural features of the map (the genus of
the surface is visible, the "central charge" of the model is reflected by the presence of spikes,
etc.), a great variety of such representations can be seen at the very nice simulation gallery of
Jérémie Bettinelli (http://www.normalesup.org/~bettinel/simul.html). While common
software and libraries (e.g. GraphViz [12], Gephi [4], GraphStream) for graph visualization
provide implementations of many force-directed models, as far as we know they never try to
exploit the strong combinatorial structure of surface-like graphs.

Discussion of experimental results. Our main goal is to show empirically that starting
from a nice initial shape that captures the topological structure of the input graph greatly
improves the convergence speed and layout quality.

In our first experiments (see Figures 5 and 6) we run our 3D implementation of the
spring electrical model FR [16], where we make use of exact force computation and we adopt
the cooling system proposed in [31] (with repulsive strength C = 0.1). We also perform
some tests with the Gephi implementation of the Yifan Hu layout algorithm [20], which is a

http://www.normalesup.org/~bettinel/simul.html
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Figure 5 These pictures illustrate the use of spherical drawings as initial placers for force-
directed methods: we compute the layouts of the cow graph (2904 vertices, 5804 faces) using our 3D
implementation of the FR spring embedder [16]. In the charts on the right we plot the number of
colliding 3D triangles, over 100 iterations of the algorithm.
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Figure 6 These pictures illustrate the use of spherical drawings as initial placers for the 3D
version of the FR spring embedder [16], for a random planar triangulation with 5K faces.

more sophisticated spring-embedder with fast approximate calculation of repulsive forces
(see the layouts of Fig. 7). In order to quantify the layout quality, we evaluate the number of
self-intersections of the resulting 3D shape during the iterative computation process4. To
be more precise, we plot (over the first 100 iterations) the number of triangle faces that
have a collision with a non adjacent triangle in 3D space. The charts of Fig. 5 and 6 clearly
confirm the visual intuition suggested by pictures: when starting from a good initial shape
the force-directed layouts seem to evolve according to an inflating process, which leads to
better and faster untangle the graph layout. This phenomenon is observed in all our tests
(on several mesh-like graphs and synthetic data): experimental evidence shows that an
initial spherical drawing is a good starting point helping the spring embedder to reach nicer
layout aesthetics and also to improve the runtime performances. Finally observe that from
the computational point of view the computation of a spherical drawing has a negligible
cost: iterative schemes (e.g. Alexa method) require O(n) time per iteration, which must

4 We compute the intersections between all pairs of non adjacent triangles running a brute-force algorithm:
the runtimes reported in Fig. 5 and 6 do not count the cost of computing the triangle collisions.
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Initial layout: random locations

t = 1 sec t = 2 sec t = 5 sec t = 10 sec

t = 1 sec t = 2 sec t = 5 sec t = 10 sec

Initial layout: SFPP+Alexa

t = 2 sec t = 5 sec t = 10 sec

t = 10 sec

t = 1 sec

Initial layout: ISP

Initial layout: random locations

t = 1 sec t = 2 sec t = 5 sec

Figure 7 The spherical drawings of the graphs in Fig. 5 and 6 are used as initial placers for the
Yifan Hu algorithm [20]: we test the implementation provided by Gephi (after rescaling the layout
by a factor 1000, we set an optimal distance of 10.0 and a parameter ϑ = 2.0).

be compared to the complexity cost of force-directed methods, requiring between O(n2) or
O(n logn) time per iteration (depending on the repulsive force calculation scheme). This is
also confirmed in practice, according to the timing costs reported in Fig 5, 6 and 7.

6 Concluding remarks and future work

Our SFPP method is guaranteed to compute a crossing-free layout: unfortunately edge
crossings can appear during the beautification process, when running iterative algorithms. It
could be interesting to adapt to the spherical case existing methods [30] (which are designed
for the Euclidean case) whose goal is to dissuade edge-crossings: one could obtain a sequence
of layouts that converge to the final spherical drawing while always preserving the map. The
results of Section 5 would suggest that starting from an initial nice layout could lead to faster
algorithms and better results for mesh-like structures. It could be interesting to investigate
whether this phenomenon arises for other classes of graphs, such as quadrangulated or
3-connected planar graphs, or non planar (e.g. toroidal) graphs, for which fast drawing
methods also exist [6, 17]. We also plan to perform further tests in order to compare the 3D
layouts of Section 5 to the results of more sophisticated multi-scale algorithms [21, 19] that
are able to draw large graphs without requiring an initial vertex placement.
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Abstract

VIPAFLEET is a framework to develop models and algorithms for managing a fleet of Individual
Public Autonomous Vehicles (VIPA). We consider a homogeneous fleet of such vehicles distributed
at specified stations in a closed site to supply internal transportation, where the vehicles can be
used in different modes of circulation (tram mode, elevator mode, taxi mode). We treat in this
paper a variant of the Online Pickup-and-Delivery Problem related to the taxi mode by means of
multicommodity coupled flows in a time-expanded network and propose a corresponding integer
linear programming formulation. This enables us to compute optimal offline solutions. However,
to apply the well-known meta-strategy Replan to the online situation by solving a sequence
of offline subproblems, the computation times turned out to be too long, so that we devise a
heuristic approach h-Replan based on the flow formulation. Finally, we evaluate the performance
of h-Replan in comparison with the optimal offline solution, both in terms of competitive analysis
and computational experiments, showing that h-Replan computes reasonable solutions, so that
it suits for the online situation.
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25:2 Fleet Management for Autonomous Vehicles

1 Introduction

The project VIPAFLEET aims at contributing to sustainable mobility through the de-
velopment of innovative urban mobility solutions by means of fleets of Individual Public
Autonomous Vehicles (VIPA) allowing passenger transport in closed sites like industrial areas,
medical complexes, campuses, or airports. This innovative project involves different partners
in order to ensure the reliability of the transportation system [3]. A VIPA is an autonomous
vehicle that does not require a driver nor an infrastructure to operate. It is developed by
Easymile and Ligier [1, 2] thanks to innovative computer vision guidance technologies [21, 22],
whereas the fleet management aspect is studied in [9].

A fleet of VIPAs shall be used in a closed site to transport employees, customers and
visitors e.g. between parkings, buildings and from or to a restaurant at lunch breaks. To
supply internal transportation, a VIPA can operate in three different transportation modes:

Tram mode: VIPAs continuously run on predefined cycles in a predefined direction and
stop at a station if requested to let users enter or leave.
Elevator mode: VIPAs run on predefined lines and move to stations to let users enter or
leave, thereby changing their driving direction if needed.
Taxi mode: VIPAs run on a connected network to serve transport requests (from any
start to any destination station within given time windows).

This leads to a Pickup-and-Delivery Problem (PDP) in a metric space encoding the considered
closed site, where a fleet of servers shall transport goods or persons from a certain origin to a
certain destination. If persons have to be transported, we usually speak about a Dial-a-Ride
Problem. Many variants are studied in the literature, including the Dial-a-Ride Problem
with time windows [14, 15]. In our case, we are confronted with an online situation, where
transport requests are released over time [5, 8, 13]. Problems of this type are known to
be NP-hard, see e.g. [20], which also applies to the problem variant considered here, see
Section 2.

In [11], we focus on the economic aspect of the problem where the objective is to minimize
costs; several algorithms are presented and evaluated w.r.t. minimizing the total tour length
for tram and elevator mode.

The taxi mode is the most advanced circulation mode for VIPAs in the dynamic fleet
management system. The transport requests are released over time (from any start to any
destination station within a network G) and need to be served within a specified time window.
Due to the time windows, it is not always possible to serve all transport requests (e.g., if more
requests are specified for a same time window than VIPAs are available in the fleet). Hence,
the studied PDP is an admission problem as it includes firstly to accept/reject requests and
secondly to generate tours for the VIPAs to serve the accepted requests. We are confronted
with both the quality-of-service aspect of the problem (with the goal to accept as many
requests as possible) and the economic aspect (with the goal to serve the accepted requests
at minimum costs, expressed in terms of minimizing the total tour length of the constructed
tours), see Section 2.

In [10, 12], a variant of the PDP is studied where the tours are supposed to be nonpree-
mptive and at each time, (at most) one customer can be transported by a VIPA (note: one
customer can be a group of people less than the capacity of the VIPA), and a VIPA cannot
serve other requests until the current one is delivered. This leads to a load nonpreemptive
DARP with time windows and server capacity 1, where the goal is to accept as many requests
as possible and to find tours of minimal length to serve all accepted requests.
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In order to solve this problem, three approaches are considered in [12]:

a simple Earliest Pickup Heuristic that incrementally constructs tours by always choosing
from the subsequence σ(t′) of currently waiting requests this request with smallest possible
start time and appending it to the tour with shortest distance from its current end to the
requested origin;

the two well-known meta-strategies Replan and Ignore (which have been analysed in
[4, 6, 7] for the Online Traveling Salesman Problem and can be applied to any online
problem in time-stamp model 1, see e.g. [4, 6, 18, 23]) that determine which requests from
σ(t′) can be accepted, and compute optimal (partial) tours to serve them, where Replan
performs these tours until new requests are released, but Ignore completely performs
these tours before it checks for newly released requests.

It turned out that Ignore is not suitable for the studied admission problem since the decision
to accept/reject a request may be taken late, even after the time window to serve the
request which does not comply to the quality-of-service aspect of the fleet management.
Computational results from [12] show that Replan beats the Earliest Pickup Heuristic in
terms of the number of accepted requests, but can only accept 64% of requests compared to
the optimal offline solution.

This motivates to study another variant of the PDP related to the taxi mode without the
requirement of constructing nonpreemptive tours and transporting, at each time, at most one
customer in a VIPA on a direct way along a shortest path from its origin to its destination
in the network G.

This problem variant is subject of the present paper. It leads to a more complex model
and also computing solutions is more involved, but the expectation is to achieve a higher rate
of accepted requests and, therefore, a better quality-of-service level for the fleet management.

It is natural to interprete the studied PDP by means of flows in a time-expanded version
GT of the original network G as, e.g., proposed by [17, 16, 19] for other variants of PDPs. In
Section 3, we formulate the offline version of the problem as multicommodity coupled flows
in the time-expanded network GT , using one commodity per request coupled to the flow of
VIPAs.

In order to solve the online version of the problem, we apply in Section 4 a Replan-like
strategy that solves the online problem by computing a sequence of offline subproblems on
certain subsequences of requests. (Recall that Ignore turned out to be not suitable for the
studied admission problem, hence we focus here on Replan only.)

Computational experiments revealed that computing optimal offline solutions for the
subproblems requires already long computation times, too long and thus not suitable for
the online situation. However, we observed that only a small percentage of arcs in the
time-expanded network GT is used in the optimal solutions, so the idea is to reduce GT to a
network containing only arcs which are taken in the optimal solution with high probability,
and then to compute the multicommodity coupled flows in the reduced network only. This
leads to the flow-based heuristic h-Replan for the offline version of the studied problem.

1 There are two common online paradigms, the sequence model and the time-stamp model, which differ in
the way how information becomes available to the online algorithm: in the sequence model, the requests
are given one by one and need to be served immediately and in this order, whereas in the time-stamp
model, the requests become known over time at their release dates which allows the online algorithm to
postpone and revoke decisions.
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In Section 5, we evaluate the performance of h-Replan in comparison with the optimal
offline solution both in theory (with the help of competitive analysis) and in practice (with
the help of some computational results). We close with some concluding remarks on our
approaches.

The results presented here were studied in [9].

2 Problem description and model

As proposed in [9, 11], we embed the VIPAFLEET management problem in the framework
of a metric task system.

We encode the closed site where the VIPAFLEET system is running as a metric space
M = (V, d) induced by a connected network G = (V,E), where the nodes correspond to
stations, edges to their physical links in the closed site, and the distance d between two nodes
vi, vj ∈ V to the length of a shortest path from vi to vj in G. In V , we have a distinguished
origin vo ∈ V , the depot of the system, where all VIPAs are parked when the system is not
running, i.e., outside a certain time horizon [0, T ].

An operator manages a fleet of k VIPAs each with a capacity for Cap passengers. The
fleet management shall allow the operator to decide when and how to move the VIPAs in
the network, and to assign requests to VIPAs. Hereby, any request rj is defined as a 6-tuple
rj = (tj , xj , yj , pj , qj , zj) where

tj ∈ [0, T ] is the release date (i.e., the time when rj becomes known),
xj ∈ V is the origin node,
yj ∈ V is the destination node,
pj ∈ [0, T ] is the earliest possible start time,
qj ∈ [0, T ] is the latest possible arrival time,
zj specifies the number of passengers,

where tj , pj , and qj are certain discrete time points within [0, T ] that satisfy tj ≤ pj ,
pj + d(xj , yj) ≤ qj and where zj ≤ Cap needs to hold2. The operator monitors the evolution
of the requests over time and

decides which requests can be accepted (recall that some requests may have to be rejected
if, e.g., more requests are specified for a same time window than VIPAs are available in
the fleet), and
creates tasks to serve accepted requests by moving the VIPAs to go to some station and
to pickup, transport and deliver users.

More precisely, a task is defined by τj = (tj , xj , tpickj , yj , t
drop
j , zj). It is created by the

operator in order to serve request rj = (tj , xj , yj , pj , qj , zj) and is sent at time tj to a VIPA
indicating that zj passengers have to be picked up at station xj at time tpickj and delivered
at station yj at time tdropj , where pj ≤ tpickj ≤ qj − d(xj , yj) and pj + d(xj , yj) ≤ tdropj ≤ qj
must hold.

In order to fulfill the tasks, the operator creates tours for the VIPAs. Each tour consists
of moves from one station in G to another station in G and of actions to pickup and deliver
passengers. Hereby, we require only that each move carries at most Cap many passengers.
That means, we allow

to serve several requests simultaneously by the same VIPA (as long as the capacity is
respected),

2 Note that a request rj with zj > Cap can be replaced by d zj

Cap e many requests r′
j respecting the

constraint z′
j ≤ Cap.
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detours to stations not lying on a shortest path from the origin of one request to its
destination in order to pickup or deliver passengers from other requests,
vehicle preemption (i.e. that passengers have to change VIPAs on the way to their
destination).

A transportation schedule for (M, T ) consists of a collection of tours {Γ1, . . . ,Γk} and is
feasible when

each of the k VIPAs has exactly one tour,
each accepted request rj is served within time window [pj , qj ],
each tour starts and ends in the depot.

Our goal is to construct transportation schedules for the VIPAs operating in taxi mode
respecting all the above constraints:

I Problem 1 (Taxi Mode Problem (M,σ, p, T, k,Cap) (TMP)). Given a metric space M =
(V, d) induced by a connected network G = (V,E), a sequence of requests σ, profits p for
accepted requests, a time horizon [0, T ] and k VIPAs of capacity Cap, determine a maximum
subset σA of accepted requests and find a feasible transportation schedule {Γ1, . . . ,Γk} of
minimum total tour length to serve all requests in σA.

Hereby, choosing sufficiently high profits and sufficiently small costs guarantees that
indeed as many requests as possible are accepted, while small but positive costs ensure that
unnecessary movements of VIPAs are avoided.

In order to solve the Offline TMP (Section 3), we propose to construct a time-expanded
network GT and compute multicommodity coupled flows in GT .

In order to solve the Online TMP (Section 4), we propose the strategy h-Replan that
considers at each moment in time t′ the subsequence σ(t′) of currently waiting requests (i.e.,
already released but not yet served requests), determines which requests from σ(t′) can be
accepted, and computes (partial) tours to serve them by multicommodity coupled flows in
the reduced network related to σ(t′), performs these tours until new requests are released
and recomputes σ(t′) and the tours (keeping already accepted requests).

3 Solving the Offline TMP

In order to solve the Offline TMP, we build a time-expanded network GT = (VT , AT )
based on σ and the original network G. The node set VT contains, for each station v ∈ V
and each discrete time point t ∈ [0, T ], a node (v, t) ∈ VT which represents station v at
time t as a station where VIPAs can simply pass, pickup or deliver customers. The arc set
AT = AW ∪AM is composed of

wait arcs, from (v, t) ∈ VT to (v, t+ 1) with t ∈ {0, 1, . . . , T − 1} in AW ,
transport arcs, from (v, t) ∈ VT to (v′, t + d(v, v′)) for each edge (v, v′) of G and each
time point t ∈ T with t+ d(v, v′) ≤ T , in AM .

On GT , we define a VIPA flow F to encode the tour of the VIPAs through GT . To
correctly initialize the system, we use the nodes (v0, 0), (v0, T ) ∈ VT as source and sink for
the flow F and set the balance of the source accordingly to the number k of available vehicles,
see (1b). For all internal nodes (v, t) ∈ VT \{(v0, 0), (v0, T )}, we use normal flow conservation
constraints, see (1c), which also automatically ensure that a flow of value k is entering the
sink (v0, T ).

In order to encode the routing of each request rj ∈ σ we consider |σ| commodities
f1 · · · f|σ|. Each commodity fj has a single source (xj , pj) where xj is origin and pj earliest
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pickup time of the request rj , also referred to as the commodity’s origin, a single sink (yj , qj)
where yj is destination and qj latest possible delivery time of rj , also referred to as the
commodity’s destination, and a quantity zj which is the load of the request rj that must
be routed along a single path from its source to its sink. In order to avoid that a request is
partially served by a vehicle, we require that the quantity to be routed by each commodity
fj is equal to zj but fj ∈ {0, 1}.

To ensure that a request can be rejected and is not served more than once, we require
that for each fj at most one outgoing arc from the commodity’s origin is chosen, see (1d).
We use normal flow conservation constraints, see (1e), which also automatically ensure that
for each commodity fj the flow leaving the commodity’s origin equals the flow entering its
destination.

To ensure that the capacity of the VIPA is respected on all arcs a ∈ AM , we couple the
flows by∑

rj∈σ
fj(a) · zj ≤ Cap · F (a) ∀a ∈ AM

such that the capacities for fj on the transportation arcs are not given by constants but by
a function. Note that due to these flow coupling constraints, the constraint matrix of the
network is not totally unimodular (as in the case of uncoupled flows) and therefore integrality
constraints for all flows are required (1h) and (1i), reflecting that solving the problem is
NP-hard.

Our objective function (1a) considers profits p(j) on arcs a ∈ δ−(xj , pj) for each commodity
fj to serve a request rj , whereas all other arcs have zero profits. The costs correspond to the
traveled distances c(a) := d(u, v) on all arcs. The corresponding integer linear program is as
follows:

max
∑
rj∈σ

∑
a∈δ−(xj ,pj)

p(j)fj(a)−
∑
a∈AT

c(a)F (a) (1a)

s.t.
∑

a∈δ+(v0,0)

F (a) = k (1b)

∑
a∈δ−(v,t)

F (a) =
∑

a∈δ+(v,t)

F (a) ∀(v, t) 6= (v0, 0), (v0, T ) (1c)

∑
a∈δ−(xj ,pj)

fj(a) ≤ 1 ∀rj ∈ σ (1d)

∑
a∈δ−(v,t)

fj(a) =
∑

a∈δ+(v,t)

fj(a) ∀rj ∈ σ∀(v, t) 6= (xj , pj), (yj , qj) (1e)

∑
rj∈σ

fj(a) · zj ≤ CapF (a) ∀a ∈ AM (1f)

F (a) ≥ 0 ∀a ∈ AT (1g)
F (a) ∈ Z ∀a ∈ AT (1h)
fj(a) ∈ {0, 1} ∀a ∈ AT ,∀rj ∈ σ (1i)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), and δ+(v, t) denotes the set of
incoming arcs of (v, t).

The integer linear program (1) solves the Offline TMP (where the whole sequence σ of
requests is known at time t = 0) to optimality:
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I Theorem 2. The integer linear program (1) provides an optimal solution of the Offline
TMP.

4 Solving the Online TMP

To handle the online situation, where the requests in σ are released over time during a time
horizon [0, T ], we propose a heuristic to solve a sequence of offline subproblems for certain
time intervals [t′, T ′] within [0, T ] on accordingly modified time-expanded networks. A usual
replan strategy is based on computing the optimal solution on the subsequence σ(t′) of
requests released in each replanning step. Computing an optimal solution by multicommodity
coupled flows is generally very slow and, thus, not applicable in online situations. In the
proposed algorithm h-Replan, we thus use a heuristic to compute offline solutions on σ(t′).
As experiments have shown that only a small percentage of arcs in GT is used in the
optimal solution while solving the Offline TMP, the idea is to reduce GT to a network
GR(t′) containing only arcs which are taken in the optimal solution with high probability.
Afterwards, we solve the flow problem on this reduced network GR(t′). This does not lead
to a globally optimal solution, but provides reasonable solutions in short time.

I Algorithm 3 (h-Replan).
Input: (M,σ, p, T, k,Cap)

Output: σA, and tours Γ1, . . . ,Γk

1: initialize t′ = 0, σA = ∅, σ(t′) = {rj ∈ σ : tj = 0}, Γi = (v0, 0) for 1 ≤ i ≤ k

2: WHILE t′ < T DO:
compute offline solution for σA, σ(t′), and Γ1, . . . ,Γk

perform the (modified) tours until new requests become known
update t′ and σ(t′)

3: return σA and Γ1, . . . ,Γk

To compute those offline solutions for the subsequences σ(t′), we build a reduced time-
expanded network GR(t′) based on σA, σ(t′) and the original network G that has the possible
start positions of the VIPAs as source nodes in V+, internal nodes (v, t) for time points
t ∈ [t′, T ′] relevant for the requests in σA ∪ σ(t′), but far less arcs than GT :

To determine the possible source nodes in V+ for the VIPAs from the current tours
Γ1, . . . ,Γk, we proceed as follows. At the beginning, i.e. at time t = 0, we clearly have
(v0, 0) as source for each VIPA. At any later time point t′, we have: If a VIPA is currently
serving a request rj , then (yj , tdropj ) is its source; if a VIPA is currently idle and situated
at v, then (v, t′) is its source.
To determine the internal nodes and arcs in A′M ⊆ AM and A′W ⊆ AW which are taken
in the optimal solution with high probability, we compute classic multicommodity flows
with adjusted profits and costs taking only the request commodities into account, but not
coupled to a VIPA flow. The reason is that we intend to construct “interesting” paths
for the request commodities, starting from the commodity’s origin and ending at the
commodity’s destination, without taking the route of the VIPAs into consideration:

a min cost multicommodity flow in GT to determine a shortest path for the commodity
of each request rj from (xj , pj) to (yj , qj),
a max profit multicommodity flow in GT to determine for each request rj a path from
(xj , pj) to (yj , qj) that has the potential to partially share paths of other commodities.

In both cases, the constraint matrices are totally unimodular such that the computations
can be done in short time, see [9] for details. Besides using the arcs with positive flow
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from these two problems, we add further transport arcs from the destination of requests
to reachable origins of other requests to ensure that requests can be served sequentially
in one tour.

Thus, compared to the original time-expanded network GT = (VT , AT ), we reduce in
GR = (V ′T , A′T ) both the total number of nodes as well as of wait and transport arcs. We
compute a transportation schedule by solving the max profit flow problem in GR(t′) detailed
in (2). Hereby, to keep previously accepted requests, we partition σ(t′) into the subsequences

σA(t′) of previously accepted but until time t′ not yet served requests and
σN (t′) = {rj ∈ σ : tj = t′} of requests that are newly released at time t′.

max
∑

rj∈σ(t′)

∑
a∈δ−(xj ,pj)

p(a)f ′j(a) −
∑
a∈A′

T

c(a)F ′(a) (2a)

s.t.
∑

a∈δ+(v,t)

F ′(a) = k(v) ∀(v, t) ∈ V+ (2b)

∑
a∈δ−(v,t)

F ′(a) =
∑

a∈δ+(v,t)

F ′(a) ∀(v, t) 6= V+, t < T ′ (2c)

∑
a∈δ−(xj ,pj)

f ′j(a) ≤ 1 ∀rj ∈ σN (t′) (2d)

∑
a∈δ−(xj ,pj)

f ′j(a) = 1 ∀rj ∈ σA(t′) (2e)

∑
a∈δ−(v,t)

f ′j(a) =
∑

a∈δ+(v,t)

f ′j(a) ∀rj ∈ σ, ∀(v, t) 6= (xj , pj), (yj , qj) (2f)

∑
rj∈σ(t′)

f ′j(a) · zj ≤ CapF ′(a) ∀a ∈ A′M (2g)

F ′(a) ≥ 0 ∀a ∈ A′T (2h)
F ′(a) ∈ Z ∀a ∈ A′T (2i)
f ′j(a) ∈ {0, 1} ∀a ∈ A′T ,∀rj ∈ σ(t′) (2j)

where A′T = A′W ∪ A′M and k(v) denotes the number of VIPAs initially situated in v.
Constraints (2e) ensure that previously accepted requests are served whereas constraints (2d)
allow to reject newly released requests.

From the computed flows F ′ and f ′j in the reduced network GR(t′), it is again straight-
forward to determine newly accepted requests and to construct (partial) tours Γ1, . . . ,Γk for
the VIPAs in the same way as for the offline situation.

5 Evaluation of online algorithms for the Online TMP

5.1 Competitive Analysis
It is standard to evaluate the quality of online algorithms with the help of competitive
analysis. This can be viewed as a game between an online algorithm ALG and a malicious
adversary who tries to generate a worst-case request sequence σ which maximizes the ratio
between the online cost ALG(σ) and the optimal offline cost OPT(σ) knowing the entire
request sequence σ in advance. ALG is called c-competitive for an online maximization
problem if ALG produces for any request sequence σ a feasible solution with OPT(σ) ≤ c
ALG(σ) for some given c ≤ 1. The competitive ratio of ALG is the infimum over all c such
that ALG is c-competitive.
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In [12], we consider an oblivious adversary who knows the complete behavior of a
(deterministic) online algorithm ALG and chooses a worst-case sequence for ALG. Hereby,
an oblivious adversary is allowed to move VIPAs towards the origins xj of not yet released
requests rj (but also has to respect the time windows [pj , qj ] to serve accepted requests rj).

In [12], we showed that an oblivious adversary can force any (deterministic) online
algorithm ALG for the Online TMP to reject all requests of a sequence while the adversary
can accept and serve all requests, implying that ALG is not competitive.

Here, we consider a weaker adversary, called non-abusive adversary, who also knows the
complete behavior of ALG and chooses a worst-case sequence for ALG, but is only allowed
to move VIPAs towards origins (or destinations) of already released requests (and has also
to respect the time windows).

We show that no (deterministic or non-deterministic) online algorithm ALG for the
Online TMP is competitive against a non-abusive adversary, since the adversary can force
ALG to accept at most one request and to reject all other requests of a sequence while the
adversary can accept and serve all requests but one of the sequence.

I Theorem 4. There is no competitive online algorithm for the Online TMP against a
non-abusive adversary.

Since the worst-case request sequence used to show the non-competitivity result is only
based on the reachability of requests, but not on a particular strategy of an online algorithm,
we conclude:

I Corollary 5. The online algorithm h-Replan is not competitive for the Online TMP against
an oblivious or non-abusive adversary.

5.2 Computational Results
This section deals with computational experiments for the optimal offline solutions of the
(non-preemptive and preemptive) TMP and the two replan strategies, Replan studied for the
non-preemptive case in [10, 12] and h-Replan proposed here for the preemptive case of the
Online TMP. In fact, due to the very special request structures of the worst-case instances
to prove the non-competitivity of any online algorithm for the Online TMP, we can expect a
better behavior of the proposed replan strategies for the Online TMP in average.

The computational results presented in this section support this expectation. They
compare the total number of accepted (and thus served) requests by Replan and h-Replan
with the optimal offline solutions OPT-NP for the non-preemptive case and OPT-P for the
preemptive case. The computations use randomly generated instances with 20 stations, 5 to
10 VIPAs, time-horizons between 180 and 240 time units, and between 90 and 300 customer
requests. These instances are based on the network from the industrial site of Michelin at
Clermont-Ferrand and randomly generated request sequences resembling typical instances
that occurred during an experimentation in Clermont-Ferrand performed from October 2015
until February 2016 [21].

The operating system for all tests is Linux CentOS with kernel version 2.6.32 clocked at
2.40GHz, with 1TB RAM. The approaches are implemented in Python and Gurobi 8.21 is
used for solving the ILPs.

In the first resp. second set of 180 instances each, the requests have a random load
between

4 and 10 (with 72% of the requests with a load above 5),
1 and 10 (with only 21% of the requests with a load above 5),

SEA 2018



25:10 Fleet Management for Autonomous Vehicles

Table 1 This table shows the percentage of improvement of the average number of accepted
requests between the non-preemptive and preemptive optimal solutions and between Replan and
h-Replan for the first set of instances.

req T k OPT-NP UB(OPT-P) Imp (%) Replan h-Replan Imp (%)
94 180 10 77 82,8 7,53 39 41,8 7,18
188 180 10 112 121,08 8,11 55 59,12 7,49
295 180 10 146,86 160,54 9,31 75,85 90,8 19,71
97 240 5 62,04 66,48 7,16 25,19 29,7 17,90
194 240 5 93,76 104,34 11,28 45,84 51,2 11,69
290 240 5 115,94 129,22 11,45 47,64 54,4 14,19

Table 2 This table shows the percentage of improvement of the average number of accepted
requests between OPT-NP and OPT-P and between Replan and h-Replan for the second set of
instances.

req T k OPT-NP UB(OPT-P) Imp (%) Replan h-Replan Imp (%)
94 180 10 65,31 86,70 32,75 36,54 47,54 30,10
180 180 10 107,48 158,65 47,61 47,16 77,80 64,97
295 180 10 153,20 283,50 85,05 79,14 124,10 56,81
97 240 5 61,76 84,40 36,66 24,10 32,50 34,85
194 240 5 100,32 154,23 53,74 45,38 72,67 60,14
290 240 5 123,67 275,47 122,74 46,21 88,50 91,52

and in both cases VIPAs of capacity 10. The two replan strategies compute solutions within
a reasonablely short time (even for hReplan in less than 60 seconds in average for each
replanning step).

As already reported in [10, 12], Replan achieves in average an acceptance rate of about
64% compared with OPT-NP for the first set of instances, and about 45% for the second. Our
interest is whether or not allowing preemptive tours can significantly improve this acceptance
rate.

Unfortunately, due to the long computation time for OPT-P, only an upper bound UB
can be presented for most cases, obtained by computing an uncapacitated preemptive TMP
with a time limit of four hours. Thus, we can mainly compare the improvements of the
acceptance rate for OPT-NP and h-Replan only with this upper bound.

In the first set of instances, we observe that the percentage of improvement between
OPT-NP and the upper bound of OPT-P is high (in average around 41% compared to UB),
but it is not the case for the percentage of improvement between Replan and h-Replan (in
average around 13%), see Table 1. The reason why there is no remarkable improvement in
the acceptance rate is that in 72% of the requests, the load is greater than Cap/2 such that,
in most of the times, the requests cannot be accumulated together to be served in one VIPA
(recall that we allow vehicle preemption but not load preemption).

This changes in the second set of instances with in general smaller loads that allow us to
serve more than one request simultaneously in one VIPA. Accordingly, we observe that the
percentage of improvement between OPT-NP and OPT-P/UB increases to in average around
43% and between Replan and h-Replan to in average around 57%, (see Table 2). Detailed
computational results are summarized in Table 3 and Table 4.

Note that computational results presented in Table 3 and Table 4 show only an upper
bound for OPT-P. Therefore, this upper bound is sometimes far from the optimal solution
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Table 3 This table shows the computational results for the first set of 180 test instances of Replan
respectively h-Replan in comparison to OPT-NP respectively to the upper bound of the optimal
preemptive offline solution UB(OPT-P). The instances are grouped by the number of requests (1st
column), the time horizon (2nd column) and the number of VIPAs (3rd column) with 30 instances
per parameter set. Average values are shown for the total number |σA| of accepted requests and for
the total tour length TTL needed to serve the accepted requests. Finally, we provide the average
runtime of Replan respectively h-Replan per recomputation step and the maximum runtime of the
recomputation steps of Replan respectively h-Replan.

non-preemptive TMP
|σA| TTL runtime (s)

req T k OPT-NP Replan ratio % OPT-NP Replan AVG MAX

94 180 10 77 52,13 67,7 667,5 424 0,49 1,6
188 180 10 112 70,45 62,9 831 580 3 10,83
295 180 10 146,86 97,2 66,19 1005 750,57 13,56 45,54
97 240 5 62,04 39,19 63,17 527,16 298,82 0,29 1,23
194 240 5 93,76 55,84 59,56 680,44 490 1,8 7,85
290 240 5 115,94 80,64 69,55 759,94 500,6 7,18 29,8

preemptive TMP
|σA| TTL runtime (s)

req T k UB(OPT-P) h-Replan ratio % OPT-P h-Replan AVG MAX

94 180 10 83,72 62,21 74,31 678,1 456,54 2,18 9,76
188 180 10 150,08 76,17 50,75 875,43 600,62 6,29 38,77
295 180 10 232 110,54 47,65 1167,54 748,8 21,82 68,54
97 240 5 73,34 42,4 57,81 574,65 322,75 1,34 13,06
194 240 5 134,74 63,83 47,37 885,48 515,5 3,91 24,54
290 240 5 210,63 90,23 42,84 998,75 496,6 19,62 58,39

especially in the first set of instances, where the improvement between OPT-NP and the
upper bound of OPT-P is high 41% due to the upper bound calculated by computing an
uncapacitated preemptive TMP. Thus, the requests can be accumulated together, without
consireding their loads. This cannot be the case in the optimal solution. Note that in the
first set of instance, the average acceptance ratio between Replan and OPT-NP is 65% while
the average acceptance ratio between h-Replan and OPT-P/UB is 54% while in the second
set of instance the average acceptance ratio between Replan and OPT-NP is 46% while the
average acceptance ratio between h-Replan and OPT-P/UB is 43%. While Replan is not
competitive in not competitve in theory, in practice it achieves a ratio about 2 compared to
the optimal offline solution or the upper bound which is an acceptable ratio from a business
point of view.

The computations in Table 5 use randomly generated instances with 10 stations, 2 to
3 VIPAs with capacity 10, time-horizon of 60 time units, and between 20 and 30 customer
requests. In this set of 120 instances, the requests have a random load between

1 and 10 (with only 28% of the requests with a load above 5),
The two replan strategies compute solutions within a short time (less than 5 seconds in
average) for each replanning step, therefore the average runtime is not shown in Table 5.
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Table 4 This table shows the computational results for the second set of instances.

non-preemptive TMP
|σA| TTL runtime (s)

req T k OPT-NP Replan ratio % OPT-NP Replan OPT-NP AVG MAX

94 180 10 65,31 36,54 55,95 667,5 416,7 12,6 0,68 5,32
188 180 10 107,48 47,16 43,888 831 596,35 181,23 2,69 12,45
295 180 10 153,2 79,14 51,66 1005 726,86 73456,5 12,67 27,42
97 240 5 61,76 24,1 39,02 527,16 279,15 697,75 0,86 6,45
194 240 5 100,32 45,38 45,24 680,44 504,7 846,5 3,7 14,6
290 240 5 123,67 46,21 37,37 759,94 527,45 116875,85 14,1 22,46

preemptive TMP
|σA| TTL runtime (s)

req T k UB h-Replan ratio % UB h-Replan UB AVG MAX

94 180 10 86,70 47,54 54,83 727,56 460,16 43824,50 2,58 11,58
188 180 10 158,65 77,80 49,04 930,75 649,67 125849,75 7,42 45,45
295 180 10 283(UB) 124,10 43,77 1175,25 878,25 97849(UB) 26,45 82,42
97 240 5 84,40 32,50 38,51 558,45 358,75 90470,67 1,36 14,36
194 240 5 154,23 72,67 47,12 825,74 609,40 156752,58 4,26 27,42
290 240 5 275(UB) 88,50 32,13 957,52 630,86 128417(UB) 21,78 65,80

In this set of instances, Replan achieves in average an acceptance rate of about 54%
compared with OPT-NP, and h-Replan achieves in average an acceptance rate of about 70%
compared with OPT-P (see Table 5).

6 Conclusion

Regarding the quality of the solutions obtained by the here proposed h-Replan strategy for
the Online TMP, we summarize that

in theory, h-Replan is (as any other online algorithm for the problem) not competitive
since there is no finite c s.t. for all instances σ we have that OPT(σ) ≤ c h-Replan(σ),
but
in practice, h-Replan leads to a higher rate of accepted requests and, therefore, to a higher
quality-of-service level for the fleet management than Replan constructing non-preemptive
tours.

However, sometimes the transportation schedule returned by h-Replan contains preemptive
tours which causes inconveniences for the users. Therefore, in order to handle the Online
Taxi Mode Problem in the studied VIPAFLEET management system it is up to the operator
to decide whether it is worth to have preemptive tours in order to increase the number
of accepted requests, taking the ratio of request loads and VIPA capacities and, thus, the
expected increase of the acceptance rate into account.
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Table 5 This table shows the computational results for the first set of 120 test instances of
Replan respectively h-Replan in comparison to OPT-NP respectively to the optimal preemptive
offline solution OPT-P. The instances are grouped by the number of requests (1st column), the
time horizon (2nd column) and the number of VIPAs (3rd column) with 30 instances per parameter
set. Average values are shown for the total number |σA| of accepted requests and for the total tour
length TTL needed to serve the accepted requests.

NP-TaxiMP

|σA| TTL

req T k OPT-NP Replan-NP ratio % OPT-NP R-NP

18 60 2 11,23 6,58 58,59 95,7 52,85

26 60 2 16,42 8,43 51,34 118,46 65,17

17 60 3 13,57 8,1 59,69 124,78 71,63

28 60 3 20,32 9,74 47,93 138,6 76,25

P-TaxiMP

|σA| TTL

req T k OPT-P hReplan-P ratio % OPT-P hReplan-P

18 60 2 14,43 9,64 66,81 90,37 85,83

26 60 2 22,73 16,61 73,08 103,54 91,37

17 60 3 15,72 10,95 69,66 111,35 92,61

28 60 3 25,43 18,13 71,29 123,74 105,75
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Abstract
We introduce a new problem called Steiner Multi Cycle Problem that extends the Steiner Cycle
problem in the same way the Steiner Forest extends the Steiner Tree problem. In this problem
we are given a complete weighted graph G = (V,E), which respects the triangle inequality, a
collection of terminal sets {T1, . . . , Tk}, where for each a in [k] we have a subset Ta of V and these
terminal sets are pairwise disjoint. The problem is to find a set of disjoint cycles of minimum
cost such that for each a in [k], all vertices of Ta belong to a same cycle. Our main interest
is in a restricted case where |Ta| = 2, for each a in [k], which models a collaborative less-than-
truckload problem with pickup and delivery. In this problem, we have a set of agents where
each agent is associated with a set Ta containing a pair of pickup and delivery vertices. This
problem arises in the scenario where a company has to periodically exchange goods between two
different locations, and different companies can collaborate to create a route that visits all its
pairs of locations sharing the total cost of the route. We show that even the restricted problem
is NP-Hard, and present some heuristics to solve it. In particular, a constructive heuristic called
Refinement Search, which uses geometric properties to determine if agents are close to each other.
We performed computational experiments to compare this heuristic to a GRASP based heuristic.
The Refinement Search obtained the best solutions in little computational time.
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1 Introduction

In this paper we present the Steiner Multi Cycle Problem (SMCP) and a restricted version of
it, called Restricted Steiner Multi Cycle Problem (R-SMCP), which models a collaborative
less-than-truckload problem with pickup and delivery. In the SMCP one is given a com-
plete weighted metric graph G = (V,E) and a collection of pairwise disjoint terminal sets
{T1, . . . , Tk}. The problem is to find a set of vertex disjoint cycles of minimum cost such that,
for each a ∈ [k], all vertices of Ta belong to the same cycle in a solution. In the R-SMCP we
assume each Ta contains exactly two vertices, a pickup and a delivery, and that {T1, . . . , Tk}
forms a partition of V . This problem models a collaborative less-than-truckload problem
where companies have pickup and delivery locations, and are willing to collaborate in order
to reduce their individual transportation costs, given by a solution where each company
creates a separate route containing only their own pickup and delivery vertices. Notice that
we do not assume an order between the pickup and delivery vertices, since we consider a
recurrent route which a truck will use several times. Throughout the text we refer to each
Ta as an agent that has associated with it the pickup and delivery vertices in Ta.

The SMCP is a generalization of the Steiner Cycle problem (SCP) in the same way
as the Steiner Forest generalizes the Steiner Tree problem. The SCP was introduced by
Salazar-González [18], where he analysed the polyhedral structure associated with the
problem, introducing two lifting procedures to extend facet-defining inequalities from the
travelling salesman polytope. Steinová [19] studied the approximability of the SCP, showing
that the general problem in directed graphs does not admit an approximation algorithm
with polynomial ratio in the input size, unless P=NP. Moreover, Steinová presents a 3

2 -
approximation algorithm for the case in which the input graph is undirected and metric.

As mentioned, the R-SMCP is related to vehicle routing problems, in particular to a
collaborative less-than-truckload problem. Literature in vehicle routing problems is vast and
considers very different constraints, as can be seen at [20] and [1]. The R-SMCP is similar to
the traditional vehicle routing problem with pickup and delivery, for which Parragh et al.
[16] presents a survey. The R-SMCP was also inspired by the Lane Covering Problem with
less-than-truckload shipments (see Ergun et al. [4, 5]). The objective of this problem is to
find a minimum cost set of directed cycles which covers a given set of arcs. Another related
problem is the location-routing problem with simultaneous pickup and delivery, presented
by Karaoglan et al. [13]. In this problem, one is given a graph with customer vertices and
possible depot vertices. Each customer has a pickup and delivery demand to be served by a
route that starts at an opened depot. Pickup demands have to be transported to the depot
and delivery demands have to be delivered from it.

In the less-than-truckload Problem modeled by R-SMCP, we consider that the demand of
each agent is periodically delivered and much smaller than the vehicle capacity, e.g., letters
or small deliveries among mail companies, cash or promissory notes among banks.

Our contributions. We introduce the R-SMCP, prove that it is NP-hard, and present some
algorithms to solve it. In particular, we present an effective heuristic that uses geometric
properties to cluster agents, called Refinement Search, and compare it with a proposed
GRASP (Greedy Adaptive Randomized Search Procedure) heuristic. Also, we show a
4-approximation to the general problem, SMCP.

The paper is organized as follows. Section 2 presents the formal description of the problems,
an ILP formulation and a 4-approximation algorithm for the SMCP. Section 3 presents
heuristics we used to solve the Travelling Salesman Problem. Sections 4 and 5 describe the
proposed methods to solve R-SMCP. Finally, Section 6 presents the computational results.
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2 The Steiner Multi Cycle Problem

In this section we present a formal definition for the SMCP and prove that even its restricted
version is NP-Hard. We also show an integer linear programming formulation for the problem.

The input for the SMCP is a complete graph G = (V,E), with a metric cost function
c : E → R+, and a collection of terminals sets T = {T1, . . . , Tk}, where Ta ⊆ V and
Ta ∩ Tb = ∅ for a and b in [k] with a 6= b. The problem is to find a set C of vertex disjoint
cycles such that, for each a ∈ [k], all terminals in Ta belong to a same cycle. The cost of a
solution C is the sum of the edges’ costs used in its cycles, i.e.,

∑
C∈C

∑
e∈C ce . The goal is

to find a minimum cost solution.
In the restricted version of the problem, R-SMCP, the terminals collection {T1, . . . , Tk}

forms a partition of V and each Ta contains exactly two vertices, a pickup and a delivery. In
this case, we assume that the vertex set contains 2n vertices, V = {1, 2, . . . , 2n} where each
Ta = {a, a+ n} for a ∈ [n]. We define a set of agents A = {1, 2, . . . , n}, such that each agent
a ∈ A has a pickup point pa on vertex a and a delivery point da on vertex a+ n.

Note that, as G is a metric graph, there is always an optimum solution which does not
use Steiner vertices. To see this, suppose an optimum solution with a cycle C = (u1, u2, . . . ),
where some uj is a Steiner vertex. We can connect vertices uj−1 and uj+1 directly and
remove uj from C, resulting in a solution with cost at most the cost of C, due to the triangle
inequality. Moreover, this holds to SMCP and R-SMCP.

We can show that the SMCP is NP-Hard since it generalizes the minimum Steiner Cycle
problem. In fact, we proved that even R-SMCP is NP-Hard.
I Theorem 1. The Restricted Steiner Multi Cycle Problem is NP-Hard.1

2.1 An ILP Formulation and its Linear Relaxation
Given an instance (G, c, T ) of the SMCP, consider a function f : 2V → {0, 1} such that for
each non-empty set S ⊂ V we have f(S) = 1 if, and only if, for some Ta ∈ T we have that
S∩Ta 6= ∅ and Ta * S, i.e, S is a cut that separates terminals in Ta. With abuse of notation
we use i ∈ T to denote a vertex that is a terminal. The SMCP can be formulated with the
following integer linear program:

min
∑
e∈E cexe (1)

s.t.
∑
e∈δ(i) xe = 2 ∀i ∈ T (2)∑

e∈δ(S) xe > 2f(S) ∅ 6= S ⊂ V (3)
xe ∈ {0, 1, 2} e ∈ E , (4)

where δ(S) denotes the set of edges having exactly one end point in S. The variable xe
indicates if an edge is used in the solution, constraint (2) assures that exactly one cycle
covers each terminal, constraint (3) assures that vertices belonging to a terminal set Ta ∈ T
are connected, and constraint (4) allows each edge to be used at most twice, since in the
case where Ta has just two vertices, a single cycle between them is a valid solution.

Relaxing the integrality constraints (4) we obtain a linear program useful to find lower
bounds for the SMCP and for its restricted version, R-SMCP. Note that the number of
constraints (3) is exponential. However, it is possible to solve the relaxed LP in polynomial
time by solving the separation problem in polynomial time [9]. We find violated constraints
in polynomial time by solving maximum flow problems between each pair of vertices in a
same Ta, through the use of Gomory-Hu trees [8, 11].

1 Proof omitted due to space constraints.
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2.2 A 4-approximation Algorithm for the Steiner Multi Cycle Problem
A 2-approximation algorithm for the Steiner forest problem was presented by Goemans and
Williamson [7]. We use this algorithm to obtain a 4-approximation algorithm for the SMCP.

Given an instance (G, c, T ) of the SMCP, we use the 2-approximation algorithm of [7]
to obtain a Steiner forest F with cost c(F ) 6 2OPT(G), where OPT(G) is the cost of an
optimal solution for the SMCP. Duplicate each edge of F , and then find an Eulerian circuit
for each component of F . The cost of all Eulerian circuits is limited by 2c(F ) 6 4OPT(G).
Finally, for each component, perform shortcuts in order to transform each Eulerian Circuit
into a cycle, obtaining a valid solution C for the SMCP with cost at most 4OPT(G).

I Proposition 2. There is a 4-approximation algorithm for the Steiner Multi Cycle Problem.

In the remaining of the text we present heuristics for the R-SMCP, since our main interest
is in solving the related collaborative less-than-truckload problem with pickup and delivery.

3 TSP Heuristics

In this section we present the TSP heuristics that are used by our algorithms. All of them
build a cycle cover by first choosing a promising agent partition, and then transforming each
part into a cycle, by using a TSP heuristic. A partition of a set A is a collection {C1, . . . , Ck},
where each Ci ⊆ A, ∪ki=1Ci = A, and for each pair of different parts Ci and Cj we have
Ci ∩ Cj = ∅. We call each set Ci a cluster or a part of A, for i ∈ [k].

Given a cluster C ⊆ V , we use two heuristics to find a minimum cost TSP of C. One is
the Nearest Insertion algorithm and the other is the Christofides algorithm. We apply the
2-OPT local search over the solution found by both heuristics. A detailed description of
these heuristics can be found in [2]. The Nearest Insertion has a time complexity of O(n2),
while Christofides has time complexity O(n3 lg(n)), where n is the number of vertices. The
2-OPT local search can have an exponential time complexity in the worst case. However, it
is usually fast when the initial solution is good.

4 Refinement Search Heuristic

In this section we describe a deterministic heuristic, called Refinement Search, for the
Restricted Steiner Multi Cycle Problem. We first define a measure of proximity, based on
geometric regions, between an agent and any vertex of the graph G. This proximity measure
is used to establish a neighborhood relation between each pair of agents, which determines if
the agents are close to each other. From this, we obtain a partition of the agents and, for
each part, we use a TSP heuristic to obtain a cycle that covers all its agents.

4.1 Region types
Given an agent a in A and a non-negative real number r, we define three types of regions.
Circular Intersection: denoted as RI(a, r), is defined by the intersection of two circles with

radius r, one with center in pa and other with center in da. More precisely, a vertex v is
in the circular intersection region RI(a, r) if, and only if, c(v, pa) 6 r and c(v, da) 6 r.

Circular Union: denoted as RU (a, r), is defined by the union of two circles with radius r,
one with center in pa and other with center in da. More precisely, a vertex v is in the
circular union region RU (a, r) if, and only if, c(v, pa) 6 r or c(v, da) 6 r.
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Elliptical: denoted as RE(a, r), is defined by the ellipse with focal points pa and da, and
eccentricity c(pa, da)/2r. More precisely, a vertex v is in the elliptical region RE(a, r) if,
and only if, c(v, pa) + c(v, da) 6 2r.

In the algorithm, we use a factor α ∈ R+ to define the radius used by all agents. Given an α
value, an agent a will have its regions defined with radius ra = α · c(pa, da), where c(pa, da)
is the edge cost connecting the agent’s vertices in Ta.

It is not hard to see that, for any type of region, if we increase the radius which defines
it, the region can only increase with new vertices being added to it.

I Lemma 3. Given an agent a ∈ A and two radius r, r′ ∈ R+, with r 6 r′, we have that
Rx(a, r) ⊆ Rx(a, r′), for any region type Rx ∈ {RI , RE , RU}.

Given an agent, its circular intersection region is contained in its elliptical region which
is contained in its circular union region, as long as these are defined with the same radius.

I Lemma 4. Given a ∈ A and r ∈ R+, we have that RI(a, r) ⊆ RE(a, r) ⊆ RU (a, r).

While the concept of region allows us to relate an agent with a vertex, in order to establish
a pairwise relationship among agents, we introduce the concept of neighborhood.

4.2 Neighborhood types
Given agents a and b in A, with regions Ra and Rb, we define two types of neighborhood.
Total: agents a and b are total neighbors if pb and db are in Ra, or if pa and da are in Rb.
Partial: agents a and b are partial neighbors if pb or db are in Ra, or if pa or da are in Rb.
Intuitively, two agents are total neighbors if both vertices of an agent are inside the other’s
region. Similarly, two agents are partial neighbors if at least one vertex from an agent is
inside the other’s region. Thus, every total neighbors are partial neighbors. Also, note that
the neighborhood relation is symmetric.

Now that the pairwise relationship among agents is defined, we introduce the concept of
component in an auxiliary graph to establish a partition of agents.

4.3 Auxiliary Graph and Components
Take a set of agents A, a collection of regions R, such that each agent a ∈ A has a
region Ra ∈ R, and a neighborhood type Ny ∈ {NT , NP }, where NT stands for the Total
neighborhood and NP for the Partial neighborhood. Consider an auxiliary graph in which
there is a vertex for each agent, and there is an edge between two vertices if, and only
if, the corresponding agents are neighbors. Notice that the connected components of this
auxiliary graph form a partition P on the set of agents. Thus, from now on we use the
words component and part (of the partition) interchangeably to refer to the agents of a same
component of this auxiliary graph.

When considering partitions, there is an interesting property called refinement. We say
that a partition P is finer than P ′ (or that P ′ is coarser than P) if, and only if, every set in
P is uniquely contained by some set of P ′. Note that the refinement property is transitive.

The following lemma shows a relationship between regions and refinement.

I Lemma 5 (Region Refinement). Consider a set of agents A, two collections of regions
R and R′, each containing one region Ra for each agent a ∈ A, and a neighborhood type
Ny ∈ {NT , NP }. Suppose that, for each agent a ∈ A, Ra ⊆ R′a, where Ra ∈ R and R′a ∈ R′.
The components obtained using R and R′, with the same neighborhood type Ny, induce
partitions P and P ′ such that P is finer than P ′.
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Due to Lemmas 3 and 4, the previous lemma implies that, when all other parameters
are constant, if the radius factor α increases, or the region type RI changes to RE , or RE
changes to RU , then we have a new partition which is coarser than the previous one.

The following lemma shows a relationship between neighborhood types and refinement.

I Lemma 6 (Neighborhood Refinement). Consider a set of agents A, a collection of regions R,
and neighborhood types NT and NP . The components obtained using R, with neighborhood
types NT and NP , induce partitions PT and PP such that PT is finer than PP .

4.4 Dynamic Programming Algorithm for the Refinement Search
Given an input (G, c, T ) of the R-SMCP, consider a partition P(α,Rx,Ny) induced by radius
factor α ∈ R+, region type Rx and neighborhood type Ny. We denote by S(α,Rx,Ny) the
solution for R-SMCP obtained by using a TSP heuristic to construct a cycle on each
component of P(α,Rx,Ny). Moreover, given a component C ∈ P(α,Rx,Ny), we denote by
S(α,Rx,Ny)(C) the solution of S(α,Rx,Ny) restricted to the agents in C.

The idea of the algorithm is to construct partitions of the agents using different types of
regions, different values of α, and different types of neighborhood. First, lets describe how
we choose the different values of α. We fix a region type Rx and neighborhood type Ny. For
each pair of agents a and b, we find the smallest factor αab such that there is an edge between
a and b in the auxiliary graph. Notice that, if we use a radius factor αmin = mina,b∈A αab− ε
then |A| components exist in the auxiliary graph. We construct a list of size O(|A|2) of
radius factors containing αmin and αab for each pair of agents a, b ∈ A. A shorter list of
radius factors is constructed as follows. Consider the list of factors sorted in increasing order,
where the first value αmin is inserted in the beginning of the list. For the remaining values
of factors, if its use decreases the number of components in the current auxiliary graph, then
this α value is included in the list. Thus, the shorter list of radius factors contains |A| values,
since we start with |A| components and finish with just a single component.

For each region type Rx and neighborhood type Ny we have a list of radius factors. So,
there are at most 6|A| radius factors which we save in the list α = [α1, α2, . . . ] arranged in
increasing order. A basic idea for a heuristic to solve the R-SMCP is to generate a partition
P(α,Rx,Ny) for each region type Rx, neighborhood type Ny, and radius factor α in the final list
of factors. Then, for each component in P(α,Rx,Ny) construct a cycle using a TSP heuristic
obtaining a solution S(α,Rx,Ny). Thus, we could return the best solution found considering
all these 6|A| solutions.

However, we can find better solutions using the refinement property, since it allows
us to mix solutions of different region types, neighborhood types and radius factors. For
example, consider an instance with 10 agents where, if we use α = 0.5, region RU , and
neighborhood NP , we obtain the partition P(0.5, RU , NP ) = {{a1, a5, a6}, {a2, a3, a4, a7},
{a8, a9, a10}}. From Lemmas 3, 5 and 6, we can obtain finer solutions by changing either
the region type, or the neighborhood type, or the value of α. Thus, we can obtain the
following finer solutions P(0.5, RI , NP ) = {{a1, a5}, {a6}, {a2, a3}, {a4, a7}, {a8, a9, a10}},
and P(0.5, RU , NT ) = {{a1, a5, a6}, {a2, a3, a4}, {a7}, {a8, a9}, {a10}}, and P(0.4, RU , NP )
= {{a1}, {a5, a6}, {a2, a3}, {a4, a7}, {a8, a9, a10}}. Then, when finding the best solution for
P(0.5, RU , NP ) we could use {a2, a3}, {a4, a7} from P(0.4, RU , NP ) if the two cycles have a
smaller cost than the single cycle for {a2, a3, a4, a7} obtained by P(0.5, RU , NP ). This way
the best solution could be P(0.5, RU , NP )∗ = {{a1, a5, a6}, {a2, a3}, {a4, a7}, {a8, a9, a10} }.

Since the refinement property is transitive, we can recurse further until the finest possible
level, checking which parts of a solution should be replaced by smaller parts of finer solutions.
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Algorithm 1: Refinement Search.
Input : (G, c, T ) and a vector α = [α1, α2, . . . , α6|A|] radius factors in increasing order.
Output :A cycle cover C.

1.1 foreach αi, i ∈ [ 1, 2, . . . , 6|A| ] do
1.2 foreach neighbor type Ny ∈ (NT , NP ) do
1.3 foreach region type Rx ∈ (RI , RE , RU ) do
1.4 foreach C ∈ S(αi,Rx,Ny) do
1.5 C1 ← S∗(αi−1,Rx,Ny)(C)
1.6 C2 ← S∗(αi,Rx−1,Ny)(C)
1.7 C3 ← S∗(αi,Rx,Ny−1)(C)
1.8 S∗(αi,Rx,Ny) ← (S(αi,Rx,Ny)\C) ∪min_cost{C,C1, C2, C3}

1.9 return S∗(α6|A|,RP ,RU )

Let the region types be organized from finer to coarser, i.e., (RI , RE , RU ) and the same for
the neighborhood types, i.e., (NT , NP ). For a set of agents C, remember that S(α,Rx,Ny)(C)
is the solution obtained from P(α,Rx,Ny) restricted to the agents in C. Formally, we want to
find the best solution for all agents which can be described by the recurrence

S∗(αj ,Rx,Ny)(A) =
∑

C∈P(α,Rx,Ny)

min


cost(S(αj ,Rx,Ny)(C))
cost(S∗(αj ,Rx−1,Ny)(C))
cost(S∗(αj ,Rx,Ny−1)(C))
cost(S∗(αj−1,Rx,Ny)(C))

where, for each component C ∈ P(α,Rx,Ny) we choose the best solution which can be obtained
by considering the current solution S(αj ,Rx,Ny)(C) using current radius factor, region type
and neighborhood type, and the best solutions which are finer for this set of agents C.

The Algorithm 1 shows the pseudocode of a dynamic programming algorithm called
Refinement Search. The algorithm constructs solutions in a bottom up fashion, from the
base case with the finest α, neighborhood type, and region type to the coarsest ones. For
each component C in the standard solution S(α,Rx,Ny) of an iteration of loops (1.1 - 1.3), the
algorithm checks if in a finer solution, the agents in C were covered with a smaller cost. The
best solution for C among the current solution and the finer ones, is set on line 1.8.

5 GRASP Heuristic

In this section we present our GRASP based heuristic, which uses the Greedy Randomized
Adaptative Algorithm described in Section 5.2 to generate initial solutions. After finding
an initial solution, it performs a local search with the algorithm described in Section 5.3.
The GRASP heuristic repeats this process until a stopping criteria occurs, which can be
a maximum running time or a maximum number of iterations. Then, it returns the best
solution found. The meta-heuristic GRASP was introduced by Feo and Resende [6] and
it has been successfully applied to several combinatorial optimization problems [17]. More
information is available in Resende and Ribeiro [17].

5.1 Basic Definitions for the GRASP Heuristic
The GRASP heuristic uses a contracted graph to find a partition of the agents set. This
contracted graph is built using a measure of distance between each pair of agents, thus, we
propose several ways to determine this measure of distance.
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Given an input (G, c, T ) of the R-SMCP, each agent a ∈ A has a pickup vertex pa and a
delivery vertex da. The contracted graph GA = (A,EA) is a complete weighted graph, in
which each agent a ∈ A corresponds to a single vertex and the distance between agents a
and b, is defined according to one of the following six types of distances:
Distance 1 is the minimum cost of edges necessary to complete the cycle containing edges

(pa, da) and (pb, db). More formally, dist1(a, b) = min{c(pa, pb) + c(da, db), c(pa, db) +
c(da, pb)} . This distance is symmetric and satisfies the triangle inequality.

Distance 2 is 0 if a = b, or the minimum cost of building a cycle that contains the pickup
and delivery vertices of agents a and b. More formally, for a 6= b,

dist2(a, b) = min
{

dist1(a, b) + c(pa, da) + c(pb, db),
c(pa, db) + c(db, da) + c(pb, da) + c(pa, pb)

}
This distance is symmetric and satisfies the triangle inequality.

Distance 3 is 0 if a = b, or the minimum cost to connect pickup and delivery vertices of a
to the pickup or delivery vertex of b. More formally, for a 6= b,

dist3(a, b) = min
{
c(pa, pb) + c(da, pb),
c(pa, db) + c(da, db)

}
This distance is not symmetric and does not satisfy the triangle inequality.

Distance 4 is the symmetric version of dist3, i.e., the minimum cost between applying dist3
to (a, b) and to (b, a). More formally, dist4(a, b) = min{dist3(a, b), dist3(b, a)} . This
distance is symmetric, but does not satisfy the triangle inequality.

Distance 5 is the minimum cost of edges necessary to connect a vertex from agent a to a ver-
tex from agent b. More formally, dist5(a, b) = min{c(pa, pb), c(pa, db), c(da, pb), c(da, db)} .
This distance is symmetric, but does not satisfy the triangle inequality.

Distance 6 is the cost of a minimum path on the contracted graph using Distance 5 as edges
costs. More formally, let GA5 be the contracted graph using Distance 5, dist6(a, b) =
minP∈P{c(P )|a ∈ P, b ∈ P} , where P is the set of all paths in GA5 and c(P ) is the cost
of path P . This distance is symmetric and satisfies the triangle inequality.

5.2 Greedy Randomized Adaptive Algorithm
The Greedy Randomized Adaptive algorithm, presented in Algorithm 2, creates n different
partitions of the agents set, starting with a partition containing just one cluster with all agents.
The algorithm iteratively constructs a new partition, increasing by one the number of clusters
in it, until a final partition containing n clusters with isolated agents is created. For each
partition, the algorithm creates a cycle cover by using the TSP heuristics described in Section
3 to construct a cycle for each cluster in the partition. Among all cycle covers created, the
one with minimum cost is returned as solution. The algorithm starts by choosing at random
an initial head (line 2.1) and by creating an initial cluster C1 containing all vertices (line 2.3).
Then, it computes the cost of the corresponding cycle cover of this initial clustering (line 2.4)
and sets this solution as the best one so far. In any iteration of the main loop (lines 2.5 -
2.17), we begin with a partition with clusters C1, . . . , Ck−1 and we want to construct a new
partition C1, . . . , Ck, with one more cluster. Each cluster Ci has a special vertex denominated
head, denoted by hi. The algorithm proceeds by choosing a new head hk, which is chosen as
the agent that is farthest from its current head (lines 2.6 - 2.7). Then the algorithm re-creates
the clusters C1, . . . , Ck containing only their respective heads and, for each agent a which is
not a head, it is re-assigned to the cluster of minimum distance (lines 2.9–2.14). The distance
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Algorithm 2: Greedy Randomized Adaptive.
Input : (G, c,A), a distance function dist, and a threshold T .
Output :A cycle cover C.

2.1 initial_head← a random vertice ∈ A
2.2 initial_head becames the head of cluster C1;
2.3 All agents are assigned to C1;
2.4 best_cover ← a cycle cover computed from C1;
2.5 for k ← 2 to n do
2.6 new_head← the agent that is farthest from its closest head;
2.7 new_head becomes a head of cluster Ck;
2.8 Remove all agents that are not a head from their clusters and put them on a list L
2.9 while there are elements in L do

2.10 Let min_dist and max_dist be the minimum and maximum distance of any agent in L
to any cluster, respectively;

2.11 Create RCL list with the agents that are in a distance less than or equal to
(min_dist+ T (max_dist−min_dist));

2.12 Randomly choose an agent a in RCL;
2.13 Put the a in its closest cluster;
2.14 Remove a from L;
2.15 Let C be a cycle cover computed from clusters C1 to Ck;
2.16 if cost of C is less than cost of best_cover then
2.17 best_cover ← C

2.18 return best_cover

of agent a to a cluster C is defined as dist(a,C) = minb∈C {dist(a, b)} . Since we want a
greedy randomized initial solution, instead of attributing each agent to the closest cluster
in a deterministic greedy fashion, the heuristic creates a Restricted Candidate List (RCL)
with the agents that are close to some cluster. More precisely, the RCL is created as follows,
let min_dist and max_dist be the minimum and maximum distance, respectively, of any
agent to any cluster. Given a threshold T , which is a value between 0 and 1, the algorithm
constructs the RCL (lines 2.10 - 2.11) as the set containing every agent whose distance to
a cluster is at most (min_dist+ T (max_dist−min_dist)). Then the algorithm chooses,
uniformly at random, one of theses agents, and assigns it to its closest cluster (lines 2.12 -
2.13). Notice that the minimum distance of the remaining agents in L has to be updated,
since they may now become closer to the cluster where agent a was inserted. The algorithm
proceeds until all agents are assigned to some cluster in {C1, . . . , Ck}. Finally, the algorithm
obtains a solution for the R-SMCP by running a TSP heuristic for each cluster (line 2.15)
and it saves this solution if it is better than the current best one (lines 2.16 - 2.17).

5.3 Local Search

The Local Search algorithm begins with a current solution and then generates a set of
neighbour solutions. If one of these has a cost reduction compared to the current solution,
then the algorithm updates the current solution with the best neighbour solution found. It
repeats this process until there is no significant improvement.

The algorithm used to find the best solution among the neighbour solutions is presented
in Algorithm 3. The set of neighbor solutions S initially contains only the current solution
(line 3.1). For each agent a, the algorithm builds several new solutions as follows. In one of
the new solutions agent a is removed from its current cycle and is left alone in an isolated
cycle (line 3.3). The other solutions are constructed by removing agent a from its current
cycle and inserting it in another cycle (lines 3.5 - 3.6). In the Computational Results section
we use a first improvement variant of this algorithm, where it returns the first generated
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Algorithm 3: Find Best Neighbor Solution
Input : (G, c,A) and an initial solution S′.
Output :A solution.

3.1 Let S be a set of solutions initially containing only S′
3.2 foreach a in A do
3.3 S ← isolate(S′, a)
3.4 Add S to S
3.5 foreach cycle C in S′ do
3.6 S ← swap_cycle(S′, C, a)
3.7 Add S to S

3.8 return the best solution in S

solution that improves the current one S′. The first improvement variant obtained better
results since the complete local search has to explore a costly neighbourhood, where for each
swap of agent a, we need to run the TSP heuristics to rebuild a cycle.

6 Computational Results

All computations were performed in a single thread of an Intel Core™i7-4790 processor at
3.60GHz with 16GB of RAM, with Linux. The algorithms were implemented in C++, using
the Graph library Lemon [14]. To solve the linear relaxation we used the Gurobi solver [10].

6.1 Instances
Since, to the best of our knowledge, there is no previous work on the R-SMCP, we have
tested our algorithms on two types of instances: type 1 is a set of instances from the
multi-commodity one-to-one pickup-and-delivery traveling salesman problem (m-PDTSP),
and type 2 is a set of newly random generated instances.

Hernández-Pérez and Salazar-González [12] generated a set of instances to the m-PDTSP.
For each instance, they generated 2n− 2 uniformly random points with coordinates from
−500 to 500, a vertex in position 0 with coordinates (0, 0) and a vertex in position 2n− 1
also with coordinates (0, 0) (corresponding to Class 3 of [12]). We only take into account the
vertex distribution of these instances. For each i ∈ {0, ..., n− 1}, we consider vertex i as a
pickup point of an agent and i+ n as its corresponding delivery point. The instances have 6,
11 and 16 agents, with a total of 210 instances. This set of instances is the type 1.

We also generated a set of instances having 16, 32, 64, 128 and 256 agents, where vertices
corresponds to points distributed in a square of dimensions 100000× 100000. The square is
divided in 1× 1, 2× 2, 3× 3, 4× 4 and 5× 5 frames, and each pair of pickup and delivery
is in the same frame. The space between frames, which we call a wall, has 0%, 10%, 20%,
30% or 40% of the frame’s size. The wall can be seen as a rectangle separating the different
frames (see Figure 1). The location of each point is chosen uniformly at random. For
each combination of number of agents, number of frames, and wall size, 3 instances were
generated with different seeds. Notice that for the instances with division 1× 1 there is no
wall. Therefore, we generated a set of 315 instances. This set of instances is the type 2 and
it can be found in the Laboratory of Optimization and Combinatorics website [15].

6.2 Final Results
We first compared the GRASP algorithm in different versions, each version using a different
distance measure between agents (see Section 5.1). Figure 2 shows the performance profiles
[3] comparing the different versions of the GRASP algorithm. This graphic is build as follows.
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(a) 1x1 (b) 3x3 (c) 3x3 wall 0.3

Figure 1 Instances randomly generated with 16 agents, in (a) a 1× 1 frame with no wall, in (b)
a 3× 3 frame with 0% wall and in (c) a 3× 3 frame with 30% wall.
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Figure 2 Comparison between the GRASP algorithm running with different distances. The line
that appears closer to the upper-left corner gives the best results, in this case distance 6.

First of all, we execute each version of the algorithm on all instances, obtaining the solution
cost of each algorithm version for each instance. The performance profile graphic consists of
a curve for each algorithm version. A curve of an algorithm version is constructed in the
following manner: for each instance, we compute the ratio between the versions’s solution
cost and the best solution obtained for that instance among all algorithm versions.

The performance profile of an algorithm version is a plot of the cost ratios (x axes) versus
the percentage of instances that this algorithm version could solve within at most that ratio
(y axes). From Figure 2 we see that, except for the version using distance 2, all versions
solved more or less 75% of the instances with ratio 1, meaning that they found 75% of the
best solutions. In fact, the version using distance 6 solved almost 80% of the instances with
ratio 1, and 100% of the instances with ratio 1.05, meaning that it found 80% of the best
solutions and the other solutions had a cost at most 5% higher than the best solutions found.
So we decide to use distance 6 in the GRASP algorithm. As for the threshold T of the
adaptive method, defined on Section 5.2, we tested the values of 0.2, 0.4, 0.6, 0.8, and 1, and
in general the best results were obtained with T = 0.6.

The GRASP algorithm was set to run for log2(n) iterations, where n is the number of
agents in that instance. Figure 3 presents the performance profiles of the GRASP algorithm
and the Refinement Search. We also included the results of the lower bound obtained by
solving the LP. For the type 1 instances, the Refinement Search found optimal solutions for
approximately 60% of the instances, while GRASP found 40% of optimal solutions, and the
Refinement Search found solutions to all instances with cost at most 6% higher than the
lower bound given by the LP solution. For the type 2 instances we obtained similar results.
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(a) Comparison for instances of type 1.
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(b) Comparison for instances of type 2.

Figure 3 Comparison between GRASP and Refinement Search heuristics.

Table 1 Results separated by instance classes.

GAP(%) time (s)
Classes # inst RS GRASP RS GRASP
m-PDTSP 210 0.76 1.99 0.02 0.01
1x1 15 4.64 5.58 42.02 306.35
2x2 75 2.99 3.79 30.69 89.09
3x3 75 2.39 3.75 31.15 63.25
4x4 75 1.82 3.44 29.93 78.58
5x5 75 1.56 3.43 29.56 86.52
W0.0 75 3.72 5.13 34.45 290.09
W0.1 60 3.27 4.91 30.83 85.98
W0.2 60 2.00 3.45 29.59 9.04
W0.3 60 1.11 2.35 29.16 7.83
W0.4 60 1.06 2.30 29.54 7.93
rg-016 63 0.38 1.81 0.03 0.01
rg-032 63 1.16 2.69 0.22 0.10
rg-064 63 2.44 4.19 1.98 1.34
rg-128 63 3.51 4.69 15.62 26.71
rg-256 63 4.04 5.11 136.59 422.69
total average 1.69 3.02 18.54 54.11

In Table 1 we present a comparison of the Refinement Search (RS) and GRASP separating
the results by the type and properties of the instances. In this table, in each line, we present
the average GAP, and time, of the instances of a certain class compared to the lower bound
obtained by solving the LP. The line m-PDTSP contains the results of the instances of type
1. For the type 2 instances, we sub-divided it depending on some properties. The “1× 1”
class contains results of the instances with one frame, while the “2× 2” contains the results
of the instances with 4 frames and so on. The “W0.x” class contains the results of the
instances with wall separation of (10× x)% of the size of the frame. In the last lines, the
“rg-n” classes, we separated the instances by the number of agents n. The Refinement Search
algorithm consistently obtained the lowest gaps and, in general, was also faster than the
GRASP algorithm. We observe that the cost of the Refinement Search solution was, on
average, 1.29% lower than the cost of the GRASP solution. We conjecture that Refinement
Search performs better than GRASP because the latter works with agents as vertices of a
modified graph, while the former deals with the original graph with pairs of vertices.
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Abstract
Given an urban road network and a set of origin-destination (OD) pairs, the traffic assignment
problem asks for the traffic flow on each road segment. A common solution employs a feasible-
direction method, where the direction-finding step requires many shortest-path computations.
In this paper, we significantly accelerate the computation of flow patterns, enabling interactive
transportation and urban planning applications. We achieve this by revisiting and carefully
engineering known speedup techniques for shortest paths, and combining them with customizable
contraction hierarchies. In particular, our accelerated elimination tree search is more than an
order of magnitude faster for local queries than the original algorithm, and our centralized search
speeds up batched point-to-point shortest paths by a factor of up to 6. These optimizations are
independent of traffic assignment and can be generally used for (batched) point-to-point queries.
In contrast to prior work, our evaluation uses real-world data for all parts of the problem. On a
metropolitan area encompassing more than 2.7 million inhabitants, we reduce the flow-pattern
computation for a typical two-hour morning peak from 76.5 to 10.5 seconds on one core, and
4.3 seconds on four cores. This represents a speedup of 18 over the state of the art, and three
orders of magnitude over the Dijkstra-based baseline.
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1 Introduction

The number of drivers traveling along a road segment within a given period is the result of
many individual decisions. The common behavioral assumption in practice is that motorists
driving between a given origin and destination choose the path with the minimum travel
time (known as Wardrop’s first rule [39]). This seems natural, since travel is usually not a
goal in itself, but entails disutility. However, the travel time on a path depends on the route
choice of all other drivers, who themselves are trying to choose minimum travel time routes.
Due to congestion, the travel time on a road segment increases with the traffic flow on it. As
a result, some drivers choose at some point alternative routes, which can also get congested,
and so on. When no driver can improve his travel time by unilaterally changing routes, each
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route used between a given origin and destination has the same travel time. This condition is
known as the user equilibrium, and the flow pattern is called the equilibrium flow pattern [37].

We study the efficient computation of equilibrium flow patterns in road networks. More
formally, given an urban road network and a set of origin-destination (OD) pairs, we want
to compute the traffic flow on each road segment at equilibrium. This is known as traffic
assignment, and is one of the major problems facing transportation engineers and urban
planners [37]. In this paper, we accelerate the process of traffic assignment significantly
(by a factor of 18). Our goal is twofold. The short-term objective is to enable interactive
transportation and urban planning applications. The long-term aim is to develop a real-time
demand-responsive public transit system, which makes use of a traffic assignment procedure
as a subroutine. There, we decrease (rather than increase) the travel cost per individual as
the flow increases, since increased flow makes public transit more cost-effective.

Related Work. The traffic assignment problem has been studied for over 60 years, and
has motivated extensive research in the operations research community. The formulation
as a mathematical program first appeared in 1956 [5]. A common solution employs the
Frank-Wolfe algorithm [17], a feasible-direction method for solving quadratic programs with
linear constraints. The application of the Frank-Wolfe method to the traffic assignment
problem was first proposed in the late 1960s [6, 31], and the solution was implemented
and experimentally evaluated for the first time in 1975 [25]. The textbook by Sheffi [37]
offers a comprehensive introduction to the traffic assignment problem and considers research
published until 1985. More recent developments are covered by Patriksson [32]. Peeta et
al. [33] survey recent advances in dynamic traffic assignment, recognizing time variations
in traffic flows and conditions during the period of analysis. Finally, Babonneau et al. [1]
collect benchmark instances previously used in the literature, however, their largest instance
is still an order of magnitude smaller than the benchmark instance used in this paper.

The performance of the Frank-Wolfe algorithm is clearly dominated by the direction-
finding step, which requires a large number of shortest-path computations. The past decade
has seen intense research on speedup techniques [2] for Dijkstra’s algorithm [13], which
rely on a slow preprocessing phase to enable fast queries. One of the most prominent and
versatile techniques among these are contraction hierarchies (CH) [18], which exploit the
inherent hierarchy of the network. A fairly recent development are customizable speedup
techniques [8, 12, 14], which split preprocessing into a slow metric-independent part, taking
only the graph structure into account, and a fast metric-dependent part (the customization),
incorporating new edge weights (the metric). CRP [8] and customizable CHs [12] are the
most prominent among them. A common approach to accelerate one-to-all queries is to
bundle together multiple shortest-path computations in a single search [20, 8, 7, 4, 40].

To the best of our knowledge, there is only a single paper [26] that solves the traffic
assignment problem using state-of-the-art shortest-path algorithms (plain CHs in this case).

Contribution and Outline. The contribution of this work is twofold. First, we accelerate
the state of the art in the area of traffic assignment. On our main benchmark instance, we see
a speedup of 18. This is more than three orders of magnitude faster than the Dijkstra-based
baseline. However, the building blocks to achieve this are also independent contributions,
not restricted to traffic assignment, but generally applicable in the area of route planning.
Our two main building blocks are as follows. (1) Currently, there are two CCH query
algorithms, one based on Dijkstra’s algorithm and one based on elimination trees (a structure
encoding the CH search space of each vertex). We thoroughly reengineer the elimination tree
search (Section 3), providing a unified query algorithm that combines the good local-query



V. Buchhold, P. Sanders, and D. Wagner 27:3

performance of the Dijkstra-based search with the good global-query performance of the
elimination tree search. (2) We introduce a centralized elimination tree search for computing
batched point-to-point shortest paths fast (Section 4). While there is a large amount of work
on one-to-all, one-to-many, many-to-many, and point-of-interest queries [7, 9, 15, 16, 22, 10],
we are the first that accelerate batched point-to-point shortest paths. All building blocks
are extensively experimentally evaluated using solely real-world data (Section 5), whereas
previous work fell back on synthetic OD-pairs [26].

2 Preliminaries

We now briefly review the three main algorithms we build upon. First, we describe the
Frank-Wolfe algorithm for solving the traffic assignment problem. Then, we discuss two
speedup techniques for Dijkstra’s algorithm, CHs and their customizable counterpart CCHs.

2.1 Traffic Assignment
Popular approaches [37] to the traffic assignment problem formulate a mathematical program,
known as Beckmann’s transformation [5], whose solution is the equilibrium flow pattern. It is
a convex minimization program with linear constraints. The Frank-Wolfe algorithm [17, 37], a
feasible-direction method, is especially suitable for solving Beckmann’s transformation, since
the direction-finding step can be implemented relatively efficiently. Being a feasible-direction
method, it iteratively finds a feasible descent direction and advances by an optimal move
size in the direction. An important subroutine of the Frank-Wolfe algorithm (when solving
Beckmann’s transformation) is the all-or-nothing assignment procedure, which processes
each OD-pair in turn and assigns one flow unit to each edge on the shortest travel time path.

The algorithm can be summarized as follows. (1) Perform an all-or-nothing assignment
using free-flow travel times, yielding an initial solution. (2) Update the travel time on each
edge according to the current solution (recall that the travel time increases with the traffic
flow). (3) Perform an all-or-nothing assignment using the current travel times, yielding a
set of auxiliary flows. (4) Perform a line search to determine the optimal move size α. (5)
Set the new solution to a convex combination of the current solution and the auxiliary flows
(according to α). (6) Check the stopping criterion, and terminate or go to step (2). In this
paper we update travel times according to the modified Davidson function [30], perform the
bisection method of Bolzano as line search, and stop after a predefined number of iterations.

2.2 Contraction Hierarchies
Contraction hierarchies (CH) [18] are a two-phase speedup technique to accelerate point-to-
point shortest-path computations, which exploits the inherent hierarchy of road networks.
The preprocessing phase heuristically orders the vertices by importance, and contracts them
from least to most important. Intuitively, vertices that hit many shortest paths are considered
more important, such as vertices on highways. To contract a vertex v, it is temporarily
removed from the graph, and shortcut edges are added between its neighbors to preserve
distances in the remaining graph (without v). Note that a shortcut is only needed if it
represents the only shortest path between its endpoints, which can be checked by running a
witness search (local Dijkstra) between its endpoints. The query phase runs a bidirectional
Dijkstra on the augmented graph that only relaxes edges leading to vertices of higher ranks
(importance). The stall-on-demand [18] optimization prunes the search at any vertex v with
a suboptimal distance label, which can be checked by looking at upward edges coming into v.
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Traffic Assignment Using CHs. The shortest-path computations are by far the most time-
consuming part of the Frank-Wolfe algorithm. Carrying them out with the use of CHs (instead
of Dijkstra’s algorithm) accelerates traffic assignments by two orders of magnitude [26]. Since
the weight of each edge changes between two iterations, the CH is rebuilt from scratch in
each iteration. Queries do not unpack shortcuts, but assign one flow unit to each (shortcut)
edge on the packed path. After computing all paths, the shortcuts are unpacked in top-down
fashion, with cumulated flow units propagated from shortcut to original edges.

2.3 Customizable CHs

Customizable contraction hierarchies (CCH) [12] are a three-phase technique, splitting CH
preprocessing into a relatively slow metric-independent phase and a much faster customization
phase. The metric-independent phase computes a nested dissection order [3, 19] on the
vertices of the unweighted graph, and contracts them in this order without running witness
searches (as they depend on the metric). As a result, it adds every potential shortcut. The
customization phase computes the weights of the shortcuts by processing them in bottom-up
fashion. To process a shortcut (u, v), it enumerates all triangles 〈u, v, w〉 where w has lower
rank than u and v, and checks if the path (u,w, v) improves the weight of (u, v). After basic
customization, one can optionally run perfect witness searches to remove superfluous edges.

There are two different query algorithms possible. First, one can run a standard CH
search without modification. In addition, Dibbelt et al. [12] describe a query algorithm based
on the elimination tree of the augmented graph. The parent of a vertex in the elimination
tree is its lowest-ranked upward neighbor in the augmented graph. Bauer et al. [3] prove
that the ancestors of a vertex v in the elimination tree are exactly the set of vertices in the
CH search space of v. Hence, the elimination tree query algorithm explores the search space
by traversing the elimination tree, avoiding a priority queue completely.

3 Accelerating Elimination Tree Searches

In the next section, we will devise a fast traffic assignment procedure based on customizable
contraction hierarchies. While Dibbelt et al. [12] observe that the CCH query algorithm
based on elimination trees achieves fastest query times for random queries (which tend to
be long-range), it is slower by more than an order of magnitude than the Dijkstra-based
query algorithm for local queries (see Section 5). However, the input of the traffic assignment
problem consists of both local and long-range OD-pairs, requiring a query algorithm that can
handle both types of queries well. Therefore, we review and carefully engineer the elimination
tree search in this section. The result is a fast, unified CCH query algorithm, combining
good performance for both local and long-range queries.

Given a source vertex s and a target vertex t, the original elimination tree search [12]
works in five phases. First, we compute the lowest common ancestor (LCA) x of s and t in
the elimination tree T rooted at the highest-ranked vertex r. This is done by enumerating
the ancestors of s and t in increasing rank order until a common ancestor is found. Second,
we revisit each vertex v on the s–x path in T , relaxing all outgoing upward edges of v. Third,
we do the same for each vertex v on the t–x path in T , relaxing all incoming upward edges of
v. Fourth, we visit each vertex v on the x–r path in T , relaxing all outgoing and incoming
upward edges of v. Moreover, we check at each such vertex v whether the s–t path via v
improves the tentative s–t distance. Fifth, we again revisit each vertex on the s–r and t–r
path to reset its distance labels for the next shortest-path computation.
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Phase Reduction. Our first optimization reduces the number of phases of the elimination
tree search. We refrain from computing the LCA first, and then visiting each vertex from the
source (target) to the LCA again. Instead, while we enumerate the ancestors of s and t in
the same fashion as before, we immediately relax their edges. Moreover, we observe that the
resetting phase is unnecessary. After relaxing the edges of a vertex, its distance labels are
never read again. Therefore, we can safely reset them to ∞ right after relaxing the edges,
avoiding the fifth phase completely. Note that we cannot reset parent pointers, since they
may be needed afterwards. However, this is not an issue because resetting the distance labels
suffices to decide whether a vertex has been visited before during the next query. With this
optimization, each vertex is visited at most once, instead of up to three times as before.

Pruning Rule. The basic elimination tree search does not make use of pruning. Only when
combined with the perfect witness search, Dibbelt et al. [12] employ the following basic
pruning rule. Due to the removal of superfluous edges, a vertex may have an ancestor in
the elimination tree that is not in its perfect search space. Such an ancestor will have a
distance label of ∞ when visited during the search. To accelerate queries, Dibbelt et al. do
not relax the edges of a vertex with a distance label of ∞. We observe that a stricter pruning
rule is possible. We do not relax edges of a vertex whose distance label exceeds the current
tentative shortest-path distance, since those edges cannot possibly contribute to a shorter
path. Despite its simplicity, this optimization accelerates the search quite drastically, by a
factor of 15 for short-range queries (see Section 5). Moreover, our pruning rule does not
require the perfect witness search, but can also be combined with the basic customization.

4 Accelerating Traffic Assignments by Fast Batched Shortest Paths

Previous work [26] applying speedup techniques to traffic assignment observed that the
performance bottleneck depends on the traffic scenario under study. For short or off-peak
periods, where there are few OD-pairs, preprocessing dominates the total running time. When
there are many OD-pairs, as for long or peak periods, queries become the main bottleneck.

To decrease the preprocessing time, we apply the concept of customization to traffic
assignment. Customizable speedup techniques [8, 12, 14] split preprocessing into a metric-
independent part, taking only the graph structure into account, and a metric-dependent
part (the customization), incorporating new edge weights (the metric). Since the graph
topology does not change in all iterations of the traffic assignment procedure and only edge
weights change, it suffices to run a fast customization in each iteration instead of an entire
preprocessing. We build our accelerated traffic assignment upon customizable contraction
hierarchies [12], which allows us to employ the hierarchy decomposition optimization from [26].
As basic query algorithm, we use the engineered elimination tree search from the previous
section. To reduce the query time, the following sections introduce several optimization
techniques for computing batched point-to-point shortest paths fast.

4.1 Reordering OD-pairs to Exploit Locality
Previous work processed the OD-pairs in no particular order. However, reordering the
OD-pairs so that pairs with similar forward and reverse search spaces tend to be processed in
succession improves memory locality and cache efficiency. We call two search spaces similar
if their symmetric difference is small. Note that the size of the symmetric difference between
the search spaces of u and v is equal to the distance between u and v in the elimination tree.
Hence, we partition the elimination tree into as few cells with bounded diameter as possible,
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assign IDs to cells according to the order in which they are reached during a DFS [29] on the
elimination tree, and reorder OD-pairs lexicographically by the origin and destination cells.

We use a simple yet optimal greedy algorithm to partition the elimination tree into as
few cells with diameter at most U as possible. Our algorithm repeatedly cuts out a subtree
(with diameter at most U) and makes it a cell of its own. In order to do so, it maintains for
each vertex v the height h(v) of the remaining subtree Tv rooted at v, initialized to zero, and
processes vertices in ascending rank order. To process v, we examine its children wi in order
of increasing height of Twi . If h(v) + 1 + h(wi) ≤ U , we set h(v) = 1 + h(wi). Otherwise, we
cut out Twi

, making it a cell of its own. We use U = 40 in our experiments.

4.2 Centralized Searches
Instead of processing similar OD-pairs in succession, processing them at once in a single
search achieves additional speedup. The idea of bundling together multiple shortest-path
computations was introduced in [20] and later used in [8, 7, 9, 4, 40]. However, in each case,
centralized searches were only used for one-to-all and -many queries, and only combined with
plain Dijkstra (and Bellman-Ford in [8]). Even (R)PHAST [7, 9] performs the CH searches
sequentially, and bundles only the linear sweeps. We extend the idea to point-to-point queries,
and combine it with CH searches, including appropriate stopping and pruning criteria.

The basic idea of centralized searches is to maintain k distance labels for each vertex u,
laid out consecutively in memory. The i-th distance label represents the tentative distance
from the i-th source to u. Initially, the i-th distance label of the i-th source is set to zero,
and all remaining kn − k distance labels to ∞. When relaxing an edge (u, v), we try to
improve all k distance labels of v at once. Increasing k allows us to compute more shortest
paths at once, however, it also evicts useful data from caches.

Dijkstra-Based Search. Initially, we insert all k sources (targets) into the queue of the
forward (reverse) search. As keys, we can use many different values, for example the minimum
over all k entries in a distance label or the minimum over the entries that were improved by
the last edge relaxation. However, a preliminary experiment showed that using the minimum
over all k entries clearly dominates the others, which is consistent with previous observations
on related techniques [20]. We can stop the forward (reverse) search as soon as its queue is
empty or the smallest queue entry exceeds the maximum over all k tentative shortest-path
distances. When using stall-on-demand [18], we prune the forward (reverse) search at a
vertex v when each of the k distance labels of v is suboptimal.

Elimination Tree Search. Computing multiple shortest paths in a single elimination tree
search is more involved, since it uses no queues that can easily be initialized with multiple
sources and targets. Instead, we equip the forward and reverse search each with a tournament
tree [23]. Suppose we have k sorted sequences that are to be merged into a single output
sequence, as in k-way mergesort. To do so, we have to repeatedly find the smallest from the
leading elements in the k sequences. This can be done efficiently with a tournament tree.

In our case, the k sorted sequences are the paths in the elimination tree T from each
source (target) to the root, and the single output sequence is the order in which we want
to process the vertices during the search. More precisely, we initialize the tournament tree
with all k sources (targets). Then, we extract a lowest-ranked vertex from the tournament
tree, process it, and insert its parent in T into the tournament tree. We continue with a
next-lowest-ranked vertex, until we reach the root of T . Note that in our case, unlike in
mergesort, the sequences are implicit, and never stored explicitly.
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As soon as two (or more) of the k paths in T converge at a common vertex, there are
duplicates in the single output sequence. However, we want to process each vertex at most
once. Therefore, whenever two or more paths converge, we block all but one of them, so that
only one continues to move through the tournament tree. To do so, we insert for each path
to be blocked a vertex with infinite rank into the tournament tree (instead of the next vertex
on the path). We know that some paths converged, when we extract the very same vertex
several times in succession from the tournament tree.

A clear advantage of the centralized elimination tree search is that it retains the label-
setting property, i.e., each vertex and each edge is processed at most once. In contrast, the
centralized Dijkstra-based search is a label-correcting algorithm. Note that one centralized
elimination tree search is slower than k elimination tree searches by a factor of log k in
O-notation (due to k-way merging), but outperforms them in practice (see Section 5).

4.3 Instruction-Level Parallelism

Modern CPUs have special registers and instructions that enable single-instruction multiple-
data (SIMD) computations performing basic operations (e.g., additions, subtractions, shifts,
compares, and data conversions) on multiple data items simultaneously [24]. We implemented
versions of the centralized searches using SSE instructions (working with 128-bit registers), and
additionally versions using AVX(2) instructions (manipulating 256-bit registers), requiring a
processor based on Intel’s Haswell or AMD’s Excavator microarchitecture.

As an example, we describe how an AVX-accelerated edge relaxation (used in Dijkstra-
based and elimination tree searches) works, assuming k = 8. Since we use 32-bit distance
labels, all k labels of a vertex fit in a single 256-bit register. To relax an edge (u, v), we copy
all k distance labels of u to an AVX register, and broadcast the edge weight to all elements
of another register. Then, we add both registers with a single instruction, and check with
an AVX comparison whether any tentative distance improves the corresponding distance
label of v. If so, we compute the packed minimum of the tentative distances and v’s distance
labels. In the same fashion, we implement the other aspects (stopping and pruning criteria).

4.4 Core-Level Parallelism

Dibbelt et al. [12] introduce parallelization techniques for the triangle enumeration during
customization. However, we observed that the perfect witness search building the upward
and downward search graphs (which is difficult to parallelize) actually takes up 60% of the
customization time. Hence, the speedup obtainable by parallelizing the customization phase
is limited (less than a factor of 1.5). For simplicity, we stick to sequential customization.

In contrast, the shortest-path computations are easy to parallelize. Since the centralized
computations are independent from one another, we can assign contiguous subsets of OD-pairs
to distinct cores. We distribute the OD-pairs to cores in chunks of size 64. This maintains
some locality even between centralized computations. Each core executes a chunk, then
requesting another chunk until no chunk remains. Flow units on the (shortcut) edges are
cumulated locally and aggregated after computing all paths. We observe an almost perfect
speedup for the time spent on queries (see Section 5).
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Table 1 Traffic scenarios used for the evaluation of our traffic assignment procedures. We report
for each scenario the period of analysis and the number of OD-pairs departing within that period.

scenario analysis period # OD-pairs

Tue30m Tue., 7:00–7:30 118 933
Tue01h Tue., 7:00–8:00 246 089
Tue02h Tue., 7:00–9:00 478 098
Tue24h a whole Tuesday 3 355 442
MonSun a whole week 21 248 278

5 Experiments

Our publicly available code1 is written in C++14 and compiled with the GNU compiler 7.3
using optimization level 3. We use 4-heaps [21] as priority queues. To ensure a correct
implementation, we make extensive use of assertions (disabled during measurements), and
check results against reference implementations such as Dijkstra’s algorithm. Our benchmark
machine runs openSUSE Leap 42.3 (kernel 4.4.114), and has 128GiB of DDR4-2133 RAM
and an Intel Xeon E5-1630 v3 CPU, which has four cores clocked at 3.70Ghz.

5.1 Inputs and Methodology
Our main instance is the metropolitan area of Stuttgart [36], Germany, encompassing more
than 2.7 million inhabitants. The experiments were performed on the largest strongly
connected component, consisting of 134 663 vertices and 307 759 edges. While this instance
is significantly smaller than road networks studied before for evaluating point-to-point
queries [2], it is the largest available to us that provides real-world capacities and OD-pairs,
and is still an order of magnitude larger than the instances collected in [1]. Moreover, urban
planners are usually interested in traffic assignments on metropolitan areas, not continents.

The OD-pairs were obtained from [27, 28], which was calibrated from a household travel
survey [38] conducted in 2009/2010. The raw data contains about 51.8 million trips between
1174 traffic zones for a whole week, encompassing various modes of transportation such
as pedestrian, bicycle, public transit and car. For our experiments we only considered car
trips, and extracted five different traffic scenarios, as shown in Table 1. We chose a typical
two-hour morning peak on a working day (Tuesday), and also included two smaller and two
larger scenarios. While it may be unrealistic to compute a traffic assignment for a whole
week (as the period of analysis would be too inhomogeneous), it shows the scalability of our
procedures for tens of millions of OD-pairs. Note that we assume the actual origins and
destinations to be uniformly distributed in the zone, and obtain OD-pairs by picking the
origins and destinations uniformly at random from the zones according to the predicted trips.

Since our engineered elimination tree search is not restricted to traffic assignment, we
evaluate it on the European road network, which is the standard benchmark instance for
point-to-point queries [2]. It has 18 017 748 vertices and 42 560 275 edges, and was made
available by PTV AG for the 9th DIMACS Implementation Challenge [11].

The CH preprocessing is borrowed from the open-source library RoutingKit2. We compute
nested dissection orders for CCHs using Inertial Flow [35], setting the balance parameter

1 https://github.com/vbuchhold/routing-framework
2 https://github.com/RoutingKit/RoutingKit

https://github.com/vbuchhold/routing-framework
https://github.com/RoutingKit/RoutingKit
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b = 0.3. The reported running times do no include partitioning time, as it suffices to partition
a network only once, and reuse the resulting order for all traffic assignments on the same
network. Partitioning the metropolitan area of Stuttgart takes less than two seconds (even
on a single core). We always use perfect witness searches in combination with CCHs.

5.2 Elimination Tree Search
First we evaluate our engineered elimination tree search on its own. As most queries in
the real world tend to be local, we use the established Dijkstra rank methodology [34],
which considers local and long-range queries equally. In contrast, random queries tend to
be long-range. The Dijkstra rank (with respect to a source s) of a vertex v is r if v is the
r-th vertex settled by a Dijkstra search from s. We run 1000 point-to-point queries (without
path unpacking) for each Dijkstra rank tested, with s picked uniformly at random. Figure 1
compares the performance of our accelerated elimination tree search (CCH-tree-fast), the
original CCH query algorithms (CCH-Dij and CCH-tree), and the plain CH search on Europe
with travel times. Note that CCH-tree is not really the original algorithm, but already uses
our phase reduction optimization. CCH-tree-fast additionally uses our stricter pruning rule.

We observe that CCH-tree, while outperforming CCH-Dij on random queries [12], is
actually much slower for most Dijkstra ranks, especially for the realistic ones. The reason
is that the performance of CCH-tree is independent of the Dijkstra rank, since it always
processes each vertex in the search space. However, our stricter pruning rule makes the
algorithm sensitive to the Dijkstra rank, drastically speeding up short- and mid-range
queries (by up to a factor of 15). As a result, CCH-tree-fast combines the good local-query
performance of CCH-Dij with the good global-query performance of CCH-tree, and is faster
than both on mid-range queries. It can be seen as a unified CCH query algorithm, replacing
both original ones. Moreover, for many (realistic) Dijkstra ranks, it is about as fast as the
non-customizable CH search. When optimizing travel distances (not shown in the figure),
CCH-tree-fast even outperforms the CH search.

5.3 Traffic Assignment
We now evaluate the impact of our building blocks (customization, reordering OD-pairs,
centralized searches, and parallelism at multi-core and instruction levels) on the performance
of the traffic assignment procedure. As already mentioned, we run a predefined number of
iterations for each scenario: twelve on Tue30m, Tue01h and Tue02h, six on Tue24h and
MonSun. This choice is consistent with [37] and also justified by subsequent experiments.

Customization and Centralized Searches. Table 2 considers the influence of customization
and of the centralized searches on the performance of the traffic assignment. For now, we use
only a single core. The CCH-based procedures use the engineered elimination tree search.

Switching from plain to customizable CHs reduces the running time for all traffic scenarios.
As expected, we obtain larger speedups for smaller scenarios (a factor of 3 on Tue30m), since
preprocessing time dominates more in such scenarios. In contrast, reordering the OD-pairs so
that similar OD-pairs are processed successively works better for larger scenarios, improving
the running time on MonSun by about 20%.

The impact of computing multiple shortest paths at once without exploiting instruction-
level parallelism is limited. However, when using SIMD instructions, centralized searches
decrease the running time by up to another factor of 5.2. Increasing k allows us to compute
more shortest paths at once, but it also evicts useful data from caches. Setting k = 32 seems
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Figure 1 Performance of our engineered elimination-tree search (CCH-tree-fast), the original
CCH query algorithms (CCH-Dij and CCH-tree), and a CH. The input is Europe with travel times.

to be a good choice. Moreover, we observe that the centralized elimination searches achieve
greater speedups than the Dijkstra-based ones, since they are label-setting. (Although the
clustering approach described in Section 4 is tailored to the elimination tree search, preliminary
experiments with unbiased clustering approaches not building upon the elimination tree
showed a quite similar performance difference.)

Combining the optimizations, the traffic assignment procedure based on AVX-accelerated
centralized elimination tree searches with k = 32 gives the best overall performance. It
speeds up the state of the art by a factor of about 8 on all of our traffic scenarios. Compared
to the Dijkstra-based baseline, this configuration is several hundred times faster.

Core-Level Parallelism. Table 3 shows how the traffic assignment procedure scales as the
number of cores increases. We observe that the time spent on queries scales very well. With
4 cores, we gain a speedup of 3.5 for Tue24h and MonSun, and even our smallest scenario
is accelerated by a factor of 2.7. In total, our multi-threaded centralized traffic assignment
procedure decreases the running time on our main benchmark instance Tue02h from 76.5 to
4.3 seconds, a speedup of 18 over the state of the art.

For comparison, we also run the state of the art on four cores, parallelizing the shortest-
path computations as described in Section 4. We observe that even on a single core, our
procedure is always more than twice as fast as the parallelized state of the art. The difference
between both parallelized versions is again a factor of about 8.

Convergence. Next, we evaluate how long the traffic assignment procedure takes to converge.
For that we run a very large number of iterations of the procedure (300 in our case) and take
the resulting flow pattern as the equilibrium situation. Figure 2 shows the average deviation
of the OD-travel-costs in each iteration from the OD-travel-costs at equilibrium.

We observe that Tue30m, Tue01h, and Tue02h require more iterations to converge, since
they are periods during the morning peak. In contrast, Tue24h and MonSun behave like



V. Buchhold, P. Sanders, and D. Wagner 27:11

Table 2 Impact of the centralized searches on the running time (in seconds) of the traffic
assignment procedure for our scenarios. We evaluate the influence of using customizable CHs,
reordering the OD-pairs (sorted), computing k shortest paths simultaneously, and using SSE and
AVX instructions. The prior state of the art and our default configuration are highlighted in bold.

algo sorted k SSE AVX Tue30m Tue01h Tue02h Tue24h MonSun

Dij ◦ 1 ◦ ◦ 1857.27 3582.67 6028.48 20128.24 128993.50

CH ◦ 1 ◦ ◦ 35.85 52.81 76.54 183.59 1082.20
CH • 1 ◦ ◦ 35.06 48.72 67.83 153.90 851.63
CH • 4 ◦ ◦ 34.47 45.75 62.20 130.07 656.66
CH • 4 • ◦ 30.27 39.85 52.89 99.22 507.49
CH • 8 ◦ ◦ 38.04 50.80 71.11 151.24 763.45
CH • 8 • ◦ 29.41 36.23 46.79 85.89 410.03
CH • 8 ◦ • 29.64 36.33 45.51 81.98 397.91
CH • 16 ◦ • 29.33 35.08 44.34 75.45 352.90
CH • 32 ◦ • 29.87 37.30 46.71 72.85 322.04
CH • 64 ◦ • 34.79 43.98 54.75 85.28 354.15

CCH ◦ 1 ◦ ◦ 11.99 22.75 40.02 132.54 803.48
CCH • 1 ◦ ◦ 10.62 19.59 34.12 108.08 659.57
CCH • 4 ◦ ◦ 9.71 17.28 29.50 87.70 499.25
CCH • 4 • ◦ 6.28 10.60 17.82 51.91 298.91
CCH • 8 ◦ ◦ 11.71 20.72 35.14 102.89 581.38
CCH • 8 • ◦ 5.31 8.61 14.02 39.25 218.79
CCH • 8 ◦ • 4.86 7.84 12.66 35.11 195.63
CCH • 16 ◦ • 4.58 6.98 10.83 27.48 144.81
CCH • 32 ◦ • 4.60 6.89 10.54 25.14 126.70
CCH • 64 ◦ • 5.91 8.92 13.55 29.78 145.33

Table 3 Impact of core-level parallelization on the performance of the traffic assignment procedure.
We report for each scenario the time spent on queries and the total running time (both in seconds).

# Tue30m Tue01h Tue02h Tue24h MonSun

algo cores qry total qry total qry total qry total qry total

CH 4 4.14 24.76 8.21 28.33 14.85 34.41 46.28 54.97 295.39 304.33

CCH 1 3.12 4.60 5.41 6.89 9.05 10.54 24.42 25.14 125.97 126.70
CCH 2 1.85 3.32 3.18 4.66 5.23 6.71 13.46 14.18 70.18 70.91
CCH 3 1.38 2.86 2.29 3.76 3.63 5.10 9.09 9.82 47.12 47.85
CCH 4 1.17 2.65 1.82 3.31 2.86 4.33 6.95 7.67 35.90 36.64

off-peak periods, since the traffic is considered to be uniformly distributed over the period of
analysis. In relatively uncongested networks, the edge flows are in the range where the travel
time functions are almost flat, the updated travel times are closer to the initial ones, and
the equilibrium flow pattern is more similar to the initial solution [37]. The peak scenarios
are close to equilibrium after about twelve iterations, the off-peak scenarios after about six
iterations.
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Figure 3 Time in seconds (vertical) spent in each iteration (horizontal) for the multi-threaded
traffic assignment procedure (using all 4 cores). For MonSun, customization and other work are
hardly visible, since they take only 1.59% and 0.41% of the total time, respectively.

Time per Iteration. Figure 3 plots the running time (per phase) that our multi-threaded
traffic assignment spends in each iteration. First, we observe that the procedure spends
the same amount of time in each iteration. Although the inherent hierarchy of the network
is weakened while computing an equilibrium flow pattern [26], this is expected since the
performance of both CCH customization and queries is mostly metric-independent [12]. For
our smallest scenario, customization takes 44% of the total time. This decreases to 27% for
Tue02h, and to 2% for our largest scenario. All other work, such as the line search, the edge
updates, and the convergence checks, is negligible (only 12% even for the smallest scenario).

6 Conclusion

We accelerated the computation of equilibrium flow patterns significantly. This was achieved
by carefully engineering a number of building blocks, including customization, an improved
CCH query algorithm, centralized searches, and parallelism at multi-core and instruction
levels. Moreover, the improved, unified CCH query algorithm (replacing both original query
algorithms) and the centralized elimination tree search are not restricted to the traffic
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assignment problem, but generally applicable to (batched) point-to-point shortest paths.
All building blocks were evaluated on real-world data used in production systems. On a
metropolitan area encompassing more than 2.7 million inhabitants, we compute the flow
pattern for a typical two-hour morning peak in merely 4.3 seconds, 18 times faster than
the state of the art, and 1390 times faster than the Dijkstra-based baseline. This makes
interactive urban transportation planning applications practical.

For traffic scenarios where the shortest-path computations are still the performance
bottleneck of the traffic assignment procedure, it would be interesting to process only a
sample of the demand in early iterations, and add more and more OD-pairs in subsequent
iterations. In addition, we are interested in testing our traffic assignment procedure on
benchmark instances that are even an order of magnitude larger than the one used in this
work. Since we are not aware of any such real-world instances, we plan to work on realistic
generators for synthetic OD-pairs. Finally, it would be interesting to study the efficient
computation of time-dependent traffic flow profiles.
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Abstract
Given a vertex-colored graph H and a multiset M of colors as input, the graph motif problem
asks us to decide whether H has a connected induced subgraph whose multiset of colors agrees
with M . The graph motif problem is NP-complete but known to admit randomized algorithms
based on constrained multilinear sieving over GF(2b) that run in time O(2kk2mM(2b)) and with
a false-negative probability of at most k/2b−1 for a connected m-edge input and a motif of size
k. On modern CPU microarchitectures such algorithms have practical edge-linear scalability to
inputs with billions of edges for small motif sizes, as demonstrated by Björklund, Kaski, Kowalik,
and Lauri [ALENEX’15]. This scalability to large graphs prompts the dual question whether it
is possible to scale to large motif sizes.

We present a vertex-localized variant of the constrained multilinear sieve that enables us to
obtain, in time O(2kk2mM(2b)) and for every vertex simultaneously, whether the vertex parti-
cipates in at least one match with the motif, with a per-vertex probability of at most k/2b−1 for
a false negative. Furthermore, the algorithm is easily vector-parallelizable for up to 2k threads,
and parallelizable for up to 2kn threads, where n is the number of vertices in H. Here M(2b) is
the time complexity to multiply in GF(2b).

We demonstrate with an open-source implementation that our variant of constrained multilin-
ear sieving can be engineered for vector-parallel microarchitectures to yield hardware utilization
that is bound by the available memory bandwidth.

Our main engineering contributions are (a) a version of the recurrence for tightly labeled
arborescences that can be executed as a sequence of memory-and-arithmetic coalescent parallel
workloads on multiple GPUs, and (b) a bit-sliced low-level implementation for arithmetic in
characteristic 2 to support (a).
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1 Introduction

Computer microarchitectures are increasingly vector-parallel, or, single-instruction-multiple-
data (SIMD) parallel. While such parallelism can be harnessed to an impressive effect in many
applications, a number of applications still remain where vector-parallel algorithm designs
have not yet been deployed in a manner that seeks to utilize the maximum parallel bandwidth
obtainable, especially in terms of memory bandwidth. Problems with (sparse) graph inputs
are a particular case where high-bandwidth vectorization is not immediate, in particular
because traversing the edges of a graph via adjacency lists produces a data-dependent1
pattern of memory accesses that does not vectorize easily, unless the algorithm design is such
that each traversal of an edge involves accesses to one or more long vectors of consecutive
words in memory. The protagonist of this paper is the following NP-complete graph problem,
which we will show admits such vectorizable algorithm designs.

The Graph Motif Problem. The graph motif problem asks, given a vertex-colored graph H
(the host graph) and a multiset M of colors (the motif or the query) as input, whether H has
a connected induced subgraph whose multiset of colors agrees with M . The set of vertices of
such a connected induced subgraph is called a match to the query. The graph motif problem
appears, for example, as a query problem for protein interaction networks in computational
biology (cf. Lacroix, Fernandes, and Sagot [24] and Bruckner, Hüffner, Karp, Shamir, and
Sharan [8]); we postpone a further discussion of earlier work to the end of this section.

Asymptotically the currently fastest algorithm designs for the graph motif problem are
based on algebraic methods. For a connected host graph with m edges and a motif of size k,
constrained multilinear sieving (cf. Björklund, Kaski, and Kowalik [6]) over the finite field
GF(2b) enables a randomized algorithm that runs in time O

(
2kk2mM(2b)

)
and reports a false

negative with probability at most k/2b−1 (cf. Björklund, Kaski, Kowalik, and Lauri [7]). Here
M(2b) = O(b log b) is the time complexity of multiplication in GF(2b), cf. Lin, Al-Naffouri,
Han, and Chung [25].

We observe in particular that the time complexity O
(
2kk2mM(2b)

)
of the Björklund–

Kaski–Kowalik–Lauri design scales linearly in the number of edges m. Conversely, it is
known that the exponential 2k scaling in the motif size is the best possible unless there
is a breakthrough in the complexity of the set cover problem (cf. Björklund, Kaski, and
Kowalik [6, Theorem 6]).2

From a practical engineering perspective, constrained multilinear sieving is known to
scale essentially in an edge-linear manner on modern CPU microarchitectures to graphs with
hundreds of millions to billions of edges on a single compute node, when the motif size is
small (cf. Björklund, Kaski, Kowalik, and Lauri [7]).

The present paper studies the dual question, namely what kind of empirical scalability
can one obtain as a function of increasing motif size k. This question is motivated, for

1 Indeed, while an adjacency list itself is read linearly from consecutive memory addresses, an algorithm
typically must use the outcomes of such reads to address its further memory accesses, for example, to
an array with one entry for each vertex in the graph.

2 More precisely, an O∗((2− ε)k)-time design for some constant ε > 0 for the graph motif problem would
imply a O∗((2− δ)n)-time design for the set cover problem on a universe of size n for some constant
δ > 0.
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example, when one is searching for a group of vertices with a specific color composition, but
these vertices need not be immediately adjacent but rather some uncertain distance away
from each other in the host graph. In this setting, the task can still be formulated as an
instance of the graph motif problem,3 but this instance will have a somewhat larger size
k for the motif. In this situation, theory tells us that it will be difficult to obtain a base
algorithm design with better than 2k scalability in k, so one is essentially forced to seek
efficiency through implementation engineering. Here constrained multilinear sieving is an
excellent base design for vector-parallelization, in particular since the algorithm evaluates
the same multivariate polynomial P (defined by H) at 2k distinct points (defined by the
colors of H and M together with randomization). Furthermore, one can use a small field
size 2b and yet obtain good control on the probability of false negatives.

Our Contributions. Using the open-source CPU-based parallel implementation of Björklund,
Kaski, Kowalik, and Lauri [7] as a starting point, we engineer an implementation of motif
search that runs on compute nodes with one or more GPUs with performance that for large
motif sizes achieves the empirical peak transfer bandwidth of the GPU on-device memory.
Our present implementation is tailored for NVIDIA GPUs, but relies on design principles
that generalize to other vectorized microarchitectures, including CPUs with vector units.

In more detail, our contributions are as follows:
(i) Vertex-localized sieving. We develop a novel variant of the constrained multilinear sieve

that operates simultaneously on a family of multivariate polynomials, one polynomial
Pi for each vertex i ∈ V (H), rather than a single polynomial P as in the original design.
This re-design comes at asymptotically no extra cost and it enables us to localize the
outcome at vertices, that is, with a single run of the sieve, we obtain for every vertex
i the output whether there is at least one match that contains i, with a per-vertex
probability of a false negative of at most k/2b−1. This localization is advantageous in
situations when the motif is large and the host has only isolated4 matches to the motif.

(ii) Coalescent recurrence for tightly labeled arborescences. The most performance-critical
aspect of the constrained multilinear sieve is the recurrence for the 2k evaluations of
each of the n polynomials Pi. We engineer a version of the recurrence that can be
executed on multiple GPUs as a sequence of k workloads. For large k, these workloads
are arithmetic-and-memory coalescent to the length of the available vectorization. A
key principle is to design the memory layout of the recurrence so that each thread can
work with the widest coalesced per-thread load and store instructions supported by the
architecture. This is (i) to saturate the memory pipeline, and (ii) to supply each thread
with enough local work that can be executed in low-latency per-thread registers to
enable effective latency hiding. (Cf. Volkov [35] and Mei and Chu [27] for a discussion
of latency hiding and memory hierarchies on GPUs.)

(iii) Bit-sliced arithmetic in characteristic 2. Constrained multilinear sieving runs over a
finite field GF(2b), which requires a fast implementation for finite-field multiplication.
Asymptotically it is known that one can multiply in time M(2b) = O(b log b), cf. Lin,

3 Potentially with generalization to each vertex being colored with a set of colors instead of a single color,
to enable e.g. wild-card matches to accommodate for uncertainty.

4 In precise terms, when the vertices that are part of at least one match induce a subgraph whose each
connected component is a match. In this situation, one run of the vertex-localized sieve produces all
matches to a query, with total effort that scales linearly in the number of edges m. Indeed, we first run
the vertex-localized sieve, and then run, for example, a depth-first search on the vertices contained in at
least one match to identify the connected components.
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Al-Naffouri, Han, and Chung [25]. Here we look at implementation for small values of
b and rely on independent repetitions of the sieve to decrease the probability of false
negatives. Obtaining a high-performance implementation presents a minor engineering
obstacle due to the fact that the instruction set of e.g. NVIDIA GPUs does not directly
support multiplication in characteristic 2, whereas modern CPUs implement instruction
set extensions with such support (cf. Gueron and Kounavis [16]). We rely on software
techniques and use bit-slicing (cf. Biham [3] and Rudra, Dubey, Jutla, Kumar, Rao,
and Rohatgi [34]) to multiply in parallel in units of 32 elements of GF(28) at a time
using a simplified Mastrovito [26] multiplier implemented with Boolean word operations.
We also experiment with other implementations for arithmetic in characteristic 2, but
bit-slicing is clearly the fastest, yielding multiplication rates of more than 2.4 trillion
GF(28)-multiplications per second on an NVIDIA Tesla V100 SXM2 Accelerator,
cf. Table 4 in the Appendix.

(iv) Open-source implementation. To encourage and ease further contributions, we release
our implementation as open-source software under the MIT License.5

Earlier Work. Motif search on graphs is a hard generalization of jumbled pattern matching
on strings (cf. [9, 14, 15, 18]) that was introduced by Lacroix, Fernandes, and Sagot [24] in a
bioinformatics context. Multiple variants and extensions of the base variant studied in the
present paper have been introduced and studied in a number of works, including Bruckner,
Hüffner, Karp, Shamir, and Sharan [8], Dondi, Fertin, and Vialette [11], Pinter and Zehavi [32,
33, 37], Björklund, Kaski, Kowalik [6], Bonnet and Sikora [12], and Zehavi [38].

From the perspective of parameterized algorithms [10], Fellows, Fertin, Hermelin, and
Vialette [13] established that the graph motif problem (parameterized by the motif size k) is
fixed-parameter tractable using the color-coding technique of Alon, Yuster, and Zwick [1].
The scaling f(k) as a function of the parameter k was improved in a sequence of works
[2, 6, 17, 21, 31], including the randomized O∗(2.54k)-time algorithm of Koutis [21], the
randomized O∗(2k)-time algorithm of Björklund, Kaski, and Kowalik [6], and the deterministic
O∗(5.22k)-time algorithm of Pinter, Scachnai, and Zehavi [31].6

Multilinear sieving and constrained multilinear sieving was developed in a sequence of
works starting from pioneering work by Koutis [20], Williams [36], Koutis and Williams [22],
and Koutis [21] on algebraic fingerprinting in group algebras (cf. Koutis and Williams [22]).
The multivariate polynomial version of the sieve was developed by Björklund [4], Björklund,
Husfeldt, Kaski, and Koivisto [5], and Björklund, Kaski, and Kowalik [6].

The generating polynomial P to capture connected sets of vertices in graphs can be
traced back to Nederlof’s [28] insight on branching walks for space-efficient algebraization of
the Steiner tree problem. Guillemot and Sikora [17] transported this insight to the graph
motif problem. The generating polynomial was further enhanced by Björklund, Kaski, and
Kowalik [6], and Björklund, Kaski, Kowalik, and Lauri [7].

2 Scalar Recurrences for Sieving with Localization

This section details all the scalar recurrences in our vertex-localized algorithm, where by
scalar we mean an element of the finite field F2b of size 2b for a positive integer b. For
an integer n, let us write [n] = {1, 2, . . . , n}. This section only describes the algorithm;

5 Available at: https://github.com/pkaski/motif-localized
6 Here the asymptotic notation O∗(·) suppresses a multiplicative factor polynomial in the input size.

https://github.com/pkaski/motif-localized
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for reasons of space, we will include the mathematical derivation of the algorithm and its
correctness analysis in an extended version of this work.

The input to the algorithm consists of a vertex-colored host graph H and a motifM . Here
H is an undirected simple graph with vertex set V (H) and edge set E(H), the vertex-coloring
is a function c : V (H)→ C for a set of colors C, and the motif is a function M : C → Z≥0
with

∑
q∈C M(q) = k for a positive integer k.

For convenience in what follows, let us assume that the vertices of H are numbered
1, 2, . . . , n; that is, we assume that V (H) = [n]. Let us also introduce a set Sq of shades for
each color q ∈ C, with |Sq| = M(q) and Sq ∩ Sq′ = ∅ for all distinct q, q′ ∈ C. For a vertex
i ∈ [n], let us write ΓH(i) for the set of vertices adjacent to i in H. Since H is simple, for
each j ∈ ΓH(i) there is a unique edge ij ∈ E(H) that joins i and j in H.

The algorithm now consists of the following five steps, where the key vectorizability
property for implementation is highlighted in the main recurrence (d).
(a) Assign Random Values. First, draw an independent uniform random value µi,d ∈ F2b

for each i ∈ [n] and d ∈ Sc(i). Then, draw an independent uniform random value
νd,` ∈ F2b for each d ∈ ∪q∈CSq and ` ∈ [k]. Finally, draw an independent uniform
random value αs,(i,j) ∈ F2b for each s = 2, 3, . . . , k and each orientation (i, j) ∈ [n]× [n]
of an undirected edge ij ∈ E(H) in H.

(b) Label Evaluation. For each i ∈ [n] and ` ∈ [k], compute

ζi,` =
∑

d∈Sc(i)

µi,dνd,` ∈ F2b . (1)

We can parallelize this step over i and ` as appropriate.
(c) Initialize Label-Sum Vectors. For each subset L ⊆ [k], compute the vector

ζL = (ζL
1 , ζ

L
2 , . . . , ζ

L
n ) ∈ Fn

2b (2)

given for all i ∈ [n] by

ζL
i =

∑
`∈L

ζi,` ∈ F2b . (3)

We can parallelize this step over L and i as appropriate.
(d) The Main Recurrence. First, for s = 1 and each i ∈ [n] and L ⊆ [k], set

Pi,1(ζL, α) = ζL
i . (4)

Then, for each s = 2, 3, . . . , k, i ∈ [n], and L ⊆ [k], compute

Pi,s(ζL, α) =
∑

j∈ΓH(i)

αs,(i,j)
∑

s1+s2=s
s1,s2≥1

Pi,s1(ζL, α)Pj,s2(ζL, α) . (5)

For each fixed value of s, we can parallelize this recurrence over i and L as appropriate.
Furthermore, the parallelization over L vectorizes. That is, for each of the 2k choices
L ⊆ [k], the index j ranges over precisely the same values in ΓH(i), and thus we can view
the recurrence (5) as a recurrence over vectors of length 2k, where the multiplication by
αs,(i,j) can be viewed as scalar-multiplication applied to a vector obtained as the sum
of element-wise (Hadamard) products of vectors. This vectorizability is the gist of our
GPU implementation described in the next section.
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(e) Sum at Each Vertex. For each i ∈ [n], take the sum over L ⊆ [k] to obtain

Qi,k(µ, ν, α) =
∑

L⊆[k]

Pi,k(ζL, α) . (6)

We can parallelize this recurrence over i and over L as appropriate; parallelization over
L can use routine parallel aggregation techniques.

This algorithm has the property that Qi,k(µ, ν, α) = 0 with probability 1 when there is
no match to M in H that contains the vertex i, and Qi(µ, ν, α) = 0 with probability at
most (2k − 1)/2b when there is a match to M in H that contains the vertex i.

3 Engineering a Vector-Parallel Implementation

This section gives a high-level description of our implementation of the algorithm in §2. We
intentionally avoid low-level details specific to a particular programming API such as CUDA
for NVIDIA microarchitectures, with the understanding that the low-level details can be
found in the accompanying source code. Our focus here is on principles that we believe
generalize and support implementations on current and future vector-parallel architectures.

Workloads and Coalescence. It will be convenient to employ the following framework to
describe at a high level how our implementation is structured.7 Suppose we run a parallel
workload that consists of work by W independent parallel threads, which have been arranged
into a tensor of volume W with r modes, to obtain a tensor of shape8

Wr ×Wr−1 × · · · ×W1

for positive integers W1,W2, . . . ,Wr with W = WrWr−1 · · ·W1.
Each thread t = 0, 1, . . . ,W − 1 in this workload can now be identified with its r-

tuple of coordinates (tr, tr−1, . . . , t1) defined by t =
∑r

j=1 tjWj−1Wj−2 · · ·W1 and tj ∈
{0, 1, . . . ,Wj − 1} for all j = 1, 2, . . . , r. In essence, the tuple (tr, tr−1, . . . , t1) represents
the integer t as a mixed-base r-digit integer in the number system defined by the sequence
(Wr,Wr−1, . . . ,W1), where W1 is the base of the least significant digit, W2 is the base of the
next least significant digit, and so on until Wr, which is the base of the most significant digit.
To utilize vector-parallel hardware effectively, a key design principle is to ensure that the
workload is coalesced, that is, any two threads t and t′ that agree in all but possibly their c
least significant coordinates are at all times executing the same instruction, and when this
instruction is a memory access, the access is to units of memory at either a single constant
address or consecutive addresses across the c least significant coordinates.9

Per-Thread Work Allocation and Memory Layout. When engineering an algorithm design
for vector-parallel hardware with long latencies, among the most important considerations is
to decide precisely what each thread in a parallel workload of W threads is going to do to

7 A reader familiar e.g. with NVIDIA CUDA API should have no difficulty translating this framework to
NVIDIA-specific terminology e.g. in terms of grids of thread blocks.

8 We use the symbol “×” to exclusively refer to Cartesian products and shapes of tensors, never for
multiplication. For basic terminology on tensors, see Kolda and Bader [19].

9 Precisely how large values c and WcWc−1 · · ·W1 one needs depends on the width of the hardware
vectorization. For example, in case of NVIDIA microarchitectures, one usually wants WcWc−1 · · ·W1
to be a positive multiple of 32 to ensure coalescent execution of warps.
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saturate the hardware and to hide latency (cf. Volkov [35]). Three key objectives underlying
such a decision are to
(i) expose sufficient parallelism in the design to enable a large W to saturate the hardware;
(ii) ensure coalescent execution by a careful ordering of modes in the workload; and
(iii) make sure each thread works with enough local data to make use of low-latency storage

available to each thread and/or to select groups of threads.10

Interleaved with the question of per-thread work allocation is the question how to
implement the memory layout of the algorithm across the memory hierarchy so that
(iv) local storage with lowest latency is the most frequently accessed type of storage;
(v) when accessing high-latency storage, as much data as possible should be accessed with

a single access to saturate the pipeline; and
(vi) accesses to memory are coalesced.

Design Choices for Vertex-Localized Sieving. Let us now turn to how we implement the
recurrences in §2 as parallel workloads together with their memory layouts. For reasons
of space, we focus only on the GPU-side workloads; the CPU-side workloads are those
of Björklund, Kaski, Kowalik, and Lauri [7], with only minor modifications to support
vertex-localization.
Top-Level Structure. We execute the random assignment step (a) and the label evaluation

step (b) on the host CPU(s), with parallelization over i. The subsequent steps (c,d,e)
each vector-parallelize over the 2k evaluations indexed by L ⊆ [k], and these steps will be
offloaded for execution on the available GPU(s) using a sequence of parallel workloads.

Workloads on the GPU. Since label-sum initialization (c) and the main recurrence (d) both
vector-parallelize over L ⊆ [k], it is natural to design the workloads so that a divisor D of
2k appears in the least significant mode of each workload to enable coalescent execution
when k is large enough.11 Furthermore, since we want simultaneous localization at each
i ∈ [n], it follows that n is a natural mode of the workload.12 Indeed, although execution
along this mode will not be coalesced, each of the D threads working with the same
vertex will follow the same pattern of data-dependent memory accesses when traversing
the adjacency list associated with the vertex i to obtain each vertex j ∈ ΓH(i) in (5).
Finally, to ensure sufficient local data for low-latency computations (cf. (iii) in §3), we
design the workload so that each thread that implements (5) works with S out of the 2k

scalars, where S divides 2k. Thus, we will execute workloads of shape

n×D ,

where each thread will work with S scalars, so that SD divides 2k.13 When furthermore
we have M devices (GPUs) available, where MSD divides 2k, we execute workloads of
shape

M × n×D .

10Here the registers locally available to each thread form the lowest-latency storage, whereas e.g. the
shared memory available to each block of threads executing in a streaming multiprocessor in NVIDIA
microarchitectures would form the next-lowest level of latency above the register file. Cf. Mei and
Chu [27] for an empirical study of GPU memory architectures and their latency considerations.

11For example, on NVIDIA microarchitectures it is desirable to have D ≥ 32.
12We furthermore assume that n has been rounded up to the closest power of 2 by inserting isolated

vertices.
13For example, our bit-sliced implementation for arithmetic on GF(28) discussed in what follows assumes
S = 32. With D ≥ 32, we thus need k ≥ 10 for coalescent execution.
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with the mode of length M parallelized over the GPUs. That is, for each of the M GPUs
we perform the following (asynchronously and in parallel on each GPU): First, we upload
the evaluated labels (the output of (b)) from host memory to on-device memory on
each GPU. Then, we iterate 2k

MSD sequences of workloads, where each sequence consists
of label-sum initialization (c) implemented with a single workload of shape n×D, the
main recurrence (d) implemented using a sequence of k workloads of shape n×D, and
the per-vertex sum (e) implemented as a standard batch-parallel sum that aggregates
the nDS scalars output by (d) to n scalars. Finally, we download the n scalars to host
memory. This results inMn scalars downloaded fromM GPUs in host memory, which we
aggregate on the host to obtain n scalars, one scalar at each vertex, with parallelization
over the vertices. The iteration over 2k

MSD such sequences produces the final output (6)
at each vertex i ∈ [n].

Memory Layout on Each GPU. We now describe the memory layout used on each GPU.
Since we execute workloads of n×D threads, and each thread works with S scalars, we
want to access such S-scalar units of data with as-efficient-as-possible coalesced accesses
(cf. §3 (v) and (vi)). Towards this end, suppose that S scalars occupy U words of memory
and suppose the maximum amount of memory one thread can access (with a single load
or store instruction) is A words, where A divides U . Then, to obtain coalesced memory
accesses, we use a memory layout of shape

U

A
× n×D ×A

and execute the loads/stores of S scalars per thread in groups of U
A instructions that each

load/store A words of data.14 Adjacency lists of vertices and scalar associations with
(oriented) edges are implemented as simple contiguous arrays of words. Due to the n×D
workload to implement (5), each group of D threads working on a vertex i ∈ [n] will
access the same element j of an adjacency list or oriented-edge-associated scalar αs,(i,j),
implying coalescent execution for large enough D.

4 Experiments and Conclusion

This section reports on experiments with our algorithm implementation that extends the
CPU implementation of Björklund, Kaski, Kowalik, and Lauri [7] with a vector-parallel
GPU implementation of our vertex-localized sieve (cf. §2 and §3). Our implementation is
prepared with CUDA C [29] using the OpenMP API [30] for host-side parallelization and to
enable parallelization across multiple GPUs. The running times of CPU experiments are
measured using OpenMP wall-clock time interface and the running time of GPU experiments
are measured using CUDA event API. Memory usage is tracked using wrapper functions
for the standard memory allocation interfaces. Memory bandwidth is tracked by computing
the total amount of memory read/written in bytes by each recurrence and dividing by the
measured running time. Arithmetic bandwidth is tracked by computing the number of scalar
multiplications in each recurrence and dividing by the measured running time.

Our experiments use one CPU and four GPU configurations with a full hardware and
software description provided in Appendix A. Here we give a short overview of the CPU
node and the main GPU node in the experiments:

14 In concrete terms, for NVIDIA microarchitectures and our bit-sliced arithmetic for GF(28) we choose
S = 32, A = 4 and U = 8, measured in 32-bit words. That is, at CUDA level each thread reads/writes
data in groups that consist of two coalesced uint4-accesses to global memory.
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Table 1 Speedup obtained with a single GPU and eight GPUs compared with a CPU-only
implementation as we increase the motif size k. We perform experiments on five independent
d-regular random graphs for each n = 210 fixed, d = 20 fixed and k = 10, 11, . . . , 20. The CPU-only
experiments are performed on the CPU compute node with the 64 × GF(28) bit-packed line type
configured for the Björklund–Kaski–Kowalik–Lauri [7] implementation without vertex-localization.
The GPU experiments with our implementation are configured with the 32 × GF(28) bit-sliced line
type and executed on the V100 GPU compute node (single V100 device and eight V100 devices).
All the running times are in seconds. The column “CPU” displays in each row the minimum time
over the five graphs, whereas the columns “GPU V100” and “8 × GPU V100” displays in each row
the maximum time over the five graphs. The column “Speedup (GPU)” displays the ratio of the
columns “CPU” and “GPU V100”, while the column “Speedup (Multi-GPU)” is the ratio of column
“CPU” and “8 × GPU V100”.

k CPU GPU V100 8 × GPU V100 Speedup (GPU) Speedup (Multi-GPU)
10 0.0352 s 0.0432 s 0.0957 s 0.81 0.37
11 0.0828 s 0.0416 s 0.1180 s 1.99 0.70
12 0.1553 s 0.0696 s 0.0938 s 2.23 1.66
13 0.3808 s 0.0585 s 0.1046 s 6.51 3.64
14 0.7768 s 0.1062 s 0.1025 s 7.31 7.58
15 1.7244 s 0.1847 s 0.1111 s 9.33 15.52
16 3.9035 s 0.3968 s 0.1474 s 9.84 26.48
17 8.7340 s 0.8377 s 0.1906 s 10.43 45.82
18 19.3674 s 1.8950 s 0.3564 s 10.22 54.34
19 42.9873 s 4.1417 s 0.6480 s 10.38 66.34
20 94.2593 s 9.1468 s 1.2425 s 10.31 75.86

CPU compute node. An Apollo 6000 XL230a G9 blade server with two 2.6-GHz Intel Xeon
E5-2690v3 CPUs (Haswell microarchitecture, 24 cores, 12 cores/CPU, no hyper-threading,
30 MiB L3 cache/CPU) and 128 GiB of main memory (8 × 16 GiB DDR4-2133 HP
752369-081).

V100 GPU compute node (NVIDIA DGX-1). An NVIDIA Tesla V100 SXM2 Accelerator
device with one 1312-MHz NVIDIA GV100 GPU (Volta microarchitecture, 5120 cores, 80
SMs, 64 cores/SM) and 16384 MiB of on-device 4096-bit HBM2 with ECC enabled. The
host is an NVIDIA DGX-1 with two 2.2-GHz Intel Xeon E5-2698v4 CPUs (Broadwell mi-
croarchitecture, 40 cores, 20 cores/CPU, hyper-threading enabled, 50 MiB L3 cache/CPU)
and 512 GiB of main memory (16 × 32 GiB DDR4-2133 Samsung M393A4K40BB1-CRC).
The host contains eight V100 devices.

Input Graphs. We use three synthetic graph topologies (regular, clique, and power-law) for
our experiments, making use of the random graph generator from Björklund, Kaski, Kowalik,
and Lauri [7]. The generator produces identical graph instances across all configurations
to enable comparison between configurations. In addition, we use natural graph topologies
obtained from the Koblenz Network Collection [23]. The following specific natural graphs
from the Koblenz collection are considered in our experiments: Google [web-Google], Douban
[douban], WordNet [wordnet-words], Stack Overflow [stackexchange-stackoverflow], Dis-
cogs [discogs_affiliation], MovieLens 10M [movielens-10m_rating], Hamsterster friend-
ships [petster-friendships-hamster], Adolescent health [moreno_health], and Human
protein (Stelzl) [maayan-Stelzl]; click on the text in brackets to follow the hyperlink. Each
natural graph is preprocessed as in [7], i.e. (i) the vertices are randomly relabeled and (ii) to
guarantee a unique match, a vertex is chosen uniformly at random and a monochromatic
motif is placed on the first k vertices expanded by a depth-first search.
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Figure 1 Scalability and speedup of the vertex-localized implementation. We compare the
running time of CPU-only and single-GPU implementations as we increase the number of edges
m (left) for five independent d-regular random graphs for each n = 210, 211, . . . , 220, with d = 20
fixed and k = 10 fixed. We observe that our implementation scales linearly, as expected, with little
variance between inputs except for small input sizes. For n = 220 with k = 10, our implementation
on a single V100 GPU device is at least fourteen times faster than the CPU-only implementation
on the CPU compute node. We compare the running time of the CPU-only and single-GPU
implementations as we increase the motif size k (right) for five independent d-regular random graphs
for each n = 220 fixed, d = 20 fixed and k = 10, 11, . . . , 30. We observe that our implementation
scales exponentially with respect to the motif size, as expected, with little variance between inputs.
For n = 210 and k = 20, our implementation on a single V100 GPU device is at least ten times
faster than the CPU-only implementation on the CPU compute node. The CPU-only experiments
are executed on the CPU compute node with the 64 × GF(28) bit-packed line type configured
for the Björklund–Kaski–Kowalik–Lauri [7] implementation without vertex-localization. The GPU
experiments with our implementation are configured with the 32 × GF(28) bit-sliced line type and
executed on the V100 GPU compute node, using a single V100 device.

Scalability and Speedup. Our first set of experiments studies the scalability of our imple-
mentation and compares our implementation with the CPU-only parallel implementation of
Björklund, Kaski, Kowalik, and Lauri [7]. We report the running time as a function of, (i)
number of edges m, and (ii) the motif size k. The results of the experiments are displayed in
Figures 1 and 2. In Table 1, we observe speedups of several tenfolds for a sufficiently large k
for the GPU and multi-GPU implementations over the CPU-only implementation. Table 5
in Appendix A reports the speedup of GPU and multi-GPU implementations with respect to
the CPU-only implementation for increasing number of edges, while Table 6 considers the
speedup of the multi-GPU over the GPU implementation for even larger k. We observe a
substantial benefit both from (a) offloading from the host to a GPU device, and (b) offloading
to multiple GPU devices compared with a single device.

Topology-Invariance. Our final set of experiments studies the effect of graph topology
to scaling. Figure 3 displays the running times for regular, clique, power-law and natural
topologies as a function of increasing m and increasing k. We observe that the running time is
essentially invariant across topologies for increasing k. However, for increasing m, we observe
differences in performance between topologies, with the worst performance occurring for
power-law topologies with small exponent α. This is due to our design choice to use an n×D
workload for the main recurrence (d), whereby the n groups of (length-D-vectorized) threads
operating on different vertices have running times that are proportional to the degree of
each vertex. When many groups of high-degree vertices get scheduled on the same streaming
multiprocessor (SM) of the GPU, this produces an uneven distribution of work across SMs
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Figure 2 Scaling of our vertex-localized implementation as we increase the number of edges
m (top row) and the motif size k (bottom row). For both rows, we display the runtime (left),
memory bandwidth (middle), and arithmetic bandwidth (right). The experiments are configured
with the 32 × GF(28) bit-sliced line type and executed on the V100 GPU compute node. Top row
experiments are run for five independent d-regular random graphs for each n = 210, 211, . . . , 210,
d = 20 fixed and k = 10 fixed. For n = 220 with k = 10, the multi-GPU implementation executed
on a configuration with eight V100 GPU devices is at least two times faster than the single-GPU
implementation executed on a single V100 GPU device. We observe that the multi-GPU speedup
becomes systematic only for large-enough m. For n = 220 and k = 10, with a single V100 device
we obtain a memory bandwidth of at least 677 GiB/s and a simultaneous arithmetic bandwidth
of more than 430 billion GF(28)-multiplications per second. With eight V100 devices, we observe
the results have more variance. For n = 220 and k = 10, we obtain at least 1567 GiB/s of memory
bandwidth, and a simultaneous arithmetic bandwidth of at least 1003 billion GF(28)-multiplications
per second. Bottom row experiments are run for five independent d-regular random graphs for
each n = 210, d = 20 fixed and k = 10, 11, . . . , 30. For n = 210 and k = 20, our implementation on
a single V100 GPU device is at least ten times faster than the CPU-only implementation on the
CPU compute node. For n = 210 and 20 ≤ k ≤ 27, the multi-GPU implementation executed on
a configuration with eight V100 GPU devices is at least seven times faster than the single-GPU
implementation executed on a single V100 GPU device. For n = 210 and k = 27, with a single
V100 device we obtain a memory bandwidth of at least 835 GiB/s and a simultaneous arithmetic
bandwidth of more than 480 billion GF(28)-multiplications per second. With eight V100 devices,
we obtain at least 6680 GiB/s of memory bandwidth, and a simultaneous arithmetic bandwidth of
at least 3820 billion GF(28)-multiplications per second. We observe that for large k these memory
bandwidths noticeably exceed the measured peak transfer bandwidth for on-device global memory
in Table 3, which we believe is caused by the relatively small value of n and in-SM-caching of the
Pi,s1 (ζL, α)-values when executing the recurrence (5) across different j ∈ ΓH(i).

and delays the completion of the workload. Thus, our present implementation has topology-
dependent performance, with the best performance obtained on graphs with a uniform
distribution of vertex degrees. With nonuniform vertex degrees, a random permutation of
the vertices (or, for example, a greedy bin-packing of the vertices by degree to the SMs) can
be used to balance the load across SMs. Such load-balancing was not considered for the
present implementation.
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Figure 3 Topology-invariance. We display the runtime of our vertex-localized implementation
with respect to number of edges (left) with different graph topologies: (a) five independent synthetic
graphs for each value of n; and (b) five random relabelings for each natural graph. Regular graphs
with n = 214, 215, . . . , 220, d = 20 fixed; cliques with n = 213, 214, . . . , 219, d = 40 fixed; power-law
graphs with n = 214, 215, . . . , 220, D = 20, w = 100 for both α = −0.5 and α = −1.0. All instances
have k = 10. We display the runtime of our implementation with respect to the motif size (right)
for different graph topologies: (a) five independent synthetic graphs for eack value of k; and (b)
five random relabelings of natural graph for each value of k. Regular graphs with n = 210, d = 20;
cliques with n = 210, d = 40; power-law graphs with n = 210, D = 20, w = 100 for both α = −0.5
and α = −1.0. The motif size varies from k = 10, 11, . . . , 20. The experiments are configured with
the 32 × GF(28) bit-sliced line type and executed on the V100 GPU compute node. All experiments
use a single V100 device. For the motif-size scaling, the running times are essentially invariant, as
expected. However, for scaling with respect to number of edges m, power-law graphs with α = −1.0
consume approximately three times the running time of the clique graphs, and this ratio becomes
more systematic with increasing m. In particular we observe that our present implementation is
not completely topology-invariant; graphs with uniform degree distribution have relatively better
performance than the graphs with non-uniform degree distribution (cf. §4).

More Data and Experiments in the Appendix. The Appendix contains a more extensive
set of experiments.15 For example, Figure 7 in Appendix A displays the running time
of vertex-localization and decision-only variants. We observe that the overhead caused by
vertex-localization is, as expected, negligible. In addition, the Appendix presents performance
for our hardware configurations (Tables 2 and 3), arithmetic bandwidth measurements with
different implementations of finite-field arithmetic (Table 4 and Figures 4, 5, and 6), and
more detailed speedup tables (Tables 5 and 6).

Conclusion. This paper presented a vertex-localized variant of constrained multilinear
sieving that enables algorithm engineering for vector-parallel microarchitectures such as
single-GPU and multi-GPU configurations ranging from thousands to tens of thousands of
cores, with tenfold to several tenfold speedups for large motif sizes compared with a carefully
optimized parallel multi-CPU implementation [7]. The two key aspects of the present
algorithm design that enable scalability are (i) the vectorization of the data-dependent
memory accesses so that each traversal of an edge along an adjacency list results in memory
accesses to long vectors of words at consecutive accesses when evaluating the main recurrence
(cf. §2(d)), and (ii) the vectorization of the finite-field arithmetic in characteristic 2 through
bit-slicing.

15 Caveat on false negatives. The current set of experiments is still lacking an experiment that studies the
empirical false negative rate compared with the theoretical per-vertex probability of at most (2k− 1)/2b

for a false negative. Such an experiment is warranted since our implementation uses b = 8 and thus
independent repetitions of the sieve must be used when one seeks to control the false negative rate over
the vertices.
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A Additional Experimental Results

Additional Hardware Configurations. Our experiments use one CPU and four GPU con-
figurations. The hardware configurations of CPU compute node and V100 GPU compute
node are reported in Section 4. Each experiment documents the hardware configuration and
the number of GPU devices used for the experiment.
K40 GPU compute node. An NVIDIA Tesla K40t Accelerator device with one 745-MHz

NVIDIA GK110B GPU (Kepler microarchitecture, 2880 cores, 15 SMs, 192 cores/SM)
and 12288 MiB of on-device GDDR5-3004 memory with ECC enabled. The host is a
Bullx B715 DLC blade server with two 2.1-GHz Intel Xeon E5-2620v2 CPUs (Ivy Bridge
microarchitecture, 12 cores, 6 cores/CPU, no hyper-threading, 15 MiB L3 cache) and
32 GiB of main memory (8 × 4 GiB DDR3-1600 Samsung M393B5273DH0-CMA). The
host and the GPU are connected by a 16-lane PCI Express 3.0 bus. The host contains
two K40t devices.

K80 GPU compute node. An NVIDIA Tesla K80 Accelerator device with two 875-MHz
NVIDIA Tesla GK210 GPUs (Kepler microarchitecture, 2496 cores, 13 SMs, 192 cores/SM),
12288 MiB of on-device GDDR5-3004 memory with ECC enabled. The host is a Dell
PowerEdge C4130 machine with two 2.4-GHz Intel Xeon E5-2620v3 CPUs (Haswell
microarchitecture, 12 cores, 6 cores/CPU, no hyper-threading, 15 MiB L3 cache/CPU)
and 128 GiB of main memory (16 × 8 GiB DDR4-2133 Hynix HMA42GR7AFR4N-TF).
The host and the GPU are connected by a 16-lane PCI Express 3.0 bus. The host contains
four K80 devices.

P100 GPU compute node. An NVIDIA Tesla P100 Accelerator device with one 1189-MHz
NVIDIA GP100 GPU (Pascal microarchitecture, 3584 cores, 56 SMs, 64 cores/SM) and
16384 MiB of on-device 4096-bit HBM2 with ECC enabled. The host is a Dell PowerEdge
C4130 with two 2.54-GHz Intel Xeon E5-2680v3 CPUs (Haswell microarchitecture, 24
cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache/CPU) and 256 GiB of main
memory (16 × 16 GiB DDR4-2133 Hynix HMA82GR7MFR8N-UH). The host and the
device are connected by a 16-lane PCI Express 3.0 bus. The host contains four P100
devices.

Baseline Performance. Tables 2, 3, and 4 in Appendix A report the empirical baseline
performance of the hardware. The host (CPU) memory bandwidth is measured by operating
on a two gibibyte array of 64-bit words. Each experiment is executed five times and the
average of five iterations is reported. Arithmetic bandwidth16 is measured for different
implementations of arithmetic in lines of S scalars per thread (cf. §3). The bit-sliced 32
× GF(28) line type has the best bandwidth, and this line type is used in our subsequent
experiments. The on-device (GPU) and device–host (device-to-host and host-to-device)
memory transfer rates are measured using the bandwidth-test tool distributed in the CUDA
Examples package using a single device at a time.

16The number of scalar multiplications per second.
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Table 2 Memory bandwidths of CPU compute node, P100 GPU compute node (host) and V100
compute node (host).

Benchmark Single core All cores
CPU compute node
Read from linear addresses (consecutive 64-bit words) 9.13 GiB/s 46.93 GiB/s
Write to linear addresses (consecutive 64-bit words) 5.69 GiB/s 21.92 GiB/s
Read from random addresses (individual 64-bit words) 0.29 GiB/s 5.28 GiB/s
Read from random addresses (full cache lines) 1.46 GiB/s 19.94 GiB/s
P100 GPU compute node (host memory)
Read from linear addresses (consecutive 64-bit words) 10.34 GiB/s 41.07 GiB/s
Write to linear addresses (consecutive 64-bit words) 8.43 GiB/s 22.91 GiB/s
Read from random addresses (individual 64-bit words) 0.52 GiB/s 5.53 GiB/s
Read from random addresses (full cache lines) 1.55 GiB/s 19.80 GiB/s
V100 GPU compute node (host memory)
Read from linear addresses (consecutive 64-bit words) 9.58 GiB/s 36.39 GiB/s
Write to linear addresses (consecutive 64-bit words) 7.78 GiB/s 19.27 GiB/s
Read from random addresses (individual 64-bit words) 0.46 GiB/s 5.20 GiB/s
Read from random addresses (full cache lines) 1.45 GiB/s 20.14 GiB/s

Table 3 Memory bandwidth of the P100 and V100 GPU compute nodes, using one of the four
P100 devices and one of the eight V100 devices, respectively.

Node Host to device Device to host Device to device
P100 GPU compute node 12.16 GiB/s 12.87 GiB/s 498.15 GiB/s
V100 GPU compute node 10.79 GiB/s 12.17 GiB/s 720.77 GiB/s

Table 4 Arithmetic bandwidth of the P100 and V100 GPU compute nodes with different line
implementations, using one of the P100 devices and one of the eight V100 devices, respectively.

Line type Line multiplication Scalar multiplication
P100 GPU
1 × GF(28) bit-packed line 82.04 GHz 82.68 GHz
4 × GF(28) bit-packed line 328.20 GHz 331.09 GHz
16 × GF(28) bit-packed line 348.30 GHz 348.30 GHz
32 × GF(28) bit-sliced line 1462.62 GHz 1500.70 GHz
1 × GF(28) lookup table 65.23 GHz 85.58 GHz
4 × GF(28) lookup table 64.59 GHz 86.64 GHz
16 × GF(28) lookup table 64.56 GHz 84.54 GHz
32 × GF(28) lookup table 64.80 GHz 84.52 GHz
V100 GPU
1 × GF(28) bit-packed line 159.58 GHz 159.72 GHz
4 × GF(28) bit-packed line 638.25 GHz 638.88 GHz
16 × GF(28) bit-packed line 652.86 GHz 723.69 GHz
32 × GF(28) bit-packed line 661.59 GHz 719.31 GHz
32 × GF(28) bit-sliced line 2486.54 GHz 2441.10 GHz
1 × GF(28) lookup table 410.52 GHz 496.94 GHz
4 × GF(28) lookup table 408.91 GHz 510.29 GHz
16 × GF(28) lookup table 409.91 GHz 531.27 GHz
32 × GF(28) lookup table 409.93 GHz 528.28 GHz
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Table 5 Speedup obtained with a single GPU and eight GPUs compared with a CPU-only
implementation as we increase the number of edges m. We perform experiments on five independent
random d-regular graphs for each n = 210, 211, . . . , 220, with d = 20 fixed and k = 10 fixed. The
CPU-only experiments are performed on the CPU compute node with the 64 × GF(28) bit-packed
line type configured for the Björklund–Kaski–Kowalik–Lauri [7] implementation without vertex-
localization. The GPU experiments with our implementation are configured with the 32 × GF(28)
bit-sliced line type and executed on the V100 GPU compute node (single V100 device and eight
V100 devices). All the running times are in seconds. The column “CPU” displays in each row
the minimum time over the five graphs, whereas the columns “GPU V100” and “8 × GPU V100”
displays in each row the maximum time over the five graphs. The column “Speedup (GPU)” displays
the ratio of the columns “CPU” and “GPU V100”, while the column “Speedup (Multi-GPU)” is the
ratio of column “CPU” and “8 × GPU V100”.

n CPU GPU V100 8 × GPU V100 Speedup (GPU) Speedup (Multi-GPU)
210 0.0456 s 0.0353 s 0.1009 s 1.29 0.45
211 0.0923 s 0.0344 s 0.0924 s 2.68 1.00
212 0.1042 s 0.0363 s 0.1081 s 2.87 0.96
213 0.2199 s 0.0586 s 0.1204 s 3.75 1.83
214 0.3339 s 0.0685 s 0.1242 s 4.88 2.69
215 0.6859 s 0.1014 s 0.1109 s 6.76 6.18
216 1.5949 s 0.1752 s 0.1842 s 9.10 8.66
217 4.7021 s 0.3292 s 0.2171 s 14.28 21.66
218 10.6986 s 0.6302 s 0.4022 s 16.98 26.60
219 20.7284 s 1.2187 s 0.6465 s 17.01 32.06
220 38.8648 s 2.6742 s 1.1552 s 14.53 33.64
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Figure 4 Performance of the vertex-localized implementation in older GPU microarchitectures
as we increase, (i) the number of edges m, and (ii) the motif size k. In the top row, we display
the running time (left), memory bandwidth (center) and arithmetic bandwidth (right) for five
independent d-regular random graphs with n = 210, 211, . . . , 210, d = 20 fixed and k = 10 fixed.
In bottom row, we display the running time (left), memory bandwidth (center) and arithmetic
bandwidth (right) for five independent d-regular random graphs with n = 210 fixed, d = 20 fixed
and k = 10, 11, . . . , 22. Each configuration is reserved exclusively for the experiments at hand. The
GPU experiments with our implementation are configured with the 32 × GF(28) bit-sliced line type.
The CPU-only experiments use the Björklund–Kaski–Kowalik–Lauri [7] implementation with the 64
× GF(28) bit-packed line type.
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Table 6 Speedup obtained with eight GPUs compared with a single GPU as we increase the
motif size k. We perform experiments on five independent graph inputs for each n = 210 fixed,
d = 20 fixed and k = 21, 22, . . . , 30. The GPU experiments with our implementation are configured
with the 32 × GF(28) bit-sliced line type and executed on the V100 GPU compute node. All the
running times are in seconds. The column “GPU V100” displays in each row the minimum time over
the five graphs when using a single V100 device, whereas the column “8 × GPU V100” displays
in each row the maximum time over the five graphs when using four V100 devices. The column
“Speedup” displays the ratio of the columns “GPU V100” and “8 × GPU V100”.

k GPU V100 8 × GPU V100 Speedup
21 20.1962 s 2.6556 s 7.61
22 44.4414 s 5.6852 s 7.82
23 97.2945 s 12.3074 s 7.91
24 212.3904 s 26.6797 s 7.96
25 461.7525 s 57.8421 s 7.98
26 1000.1718 s 125.0891 s 8.00
27 2160.4430 s 270.0623 s 8.00
28 - 581.5915 s -
29 - 1249.4652 s -
30 - 2676.9140 s -
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Figure 5 Performance comparison of different scalar line types with increasing number of edges
m. We display the runtime (top row), memory bandwidth (middle row) and arithmetic bandwidth
(bottom row) of five independent d-regular random graphs for each n = 28, 29, . . . , 220, d = 20 fixed
and k = 10 fixed. The experiments are configured with each line type and executed on the P100
GPU compute node. All experiments use a single P100 device. The bit-sliced 32 × GF(28) line type
has the best performance.
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Figure 6 Performance comparison of different scalar line types with increasing motif size k.
We display the runtime (top row), memory bandwidth (middle row) and arithmetic bandwidth
(bottom row) for five independent d-regular random graphs for each n = 210 fixed, d = 20 fixed and
k = 10, 11, . . . , 20. The experiments are configured with each line type and executed on the P100
GPU compute node. All experiments use a single P100 device. The bit-sliced 32 × GF(28) line type
has the best performance.
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Figure 7 Overhead of vertex-localization. Here we compare our vertex-localized implementation
against a separately prepared GPU implementation that uses the original Björklund–Kaski–Kowalik–
Lauri design [7] without vertex-localization. We show scaling as a function of the number of edges
(left) and the motif size (right). The left plot is the running time of five independent d-regular
random graphs for each configuration of n = 210, 211, . . . , 220, d = 20 fixed and k = 10 fixed. The
right plot is the running time of five independent d-regular random graphs for each n = 210 fixed,
d = 20 fixed and k = 10, 11, . . . , 20. The experiments are configured with the 32 × GF(28) bit-sliced
line type and executed on the P100 GPU compute node. All experiments use a single P100 device.
We observe that the overhead of vertex-localization is negligible, as expected.
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Abstract
The notion of treewidth, introduced by Robertson and Seymour in their seminal Graph Minors
series, turned out to have tremendous impact on graph algorithmics. Many hard computational
problems on graphs turn out to be efficiently solvable in graphs of bounded treewidth: graphs
that can be sweeped with separators of bounded size. These efficient algorithms usually follow
the dynamic programming paradigm.

In the recent years, we have seen a rapid and quite unexpected development of involved
techniques for solving various computational problems in graphs of bounded treewidth. One of
the most surprising directions is the development of algorithms for connectivity problems that
have only single-exponential dependency (i.e., 2O(t)) on the treewidth in the running time bound,
as opposed to slightly superexponential (i.e., 2O(t log t)) stemming from more naive approaches.
In this work, we perform a thorough experimental evaluation of these approaches in the context
of one of the most classic connectivity problem, namely Hamiltonian Cycle.
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1 Introduction

The problem of finding Hamiltonian Cycle in graph is one of the oldest and best known
NP-complete problems. It was intensly studied together with its more generic optimization
version Traveling Salesman Problem. Early and important result on this problem was
dynamic algorithm invented independently by Bellman [2] and Held and Karp [16], running
in time O(2nn2). The exponential factor of this running time bound remains the best known
for deterministic algorithms up to today, and a faster randomized Monte Carlo algorithm
has been shown only very recently by Björklund [3]. Faster algorithms were also obtained
for some special cases, like graphs with bounded degree [9, 4] or claw-free graphs [7].

An important class of graphs in which many combinatorial problems can be solved
more efficiently, are graphs of bounded treewidth. Treewidth, introduced by Robertson and
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Figure 1 A separator S with two possible partial solutions on the left. Only the first one forms a
Hamiltonian cycle with the partial solution on the right, despite that in all of them the vertices on
the separator have degree 1.

Seymour in their Graph Minors project [20], measures how the input graph resembles a
tree, or how can be covered be a set of bounded-sized bags organized in tree like structure
which we call tree decomposition. It has proven to be very useful for dealing with NP-hard
problems; for example, given an n-vertex graph G and its tree decomposition of width t, one
can solve the Maximum Independent Set problem in G in time 2t · tO(1) · n. We refer
to [8] for more examples of algorithms on graphs of bounded treewidth.

Essentially every algorithm for graphs of bounded treewidth follows the paradigm of
dynamic programming: it gradually (in a bottom-to-top fashion on the tree decomposition)
builds partial solutions in subgraphs of the input graph. Using the fact that a bag in a
tree decomposition is a separator, in many combinatorial problems it suffices to keep only
a bounded (in the width of the decomposition) number of partial solutions in each step of
the algorithm. To illustrate this concept, consider a separation (A,B) in a graph G with
S = A ∩B (i.e., A,B ⊆ V (G) are two sets with A ∪B = V (G) and no edge between A \B
and B \ A), and think of a dynamic programming algorithm that processed already the
graph G[A], but has not yet touched B \A. Observe that a partial solution X ⊆ A to the
Maximum Independent Set problem interacts with B \A only via the set S. Consequently,
it suffices to store, for every XS ⊆ S, an independent set X ⊆ A of maximum possible size
satisfying X ∩ S = XS . If the separator S is of size at most t, it leads to 2t bound on the
size of the memoization table in the dynamic programming algorithm.

In the Hamiltonian Cycle problem, the natural state space for the dynamic pro-
gramming algorithm is a bit more complex. A partial solution in G[A] would be a set of
vertex-disjoint paths P that all have endpoints in S and together visit every vertex of A \B.
To complete the partial solution P to a Hamiltonian cycle H in G, it seems essential to
remember not only which vertices of S are visited by P and which are the endpoints of paths
in P , but also how the paths of P pair up their endpoints in S (see Figure 1). This last piece
of information leads to 2θ(t log t) states for separator S of size t.

Up to late 2010, almost all known algorithms for combinatorial problems in graphs of
bounded treewidth follow the naive approach outlined above, and researchers’ effort focused
mostly on speeding up computations in the so-called join nodes of the decomposition (see
e.g. [22]).1 In 2010, Lokshtanov, Marx, and Saurabh proved that many such algorithms have
optimal dependency on treewidth [17] (under strong complexity assumptions) and provided a
framework for proving similar lower bounds for complexities of the type 2θ(t log t) [18]. However,
providing such a tight lower bound for the connectivity problems such as Hamiltonian
Cycle in graphs of bounded treewidth remained elusive.

1 A join node of a decomposition corresponds to a node of the underlying tree of the tree decomposition
of degree at least 3; intuitively, it corresponds to a bounded-size separator that splits the graph into
more than 2 pieces, and in the dynamic programming algorithm one needs to merge information from
at least two of such pieces.
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Quite unexpectedly, a year after it turned out that there is a reason for this lack of progress,
and a Monte Carlo algorithm with running time 4tnO(1) for finding a Hamiltonian cycle in
a graph with a given tree decomposition of width t has been reported [10]. The work [10]
introduced a framework called Cut&Count that provided randomized single-exponential
(i.e., with running time bound of the form 2O(t)nO(1)) algorithms for many connectivity
problems in graphs of bounded treewidth. The key idea of the Cut&Count method is to
replace the original connectivity requirement with a different counting-mod-2 task, and
ensure correctness via the Isolation Lemma [19].

In following years, a good understanding of the aforementioned improvement has been
obtained by Bodlaender et al [6]. In the language of Hamiltonian Cycle, a linear algebra
argument shows that it suffices only to keep 4t partial solutions instead of the naive bound
of 2O(t log t); if the memoization table grows too large, an algorithm based on Gaussian
elimination is able to prune provably unnecessary states. Cygan et al. [9] provided a better
basis for the Gaussian elimination step and improved the bound for the number of states for
Hamiltonian Cycle to (2 +

√
2)t. Furthermore, in [9] a matching lower bound is shown.

Due to the linear algebraic nature of the argument, this approach has been dubbed in the
literature as the rank-based approach.

In [10], an involved fast convolution algorithm has been applied to obtain the 4tnO(1)

running time bound even in computations at join nodes. The need to execute Gaussian
elimination in [6] and treat join nodes in a more direct fashion in both algorithms of [6, 9]
yield worse theoretical running time bounds. Thus, the algorithm [10] remains theoretically
fastest in graphs of bounded treewidth to this date.

Following a recent trend in multivariate algorithmics to experimentally evaluate pa-
rameterized algorithms (led by a growing popularity of the Parameterized Algorithms and
Computational Experiments Challenge [12, 11]), in this work we thoroughly evaluate the
aforementioned algorithms for Hamiltonian Cycle. A direct inspiration for our work
is the work of Fafianie et al [13] that provided an experimental comparison of the naive
and rank-based approaches for Steiner Tree (i.e., without considering the Cut&Count
approach). That is, in this work we include Cut&Count and we compare the following four
approaches.
naive The aforementioned naive approach with 2O(t log t) bound on the number of states.
rank-based The approach of [6], that is, the naive approach with pruning of the state space

leading to 4t size bound.
rand-based with improved basis The approach of [9], that is, the rank-based approach with

the improved basis yielding the size bound (2 +
√

2)t.
Cut&Count The Cut&Count algorithm of [10].
As observed in [10], the application of the Isolation Lemma in the Cut&Count method yields
a relatively high polynomial factor in the running time bound, but one can replace its usage
with computations over a field of characteristic 2 and randomization via the Schwartz-Zippel
lemma. This replacement leads again to linear dependency on the graph size in the running
time bound. We follow this path. However, as has been overlooked in [10], the fast convolution
algorithm at join nodes in the 4tnO(1)-time algorithm does not support computations over
a field of characteristic 2, as it requires division by 2. Our theoretical contribution in this
paper is a method around this obstacle, essentially showing that it is sufficient to perform
the convolution over the ring of polynomials Z[x]. This is described in Section 2.4 and leads
to the following conclusion.

I Theorem 1.1. There exists a Monte Carlo algorithm that, given an n-vertex graph G
together with its tree decomposition of width t, solves Hamiltonian Cycle on G in time
4t · n · (t logn)O(1).
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In Section 2 we discuss implementation details of the algorithms. Section 3 discuss
experiment setup and Section 4 discuss results. We conclude in Section 5.

2 Theory and implementation details

2.1 Tree decompositions
For more background on tree decompositions and dynamic programming algorithms using
them, we refer to [8]. Here, we recall only the basic notions.

For a graph G, a tree decomposition is a pair (T, β) where T is a tree and β assigns to
every node t ∈ V (T ) a set β(t) ⊆ V (G) called a bag with the following invariants: (i) for
every v ∈ V (G), the set {t ∈ V (T )|v ∈ β(t)} is nonempty and connected in T , (ii) for every
uv ∈ E(G) there exists t ∈ V (T ) with u, v ∈ β(t). The width of the tree decomposition is
the maximum size of a bag, minus one, and the treewidth of a graph is the minimum possible
width of its tree decomposition.

As in multiple previous results, it is convenient to describe dynamic programming
algorithms on a special type of decompositions, called nice. A nice tree decomposition is a
rooted tree decomposition for which the bag of the root is empty and every node is of one of
the following types:
Leaf node is a node t with no children and β(t) = ∅.
Introduce vertex node is a node t with unique child t′ and a vertex v such that β(t) =

β(t′) ] {v}.
Forget vertex node is a node t with unique child t′ and a vertex v ∈ β(t′) such that

β(t) = β(t′) \ {v}.
Join node is a node t with exactly two children t1 and t2 with β(t) = β(t1) = β(t2).
For a note t ∈ V (T ), we define γ↓(t) to be the union of β(t′) over t′ being descendants of
t in T . Furthermore, let Gt be the graph G[γ↓(t)]−E(G[β(t)]) (i.e., we exclude the edges
inside the bag β(t)).

Additionally, in our case it is convenient to precede every forget vertex node with
a sequence of introduce edge nodes. That is, for a forget node t with child t′ and
forgotten vertex v, we take Et,v to be the set of edges of G that connect v with vertices of
β(t) \ {v}, subdivide the edge tt′ in E(T ) |Et,v| times, labelling the new nodes {te|e ∈ Et,v},
and set β(te) = β(t′). The graphs Gte are defined as follows: if t′′ is the unique child of te,
then Gte = Gt′′ ∪ {e}.

The intuition of this step is as follows: there is a significant difference between the graphs
Gt′ and Gt, namely E(Gt) = E(Gt′) ∪ Et,v. We split this change into |Et,v| steps, adding
edges one by one.

All our implementations start with preparing a nice tree decomposition with the intro-
duce edge nodes.

2.2 Naive approach
Given a note t in a nice tree decomposition (T, β), a partial solution is a family P of vertex-
disjoint paths in Gt such that (i) every vertex of γ↓(t) \ β(t) is visited by some path in P,
and (ii) every path in P has both its endpoints in β(t). For a partial solution P at note t,
we define the following objects:
a bucket b is a function b : β(t)→ {0, 1, 2} that assigns to every vertex v ∈ β(t) its degree

in the union of P;
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a pairing E is a family of disjoint two-element subsets of b−1(1) that pairs up the endpoints
of the same path in P.

The pair (b, E) is the state of P. The crucial observation is that among partial solutions
with the same state, it suffices to memoize only one. Note that for a given bucket b with
` = |b−1(1)|, there are (`− 1) · (`− 3) · 3 · 1 possible pairings, giving a 2θ(|β(t)| log |β(t)|) bound
on the number of different states.

With this observation, it is straightforward to design a dynamic programming algorithm
that finds a Hamiltonian cycle in time 2O(t log t)n given a tree decomposition of the input
graph of width t. This is exactly the naive approach.

2.3 Rank based approach
The rank-based approach is strongly based on the naive one, with main change being a
pruning on the number of possible pairings.

I Theorem 2.1 ([6]). For a fixed node t and bucket b, given a family E of pairings, one can
find a subfamily E∗ ⊆ E of size at most 2|b−1(1)|−1 with the following property: for every
Hamiltonian cycle H in G, if P is its intersection with Gt and (b, E) is the state of P, and
E ∈ E, then there exists E∗ ∈ E∗ such that for every partial solution P∗ with state (b, E∗),
the graph (H − E(P)) ∪ E(P∗) is a Hamiltonian cycle as well.

Furthermore, given b and E, one can assign to every E ∈ E a 2|b−1(1)|−1-length 0-1 vector
vE such that the family E∗ is defined as the indices of any maximal independent (over F2)
subfamily of {vE |E ∈ E}.

In other words, for a fixed bucket b, it is sufficient to keep only 2|b−1(1)|−1 pairings, and
pruning unnecessary pairings can be done via Gaussian elimination on a matrix with |E|
rows and 2|b−1(1)|−1 columns over the field F2 (the two-element field modulo 2).

In [9], Theorem 2.1 is improved with a different construction of vectors vE that are of
length 2|b−1(1)|/2−1. Furthermore, [9] showed how to use the special structure of the vectors
vE to avoid Gaussian elimination at introduce/forget vertex/edge nodes, yielding
(2 +

√
2)ppO(1)n-time algorithms for graphs with a given path decomposition of width p (i.e.,

without any join nodes).
We implement the rank-based approach both with the vector construction of [6] and the

improved one of [9]. Both implementations use Gaussian elimination, as it is not known how
to avoid it at join nodes.

In the implementation, the core of the naive and rank-based approaches is the same. We
use two variants of the implementations: keep track of partial solutions (so that the entire
Hamiltonian cycle can be returned in the end) or, in order to save space, just remember a
flag and a Hamiltonian cycle is found via self-reducibility. All implementations perform the
same computations specific to the node type, which are straightforward in all cases. At join
nodes, the algorithm first sorts the partial solutions by buckets and then tries to match the
partial solutions only for buckets that fit each other (e.g., do not exceed the bound of 2 on a
degree of a vertex).

After succesfully computing the set of partial solutions for a current node the algorithm
runs a reduce function. In the naive approach, it only deletes the duplicates by sorting set of
partial solutions and checking if the two consecutive are same or not. In rank-based approach
it divides all partial solutions into buckets (same as during processing the join node). For
each bucket it computes the necessary matrix and performs Gaussian elimination on it to
get a representative set of partial solutions.
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To limit the effect of self-reducibility in case of the decision-only variant, we employ a
problem-specific strategy. That is, we discover the Hamiltonian cycle edge-by-edge. For a
path P in G with at least two edges, we can discover if G contains a Hamiltonian cycle
containing P by deleting from G all edges of E(G) \ E(P ) that are incident to internal
vertices of P , and run the decision algorithm on the obtained subgraph. Given a path P , we
extend it one by one by doing a binary search over the next edge incident to an endpoint
of P . This gives O(n log ∆) calls to the decision version of the problem for graphs with n
vertices and maximum degree ∆.

2.4 Cut&Count approach
The main idea of the Cut&Count approach [10] is to replace search for a Hamiltonian cycle
with counting the following objects: a cycle cover of the graph (i.e., a subset of edges where
every vertex is of degree exactly two) with an assignment of every cycle to either left or right.
In this manner, a fixed cycle cover with c cycles is counted 2c times; if we additionally force
one fixed vertex to be always on the left side, we get 2c−1 instead. That is, every Hamiltonian
cycle is counted once, and every other cycle cover is counted an even number of times.

In [10], the Isolation Lemma [19] is employed to essentially reduce to the case when we
solve instances with a unique Hamiltonian cycle. Then, the parity of the count described
above indicates whether the graph contains a Hamiltonian cycle. However, this approach
introduces a large polynomial overhead in the running time bound: first, because of the need
for self-reducibility to discover the cycle (which we handle as in the previous section) and,
second, because of the use of Isolation Lemma that adds an additional “weight” dimension
to the dynamic programming memoization tables.

For the second overhead, as discussed [10], it can be remedied by, instead of using the
Isolation Lemma, pick a field F of characteristic 2 (i.e., a field of size 2p for some integer p),
associate with each edge e ∈ E(G) a variable xe, associate with each cycle cover a monomial
being a product of the variables associated with the edges used in the cycle cover, and
compute the sum of the monomials over all cycle covers and all left/right assignment, using
a random assignment of values from F to variables xe. Then, if F is large enough (larger
than the maximum degree of the monomial, which is n), the Schwarz-Zippel lemma ensures
that with good probability the result is nonzero if and only if the graph has a Hamiltonian
cycle (i.e., there is a small probability of a false negative).

In our implementation, we follow this path, using a field of size 264. This size is large
enough so that the failure probability is neglible. On the other hand, there exists an efficient
implementation of operations on this field using the PCLMULQDQ processor instruction for
multiplication. Our implementation of the field operations follow [5].

Furthermore, as discussed in the introduction, the choice of computations over GF (264)
rather than arguably simpler counting algorithms via the Isolation Lemma resulted also
in technical problems in handling join nodes. As observed in [10], a natural and direct
approach to a join node with bag of size t runs in time 9ttO(1). In [10], this is speeded
up by an involved fast convolution approach, reducing the 9t factor to 4t. At heart of this
approach lies an algorithm to quickly compute the following convolution.

Let f, g : Zm4 → R for some ring R and integer m. We define f ∗ g : Zm4 → R as

(f ∗ g)(x) =
∑
y∈Zm

4

f(y)g(x− y).

Here, the addition in Zm4 is done coordinatewise. [10] developed a FFT-like approach to
computing the above convolution, yielding the following.
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I Lemma 2.2 ([10]). Given f, g : Zm4 → Z, the convolution f ∗g can be computed in 4mmO(1)

operations on Z on values of the order of 2O(m) times larger than the maximum absolute
value of the input functions.

However, the proof of the above lemma involves division by a factor of 4m, making it
inapplicable directly to R = GF (264). To circumvent this obstacle, we developed a new
variant of Lemma 2.2, building on the internal structure of the field GF (264). Recall that
a field GF (2p) can be defined as the ring Z[x] divided by the ideal generated by 2 and an
irreducible (in F2[x]) polynomial Q of degree p.

I Lemma 2.3. Let p ≥ 1 and assume that the elements of field GF (2p) are given as
polynomials from F2[x] of degree less than p, and multiplication in GF (2p) is done modulo a
known polynomial Q of degree p. Given two function f, g : Zm4 → GF (2p), the convolution
f ∗ g can be computed in time 4m(pm)O(1).

Proof. We follow the same algorithm as in the proof of Lemma 2.2 from [10], but treating the
values of f and g as elements of Z[x], not GF (264). This allows the necessary division steps
in the algorithm, and an inspection of the proof of [10] shows that the algorithm operates on
O(m)-bit integers and polynomials of degree O(p). Then, at the very end, we reduce every
resulting polynomial modulo 2 and modulo Q to obtain elements of GF (264). J

However, in the above we need to depart from the efficient implementation of operations in
GF (264), and explicitly operate on polynomials in Z[x] of larger degree. While theoretically
sound, this is expected to give a large overhead in experiments. Consequently, we test two
variants of the Cut&Count algorithm: the one using a naive approach to the join nodes in
time 9ttO(1) and the one using Lemma 2.3.

To conclude the proof of Theorem 1.1, we observe that to ensure correctness with constant
probability, the Cut&Count algorithm of [10] requires field GF (2p) with p = Ω(logn).

3 Setup

3.1 Hardware and code
All of the computations were performed on a PC with an Intel Core i5-6500 processor and
16 GB of random-access memory. The operating system used during the experiments was
Arch Linux. All implementations has been done in C++, the code is available at [1, 23].

3.2 Data sets
To evaluate our algorithms we decided to use well known set of Hamiltonian Cycle
instances from Flinders Hamiltonian Cycle Project [15] consisting of 1001 instances. To find
tree decompositions of small with, we first applied our implementation of the minimum fill-in
heuristic (cf. [14]). The heuristic returned tree decompositions of width at most 8 for 623
instances, and indicated that 30 more instances may have treewidth within ranges allowing
usage of our Hamiltonian Cycle algorithms.

We took the aforementioned 623 instances as our main benchmark. For sake of optimizing
hyperparameters of our algorithms, we sampled a subset of 30 elements.

To the aforementioned 30 instances with larger but potentially tractable treewidth,
we applied the heuristic of Ben Strasser [21] that won the second place in 2017 PACE
Challenge [12]. This resulted in another 19 instances with tree decompositions of width
between 17 and 29. Out of these instances, 15 turned out to be tractable by our algorithms.
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Furthermore, we also sampled 7 random instances in the following way: starting from a
Hamiltonian cycle C, we added a number of random edges with endpoints close on the cycle
C (so that the treewidth is bounded). These instances are meant to generate many partial
solutions at separator, and are expected to give large advantage to rank-based approaches.

To sum up, we operate on five data sets, all but the last being subsets of the Flinders
Hamiltonian Cycle Project [15]:
set A is the whole set of graphs with small treewidth recognized by our heuristic (623

instances, treewidth at most 8),
set B is a subsample of A (30 instances, treewidth at most 8),
set C is the set of larger treewidth graphs with decompositions found by [21] (19 instances,

treewidth beetwen 17 and 29).
set D is the subset of the set C that turned out to be tractable by our implementations (15

instances, treewidth beetwen 17 and 29).
set E is a set of 7 random graphs sampled as described above.
All instances from [15] are available through their webpage. At [1] we provide a list of the
used instances in each set, the set E, and the used tree decompositions for sets C and D.

3.3 Fine-tuning the frequency of Gaussian elimination
As discussed in the introduction, in the rank-based approach the theoretical running time
bound is worse than the one of Cut&Count approach partially due to the need of applying
Gaussian elimination on the set of partial solutions. It is expected that the Gaussian
elimination would also take substantial part of time resources in experiments.

In theory, the Gaussian elimination step is applied whenever the size of the set of partial
solutions exceeds theoretical guarantees. However, in practice it seems reasonable that
sometimes it pays off to apply this computationally expensive step less often; that is, allow
the set of partial solutions to grow significantly beyond the theoretical bounds, and once
in a while trim it at bulk with a single Gaussian elimination step. This intuition has been
supported by the results of Fafianie et al [13] for the case of Steiner Tree.

Consequently, we start our experiments with fine-tuning the frequency of Gaussian
elimination in both rank-based approaches we study. Since the width of the tree decomposition
can play substantial role in deciding the optimal frequency, we do it separatedly for sets B
and sets C.

In the next experiments, we use the optimum found frequencies for the algorithms based on
both rank-based approaches. Note that the frequencies may differ between the low-treewidth
regime (sets A and B) and the medium-treewidth regime (set C).

3.4 Comparison of the approaches
Having found the optimal frequency of the Gaussian elimination in the rank-based approaches,
we run all four algorithms on every test in sets A, B, and C and compare results. In set C,
every run has a timeout of 30 minutes. In set A, the timeout equals 10 minutes.

4 Results

In our experiments, it quickly became apparent that the variant of the naive and rank-based
approach that stores all partial solutions (i.e., no self-reducibility) is significantly faster for
small treewidth (sets A and B), while the self-reducibility one is faster for larger treewidth
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Table 1 Fine-tuning results for test set B. Note that the second and third columns correspond
to compression guarantees of the two studied algorithms, respectively.

` 2`−1 2`/2−1 τ
Total running time on set B (SS.ms)
rank-based 4t rank-based (2 +

√
2)t

4 8 2 3 1910.968 1318.385
4 1827.949 1569.542

6 32 4

5 1901.457 1264.803
7 1915.583 1286.522
9 1960.515 1298.849
11 1890.034 1316.813
13 1876.483 1339.439
15 1889.843 1401.620
17 1923.244 1425.338

8 128 8

9 1896.748 1269.761
18 1899.633 1290.696
36 1996.629 1274.545
72 1925.507 1268.261
144 1863.837 1283.934

(sets C, D, and E). Thus, in what follows, we used the first one for experiments on small
treewidth graph and the latter for larger treewidth graphs.

4.1 Fine-tuning the frequency of Gaussian elimination

4.1.1 Small treewidth
Recall that in sets A and B, the maximum size of the bag in the decomposition is 9.
Consequently, in every state (b, E) the size of b−1(1) is at most 8 (as it must be even).
The treatment of the states with |b−1(1)| ∈ {0, 2} does not use any of the involved rank-
based techniques. Thus, we decided to separatedly fine-tune the frequency of applying the
Gaussian elimination step to buckets with |b−1(1)| of size 4, 6, and 8 each. More formally, for
` ∈ {4, 6, 8} we fix a threshold τ and, for fixed bucket b with |b−1(1)| = ` apply the Gaussian
elimination step to the states (b, E) only if the number of these states is at least τ . While
experimenting with one `, the threshold for another sizes remains fixed. We perform tests on
set B and report the total time used to find Hamiltonian cycles in all instances. The results
are presented in Table 1.

From the results, it seems that lowering the frequency of Gaussian elimination does
not help neither of the approaches, and evidently worsened the case for the improved base
algorithm and ` = 4, 6. The only exception seemed to be the case ` = 6 and τ = 13 for the
worse base algorithm.

We see a number of good explanations for that. First, we think that case ` = 8 appeared
very rarely in the computations, and thus the impact of fine-tuning it has neglible effect in
the overall result.

For the remaining cases, note that the matrices passed to the Gaussian elimination have
at most 32 columns in the case of the first algorithm, and only 4 columns in the second.
Thus, the Gaussian elimination step is very cheap in this regime of `. Consequently, one does
not gain much from lowering the frequency, while evidently losing by needing to maintain
bigger memoization tables. This explains the worsening of the second algorithm for ` = 4, 6
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Table 2 Fine-tuning results for test set D. The Gaussian elimination step is applied to buckets b
with ` = |b−1(1)| and at least α · 2`/2−1 states (b, E).

α
Total running time on set D (SS.ms)

α
Total running time on set D (SS.ms)

rank-based 4t rank-based (2 +
√

2)t rank-based 4t rank-based (2 +
√

2)t

0.5 7363.078 2021.516 32 1802.851 1778.647
1 2704.165 1801.278 64 1797.416 1807.470
2 1925.618 1768.000 128 1794.877 1801.913
4 1813.478 1779.293 256 1801.104 1822.113
8 1792.872 1788.217 512 1795.312 1818.508
16 1806.994 1783.919 1024 1800.863 1800.698

and increasing τ .
However, one would expect that the first algorithm would also worsen with the increase of

τ , but this is not supported by data. To explain this behavior, note that the values of τ used
here are lower than the theoretical guarantees of the algorithm. Consequently, the pruning
of the memoization tables in the first algorithm seem to give very little in these cases.

In other words, the pruning capabilities of the vectors vE used by the first algorithm are
much weaker for low values of ` than the capabilities of the second algorithm. This is most
striking in the case ` = 4: there are 3 pairings of a 4-element set; the first algorithm keeps
all of them if present, while the second one notices that one is redundant and deletes it.

To sum up, the data indicates that decreasing the frequency of the Gaussian elimination
step does not help for small values of `, while the first algorithm with the worse pruning
capabilities does not offer much pruning in this regime of values of `.

4.1.2 Larger treewidth
For fine-tuning in graphs of larger treewidth, we use set D. Here, we propose slightly different
threshold behavior: we fix a parameter α and, for fixed bucket b with ` = |b−1(1)|, we apply
the Gaussian elimination step if the number of states (b, E) exceed α · 2`/2−1 (i.e., α is a
multiplicative parameter relative to the pruning size guarantee of the second algorithm). The
results are gathered in Table 2.

The results indicate that a mild increase of the threshold (i.e., α = 2) increases the speed
of the second algorithm, while further increase of the threshold slowly worsenes the bounds.
For the first algorith, the sweet spot seems to be slightly later, and further increase of the
threshold does not necessarily worsen the algorithm.

The gain from mild increase in the case of both algorithms can be explained by the fact
that for larger values of `, the Gaussian elimination step starts to be costly. In the case of
the first algorithm, we think that its pruning capabilities are limited for the Hamiltonian
cycle problem, and thus further increase of the threshold does not change much.

To sum up, both algorithms definitely slow down if the Gaussian elimination step is done
too frequently. The data showed optimum values α = 8 for the first algorithm and α = 2 for
the second.

4.2 Comparison
As discussed in Section 2.4, we have implemented two variants of the Cut&Count algorithm:
the one that uses the fast convolution at join nodes (Lemma 2.3) and the one that does it
more naively in time bounded by 9ttO(1).
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Table 3 Total running times for test set A (timeout 10 minutes per instance). The Cut&Count
program did not finish within alloted time on 124 instances, the remainder solved all test cases. In
the first row, we show total running time on all 499 tests solved by all programs.

naive rank-based 4t rank-based (2 +
√

2)t Cut&Count
499 tests finished by all 5993.633 7383.249 5919.392 46650.101
all 623 tests 11532.153 13675.58 10278.827 -

Table 4 Running times for test sets C and E. Hyphen means timeout (30 minues). For the set
C, the “tw” column indicates the width of the used tree decomposition (found by the algorithm of
Strasser [21]). Tests where all algorithms were timeouted are not presented here.

test |V (G)| |E(G)| tw naive rank-based 4t rank-based (2 +
√

2)t Cut&Count
0074 462 756 28 38.737 109.655 110.040 -
0109 606 933 17 .063 .086 .085 .611
0110 606 925 17 .066 .089 .090 .471
0144 804 1256 21 .190 .253 .231 205.128
0145 804 1252 21 .137 .187 .186 3.549
0172 1002 1575 25 1.156 1.298 .554 -
0173 1002 1579 25 .459 .598 .475 215.115
0199 1200 1902 29 13.513 15.419 3.369 -
0200 1200 1902 26 3.673 6.900 1.544 -
0253 1578 2688 29 93.343 167.458 167.440 -
0268 1644 2767 25 36.449 70.157 69.111 -
0271 1662 2770 29 28.149 33.145 33.208 -
0272 1662 2863 25 554.271 1260.329 1230.722 -
0290 1770 3020 25 57.901 83.781 82.386 -
0298 1806 3071 23 10.035 18.611 18.492 -
E0001 360 566 371.775 - 64.390 -
E0002 600 886 204.197 - 28.882 -
E0003 700 1139 - - 711.778 -
E0007 360 655 1575.475 - 328.191 -

We found out that the one with the fast convolution behaves very slowly even on small
tests. This can be easily explained by the hidden complexity of ring computations inside
Lemma 2.3. Consequently, while theoretically sound, we dropped it from further experiments
and considered only the Cut&Count algorithm without the fast convolution.

For test set A, we have used a timeout of 10 minutes per instance. A CSV file with full
results can be found on the project website [1]. Table 3 presents summary; the Cut&Count
algorithm did not finish in time for 124 tests, and thus we compare its running time on
the other 499 tests. For sets C and E, full results are in Table 4 (for set E only naive and
improved rank-based algorithms were executed).

The first corollary from the results is that the Cut&Count approach does not turn
out to be practical, and is heavily outperformed by other approaches. We see some good
explanations for that. First, all other approaches are “positive-driven”: they keep only values
in their memoization tables that correspond to found partial solutions, and in many cases
there can be much fewer such partial solutions that the worse-case theoretical bound. In
particular, these approaches can implicitly use some hidden structure of the input graph, such
as planarity. The Cut&Count approach, on the other hand, relies on computing coefficients
for partial cycle covers, and – even with our positive-driven implementation that keeps only
nonzero elements – keeps track of much more partial solutions that the other approaches.
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This effect is even stronger if one tries to use fast convolution at join nodes: the convolution
fills up the entire table of 4t values being polynomials, even if the input functions were sparse.

Second, the Cut&Count approach solves only a decision version of the problem, yielding
large overhead from some self-reducibility application, while all other algorithms return the
Hamiltonian cycle in question straight away.

For the other approaches, it is noticeable that the first rank-based approach (with 4t
guarantee on the size of the memoization tables) is clearly outperformed by the naive
approach. That is, the cost of the Gaussian elimination step does not pay back in savings of
the size of memoization tables. This can be explained as already discussed in the previous
section: the vectors used in this algorithm are too weak to effectively prune the memoization
tables, which is particularly visible on buckets b with small ` = |b−1(1)|.

Results from small treewidth graphs (set A) show also that the improved rank-based
approach outperforms the naive one by roughly 10%. For larger treewidth (set C), the
situation is more complicated: on some tests the rank-based approach outperforms the naive
one by significant factor (0172, 0199, 0200), while sometimes it is opposite (0074, 0272). As
expected, the artificially generated random instances gave big advantage to the rank-based
approach.

A natural question is why we see only 10% increase despite significant asymptotic gain
in the analysis (2O(t log t) vs (2 +

√
2)t). Apart from the obvious answers to this questions

(the values of t we are studying are low for asymptotic analysis), we would like to point
out another, problem-specific reason. The difference between the naive approach and the
rank-based one is only within handling states for one fixed bucket b, and there are up to 3t
different buckets. Iterating over all non-empty buckets is a common part of both approaches,
and can be responsible for most of their running time.

To sum up, the only approach competitive with the naive approach is the improved
rank-based approach with the (2+

√
2)t guarantee on the size of memoization tables. However,

its gain is limited, and there are multiple cases where the use of Gaussian elimination steps
is not helpful at all.

5 Conclusions

We have experimentally evaluated multiple known approaches to solve Hamiltonian Cycle
in graphs of bounded treewidth. The results show that the Cut&Count approach is impractical,
while the improved rank-based approach of [9] consistently outperforms the more generic one
of [6]. Furthermore, the latter seem to help little and is outperformed by the naive solution.

The comparison between the naive solution and the improved rank-based one of [9] is
more intricate. On graphs of small treewidth, the second one outperforms the first one by
10% margin. For larger treewidth, the results are rather indecisive.

The results indicate potential in the improved rank-based algorithm of [9] and point
to the need of further theoretical study of this approach. In [9], the authors show how to
perform pruning without the need of Gaussian elimination at introduce/forget nodes.
The question of matching the (2 +

√
2)ttO(1) running time bound for join nodes remains

open, and a positive answer to this question may lead to significantly faster implementation.
Also, we did not try to mix the Gaussian elimination steps at join nodes with the other
steps at introduce/forget nodes.

Finally, we found it quite remarkable that 638 out of 1001 instances of Flinders Hamiltonian
Cycle Challenge [15] (i.e., our sets A and D) could be solved with the naive bounded treewidth
routine on a personal computer, while 623 out of them (our set A) have one-digit treewidth.
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Abstract
Colour refinement is at the heart of all the most efficient graph isomorphism software packages.
In this paper we present a method for extending the applicability of refinement algorithms to
directed graphs with weighted edges. We use Traces as a reference software, but the proposed
solution is easily transferrable to any other refinement-based graph isomorphism tool in the
literature. We substantiate the claim that the performances of the original algorithm remain
substantially unchanged by showing experiments for some classes of benchmark graphs.
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1 Introduction

An isomorphism between two graphs is a bijection between their vertex sets that preserves
adjacency. An automorphism is an isomorphism from a graph to itself. The set of all
automorphisms of a graph G form a group under composition called the automorphism group
Aut(G) whose order is |Aut(G)|. The graph isomorphism problem (GI) is that of determining
whether there is an isomorphism between two given graphs. It is convenient to consider GI
for vertex coloured graphs, in which case isomorphisms and automorphisms must preserve
colours of vertices.

In this paper we will consider GI for coloured graphs and digraphs with weighted edges,
in which case isomorphisms and automorphisms must preserve weights of edges, too. Quite
surprisingly, none of the existing GI software packages is currently able to treat such class
of graphs directly. Existing software can handle weighted digraphs by using layers (as in
the nauty manual [15]) or by using unweighted gadgets to simulate weighted directed edges
(see Figure 1). However, both methods multiply the size of the graph and so increase the
running time and space significantly. We will use Traces [16, 19] as reference program, but
the method that we are going to describe can be adapted to any other GI software.

The most successful GI packages are based on the individualization-refinement technique:
they can treat graphs with a huge number of vertices and edges quite efficiently. During the
computation, these programs spend most of the time in the operation of colour refinement,
i.e. in the assignment of a minimal number of colours to vertices of the graph, in a way that
vertices with the same colour have neighbours with the same colours. In every GI package,

© Adolfo Piperno;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:piperno@di.uniroma1.it
https://orcid.org/0000-0001-5001-6308
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 Isomorphism Test for Digraphs with Weighted Edges

the refinement routines have been the object of subsequent optimizations, sometimes over
decades: to add new features to them may not be an easy task.

From their part, refinement algorithms spend most of the time in counting neighbours
of vertices. At each iteration, a reference colour c is selected and vertices of the graph are
classified according to the number of c-coloured neighbours they have.

In the case of graphs with weighted directed edges – and in the context of graph
isomorphism – the main issue to be considered is that the notion of adjacency is not as
immediate as in the case of simple graphs. In this setting, the classification of a vertex u
must take into account not only weights of edges from u to vertices with the current reference
colour, but also weights of their opposite edges, since isomorphisms and automorphisms are
requested not only to preserve the out-neighbourhood of u but also its in-neighbourhood (see
e.g. Theorem 13 of [3]). The main motivation of this paper is to go beyond these additional
difficulties by keeping the counting mechanism of the refinement algorithm for simple graphs.
Shortly, the solution we propose is the adoption of internal weights – to be used during the
computation, only – which encode the information from both the weights of an edge and
its opposite edge. We will treat the case of unweighted directed graphs by considering two
distinguished weights 1 and 0 with the meaning of “arc” and “non-arc”, respectively.

In particular, it is our aim to show (and prove) that the ability to process weighted
graphs and digraphs can be added to Traces in a very simple and conservative way: (i) by
keeping the original data structures and by changing a minimal number of lines of the existing
code; (ii) by introducing a negligible overhead – with respect to the whole computation –
in preprocessing weights, just in the case of the new families of graphs; (iii) by preserving
substantially the same performances in the case of simple graphs. The simplicity of the
proposed solution stems from the fact that it exactly captures the additional complexities
arising when using graphs with weighted edges.

Towards the aim of the paper, in Section 2 we will briefly review the individualization-
refinement technique and we will consider the issues in extending the method to the case of
weighted digraphs; in Section 3 we will introduce internal weights, and we will prove their
properties. The new algorithm will be presented in Section 4, together with a brief analysis
of its complexity. Experimental results will be shown in Section 5.

2 Practical aspects of the graph isomorphism problem

The theoretical status of GI, which culminates with Babai’s recent quasi-polinomiality result
[2], is outside the scope of this paper; a brief historical description can be found in [16].

From a practical perspective, the most successful approach to GI is the “individualization-
refinement” method, which originates in [18, 5, 1] and was distributed in a software package,
nauty, by McKay [13].

Basically, a colouring (or partition) refinement function classifies vertices of a graph
G, in a way which is invariant under isomorphism, according to the classification of their
neighbours. The sets of vertices with a given colour are called cells. Vertices with a specific
colour (chosen in an isomorphism invariant way, again) are individualized one by one in
order to distinguish them from other vertices in the same cell. This mechanism produces a
search tree, whose nodes represent refined colourings, while branching is determined by the
individualization step. Colourings in which all cells are singletons (called discrete) appear
as leaves of the search tree. Equivalent discrete colourings induce automorphisms of the
graph G. Pruning of the tree is obtained by excluding non-matching colourings and by the
use of automorphisms. Comparing colourings also allows us to define a best leaf, which is
used to canonically label the graph G, namely to produce a representative of exactly the
isomorphism class of G.
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Figure 1 A directed graph (a), a weighted graph (b), a weighted digraph (c) and its encoding
by means of a simple coloured graph (d). In these pictures, the arc (u, v) has label “a, b” when the
weight of (u, v) is a and the weight of (v, u) is b. The simple edge (u, v) has label “a” when both the
weight of (u, v) and that of (v, u) are a 6= 0, 1. The simple edge (u, v) has no label when both the
weight of (u, v) and that of (v, u) are 1. The graph in (d) is obtained from the one in (c) by adding
two vertices for each arc and colouring them according to their weight.

Software distributions based on the individualization-refinement technique such as
nauty[13, 16, 14, 15], Traces[16, 14, 15, 19], Bliss[9, 10], conauto[12, 11] and saucy [6, 7]
are the most efficient GI tools currently available, though Neuen and Schweitzer [17] have
recently tailored classes of graphs which are not tractable by them.

2.1 Graphs and colourings
A weighted digraph is a triple G = (V,E,w), where (v, v) 6∈ E and (u, v) ∈ E ⇒ (v, u) ∈
E,∀u, v ∈ V ; w : E →W is a function mapping arcs to elements of a finite set W of possible
weights. Note that loops can be easily represented in our setting by colouring vertices.

I Remark. Throughout the paper, we will assume without loss of generality that W ⊆ N, i.e.
the set of weights is a finite set of natural numbers. In fact, for the purpose of isomorphism
testing, it is the difference between weights which is relevant, rather than their actual value.
Weighted graphs are in general directed graphs, since for any u, v ∈ V and for any weight a,
w(u, v) = a 6⇒ w(v, u) = a. In order to the represent an unweighted directed arc from u to
v, we will always use the weights 0, 1 ∈ W and impose w(u, v) = 1, w(v, u) = 0. We finally
observe that graphs with multiple weighted edges can be represented in the present setting
by suitable encodings of multiple arcs into single weighted arcs.

Let G = Gn denote the set of graphs with vertex set V = {1, 2, . . . , n}. A colouring of V
(or of G ∈ G) is a surjective function π from V onto {1, 2, . . . , k} for some k. The number of
colours, i.e. k, is denoted by |π|. A cell of π is the set of vertices with some given colour.
A discrete colouring is a colouring in which each cell is a singleton, in which case |π| = n.
Note that a discrete colouring is a permutation of V .

If π, π′ are colourings, then π′ is finer than or equal to π (and π is coarser than or equal
to π′), written π′ � π, if π(v) < π(w) ⇒ π′(v) < π′(w) for all v, w ∈ V . This implies that
each cell of π′ is a subset of a cell of π, but the converse is not true.

A pair (G, π), where π is a colouring of G, is called a coloured graph.
Let Sn denote the symmetric group acting on V . We indicate the action of elements

of Sn by exponentiation. That is, for v ∈ V and g ∈ Sn, vg is the image of v under g.
The same notation indicates the induced action on complex structures derived from V . In
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particular, if G = (V,E,w) ∈ G, then: (i) Gg ∈ G has ug adjacent to vg exactly when
u and v are adjacent in G; (ii) if π is a colouring of V , then πg is the colouring with
πg(vg) = π(v) for each v ∈ V ; (iii) wg is such that wg(ug, vg) = w(u, v), for each (u, v) ∈ E;
(iv) (G, π)g = ((V g, Eg, wg), πg).

2.2 Graph isomorphism
Two coloured graphs (G = (V,E,w), π), (G′ = (V,E′, w′), π′) are isomorphic if there is
g ∈ Sn such that (G′, π′) = (G, π)g, in which case we write (G, π) ∼= (G′, π′). Such a g is
called an isomorphism. The automorphism group Aut(G, π) is the group of isomorphisms of
the coloured graph (G, π) to itself; that is,

Aut(G, π) = {g ∈ Sn : (G, π)g = (G, π)}.

Let Π = Πn denote the set of colourings. A canonical form is a function

C : G ×Π → G ×Π

such that, for all G ∈ G, π ∈ Π and g ∈ Sn,

C(G, π) ∼= (G, π) and C(Gg, πg) = C(G, π). (1)

In other words, it assigns to each coloured graph an isomorphic coloured graph that is a
unique representative of its isomorphism class. It follows from the definition that (G, π) ∼=
(G′, π′)⇔ C(G, π) = C(G′, π′).

2.3 Refinement
We first review and discuss refinement for simple graphs.

I Definition 1 (the simple graph case). Let G ∈ G be a simple graph.
1. A colouring of G is called equitable if any two vertices of the same colour are adjacent to

the same number of vertices of each colour.
2. For every colouring π of G, a coarsest equitable colouring π′ finer than π is called a

(colour) refinement of π. It is well known that π′ is unique up to the order of its cells.

An algorithm for computing π′ appears in [13]. We summarize it in Algorithm 1.
All refinement algorithms present in the literature are variants of this one. The paper
of Berkholz, Bonsma and Grohe [3] has recently presented a deep analysis of refinement
algorithms, establishing their complexity in O((m+ n) logn) time, where n is the number of
vertices and m the number of edges of the input graph.

I Example 2. A simple graph (left) and its colour refinement are shown in Figure 2. The
rightmost colouring is obtained, by refining, after the individualization of vertex 10.

In Algorithm 1, the cell W causes the splitting of the cell X when two vertices in X have
a different number of neighbours in W . We will call W the reference cell. The correctness
of the algorithm is based on the fact that – at every iteration of the while loop – the
sequence α contains at least cells which may cause any possible splitting of other cells. In
particular, when the refinement function is called at the beginning of the computation, the
sequence of all cells of the input colouring is assigned to α, while after an individualization
step it is sufficient to refine the colouring by assigning to α only the cell which contains the
individualized vertex.
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Algorithm 1: Refinement algorithm.
Data: π is the input colouring and α is a sequence of some cells of π.
Result: The final value of π is the output colouring.
while α is not empty and π is not discrete do

Remove some element W from α;
Count the number of edges from vertices in W to each vertex;
for each cell X of π do

Let X1, . . . , Xk be the fragments of X distinguished according
to the counting of the previous step;

Replace X by X1, . . . , Xk in π;
if X ∈ α then

Replace X by X1, . . . , Xk in α;
else

Add all but one of the largest of X1, . . . , Xk to α;
end

end
end
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Figure 2 Refinement (simple graphs); individualization of vertex 10 and refinement (right).

All the programs based on the individualization-refinement method spend most of their
time in refining partitions; for its part, the refinement algorithm spends most of its time in
counting neighbours of the reference cell. Therefore, the overall efficiency of the algorithm
depends to a large degree on the efficiency of the colour refinement procedure. Traces,
for instance, distinguishes several cases in the counting loop, according to different rates
of density of the graph, and gives priority to singleton reference cells, in an isomorphism
invariant way.

In this scenario, it is our aim to equip Traces with the additional resources needed to
treat weighted graphs, without making any change to the neighbour counting algorithms.
The main issue to be considered is that a cell must be split not only in conformity with the
number of its outgoing edges falling into the reference cell, but also according to the weight
of such edges and to the weight of their opposite edges (see e.g. the cell {2, 3, 6, 7} in Figure
3).

I Definition 3 (the weighted digraph case). Let G = (V,E,w) ∈ G be a weighted digraph
with weights from W ⊆ N.
1. Let u, v ∈ V be two distinct vertices of G. We say that u is (a, b)-adjacent to v if

w(u, v) = a and w(v, u) = b and a, b are not both equal to 0. Therefore, if u is (a, b)-
adjacent to v, then v is (b, a)-adjacent to u.
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Figure 3 Refinement (weighted digraphs): the splitting of the cell {2, 3, 6, 7} into {2, 6}{3, 7} is
caused by the reference cell {9}, due to the weights of the edges from vertex 9 to 2, 3, 6, 7.

2. A colouring of G is called equitable if any two vertices of the same colour are (a, b)-adjacent
to the same number of vertices of each colour, for any (a, b) ∈ W ×W.

3. For every colouring π of G a coarsest equitable colouring π′ finer than π is called a
refinement of π.

3 Internal weights

Let G = (V,E,w) ∈ G be a weighted digraph with weights from W ⊆ N. We assign internal
weights to edges of G, with the aim of making the refinement phase similar as much as
possible to that for simple graphs. We will prove that the order of the automorphism group of
G with internal weights remains unchanged, and that a canonical form of G can be obtained
at the end of the computation simply by restoring the original weights.

I Definition 4. We define the function w which assigns internal weights to edges of G in
two steps:
1. We define the function

φw : E →W ×W
(u, v) 7→ (w(u, v), w(v, u)).

(2)

and we denote by Φw = {(w(u, v), w(v, u)) | (u, v) ∈ E} the image of φw and by Φlex
w the

lexicographically ordered sequence of elements of Φw.
2. Let W = {0, 1, . . . , |Φw| − 1}. We define the function

w : E →W
(u, v) 7→ the index of φw(u, v) in Φlex

w (starting from 0).
(3)

3. For any G = (V,E,w) ∈ G, we denote G = (V,E,w).

I Example 5. In Figure 4, internal weights are assigned to the leftmost graph. For any edge
(u, v) in the second column of the table, the corresponding entry a,b → i in the first column
shows that w(u, v) = a, w(v, u) = b and w(u, v) = i. Therefore, the internal weight i carries
the information of both the weights of (u, v) and (v, u).

For any pair of edges (u1, v1) and (u2, v2)

(By (2)) φw(u1, v1) = φw(u2, v2)⇔ φw(v1, u1) = φw(v2, u2) (4)
(By (3)) w(u1, v1) = w(u2, v2)⇔ φw(u1, v1) = φw(u2, v2), (5)

therefore the internal weight of an edge encodes both w(u, v) and w(v, u).
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Figure 4 Assignment of internal weights.

I Lemma 6. Let G = (V,E,w) ∈ G. Then
1. φw(u1, v1) = φw(u2, v2)⇔ φw(u1, v1) = φw(u2, v2).
2. φw(u1, v1) = φw(u2, v2)⇔ φw(v1, u1) = φw(w2, u2).

Proof. These follow from (4) and (5). J

I Remark. (Idempotency) For any G = (V,E,w) ∈ G we have G = G.
In fact, by statement 2 of Lemma 6, for every a ∈ W there is one and only one b ∈ W

such that φw(u, v) = (a, b), for some (u, v) ∈ E. It follows that W =W and that the index
of (a, b) in Φlex

w is exactly a. Thus, w = w. Note that (a, b) ∈ Φw ⇔ (b, a) ∈ Φw, therefore
the set of pairs Φw is a bijection on W.

I Theorem 7. Let G,G1, G2 ∈ G. Then:
1. Aut(G) = Aut(G).
2. G1 ∼= G2 ⇒ G1 ∼= G2.

Proof. Both 1 and 2 follow from statement 1 of Lemma 6.
1. (⇒) Let g ∈ Aut(G) be such that for some vertices u1, v1, u2, v2 we have (u1, v1)g =

(u2, v2). Then φw(u1, v1) = φw(u2, v2), since g preserves weights. By using 1 of Lemma 6
we obtain that g ∈ Aut(G). The converse implication is proven similarly.

2. It is well known that we can decide the isomorphism of two graphs by comparing the
order of their automorphism groups with the order of the automorphism group of their
union graph. The theorem follows considering the union graph of G1 and G2, applying
the previous result. J

I Remark. The converse of statement 2 of Theorem 7 does not hold. A simple example
can be derived as a consequence of the idempotency property. In fact, G = G 6⇒ G ∼= G.
Consider as a further counterexample the graph G in Figure 4 (left), and replace weight
2 with 3 in all its occurrences, thus obtaining a graph G′ not isomorphic to G. However,
G = G′.

4 Refinement and isomorphism test

The use of internal weights allows refinements of weighted digraphs to be computed with an
algorithm only slightly different from Algorithm 1, as shown in Algorithm 2. The counting
loop is fractionated according to the internal weights of outgoing edges of elements of the
reference cell W .
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Algorithm 2: Refinement algorithm for weighted digraphs.
Data: π is the input colouring and α is a sequence of some cells of π.
Result: The final value of π is the output colouring.
while α is not empty and π is not discrete do

Remove some element W from α;
for each internal weight z (in ascending order of out-arcs of vertices in W do

Count the number of edges with weight z from vertices in W to each vertex;
for each cell X of π do

Let X1, . . . , Xk be the fragments of X distinguished according
to the counting of the previous step;
Replace X by X1, . . . , Xk in π;
if X ∈ α then

Replace X by X1, . . . , Xk in α;
else

Add all but one of the largest of X1, . . . , Xk to α;
end

end
end

end

I Theorem 8 (Correctness).
1. Given an internally weighted digraph G and a colouring π of G, the output colouring of

Algorithm 2 is a refinement of π.
2. In the case of simple graphs, Algorithm 2 coincides with Algorithm 1.

Proof.
1. The proof follows the pattern of any similar proof in the literature, see e.g. [3]. In

a nutshell, (i) the resulting colouring is as coarse as possible since any cell splitting
executed by the algorithm is necessary; (ii) it is also sufficiently fine. In fact assume,
towards a contradiction, that the final colouring has two cells W1 and W2 such that two
vertices u, v ∈W1 have a different number of (a, b)-neighbours in W2, for some internal
weights a, b. This is impossible if W2 is present in the sequence α at the beginning of the
computation. Therefore W2 must have been derived by the splitting of some other cell
W . Assume W2 is not one the largest cells coming from splitting W . In this case, W2 is
added to α and subsequently removed from it, thus causing u and v to be distributed
into two different subcells of W1. Otherwise, if W2 is not added to α after splitting W ,
then the remaining subcells of W – which are all added to α – cause the same splitting
of W2 (this is a classical result by Hopcroft [8]).

2. In the case of simple graphs, we can assume that only one weight is present. Therefore
the highlighted loop in Algorithm 2 consists of only one iteration. J

4.1 Invariance by isomorphism and preprocessing
Let G = (V,E,w) ∈ G and let π be the initial colouring of G. Weights are chosen in the added
loop of Algorithm 2 in ascending order, since this choice is invariant under isomorphism. In
order to make the new algorithm easily usable in Traces, for each vertex v of G we consider
the ordered sequence σv of internal weights of its outgoing edges and we store the neighbours
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Figure 5 σV -sequence colouring and refinement.

Algorithm 3: GI algorithm.
Data: A coloured graph (G = (V,E,w), π).
Result: The order of Aut(G, π) and the canonical labelling C(G, π) of (G, π).

1 Compute internal weights of G;
2 Make a copy of (V,E);
3 Preprocess the new graph G′ = (V,E,w) by sorting the neighbours of each v ∈ V

according to the sequence σv and by considering the σV -refinement of π;
4 Split cells of π according to the order of vertices induced by the order of σV ;
5 Run WTraces (namely, Traces with Algorithm 2 in place of Algorithm 1);
6 Restore the original weights in the canonical labelling C(G′, π): if p is the

permutation such that C(G′, π) = (G′p, πp), take C(G, π) = (Gp, πp).

of v according to this ordering. In addition, we denote σV = {σv | v ∈ V } and we refine
the colouring π by splitting each cell according to the lexicographic order of elements of σV .
We observe that in a simple graph the counterpart of this splitting operation is the degree
colouring, since in that case sequences in σV only differ in their length. At the end of this
kind of preprocessing phase, if two vertices u and v appear in the same cell, then σu = σv

and internal weights of neighbours of u and v will immediately emerge in ascending order in
the weight loop of Algorithm 2.

I Example 9. In Figure 5, the colouring of the leftmost graph is determined conforming
to the ordering of σV . Two vertices with the same colour, e.g 4 and 5, are such that
σ4 = σ5 = (0, 2, 7). We observe that the colouring is not equitable. In fact, 5 has 6 as
neighbour, but 4, which appears in the same cell of 5, has no neighbour in the cell of 6. The
cell {1, 4, 5, 8} is split into {1, 5}{4, 8} during the execution of Algorithm 2 as soon as the
cell {2, 6} is removed from α. More precisely, the splitting occurs when considering outgoing
edges of elements of the cell {2, 6} whose internal weight is 2. The result of the splitting
operation is shown in the rightmost graph, whose colouring is equitable.

4.2 The new GI algorithm: analysis
Let (G = (V,E,w), π) be a coloured graph with n = |V | and m = |E|. Algorithm 3
summarizes the method to compute the order of the automorphism group and the canonical
form of a weighted digraph that we have described in the previous sections. We observe that:
1. The computation of internal weights requires O(n + m) time under the (reasonable)

assumption that ∀(u, v) ∈ E : w(u, v) < m, O(n+m logm) time otherwise.
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2. To make a copy of (V,E) requires O(n+m) time.
3. The preprocessing phase requires O(m) time for sorting the neighbours of vertices

according to internal weights of outgoing edges, and O(m) time to order the sequence
σV . In fact, a radix sort can be used, which runs in O(nn′) time, where n′ is the average
length of sequences in σV . In our setting, O(nn′) = O(m) since the length of σv ∈ σV is
the out-degree of v.

4. For any colouring, Traces always maintains its inverse. Using this information, cells of π
can be split in conformity to the ordering of σV in O(n) time.

Recalling that the refinement function runs in time O((m+n) logn) and thatm ≤ n(n−1),
it follows that the additional computational effort of Algorithm 3 with respect to Traces is
less than (or at least comparable to) one single call of the refinement function.

5 Experimental results

In the following figures, we present some experiments for a variety benchmark graphs. The
graphs are taken from http://pallini.di.uniroma1.it/Graphs.html.

The times given are for a Macbook Pro with 3.1 GHz Intel i7 processor (16GB of RAM),
using the LLVM compiler (version 9.0.0) and running in a single thread. The interested reader
will find the binary codes at http://pallini.di.uniroma1.it/Weights.html, together
with several other families of graphs.

We recall that Traces always computes the order and generators of the automorphism
group of the input graph. At the user’s request, it computes the canonical form of the graph,
too.

Easy graphs are processed multiple times to give more precise times. We usually start
from the unit partition, except when specified in the pictures.

The execution of experimental tests with the assignment of random weights to arcs of
graphs from some known relevant families does not give interesting benchmarks since the
weight assignment usually breaks all the symmetries of the graph. In order to produce
meaningful experiments, for each considered graph G, a weighted version Gw of G is built
as follows: we consider the initial refined partition of G, say (W1, . . . ,Wm), and to each arc
(u, v) of G we assign the weight k if v ∈Wk. This enables to force the program to consider
the input as a weighted digraph, therefore executing all the additional steps described in the
paper. Note that the graph Gw has the same automorphism group of G.

Four different experiments are reported:
execution of the currently distributed version of Traces (v26r10), with canonical form;
execution of WTraces (the new program) for a simple graph, with canonical form;
execution of WTraces adding weights to the input graph, with canonical form;
execution of WTraces, without canonical form.
All experiments show that Traces and WTraces have similar performances for simple

unweighted graphs. In particular, plots #1-#3 in Figure 6 show that the extra computational
cost becomes negligible as the number of vertices of the graph increases and (#7) as
the graph becomes harder. Plots #4,#7,#10 show the the performance of WTraces for
weighted digraphs, comparing them to their unweighted version. Due to the presence of the
preprocessing overhead, some difference is found for very easy graphs, while the performances
are similar for harder cases. The same holds in #5,#8,#11, where the initial colouring of the
graph is obtained after individualizing one vertex, thus allowing more weights in the graph
Gw.

http://pallini.di.uniroma1.it/Graphs.html
http://pallini.di.uniroma1.it/Weights.html
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Random cubic graphs Graphs of CNF formulas Random trees

1,000 4,000 7,000 10,000
0

0.5

1

1.5

2
·10−3 (#1)

102.4 103 104 105
10−3

10−2

10−1

(#2)

101 103 104 105

10−4

10−3

10−2

(#3)

Strongly regular graphs from Steiner triple systems

7 500 1,000
0

0.5

1

1.5

2

(#4)

7 500 1,000
0

0.5

1

1.5
·10−2 (#5) with multiple weights

800 40,000 80,000 120,000
0

20

40

60

80

(#6)

Incidence graphs of projective planes of order 16 (546 vertices, 4641 edges) (?)

103.4 104.2 105 105.95

10−1

100

Order of Aut(G)

(#7)

102 103 103.56

10−1

100

Order of Aut(G)

(#8) with multiple weights

103.4 104.2 105 105.95

100

101

102

timeout: 600 secs

Order of Aut(G)

(#9)

Cai-Fürer-Immerman graphs [4]

200 600 1,000 1,500 2,000
0

0.5

1

1.5

2
·10−2 (#10)

200 600 1,000 1,500 2,000
0

1

2

3

4
·10−2 (#11) with multiple weights

800 3,000 5,000 8,000
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1
(#12)

Traces (canonical form) WTraces (canonical form) WTraces (group order)
WTraces (canonical form, weighted input graph)

Figure 6 Performance comparison (horizontal: number of vertices (except (?)); vertical: time in
seconds). (?) Incidence graphs of projective planes of order 16 are presented according to the order
of their automorphism group.
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Finally, plots #6,#9,#12 report the computation time of the simple coloured graphs
associated to the weighted digraph reported in plots #4,#7,#10, according to the construction
described in Figure 1 (c,d). These plots trivially show that the mentioned construction
becomes unfeasible as the density of the graph increases.

6 Concluding remarks

We have presented a method which has enabled us to equip Traces with the ability of
computing the order of the automorphism group and the canonical labelling of weighted
digraphs. The correctness of the method has been proven in the paper. We have executed
experimental tests which confirm that the performances of Traces remain substantially
unchanged. In the case of unweighted digraphs, it would be interesting to compare the
behaviour of the presented refinement algorithm with the one in [3]: the notion of (a, b)-
adjacency seems to be stronger than the one used by the authors of that paper, since it
not only allows for splitting cells according to the number of outgoing edges, but also in
conformity with ingoing and undirected edges.
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