
29th Annual Symposium on
Combinatorial Pattern Matching

CPM 2018, July 2–4, 2018, Qingdao, China

Edited by

Gonzalo Navarro
David Sankoff
Binhai Zhu

LIPIcs – Vo l . 105 – CPM 2018 www.dagstuh l .de/ l ip i c s

Editors
Gonzalo Navarro David Sankoff
Department of Computer Science Department of Math and Statistics
University of Chile, Chile University of Ottawa, Canada
gnavarro@dcc.uchile.cl sankoff@uottawa.ca

Binhai Zhu
Gianforte School of Computing
Montana State University, USA
bhz@montana.edu

ACM Classification 2012
Mathematics of computing → Discrete mathematics, Mathematics of computing → Information theory,
Information systems → Information retrieval, Theory of computation → Design and analysis of algorithms,
Applied computing → Computational biology

ISBN 978-3-95977-074-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-074-3.

Publication date
May, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CPM.2018.0

ISBN 978-3-95977-074-3 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-074-3
http://www.dagstuhl.de/dagpub/978-3-95977-074-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-074-3
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CPM 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

To all algorithmic stringologists in the world

Contents

Preface
Gonzalo Navarro, David Sankoff, and Binhai Zhu . 0:vii

Regular Papers

Maximal Common Subsequence Algorithms
Yoshifumi Sakai . 1:1–1:10

Order-Preserving Pattern Matching
Indeterminate Strings

Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai 2:1–2:15

On Undetected Redundancy in the Burrows-Wheeler Transform
Uwe Baier . 3:1–3:15

Quasi-Periodicity Under Mismatch Errors
Amihood Amir, Avivit Levy, and Ely Porat . 4:1–4:15

Fast Matching-based Approximations for Maximum Duo-Preservation String
Mapping and its Weighted Variant

Brian Brubach . 5:1–5:14

Nearest constrained circular words
Guillaume Blin, Alexandre Blondin Massé, Marie Gasparoux, Sylvie Hamel, and
Élise Vandomme . 6:1–6:14

Online LZ77 Parsing and Matching Statistics with RLBWTs
Hideo Bannai, Travis Gagie, and Tomohiro I . 7:1–7:12

Non-Overlapping Indexing – Cache Obliviously
Sahar Hooshmand, Paniz Abedin, M. Oğuzhan Külekci, and Sharma V. Thankachan 8:1–8:9

Faster Online Elastic Degenerate String Matching
Kotaro Aoyama, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda . 9:1–9:10

A Simple Linear-Time Algorithm for Computing the Centroid and Canonical
Form of a Plane Graph and Its Applications

Tatsuya Akutsu, Colin de laHiguera, and Takeyuki Tamura . 10:1–10:12

Locally Maximal Common Factors as a Tool for Efficient Dynamic String
Algorithms

Amihood Amir and Itai Boneh . 11:1–11:13

Longest substring palindrome after edit
Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 12:1–12:14

A Succinct Four Russians Speedup for Edit Distance Computation and
One-against-many Banded Alignment

Brian Brubach and Jay Ghurye . 13:1–13:12
29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:viii Contents

Can a permutation be sorted by best short swaps?
Shu Zhang, Daming Zhu, Haitao Jiang, Jingjing Ma, Jiong Guo, and Haodi Feng 14:1–14:12

Computing longest common square subsequences
Takafumi Inoue, Shunsuke Inenaga, Heikki Hyyrö, Hideo Bannai, and
Masayuki Takeda . 15:1–15:13

Slowing Down Top Trees for Better Worst-Case Compression
Bartłomiej Dudek and Paweł Gawrychowski . 16:1–16:8

On the Maximum Colorful Arborescence Problem and Color Hierarchy Graph
Structure

Guillaume Fertin, Julien Fradin, and Christian Komusiewicz . 17:1–17:15

Dualities in Tree Representations
Rayan Chikhi and Alexander Schönhuth . 18:1–18:12

Longest Lyndon Substring After Edit
Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 19:1–19:10

The Heaviest Induced Ancestors Problem Revisited
Paniz Abedin, Sahar Hooshmand, Arnab Ganguly, and Sharma V. Thankachan . . . 20:1–20:13

Superstrings with multiplicities
Bastien Cazaux and Eric Rivals . 21:1–21:16

Linear-time algorithms for the subpath kernel
Kilho Shin and Taichi Ishikawa . 22:1–22:13

Linear-Time Algorithm for Long LCF with k Mismatches
Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos,
Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and
Tomasz Waleń . 23:1–23:16

Lyndon Factorization of Grammar Compressed Texts Revisited
Isamu Furuya, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 24:1–24:10

Preface

The Annual Symposium on Combinatorial Pattern Matching is the international research
forum in the areas of combinatorial pattern matching, string algorithms and related applic-
ations. The objects people work on include trees, regular expressions, graphs, point sets,
and sequences. The goal is to design efficient algorithms based on the properties of these
structures. The problems dealt with include those in bioinformatics and computational
biology, coding and data compression, combinatorics on words, data mining, information
retrieval, natural language processing, pattern matching and discovery, string algorithms,
string processing in databases, symbolic computation and text searching and indexing.

This volume contains the papers presented at the 29th Annual Symposium on Combinat-
orial Pattern Matching (CPM-2018) held on July 2-4, 2018 in Qingdao, China. CPM-2018
was run jointly with COCOON-2018. In fact, it is the first time that CPM is held in China.

The conference program included 24 contributed papers and three invited talks, held
jointly with COCOON-2018. The three invited talks are by Ming Li (University of Waterloo,
Canada), on “Challenges from cancer immunotherapy”; Russell Schwartz (Carnegie-Mellon
University, USA), on “Reconstructing tumor evolution and progression in structurally variant
cancer cells”; and Michael Segal (Ben-Gurion University of the Negev, Israel), on “Privacy
aspects in data querying”.

The contributed papers were selected out of 38 submissions, giving an acceptance ratio of
63%. Each submission was reviewed by at least three Program Committee members (who
might have been assisted by external reviewers, all listed below). We thank all the Program
Committee members and external reviews for their hard work, on which this excellent
scientific program is based.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
taken place annually since then. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Canada), Pisa, Lille,
New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv, and Warsaw. From
the 3rd to the 26th meeting, all the proceedings were published in the LNCS (Lecture Notes
in Computer Science) series. Since 2016, CPM proceedings have been published in the LIPIcs
(Leibniz International Proceedings in Informatics) series, as volume 54 (CPM-2016) and
volume 78 (CPM-2017) respectively.

The submission and review process was carried out with EasyChair. We thank the CPM
Steering Committee for all the advice and support. We thank Haitao Jiang and Daming
Zhu (and their students) at Shandong University for their extensive involvement and local
arrangements. Finally we would like to thank the National Natural Science Foundation of
China for providing generous financial support to the conference.

Gonzalo Navarro
David Sankoff

Binhai Zhu

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Program Committee

Gonzalo Navarro (Co-Chair) University of Chile, Chile
David Sankoff (Co-Chair) University of Ottawa, Canada
Binhai Zhu (Co-Chair) Montana State University, USA
Amihood Amir Bar Ilan University, Israel
Djamal Belazzougui DTISI-CERIST, Algeria
Maxime Crochemore King’s College London, UK and Universite Paris-est, France
Travis Gagie University of Helsinki, Finland
Pawel Gawrychowski University of Wroclaw, Poland
Raffaele Giancarlo Universita degli Studi di Palermo, Italy
Roberto Grossi University of Pisa, Italy
Jiong Guo Shandong University, China
Wing-Kai Hon National Tsinghua University, Taiwan
Shunsuke Inenaga Kyushu University, Japan
Haitao Jiang Shandong University, China
Gregory Kucherov Universite Paris-Est Marne-la-Vallee, France
Tak-Wah Lam University of Hong Kong, China
Gad Landau University of Haifa, Israel
Moshe Lewenstein Bar Ilan University, Israel
Inge Li Gortz Technical University of Denmark, Denmark
Veli Makinen University of Helsinki, Finland
Sebatian Maneth University of Edinburgh, UK
Yakov Nekrich University of Waterloo, Canada
Nicola Prezza Technical University of Denmark, Denmark
Rahul Shah Louisiana State University, USA
Ayumi Shinohara Tohoku University, Japan
Tatiana Starikovskaya ENS, PSL Research University, France
Esko Ukkonen University of Helsinki, Finland
Filippo Utro IBM T.J. Watson Research Center, USA

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

External Reviewers

Diego Arroyuelo Dominik Kempa
Golnaz Badkobeh Vladimir Kolesnikov
Hideo Bannai Dmitry Kosolobov
Guillaume Blin Henry Leung
Bastien Cazaux Chi Man Liu
Panagiotis Charalampopoulos Giovanni Manzini
Edgar Chavez Andrea Marino
Alessio Conte Laurent Mouchard
Fabio Cunial Yuto Nakashima
Zanoni Dias Solon Pissis
Bartlomiej Dudek Simon Puglisi
Maciej Duleba Jakub Radoszewski
Simone Faro Carl Philip Reh
Gabriele Fici Jamie Simpson
Johannes Fischer William F. Smyth
Arnab Ganguly Sagi Snir
Samah Ghazawi Jens Stoye
Alice Heliou Dekel Tsur
Diptarama Hendrian Daniel Valenzuela
Sahar Hooshmand Luca Versari

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

List of Authors

Paniz Abedin (8,20)

Tatsuya Akutsu (10)

Amihood Amir (4,11)

Kotaro Aoyama (9)

Uwe Baier (3)

Hideo Bannai (2,7,9,12,15,19,24)

Guillaume Blin (6)

Alexandre Blondin Massé (6)

Itai Boneh (11)

Brian Brubach (5,13)

Bastien Cazaux (21)

Panagiotis Charalampopoulos (23)

Rayan Chikhi (18)

Maxime Crochemore (23)

Colin de La Higuera (10)

Bartlomiej Dudek (16)

Haodi Feng (14)

Guillaume Fertin (17)

Julien Fradin (17)

Alexandre Francisco (2)

Mitsuru Funakoshi (12)

Isamu Furuya (24)

Travis Gagie (7)

Arnab Ganguly (20)

Marie Gasparoux (6)

Pawel Gawrychowski (16)

Jay Ghurye (13)

Jiong Guo (14)

Sylvie Hamel (6)

Rui Henriques (2)

Sahar Hooshmand (8,20)

Heikki Hyyrö (15)

Tomohiro I (7,9,24)

Costas Iliopoulos (23)

Shunsuke Inenaga (9,12,15,19,24)

Takafumi Inoue (15)

Taichi Ishikawa (22)

Haitao Jiang (14)

Tomasz Kociumaka (23)

Christian Komusiewicz (17)

M. Oguzhan Külekci (8)

Avivit Levy (4)

Jingjing Ma (14)

Yuto Nakashima (9,12,19,24)

Solon Pissis (23)

Ely Porat (4)

Jakub Radoszewski (23)

Eric Rivals (21)

Luis Russo (2)

Wojciech Rytter (23)

Yoshifumi Sakai (1)

Alexander Schönhuth (18)

Kilho Shin (22)

Masayuki Takeda (9,12,15,19,24)

Takeyuki Tamura (10)

Sharma V. Thankachan (8,20)

Yuki Urabe (19)

Élise Vandomme (6)

Tomasz Walen (23)

Shu Zhang (14)

Daming Zhu (14)

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Maximal Common Subsequence Algorithms
Yoshifumi Sakai
Graduate School of Agricultural Science, Tohoku University
468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
yoshifumi.sakai.c7@tohoku.ac.jp

Abstract
A common subsequence of two strings is maximal, if inserting any character into the subsequence
can no longer yield a common subsequence of the two strings. The present article proposes a
(sub)linearithmic-time, linear-space algorithm for finding a maximal common subsequence of two
strings and also proposes a linear-time algorithm for determining if a common subsequence of
two strings is maximal.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases algorithms, string comparison, longest common subsequence, constrained
longest common subsequence

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.1

1 Introduction

A subsequence of a string of characters is obtained from the string by deleting any number of
not necessarily contiguous characters at any position. A common subsequence of two strings
can be though of as a pattern common to the strings. A common subsequence is maximal,
if inserting any character into the subsequence can no longer yield a common subsequence.
Hence, any common subsequence can be found as a subsequence of some maximal common
subsequence. The present article considers the problem of finding a maximal common
subsequence of two strings both of length O(n) over an alphabet set of O(n) characters for
some positive integer n and also considers the problem of determining if a given common
subsequence of the two strings is maximal.

A longest one of maximal common subsequences is called a longest common subsequence
(an LCS). It is well known that the dynamic programming algorithm of Wagner and Fisher
[10] finds an LCS of two O(n)-length strings in O(n2) time and O(n2) space. Moreover,
the divide-and-conquer version developed by Hirschberg [6] reduces the required space to
O(n) without increasing the asymptotic execution time. On the other hand, Abboud et al.
[1] revealed that, for any positive constant ε, there exist no O(n2−ε)-time algorithms for
computing the LCS length, unless the strong exponential time hypothesis (SETH) [7, 8]
is false. This immediately implies that, under assumption of SETH, neither an LCS can
be found nor whether a common subsequence is an LCS can be determined in O(n2−ε)
time. Problems of finding a conditional LCS have also been considered. The constrained
LCS (CLCS) problem [9, 3] (also called the SEQ-IC-LCS problem [2]) and the restricted
LCS (RLCS) problem [5] (also called the SEQ-EC-LCS problem [2]) are such problems.
Given a common subsequence P as essentially “relevant” (resp. “irrelevant”) to relationship
between the two strings, the CLCS (RLCS) problem consists of finding an LCS that has
(resp. does not have) P as a subsequence and was shown to be solvable in O(n3) time [3]
(resp. [5, 2]). From definition, the CLCS found is maximal. In contrast, the RLCS found is
not necessarily maximal and, unless maximal, the RLCS might not be very informative in

© Yoshifumi Sakai;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 1; pp. 1:1–1:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yoshifumi.sakai.c7@tohoku.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Maximal Common Subsequence Algorithms

certain applications because it is just obtained from some common subsequence, which has
the “irrelevant” P perfectly as a subsequence, only by deleting a single character.

The reason why it takes at least an almost quadratic time to find an LCS or a conditional
LCS as a pattern common to the two strings is due to condition that the pattern to be
found should have a maximum length. Possibly for an analogous reason, the best asymptotic
running time known for finding a shortest maximal common subsequence of two strings
remains cubic [4]. The present article shows that, ignoring such conditions with respect to
the length of a maximal common subsequence to be found, we can find a maximal common
subsequence much faster, by proposing an O(n log logn)-time, O(n)-space algorithm. This
algorithm can also be used to find a constrained maximal common subsequence, which hence
has P as a subsequence, in the same asymptotic time and space, where P is an arbitrary
common subsequence given as a “relevant” pattern. It is also shown that we can determine
whether any given common subsequence, such as an RLCS, is maximal further faster, by
proposing an O(n)-time algorithm.

This article is organized as follows. Section 2 defines notations and terminology used
in this article. Section 3 proposes an O(n log logn)-time, O(n)-space algorithm that finds
a maximal common subsequence of two strings of length O(n). Section 4 modifies the
above algorithm so as to output a maximal common subsequence having a given common
subsequence as a subsequence in the same asymptotic time and space. Section 5 proposes an
O(n)-time algorithm that determines if a given common subsequence is maximal. Section 6
concludes this article.

2 Preliminaries

For any sequences S and S′, let S ◦ S′ denote the concatenation of S followed by S′. Let ε
denote the empty sequence. For any sequence S, let |S| denote the length of S. For any index
i with 1 ≤ i ≤ |S|, let S[i] denote the ith element of S, so that S = S[1] ◦ S[2] ◦ · · · ◦ S[|S|].
A subsequence of S is a sequence obtained from S by deleting elements at any position, i.e.,
S[i1] ◦ S[i2] ◦ · · · ◦ S[il] for some indices i1, i2, . . . , il with 0 ≤ l ≤ |S| and 1 ≤ i1 < i2 < · · · <
il ≤ |S|. For any sequences S and S′, we say that S contains S′, if S′ is a subsequence of S.
For any indices i′ and i with 0 ≤ i′ ≤ i ≤ |S|, let S(i′, i] denote the contiguous subsequence of
S consisting of all elements at position between i′+ 1 and i, i.e., S[i′+ 1] ◦S[i′+ 2] ◦ · · · ◦S[i].
Note that S(i, i] = ε. We call S(i′, i] a prefix (resp. suffix) of S, if i′ = 0 (resp. i = |S|).

Let Σ = {c1, c2, · · · , c|Σ|} be an alphabet set of |Σ| characters, which are totally ordered.
A string is a sequence of characters over Σ. For any strings X and Y , a common subsequence
of X and Y is a subsequence of X that is also a subsequence of Y . We say that X and Y
are disjoint, if they have no non-empty common subsequences. Let a common subsequence
W of X and Y be maximal, if inserting any character into W can no longer yield a common
subsequence of X and Y .

3 Algorithm for finding a maximal common subsequence

This section proposes an O(n log logn)-time algorithm that outputs, for any strings X and Y
of length O(n) with |Σ| = O(n) given as input, a maximal common subsequence of X and Y .

For technical reasons, we assume without loss of generality that X[1] = Y [1] = c1,
X[|X|] = Y [|Y |] = c|Σ|, which will work as sentinels, and neither c1 nor c|Σ| appears in
X(1, |X|−1] and also in Y (1, |Y |−1]. Note thatW [1] = c1,W [|W |] = c|Σ|, andW (1, |W |−1]
is a maximal common subsequence of X(1, |X|−1] and Y (1, |Y |−1] for any maximal common
subsequence W of X and Y .

Y. Sakai 1:3

We also assume that the array I (resp. J) of arrays Ic (resp. Jc) for all characters c in
Σ is available, where Ic (resp. Jc) is an appropriate data structure supporting queries of the
following index, indicating the nearest occurrence of a specific character c in X (resp. Y)
from a specific position i (resp. j).

I Definition 1. For any character c in Σ and any index i with 0 ≤ i ≤ |X|, let I≺c (i) (resp.
I�c (i)) denote the least (greatest) index such that c does not appear in X(I≺c (i), i] (resp.
X(i, I�c (i)]). Define index J≺c (j) (resp. J�c (j)) analogously with respect to Y .

In what follows, we adopt as data structure Ic (resp. Jc) the y-fast trie [11] maintaining all
indices i (resp. j) with X[i] = c (resp. Y [j] = c), because array I (resp. J) is constructible
in O(n log logn) time and O(n) space and supports O(log logn)-time queries of any index
introduced above. However, in implementation for practical use, if n is not very large,
then due to hidden constant factors in big-O notation, adopting as Ic (resp. Jc) the array
consisting of the same indices as the y-fast trie in ascending order, supporting O(logn)-time
queries based on a binary search of the array, might be more suitable. Furthermore, if |Σ|
is a small constant, then we can adopt as Ic (resp. Jc) the table of indices I≺c (i) and I�c (i)
(resp. J≺c (i) and J�c (j)) for all indices i (resp. j), which supports O(1)-time queries.

We design the proposed algorithm based on the following property of a common sub-
sequence W , which is naturally derived from the fact that W is not maximal if and only if
inserting some character between some prefix and the remaining suffix of W still yields a
common subsequence of X and Y .

I Lemma 2. For any common subsequence W of X and Y , W is maximal if and only if Xk

and Yk are disjoint for any index k with 0 ≤ k ≤ |W |, where Xk (resp. Yk) is the remaining
substring obtained from X (resp. Y) by deleting both the shortest prefix containing W (0, k]
and the shortest suffix containing W (k, |W |].

Proof. The lemma follows from the fact that, for any index k with 0 ≤ k ≤ |W | and any
character c in Σ, W (0, k] ◦ c ◦W (k, |W |] is a common subsequence of X and Y if and only if
c appears in both Xk and Yk. J

The proposed algorithm solves the problem using string variable W , which is initially set
to c1 ◦ c|Σ| and is eventually updated to a maximal common subsequence of X and Y . For
any index k with 0 ≤ k ≤ |W |, let Xk and Yk be the substrings in Lemma 2. The algorithm
updates W by iteratively replacing it by W (0, k] ◦ c ◦W (k, |W |], where k is the least index
such that Xk and Yk are not disjoint and c is a certain character appearing both in Xk

and Yk, until Xk and Yk become disjoint for all indices k with 0 ≤ k ≤ |W |. Note that the
resulting string W is a maximal common subsequence of X and Y due to Lemma 2. The
algorithm adopts as c the character that appears both in the shortest possible suffix of Xk

or Yk and the entire string of the other. As shown later, this choice is crucial to executing
the algorithm in O(n log logn) time.

In order to execute the above, the algorithm maintains a sequence variable, Ŵ =
(i1, j1) ◦ (i2, j2) ◦ · · · ◦ (i|W |, j|W |), consisting of |W | index pairs so that X(ik, ik+1] and
Y (jk, jk+1] are respectively certain prefixes of Xk and Yk such that they are disjoint if
and only if Xk and Yk are disjoint. The character to be inserted at position between
W (0, k] and W (k, |W |] is searched for by iteratively updating Ŵ by replacing (ik+1, jk+1) by
(ik+1−1, jk+1−1). If ik+1 becomes ik or jk+1 becomes jk, then, since Xk and Yk are disjoint,
the algorithm updates Ŵ by replacing Ŵ [k+ 1] by (i′, j′) and then updates k to k+ 1, where
i′ (resp. j′) is the index such that X(0, i′] (resp. Y (0, j′]) is the shortest prefix of X (resp.
Y) containing W (0, k + 1], i.e. i′ = I�W [k+1](ik) + 1 (resp. j′ = J�W [k+1](jk) + 1). Otherwise,

CPM 2018

1:4 Maximal Common Subsequence Algorithms

Algorithm 1: Algorithm findMCS
1: W ← c1 ◦ c|Σ|;
2: Ŵ ← (1, 1) ◦ (|X| − 1, |Y | − 1);
3: k ← 1;
4: while k < |W |,
5: (i′, j′)← Ŵ [k];
6: (i, j)← Ŵ [k + 1];
7: while i′ < i, j′ < j, J≺X[i](j) ≤ j

′, and I≺Y [j](i) ≤ i
′,

8: Ŵ [k + 1]← (i− 1, j − 1);
9: (i, j)← Ŵ [k + 1];

10: if i = i′ or j = j′, then
11: Ŵ [k + 1]← (I�W [k+1](i

′) + 1, J�W [k+1](j
′) + 1);

12: k ← k + 1,
13: otherwise, if J≺X[i](j) > j′, then
14: W ←W (0, k] ◦X[i] ◦W (k, |W |];
15: Ŵ ← Ŵ (0, k] ◦ (i− 1, J≺X[i](j)− 1) ◦ Ŵ (k, |Ŵ |],
16: otherwise,
17: W ←W (0, k] ◦ Y [j] ◦W (k, |W |];
18: Ŵ ← Ŵ (0, k] ◦ (I≺Y [j](i)− 1, j − 1) ◦ Ŵ (k, |Ŵ |];
19: output W .

if X[ik+1] appears in Y (jk, jk+1] (i.e., if J≺X[ik+1](jk+1) > jk), then the algorithm updates W
to W (0, k] ◦X[ik+1] ◦W (k, |W |] and also updates Ŵ to Ŵ (0, k] ◦ (i, j) ◦ Ŵ (k, |Ŵ |], where i
(resp. j) is the index such that X(i, |X|] (resp. Y (j, |Y |]) is the shortest suffix of X (resp. Y)
containing X[ik+1] ◦W (k, |W |], i.e., i = ik+1 − 1 (resp. j = J≺X[ik+1](jk+1)− 1). Otherwise,
since Y [jk+1] appears in X(ik, ik+1], the algorithm updatesW and Ŵ in a symmetric manner
with respect to Y [jk+1].

A pseudocode of the proposed algorithm is given as Algorithm findMCS in Algorithm 1,
where we assume that, by an O(n log logn)-time preprocessing, arrays I and J are available
as data structures supporting O(log logn)-time queries of any of indices I≺c (i), I�c (i), J≺c (j),
and J�c (j). In this pseudocode, variables i′, j′, i, and j are respectively used to represent
indices ik, jk, ik+1, and jk+1, where (ik, jk) = Ŵ [k] and (ik+1, jk+1) = Ŵ [k+ 1]. A concrete
example of how this algorithm works is presented in Figure 1.

As mentioned earlier, the following condition holds at any execution of line 7 of this
algorithm and also at the last execution of line 4.

I Definition 3. For any string W , any index pair sequence Ŵ = (i1, j1) ◦ (i2, j2) ◦ · · · ◦
(i|W |, j|W |), and any index k, let C(W, Ŵ , k) denote the condition that

W is a common subsequence of X and Y containing c1 ◦ c|Σ|,
1 ≤ k ≤ |W |,
for any index k′ with 1 ≤ k′ ≤ k − 1, X(iak′ , i`k′+1] and Y (jak′ , j`k′+1] are disjoint,
(ik, jk) = (iak , jak), and
for any index k′ with k ≤ k′ ≤ |W | − 1,
ik ≤ ik′+1 ≤ i`k′+1,
jk ≤ jk′+1 ≤ j`k′+1,
X(ik′+1, i

`
k′+1] and Y (jk, j`k′+1] are disjoint, and

Y. Sakai 1:5

^ d c c e f e b c c c f b b f b h a b h $

^ d d a c e g a g a a b d a c g g i a i $e f

g

Figure 1 A maximal common subsequence W = d̂cebfag$ of X = d̂ccefebcccfbbfbhagbh$ and
Y = d̂dacegagaabefdacggiai$ with c1 = ˆ and c|Σ| = $, which is output by Algorithm findMCS.
Lines 5 through 18 of the algorithm are executed fifteen times and for each number t with 1 ≤ t ≤ 15,
the tth most inner pair of arrows (one solid and the other dotted, which are of the same length)
indicates which index pairs (i, j) are considered by line 7 throughout the tth iteration of lines 5
through 18, where the dotted arrow is chosen so as to show that the sum of the length of all dotted
arrows is at most 2(|X|+ |Y |). Each dashed line between X[i] and Y [j] indicates that Ŵ is replaced
by Ŵ (0, k] ◦ (i− 1, j − 1) ◦ Ŵ (k, |Ŵ |] by either line 15 or line 18. Each solid line between X[i′] and
Y [j′], other than the leftmost one, indicates that Ŵ [k + 1] is set to index pair (i′, j′) by line 11.

X(ik, i`k′+1] and Y (jk′+1, j
`
k′+1] are disjoint,

where, for any index k′ with 0 ≤ k′ ≤ |W |, iak′ (resp. jak′) is the least index such that X(0, iak′]
(resp. Y (0, jak′]) contains W (0, k′] and i`k′+1 (resp. j`k′+1) is the greatest index such that
X(i`k′+1, |X|] (resp. Y (j`k′+1, |Y |]) contains W (k′, |W |].

I Lemma 4. Condition C(W, Ŵ , k) holds at any execution of line 7 of Algorithm findMCS
and also at the last execution of line 4.

Proof. The lemma is proven by induction. Since C(c1 ◦ c|Σ|, (1, 1) ◦ (|X| − 1, |Y | − 1), 1)
holds at the first execution of line 7, assume that C(W, Ŵ , k) holds at an arbitrary execution
of line 7. Let (i′, j′) = Ŵ [k] and let (i, j) = Ŵ [k + 1]. If i′ < i, j′ < j, J≺X[i](j) ≤ j′, and
I≺Y [j](i) ≤ i

′, then C(W, Ŵ (0, k] ◦ (i− 1, j − 1) ◦ Ŵ (k + 1, |W |], k) holds, because i′ ≤ i− 1,
j′ ≤ j − 1, X[i] does not appear in Y (j′, j], and Y [j] does not appear in X(i′, i]. If i = i′

or j = j′, then C(W, Ŵ (0, k] ◦ (I�W [k+1](i
′) + 1, J�W [k+1](j

′) + 1) ◦ Ŵ (k + 1, |W |], k + 1)
holds, because X(iak , i`k+1] and Y (jak , j`k+1] are disjoint. If i′ < i, j′ < j, and J≺X[i](j) >
j′, then C(W (0, k] ◦ X[i] ◦W (k, |W |], Ŵ (0, k] ◦ (i − 1, J≺X[i](j) − 1) ◦ Ŵ (k, |W |], k) holds,
because X(i − 1, |X|] (resp. Y (J≺X[i](j) − 1, |Y |]) is the shortest suffix of X (resp. Y)

CPM 2018

1:6 Maximal Common Subsequence Algorithms

that contains X[i] ◦ W (k, |W |]. Analogously, if i′ < i, j′ < j, and I≺Y [j](i) > i′, then
C(W (0, k] ◦ Y [j] ◦W (k, |W |], Ŵ (0, k] ◦ (I≺Y [j](i)− 1, j − 1) ◦ Ŵ (k, |W |], k) holds. J

The following simple lemma plays a key role in estimating execution time of the algorithm.
This lemma claims, for example, that the situation where any solid line other than the
leftmost and rightmost ones in Figure 1 shares at least one of endpoints with a unique dotted
line is inevitable.

I Lemma 5. At least one of I�W [k+1](i
′) = i`k+1 or J�W [k+1](j

′) = j`k+1 holds at any execution
of line 11 in Algorithm findMCS, where i`k+1 and j`k+1 are the indices in Definition 3.

Proof. Since X(i′, i`k+1] and Y (j′, j`k+1] are disjoint due to Lemma 4, W [k + 1] does not
appear in at least one of X(i′, i`k+1] or Y (j′, j`k+1]. J

I Theorem 6. For any strings X and Y of length O(n) with |Σ| = O(n), Algorithm findMCS
outputs a maximal common subsequence of X and Y in O(n log logn) time and O(n) space.

Proof. Since C(W, Ŵ , |W |) holds at the last execution of line 4 of the algorithm due to
Lemma 4, it follows from Lemma 2 that W output by the algorithm is a maximal common
subsequence of X and Y .

Execution time of the algorithm is estimated as follows. Let V be the eventual string
W output by line 19. For any index k with 0 ≤ k ≤ |V |, let gak (resp. hak) denote the
least index such that X(0, gak] (resp. Y (0, hak]) contains V (0, k]. Let k be an arbitrary index
with 1 ≤ k ≤ |V | and consider W and Ŵ just before execution of line 11. Let iak , jak ,
i`k+1, and j`k+1 be the indices in Definition 3. Let (i′, j′) = Ŵ [k] and let (i, j) = Ŵ [k + 1].
Note that i′ = iak and j′ = jak due to Lemma 4. Since i = i′ or j = j′, Ŵ [k + 1] is
obtained from (i`k+1, j

`
k+1) by executing either line 15 or line 18 and then executing line 8

iteratively min(i`k+1− iak , j`k+1− jak) times. This implies that execution time of the algorithm
is O(

∑|V |−1
k=1 min(i`k+1 − iak , j`k+1 − jak) logn). Since W (0, k] = V (0, k], both iak = gak and

jak = hak hold. Similarly, since W (0, k + 1] = V (0, k + 1], both I�W [k+1](i
′) + 1 = gak+1 and

J�W [k+1](j
′) + 1 = hak+1 hold. Therefore, from Lemma 5, i`k+1 + 1 = gak+1 or j`k+1 + 1 = hak+1

holds and hence we have that min(i`k+1 − iak , j`k+1 − jak) ≤ max(gak+1 − gak , hak+1 − hak). Since
ga1 = 1, ha1 = 1, ga|V | = |X|, and ha|V | = |Y |,

∑|V |−1
k=1 max(gak+1−gak , hak+1−hak) ≤ |X|+ |Y | =

O(n). Thus,
∑|V |−1
k=1 min(i`k+1 − iak , j`k+1 − jak) = O(n), implying that the algorithm outputs

V in O(n log logn) time.
The algorithm uses variables W , Ŵ , k, i′, j′, i, and j, together with data structures I

and J , which all require O(n) space. J

4 Algorithm for finding a constrained maximal common subsequence

This section modifies Algorithm findMCS so as to output, for any common subsequence P of
X and Y given as an additional input string, a maximal common subsequence of X and Y
that contains P in O(n log logn) time and O(n) space, where we assume the same condition
of X and Y as in Section 3 and also assume that P [1] = c1, P [|P |] = c|Σ| and neither c1 nor
c|Σ| appears in P (1, |P | − 1]. Note that W [1] = c1, W [|W |] = c|Σ|, and W (1, |W | − 1] is a
maximal common subsequence of X(1, |X| − 1] and Y (1, |Y | − 1] containing P (1, |P | − 1] for
any maximal common subsequence W of X and Y containing P .

The only difference of the modified algorithm from the original algorithm is to initialize
W to P , instead of c1 ◦ c|Σ|, and Ŵ to a certain index pair sequence P̂ satisfying C(P, P̂ , 1),

Y. Sakai 1:7

Algorithm 2: Algorithm findCMCS
1: W ← P ;
2: Ŵ ← ε;
3: i← |X| − 1; j ← |Y | − 1;
4: for each index k from |P | − 1 down to 1,
5: while X[i+ 1] 6= P [k + 1],
6: i← i− 1;
7: while Y [j + 1] 6= P [k + 1],
8: j ← j − 1;
9: Ŵ ← (i, j) ◦ Ŵ ;
10: i← i− 1; j ← j − 1;
11: Ŵ ← (1, 1) ◦ Ŵ ;
12: k ← 1;
13: do the same as lines 4 through 19 of Algorithm findMCS.

instead of (1, 1) ◦ (|X| − 1, |Y | − 1). Since lines 4 through 19 of the original algorithm
delete no characters from W , the modified algorithm eventually outputs a maximal common
subsequence of X and Y that contains P in O(n log logn) time after initialization of (W, Ŵ , 1)
to (P, P̂ , 1). For any index k with 1 ≤ k ≤ |P |, let i`k+1 (resp. j`k+1) be the greatest index such
that X(i`k+1, |X|] (resp. Y (j`k+1, |Y |]) contains P (k, |P |]. Then, Definition 3 immediately
suggests that P̂ can be set to (1, 1) ◦ (i`2 , j`2) ◦ (i`3 , j`3) ◦ · · · ◦ (i`|P |, j`|P |). Thus, we have
Algorithm findCMCS presented in Algorithm 2 as an O(n log logn)-time algorithm for finding
a maximal common subsequence of X and Y containing P .

I Theorem 7. For any strings X and Y of length O(n) with |Σ| = O(n) and any common
subsequence P of X and Y , Algorithm findCMCS outputs a maximal common subsequence of
X and Y containing P in O(n log logn) time and O(n) space.

Proof. It is easy to verify by induction that, for any index k with 1 ≤ k ≤ |P | − 1, X(i, |X|]
(resp. Y (j, |Y |]) at execution of line 9 of the algorithm are the shortest suffix of X (resp.
Y) that contains P (k, |P |]. Therefore, W , Ŵ , and k just after execution of line 12 satisfy
C(W, Ŵ , k). Since lines 1 through 12 are executed in O(n) time, the theorem can be proven
in a way similar to the proof of Theorem 6. J

5 Algorithm for determining if a common subsequence is maximal

This section proposes an O(n)-time algorithm that determines, for any strings X and Y of
length O(n) with |Σ| = O(n) and any common subsequence W of X and Y given as input,
whether W is maximal or not.

The proposed algorithm is based on Lemma 2. Using an array of |Σ| bits, each being
used to indicate if a distinct character in Σ appears in Yk, we can determine if Xk and Yk
are disjoint in O(|Xk|+ |Yk|) time for any index k with 0 ≤ k ≤ |W |, where Xk and Yk are
the substrings of X and Y in Lemma 2, respectively. However, this naive approach provides
only an O(n2)-time algorithm, because both |Xk| and |Yk| can be Θ(n) for all indices k and
|W | can also be Θ(n). In order to reduce this execution time to O(n), the algorithm exploits
the fact that if Xk−1 and Yk−1 are disjoint, then the prefix X/

k of Xk overlapping Xk−1 and
the prefix Y /k of Yk overlapping Yk−1 are also disjoint; otherwise, W is not maximal due to
Lemma 2, where X−1 = X(0, 0] and Y−1 = Y (0, 0]. From this fact, if Xk−1 and Yk−1 are

CPM 2018

1:8 Maximal Common Subsequence Algorithms

Algorithm 3: Algorithm determineIfMCS
1: ia0 ← 0; ja0 ← 0; i`|W |+1 ← |X|; j`|W |+1 ← |Y |;
2: k ← 1;
3: for each index i from 1 to |X|,
4: if k ≤ |W | and X[i] = W [k], then
5: iak ← i;
6: k ← k + 1;
7: k ← |W | − 1;
8: for each index i from |X| down to 1,
9: if k ≥ 1 and X[i] = W [k + 1], then

10: i`k+1 ← i− 1;
11: k ← k − 1;
12: k ← 1;
13: for each index j from 1 to |Y |,
14: if k ≤ |W | and Y [j] = W [k], then
15: jak ← j;
16: k ← k + 1;
17: k ← |W | − 1;
18: for each index j from |Y | down to 1,
19: if k ≥ 1 and Y [j] = W [k + 1], then
20: j`k+1 ← j − 1;
21: k ← k − 1;
22: for each character c in Σ,
23: ic ← 0;
24: jc ← 0;
25: for each index k from 0 to |W |,
26: for each index i from i`k + 1 to i`k+1, where i`0 = 0,
27: iX[i] ← i;
28: if jX[i] > jak , then
29: output “not maximal” and halt;
30: for each index j from j`k + 1 to j`k+1, where j`0 = 0,
31: jY [j] ← j;
32: if iY [j] > iak , then
33: output “not maximal” and halt;
34: output “maximal”.

disjoint, then whether Xk and Yk are disjoint can be determined only by checking if X.
k and

Y /k are disjoint as well as checking if Xk and Y .k are disjoint, where X.
k (resp. Y .k) are the

remaining suffix of Xk (resp. Yk) after deleting prefix X/
k (resp. Y /k). Note however that,

as long as using the array of |Σ| bits, it still takes O(|Xk|+ |Yk|) time to determine if Xk

and Yk are disjoint. The algorithm reduces this execution time to O(|X.
k |+ |Y .k |) by using,

instead of the bit array, a pair of arrays of |Σ| indices. Each index in one (resp. the other) of
the arrays in the pair is used to represent the last position at which a distinct character in
Σ appears in the prefix of Y (resp. X) having Y /k (resp. Xk) as a suffix. This index array
allows the algorithm to determine if any character in X.

k (resp. Y .k) appears in Y /k (resp.
Xk) in O(1) time. Furthermore, since the prefix of Y (resp. X) having Y /k (resp. Xk) as a

Y. Sakai 1:9

suffix is the concatenation of the prefix of Y (resp. X) having Y /k−1 (resp. Xk−1) as a suffix
followed by Y .k−1 (resp. X.

k), for each k, this index array can be updated appropriately in
O(|Y .k−1|) (resp. O(|X.

k |)) time.
We show that Algorithm determineIfMCS presented in Figure 3 works as the proposed

algorithm.

I Theorem 8. For any strings X and Y of length O(n) with |Σ| = O(n) and any common
subsequence W of X and Y , Algorithm determineIfMCS outputs message “not maximal”,
if W is not a maximal common subsequence of X and Y , or outputs message “maximal”,
otherwise, in O(n) time.

Proof. For any index k with 0 ≤ k ≤ |W |, let Xk and Yk be the strings in Lemma 2
and let indices iak , i`k+1, jak , and j`k+1 be such that Xk = X(iak , i`k+1] and Yk = Y (iak , i`k+1].
Furthermore, let X/

k = X(iak ,max(i`k , iak)] and let X.
k = X(max(i`k , iak), i`k+1], where i`0 = 0.

Similarly, let Y /k = Y (jak ,max(j`k , jak)] and let Y .k = Y (max(j`k , jak), j`k+1], where j`0 = 0.
The algorithm uses index variable ic (resp. jc) for any character c in Σ. Let I (resp. J)
denote the array consisting of variables ic (resp. jc) for all characters c in Σ. For any index
k with −1 ≤ k ≤ |W |, let CI(k) (resp. CJ (k)) denote the condition that, for any character c
in Σ, X(ic, i`k+1] (resp. Y (jc, j`k+1]) is the longest suffix of X(0, i`k+1] (resp. Y (0, j`k+1]) in
which c does not appear.

After computing indices iak , jak , i`k , and j`k for all indices k with 0 ≤ k ≤ |W | by lines 1
through 21 of the algorithm, lines 22 through 24 initialize variables ic and jc so that CI(−1)
and CJ (−1) hold. Then, for any index k from 0 to |W |, lines 25 through 33 check if Xk and
Yk are disjoint as follows. Since either k = 0 or Xk−1 and Yk−1 are disjoint, X/

k and Y /k are
disjoint. Therefore, it suffices to check if X.

k and Y /k are disjoint and check if Xk and Y .k are
disjoint. Lines 27 through 29 update I so as to satisfy CI(k) by iteratively executing line
27 and also check if X.

k and Y /k are disjoint by iteratively executing line 28 using array J
satisfying CJ(k − 1). If X.

k and Y /k are not disjoint, then, since jX[i] > jak holds for some
index i with i`k + 1 ≤ i ≤ i`k+1 due to CJ (k− 1), line 29 outputs message “not maximal” and
terminates the algorithm; otherwise, line 29 is never executed also due to CJ(k − 1) and
hence lines 30 through 33 are executed. Lines 30 through 33 update array J so as to satisfy
CJ (k) and check if Xk and Y .k are disjoint using array I satisfying CI(k) in a similar manner.
Thus, the algorithm works correctly.

It is easy to verify that the algorithm runs in O(n) time. J

6 Conclusion

The present article proposed an O(n log logn)-time, O(n)-space algorithm that finds a
maximal common subsequence of two O(n)-length strings over an alphabet set of O(n)
characters, which are totally ordered, where n is an arbitrary positive integer and a common
subsequence is maximal, if inserting any character into it can no longer yields a common
subsequence. It is also shown that, without increasing asymptotic time and space complexities,
this algorithm can be used to find a constrained maximal common subsequence, which
contains a common subsequence given arbitrarily as a “relevant” pattern, after an appropriate
initialization of some variables. Furthermore, an O(n)-time algorithm that determines if a
given common subsequence is maximal was also proposed.

There remain some questions to be solved, which are related to the problems considered
in the present article. Our algorithms run much faster than those proposed so far (and also
all possible algorithms under SETH) for the LCS-related problems corresponding to ours.
One reason for this difference is that any common subsequence is certainly a subsequence

CPM 2018

1:10 Maximal Common Subsequence Algorithms

of some maximal common subsequence but is not necessarily a subsequence of any LCS.
This fact naturally poses a question whether we can find a restricted maximal common
subsequence, which does not contain a common subsequence given as an “irrelevant” pattern,
in O(n log logn) time and O(n) space, because some restricted non-maximal common sub-
sequences are not necessarily subsequences of any restricted maximal common subsequence.
The gap between asymptotic execution time of the proposed algorithms for finding a maximal
common subsequence and for determining if a common subsequence given is maximal imme-
diately poses another natural question whether we can find a maximal common subsequence
in O(n) time.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness res-

ults for lcs and other sequence similarity measures. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

2 Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest common sub-
sequence problems. Journal of Combinatorial Optimization, 21(3):383–392, 2011.

3 Francis YL Chin, Alfredo De Santis, Anna Lisa Ferrara, NL Ho, and SK Kim. A simple al-
gorithm for the constrained sequence problems. Information Processing Letters, 90(4):175–
179, 2004.

4 Campbell B Fraser, Robert W Irving, and Martin Middendorf. Maximal common
subsequences and minimal common supersequences. Information and Computation,
124(2):145–153, 1996.

5 Zvi Gotthilf, Danny Hermelin, Gad M Landau, and Moshe Lewenstein. Restricted LCS. In
International Symposium on String Processing and Information Retrieval, pages 250–257.
Springer, 2010.

6 Daniel S Hirschberg. Algorithms for the longest common subsequence problem. Journal of
the ACM (JACM), 24(4):664–675, 1977.

7 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

8 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

9 Yin-Te Tsai. The constrained longest common subsequence problem. Information Pro-
cessing Letters, 88(4):173–176, 2003.

10 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal
of the ACM (JACM), 21(1):168–173, 1974.

11 Dan E Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). In-
formation Processing Letters, 17(2):81–84, 1983.

Order-Preserving Pattern Matching
Indeterminate Strings
Rui Henriques
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal
rmch@tecnico.ulisboa.pt (correspondence)

Alexandre P. Francisco
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal

Luís M. S. Russo
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal

Hideo Bannai
Department of Computer Science, Kyushu University, Japan

Abstract
Given an indeterminate string pattern p and an indeterminate string text t, the problem of order-
preserving pattern matching with character uncertainties (µOPPM) is to find all substrings of t
that satisfy one of the possible orderings defined by p. When the text and pattern are determ-
inate strings, we are in the presence of the well-studied exact order-preserving pattern matching
(OPPM) problem with diverse applications on time series analysis. Despite its relevance, the
exact OPPM problem suffers from two major drawbacks: 1) the inability to deal with indeterm-
ination in the text, thus preventing the analysis of noisy time series; and 2) the inability to deal
with indetermination in the pattern, thus imposing the strict satisfaction of the orders among all
pattern positions.

In this paper, we provide the first polynomial algorithms to answer the µOPPM problem
when: 1) indetermination is observed on the pattern or text; and 2) indetermination is observed
on both the pattern and the text and given by uncertainties between pairs of characters. First,
given two strings with the same length m and O(r) uncertain characters per string position, we
show that the µOPPM problem can be solved in O(mr lg r) time when one string is indeterminate
and r ∈ N+ and in O(m2) time when both strings are indeterminate and r=2. Second, given
an indeterminate text string of length n, we show that µOPPM can be efficiently solved in
polynomial time and linear space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Order-preserving pattern matching, Indeterminate string analysis, Gen-
eric pattern matching, Satisfiability

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.2

Funding This work was developed in the context of a secondment granted by the BIRDS MASC
RISE project funded in part by EU H2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement no.690941. This work was further supported by national funds
through Fundação para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2013.

1 Introduction

Given a pattern string p and a text string t, the exact order preserving pattern matching
(OPPM) problem is to find all substrings of t with the same relative orders as p. The
problem is applicable to strings with characters drawn from numeric or ordinal alphabets.

© Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmch@tecnico.ulisboa.pt (correspondence)
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Order-Preserving Pattern Matching Indeterminate Strings

Illustrating, given p=(1,5,3,3) and t=(5,1,4,2,2,5,2,4), substring t[1..4]=(1,4,2,2) is reported
since it satisfies the character orders in p, p[0]≤p[2]=p[3]≤p[1]. Despite its relevance, the
OPPM problem has limited potential since it prevents the specification of errors, uncertainties
or don’t care characters within the text.

Indeterminate strings allow uncertainties between two or more characters per position.
Given indeterminate strings p and t, the problem of order preserving pattern matching
uncertain text (µOPPM) is to find all substrings of t with an assignment of values that satisfy
the orders defined by p. For instance, let p=(1,2|5,3,3) and t=(5,0,1,2|1,2,5,2|3,3|4). The
substrings t[1..4] and t[4..7] are reported since there is an assignment of values that preserve
either p[0]<p[1]<p[2]=p[3] or p[0]<p[2]=p[3]<p[1] orderings: respectively t[1..4]=(0,1,2,2)
and t[4..7]=(2,5,3,3).

Order-preserving pattern matching captures the structural isomorphism of strings, there-
fore having a wide-range of relevant applications in the analysis of financial times series,
musical sheets, physiological signals and biological sequences [32, 39, 36]. Uncertainties
often occur across these domains. In this context, although the OPPM problem is already a
relaxation of the traditional pattern matching problem, the need to further handle localized
errors is essential to deal with noisy strings [33]. For instance, given the stochasticity of
gene regulation (or markets), the discovery of order-preserving patterns in gene expression
(or financial) time series needs to account for uncertainties [35, 34]. Numerical indexes
of amino-acids (representing physiochemical and biochemical properties) are subjected to
errors difficulting the analysis of protein sequences [38]. Another example are ordinal strings
obtained from the discretization of numerical strings, often having two uncertain characters
in positions where the original values are near a discretization boundary [33].

Let m and n be the length of the pattern p and text t, respectively. The exact OPPM
problem has a linear solution on the text length O(n+mlgm) based on the Knuth-Morris-
Pratt algorithm [41, 39, 22]. Alternative algorithms for the OPPM problem have also
been proposed [21, 12, 20]. Contrasting with the large attention given to the resolution of
the OPPM problem, to our knowledge there are no polynomial-time algorithms to solve
the µOPPM problem. Naive algorithms for µOPPM assess all possible pattern and text
assignments, bounded by O(nrm) when considering up to r uncertain characters per position.

This work proposes the first polynomial algorithms able to answer the µOPPM problem.
Accordingly, the contributions are organized as follows. First, we show that an indeterminate
string of length m order-preserving matches a determinate string with the same length in
O(mr lg r) time based on their monotonic properties. Second, we show that µOPPM two
indeterminate strings with the same length and r=2 can be solved in O(m2) time by reducing
µOPPM to a 2-satisfiability task. Third, given a text string of length n, we show that the
µOPPM problem is in polynomial time and linear space, and efficiently solved using effective
filtration procedures.

2 Background

Let Σ be a totally ordered alphabet and an element of Σ∗ be a string. The length of a string
w is denoted by |w|. The empty string ε is a string of length 0. For a string w=xyz, x, y and
z are called a prefix, substring, and suffix of w, respectively. The i-th character of a string w
is denoted by w[i] for each 1≤i≤|w|. For a string w and integers 1≤i≤j≤|w|, w[i..j] denotes
the substring of w from position i to position j. For convenience, let w[i..j]=ε when i>j.

Given strings x and y with equal length m, y is said to order-preserving against x
[41], denoted by x ≈ y, if the orders between the characters of x and y are the same, i.e.

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:3

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for any 1 ≤ i, j ≤ m. A non-empty pattern string p is said to
order-preserving match (op-match in short) a non-empty text string t iff there is a position i
in t such that p ≈ t[i− |p|+ 1..i]. The order-preserving pattern matching (OPPM) problem
is to find all such text positions.

2.1 The Problem
Given a totally ordered alphabet Σ, an indeterminate string is a sequence of disjunctive
sets of characters x[1]x[2]..x[n] where x[i] ⊆ Σ. Each position is given by x[i]=σ1..σr where
r≥1 ∧ σi∈Σ.

Given an indeterminate string x, a valid assignment $x is a (determinate) string with
a single character at position i, denoted $x[i], contained in the x[i] set of characters, i.e.
$x[1]∈x[1], .., $x[m]∈x[m]. For instance, the indeterminate string (1|3, 3|4, 2|3, 1|2) has 24

valid assignments. Given an indeterminate position x[i] ⊆ Σ, $xj [i] is the jth ordered value
of x[i] (e.g. $x0[i]=1 for x[i]=1|2). Given an indeterminate string x, let a partially assigned
string §x be an indeterminate string with an arbitrary number of uncertain characters
removed, i.e. §x[1]⊆x[1], .., §x[m]⊆x[m].

Given a determinate string x of length m, an indeterminate string y of equal length
is said to be order-preserving against x, identically denoted by x ≈ y, if there is a valid
assignment $y such that the relative orders of the characters in x and $y are the same, i.e.
x[i] ≤ x[j] ⇔ $y[i] ≤ $y[j] for any 1 ≤ i, j ≤ m. Given two indeterminate strings x and y
with length m, y preserves the orders of x, x ≈ y, if exists $y in y that respects the orders of
a valid assignment $x in x.

A non-empty indeterminate pattern string p is said to order-preserving match (op-match
in short) a non-empty indeterminate text string t iff there is a position i in t such that p ≈ t[i-
|p|+1..i]. The problem of order-preserving pattern matching with character uncertainties
(µOPPM) problem is to find all such text positions.

To understand the complexity of the µOPPM problem, let us look to its solution from a
naive stance yet considering state-of-the-art OPPM principles. The algorithmic proposal by
Kubica et al. [41] is still up to this date the one providing a lowest bound, O(n+q), where
q=m for alphabets of size mO(1) (q=m lgm otherwise). Given a determinate string x of
length m, an integer i (1≤i<m) is said in the context of this work to be an order-preserving
border of x if x[1..i] ≈ x[m-i+1..m]. In this context, given a pattern string p, the orders
between the characters of p are used to linearly infer the order borders. The order borders
can then be used within the Knuth-Morris-Pratt algorithm to find op-matches against a text
string t in linear time [41].

Given a determinate string p of length m and an indeterminate string t of length n, the
previous approach is a direct candidate to the µOPPM problem by decomposing t in all its
possible assignments, O(rn). Since determinate assignments to t are only relevant in the
context of m-length windows, this approach can be improved to guarantee a maximum of
O(rm) assignments at each text position. Despite its simplicity, this solution is bounded by
O(nrm). This complexity is further increased when indetermination is also considered in the
pattern, stressing the need for more efficient alternatives.

2.2 Related work
The exact OPPM problem is well-studied in literature. Kubica et al. [41], Kim et al. [39] and
Cho et al. [22] presented linear time solutions on the text length by respectively combining
order-borders, rank-based prefixes and grammars with the Knuth–Morris–Pratt (KMP)

CPM 2018

2:4 Order-Preserving Pattern Matching Indeterminate Strings

algorithm [40]. Cho et al. [21], Belazzougui et al. [12], and Chhabra et al. [20] presented
O(nm) algorithms that show a sublinear average complexity by either combining bad character
heuristics with the Boyer–Moore algorithm [13] or applying filtration strategies. Recently,
Chhabra et al. [18] proposed further principles to solve OPPM using word-size packed string
matching instructions to enhance efficiency.

In the context of numeric strings, multiple relaxations to the exact pattern matching
problem have been pursued to guarantee that approximate matches are retrieved. In norm
matching [7, 44, 1, 47], matches between numeric strings occur if a given distance threshold
f(x, y)≤θ is satisfied. In (δ,γ)-matching [14, 26, 24, 23, 42, 43, 45], strings are matched if the
maximum difference of the corresponding characters is at most δ and the sum of differences
is at most γ.

In the context of nominal strings, variants of the pattern matching task have also been
extensively studied to allow for don’t care symbols in the pattern [37, 25, 9], transposition-
invariant [42], parameterized matching [11, 6], less than matching [5], swapped matching
[2, 46], gaps [15, 16, 31], overlap matching [4], and function matching [3, 8].

Despite the relevance of the aforementioned contributions to answer the exact order-
preserving pattern matching and generic pattern matching, they cannot be straightforwardly
extended to efficiently answer the µOPPM problem.

3 Polynomial time µOPPM for equal length pattern and text

Section 3.1 introduces the first efficient algorithm to solve the µOPPM problem when
one string is indeterminate (r ∈ N+). Section 3.2 shows the existence of a polynomial
solution when both strings are indeterminate and uncertainties are observed between pairs of
characters (r=2). Based on the reducibility of the graph coloring problem to the formulations
proposed in Section 3.2, we hypothesize that op-matching indeterminate strings with an
arbitrary number of uncertain characters per position (r ∈ N+) is in class NPC. The proof
of this intuition is, nevertheless, considered out of the scope, being regarded as future work.

3.1 O(mr lg r) time µOPPM when one string is indeterminate
Given a determinate string x of length m, there is a well-defined permutation of positions,
π, that specifies a non-monotonic ascending order of characters in x. For instance, given
x=(1,4,3,1), then x[0]=x[3]<x[2]<x[1] and π=(0,3,2,1). Given a determinate string y with
the same length, y op-matches x if it y satisfies the same m-1 orders. For instance, given
x=(1,4,3,1) and y=(2,5,4,3), x orders are not preserved in y since y[0]6=y[3]<y[2]<y[1].

The monotonic properties can be used to answer µOPPM when one string is indeterminate.
Given an indeterminate string y, let xπ and yπ be the permuted strings in accordance with
π orders in x. To handle equality constraints, positions in yπ with identical characters in
xπ can be intersected, producing a new string y′π with s length (s≤m). Illustrating, given
x=(4,1,4,2) and y=(2|7, 2, 7|8, 1|4|8), then π=(1,3,0,2), xπ=(1,2,4,4), yπ=(2, 8|4|1, 7|2, 8|7)
and y′π=(yπ[0], yπ[1], yπ[2] ∩ yπ[3])=(2, 8|4|1, 7). To handle monotonic inequalities, y′π[i]
characters can be concatenated in descending order to compose z=y′π[0]y′π[1]..y′π[s] and the
orders between x and y verified by testing if the longest increasing subsequence (LIS) [29]
of z has s length. In the given example, z=(2, 8, 4, 1, 7), and the LIS of z=(2, 8,4, 1,7) is
w=(2,4,7). Since |w|=|y′π|=3, y op-matches x.

I Theorem 1. Given a determinate string x and an indeterminate string y, let xπ and yπ be
the sorted strings in accordance with π order of characters in x. Let the positions with equal

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:5

Algorithm 1: O(mr lg r) µOPPM algorithm with one indeterminate string
Input: determinate x, indeterminate y (|x|=|y|=m)
π ← sortedIndexes(x); // O(m) if |Σ| = mO(1) (O(m lgm) otherwise);
xπ ← permute(x,π), yπ ← permute(y,π); // O(m+mr)
j ← 0; y′

π[0] ← {yπ[0]};
foreach i ∈ 1..m-1 do // O(mr lg r)

if xπ[i] = xπ[i-1] then y′
π[j] ← y′

π[j] ∩ {yπ[i]}; // O(r lg r)
else j ← j+1; y′

π[j] ← {yπ[i]};
s ← |y′

π|, nextMin ← -∞;
foreach i ∈ 0..s-1 do // O(mr)

nextMin ← min{a | a ∈ y′
π[i], a>nextMin}; // O(r)

if 6 ∃ nextMin then return false;
return true;

characters in xπ be intersected in yπ to produce a new indeterminate string y′π. Consider zi
to be a string with y′π[i] characters in descending order and z=z1z2..zm, then:

|w| = |y′π| ⇔ y ≈ x where w = longest increasing subsequence in z (1)

Proof. (⇒) If the length of the longest increasing subsequence (LIS), |w|, equals the number
of monotonic relations in x, |y′π|, then y ≈ x. By sorting characters in descending order per
position, we guarantee that at most one character per position in y′π appears in the LIS
(respecting monotonic orders in x given y′π properties). By intersecting characters in positions
of y with identical characters in x, we guarantee the eligibility of characters satisfying equality
orders in x, otherwise empty positions in y′π are observed and the LIS length is less than |y′π|.
(⇐) If |w|<|y′π|, there is no assignment in y that op-matches x due to one of two reasons: 1)
there are empty positions in y′π due to the inability to satisfy equalities in x, or 2) it is not
possible to find a monotonically increasing assignment to y′π and, given the properties of y′π,
yπ cannot preserve the orders of xπ. J

Solving the LIS task on a string of size n is O(n lgn) [29] where n=|z|=O(rm). In addition,
set intersection operations are performed O(m) times on sets with O(r) size, which can be
accomplished in O(rm lg r) time. As a result, the µOPPM problem with one indeterminate
string can be solved in O(rm lg(rm)).

Given the fact that the candidate string for the LIS task has properties of interest, we
can improve the complexity of this calculus (Theorem 2) in accordance with Algorithm 1.

I Theorem 2. µOPPM two strings of length m, one being indeterminate, is in O(mr lg r)
time, where r ∈ N+.

Proof. In accordance with Algorithm 1, µOPPM is bounded by the verification of equalities,
O(mr lg r) [27]. Testing inequalities after set intersections can be linearly performed on the
size of y, O(mr) time, improving the O(mr lg(mr)) bound given by the LIS calculus. J

The analysis of Algorthim 1 further reveals that the µOPPM problem with one indeterm-
inate string requires linear space in the text length, O(mr).

3.2 O(m2) time µOPPM (r=2) with indeterminate pattern and text
As indetermination in real-world strings is typically observed between pairs of characters [33],
a key question is whether µOPPM on two indeterminate strings is in class P when r=2. To
explore this possibility, new concepts need to be introduced. In OPPM research, character
orders in a string of length m can be decomposed in 3 sequences with m unit sets:

CPM 2018

2:6 Order-Preserving Pattern Matching Indeterminate Strings

1 4 3 1

<

>
=

Pattern 1 4 3 1

Leq[i] ∅ ∅ ∅ {0}
Ordered indexes (asc) 0 3 2 1
Lmax[i] (nearest asc smaller not in Leq[i]) ∅ {0} {0} ∅
Ordered indexes (desc) 2 0 1 3
Lmin[i] (nearest desc smaller not in Leq[i]) ∅ ∅ {1} ∅

Figure 1 Orders identified for p=(1,4,3,1) in accordance with Kubica et al. [41].

I Definition 3. For i=0,...,m−1:
Leqx[i]={max{ k : k<i, x[i]=x[k] }} (∅ if there is no eligible k)
Lmaxx[i]={max{argmaxk{ x[k] : k<i, x[i]>x[k] }}} (∅ if there is no eligible k)
Lminx[i]={max{argmink{ x[k] : k<i, x[i]<x[k] }}} (∅ if there is no eligible k)

Leq, Lmax and Lmin capture =, > and < relationships between each character x[i] in
x and the closest preceding character x[k]. These orders can be inferred in linear time for
alphabets of size mO(1) and in O(m lgm) time for other alphabets by answering the “all
nearest smaller values” task on the sorted indexes [41]. Figure 1 depicts Leq, Lmax and
Lmin for x=(1,4,3,1). Given determinate strings x and y, A=Leqx[t+1], B=Lmaxx[t+1] and
C=Lminx[t+1], if x[1..t] ≈ y[1..t] then:

x[1..t+ 1] ≈ y[1..t+ 1]⇔ ∀a∈A(y[t+ 1] = y[a])∧∀b∈B(y[t+ 1] > y[b])∧∀c∈C(y[t+ 1] < y[c]). (2)

When allowing uncertainties between pairs of characters, previous research on the OPPM
problem cannot be straightforwardly extended due to the need to trace O(2m) assignments
on indeterminate strings.

I Lemma 4. Given a determinate string x, an indeterminate string y, and the singleton
sets A=Leqx[t+ 1], B=Lmaxx[t+ 1] and C=Lminx[t+ 1] containing a position in 1..t. If
x[1..t] ≈ y[1..t] is verified on a specific assignment of y characters, denoted §y, then:

x[1..t+ 1] ≈ y[1..t+ 1]⇔ ∃$y[t+1]∈§y[t+1]∀a∈A∃$y[a]∈§y[a]∀b∈B∃$y[b]∈§y[b]∀c∈C∃$y[c]∈§y[c]

$y[t+ 1] = $y[a] ∧ $y[t+ 1] > $y[b] ∧ $y[t+ 1] < $y[c]

Proof. (⇒) In accordance with Leq, Lmax and Lmin definition, for any a∈A, b∈B and c∈C
we have x[t+ 1]=x[a], x[t+ 1]>x[b] and x[t+ 1]<x[c]. If there is an assignment to y[1..t+ 1]
in §y that preserves the orders of x[1..t+1], then for each a∈A, b∈B and c∈C $y[t+1]=$y[a],
$y[t+ 1]>$y[b] and $y[t+ 1]<$y[c] (where $y[t+ 1] ∈ §y[t+ 1], $y[a] ∈ §y[a], $y[b] ∈ §y[b],
$y[c] ∈ §y[c]). (⇐) We need to show that x[1..t + 1] ≈ y[1..t + 1]. Since x[1..t] ≈ y[1..t],
for i < t, ∃$y[i]∈§y[i],$y[t+1]∈§y[t+1]: x[t+ 1]>x[i] ⇔ $y[t+ 1]>$y[i]. Assuming x[t+ 1]>x[i]
for some i ∈ {1..t}: by the definition of Lmax, ∀b∈Bx[b]>x[i]; by the order-isomorphism of
x[1..t] and $y[1..t] in §y[1..t], there is $y[i] ∈ §y[i] and $y[b] ∈ §y[b] that ∀b∈B$y[b]>$y[i];
and by the assumption of the lemma, ∀b∈B$y[t+ 1]>$y[b]; hence $y[t+ 1]>$y[i]. Similarly,
x[t+ 1]<x[i] (and x[t+ 1]=x[i]) implies $y[t+ 1]<$y[i] (and $y[t+ 1]=$y[i]), yielding the
stated equivalence. J

Given two strings of equal length, the µOPPM problem can be schematically represented
according to the identified order restrictions. Figure 2 represents restrictions on the inde-
terminate string y=(2, 4|5, 3|5, 1|2) in accordance with the observed orders in x=(1,4,3,1).

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:7

y[0] y[1] y[2] y[3]

2 4

5

3

5

1

2

<

>

y[0] y[1] y[2] y[3]

2 14

5

3

25

Figure 2 Schematic representation of the pairwise ordering restrictions for text y=(2, 4|5, 3|5, 1|2)
and pattern x=(1,4,3,1). In the left side, all order verifications are represented, while in the right
side only the order conflicts are signaled (e.g. y[1]=4 cannot be selected together with y[2]=5).

The left side edges are placed in accordance with Lemma 4 and capture assessments on the
orders between pairs of characters. The right side edges capture incompatibilities detected
after the assessments, i.e. pairs of characters that cannot be selected simultaneously (for
instance, y[0]=2 and y[3]=1, or y[1]=4 and y[2]=5). For the given example, there are two
valid assignments, $y1=(2,4,3,2) and $y2=(2,5,4,2), that satisfy x[0]=x[3]<x[2]<x[1], thus y
op-matches x.

To verify whether there is an assignment that satisfies the identified ordering restrictions,
we propose the reduction of µOPPM problem to a Boolean satisfiability problem.

Given a set of Boolean variables, a formula in conjunctive normal form is a conjunction of
clauses, where each clause is a disjunction of literals, and a literal corresponds to a variable
or its negation. Let a 2CNF formula be a formula in the conjunctive normal form with at
most two literals per clause. Given a CNF formula, the satisfiability (SAT) problem is to
verify if there is an assigning of values to the Boolean variables such that the CNF formula
is satisfied.

I Theorem 5. The µOPPM problem over two strings of equal length, one being indeterminate,
can be reduced to a satisfiability problem with the following CNF formula:

φ =
m−1∧
i=0

(∨
$y[i]∈y[i]

zi,$y[i]

)

∧
m−1∧
i=0

(∧
$y[i]∈y[i]

∧
j∈Leq[i],$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] = $y[j]

)
∧

∧
$y[i]∈y[i]

∧
j∈Lmax[i]
$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] > $y[j]

)

∧
∧

$y[i]∈y[i]

∧
j∈Lmin[i]
$y[j]∈y[j]

(
¬zi,$y[i]∨¬zj,$y[j]∨$y[i] < $y[j]

))
(3)

Proof. Let us show that if x op-matches y then φ is satisfiable, and if x does not op-match
y then φ is not satisfiable. (⇒) When x ≈ y, there is an assignment of values to y, $y, that
satisfy the orderings of x. φ is satisfiable if there is at least one variable assigned to true
per clause ∨$y[i]∈y[i] zi,$y[i] given conflicts ¬zi,$y[i] ∨ ¬zj,$y[j]. As conflicts do not prevent
the existence of a valid assignment (by assumption), then ∃$y ∧i∈{0..m−1} zi,$y[i] and φ is
satisfiable. (⇐) When x does not op-match y, there is no assignment of values $y∈y that

CPM 2018

2:8 Order-Preserving Pattern Matching Indeterminate Strings

can satisfy the orders of x. Per formulation, the conflicts ¬zi,$y[i] ∨ ¬zj,$y[j] prevent the
satisfiability of one or more clauses ∨$y[i]∈y[i] zi,$y[i], leading to a non-satisfiable formula. J

If the established φ formula is satisfiable, there is a Boolean assignment to the variables
that specify an assignment of characters in y, $y, preserving the orders of x (as defined by
Leq, Lmax and Lmin). Otherwise, it is not possible to select an assignment $y op-matching x.
φ has at most r×m variables, {zi,σ | i ∈ {0..m-1}, σ ∈ Σ}. The Boolean value assigned to a
variable zi,σ simply defines that the associated character σ from y[i] can be either considered
(when true) or not (when false) to compose a valid assignment $y that op-matches the given
determinate string x. The reduced (3) formula is composed of two major types of clauses:
∨$y[i]∈y[i]zi,$y[i], and (¬zi,$y[i] ∨ ¬zj,$y[j]∨bool) where bool is either given by $y[i] = $y[j],
$y[i] < $y[j]or $y[i] > $y[j]. Clauses of the first type specify the need to select at least one
character per position in y to guarantee the presence of valid assignments. The remaining
clauses specify ordering constraints between characters. If an inequality, such as $y[i] > $y[j],
is assessed as true, the associated clause is removed. Otherwise, (¬zi,σ1 ∨ ¬zj,σ2) is derived,
meaning that these σ1 and σ2 characters should not be selected simultaneously since they
do not satisfy the orders defined by a given pattern. For instance, the pairs of characters
in orange from Figure 2 should not be simultaneously selected due to order conflicts. To
this end, (¬z0,2 ∨ ¬z3,1) and (¬z1,4 ∨ ¬z2,5) clauses need to be included to verify if y ≈ x.
Considering y=(2, 4|5, 4|5, 1|2) and x=(1,4,3,1), schematically represented in Figure 2, the
associated CNF formula is:

φ = z0,2 ∧ (z1,4 ∨ z1,5) ∧ (z2,4 ∨ z2,5) ∧ (z3,1 ∨ z3,2) ∧ (¬z0,2 ∨ ¬z3,1) ∧ (¬z1,4 ∨ ¬z2,5)

I Theorem 6. Given two strings of length m, one being indeterminate with r=2, the µOPPM
problem can be reduced to a 2SAT problem with a CNF formula with O(m) size.

Proof. Given Theorem 5 and the fact that the reduced CNF formula has at most two
literals per clause – φ is a composition of ∨$y[i]∈y[i]zi,$y[i] clauses with |y[i]| ∈ {1, 2} and
(¬zi,$y[i]∨¬zj,$y[j]∨bool) clauses – µOPPM with r=2 and one indeterminate string is reducible
to 2SAT. The reduced formula has at most 10m clauses with 2 literals each, being linear in
m:

[clauses that impose the selection of at least one character per position in y] Since y
has m positions, and each position is either determinate (unitary clause) or defines an
uncertainty between a pair of characters, there are m clauses and at most 2m literals;
[clauses that define the ordering restrictions between two variables] A position in the
indeterminate string y[i] needs to satisfy at most two order relations. Considering that i,
Leq[i], Lmax[i] and Lmin[i] specify uncertainties between pairs of characters, there are
up to 12 restrictions per position: 4 ordering restrictions between characters in y[i] and
y[Leq[i]], y[Lmax[i]] and y[Lmin[i]]. Whenever the order between two characters is not
satisfied, a clause is added per position, leading to at most 12m clauses. J

I Theorem 7. The µOPPM between determinate and indeterminate strings of equal length
can be solved in linear time when r=2.

Proof. Given the fact that a 2SAT problem can be solved in linear time [10]1, this proof
directly derives from Theorem 6 as it guarantees the soundness of reducing µOPPM (r=2)
to a 2SAT problem with a CNF formula with O(m) size. J

1 2SAT problems have linear time and space solutions on the size of the input formula. Consider for
instance the original proposal [10], the formula φ is modeled by a directed graph G=(V,E), with two
nodes per variable zi in φ (zi and ¬zi) and two directed edges for each clause zi ∨ zj (the equivalent

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:9

x[0] x0[1] x1[1] x[2]

2 1 3 3

<

>

Pattern 2 1 3 3
i 0 1 1 2
j 0 0 1 0

Leq[i|j] ∅ ∅ ∅ {1}
Ordered indexes (asc) 1 0 2 3
Lmax[i|j] ∅ ∅ {0} {0,1}
Ordered indexes (desc) 2 3 0 1
Lmin[i|j] ∅ {0} ∅ ∅

Figure 3 Order relationships of x=(2, 1|3, 3) and the corresponding Lmax and Lmin vectors.

As the size of the mapped CNF formula φ is O(m) and the a valid algorithm to verify
its satisfiability would require the construction of a graph with O(m) nodes and edges, the
required memory for the target µOPPM problem is Θ(m).

When moving from one to two indeterminate strings, previous contributions are insufficient
to answer the µOPPM problem. In this context, the Leq, Lmax and Lmin vectors need to be
redefined to be inferred from an indeterminate string:

I Definition 8.
Leqx[i|j]={k : k<i, ∃p $xj [i]=$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1
Lmaxx[i|j]={k : k<i, ∃p $xj [i]>$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1
Lminx[i|j]={k : k<i, ∃p $xj [i]<$xp[k]} (∅ if there is no eligible k), for i=0,...,m−1

Figure 3 schematically represents the order relationships of x=(2, 1|3, 3) and the associated
Leq, Lmax and Lmin vectors. In this scenario, x[2] needs to be verified not only against
x0[1] but also against x1[1] in case x0[1] is disregarded. Understandably, due to character
uncertainties, O(m2) ordering verifications are required (Def.8).

I Lemma 9. Given indeterminate strings x and y, let Aj=Leqx[t+1|j], Bj=Lmaxx[t+1|j]
and Cj=Lminx[t+1|j] (Def.8) be the orders associated with $xj [t+1]. If x[1..t] ≈ y[1..t] is
verified on a partial assignment of y characters, denoted by §y, then:

x[1..t+ 1] ≈ y[1..t+ 1]⇔∃j∈{0,1}∃$y[t+1]∈§y[t+1]∀a∈Aj ,b∈Bj ,c∈Cj

∃$y[a]∈§y[a],$y[b]∈§y[b],$y[c]∈§y[c]

(
$y[t+1] = $y[a] ∧ $y[t+1] > $y[b] ∧ $y[t+1] < $y[c]

)
Proof. (⇒) Similar to the proof of Lemma 4, yet A, B and C conditional to x[t+ 1] (Def.3)
are now given by Aj , Bj and Cj conditional to xj [t+ 1] (Def.8). If there is an assignment
to y[1..t + 1] in §y that preserves one of the possible orders in x[1..t + 1], then for any
a ∈ Aj , b ∈ Bj and c ∈ Cj : $y[t + 1]=$y[a], $y[t + 1]>$y[b] and $y[t + 1]<$y[c] (where
$y[t+ 1] ∈ §y[t+ 1], $y[a] ∈ §y[a], $y[b] ∈ §y[b], $y[c] ∈ §y[c]).

(⇐) We need to show that x[1..t+ 1] ≈ y[1..t+ 1]. Since x[1..t] ≈ y[1..t], it is sufficient
to prove that for i≤t: exists $x[i] ∈ §x[i], $x[t + 1] ∈ §x[t + 1], $y[i] ∈ §y[i], $y[t + 1] ∈

implicative forms ¬zi ⇒ zj and ¬zj ⇒ zi). Given G, the strongly connected components (SCCs) of G
can be discovered in O(|V |+ |E|). During the traversal if a variable and its complement belong to the
same SCC, then the procedure stops as φ is determined to be unsatisfiable. Given the fact that both
V=O(m) and E=O(m) by Lemma 6, this procedure is O(m) time and space.

CPM 2018

2:10 Order-Preserving Pattern Matching Indeterminate Strings

x[0] x0[1] x1[1] x[2]

y[0]=2 y[1]=0 y0[2]=3

y1[2]=4

y[1]=0

Figure 4 Conflicts when op-matching y=(2, 0, 3|4) against x=(2, 1|3, 3).

§y[t+ 1] such that $x[t+ 1]=$x[i]⇔ $y[t+ 1]=$y[i], $x[t+ 1]>$x[i]⇔ $y[t+ 1]>$y[i] and
$x[t+ 1]<$x[i]⇔ $y[t+ 1]<$y[i]. This results from Def.8, the order-isomorphism property
and Lemma 4. J

Figure 4 represents encountered restrictions when op-matching x=(2, 1|3, 3) against
y=(2, 0, 3|4). The right side edges capture the detected incompatibilities, i.e. pairs of
characters that cannot be selected simultaneously. For the given example, there are 2 valid
assignments – $y1=(2,0,3) and $y2=(2,0,4) – satisfying $x0[1]<$x0[0]<$x0[2], thus x ≈ y.

To verify whether there is an assignment that satisfies the identified ordering restrictions,
Theorem 10 extends the previously introduced SAT mapping given by (3).

I Theorem 10. Given Lmax and Lmin (Def.8), µOPPM problem over two indeterminate
strings of equal length can be reduced to a satisfiability problem with the following CNF
formula:

φ =
∧

x[i]∈x∧|x[i]|=1

wi,x0[i] ∧
∧

x[i]∈x∧|x[i]|>1

((∨
$x[i]∈x[i]

wi,$x[i]

)
∧
(∨

$x[i]∈x[i]

¬wi,$x[i]

))
(4.1)

∧
m−1∧
i=0

(∧
$x[i]∈x[i]

(∨
$y[i]∈y[i]

zi,$x[i],$y[i]

)
∧
(∨

$y[i]∈y[i]

¬zi,$x[i],$y[i]

))
(4.2)

∧
m−1∧
i=0

((∧
$x[i]∈x[i]

∧
$y[i]∈y[i]

(
¬zi,$x[i],$y[i]∨wi,$x[i]

))
(4.3)

∧
m−1∧
i=0

∧
$y[i]∈y[i],$x[i]∈x[i]

(
∧

j∈Leq[i]

∧
$y[j]∈y[j],$x[j]∈x[j]

(
¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]∨$y[i] = $y[j]

)
∧

∧
j∈Lmax[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]
∨$y[i]>$y[j]

)

∧
∧

j∈Lmin[i]

∧
$y[j]∈y[j]
$x[j]∈x[j]

(¬zi,$x[i],$y[i]∨¬zj,$x[j],$y[j]
∨$y[i]<$y[j]

))
(4.4)

Proof. If x ≈ y then φ is satisfiable, and if x does not op-match y then φ is not satisfiable.
(⇒) When x op-matches y, there is an assignment of values in x and y such that $x ≈ $y.

φ is satisfiable if there is one and only one variable wi,$x[i] per ith position (4.1). This occurs
iff one of the variables zi,$x[i],$y[i] is true for a given ith position in accordance with (4.2) and

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:11

(4.3). As conflicts (4.4) do not prevent the existence of a valid assignment (by assumption),
one or more variables zi,$x[i],$y[i] can be selected per position. φ can then be satisfied by
fixing a single variable zi,$x[i],$y[i] per ith position as true and the remaining variables as
false. Given (4.3) equivalences between wi,$x[i] and zi,$x[i],$y[i] variables, φ is consequently
satisfiable.

(⇐) When x does not op-match y, there is no assignment of values $x∈x and $y∈y
such that $x ≈ $y. In this context, the conflicts (4.4) can prevent the satisfiability of
clauses (4.2) or (4.1), thus leading to an unsat formula. Per formulation, in the absence
of an order-preserving match, conflicts will prevent the assignment of at least one variable
zi,$x[i],$y[i] on compatible (i, $x[i]) pairs, which are necessarily shown as conflicts on (4.1)
clauses as a consequence of the assignment constraints placed by (4.2) and (4.3) clauses. J

If the formula is satisfiable, there is a Boolean assignment to the variables such that
there is an assignment of characters in y, $y, and in x, $x, such that both strings op-
match. Otherwise, it is not possible to select assignments such that x ≈ y. Given r=2, the
established φ formula has at most 6m Boolean variables: a) at most 2m variables of the type
{wi,σ | i ∈{0..m-1}, σ ∈ Σ} corresponding to characters in x; and b) at most 4m variables
of the type {zi,σ1,σ2 | i ∈{0..m-1}, σ1, σ2 ∈ Σ} defining combinations of characters in the
ith position of x and y. Boolean values assigned to variables wi,σ are used to find a valid
assignment of characters in x. Boolean values assigned to variables zi,σ1,σ2 define whether
characters σ1 ∈ x[i] and σ2 ∈ y[i] belong to an op-match. The reduced formula is composed
of four major types of clauses:

(4.1) a single character per x position should be selected if exists $x such that $x ≈ y;
(4.2) a single character per indeterminate y position should be selected if there is a valid
assignment $y such that $x ≈ $y, where $x is given by assignments to (4.1) clauses;
(4.3) clauses that guarantee an association between x and y: zi,$x[i],$y[i] ⇒ wi,$x[i];
(4.4) clauses specify ordering constraints between pairs of characters σ1 ∈ y[i] and y[Leq[i]],
y[Lmax[i]] and y[Lmin[i]]. If the inequalities $y[i]=$y[j], $y[i]>$y[j] and $y[i]<$y[j] are
assessed as false, these leads to clauses of the form (¬zi,σ1 ∨ ¬zj,σ2), meaning that these
characters should not be selected simultaneously in the given positions (see Figure 4).

To instantiate the proposed mapping, consider x=(2, 1|3, 3) and y=(2, 0, 3|4), schematically
represented in Figure 3. The associated CNF formula is:

φ = w0,2 ∧ (w1,1 ∨ w1,3) ∧ (¬w1,1 ∨ ¬w1,3) ∧ w2,3 //(4.1) one valid assignment to x
∧ (z2,3,3 ∨ z2,3,4) ∧ (¬z2,3,3 ∨ ¬z2,3,4) //(4.2) assignment to indeterminate y positions
∧ (¬z0,2,2 ∨ w0,2) ∧ (¬z1,1,0 ∨ w1,1) ∧ (¬z1,3,0 ∨ w1,3) ∧ (¬z2,3,3 ∨ w2,3)
∧ (¬z2,3,4 ∨ w2,3) //(4.3) implications between x and y: zi,$x[i],$y[i] ⇒ wi,$x[i]

∧ (¬z0,0,2 ∨ ¬z1,3,0) ∧ (¬z1,3,0 ∨ ¬z2,3,3) ∧ (¬z1,3,0 ∨ ¬z2,3,4) //4.4 character conflicts

I Theorem 11. When r=2, the µOPPM problem for two indeterminate strings of equal
length is reducible to a 2-satisfiability problem over a CNF formula with O(m2) size.

Proof. The reduced formula (4) is in the two conjunctive normal form (2CNF). (4.1), (4.2)
and (4.3) clauses have at most two literals given r=2. (4.4) clauses contain inequalities
dynamically assigned to true or false during the reduction phase, producing clauses with at
most two literals. There are at most 2m clauses given by (4.1) as x has at most 2 characters
per position; and at most 4m clauses given by (4.2) (as well as 4m clauses given by (4.3))
resulting from the combination of possible characters from a position in x and y. Since there is
a maximum of O(m) orders per position, there can be at most O(m2) order conflicts between
characters and thus O(m2) clauses given by (4.4) of the form (¬zi,$x[i],$y[i]∨¬xj,$x[j],$y[j]). J

CPM 2018

2:12 Order-Preserving Pattern Matching Indeterminate Strings

I Theorem 12. µOPPM indeterminate strings of equal length is in O(m2) time when r=2.

Proof. Given Theorem 11 and the ability to solve 2SAT tasks linearly in the size of the CNF
formula [10], the proof of this theorem follows naturally. J

As linear time algorithms to solve 2SAT problems require linear space (see appendix)
and the size of the mapped satisfiability formula φ is O(m2) (Theorem 11), the memory
complexity of the µOPPM problems between indeterminate strings with r=2 and equal
length is O(m2).

4 Polynomial time µOPPM

I Lemma 13. Given a pattern string of length m and a text string of length n, one being
indeterminate, the µOPPM problem can be solved in O(nmr lg r) time. When both the pattern
and text are indeterminate with r=2, the µOPPM problem can be solved in O(nm2) time.

Proof. From Lemmas 7 and 12: verifying if two strings of length m op-match can be either
done in O(mr lg r) time (indetermination in one string) or O(m2) time (indetermination on
both strings and r=2). At most n−m+1 verifications need to be performed. J

Lemma 13 confirms that the µOPPM problem with one indeterminate strings or uncer-
tainties between characters (r=2) is in class P. This lemma further triggers the research
question “Are O(nmr) and O(nm2) tight bounds to solve the µOPPM?”, here left as an open
research question.

Irrespectively of the answer, the analysis of the average complexity is of complementary
relevance. State-of-the-art research on the exact OPPM problem shows that the average
performance of algorithms in O(nm) time can outperform linear algorithms [20, 17, 19].

Motivated by the evidence gathered by these works, we suggest the use of filtration
procedures to improve the average complexity of the proposed µOPPM algorithm while still
preserving its complexity bounds. A filtration procedure encodes the input pattern and text,
and relies on this encoding to efficiently find positions in the text with a high likelihood
to op-match a given pattern. Despite the diversity of string encodings, simplistic binary
encodings are considered to be the state-of-the-art in OPPM research [20, 17]. In accordance
with Chhabra et al. [20], a pattern p can be mapped into a binary string p′ expressing
increases (1), equalities (0) and decreases (0) between subsequent positions. By searching for
exact pattern matches of p′ in an analogously transformed text string t′, we guarantee that
the verification of whether p[0..m-1] and t[i..i+m-1] orders are preserved is only performed
when exact binary matches occur. Illustrating, given p=(3,1,2,4) and t=(2,4,3,5,7,1,4,8),
then p′=(1,0,1,1) and t′=(1,1,0,1,1,0,1,1,0), revealing two matches t′[1..4] and t′[4..7]: one
spurious match t[1..5] and one true match t[4..8].

When handling indeterminate strings the concept of increase, equality and decrease needs
to be redefined. Given an indeterminate string x, consider x′[i]=1 if max(x[i])<min(x[i+1]),
x′[i]=0 if min(x[i])≥max(x[i+ 1]), and x′[i]=∗ otherwise. Under this encoding, the pattern
matching problem is identical under the additional guard that a character in p′ always
matches a don’t care position, t′[i]=∗, and vice-versa. Illustrating, given p=(6,2|3,5) and
t=(3|4,5,6|8,6|7,3,5,4|6,7|8,4), then p′=(0,1) and t′=(11∗01∗10), leading to one true match
t[3..5] – e.g. $t[3..5]=(6,3,5) – and one spurious match t[5..7]. Exact pattern matching
algorithms, such as Knuth-Morris-Pratt and Boyer-Moore, can be adapted to consider don’t
care positions while preserving complexity bounds [40, 13].

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:13

The properties of the proposed encoding guarantee that the exact matches of p′ in t′

cannot skip any op-match of p in t. Thus, when combining the premises of Lemma 13 with
the previous observation, we guarantee that the computed µOPPM solution is sound.

The application of this simple filtration procedure prevents the recurring O(mr lg r) or
O(m2) verifications n−m+1 times. Instead, the complexity of the proposed method to
solve the µOPPM problem becomes O(dmr lg r + n) (when one string is indeterminate) or
O(dm2 + n) (when both strings are indeterminate and r=2) where d is the number of exact
matches (d� n). According to previous work on exact OPPM with filtration procedures
[20], SBNDM2 and SBNDM4 algorithms [28] (Boyer-Moore variants) were suggested to
match binary encodings. In the presence of small patterns, Fast Shift-Or (FSO) [30] can be
alternatively applied [20].

A given string text can be read and encoded incrementally from the standard input
as needed to perform µOPPM, thus requiring O(mr) space. When filtration procedures
are considered, the aforementioned algorithms for exact pattern matching require O(m)
space [20], thus µOPPM space requirements are bound by substring verifications (Section 3):
O(mr) space when one string is indeterminate and O(m2) when indetermination is considered
on both strings and r=2.

5 Concluding remark

This work addressed the relevant yet scarcely studied problem of finding order-preserving
pattern matches on indeterminate strings (µOPPM). We showed that the problem has a
polynomial solution when uncertainties are verified between two characters by reducing the
µOPPM problem to a 2-satisfiability problem. To this end, we first demonstrated that the
problem of matching two strings with equal length can be solved in linear time and space
when considering indetermination in one string and in quadratic time when considering
indetermination on both the pattern and text strings. Finally, we showed that the µOPPM
problem can be efficiently solved in polynomial time by combining the proposed verifications
with filtration procedures.

References
1 Amihood Amir, Yonatan Aumann, Piotr Indyk, Avivit Levy, and Ely Porat. Efficient com-

putations of l1 and l infinity rearrangement distances. Theor. Comput. Sci., 410(43):4382–
4390, 2009. doi:10.1016/j.tcs.2009.07.019.

2 Amihood Amir, Yonatan Aumann, Gad M. Landau, Moshe Lewenstein, and Noa Lewen-
stein. Pattern matching with swaps. J. Algorithms, 37(2):247–266, 2000. doi:10.1006/
jagm.2000.1120.

3 Amihood Amir, Yonatan Aumann, Moshe Lewenstein, and Ely Porat. Function matching.
SIAM Journal on Computing, 35(5):1007–1022, 2006.

4 Amihood Amir, Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and Ely Porat. Over-
lap matching. Inf. Comput., 181(1):57–74, 2003. doi:10.1016/S0890-5401(02)00035-4.

5 Amihood Amir and Martin Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Inf. Comput., 118(1):1–11, 1995. doi:10.1006/inco.1995.1047.

6 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-
erized matching. Inf. Process. Lett., 49(3):111–115, 1994. doi:10.1016/0020-0190(94)
90086-8.

7 Amihood Amir, Ohad Lipsky, Ely Porat, and Julia Umanski. Approximate matching in
the l1 metric. In CPM, volume 5, pages 91–103. Springer, 2005.

CPM 2018

http://dx.doi.org/10.1016/j.tcs.2009.07.019
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1006/jagm.2000.1120
http://dx.doi.org/10.1016/S0890-5401(02)00035-4
http://dx.doi.org/10.1006/inco.1995.1047
http://dx.doi.org/10.1016/0020-0190(94)90086-8
http://dx.doi.org/10.1016/0020-0190(94)90086-8

2:14 Order-Preserving Pattern Matching Indeterminate Strings

8 Amihood Amir and Igor Nor. Generalized function matching. J. Discrete Algorithms,
5(3):514–523, 2007. doi:10.1016/j.jda.2006.10.001.

9 Alberto Apostolico. General pattern matching. In Mikhail J. Atallah and Marina Blan-
ton, editors, Algorithms and Theory of Computation Handbook, pages 15–15. Chapman &
Hall/CRC, 2010.

10 Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

11 Brenda S Baker. A theory of parameterized pattern matching: algorithms and applications.
In ACM symposium on Theory of computing, pages 71–80. ACM, 1993.

12 Djamal Belazzougui, A. Pierrot, M. Raffinot, and Stéphane Vialette. Single and multiple
consecutive permutation motif search. In Int. Symposium on Algorithms and Computation,
pages 66–77. Springer, 2013.

13 Robert S Boyer and J Strother Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

14 Emilios Cambouropoulos, M. Crochemore, C. Iliopoulos, L. Mouchard, and Yoan Pinzon.
Algorithms for computing approximate repetitions in musical sequences. Int. Journal of
Computer Mathematics, 79(11):1135–1148, 2002.

15 Domenico Cantone, Salvatore Cristofaro, and Simone Faro. An efficient algorithm for δ-
approximate matching with α-bounded gaps in musical sequences. In IW on Experimental
and Efficient Algorithms, pages 428–439. Springer, 2005.

16 Domenico Cantone, Salvatore Cristofaro, and Simone Faro. On tuning the (δ, α)-sequential-
sampling algorithm for δ-approximate matching with alpha-bounded gaps in musical se-
quences. In ISMIR, pages 454–459, 2005.

17 Domenico Cantone, Simone Faro, and M Oguzhan Külekci. An efficient skip-search ap-
proach to the order-preserving pattern matching problem. In Stringology, pages 22–35,
2015.

18 Tamanna Chhabra, Simone Faro, M. Oguzhan Külekci, and Jorma Tarhio. Engineering
order-preserving pattern matching with SIMD parallelism. Softw., Pract. Exper., 47(5):731–
739, 2017. doi:10.1002/spe.2433.

19 Tamanna Chhabra, M Oguzhan Külekci, and Jorma Tarhio. Alternative algorithms for
order-preserving matching. In Stringology, pages 36–46, 2015.

20 Tamanna Chhabra and Jorma Tarhio. A filtration method for order-preserving matching.
Inf. Process. Lett., 116(2):71–74, 2016. doi:10.1016/j.ipl.2015.10.005.

21 Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. Fast order-preserving
pattern matching. In Combinatorial Optimization and Applications, pages 295–305.
Springer, 2013.

22 Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. A fast algorithm for
order-preserving pattern matching. Information Processing Letters, 115(2):397–402, 2015.

23 Peter Clifford, Raphaël Clifford, and Costas Iliopoulos. Faster algorithms for δ, γ-matching
and related problems. In Annual Symposium on Combinatorial Pattern Matching, pages
68–78. Springer, 2005.

24 Raphaël Clifford and C Iliopoulos. Approximate string matching for music analysis. Soft
Computing-A Fusion of Foundations, Methodologies and Applications, 8(9):597–603, 2004.

25 Richard Cole, C. Iliopoulos, T. Lecroq, W. Plandowski, and Wojciech Rytter. On special
families of morphisms related to δ-matching and don’t care symbols. Information Processing
Letters, 85(5):227–233, 2003.

26 Maxime Crochemore, Costas S Iliopoulos, Thierry Lecroq, Wojciech Plandowski, and Wo-
jciech Rytter. Three heuristics for delta-matching: delta-bm algorithms. In CPM, pages
178–189. Springer, 2002.

http://dx.doi.org/10.1016/j.jda.2006.10.001
http://dx.doi.org/10.1002/spe.2433
http://dx.doi.org/10.1016/j.ipl.2015.10.005

R. Henriques, A. P. Francisco, L.M. S. Russo, and H. Bannai 2:15

27 Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Adaptive set intersections,
unions, and differences. In In Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA. Citeseer, 2000.

28 Branislav Ďurian, Jan Holub, Hannu Peltola, and Jorma Tarhio. Improving practical exact
string matching. Information Processing Letters, 110(4):148–152, 2010.

29 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975. doi:10.1016/0012-365X(75)90103-X.

30 Kimmo Fredriksson and Szymon Grabowski. Practical and optimal string matching. In
SPIRE, volume 3772, pages 376–387. Springer, 2005.

31 Kimmo Fredriksson and Szymon Grabowski. Efficient algorithms for pattern matching
with general gaps, character classes, and transposition invariance. Information Retrieval,
11(4):335–357, 2008.

32 Xianping Ge. Pattern matching in financial time series data. final project report for ICS,
278, 1998.

33 Rui Henriques. Learning from High-Dimensional Data using Local Descriptive Models. PhD
thesis, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, 2016.

34 Rui Henriques, Cláudia Antunes, and SaraC. Madeira. Methods for the efficient discovery
of large item-indexable sequential patterns. In New Frontiers in Mining Complex Patterns,
volume 8399 of LNCS, pages 100–116. Springer International Publishing, 2014.

35 Rui Henriques and Sara C Madeira. Bicspam: flexible biclustering using sequential patterns.
BMC bioinformatics, 15(1):130, 2014.

36 Rui Henriques and Ana Paiva. Seven principles to mine flexible behavior from physiological
signals for effective emotion recognition and description in affective interactions. In PhyCS,
pages 75–82, 2014.

37 Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate
strings. J. Discrete Algorithms, 6(1):37–50, 2008. doi:10.1016/j.jda.2006.10.003.

38 Shuichi Kawashima and Minoru Kanehisa. Aaindex: amino acid index database. Nucleic
acids research, 28(1):374–374, 2000.

39 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S Iliopoulos, Kunsoo
Park, Simon J Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theoretical
Computer Science, 525:68–79, 2014.

40 Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern matching in
strings. SIAM journal on computing, 6(2):323–350, 1977.

41 Marcin Kubica, Tomasz Kulczyński, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A linear time algorithm for consecutive permutation pattern matching. Information
Processing Letters, 113(12):430–433, 2013.

42 Inbok Lee, Raphaël Clifford, and Sung-Ryul Kim. Algorithms on extended (δ, γ)-matching.
Computational Science and Its Applications-ICCSA 2006, pages 1137–1142, 2006.

43 Inbok Lee, Juan Mendivelso, and Yoan J Pinzón. δγ–parameterized matching. In Interna-
tional Symposium on String Processing and Information Retrieval, pages 236–248. Springer,
2008.

44 Ohad Lipsky and Ely Porat. Approximate matching in the linfinity metric. Inf. Process.
Lett., 105(4):138–140, 2008. doi:10.1016/j.ipl.2007.08.012.

45 Juan Mendivelso, Inbok Lee, and Yoan J Pinzón. Approximate function matching under
δ-and γ-distances. In SPIRE, pages 348–359. Springer, 2012.

46 S Muthukrishnan. New results and open problems related to non-standard stringology. In
Combinatorial Pattern Matching, pages 298–317. Springer, 1995.

47 Ely Porat and Klim Efremenko. Approximating general metric distances between a pattern
and a text. In ACM-SIAM symposium on Discrete algorithms, pages 419–427. SIAM, 2008.

CPM 2018

http://dx.doi.org/10.1016/0012-365X(75)90103-X
http://dx.doi.org/10.1016/j.jda.2006.10.003
http://dx.doi.org/10.1016/j.ipl.2007.08.012

On Undetected Redundancy in the
Burrows-Wheeler Transform
Uwe Baier
Institute of Theoretical Computer Science, Ulm University
D-89069 Ulm, Germany
uwe.baier@uni-ulm.de

https://orcid.org/0000-0002-0145-0332

Abstract
The Burrows-Wheeler-Transform (BWT) is an invertible permutation of a text known to be
highly compressible but also useful for sequence analysis, what makes the BWT highly attractive
for lossless data compression. In this paper, we present a new technique to reduce the size of
a BWT using its combinatorial properties, while keeping it invertible. The technique can be
applied to any BWT-based compressor, and, as experiments show, is able to reduce the encoding
size by 8 − 16% on average and up to 33 − 57% in the best cases (depending on the BWT-
compressor used), making BWT-based compressors competitive or even superior to today’s best
lossless compressors.

2012 ACM Subject Classification Theory of computation → Data compression, Applied com-
puting → Document analysis, Mathematics of computing → Coding theory

Keywords and phrases Lossless data compression, BWT, Tunneling

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.3

Related Version Full version available at https://arxiv.org/abs/1804.01937.

Supplement Material Implementation available at https://github.com/waYne1337/tbwt.

1 Introduction

Lossless data compression plays an important role in modern digitization, as it enables us to
shift and save computation resources during information exchange. For example, consider
a setting where a computationally strong computer has to distribute data over a limited
channel–by use of data compression, the storage requires less resources, and the file can
be transmitted faster due to reduced data size–with the drawback of extra computation
time for en- and decoding the information. Data compression is widespread today, current
challenges are not only to compress data, but also to serve special features like resource-
efficient decompression or even working on the compressed data directly, because the only way
to fit it in memory (and thus process it fast) consists of using a compressed representation.

Compressors for the first mentioned feature typical make use of LZ77 [33]–a compression
technique that, briefly speaking, replaces repeats in a text by references–resulting in very
good compression rates and very fast decompression. Popular examples of compressors using
LZ77 are gzip [12] or 7-zip [27], which can be categorized as file transmission compressors.

A different technique for the second mentioned feature makes use of the Burrows-Wheeler-
Transform (BWT) [3], which is an invertible permutation of the characters in the original
text. The BWT itself does not compress data, but the transformed string tends to have some
properties which make it highly compressible. The most popular compressor of such kind is
bzip2 [30], but compression rates are not the only aspect that make the BWT interesting:

© Uwe Baier;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:uwe.baier@uni-ulm.de
https://orcid.org/0000-0002-0145-0332
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.3
https://arxiv.org/abs/1804.01937
https://github.com/waYne1337/tbwt
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 On Undetected Redundancy in the Burrows-Wheeler Transform

also, the BWT in combination with wavelet trees [14] is well known to be an extremely useful
and efficient tool for sequence analysis, commonly known as FM-index [8].

As the BWT has very interesting combinatorial properties, it has been heavily studied
during the last two decades. For pure compression, a summary of the most relevant ideas can
be found in [1]. Surprisingly, as Fenwick [6] stated, less attention was given to the encoding
of runs (a run is a continuous sequence of the same character). This was reasonable, because,
also stated by Fenwick [6], “the original scheme proposed by Wheeler is extremely efficient
and unlikely to be much improved.”.

Finally, this is the point where our paper draws on. In this paper, we describe a new
technique called “tunneling”, which relies on observations about combinatorics of a BWT and
can be proved to maintain the invertibility (Theorem 13). The technique is independent from
the way a run gets encoded, but reduces the size of the BWT to be encoded eminently by
shortening runs. In numbers, we are able to reduce the encoding size of a compressed BWT
by 8− 16% on average and up to 33− 57% in the best cases, depending on the backend used
to compress a BWT. This not only makes BWT compressors competitive with today’s best
compressors, but also leaves the combinatorial properties of the BWT intact, what indicates
that the technique is applicable to index structures such as the above mentioned FM-index1.

This paper is organized as follows: Section 2 contains basics about the BWT and BWT
compression. Section 3 presents our new technique, followed by a proof of invertibility of
our representation in Section 4. Section 5 shows a way to implement the technique, which is
followed by experimental results in Section 6 and conclusions in Section 7.

2 Preliminaries

First we want to describe the major parts of the BWT and its use in data compression.
Throughout this Paper, any interval [i, j] or [i, j) is meant to be an interval over the natural
numbers, every logarithm is of base 2, and indices start with 1, except when stated differently.

Let Σ be a totally ordered set (alphabet) of elements (characters). A string S of length
n over alphabet Σ is a finite sequence of n characters originating from Σ. We call S

nullterminated if it ends with the lowest ordered character $ ∈ Σ occurring only at the end
of S. The empty string with length 0 is denoted by ε. Unless stated differently, we assume
that S is nullterminated. Let S be a string of length n, and let i, j ∈ [1, n]. We denote by

S[i] the i-th character of S.
S[i..j] the substring of S starting at the i-th and ending at the j-th position.
We state S[i..j] = ε if i > j, and define S[i..j) := S[i..j − 1].
Si the suffix of S starting at the i-th position, i.e. Si = S[i..n].
Si <lex Sj if the suffix Si is lexicographically smaller than Sj ,
i.e. there exists a k ≥ 0 with S[i..i + k) = S[j..j + k) and S[i + k] < S[j + k].

I Definition 1. Let S be a string of length n. The suffix array [22] SA of S is a permutation
of integers in range [1, n] satisfying SSA[1] <lex SSA[2] <lex · · · <lex SSA[n].

I Definition 2. Let S be a string of length n, and SA be its corresponding suffix array. The
Burrows-Wheeler-Transform (BWT) of S is a string L of length n defined as L[i] := S[SA[i]−1]
if SA[i] > 1 and L[i] := $ if SA[i] = 1. Also, we define the F-Column F as a string of length n

by F[i] := S[SA[i]], which can also be obtained by sorting the characters in L.

1 We give some hints towards this goal; there exist however more technical problems to be solved,
outreaching the scope of this paper.

U. Baier 3:3

i SA[i] S[1..SA[i]) SSA[i] L[i] F[i] rlencode(L)[i]
1 10 easypeasy $ y $ y
2 7 easype asy$ e a e
3 2 e asypeasy$ e a 0
4 6 easyp easy$ p e p
5 1 ε easypeasy$ $ e $
6 5 easy peasy$ y p y
7 8 easypea sy$ a s a
8 3 ea sypeasy$ a s 0
9 9 easypeas y$ s y s

10 4 eas ypeasy$ s y 0

Figure 1 Suffix array, Burrows-Wheeler-Transformation L, F, run-length encoded BWT
rlencode(L) and the prefixes preceding a suffix (third column) for S = easypeasy$. The BWT is
almost the same string as the concatenation of the last characters from prefixes preceding suffixes,
except for the sentinel character. Also one can see that those prefixes often share more than one
character with the prefixes standing next to them.

In other words, the Burrows-Wheeler Transform is the concatenation of characters which
cyclically precede suffixes in the suffix array. An example of a suffix array and a BWT
can be found in Figure 1. An important property of the BWT is its invertibility, i.e. it’s
possible to reconstruct the original string S solely from its BWT. Therefore, we use the
notation rankS(c, i) to denote the number of occurrences of character c in the string S[1..i],
selectS(c, i) to denote the position of the i-th occurrence of c in S and CS [c] to denote the
number of characters smaller than c in S, that is, CS [c] := |{ i ∈ [1, n] | S[i] < c }|.

I Definition 3. Let S be a string of length n, SA and L be its corresponding suffix array
and BWT. The LF-mapping is a permutation of integers in range [1, n] defined as follows:

LF[i] := CL[L[i]] + rankL(L[i], i)

We write LFx[i] for the x-fold application of LF, i.e. LFx[i] := LF[LF[· · · LF[︸ ︷︷ ︸
x times

i] · · ·]],
and define LF0[i] := i.

The LF-mapping carries its name because it maps each character in L to its corresponding
position in F. To put it differently, the LF-mapping induces a walk through the suffix array
in reverse text order, which commonly is called a “backward step”.

I Lemma 4. Let S be a string of length n, SA and LF be its suffix array and LF-mapping.
Then, SA[LF[i]] = SA[i]− 1 holds for all i ∈ [1, n] with SA[i] 6= 1.

Proof. See [3]. J

Thus, any BWT can be inverted by computing LF (which can solely be done using L),
taking a walk through the suffix array in reverse text order using LF and meanwhile collecting
characters from L, what yields the reverse string of S (see [3] for more details). Our next
concern of the LF-mapping which will be important later is its parallelism property inside
runs, that is, a consecutive sequence of the same character in the BWT.

I Lemma 5. Let S be a string of length n, L and LF be its corresponding BWT and LF-
mapping. For any interval [i, j] ⊆ [1, n] with L[i] = L[i + 1] = · · · = L[j], LF[i] + k = LF[i + k]
holds for all 0 ≤ k ≤ j − i.

Proof. Follows directly from Definition 3. J

CPM 2018

3:4 On Undetected Redundancy in the Burrows-Wheeler Transform

To get an understanding why the BWT is useful for data compression, we need a better
understanding of it. The suffix array places lexicographically similar suffixes next to each
other. Therefore, suffixes in subsequences of the suffix array often share a common prefix
(context). As the BWT consists of the cyclic preceding characters of those suffixes, a
subsequence of the BWT can be seen as a collection of characters preceding the same context
in S. As a result, the character distribution inside a subsequence of the BWT gets skew, i.e.
it is dominated by just a few characters which frequently appear before the context.

Typical BWT compressors make use of this fact by transforming the BWT such that
the locally skew character distributions turn into a global skew character distribution–an
example for such a transformation is given by the Move-To-Front Transformation [29, 3].
Finally, the global skew character distribution of the transform is useful for the last stage of
typical BWT compressors: entropy encoding. The target of entropy encoding is to minimize
the middle cost for the encoding of a character in a string using its character distribution. A
well-known lower bound for this cost is given by the entropy definition of Shannon [31]:

I Definition 6. Let S be a string of length n, and let cc be the count of character c in S. The
entropy H(S) of string S is defined as H(S) :=

∑
c∈Σ

cc

n log n
cc

= log n− 1
n

∑
c∈Σ cc log cc.

Over the years, a couple of methods were developed to achieve cost-optimal entropy
coding; most famous of such methods are Huffman coding [15] and Arithmetic coding [28].
However, it can be shown that the more skew a character distribution of an underlying
source is, the more the entropy decreases. Consequently, the BWT transformation normally
is highly compressible using an entropy encoder.

Another trick for improving compression used by most state-of-the-art BWT compressors
is run-length-encoding. First of all, a run is a (length-maximal) subsequence in which all
characters are equal. Run-length-encoding transforms a run with height (length) h of character
c into the string c hkhk−1 · · ·h1, where (1 hkhk−1 · · ·h1)2 is the binary representation of h

(in the encoding, the leading one is cut, and the symbols 0 and 1 are assumed to be distinct
from symbols in S). Figure 1 shows an example of run-length-encoding which often reduces
the length of a BWT drastically. We refer to [7] for a survey about further BWT compression
methods, and introduce our last preliminary definition: the indicator function.

I Definition 7. Let P be any boolean predicate. The indicator function 1P then is defined
as 1P := 1 if predicate P is true, and 1P := 0 otherwise.

3 Tunneling

The last section explained why the BWT produces long runs of the same character. Briefly
speaking, the consecutive characters in the BWT are followed by similar contexts (suffixes)
in the original text, and similar contexts tend to be preceded by the same character. The
BWT limits the strings preceding contexts to just 1 character, but there is no reason why
longer preceding strings shouldn’t be similar too2. In fact, this often is the case in repetitive
texts: In Figure 1, the suffixes SSA[9] and SSA[10] are both preceded by the same string eas.

The intention of this section is to show a way how to use the similarity of the preceding
strings to reduce the size of the BWT while keeping the invertibility and combinatorial prop-
erties of the BWT intact. Unlike existing approaches [24], we will not use word substitutions
to achieve this goal; the problem of word substitutions is to find a good substitution scheme,

2 A similar observation was made in the context of self-repetitions in suffix arrays; see [21, 26].

U. Baier 3:5

L F
y $
e a
e a
p e
$ e
y p
a s
a s
s y
s y

(a) determine the block in the
BWT

L F
y $
e a
e a
p e
$ e
y p
a s

s y
s y

(b) cross out positions and re-
move doubly crossed-out ones

L F
y $
e a
e a
p e
$ e
y p
a s

s y
s y

(c) Reconstruction idea: use
one block row for both rows

Figure 2 Process of tunneling as described in Definition 9. Above, block 2 − [9, 10] from the
running example is tunneled. Any lines colored blue are related to the LF-mapping, cross-outs in L
and F are displayed by crosses.

as well as storing the word dictionary efficiently. Instead, we present a method based on the
combinatorics of the BWT, which contains the “word dictionary” implicitly in the remaining
BWT, and offers an easier way to find a good substitution scheme–completely without sub-
stitution. Our first step will be the definition of blocks, which are–short speaking–repetitions
of the same preceding string in lexicographically consecutive suffixes.

I Definition 8. Let S be a string of length n and L be its BWT. A block B is a pair of an
integer d and an interval [i, j] ⊆ [1, n] (d− [i, j]-block) such that

L [LFx[i]] = L [LFx[i + 1]] = · · · = L [LFx[j]] for all 0 ≤ x ≤ d

We call [i, j] the start interval of B,
[
LFd[i], LFd[j]

]
the end interval of B, hB := j − i + 1

the height of B and wB := d + 1 the width of B.

Blocks can also be seen as character matrices where each column consists of the same
character and each row is build by picking characters in BWT during d consecutive applications
of the LF-mapping, see also Figure 3. An example of blocks can be found in Figure 1:
exemplary blocks are 2− [9, 10], 1− [7, 8], 0− [2, 3] or 0− [5, 5]. We also want to note that
each column of a block can be mapped to a substring in the BWT which consists of the same
character.

I Definition 9. Let S be a string of length n, L and F be its corresponding BWT and
F-Column, and let B = d− [i, j] be a block of S. The process of tunneling block B is defined
as follows:
1. cross out position LFx[k] in L (mark it in a bitvector cntL of size n)

for all 0 ≤ x < d and i < k ≤ j.
2. cross out position LFx[k] in F (mark it in a bitvector cntF of size n)

for all 0 < x ≤ d and i < k ≤ j.
3. remove positions k that were crossed out both in L and F from L, F and the bitvectors

cntL and cntF.
To tunnel a whole set B of blocks, we apply each step to all blocks B ∈ B before continuing
with the next step, where the result (L, cntL and cntF) is called a tunneled BWT.

A simpler description of tunneling a block can be given as follows: Remove all positions of
the block from the BWT, except for those in the rightmost or leftmost column or uppermost
row of the block. Afterwards, cross out positions in the interval start from L and the interval
end from F, both except for the uppermost position. An example can be seen in Figure 2.

CPM 2018

3:6 On Undetected Redundancy in the Burrows-Wheeler Transform

b
b
b
b

l
l
l
l

o
o
o
o
o
o
o

c
c
c
c
c
c
c

k
k
k
k

(a) compensable collision

b
b
b
b
b
b
b

l
l
l
l
l
l
l

o
o
o
o

c
c
c
c

k
k
k
k

(b) critical collision

a
a
a
a
a
a
a

(c) critical self-collision

Figure 3 Visualization of block collisions. Blocks are displayed as continuous stripes, shared
positions are marked using diagonal lines.

The interesting question will be if we are able to reconstruct the text, even if we remove
positions from the BWT. Beforehand however, we need to care about block intersections,
since they can produce side effects when tunneling more than one block.

I Definition 10. Let B = d− [i, j] and B̃ = d̃− [̃i, j̃] be two different blocks of a string S

with BWT L and LF-mapping LF. We say that B and B̃ collide if they share positions in L,
i.e. there exists x ∈ [0, d] and x̃ ∈ [0, d̃] such that[

LFx[i], LFx[j]
]
∩
[
LFx̃ [̃i], LFx̃[j̃]

]
6= ∅

We call each position in the intersection a shared position. Analogously, we say that a block
B = d− [i, j] is self-colliding if some x, x̃ ∈ [0, d] with x < x̃ exist such that[

LFx[i], LFx[j]
]
∩
[
LFx̃[i], LFx̃[j]

]
6= ∅

Furthermore, let Bin and Bout be two colliding blocks and w.l.o.g. hBin ≥ hBout . We call
the collision between Bin and Bout compensable if following conditions are fulfilled:
1. The leftmost and rightmost columns of Bout do not intersect:

The positions [iout, jout] and
[
LFdout [iout], LFdout [jout]

]
are not shared

2. At least one row of Bin does not intersect:
There exists a y ∈ [iin, jin] such that the positions y, LF[y], . . . , LFdin [y] are not shared

3. The intersection area forms a block of height Bin −Bout:
For all xin ∈ [0, din] and xout ∈ [0, dout] following holds:∣∣∣∣ [LFxin [iin], LFxin [jin]

]
\
[
LFxout [iout], LFxout [jout]

] ∣∣∣∣ ∈ {0, hBin − hBout}

If the conditions are not fulfilled, or if a collision is a self-collision, we call it critical.

Figure 3 visualizes the different kinds of block collisions. Examples of block collisions can
be found in Figure 1: the blocks 2− [9, 9] and 0− [7, 8] form a compensable collision, while
the blocks 2− [9, 9] and 1− [7, 8] form a critical collision. Furthermore, for L = aa · · · a$ any
block of width and height greater than one is self-colliding.

Now let us discuss the effect of the classifying criteria of collisions from Definition 10 a
bit further. By the criteria, a compensable collision always consists of a “wider” (outer) and
a “shorter but higher” (inner) block: The start and end interval of the outer block contain
no shared position (condition 1), which in conjunction with condition 3 implies that the
outer block must be wider than the inner one. For the inner block, at least one row must be
unshared (condition 2), what in conjunction with condition 3 analogously shows that the
inner block must be higher than the outer one. In the sense of visualization, these conditions
build kind of a cross overlay of blocks, as depicted in Figure 3a. Extending this idea to more
than two blocks, the criteria forms a natural hierarchy on colliding blocks, which will be
useful for invertibility issues.

U. Baier 3:7

4 Invertibility

The purpose of this section is to show that a tunneled BWT can be inverted, i.e. the original
string from which a BWT was constructed from can be rebuilt. As a first step, we will
introduce a new generalized LF-mapping.

I Definition 11. Let L be the Burrows-Wheeler-Transformation of a string of length n and
let cntL and cntF be two bitvectors of size n. The generalized LF-mapping is defined by

LFcntL
cntF[i] := selectcntF(1︸ ︷︷ ︸

skip removed
positions

,

n∑
k=1

cntL[k] · 1L[k]<L[i]︸ ︷︷ ︸
=̂ CL[L[i]]

+
i∑

k=1
cntL[k] · 1L[k]=L[i]︸ ︷︷ ︸
=̂ rankL(L[i],i)

)

Definition 11 is almost equal to the normal LF-mapping–except that characters crossed
out in L are ignored, while characters crossed out in F are skipped. Next, we will see that this
definition is reasonable for tunneling, as it maintains its structure when removing positions
from L in the “right” manner.

I Lemma 12. Let L be the Burrows-Wheeler-Transformation of a string of length n with
LF-mapping LF and let cntL and cntF be two bitvectors of size n. Then following properties
hold for the generalized LF-mapping LFcntL

cntF:
1. Let cntF[i] = cntL[i] = 1 for all i ∈ [1, n]. Then, LFcntL

cntF is identical to the normal
LF-mapping LF.

2. Let cntF and cntL be two bitvectors such that LFcntL
cntF[j] = LF[j] for all j with cntL[j] = 1.

Let i be an integer with cntL[i] = cntF [LF[i]] = 1. Crossing out position i in L and position
LF[i] in F (setting cntL[i] = cntF [LF[i]] = 0) does not change the mapping: Define

c̃ntL[j] := cntL[j] · 1j 6=i and c̃ntF[j] := cntF[j] · 1j 6=LF[i]

Then, LFc̃ntL
c̃ntF

[j] = LF[j] for all j with c̃ntL[j] = 1.
3. Let i be an integer with cntL[i] = cntF[i] = 0. Removing position i (crossed out both in L

and F) from L, cntL and cntF does not change the mapping: Define

c̃ntL[j] := cntL[j + 1j≥i] , c̃ntF[j] := cntF[j + 1j≥i] and L̃[j] := L[j + 1j≥i]

Then, for the corresponding mapping L̃F
c̃ntL
c̃ntF the following holds:

L̃F
c̃ntL
c̃ntF[j] = LFcntL

cntF[j + 1j≥i]− 1LFcntL
cntF[j+1j≥i]≥i

Lemma 12 looks really bulky at the first moment, but reflects the operations required for
tunneling, as we will see by discussing its different properties. Property 1 says that the new
LF-mapping is identical to the old if we cross out nothing, and is straightforward. The more
interesting property 2 tells us that the LF-mapping stays identical if we cross out consecutive
positions in L and F in terms of text order. To explain why this works, think of a character
c at position i in a BWT. If we cross out c in L, it is ignored, and thus the LF-mapping
of all characters in L which are greater than c (or equal to c but placed below of i) gets
shifted one position upwards, and thus is modified. Now, as we also cross out LF[i] in F, and
crossed-out positions in F are skipped, all of the modified positions are shifted one position
downward, because their original LF-mapping was greater than LF[i], and thus, the mapping
stays identical. Property 3 also is easy to understand, as it says that a position which is

CPM 2018

3:8 On Undetected Redundancy in the Burrows-Wheeler Transform

Algorithm 1: Inverting a tunneled Burrows-Wheeler-Transform.
Data: Tunneled Burrows-Wheeler-Transform L of size n from string S of size ñ, bitvectors cntL and cntF

of size n + 1 with cntL[n + 1] = cntF[n + 1] = 1.
Result: String S from which L, cntL and cntF were build from.

1 let LF∗ be the generalized LF-mapping (Definition 11).
2 initialize an empty stack s

3 S
[

ñ
]
← $

4 j ← 1
5 for i← ñ− 1 to 1 do
6 if cntF[j + 1] = 0 then // end of a tunnel
7 j ← j + s.top()
8 s.pop()

9 S[i]← L[j]
10 if cntL[j] = 0 or cntL[j + 1] = 0 then // start of a tunnel
11 k ← max{l ∈ [1, j] | cntL[l] = 1} // uppermost row of block
12 s.push(j - k)

13 j ← LF∗[j]

ignored in L and skipped in F can be completely removed. A formal proof of the properties
is omitted due to reasons of space, for now let us concentrate on the reconstruction of the
original text.

The idea for reconstruction will be as follows: According to Lemma 12, tunneling will
leave the LF-mapping identical, so we need only to clarify how to deal with tunneled blocks.
As a remainder, tunneling means that we remove all of the characters except for the rightmost
and leftmost column and uppermost row of a block. In blocks, we know that each row of the
block is identical, and all of the rows run in parallel (in terms of the LF-mapping). Thus, if
we reach the start of a tunnel, we will save the offset to the uppermost row, proceed at the
uppermost row, and, once we leave the tunnel, use the saved offset to get back to the correct
“lane”, as shown Figure 2c and described in Algorithm 1.

The reconstruction process also inspired us to name the method tunneling: once the start
of a block is reached, the offset to the uppermost row gets saved, and we enter the “tunnel”,
namely the uppermost row. After the tunnel ended, the temporarily information is used to
get back to the correct “lane”, that is the row on which we entered the tunnel.

I Theorem 13. Let S be a string of length ñ, let B be a set of blocks in its BWT containing
no critical block collisions, and let L, cntL and cntF (each of size n) be the components
emerging by tunneling the blocks of set B. Then, Algorithm 1 reconstructs the string S from
the tunneled BWT in O(ñ) time.

Proof. First, note that the generalized LF-mapping in a tunneled BWT conforms to the
normal LF-mapping in a traditional BWT: Definition 9 tells us that for each marked position i

in cntL, the associated position LF[i] is marked in cntF during tunneling process. Furthermore,
tunneling only removes positions i with cntL[i] = cntF[i] = 0—note that this argumentation
still is true for any colliding blocks, with only the only difference that some of those “position
pairs” are marked more than once. Thus Lemma 12 ensures that a walk through the
generalized LF-mapping (Line 13 of Algorithm 1) will reproduce the same string during
character pickup (Line 9)—except for positions i with either cntL[i] or cntF[i] equal zero,
which are positions in a start or end interval of a block.

As we know that each row of a block is identical (in terms of characters), and that the
LF-mapping in a block runs in parallel (Lemma 5), for correct reconstruction, it’s sufficient
to store the relative offset to the top of a block when entering it, reconstruct any of the rows
of the block, and at the end of the block use the stored offset to step back to the relative

U. Baier 3:9

position on which the block was entered—as performed by Algorithm 1. In case of block
collisions, by the hierarchy build from the condition of compensable collisions, a tunnel will
not be left until all its inner colliding block tunnels are left, thus the stack in Algorithm 1
correctly matches each tunnel end with the offset the tunnel was entered.

Finally, Algorithm 1 can be implemented to require O(ñ) time by precomputing the
generalized LF-mapping in O(n) time, and by implementing line 11 with an array mapping
each position to the nearest previous position i with cntL[i] = 1, which obviously also can be
computed in O(n) time, requiring O(1) time per query. J

In contrast, when dealing with critical collisions, Algorithm 1 will not be able to correctly
match a tunnel start or end to the corresponding tunnel due to the intersections of start
intervals or end intervals of blocks. In the case of self-collisions, the tunneling process from
Definition 9 will remove entries of the topmost row of the self-colliding block from the BWT,
thus falsifying the correctness proof of Algorithm 1.

5 Practical Implementation

This section’s purpose is to give a brief summary on how to use BWT tunneling practically.
Our first restriction therefore is to focus only on such-called run-blocks, what will make
tunneling easier to handle. A run-block is a block whose start and end intervals have the
same height as the runs in the BWT where the intervals occur. Furthermore, we will focus
only on width-maximal run-blocks having height and width both greater than one.

I Definition 14. Let S be a string of length n and L be its BWT. Furthermore, assume that
the border cases L[0] and L[n + 1] contain characters such that L[0] 6= L[1] and L[n] 6= L[n + 1].

A d− [i, j]-block is called a run-block if L[i] 6= L[i− 1], L[j] 6= L[j + 1],
L[LFd[i]] 6= L[LFd[i]− 1] and L[LFd[j]] 6= L[LFd[j] + 1] holds.

A run-block RB is called width-maximal if it is wider than any colliding run-block R̃B

with same height, i.e. RB and R̃B collide and hB = h
R̃B
⇒ wRB ≥ w

R̃B
.

An example of run-blocks is given in Figure 1: 0− [2, 3], 1− [7, 8] are run-blocks, 2− [9, 10]
is the only width-maximal run-block. As a counter example, 2− [9, 9] is no run-block, as
L[9] = L[10], thus the height is not identical to that of the run where the block starts.

Run-blocks with height greater than one will never be self-colliding3–also, any collision
between width-maximal run-blocks always is compensable: a run-block is height-maximal in
sense of its start- and end-interval, thus any collision enforces one block to be higher and on
the “inside” of the other, as required by Definition 10.

5.1 Block Computation
Our first concern is how blocks can be computed. For arbitrary blocks, a simple solution
would be to compute the pairwise longest common suffixes of S[1..SA[i]) and S[1..SA[i + 1]),
and afterwards enumerate the blocks using a stack-based approach–which is possible in O(n),
see [16] and [18]. However, as we want to compute the restricted set of width-maximal
run-blocks, we will choose a different approach.

3 Self-collisions are related to overlapping repeats in the text. Thus, a self-colliding block has to share
positions in its start interval with itself, what cannot happen in run-blocks: as the overlapping intervals
of a block cannot be equal (LF is a permutation), the start interval wouldn’t be height-maximal.

CPM 2018

3:10 On Undetected Redundancy in the Burrows-Wheeler Transform

L cntL cntF
y
e
e
p
$
y
a
s
s

1
1
1
1
1
1
1
1
0

1
1
0
1
1
1
1
1
1

(a) tunneled BWT from
Figure 2

L aux = 2 · cntL + cntF
y
e
e
p
$
y
a
s
s

3
3
2
3
3
3
3
3
1

= 2 · 1
= 2 · 1
= 2 · 1
= 2 · 1
= 2 · 1
= 2 · 1
= 2 · 1
= 2 · 1
= 2 · 0

+ 1
+ 1
+ 0
+ 1
+ 1
+ 1
+ 1
+ 1
+ 1

(b) merge bitvectors cntL and
cntL to vector aux

L aux
y
e
e
p
$
y
a
s
s

2

1

(c) remove “run-heads” from aux
and trim symbols beside of runs

Figure 4 Exemplary aux-vector generation from a tunneled BWT. “Run-heads” (first symbols of
runs) are marked using arrows, runs with height greater 1 by right square brackets.

We will describe the idea of the approach only; see the full version of this paper for an
algorithm. The idea is to use runs as a start point, and use the LF-mapping to proceed
over the BWT. Every time a run is reached which allows to width-extend the current block,
the current block is pushed on a stack and the run is used as new block. Then, as soon as
the current block cannot be extended (because the current run is not high enough), blocks
are popped from the stack until an extendable block is reached. During the removal of
blocks, the necessary conditions for width-maximal run-blocks can be checked. Also, to
increase efficiency, a side-effect similar to pointer jumping is used, which allows to skip
already processed blocks.

5.2 Tunneled BWT Encoding

The encoding of a tunneled BWT requires to encode three components: the remaining BWT
L, as well as the bitvectors cntL and cntF. To reduce a component, we merge cntL and
cntF to a new vector named aux by setting aux[i] := 2 · cntL[i] + cntF[i]. The vector aux
now contains 3 distinct symbols4, and is further shortened by removing all positions where
runs in L start (all of this positions must be unmarked as the topmost row of a run-block
stays unchanged) and by trimming the (identical) remaining symbols beside of each run of
height greater than one to just one symbol (reconstruction is possible as only run-blocks are
tunneled). An example is listed in Figure 4.

As the components L and aux originate from the same source and are quite similar,
we’ll encode both components with the same BWT backend encoder, like, for example,
Move-To-Front-Transformation + run-length-encoding of zeros + entropy encoding. This
not only simplifies the implementation, but also allows to uncouple the block choice from the
used backend encoder: As tunneling leaves the uppermost row of a block intact, the effect of
tunneling can be summarized as shortening runs in L at cost of increasing the number of
runs in aux due to the tunnel-marking symbols. For a good block-choice, it is useful to think
of a tax system: a good choice maximizes the net-benefit, which is given by gross-benefit
(amount of information removed from L) minus the tax (amount of information required to
encode aux). Now, as long as different backend encoders encode runs in a similar fashion,
an optimal block choice for a specific backend encoder will be near-optimal for all the other
backend encoders, as the efficiency of such encoders can be seen as a constant c which does
not affect the maximization of the net-benefit.

4 Positions i containing markings in both cntL[i] and cntF[i] were removed by tunneling.

U. Baier 3:11

Algorithm 2: Greedy block choice
Data: a set RB of width-maximal run-blocks and a function score which for each block returns the

amount of run-characters it removes.
Result: the array BS and a number tbest, whereby BS[1..tbest] contains the blocks of a greedy block choice.

1 let BS be an array of size |RB|
2 tbest ← 0 // number of tunnels allowing best benefit
3 bbest ← 0 // best tunneling net-benefit in bits
4 tc← 0 // number of run-characters removed by tunneling
5 for t← 1 to |BS| do
6 let B ∈ RB be the block with score(B) maximal
7 reduce score(B̃) for all colliding blocks B̃ of B depending on the kind of collision
8 remove collisions between all inner and outer colliding blocks of B // intersecting area gets

tunneled

9 RB ← RB \ {B}
10 BS[t]← B
11 tc← tc + score(B) // update number of removed run-characters from tunneling

12 if gross-benefit− tax > bbest then // update block choice; see equations (1) and (2)
13 tbest ← t
14 bbest ← gross-benefit− tax

As most state-of-the-art compressors use run-length-encoding, we estimate net-benefit
and tax in terms of run-length-encoding. Consequently, the net-benefit between a normal
BWT L and a tunneled BWT L̃ is given by

gross-benefit := |rlencode(L)| ·H(rlencode(L))− |rlencode(L̃)| ·H(rlencode(L̃))

≈ n log
(

n

n− tc

)
− rc log

(
rc

rc− tc

)
+ tc

(
1 + log

(
n− tc

rc− tc

)) (1)

where n := |rlencode(L)| is the number of characters of the run-length-encoding of L, H is
the entropy function from Definition 6, rc is the number of run-characters in rlencode(L)
(all characters except for the run-heads) and tc is the number of removed run-characters in
rlencode(L̃). The tax is given by

tax := |rlencode(aux)| ·H(rlencode(aux))

≈ 2 · t · (1 + log(h2 − 1)) + 2 · t · h · log
(

1 + 2
h− 1

) (2)

where t is the number of tunneled Blocks and h := log
(

rh>1−2·t
2·t

)
with rh>1 being the

number of runs with height greater than 1.

5.3 Block Choice
The estimators from the last section give a clear indication that tunneling will not always
improve compression–picking too small blocks may result in a tax whose size overcomes the
gross-benefit. It is clear however that bigger blocks are preferable to smaller ones–thus a
greedy approach will produce best results. Algorithm 2 sketches our strategy for choosing
blocks, also considering that the gross-benefit and the tax do not grow in a likewise manner.

The collision handling of Algorithm 2 can be done using a collision graph, that is, a graph
connecting colliding blocks whose intersecting area is not overlaid by a third block. Line 7
then can be implemented using a graph traversal together with block information, while Line
8 can be performed by removing the node corresponding to block B from the graph.

Implementing block scores is a bit complicated, as run-length-encoding is used. Initially,
the score of a Block B gets to the sum of the run-lengths of all runs B points in minus the
sum of all reduced run-lengths, i.e. the sum of log(h)− log(h− hB) for each run of height

CPM 2018

3:12 On Undetected Redundancy in the Burrows-Wheeler Transform

h where B points in. Score updates of outer collisions are approximated by multiplying
the score with the ratio by which the block width was shortened. Score updates of inner
collisions can be done by subtracting the width-difference-ratio-multiplied score of B.5

By using a heap, Algorithm 2 can be shown to run in O(n log |RB|) time. Unfortunately,
we have to mention that the greedy strategy is not always optimal: think of three blocks
whose colliding picture forms a shape like a big “H”. If the middle block has a score bigger
than that of the outer blocks (but close enough), for t = 1, the middle block is the optimal
choice, while for t = 2 the outer blocks would be preferred, what is not covered by the
algorithm. These situations however should not occur often in practice, so we neglected
them.

6 Experimental Results

This section contains experimental results showing the effectiveness of our new technique.
We applied our technique as described in the last section to three different BWT compressors:

bwz : bzip2 [30] without memory limitations.
bcm : one of the strongest open-source-available BWT compressors [25, 19].
wt : BWT encoded in a huffman-shaped wavelet tree6 using hybrid bitvectors [11, 17]
(good compression for miscellaneous data [17]) provided by the sdsl-lite library [13].

Our test data comes from three different text corpora, namely 12 medium-sized files from
the Silesia Corpus [4] (6 – 49 MB), 6 bigger files from the Pizza & Chili Corpus [9] (54 –
1130 MB), as well as 9 repetitive files from the Repetitive Corpus [10] (45 – 446 MB). The
full benchmark and all results are available at [2].

Beside of compression improvements, it is important to see if tunneling exploits its full
potential not only in theory (as shown in the heuristics and approximations from last section)
but also in practice. Therefore, we measured how well the theoretical model fits to the
respective compressor by comparing the gross-net benefit ratios of model and compressor: as
the efficiency of a compressor can be seen as some constant which is canceled when dividing
two benefits from the same source, the gross-net benefit ratio should mostly be independent
from the efficiency of a compressor, making it nicely comparable. Figure 5 shows compression
improvements and the model fit as min-max distance min{x,y}

max{x,y} of both ratios.
As the box plots show, the compression improvements of tunneling are significant and the

theoretical model fits quite well. However, for half of the test files the encoding size decrease
lies below 4 − 11%–not very surprisingly, this half typically consists of small to medium-
sized files where the normal BWT-based compressors work very good already. Compression
improvements for the upper half of the data however are significant and range from 4− 11%
encoding size decrease up to 33−57% decrease. Also, it seems that the better the compressor
works (in terms of compression rate), the better the model fits.

The outliers in the model fit can be ignored for two reasons: first, as the figure shows,
tunneling never worsens compression by a serious amount; second, the potential of tunneling
in all those files (fraction of net-benefit of theoretical model and the size of the bwz encoding)

5 Let Bin be the inner colliding block of B. We set score(Bin) = score(Bin)− wBin
wB
· score(B), which is

motivated by the fact that log(h− hB)− log(h− hB − (hB − hBin)) = log(h− hB)− log(h− hBin) =
(log(h)− log(h− hBin))− (log(h)− log(h− hB)) for a single run in which Bin and B collide.

6 Note that this data structure is not capable of text indexing. By permuting the bits in cntL ac-
cording to the permutation induced by stably sorting column L, the generalized LF-mapping can be
computed using selectcntF(1, rankcntL(1, CL[L[i]] + rankL(L[i], i))), allowing backward steps using wavelet
trees. Unfortunately, more technical problems must be solved, outreaching the scope of this paper.

U. Baier 3:13

0% 10% 20% 30% 40% 50% 60%

wt

bcm

bwz

16.48

11.26

8.4

Encoding Size Decrease

0% 50% 100%

Model Fit

Figure 5 Compression improvements and model fit of tunneling displayed as Tukey boxplots.
The boxplots contain the whole tested data set. Boxes consist of lower quantile, median, upper
quartile and average (red dashed line), whisker range is given by 1.5 times the interquartile range,
outliers are shown as diamond markers. Compression improvements use the untunneled versions as
baseline, model fits are given by the min-max distance of the gross-net benefit ratios of theoretical
model and compressor.

Table 1 Compression comparison of different compressors on a selection of the used test data.
All values are shown in bits per symbol, that is, original file size times bits per symbol gives the
compression size. Best compression results are marked bold.

Compressor Silesia Corpus Pizza & Chili Corpus Repetitive Corpus

n
ci

(3
2

M
B

)

sa
m

b
a

(2
1

M
B

)

w
eb

st
er

(4
0

M
B

)

p
ro

te
in

s
(1

13
0

M
B

)

d
n

a
(3

86
M

B
)

en
gl

is
h

(1
02

4
M

B
)

co
re

u
ti

ls
(1

96
M

B
)

p
ar

a
(4

10
M

B
)

w
or

ld
-

le
ad

er
s

(4
5

M
B

)

bwz 0.34 1.81 1.48 2.29 1.83 1.84 0.23 0.31 0.12
bwz -tunneled 0.33 1.75 1.48 2.00 1.81 1.66 0.17 0.21 0.11
bcm 0.29 1.49 1.24 2.33 1.72 1.56 0.23 0.32 0.13
bcm -tunneled 0.28 1.42 1.24 1.95 1.70 1.34 0.16 0.21 0.11
wt 0.61 2.70 2.08 3.97 2.05 2.45 0.69 0.49 0.40
wt -tunneled 0.54 2.45 2.07 2.72 2.03 1.99 0.38 0.42 0.29
xz -9e -M 100% [32] 0.35 1.38 1.61 2.22 1.78 1.93 0.14 0.11 0.09
zpaq isc [20] 0.36 1.20 1.21 2.61 1.86 1.64 0.62 1.85 0.09

is below 0.3%. The model fit itself however shouldn’t be overestimated, as we tested tunneling
with different models, always getting a quite similar compression result.

Table 1 shows a comparison of our technique with compressors following different
paradigms: xz [32] is a very effective Lempel-Ziv compressor similar to 7zip [27], while
zpaq [20] uses context-mixing. As the table shows, the tunneled version of bcm performs
best among all shown BWT compressors, xz remains the best choice for repetitive data.
Beside of pure compression, we want to note that tunneling has its price: the time and space
requirements for encoding roughly double, while decoding time and space requirements are
reduced by a small amount.

7 Conclusion

As we have seen in the last Section, compression gains due to our technique are a significant
improvement to BWT-based compression. The technique however is in early stage of
development, and therefore has some outstanding problems like making a good and economic
block choice. A solution might be to use heuristics for similar problems in the LCP array

CPM 2018

3:14 On Undetected Redundancy in the Burrows-Wheeler Transform

[5, 23], our presented approach is a nice baseline but too complicated and resource-expensive.
It also would be nice to get rid of the restriction of run-based blocks; Section 5.1 indicates
that this is possible, but collisions complicate the situation. In our opinion, the “big deal”
will be to build a compressed FM-index [8] with full functionality; the footnote on page 12
clearly indicates that this should be possible, although correct pattern counting might be a
bit tricky. Thinking of a text index with half of the size of the currently best implementations
seems utopian, but this paper shows that this goal should be achievable, giving a lot of
motivation for further research on the topic.

References
1 Jürgen Abel. Post BWT Stages of the Burrows-Wheeler Compression Algorithm. Software

– Practice and Experiences, 40(9):751–777, 2010.
2 Uwe Baier. Tunneled BWT Implementation and Benchmark. https://github.com/

waYne1337/tbwt. last visited January 2018.
3 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation, 1994.
4 Sebastian Deorowicz. Silesia Corpus. http://sun.aei.polsl.pl/~sdeor/index.php?

page=silesia. last visited January 2018.
5 Patrick Dinklage, Johannes Fischer, Dominik Köppl, Marvin Löbel, and Kunihiko

Sadakane. Compression with the tudocomp Framework. In 16th International Symposium
on Experimental Algorithms, SEA ’17, pages 13:1–13:22, 2017.

6 Peter M. Fenwick. Burrows-Wheeler compression: Principles and reflections. Theoretical
Computer Science, 387(3):200–219, 2007.

7 Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The Engineering of a Com-
pression Boosting Library: Theory vs Practice in BWT Compression. In Algorithms – ESA
2006: 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006. Pro-
ceedings, ESA ’06, pages 756–767, 2006.

8 Paolo Ferragina and Giovanni Manzini. Indexing Compressed Text. Journal of the ACM,
52(4):552–581, 2005.

9 Paolo Ferragina and Gonzalo Navarro. Pizza & Chili Corpus. http://pizzachili.dcc.
uchile.cl/texts.html. last visited January 2018.

10 Paolo Ferragina and Gonzalo Navarro. Repetitive Corpus. http://pizzachili.dcc.
uchile.cl/repcorpus.html. last visited January 2018.

11 Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. When Indexing
Equals Compression: Experiments with Compressing Suffix Arrays and Applications. ACM
Transactions on Algorithms, 2(4):611–639, 2006.

12 Jean-Loup Gailly and Mark Adler. gzip File Compressor. http://www.gzip.org/. last
visited January 2018.

13 Simon Gog. sdsl-lite Library. https://github.com/simongog/sdsl-lite. last visited
January 2018.

14 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order Entropy-compressed
Text Indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’03, pages 841–850, 2003.

15 David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

16 Juha Kärkkainen, Dominik Kempa, and Simon J. Puglisi. Slashing the Time for BWT
Inversion. In Proceedings of the 2012 Data Compression Conference, DCC ’12, pages 99–
108, 2012.

https://github.com/waYne1337/tbwt
https://github.com/waYne1337/tbwt
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://www.gzip.org/
https://github.com/simongog/sdsl-lite

U. Baier 3:15

17 Juha Kärkkainen, Dominik Kempa, and Simon J. Puglisi. Hybrid Compression of Bitvectors
for the FM-Index. In Proceedings of the 2014 Data Compression Conference, DCC ’14,
pages 302–311, 2014.

18 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-Time
Longest-Common-Prefix Computation in Suffix Arrays and Its Applications. In Proceedings
of the 12th Annual Conference on Combinatorial Pattern Matching, CPM ’01, pages 181–
192, 2001.

19 Matt Mahoney. Large Text Compression Benchmark. http://mattmahoney.net/dc/text.
html. last visited January 2018.

20 Matt Mahoney. zpaq File Compressor. http://mattmahoney.net/dc/zpaq.html. last
visited January 2018.

21 Veli Mäkinen. Compact Suffix Array. In Proceedings of the 11th Annual Conference on
Combinatorial Pattern Matching, CPM ’00, pages 305–319, 2000.

22 Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 5:935–948, 1993.

23 Markus Mauer, Timo Beller, and Enno Ohlebusch. A Lempel-Ziv-style Compression
Method for Repetitive Texts. In Proceedings of the Prague Stringology Conference 2017,
PSC ’17, pages 96–107, 2017.

24 Alistair Moffat and R. Yugo Kartono Isal. Word-based Text Compression Using the
Burrows-Wheeler Transform. Information Processing and Management, 41:1175–1192,
2005.

25 Ilya Muravyov. bcm File Compressor. https://github.com/encode84/bcm. last visited
January 2018.

26 Gonzalo Navarro and Veli Mäkinen. Compressed Full-text Indexes. ACM Computing
Surveys, 39(1), 2007.

27 Igor Pavlov. 7zip File Compressor. http://www.7-zip.org/. last visited January 2018.
28 Jorma J. Rissanen and Glen G. Langdon. Arithmetic coding. IBM Journal of Research

and Development, 23:149–162, 1979.
29 B. Ya Ryabko. Data compression by means of a “book stack”. Problems of Information

Transmission, 16:265–269, 1980.
30 Julian Seward. bzip2 File Compressor. http://bzip.org/. last visited January 2018.
31 Claude E. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, 1948.
32 Tukaani. xz File Compressor. https://tukaani.org/xz/. last visited January 2018.
33 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23:337–343, 1977.

CPM 2018

http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/zpaq.html
https://github.com/encode84/bcm
http://www.7-zip.org/
http://bzip.org/
https://tukaani.org/xz/

Quasi-Periodicity Under Mismatch Errors

Amihood Amir
Bar-Ilan University and Johns Hopkins University
Ramat-Gan, Israel
amir@cs.biu.ac.il

Avivit Levy
Shenkar College
Ramat-Gan, Israel
avivitlevy@shenkar.ac.il

Ely Porat
Bar-Ilan University
Ramat-Gan, Israel
porately@cs.biu.ac.il

Abstract
Tracing regularities plays a key role in data analysis for various areas of science, including coding
and automata theory, formal language theory, combinatorics, molecular biology and many others.
Part of the scientific process is understanding and explaining these regularities. A common notion
to describe regularity in a string T is a cover or quasi-period, which is a string C for which every
letter of T lies within some occurrence of C. In many applications finding exact repetitions is not
sufficient, due to the presence of errors. In this paper we initiate the study of quasi-periodicity
persistence under mismatch errors, and our goal is to characterize situations where a given quasi-
periodic string remains quasi-periodic even after substitution errors have been introduced to the
string. Our study results in proving necessary conditions as well as a theorem stating sufficient
conditions for quasi-periodicity persistence. As an application, we are able to close the gap in
understanding the complexity of Approximate Cover Problem (ACP) relaxations studied by [5, 4]
and solve an open question.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words, The-
ory of computation → Pattern matching

Keywords and phrases Periodicity, Quasi-Periodicity, Cover, Approximate Cover

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.4

1 Introduction

Tracing regularities plays a key role in data analysis for various areas of science, including
coding and automata theory, formal language theory, combinatorics, molecular biology and
many others. Part of the scientific process is understanding and explaining these regularities.
A typical form of regularity is periodicity, meaning that a “long” string T can be represented
as a concatenation of copies of a “short” string P , possibly ending in a prefix of P . Periodicity
has been extensively studied in Computer Science over the years (see [26]).

For many phenomena the definition of periodicity is too restrictive and it is necessary to
study wider classes of repetitive patterns. One common such notion is that of a cover or a
quasi-period, defined as follows.

© Amihood Amir, Avivit Levy, and Ely Porat;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir@cs.biu.ac.il
mailto:avivitlevy@shenkar.ac.il
mailto:porately@cs.biu.ac.il
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Quasi-Periodicity Under Mismatch Errors

I Definition 1 (Cover). A length m substring C of a string T of length n, is said to be a
cover of T , if n > m and every letter of T lies within some occurrence of C.

Note that by the definition of cover, the string C is both a prefix and a suffix of the string
T . For example, consider the string T = abaababaaba. Clearly, T is “almost” periodic with
period aba, however, as it is not completely periodic, the algorithms that exploit repetitions
cannot be applied to it. On the other hand, the string C = aba is a cover of T , which
allows applying to T cover-based algorithms. In this paper we study quasi-periodicity under
mismatch errors.

Quasi-periodicity was introduced by Ehrenfeucht in 1990 (according to [8]). The earliest
paper in which it was studied is by Apostolico, Farach and Iliopoulos [9], which defined the
quasi-period of a string to be the length of its shortest cover and presented an algorithm
for computing the quasi-period of a given string in O(n) time and space. The new notion
attracted immediately several groups of researchers (e.g. [10], [27, 28], [25], [11]). An overview
on the first decade of the research on covers can be found in the surveys [8, 18, 31].

While covers are a significant generalization of the notion of periods as formalizing
regularities in strings, they are still restrictive, in the sense that it remains unlikely that
an arbitrary string has a cover shorter than the word itself. One direction to deal with
this is to study different variants of quasi-periodicity. Variants that were introduces include
seeds [20], maximal quasi-periodic substring [7], the notion of k-covers [19], λ-cover [32],
enhanced covers [16], partial cover [21]. Since the notion of a seed is necessary to our study,
we give its formal definition here.

I Definition 2 (Seed). A length m substring C of a string T of length n, is said to be a seed
of T , if n > m and there exists a superstring T ′ of T such that C is a cover of T ′.

Note that the definition of a seed allows the first and last occurrence of the seed C in
T to be incomplete. Other recently explored directions include the inverse problem for
cover arrays [14], extensions to strings in which not all letters are uniquely defined, such
as indeterminate strings [6] or weighted sequences [33]. Some of the related problems are
NP-hard (see e.g., [6, 12, 21]).

Another direction to deal with the restrictiveness of quasi-periodicity definition is to
consider the presence of errors. This direction was motivated by some applications, such
as molecular biology and computer-assisted music analysis, were finding exact repetitions
is not sufficient. In these applications, a more appropriate notion is that of approximate
repetitions, where errors are allowed (see, e.g., [13, 15]). This notion was first studied in 1993
by Landau and Schmidt [23, 24] who concentrated on approximate tandem repeats. Note
that, the natural definition of an approximate repetition is not clear. One possible definition
is that the distance between any two adjacent repeats is small. Another possibility is that all
repeats lie at a small distance from a single “original”. Such a definition of approximate seeds
is studied in [12, 29, 17]. Indeed, all these definitions along with other ones were proposed
and studied (see [1, 22, 30]). Yet another possibility is that all repeats must be equal, but
we allow a fixed total number of mismatches. The possibility presented in [1] is a global one,
assuming that an original unknown string is a sequence of repeats without errors, but the
process of sequence creation or transmission incurs errors to the sequence of repeats, and,
thus, the examined input string is not a sequence of repeats. [5] extend this approach to
quasi-periodicity and study the approximate cover problem (ACP), in which the input text is
a sequence of some cover repetitions with possible mismatch errors, and a string that covers
the text with the minimum number of errors is sought. We continue this line of research by
studying quasi-periodic strings that have been introduced to substitution errors.

A. Amir, A. Levy, and E. Porat 4:3

Our Results. In this paper we initiate the study of quasi-periodicity persistence under
mismatch errors, and our goal is to characterize situations where a given quasi-periodic
string remains quasi-periodic even after substitution errors have been introduced to the
string. An implicit study of this question was introduced by [3], while proving that two
strings with Hamming distance 1 cannot be both quasi-periodic. In our terminology this
means that quasi-periodicity does not persist under a single substitution error. Broadening
the study to situations where more than one substitution error may happen necessitates a
deep understanding of the structure of quasi-periodic strings as well as their behaviour under
mismatch errors. Our study results in proving necessary conditions as well as a theorem
stating sufficient conditions for quasi-periodicity persistence. As an application, we are
able to close the gap in understanding the complexity of ACP relaxations studied by [5, 4]
and solve an open question [5] regarding the complexity of the full-tiling relaxation of the ACP.

Paper Contributions. The main contributions of this paper are:
Giving a first explicit study of quasi-periodicity persistence, while broadening the know-
ledge on quasi-periodic strings under mismatch errors.
Proving that the full-tiling relaxation of the ACP is polynomial-time computable, which
was beyond the reach of current research prior to this paper. This result closes the gap
in understanding the complexity hierarchy of ACP relaxations, where the ACP itself was
proven to be NP-hard [5].
Proving properties of covers, seeds and quasi-periodic strings under mismatch errors that
can serve future research of approximate regularities.

The paper is organized as follows. In Section 2, we give formal definitions and basic
lemmas. Section 3 is devoted to the study of quasi-periodicity persistence under mismatch
errors. In Section 4, we give a description of the full-tiling relaxation of the ACP and prove
it is polynomial-time computable by applying the results from Section 3.

2 Preliminaries

In this section we give the needed formal definitions and prove some basic combinatorial
properties of covers and seeds.

I Definition 3 (Tiling). Let T be a string over alphabet Σ such that the string C over
alphabet Σ is a cover of T . Then, the sorted list of indices representing the start positions of
occurrences of the cover C in the text T is called the tiling of C in T .

In this paper we have a text T which may contain substitution errors and, therefore, is
not coverable. However, we would like to refer to a retained tiling of an unknown string C
in T although C does not cover T because of mismatch positions. The following definition
makes a distinction between a list of indices that may be assumed to be a tiling of the text
before mismatch errors occurred and a list of indices that cannot be such a tiling.

I Definition 4 (A Valid Tiling). Let T be an n-length string over alphabet Σ and let L be
a sorted list of indices L ⊂ {1, ..., n}. Let m = n+ 1− Llast, where Llast is the last index
in L. Then, L is called a valid tiling of T , if i1 = 1 and for every ik, ik+1 ∈ L, it holds that
ik+1 − ik ≤ m.

I Notation 5. Let C be an m length string over alphabet Σ. Denote by S(C) a string of
length n, n > m, such that C is a cover of S(C).

CPM 2018

4:4 Quasi-Periodicity Under Mismatch Errors

Note that S(C) is not uniquely defined even for a fixed n > m, since different valid tilings
of the m-length string C may generate a different n-length string S(C). A unique version is
obtained if a unique appropriate valid tiling L is also given.

I Notation 6. Let T be an n-length string over alphabet Σ and let L be a valid tiling of
T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. For any m-length
string C ′, let SL(C ′) be the n-length string obtained using C ′ as a cover and L as the tiling
as follows: SL(C ′) begins with a copy of C ′ and for each index i in L a new copy of C ′ is
concatenated starting from index i of SL(C ′) (maybe running over a suffix of the last copy of
C ′).

I Definition 7. Let T be a string of length n over alphabet Σ. Let H be the Hamming
distance. The distance of T from being covered is:

dist = min
C∈Σ∗,|C|<n,S(C)∈Σn

H(S(C), T).

We will also refer to dist as the number of errors in T .

I Definition 8. Let T be a string of length n over alphabet Σ. An m-long string C over Σ,
m ∈ N, m < n, is called an m-length approximate cover of T , if for every string C ′ of length
m over Σ, minS(C′)∈Σn H(S(C ′), T) ≥ minS(C)∈Σn H(S(C), T), where H is the Hamming
distance of the given strings.
We refer to minS(C)∈Σn H(S(C), T) as the number of errors of an m-length approximate
cover of T .

I Definition 9 (Approximate Cover). Let T be a string of length n over alphabet Σ. A string
C over alphabet Σ is called an approximate cover of T if:
1. C is an m-length approximate cover of T for some m ∈ N, m < n, for which

min
S(C)∈Σn

H(S(C), T) = dist.

2. for every m′-length approximate cover of T , C ′, s.t. minS(C′)∈Σn H(S(C ′), T) = dist, it
holds that: m′ ≥ m.

Primitivity. By definition, an approximate cover C should be primitive, i.e., it cannot be
covered by a string other than itself (otherwise, T has a cover with a smaller length). Note
that a periodic string can be covered by a smaller string (not necessarily the period), and
therefore, is not primitive.

I Definition 10. The Approximate Cover Problem (ACP) is the following:
INPUT: String T of length n over alphabet Σ.
OUTPUT: An approximate cover of T , C, and the number of errors in T .

2.1 Properties of Covers and Seeds
Our analysis of quasi-periodicity persistence under mismatch errors in Section 3 requires a
preliminary study of properties of covers and seeds. We use the following easy observations:

I Observation 11. If a string W is coverable but non-periodic then the shortest cover c of
W satisfies |c| < |W |/2.

I Observation 12. Coverability is transitive, i.e., a cover of a cover of W is a cover of W .

A. Amir, A. Levy, and E. Porat 4:5

I Observation 13. If a string c is a cover of a string W then c is a seed of every factor of
W of length at least |c|.

I Observation 14. If a string s is a seed of a string W then s is a seed of every factor of
W of length at least |s|.

I Lemma 15. A periodic string W is coverable, and one of the following must hold:
1. Its shortest cover is of length more than |W |/2. In this case, W = p2p′, where p′ is a

non-empty prefix of p.
2. Its shortest cover c is of length at most |W |/2 and |c| 6= |p|, where p is the period of W .
3. Its shortest cover c is of length at most |W |/2 and |c| = |p|, where p is the period of W .

In this case, c = p and W = pi.

Example: Consider the following periodic strings:
The stringW = abaabaa is periodic with period p = aba. It is coverable by c = abaa = pp′,
where |c| > |W |/2. Note that W = p2p′, where p′ = a is a prefix of p.
The string W = abaababaababa is periodic with period p = abaab. It is coverable by
the string pp′ = abaababa, however, its shortest cover is c = aba, where |c| < |W |/2 and
|c| < |p|. Note that c does not cover p.
The string W = abababa is periodic with period p = ab. It is coverable by c = pp′ = aba,
where |c| < |W |/2, and |c| > |p|.
The stringW = ababaababa is periodic with period p = ababa. It is coverable by its period
p since W = p2, however, its shortest cover is c = aba, where |c| < |W |/2 and |c| < |p|.
Note that c covers p. We can make a longer string with this period W1 = ababaababaaba

which is still periodic with p and covered by c. However, if we take W2 = ababaababaa

which is again still periodic with p but no longer coverable by aba (which remains its
seed). The shortest cover of W2 is c2 = ababaa.

The next properties require an additional notation:

I Notation 16. Let w be a string. Denote by wj the string w with the j-th symbol substituted
by some other symbol, i.e., |w(j)| = |w|, for all i = 1, . . . , |w|, i 6= j, wi = w

(j)
i , and wj 6= w

(j)
j .

In this case we also write w =j w
(j).

I Theorem 17. Let S be a length n periodic string with period P . Then for any j ∈ {1, . . . , n},
S(j) is not periodic.

Theorem 17 can be easily proven using a lemma proved in [2]. A similar result for covers is
also known [3]:

I Theorem 18. [Amir et al. [3]] For every string W of length n and index j ∈ {1, . . . , n}, at
most one of the strings W , W (j) is coverable.

We will also need the following auxiliary lemma from [3].

I Lemma 19. [Amir et al. [3]] Let w be a string and j be an index. Then w is not a seed of
w(j).

I Corollary 20. [Amir et al. [3]] Let U and V be two coverable strings of the same length
such that U 6= V . Then, H(U, V) > 1.

We also make use of the following lemma.

I Lemma 21. Let W be a coverable string and let j be an index. Then no prefix (suffix) of
W (j) of length at most |W |/2 is a seed of W (j).

CPM 2018

4:6 Quasi-Periodicity Under Mismatch Errors

3 Quasi-Periodicity Persistence Under Mismatch Errors

In this section we analyze the extent to which quasi-periodicity may persist under mismatch
errors, and characterize the structure of strings, the number and positions of mismatch errors,
where such a persistence of quasi-periodicity is assured. First note that Corollary 20 means
that quasi-periodicity is not persistent under a single mismatch error, no matter its position.
Our analysis effort is, therefore, devoted to study the case where more mismatch errors occur.
In such situations the number of errors as well as their exact positions determine wether the
quasi-periodicity persists or not, as the following example shows.

Example: Consider the quasi-periodic (specifically, also periodic) string: S = abbbbabbbb.
Two mismatch errors in positions 2 and 3 give the primitive string S′ = aaabbabbbb. However,
two mismatch errors in positions 2 and 6 give the (quasi-)periodic string S′′ = aabbbaabbb.

We, therefore, need to refer to the structure of a quasi-periodic string, in order to analyze
persistence of quasi-periodicity. Since the structure of the special case of periodic strings
is known, giving sufficient conditions for periodicity persistence is easy, as the following
observation states.

I Observation 22. Let S be a periodic string with period length p. Let q = a · p, a ∈ N, such
that bnq c ≥ 2, and let S′ be the string obtained from S by k = bnq c errors of substitution to a
character σ ∈ Σ where the difference between each subsequent error positions is q, then S′ is
periodic.

We also want to give sufficient conditions for quasi-periodicity persistence, which is much
more complicated to understand. Our first goal is to give a formal characterization of a
structure of quasi-periodic strings. We begin by characterizing the structure of any string
that may serve as a cover of another string. We call this string of variables the free variable
scheme of the cover. We first give a definition of this term.

I Definition 23. Let Γ be an alphabet, called the free variables alphabet. A string in Γ∗ is
a free variable scheme. A free variable scheme α over alphabet Σ defines a subset Sα of Σ∗,
where s is in Sα if there is a function Φ : Σ→ Γ such that Φ(s) = α.

I Lemma 24. The free variable scheme representing any primitive cover is of the form αβα

where: β is a non empty string of distinct variables that do not occur in α, α is defined
recursively, as follows:
1. α is empty, or
2. α is of the form α′β′α′, where β′ is a, possibly empty, string of variables that do not

occur in α′, and α′ is recursively defined similarly as α.

Proof. There are two cases to consider:
1. If there are no overlaps of the cover in the string, then the cover is actually a period

(having only complete appearances in the string it covers). In this case, it has the form
αβα, where α is empty and β is a non empty string of distinct variables that do not
occur in α.

2. If there is at least one overlap of the cover in the string it covers, then the cover cannot
be a period. Such an overlap forces the structure of the cover to begin and end with the
same string, represented by the sequence of variables α. It is, therefore, of the form αβα

where β is a string of distinct variables that do not occur in α. The fact that the cover is
primitive, means that β is non empty. Otherwise, it is periodic, therefore, by Lemma 15

A. Amir, A. Levy, and E. Porat 4:7

it is coverable, contradiction to its primitivity. Now, if all the overlaps of the cover are
of the same length as α, then the recursion ends and we get α = β′ and α′ is empty.
Otherwise, any overlap of different length forces a recursive structure as follows. Assume
without loss of generality that the longer overlap is of length as α, then the existence
of a smaller overlap means that α begins and ends with the same string, represented by
the sequence of variables α′. These occurrences of α′ in α may be separated by another
string, represented by the sequence of variables β′. J

Example: The recursive structure of the following free variable scheme

WWYWWZWWYWWABCWWYWWZWWYWW

is:
level 1: α = WWYWWZWWYWW and β = ABC

level 2: α = WWYWW and β = Z

level 3: α = WW and β = Y

level 4: α = W and β is the empty string
level 5: α is the empty string and β = W .

Lemma 24 serves us in two directions. On the one hand, it is used to characterize the
structure of any primitive cover, and on the other hand, it serves to characterize the structure
of any quasi-periodic string with more than two occurrences of the cover. Note that, by
Lemma 15, any quasi-periodic string with only two occurrences of the cover is periodic, for
which Observation 22 applies. We, therefore, refer only to quasi-periodic strings having more
than two occurrences of their cover. We call such strings non-degenerate quasi-periodic. The
second direction is applied as formalized by Observation 25.

I Observation 25. The free variable scheme applies to any non-degenerate quasi-periodic
string S by defining C as follows. Take the longest prefix of S with length q0 smaller than
|S|/2, which equals the suffix of S with the same length. Define α to have length q0. The
length of β will be |S| − 2 · q0. Define α0 = α, β0 = β. The definition of C continues
recursively as long as Sαi

has a prefix of length at most |Sαi
|/2 which equals its suffix of

the same length. Let Sαi+1 be the prefix, and define: αi = αi+1βi+1αi+1. Otherwise, the
recursion stops with αi = βi+1. For all i, βi is defined to be a sequence of distinct variables
that do not occur elsewhere.

Example: Consider the string S = abaababaabaababaababa, which is quasi-periodic with
cover aba. Applying Observation 25 to S gives:
level 1: Sα0 = abaababa, |α0| = 8 and |β0| = 5
level 2: Sα1 = aba, |α1| = 3 and |β1| = 2
level 3: Sα2 = a, |α2| = 1 and |β2| = 1.
The free variable scheme we get is: C = Y1Y2Y1Y3Y4Y1Y2Y1Y5Y6Y7Y8Y9Y1Y2Y1Y3Y4Y1Y2Y1.
The assignment: Y1 = a, Y2 = b, Y3 = a, Y4 = b, Y5 = a, Y6 = b, Y7 = a, Y8 = a, Y9 = b,
to the variables of C gives the string S. Note that C has a structure of a primitive cover,
however, the above assignment results in a non-primitive string.

Observation 25 enables us to refer to any non-degenerate quasi-periodic string as an
assignment to its free variable scheme. Our analysis takes into account the positions of the
mismatch errors inserted to this string by referring to them as changing the assignment of a
set of variables in its free variable scheme. In order to continue with our analysis, we need
the following notation.

CPM 2018

4:8 Quasi-Periodicity Under Mismatch Errors

I Notation 26. Let C be a given free variable scheme. Denote by AC the string created by
an assignment A of alphabet symbols to the variables of C. Denote by AC(Xi1 , ..., Xij) the
string created by assigning the variables Xi1 ,Xij of C an alphabet symbol that is different
from the one assigned by A, and all other variables get assigned the same alphabet symbol as
in the assignment A.

We begin by showing that, assuming we already have an assignment A giving a quasi-
periodic string AC , then changing the assignment of any variable that appears once in the
α or β parts of the free variable scheme C results in a primitive string.

I Lemma 27. Let C be a given free variable scheme, and let Y be a variable that appears only
once in the α or β parts of C. Assume that AC is non-primitive, then AC(Y) is primitive.

We can now proceed with checking the case of variables that appear more than once
in α. Changing the assignment of such a variable may in some cases result in a primit-
ive string, but in other cases result in another non-primitive string, as the next example shows.

Example: Consider C = XY V XY ZXY V XY , where α = XY V XY and β = Z. Note
that both X and Y appear twice in α. Now the string AC = aaaaaaaaaaa is non-primitive,
however, both AC(X) = baabaabaaba and AC(Y) = abaabaabaab are also non-primitive with
covers baaba and abaab, respectively. Nonetheless, changing the assignment of both X and
Y also yields a non-primitive string AC(X,Y) = bbabbabbabb with a cover bbabb.

Lemma 30 characterizes the case of a variable Y for which AC(Y) is also non-primitive.
We need Definition 28 and Lemma 29 for the statement and proof of Lemma 30.

I Definition 28 (Superimposed Tiling). Let L1 and L2 be valid tilings over length n. Then,
L1 is said to be superimposed on L2, if for every index r in L2, let s be the greatest index in
L1 satisfying s ≤ r, then r +m2 ≤ s+m1, where m1, m2 are the lengths of the covers in L1
and L2, respectively (m = n− Llast, where Llast is the last index in a given tiling L).

I Lemma 29. Let AC = AαSAα and AC(Y) = Aα(Y)SAα(Y), where Aα is a sequence of
at least 2 appearances of W and Aα(Y) is sequence of the same number of appearances of
W (j), then only one of the strings AC , AC(Y) can be non-primitive and the other must be
primitive.

I Lemma 30 (Quasi-Periodicity Persistence Necessary Condition). If there exists a variable Y
in C such that both AC and AC(Y) are non-primitive, then:
1. Y appears 2i times in C, where i ≥ 2.
2. If Y appears 2i times in C for some i ≥ 2, then C = αiβiαi, and for each 1 < ` ≤ i,

α` = α`−1β`−1α`−1, where Y appears once in α1.
3. There exists an `, 1 ≤ ` < i such that β` is non-empty.
4. Let Lc and Lc′ be the tiling of the cover c in AC and c′ in AC(Y), respectively. Then, if
|c| ≤ |c′| then Lc′ is superimposed on Lc, else, Lc is superimposed on Lc′ .

Proof. First, by Lemma 27, Y must appear at least twice in α (and therefore, exactly twice
as that in C). Thus, by the recursive structure of C (Lemma 24), Y appears a power of 2
times in α and, therefore, a power of two times in C. Also, by Lemma 24, this recursive
structure is of the form C = αiβiαi, and for each 1 < ` ≤ i, α` = α`−1β`−1α`−1, where
Y appears once in α1. Denote by W the string Aα1 and by S` the string Aβ`

, for all `.
Note that since Y only appears once in α1 and doesn’t appear elsewhere, we have that

A. Amir, A. Levy, and E. Porat 4:9

Aβ`
(Y) = Aβ`

= S`, for all `, and Aα1(Y) = W (j) for the index j that indicates the position
of Y in α1.

We now prove that there exists an `, 1 ≤ ` < i such that β` is non-empty. Assume to the
contrary that only Si is nonempty (because βi must be nonempty by the definition of C),
then we have that AC = AαiSiAαi and AC(Y) = Aαi(Y)SiAαi(Y), where Aαi is a sequence
of 2i−1 appearances of W and Aαi

(Y) is a sequence of 2i−1 appearances of W (j). Note that
since 2i−1 ≥ 2, then by Lemma 29, only one of the strings AC , AC(Y) can be non-primitive
and the other must be primitive, contradiction. Therefore, there exists an `, 1 ≤ ` < i such
that β` is non-empty.

Since both AC and AC(Y) are non-primitive, they have shortest covers c and c′, re-
spectively. Assume without loss of generality that |c| ≤ |c′|. It remains to show that Lc′ is
superimposed on Lc. Assume to the contrary that this is not the case, and let r be the first
index in Lc, such that for the greatest index s in Lc′ satisfying s ≤ r, we have r+ |c| > s+ |c′|.
First, note that s 6= r, otherwise, we necessarily have: r+ |c| ≤ s+ |c′|, since |c| ≤ |c′|, which
contradicts the assumption. Therefore, s < r.

Let ĉ be the |c′|-length prefix of AC . Since c covers AC then c is both a prefix and a
suffix of GC and a prefix of ĉ. Also, since c′ covers AC(Y), then c′ is both a prefix and a
suffix of AC(Y) and, therefore, ĉ is both a prefix and a suffix of AC . Thus, c is also a suffix
of ĉ. We get that the last complete occurrence of c, before r is at index s+ |c′| − |c|. Now,
any occurrence of c′ in AC(Y) before index r (including r) contradicts the maximality of
s. Also, any occurrence of c′ in index greater than r and at most s + |c′| contradicts the
choice of r as the first index to contradict the assumption due to the occurrence of c in index
s+ |c′| − |c| < r. Therefore, the next occurrence of c′ in AC(Y) is at index s+ |c′|+ 1. Thus,
we have in AC two consecutive occurrences of ĉ, where c is a suffix of the first occurrence
(due to the occurrence of c in index s+ |c′| − |c|) and a prefix of the second occurrence (due
to the fact that c is a prefix of ĉ), and there is an occurrence of c overlapping to suffix of the
first and the prefix of the second (due to the occurrence in in index r). However, this means
that c is periodic, which contradicts the minimality of c by Lemma 15. This concludes the
proof of the lemma. J

The following observations and lemma describe basic properties of the superimposition
relation between tilings and the equation systems that tilings impose. Lemma 34 follows.

I Observation 31. Any tiling L of the string created by an assignment A on the m-length
free variable scheme C imposes an equation system E on the variables of C. Moreover, if L1
is superimposed on L2, then E1 ⊆ E2, where E1 and E2 are the equation systems imposed by
L1 and L2, respectively.

I Observation 32. Assume that the strings AC(Y1) and AC(Y2) are both non-primitive, and
let L1 and L2 be the tilings of the strings AC(Y1) and AC(Y2), respectively. Let E1 and E2
be the equation systems imposed by L1 and L2, respectively. Then, AC(Y1, Y2) imposes the
equation system E = E1 ∩ E2 (which may be empty).

We need the following lemma for the proof of Lemma 34 below.

I Lemma 33. Assume that the strings AC , AC(Y1) and AC(Y2) are non-primitive, and let
L, L1 and L2 be the tilings of the strings AC , AC(Y1) and AC(Y2), respectively. Assume
that both L1 and L2 are superimposed on L. Then, L1 is superimposed on L2 or L2 is
superimposed on L1.

CPM 2018

4:10 Quasi-Periodicity Under Mismatch Errors

I Lemma 34. If there exist variables Y1, . . . Yk, k ≥ 1, in C such that AC , AC(Yi), for
every i, 1 ≤ i ≤ k, are non-primitive, then AC(Y1, . . . , Yk) is also non-primitive. Moreover,
let L and L′ be the tilings of the covers in the strings AC and AC(Y1, . . . , Yk), respectively,
then L is superimposed on L′ or viceversa.

Proof. The proof is by induction on k. The case k = 1 follows trivially. Let Y1, . . . Yk+1,
k ≥ 1, be variables in C such that AC , AC(Yi), for every i, 1 ≤ i ≤ k + 1, are non-primitive.
By induction hypothesis, AC(Y1, . . . , Yk) is also non-primitive. Moreover, let L and L′ be
the tilings of the covers c, c′ in the strings AC and AC(Y1, . . . , Yk), respectively, then L is
superimposed on L′ or viceversa. Also, let L′′ be the tiling of the cover c′′ of the string
AC(Yk+1). By Lemma 30, we have that if |c| ≤ |c′′| then L′′ is superimposed on L, else, L is
superimposed on L′′.

Let Ec, Ec′ and Ec′′ be the equation systems imposed, according to Observation 31, by
the tilings L, L′ and L′′, respectively. There are four cases to consider:
1. If L′ is superimposed on L and L′′ is superimposed on L, then by Lemma 33, either L′ is

superimposed on L′′ or viceversa. Therefore, either Ec′ ⊆ Ec′′ ⊆ Ec or Ec′′ ⊆ Ec′ ⊆ Ec.
Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation system E = Ec′ ∩Ec′′ =
Ec′ or E = Ec′ ∩Ec′′ = Ec′′ . Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover,
we have that L̂ is superimposed on L, where L̂ is the tiling defined by E.

2. If L′ is superimposed on L and L is superimposed on L′′, then Ec′ ⊆ Ec and Ec ⊆ Ec′′ .
Therefore, Ec′ ⊆ Ec′′ . Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation
system E = Ec′ ∩Ec′′ = Ec′ . Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover,
we have that L̂ is superimposed on L, where L̂ is the tiling defined by E.

3. If L is superimposed on L′ and L′′ is superimposed on L, then Ec ⊆ Ec′ and Ec′′ ⊆ Ec.
Therefore, Ec′′ ⊆ Ec′ . Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation
system E = Ec′∩Ec′′ = Ec′′ . Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover,
we have that L̂ is superimposed on L, where L̂ is the tiling defined by E.

4. If L is superimposed on L′ and L is superimposed on L′′, then Ec ⊆ Ec′ and Ec ⊆ Ec′′ .
Thus, by Observation 32, AC(Y1, . . . , Yk+1) imposes the equation system E = Ec′ ∩Ec′′ ⊇
Ec. Consequently, AC(Y1, . . . , Yk+1) is non-primitive. Moreover, we have that L is
superimposed on L̂, where L̂ is the tiling defined by E.

This concludes the proof of the lemma. J

Theorem 35 follows.

I Theorem 35. [Quasi-Periodicity Persistence Theorem]
Let S be a non-degenerate quasi-periodic string. Let C be the free variable scheme of S, A be
the assignment on the variables of C such that AC = S, and

V = {Y ∈ C| Y appears k(Y) = 2i times, i ≥ 2, and AC(Y) is quasi−periodic}.

Let V ′ ⊆ V and let S′ be the string obtained from S by k =
∑
Y ∈V ′ k(Y) substitution errors

in positions where the variables Y ∈ V ′ appear in C by an assignment AC(V ′), then S′ is
quasi-periodic.

4 Application: Closing the Complexity Gap in ACP Relaxations Study

In this section we apply the analysis of quasi-periodicity persistence described in Section 3,
to study the full-tiling relaxation of the approximate cover problem, in which we are given
a retained tiling of the cover before the errors has occurred together with the input string

A. Amir, A. Levy, and E. Porat 4:11

itself. This relaxation was first introduced and studied in [5] and its complexity remained
open. Proving the correctness of this algorithm was beyond the reach of current research
of quasi-periodicity in the presence of mismatch errors prior to this paper. The results of
Section 3 enable proving its correctness, thus showing that the full-tiling relaxation of the
ACP is polynomial time computable, which closes the gap in understanding the complexity
hierarchy of ACP relaxations, presented in [5]. In order to formally define the relaxation we
need Definition 36.

I Definition 36. Let T be an n-length string over alphabet Σ and let L be a valid tiling
of T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. Then, an
L-approximate cover of T is a primitive string C such that for every string C ′ of length
m over Σ, H(SL(C ′), T) ≥ H(SL(C), T), where H is the Hamming distance of the given
strings.
minC∈Σm H(SL(C), T) is the number of errors of an L approximate cover of T .

The formal definition of the full-tiling relaxation of the ACP is given below.

I Definition 37 (The Full-Tiling Relaxation of the ACP). INPUT: String T of length n over
alphabet Σ, and a valid tiling L of T .
OUTPUT: An L-approximate cover C of T .

[5] suggest a polynomial-time algorithm for the full-tiling relaxation of the approximate
cover problem in two parts. The algorithm has a mandatory part, called the Histogram
Greedy Algorithm. This algorithm does the main work in finding an approximate cover
subject to the tiling L. It returns a candidate for the final L approximate cover to be output.
This candidate is legal if it is primitive and illegal, otherwise. In the latter case, a second
part of the algorithm is needed: the Full-Tiling Primitivity Coercion. In this part, the
legality of the candidate is checked, and if needed, the candidate is corrected in order to
coerce the primitivity requirement. In order to give a self-contained presentation of our
results, we give a description of the Histogram Greedy Algorithm in Subsection 4.1 and the
Full-Tiling Primitivity Coercion Algorithm in Subsection 4.2. We then complete its analysis
in Subsection 4.3.

4.1 The Histogram Greedy Algorithm
This part of the algorithm performs the following steps given the text T and the valid tiling
L:
1. Find m, the length of an approximate cover subject to the tiling L, by computing the

difference between n + 1, and the last index in the tiling L, Llast, which indicates the
last occurrence of the cover in T .

2. Compute the m-length mask M of an approximate cover, by initializing M to zeroes,
settingM [1] = 1, then reading the tiling L from beginning to end and for each ik, ik+1 ∈ L
setting M [ik+1 − ik] = 1.

3. Compute the m-long string VC of variables from an auxiliary alphabet

ΣV = {v1, v2, . . . , vm}.

First, we initialize the m-long string VC to v1v2 . . . vm. Then, we read the mask M

from end to beginning, and for every j such that M [j] = 1, we update the string VC by
equalizing the substrings VC [1..m− j+ 1] and VC [j..m]. In the equalization process, when
we obtain an equation vk = v` for k < `, we replace both letters by vk. The resulting

CPM 2018

4:12 Quasi-Periodicity Under Mismatch Errors

string VC represents C in the following sense: for any pair of indices 1 ≤ i < j ≤ m, if
VC [i] = VC [j] then C[i] = C[j]. However, it can be that VC [i] 6= VC [j], while C[i] = C[j].
In other words, VC carries the information on equalities imposed by the mask M between
indices of C.

4. Compute the string of length n, VT , with variables from the auxiliary alphabet ΣV , which
is a string covered by VC according to the tiling L of T . VC is computed using the tiling
L and VC as follows: it begins with a copy of VC and for each index i in L a new copy of
VC is concatenated starting from index i of VT (maybe running over a suffix of the last
copy of VC).

5. Compute the histogram HistVC ,Σ using the alignment of T with VT and counting for each
variable V ∈ VC and each σ ∈ Σ, the number of indices i in T, VT for which VT [i] = V

and T [i] = σ.
6. Compute an L-approximate cover candidate C greedily according to the histogram

HistVC ,Σ, as follows: for every index 1 ≤ i ≤ m, set C[i] = σ0, whereHistVC ,Σ[VC [i], σ0] =
maxσ∈ΣHistVC ,Σ[VC [i], σ], i.e., for each index in C we choose the alphabet symbol that
minimizes the number of mismatch errors between SL(C) and T in the relevant indices
according to the tiling L.

The algorithm outputs the m-length string C from its last step and the histogram table
HistVC ,Σ.

As discussed in [5], the output C of the Histogram Greedy algorithm might not be an
L-approximate cover of T , because it might not be primitive, as the following example shows.

Example: Assume that VC = XY ZWXY and Σ = {a, b} and that the histogram HistVC ,Σ
computed by the algorithm is the following:

VC�Σ a b
X 4 1
Y 2 3
Z 2 1
W 0 3

Then, the Histogram Greedy algorithm chooses: X = a, Y = b, Z = a, W = b, and outputs
C = ababab, which cannot be considered a legal cover since it is not primitive, i.e., C itself
can be covered by the shorter string ab. Note, that the input tiling L requires an m-length
string as an output. Therefore, the (primitive) 2-length approximate cover ab is precluded as
an L-approximate cover. Assuming that the input tiling L is the retained tiling of the cover
of the original text before the errors occurred, such a case means that, though ab is a string
covering T subject to a partial tiling L with the least number of errors, it does not cover
T with L as a full tiling. In this sense, L is an evidence that the original cover is of larger
length than ab and that more errors actually happened.

In order to impose the requirement of the definition of an L-approximate cover of T to be
a primitive string such that all its repetitions to cover T (with minimum number of errors)
are marked in the tiling L, we need a primitivity coercion algorithm. This algorithm was
suggested by [5], and is described in Subsection 4.2.

4.2 The Full-Tiling Primitivity Coercion Algorithm
This part of the algorithm gets as input the string C returned by the Histogram Greedy
algorithm (Subsection 4.1) and performs the following steps:

A. Amir, A. Levy, and E. Porat 4:13

1. Check the primitivity of C (using the linear-time algorithm of [9]). If C is primitive,
return C.

2. Else, find Vk ∈ VC such that if the assignment of Vk is changed from the symbol with the
largest value in the row of Vk in HistVC ,Σ to the symbol with the second largest value
in this row, thus obtaining a new m-length candidate string C ′, such that the difference
H(SL(C ′), T)−H(SL(C), T) is minimized and where C ′ is primitive.

Lemma 38 below describes the time complexity of the Full-Tiling Primitivity Coercion
algorithm and immediately follows from the linear-time complexity of the algorithm [9] used
in the first step and the description of the second step.

I Lemma 38 ([5]). The time complexity of the Full-Tiling Primitivity Coercion algorithm is
O(|Σ| ·m).

The following subsection is devoted to proving the correctness of the Full-Tiling Primitivity
Coercion algorithm, thus proving that the full-tiling relaxation of the ACP is polynomial-time
computable.

4.3 Correctness of the Full-Tiling Primitivity Coercion Algorithm
We begin by noting that the structure of the string of variables created by the Histogram
Greedy algorithm has the free variable scheme, as defined by Lemma 24.

If the cover generated by the assignment of the Histogram Greedy algorithm to this
scheme is not primitive, then Corollary 20 guarantees that changing the value of any free
variable in β results in a primitive cover. The problem is that this may not necessarily be
the cover with minimum cost. Checking, for every single free variable, if changing it for
the alphabet symbol with the second largest value in the histogram results in a primitive
cover, and choosing the cover that generates the smallest Hamming distance, will indeed
guarantee that we have a primitive cover with the smallest Hamming distance that results
from changing a single variable. We need to show that it is impossible to get a primitive
cover that generates an even smaller Hamming distance, by choosing the alphabet symbol
with the second highest histogram in a set of free variables. We prove that this situation
can not happen.

Note that if C is the free variable scheme generated be the Histogram Greedy algorithm.
Then AC can be the string created by the assignment of this algorithm to the variables of
C, and AC(Xi1 , ..., Xij) can be the string created by assigning the variables Xi1 ,Xij of
C an alphabet symbol whose histogram value is second highest, and all other variables get
assigned an alphabet symbol whose histogram value is the highest.

Theorem 39 follows.

I Theorem 39. Given a text T of length n over alphabet Σ and a valid tiling L. Let Llast
be the last index in L. Then, the full-tiling relaxation of the approximate cover problem of T
can be solved in O(Σ ·m+ n) time, where m = n+ 1− Llast.

Proof. First, note that an L-approximate cover of T must have length m = n+ 1− Llast,
where Llast is the last index in L. If the string C ′ returned by the Histogram greedy
algorithm is primitive, then C ′ is an L-approximate cover of T since by its construction, it is
the m-length primitive string such that its n-length tiled string according to the given tiling
L, SL(C ′) has the minimum Hamming distance from T . In this case C ′ is also the string C
returned by the Full-Tiling Primitivity Coercion algorithm.

CPM 2018

4:14 Quasi-Periodicity Under Mismatch Errors

Assume then that C ′ is not a primitive string and, therefore, the second step of the
Full-Tiling Primitivity Coercion algorithm is performed. By Lemma 27, a change in a variable
that appear once in the β or α parts of the free variable form of C ′ results in a primitive
m-length string. Lemma 30 characterizes C ′ in case there exists a variable such that changing
its assignment does not yield a primitive string. Note that by Lemma 34 taking a set of such
variables and changing their assignment also does not yield a primitive string. Therefore,
any set of variables such that changing their assignment yields a primitive string, necessarily
contains a variable that changing its assignment only is enough to yield a primitive string.
However, it is obvious that changing this variable only gives a primitive string that covers
the input string with less mismatch errors.

The second step of the Full-tiling Primitivity Coercion algorithm chooses a character that
minimizes the difference H(SL(C ′), T) −H(SL(C), T). Therefore, the resulting m-length
string C is the m-length primitive string such that its n-length tiled string according to the
given tiling L, SL(C) has the minimum Hamming distance from T . J

References
1 A. Amir, E. Eisenberg, and A. Levy. Approximate periodicity. In Proc. ISAAC 2010, LNCS

6506, pages 25–36. Springer, 2010.
2 A. Amir, E. Eisenberg, A. Levy, E. Porat, and N. Shapira. Cycle detection and correction.

ACM Transactions on Algorithms, 9(1)(13), 2012.
3 A. Amir, C. S. Iliopoulos, and J. Radoszewski. Two strings at hamming distance 1 cannot

be both quasiperiodic. Information Processing Letters, 128:54–57, 2017.
4 A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat. Can we recover the cover? In

Proc. CPM, 2017.
5 A. Amir, A. Levy, R. Lubin, and E. Porat. Approximate cover of strings. In Proc. CPM,

2017.
6 P. Antoniou, M. Crochemore, C. S. Iliopoulos, I. Jayasekera, and G. M. Landau. Conser-

vative string covering of indeterminate strings. In Proc. Stringology, pages 108–115, 2008.
7 A. Aposolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in strings. Theoret.

Comput. Sci., 119:247–265, 1993.
8 A. Apostolico and D. Breslauer. Of periods, quasiperiods, repetitions and covers. In Proc.

Structures in Logic and Computer Science, LNCS 1261, pages 236–248, 1997.
9 A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing for strings.

Information Processing Letters, 39:17–20, 1991.
10 D. Breslauer. An on-line string superprimitivity test. Information Processing Letters,

44:345–347, 1992.
11 D. Breslauer. Testing string superprimitivity in parallel. Information Processing Letters,

49(5):235–241, 1994.
12 M. Christodoulakis, C. S. Iliopoulos, K. Park, and J. S. Sim. Approximate seeds of strings.

Journal of Automata, Languages and Combinatorics, 10:609–626, 2005.
13 T. Crawford, C. S. Iliopoulos, and R. Raman. String matching techniques for musical

similarity and melodic recognition. Comput. Musicol., 11:73–100, 1998.
14 M. Crochemore, C. S. Iliopoulos, S. P. Pissis, and G. Tischler. Cover array string recon-

struction. In Proc. CPM, pages 251–259, 2010.
15 M. Crochemore, C. S. Iliopoulos, and H. Yu. Algorithms for computing evolutionary chains

in molecular and musical sequences. In Proc. 9th Austral. Workshop on Combinatorial
Algorithms, pages 172–185, 1998.

16 T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. F. Smyth, and
W. Tyczynski. Enhanced string covering. Theor. Comput. Sci., 506:102–114, 2013.

A. Amir, A. Levy, and E. Porat 4:15

17 O. Guth and B. Melichar. Using Finite Automata Approach for Searching Approximate
Seeds of Strings, pages 347–360. Springer, 2010.

18 C. S. Iliopoulos and L. Mouchard. Quasiperiodicity and string covering. Theor. Comput.
Sci., 218(1):205–216, 1999.

19 C. S. Iliopoulos and W. F. Smyth. An on-line algorithm of computing a minimum set
of k-covers of a string. In Proc. 9th Australasian Workshop on Combinatorial Algorithms
(AWOCA), pages 97–106, 1998.

20 C. S. Iliopoulus, D. W. G. Moore, and K. Park. Covering a string. Algorithmica, 16(3):288–
297, 1996.

21 T. Kociumaka, S. P. Pissis, J. Radoszewski, W. Rytter, and T. Walen. Fast algorithm for
partial covers in words. In Proc. CPM, pages 177–188, 2013.

22 R. M. Kolpakov and G. Kucherov. Finding approximate repetitions under hamming dis-
tance. Theor. Comput. Sci., 303:135–156, 2003.

23 G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats. In Proc.
4th Symp. Combinatorial Pattern Matching, LNCS 648, pages 120–133, 1993.

24 G. M. Landau, J. P. Schmidt, and D. Sokol. An algorithm for approximate tandem repeats.
J. of Computational Biology, 8(1):1–18, 2001.

25 Y. Li and W. F. Smyth. Computing the cover array in linear time. Algorithmica, 32(1):95–
106, 2002.

26 M. Lothaire. Combinatorics on words. Addison-Wesley, 1983.
27 D. Moore and W. F. Smyth. An optimal algorithm to compute all the covers of a string.

Information Processing Letters, 50(5):239–246, 1994.
28 D. Moore and W. F. Smyth. A correction to: An optimal algorithm to compute all the

covers of a string. Information Processing Letters, 54:101–103, 1995.
29 B. Melichar O. Guth and M. Balik. All Approximate Covers and Their Distance using

Finite Automata, pages 21–26. CEUR-WS, 2009.
30 J. S. Sim, C. S. Iliopoulos, K. Park, and W. F. Smyth. Approximate periods of strings.

Theor. Comput. Sci., 262:557–568, 2001.
31 W. F. Smyth. Repetitive perhaps, but certainly not boring. Theor. Comput. Sci.,

249(2):343–355, 2000.
32 H. Zhang, Q. Guo, and C. S. Iliopoulos. Algorithms for computing the lambda-regularities

in strings. Fundam. Inform., 84(1):33–49, 2008.
33 H. Zhang, Q. Guo, and C. S. Iliopoulos. Varieties of regularities in weighted sequences. In

Proc. AAIM, LNCS 6142, pages 271–280, 2010.

CPM 2018

Fast Matching-based Approximations for
Maximum Duo-Preservation String Mapping and
its Weighted Variant
Brian Brubach1

Department of Computer Science, University of Maryland, College Park, MD 20742, USA
bbrubach@cs.umd.edu

https://orcid.org/0000-0003-1520-2812

Abstract
We present a new approach to approximating the Maximum Duo-Preservation String Mapping
Problem (MPSM) based on massaging the constraints into a tractable matching problem. MPSM
was introduced in Chen, Chen, Samatova, Peng, Wang, and Tang [10] as the complement to the
well-studied Minimum Common String Partition problem (MCSP). Prior work also considers
the k-MPSM and k-MCSP variants in which each letter occurs at most k times in each string.
The authors of [10] showed a k2-appoximation for k ≥ 3 and 2-approximation for k = 2. Boria,
Kurpisz, Leppänen, and Mastrolilli [6] gave a 4-approximation independent of k and showed that
even 2-MPSM is APX-Hard. A series of improvements led to the current best bounds of a (2+ε)-
approximation for any ε > 0 in nO(1/ε) time for strings of length n and a 2.67-approximation
running in O(n2) time, both by Dudek, Gawrychowski, and Ostropolski-Nalewaja [16]. Here,
we show that a 2.67-approximation can surprisingly be achieved in O(n) time for alphabets of
constant size and O(n+ α7) for alphabets of size α.

Recently, Mehrabi [28] introduced the more general weighted variant, Maximum Weight Duo-
Preservation String Mapping (MWPSM) and provided a 6-approximation. Our approach gives
a 2.67-approximation to this problem running in O(n3) time. This approach can also find an
8/(3(1− ε))-approximation to MWPSM for any ε > 0 in O(n2ε−1 lg ε−1) time using the approx-
imate weighted matching algorithm of Duan and Pettie [15].

Finally, we introduce the first streaming algorithm for MPSM. We show that a single pass
suffices to find a 4-approximation on the size of an optimal solution using only O(α2 lgn) space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases approximation algorithm, maximum duo-preservation string mapping,
minimum common string partition, string comparison, streaming algorithm, comparative genom-
ics

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.5

Acknowledgements The author wishes to thank advisors Mihai Pop and Aravind Srinivasan for
their support, guidance, and encouragement.

1 Introduction

String comparison is a fundamental problem in many fields such as bioinformatics and
data compression. The difference between two strings is often measured by some notion of
edit distance, the number of edit operations required to transform one string into another.

1 Supported in part by NSF awards CCF-1422569 and CCF-1749864 as well as the NIH, grant R01-AI-
100947 to Mihai Pop.

© Brian Brubach;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bbrubach@cs.umd.edu
https://orcid.org/0000-0003-1520-2812
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Fast Matching-based Approximations for MPSM and its Weighted Variant

The classic Levenshtein distance definition includes insertion, deletion, and/or substitution
operations on single characters. However, the more general edit distance with moves problem
studied in [13] allows an additional operation wherein an entire block of text is shifted within
a string.

Variations of these shift operations, also known as rearrangements, are commonly studied
in genomics [31, 11] with several biologically motivated twists on the above definition. String
comparison of DNA or protein sequences can provide an estimate of how closely related
different species are. In data compression, we may want to store many similar strings as a
single string along with the edits required to recover all strings. These two applications even
overlap naturally in the field of bioinformatics where extremely large datasets of biological
sequences are common. For example, the challenge of pan-genome storage is to store many
highly similar sequences from the same clade such as a bacterial species.

One way to capture just the “moves” operation on two strings which are permutations of
each other is the Minimum Common String Partition problem (MCSP). In that problem,
we cut (partition) each string into a multi-set of substrings such that the two multi-sets
are identical and the number of cuts is minimized. This paper studies the complementary
problem to MCSP, the Maximum Duo-Preservation String Mapping Problem (MPSM) and
its weighted variant (MWPSM). Our goal is to find a one-to-one mapping from the letters of
one string to the other. The objective is to maximize the pairs of consecutive letters (duos)
which map to pairs of consecutive letters in the other string (i.e. pairs that are not cut in
MCSP).

While MCSP has been well-studied for some time, a recent flurry of work on MPSM has
given us a deeper understanding of that problem. Mehrabi [28] introduced the Maximum
Weight Duo-Preservation String Mapping Problem (MWPSM) to better capture applications
in comparitive genomics. Beyond identifying the number of block moves, the weighted variant
allows us to address questions like, "How far did these blocks move?" This better captures the
concept of “synteny” in genetics [22, 29]. Also addressing practical considerations, Dudek, et
al [16] included a quadratic time version of their approximation algorithm whereas much of
the prior work has focused on improving the approximation in polynomial time.

1.1 Problem Description
The Maximum Duo-Preservation String Mapping Problem (MPSM) is defined as follows.
We are given two strings A = a1a2 . . . an and B = b1b2 . . . bn of length n such that B is a
permutation of A. Let ai and bj be the ith and jth characters of their respective strings. A
proper mapping π from A to B is a one-to-one mapping with ai = bπ(i) for all i = 1, . . . , n. A
duo is simply two consecutive characters from the same string. We say that a duo (ai, ai+1)
is preserved if ai is mapped some bj and ai+1 is mapped to bj+1. The objective is to return
a proper mapping from the letters of A to the letters of B which preserves the maximum
number of duos. Note that the number of duos preserved in each string is identical and by
convention we count the number of duos preserved in a single string rather than the sum
over both strings. Let OPTMPSM denote the number of duos preserved from a single string
in an optimal solution to the MPSM problem. Figure 1 shows an example of an optimal
mapping which preserves the maximum possible number of duos.

The complementary Minimum Common String Partition problem (MCSP) seeks to find
partitions of the strings A and B where a partition PA of A is defined as a set of substrings
whose concatenation is A. The objective is to find minimum cardinality partitions PA of A
and PB of B such that PB is a permutation of PA. Let OPTMCSP denote the cardinality of a
partition in an optimal solution. We can see that OPTMCSP = |PA| = |PB | = n−OPTMPSM .

B. Brubach 5:3

A: a b c d d c b a

B: b c a d d c a b

Figure 1 Illustration of a mapping π from A to B that preserves 3 duos: bc, dd, and dc. A solution
to the complementary MCSP problem on the same strings would be partitions PA = a, bc, ddc, b, a

and PB = bc, a, ddc, a, b with |PA| = |PB | = 5.

The variants, k-MPSM and k-MCSP, add the restriction that each letter occurs at most k
times in each string. For a given algorithm, let ALGMPSM be number of duos preserved by the
algorithm. The approximation ratio for that algorithm is defined as OPTMPSM/ALGMPSM .

In MWPSM, a weight is assigned to every pair of preservable duos and we seek to
maximize the weight of the solution. While [28], discusses using weights to capture the
positions of preserved duos within their respective strings, the weights in MWPSM can be
arbitrary and are not required to be a function of position.

1.2 Related Work
The Maximum Duo-Preservation String Mapping Problem (MPSM) was introduced in [10]
along with the related Constrained Maximum Induced Subgraph (CMIS) and Constrained
Minimum Induced Subgraph (CNIS) problems. They used a linear programming and
randomized rounding approach to approximate the k-CMIS problem which they show is a
generalization of k-MPSM. This led to a k2-approximation for k ≥ 3 and a 2-approximation
for k = 2. This was improved by [6] to a 4-approximation independent of k and running in
O(n3/2) time as well as approximation ratios of 3 for k = 3 and 8/5 for k = 2. [6] also showed
that k-MPSM is APX-hard even for k = 2, meaning no polynomial-time approximation
scheme (PTAS) exists assuming P 6= NP . The approximation was subsequently improved
to 3.5 using local search [5], 3.25 using a combinatorial triplet matching approach [7], and
finally 2 + ε for any ε > 0 in nO(1/ε) time, again using local search [16]. The work of [16] also
presented a 2.67-approximation running in O(n2) time.

The recent interest in MPSM led to the study of several variants including Maximum
Weight Duo-preservation String Mapping (MWPSM), k-MPSM, and fixed-parameter tractab-
ility (FPT). The weighted variant of MPSM was introduced in [28] along with an algorithm
achieving a 6-approximation. That work was the first to apply the local ratio technique
developed by Bar-Yehuda and Even [2] to an MPSM problem. Recent work on k-MPSM led
to a (1.4 + ε)-approximation for 2-MPSM [32]. On the FPT side, [3] showed that MPSM
is fixed-parameter tractable when parameterized by the number of preserved duos and [27]
achieved a faster running time with a randomized algorithm.

The Minimum Common String Partition problem (MCSP) has been extensively studied
from many angles including polynomial-time approximation [10, 12, 13, 20, 26, 25], fixed-
parameter tractability [8, 14, 23, 9], and heuristics [17, 4, 18]. FPT algorithms have been
parameterized by maximum number of times any character occurs, minimum block size, and
the size of the optimal minimum partition. Heuristic approaches range from an ant colony
optimization algorithm [17] to integer linear programming (ILP) based strategies [4, 18]
which in some cases solve the problem optimally for strings up to 2, 000 characters in length.

The problem was shown to be NP-hard (thus implying MPSM is also NP-hard) and
APX-hard even for 2-MCSP [20]. The current best approximations are an O(logn log∗ n)-

CPM 2018

5:4 Fast Matching-based Approximations for MPSM and its Weighted Variant

approximation due to [13] for general MCSP bases on the related edit distance with moves
problem and an O(k)-approximation for k-MCSP due to [26]. Applications to evolutionary
distance and genome rearrangement can be found in [31, 11].

Unclaimed results in prior work: An analysis of prior work shows that 4-approximations
to both problems studied here can be achieved using slight modifications to existing work.
For MWPSM, the algorithm in [6] can be extended by choosing a maximum weight matching
and partition rather than maximum cardinality. For the unweighted problem, Goldstein and
Lewenstein [21] showed an O(n) time greedy algorithm for MCSP. Although not discussed in
their paper which pre-dated MPSM, we note that the greedy algorithm for MCSP achieves a
4-approximation for MPSM by a fairly straightforward charging argument. Formal proofs of
these claims are outside the scope of this paper and we leave them to the interested reader.
Additionally, we will not refer to these approximations when comparing our work to previous
best known results. We simply mention them here for completeness and to give a nod to two
nice papers in the area.

1.3 Our Contributions
We show a transformation of the Maximum Duo-Preservation String Mapping (MPSM)
problem into a related tractable problem. This transformation leads to new algorithms
for both weighted and unweighted MPSM. For the weighted case, we present an 8/3-
approximation running in O(n3) time. This improves upon the previous best 6-approximation
in polynomial time [28] (a tighter bound on the running time is not given in the paper).
It also matches the best quadratic time approximation for the unweighted problem of 2.67
and approaches the best unweighted approximation of 2 + ε for any ε > 0 in nO(1/ε) time,
both due to [16]. We further show in Corollary 2 that we can improve the running time at
the cost of a weaker approximation. For the unweighted case, we present the first linear
time algorithm with an 8/3-approximation again matching the previous best quadratic time
algorithm and coming fairly close to the best known (2 + ε)-approximation achieved by a
significantly larger running time. In particular, the move from quadratic to linear time in
length of the strings is significant for practical settings wherein the string length may be
long enough that quadratic time is prohibitive. Finally, we introduce the first streaming
algorithm for MPSM in the streaming model where each string is read one character at a
time. We show that a single pass suffices to find a 4-approximation on the size of an optimal
solution using only O(α2 lgn) space.

In addition, the techniques here are novel to this problem and may inspire future
improvements. While [7] also used a form of triplet matching, the structure of the triplet
matching is different as is the approach to achieving a feasible solution to MPSM. Our main
results are summarized in the theorems below.

I Theorem 1. There exists an algorithm which finds an 8/3-approximation to MWPSM on
strings of length n in O(n3) time.

I Corollary 2. Using the approximate weighted matching algorithm of [15], we can find an
8/(3(1−ε))-approximation to MWPSM on strings of length n for any ε > 0 in O(n2ε−1 lg ε−1)
time.

I Theorem 3. There exists an algorithm which finds an 8/3-approximation to MPSM on
strings of length n over alphabets of size α in O(n+ α7) time.

B. Brubach 5:5

I Corollary 4. There exists an algorithm which finds an 8/3-approximation to MPSM on
strings of length n over constant-sized alphabets in O(n) time.

I Theorem 5. There exists a single-pass streaming algorithm which finds a 4-approximation
to the size of an MPSM on strings of length n over alphabets of size α using only O(α2 lgn)
space.

1.4 Preliminaries
Let A = a1a2 . . . an and B = b1b2 . . . bn be two strings of length n with ai and bj being
the ith and jth characters of their respective strings. A duo DA

i = (ai, ai+1) contains
a pair of consecutive characters ai and ai+1. We use DA = (DA

1 , . . . , D
A
n−1) and DB =

(DB
1 , . . . , D

B
n−1) to denote the sets of duos for A and B, respectively. We similarly define a

triplet TAi = (ai, ai+1, ai+2) as a set of three consecutive characters ai, ai+1, and ai+2 in the
string and sets of triplets TA = (TA1 , . . . , TAn−2) and TB = (TB1 , . . . , TBn−2) for strings A and
B, respectively. Observe that the duos DA

i and DA
i+1 correspond to the first two and last

two characters, respectively, of the triplet TAi . We refer to duos DA
i and DA

i+1 as subsets of
the triplet TAi .

A proper mapping π from A to B is a one-to-one mapping from the letters of A to the
letters of B with ai = bπ(i) for all i = 1, . . . , n. Recall that a duo (ai, ai+1) is preserved if
and only if ai is mapped to some bj and ai+1 is mapped to bj+1. We call a pair of duos
(DA

i , D
B
j) preservable if and only if ai = bj and ai+1 = bj+1. For MWPSM, let w(DA

i , D
B
j)

be the weight gained by mapping DA
i to DB

j .
For consistency, we define the concept of conflicting pairs of duos using the terminology

of [6]. Two preservable pairs of duos (DA
i , D

B
j) and (DA

h , D
B
`) are said to be conflicting if no

proper mapping can preserve both of them. These conflicts can be of two types type 1 and
type 2. In type 1 conflicts, either i = h ∧ j 6= ` or i 6= h ∧ j = `. In type 2 conflicts, either
i = h+ 1 ∧ j 6= `+ 1 or i 6= h+ 1 ∧ j = `+ 1.

The algorithms here only show how to map the characters of the preserved duos. In all
cases, note that any unmapped characters can be mapped arbitrarily to identical characters
in the other string in linear time.

2 Main techniques and algorithm for MWPSM

For both algorithms, we first solve a weighted bipartite matching problem we call Alternating
Triplet Matching (ATM). In this section, we define ATM, show that a solution to ATM has
weight at least 3/4 of an optimal solution to MWPSM, and finally show that we can convert
a solution to ATM to a feasible duo mapping while preserving 1/2 of its weight. Combining
these facts leads to an 8/3-approximation to MWPSM.

2.1 The Alternating Triplet Matching (ATM) problem
Here, we define this problem in terms of MWPSM. Modifications for the unweighted variant
(to admit a faster solution) will be defined in Section 3. Let TA′ = {TAi | i is odd}, TB

′ =
{TBi | i is odd} and TB

′′ = {TBi | i is even}. Throughout the paper, we refer to triplets
starting at odd indices in their respective strings as odd triplets and similarly use the term
even triplets. Note, we do not use the even triplets from A.

Using these subsets, we formulate bipartite matching problems on two separate graphs
G′ = {TA′

, TB
′
, E′} and G′′ = {TA′

, TB
′′
, E′′}. The edges of G′ depend on the letters in the

triplets. Consider triplets TA′

i = (DA
i , D

A
i+1) and TB′

j = (DB
j , D

B
j+1). For each pair of duos

CPM 2018

5:6 Fast Matching-based Approximations for MPSM and its Weighted Variant

(1)
A: A A A C A G T C T.

B: A A A G T C A T C.

3 345 1 3 2 51

(2)
TA

′ :

TB
′ :

AAA ACA AGT TCT

AAA AGT TCA ATC

6 14 2 5

(3)
TA

′ :

TB
′′ :

AAA ACA AGT TCT

AAG GTC CAT

4 11 3 2

Figure 2 Illustration of how to generate an ATM instance from an MWPSM instance. (1)
Substrings of the original two strings, A and B, starting at some odd index and featuring weighted
edges representing the weight of preserving a pair of duos. (2) The graph G′ with thicker edges
representing an exact match between two triplets. In the case of multiple edges between a pair of
triplets (e.g. the five edges between the “AAA” triplets), we only show the heaviest weight edge. (3)
The graph G′′. Note that that the weight of a mapping which maps the two “AGTC” strings to
each other is 6, which can be achieved by a matching in G′, but not in G′′.

DA
h and DB

` with h ∈ {i, i+ 1}, ` ∈ {j, j+ 1}, and DA
h = DB

` , we add an edge e = (TA′

i , TB
′

j)
with weight w(e) = w(DA

h , D
B
`). Additionally, if TA′

i = TB
′

j , we add an edge e = (TA′

i , TB
′

j)
between them with weight w(e) = w(DA

i , D
B
j) + w(DA

i+1, D
B
j+1). In other words, the edge

gets the combined weight of the duo pairs preserved by mapping the substring TA′

i to the
substring TB′

j . The graph G′′ is defined similarly. There could be up to five edges total if
the triplets contain one letter repeated (e.g. “AAA”). In the case of multiple edges between
a pair of triplets, we only need to consider the heaviest edge among them since each triplet
can be matched at most once. However, we keep all edges for the sake of simplifying some of
the proofs. Figure 2 illustrates the procedure of generating an ATM instance.

2.2 MWPSM algorithm and analysis

Let OPTG′ and OPTG′′ be the weights of maximum weight matchings in G′ and G′′,
respectively. Note that we can find these matchings in the time it takes to compute maximum
weight bipartite matching. Since our graphs have O(n) vertices and could have O(n2) edges,

B. Brubach 5:7

this takes O(n2 lgn + n · n2) = O(n3) time [19]. Lemma 6 states that either OPTG′ or
OPTG′′ will be a (3/4)-approximation to the weight of an optimal solution to MWPSM,
OPTMWPSM . Let OPTATM = max(OPTG′ , OPTG′′).

I Lemma 6. OPTATM ≥ (3/4)OPTMWPSM .

Proof. We divide the edges of OPTMWPSM into two partitions. The first partition, P same,
includes mappings, in which both letters occur at odd indices or both letters occur at even
indices. The second partition, P diff , includes the remaining mappings wherein one letter is
at an odd index and the other is at an even index (this could be odd from A, even from B or
even from A, odd from B).

Note that the mapping of each preserved pair of duos (DA
i , D

B
j) will be contained in one

of these two partitions. Without loss of generality, let the weight of P same be at least the
weight of P diff . We show how to transform OPTMWPSM into a feasible bipartite matching
in G′ while retaining the full weight of P same and at least half of the weight of P diff . Thus,
we retain at least 3/4 of the weight of OPTMWPSM .

For each triplet in the vertex set of G′ that contains one or two preserved duos from
P same, we can add an edge to our matching with weight equal to the weight of the preserved
duos. This works because consecutive pairs of preserved duos (DA

i , D
B
j) and (DA

i+1, D
B
j+1)

with i and j both being odd will correspond to a “double” edge in the ATM instance with
weight equal to w(DA

i , D
B
j) + w(DA

i+1, D
B
j+1). On the other hand, if i and j are both even,

then the duos of (DA
i , D

B
j) and (DA

i+1, D
B
j+1) are contained in four different triplets and will

be added separately. Thus, we can maintain all of the weight of P same in a matching in G′.
A slightly trickier case arises with P diff . Any consecutive pairs of preserved duos

(DA
i , D

B
j) and (DA

i+1, D
B
j+1) in P diff will have i and j of different parity. This results in

the duos being contained in three triplets, two from one partition and one from the other.
That means the edges in the ATM instance capturing the weights of the two pairs will be
conflicting. Thus we can only preserve the weight of one of the two pairs in our ATM solution.
To guarantee that we add at least half of the weight of P diff to our solution, we further
partition it into pairs (DA

i , D
B
j) with i being odd and those with i being even. Then we

simply choose the heavier of those two partitions to add to our ATM solution.
For the case where P diff is heavier than P same, we can do a similar construction for G′′.

Thus, our ATM solution in either G′ or G′′ could have at least 3/4 the weight of an optimal
solution to MWPSM. J

We can now show how to transform an optimal solution to ATM (the heavier of the two
matchings) into a feasible string mapping which preserves at least half of the weight of the
ATM solution. Let G = (DA, DB , E) be a bipartite graph on the duos of A and B with edge
weights equal to the weight of preserving each pair of duos. We first show how to convert an
ATM solution into a matching M in G. Then, we show how to resolve conflicts of type 2
(conflicts of type 1 will not arise since M is a matching).

The transformation is simply a reversal of how we constructed the ATM graphs. For each
edge between triplets in our ATM solution (the heavier of the two matchings in G′ and G′′),
we add an edge or edges to M corresponding to the duos that “created” that triplet edge.

To resolve conflicts, we consider the conflict graph C wherein we have a node for each
edge in M and an arc between nodes if their corresponding edges are in conflict. We can
prove that C has maximum degree 2, meaning it will be a collection of paths and cycles.
Further, we note that each cycle will have even length due to Lemma 7 and the fact that
the underlying graph is bipartite. Thus, for each path or cycle, we choose the heavier of

CPM 2018

5:8 Fast Matching-based Approximations for MPSM and its Weighted Variant

the two maximal independent sets in that path or cycle to add to our final MPSM solution.
Lemma 7 establishes that C has maximum degree 2.

I Lemma 7. Each edge in M conflicts with at most one other edge at each endpoint.

Proof. First, we note that each duo is contained in at most one triplet edge from the ATM
solution and therefore can only be matched once in M . In other words, M is a classical
matching in the bipartite graph of duos. This follows from the fact that consecutive triplets
in a string starting at only odd (or only even) indices will overlap at exactly one letter.

This ensures that no conflicts of type 1 can arise since that would require a duo to be
matched twice. We can also show that at most one conflict of type 2 arises at each endpoint.
Without loss of generality, consider the endpoint DA

i . Consider the duos DA
i−1 and DA

i+1
where such a conflict might arise. Notice that one of these duos must have come from the
same triplet as DA

i , while the other comes from a different triplet. The duo from the same
triplet will either be unmatched or matched as a non-conflicting parallel edge. Thus no
conflict arises from that duo. The duo from a different triplet could contribute at most one
conflicting edge by the above claim that each duo is matched at most once. Applying this
argument to both endpoints of a given edge completes the proof. J

I Lemma 8. M can be converted into M ′, a feasible solution to MWPSM, such that the
weight of M ′ is at least (1/2)OPTATM ≥ (3/8)OPTMWPSM .

Proof. The conflict graph on the edges of M must be a collection of paths and even length
cycles since it has maximum degree 2 and G is bipartite. We can simply decompose each
path or cycle into two independent sets and choose the heavier of the two. This operation
discards at most half of the weight of M while removing all conflicts and leaving us with a
feasible solution to MWPSM. J

The proofs of Theorem 1 and Corollary 2 follow from the preceding lemmas.

3 Linear time algorithm for unweighted MPSM

The basic approach follows roughly the same steps as the weighted algorithm from Section 2:
construct an ATM instance, solve the matching problem, transform the solution into a duo
matching on the strings, and resolve conflicts. We show that with a small modification, each
step can be done in linear time for the unweighted problem. The key insight that allows for
this speedup is that identical triplets can be collapsed into single vertices and we can solve a
b-matching problem we call b-ATM. In the b-matching variant of classical matching, each
vertex in the graph has a capacity and can be matched that many times. We will abuse
notation a bit and refer to each vertex as having capacity b, although we actually allow the
capacity of each node to be different. The following subsections illustrate how to perform
the aforementioned steps and bound the running time of each step.

3.1 Constructing the b-ATM instance in O(n+ α4) time
We construct a triplet matching problem as in Section 2.1 with one crucial adjustment:
identical triplets are collapsed into single vertices with capacity equal to the number of
occurrences of that triplet in its given set (TA′ , TB′ , or TB′′). The number of times each
vertex is allowed to be matched is equal to its capacity. Similarly, each edge can be matched
multiple times up to the smaller capacity among its two endpoints. Algorithm 1 shows how
to construct a b-ATM instance from the two input strings in linear time.

B. Brubach 5:9

Algorithm 1: Construct b-ATM
1 Traverse each string to build a set of triplets with counts for A′, B′, and B′′.
2 For G′ and G′′, create a vertex for each triplet with capacity equal to its count. Add

edges between the triplets as in Section 2.1 with the following modification. If two
triplets match exactly, give the edge weight 2 and if they only share a duo in
common, give the edge weight 1.

Algorithm 2: Solve b-ATM
1 Add each edge with weight 2, corresponding to two identical triplets, to the matching.
2 Find a maximum b-matching in the remaining “unweighted” graph using maximum

flow techniques.

As in Section 2.1, let OPTG′ and OPTG′′ be the weights of maximum weight b-matchings
in G′ and G′′, respectively. Lemma 9 states that either OPTG′ or OPTG′′ will be a (3/4)-
approximation to the size of an optimal solution to MPSM, OPTMPSM . Let OPTb-ATM =
max(OPTG′ , OPTG′′) as constructed by Algorithm 1.

I Lemma 9. OPTb-ATM ≥ (3/4)OPTMPSM .

Proof. This proof follows from Lemma 6. Suppose we constructed an ATM instance as in
Section 2.1, but for the unweighted problem. By Lemma 6, we would have OPTATM ≥
(3/4)OPTMPSM . Now note that we can collapse all identical triplet vertices in each partition
of OPTATM to get a feasible solution to the b-ATM problem without reducing the weight. J

I Lemma 10. Algorithm 1 constructs a graph with O(α3) vertices and O(α4) edges in
O(n+ α4) time.

Proof. Step 1 of the algorithm clearly runs in less than O(n+ α4) time. It simply traverses
each string once, storing the triplets in some appropriate data structure with constant insert
and query time.

To bound the running time of step 2, we first bound the number of edges created. Note
that the bipartite graph of b-ATM has O(α3) vertices in each partition since that is the
maximum number of 3-mers in an alphabet of size α. To bound the edge set, notice that
for any 3-mer, there exist at most 4α other 3-mers with a substring of length 2 in common.
Thus, the max degree of each node is O(α) and the size of the edge set E is at most O(α4).
When adding edges, we can check for the existence of each edge in constant time, again
assuming the triplet are stored in some appropriate data structure. J

3.2 Solving b-ATM quickly
Algorithm 2 shows how to solve b-ATM within our time constraints. Lemma 11 proves the
correctness of this algorithm while Lemma 12 bounds its running time.

I Lemma 11. Algorithm 2 finds a maximum weight b-matching in the b-ATM instance.

Proof. Here, we need to justify Step 1 of Algorithm 2 by showing that there always exists
some maximum b-matching which contains all of the edges corresponding to identical pairs
of triplets. First note that it is feasible to include all such edges since they can never conflict
with each other. For each triplet in one partition, there is at most one identical triplet in the
other partition.

CPM 2018

5:10 Fast Matching-based Approximations for MPSM and its Weighted Variant

Algorithm 3: Transform b-ATM to MPSM
1 Assign each copy of a 3-mer and its edge from the b-ATM solution to a triplet from

the original strings to get an ATM solution.
2 Transform the ATM solution into a duo matching as detailed in Section 2.2
3 Resolve conflicts by traversing the paths/cycles of the conflict graph and discarding

every other edge.

We apply the following claim iteratively to complete the proof. Given a maximum weight
b-matching M which does not include all identical pair edges, we can always add one such
edge without decreasing the weight of the solution. Consider an arbitrary identical pair edge
e that is not in M . To add e to M we need to remove at most two edges from M , one for
each endpoint of e. Since e has a weight of 2 while the removed edges have weights of 1 each,
swapping those edges for e will not reduce the weight of the solution. J

I Lemma 12. Algorithm 2 runs in O(n) time plus the time to compute an unweighted
maximum b-matching on a graph with O(α3) vertices and O(α4) edges and total capacity
O(n). Using current maximum flow algorithms, Algorithm 2 can run in O(n+ α7) time.

Proof. If the graph were unweighted, we could find a maximum b-matching in O(|V ||E|) =
O(α7) time using the maximum flow approach in [30]. Fortunately, by Lemma 11, we can
first add all edges with weight 2 to our solution. Thus, we are left with an “unweighted”
residual problem that can be solved using a maximum flow algorithm. J

3.3 Transforming the b-ATM solution to a duo matching and resolving
conflicts

Now that we have solved our b-ATM problem we need transform it back to a duo matching.
The obvious challenge here is that each b-ATM vertex represents roughly b copies of a given
3-mer that must each be assigned to a triplet in the original string in linear time while
preserving the weight of the b-ATM solution. There are b! such assignments and b could be
on the order of n. However, the important observation here is that we can do this arbitrarily
and still preserve the size of the b-ATM solution.

I Lemma 13. Algorithm 3 constructs a feasible solution to MPSM with size equal to half
the weight of OPTb-ATM .

Proof. The proof follows from Lemma 8. Notice that we assign exactly one copy of a 3-mer
to each triplet and the result is a feasible solution to the ATM problem. J

I Lemma 14. Algorithm 3 runs in O(n) time.

Proof. Assigning each copy of a 3-mer and its edge to a triplet can be done in constant time
if we maintain lists of the indices at which each 3-mer occurs in each string, resulting in
O(n) time overall. Similarly, generating the duo-matching can easily be done in O(n) time.
Resolving conflicts in the unweighted problem involves traversing O(n) edges and removing
every other one which can be done in O(n) time as well. J

The proofs of Theorem 3 and Corollary 4 follow from the preceding lemmas.

B. Brubach 5:11

4 A streaming algorithm for MPSM

We observe that the algorithm of [6] can be adapted into a single-pass streaming algorithm
in the streaming model where each string is read one character at a time. We present an
algorithm using O(α2 lgn) space and giving a 4-approximation of the size of an MPSM
solution without providing an explicit mapping. In [6], they upper bound MPSM by a
maximum matching in the duo graph. Then they show that a feasible MPSM solution can
be found while preserving at least 1/4 of the edges in the matching.

The algorithm is simple. Maintain a counter for each 2-mer in the alphabet and a
counter for the size of the matching. While processing the first string, count the number
of occurrences of each 2-mer. For the second string, each time you encounter a duo with
a nonzero count, decrease its count by 1 and increase the size of the matching by 1. At
the end, divide the size of the matching by 4 to get a 4-approximation to the size of the
optimal MPSM. The following Lemmas establish the space-efficiency and correctness of the
the algorithm.

I Lemma 15. The streaming algorithm uses only O(α2 lgn) space where α is the alphabet
size and n is the length of the strings.

Proof. The number of 2-mers from an alphabet of size α is α2. We require only O(lgn)
bits of space for each 2-mer counter since no 2-mer could appear more than O(n) times
where n is the length of the strings. Similarly, we keep just one counter for the size of the
matching which requires only O(lgn) bits of space since the size of the matching is at most
n. In addition to the counters, we must store the previously seen letter since our streaming
model involves reading one character at a time, but we are counting duos. However, this
only requires O(lgα) space. J

I Lemma 16. The streaming algorithm achieves a 4-approximation to MPSM.

Proof. We first show that the size of a maximum matching in a bipartite duo graph G as
defined in [6] is equal to the sum of the minimum number of occurrences of each duo among
the two strings. Notice that G can be decomposed into a set of connected components for
each 2-mer since each vertex only has edges to other vertices corresponding to the same
2-mer. Further, each of these connected components is a complete bipartite graph with
maximum matching size equal to the minimum size of the two partitions.

Thus, computing the above sum gives us the size of the maximum matching. We note
that the number of times the matching size counter increase due to vertices of a given 2-mer
is exactly equal to the minimum number of times that 2-mer appears in either of the two
strings.

Finally, as shown in [6], a maximum matching in the duo graph is an upper bound on
the optimal solution to MPSM and can always be converted into a feasible MPSM solution
while preserving at least 1/4 of its size. J

The proof of Theorem 5 follows from Lemmas 15 and 16.

5 Conclusion and future directions

We showed a transformation of the Maximum Duo-Preservation String Mapping (MPSM)
problem into a related tractable problem. This led to new algorithms for both MWPSM
and MPSM. For the weighted case, we presented a tighter approximation closing in on
the best unweighted result using a reasonably fast algorithm. We also showed that the

CPM 2018

5:12 Fast Matching-based Approximations for MPSM and its Weighted Variant

running time could be improved at the expense of a slightly weaker approximation. For
the unweighted case, we presented the first linear time algorithm with an approximation
matching the previous best quadratic time algorithm and fairly close to the best known
approximation achieved by a significantly larger running time. Finally, we presented the first
streaming algorithm for MPSM showing that a constant approximation is achievable in the
single-pass streaming model.

We believe the most pressing future direction is to explore the applications and utility
of this problem further. The complementary relationship with Minimum Common String
Partition (MCSP) has driven much of the current interest in MPSM. However, given their
relationship, new approximations for MPSM do not directly lead to any improvements for
MSCP. It is reasonable to ask if the study of MPSM can teach us anything about MCSP
or at least inspire new heuristics. We note that some current linear-time algorithms for
MCSP are greedy algorithms [21] with a proven lower bound of Ω(n0.46) [24] (Although this
bound arises from carefully constructed strings over a (logn)-sized alphabet). This is in
contrast to the best known approximation for MCSP, O(logn log∗ n) [13]. Perhaps the linear
time MPSM algorithm presented here could be combined with greedy approaches leading to
better, more robust heuristics. Further, since MPSM currently appears to be “easier” than
MCSP, it would be fruitful to explore more applications for MPSM itself in bioinformatics,
data compression, and beyond.

On the theoretical side, the biggest questions revolve around the factor of 2 approximation.
Is this tight for MPSM conditioned on some hardness conjecture or can we do better? It
surely seems like a natural bound. Regardless, can we achieve a 2-approximation in linear
time? Likewise, for MWPSM, a 2-approximation could be seen as the next major goal. All of
this seems within reach, using existing ideas or different tools such as LP rounding techniques.
Another direction would be to add edit operations. It seems that MWPSM could be adapted
to handle the cost of substitutions. However, this is nontrivial since existing algorithms
assume that letters which do not belong to preserved duos can be mapped at no penalty.

Finally, we propose variants of MWPSM that may admit a faster approximation than
we see in this paper. Suppose the weights are not arbitrary, but follow some “rules”. [28]
suggested the weight of a duo-preservation could be a function of the “closeness” of the
mapping in terms of the positions of the characters in their respective strings. However, [28]
and this paper consider only arbitrary weights. One could imagine a weight function like
w(DA

i , D
B
j) = n− |i− j| that does not require us to examine every edge in the duo graph.

Of course, the function need not be so naive as any metric or geometric weight functions
admit faster matching algorithms [1].

References

1 Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 555–564, New York, NY, USA, 2014. ACM.

2 R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. In G. Ausiello and M. Lucertini, editors, Analysis and Design of Algorithms
for Combinatorial Problems, volume 109 of North-Holland Mathematics Studies, pages 27–
45. North-Holland, 1985.

3 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Parameterized tractability of the
maximum-duo preservation string mapping problem. CoRR, abs/1512.03220, 2015. arXiv:
1512.03220.

http://arxiv.org/abs/1512.03220
http://arxiv.org/abs/1512.03220

B. Brubach 5:13

4 Christian Blum, José A. Lozano, and Pinacho Davidson. Mathematical programming
strategies for solving the minimum common string partition problem. European Journal of
Operational Research, 242(3):769–777, 2015.

5 Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano
Quer. A 7/2-approximation algorithm for the maximum duo-preservation string mapping
problem. In Roberto Grossi and Moshe Lewenstein, editors, 27th Annual Symposium on
Combinatorial Pattern Matching (CPM 2016), volume 54 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 11:1–11:8, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

6 Nicolas Boria, Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Improved ap-
proximation for the maximum duo-preservation string mapping problem. In Algorithms in
Bioinformatics: 14th International Workshop, WABI 2014, Wroclaw, Poland, September
8-10, 2014. Proceedings, pages 14–25, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

7 Brian Brubach. Further improvement in approximating the maximum duo-preservation
string mapping problem. In Martin Frith and Christian Nørgaard Storm Pedersen, editors,
Algorithms in Bioinformatics, pages 52–64, Cham, 2016. Springer International Publishing.

8 Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and Irena Rusu. A fixed-
parameter algorithm for minimum common string partition with few duplications. In
Aaron Darling and Jens Stoye, editors, Algorithms in Bioinformatics: 13th International
Workshop, WABI 2013, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages
244–258, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

9 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition paramet-
erized by partition size is fixed-parameter tractable. In Proceedings of the Twenty-fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 102–121, Phil-
adelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.

10 Wenbin Chen, Zhengzhang Chen, Nagiza F. Samatova, Lingxi Peng, Jianxiong Wang, and
Maobin Tang. Solving the maximum duo-preservation string mapping problem with linear
programming. Theoretical Computer Science, 530:1–11, 2014.

11 Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, S. Lonardi, and Tao Jiang. As-
signment of orthologous genes via genome rearrangement. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2(4):302–315, Oct 2005.

12 Marek Chrobak, Petr Kolman, and Jiří Sgall. The greedy algorithm for the minimum
common string partition problem. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim,
and Dana Ron, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques: 7th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX 2004, and 8th International Workshop on
Randomization and Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24,
2004. Proceedings, pages 84–95, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

13 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Trans. Algorithms, 3(1):2:1–2:19, 2007.

14 Peter Damaschke. Minimum common string partition parameterized. In Keith A. Crandall
and Jens Lagergren, editors, Algorithms in Bioinformatics: 8th International Workshop,
WABI 2008, Karlsruhe, Germany, September 15-19, 2008. Proceedings, pages 87–98, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

15 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1):1:1–1:23, 2014.

16 Bartlomiej Dudek, Pawel Gawrychowski, and Piotr Ostropolski-Nalewaja. A family of ap-
proximation algorithms for the maximum duo-preservation string mapping problem. In
Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2017), volume 78 of Leibniz Interna-

CPM 2018

5:14 Fast Matching-based Approximations for MPSM and its Weighted Variant

tional Proceedings in Informatics (LIPIcs), pages 10:1–10:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

17 S. M. Ferdous and M. Sohel Rahman. Solving the minimum common string partition
problem with the help of ants. In Ying Tan, Yuhui Shi, and Hongwei Mo, editors, Advances
in Swarm Intelligence: 4th International Conference, ICSI 2013, Harbin, China, June 12-
15, 2013, Proceedings, Part I, pages 306–313, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

18 S. M. Ferdous and M. Sohel Rahman. An integer programming formulation of the minimum
common string partition problem. PLoS ONE, 10(7):1–16, 07 2015.

19 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, jul 1987.

20 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. In Proceedings of the 15th International Confer-
ence on Algorithms and Computation, ISAAC’04, pages 484–495, Berlin, Heidelberg, 2004.
Springer-Verlag.

21 Isaac Goldstein and Moshe Lewenstein. Quick greedy computation for minimum common
string partition. Theor. Comput. Sci., 542:98–107, 2014.

22 RC Hardison. Comparative genomics. PLoS Biol, 1(2):e58, 2003.
23 Haitao Jiang, Binhai Zhu, Daming Zhu, and Hong Zhu. Minimum common string partition

revisited. Journal of Combinatorial Optimization, 23(4):519–527, 2012.
24 Haim Kaplan and Nira Shafrir. The greedy algorithm for edit distance with moves. In-

formation Processing Letters, 97(1):23–27, 2006.
25 Petr Kolman and Tomasz Waleń. Approximating reversal distance for strings with bounded

number of duplicates. Discrete Applied Mathematics, 155(3):327–336, 2007.
26 Petr Kolman and Tomasz Waleń. Reversal distance for strings with duplicates: Linear time

approximation using hitting set. In Thomas Erlebach and Christos Kaklamanis, editors,
Approximation and Online Algorithms: 4th International Workshop, WAOA 2006, Zurich,
Switzerland, September 14-15, 2006. Revised Papers, pages 279–289, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

27 Christian Komusiewicz, Mateus de Oliveira Oliveira, and Meirav Zehavi. Revisiting
the parameterized complexity of maximum-duo preservation string mapping. In Juha
Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium on
Combinatorial Pattern Matching (CPM 2017), volume 78 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 11:1–11:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

28 Saeed Mehrabi. Approximating weighted duo-preservation in comparative genomics. In
Yixin Cao and Jianer Chen, editors, Computing and Combinatorics, pages 396–406, Cham,
2017. Springer International Publishing.

29 A. R. Mushegian. Foundations of Comparative Genomics. Elsevier, 1 2007.
30 James B. Orlin. Max flows in O(nm) time, or better. In Proceedings of the Forty-fifth

Annual ACM Symposium on Theory of Computing, STOC ’13, pages 765–774, New York,
NY, USA, 2013. ACM.

31 Krister M. Swenson, Mark Marron, Joel V. Earnest-Deyoung, and Bernard M. E. Moret.
Approximating the true evolutionary distance between two genomes. J. Exp. Algorithmics,
12:3.5:1–3.5:17, 2008.

32 Yao Xu, Yong Chen, Guohui Lin, Tian Liu, Taibo Luo, and Peng Zhang. A (1.4 + epsilon)-
approximation algorithm for the 2-max-duo problem. In Yoshio Okamoto and Takeshi Tok-
uyama, editors, 28th International Symposium on Algorithms and Computation (ISAAC
2017), volume 92 of Leibniz International Proceedings in Informatics (LIPIcs), pages 66:1–
66:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Nearest constrained circular words

Guillaume Blin
LaBRI, Université de Bordeaux, CNRS UMR 5800, Talence, France
guillaume.blin@labri.fr

Alexandre Blondin Massé1

Dép. d’informatique, Université du Québec à Montréal, QC, Canada
blondin_masse.alexandre@uqam.ca

Marie Gasparoux2

LaBRI, Université de Bordeaux, CNRS UMR 5800, Talence, France
Dép. d’informatique et de recherche opérationnelle, Université de Montréal, QC, Canada
marie.gasparoux@umontreal.ca

Sylvie Hamel3

Dép. d’informatique et de recherche opérationnelle, Université de Montréal, QC, Canada
sylvie.hamel@umontreal.ca

Élise Vandomme
LaCIM, Université du Québec à Montréal, QC, Canada
elise.vandomme@lacim.ca

Abstract
In this paper, we study circular words arising in the development of equipment using shields in
brachytherapy. This equipment has physical constraints that have to be taken into consideration.
From an algorithmic point of view, the problem can be formulated as follows: Given a circular
word, find a constrained circular word of the same length such that the Manhattan distance be-
tween these two words is minimal. We show that we can solve this problem in pseudo polynomial
time (polynomial time in practice) using dynamic programming.

2012 ACM Subject Classification Theory of computation → Dynamic programming, Mathe-
matics of computing → Combinatorics on words, Applied computing → Bioinformatics

Keywords and phrases Circular constrained alignments, Manhattan distance, Application to
brachytherapy

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.6

Supplement Material A Haskell implementation of the algorithms discussed in this paper is
available at https://gitlab.com/ablondin/nearest-constrained-circular-words

1 Suppported by the Individual Discovery Grant RGPIN-417269-2013 from National Sciences and Engi-
neering Research Council of Canada (NSERC).

2 Partially supported by PoPRA project funded by Conseil Régional d’Aquitaine and European FEDER
and IdEx Bordeaux.

3 Supported by the Individual Discovery Grant RGPIN-2016-04576 from National Sciences and Engineering
Research Council of Canada (NSERC).

© Guillaume Blin, Alexandre Blondin Massé, Marie Gasparoux, Sylvie Hamel, and Élise Vandomme;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.blin@labri.fr
mailto:blondin_masse.alexandre@uqam.ca
mailto:marie.gasparoux@umontreal.ca
mailto:sylvie.hamel@umontreal.ca
mailto:elise.vandomme@lacim.ca
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.6
https://gitlab.com/ablondin/nearest-constrained-circular-words
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Nearest constrained circular words

1 Introduction

The profusion of circular molecular DNA sequences (plasmids, mitochondrial DNA, bacterial
chromosomes, etc.) and the need to compare them have opened the way to the elaboration
of time efficient algorithms for the alignment problem of circular words. The first efficient
algorithm for this problem was presented by Maes in 1990 [8] and uses a divide-and-conquer
approach to find the edit or Levenshtein distance [6] between two circular words of lengths
m and n in O(nm log(n)) time. It is based on the classical Wagner and Fischer algorithm
that finds an alignment and edit distance between two words [12]. Since then, more time
efficient algorithms have been developed, using dynamic programming [3], branch-and-bound
techniques [9], exploring either approximate or suboptimal solutions [1, 10] or alignment-free
methods [2, 4]. In this article, we focus on a related problem which is to find a constrained
circular word as close as possible of a given circular word according to the Manhattan
distance. This problem comes from currently explored brachytherapy techniques.

Brachytherapy is a form of internal radiotherapy involving short distance (brachys in
Greek) irradiation. A treatment is performed by placing small sealed radiation sources, also
called seeds, near or into the tumor site [11]. The seed is moved step by step through a
catheter, to irradiate the whole tumor. The radiation dose received at each point depends
on the time spent by the seed at this position. The resulting irradiation field is uniform
around the seed, regardless of the shape and position of the tumor. Therefore, the use of
shields is conceptually considered to modulate more precisely this field. A cylindrical shield
encapsulating the seed would block radiation, except through some prescribed openings. Let
us associate each stopping position of the seed with the prescription doses for its surrounding
circular area. This area of interest is divided, as precisely as possible, in n equal sections.
The dose for each section is either a positive integer x (tumor tissue; irradiation prescribed
for x units of time) or a 0 (healthy tissue; no irradiation needed) so that each stopping
position of the seed is represented by a circular integer word w of length n.

Let us imagine a process, such as 3D printing, allowing us to easily produce customized
cylindrical shields for brachytherapy. For a given tumor, we want to irradiate during a
selected time through an adequate cylindrical shield, such that each tissue section receives
a radiation dose as close as possible to its prescription. Moreover, let us assume that the
physical precision of our process is limited: the smallest possible closed (resp. open) sector
of a produced shield is still covering several sections of the surrounding area. Then, our
algorithmic problem can be formalized as follows: given a circular integer word w of length
n, the cylindrical shield to be designed can be seen as a constrained circular binary word of
length n where, when we replace each 1 by the selected irradiation time t, the Manhattan
distance to w is minimal.

This article is organized as follows. In Section 2, we introduce the notation and mathe-
matically describe our problem. Section 3 is dedicated to computing the minimal distance for
a fixed irradiation time, using a dynamic programming algorithm. In Section 4 we provide an
algorithm to compute the optimal solutions of the problem. Section 5 considers a particular
case of the problem where overdoses are forbidden. Finally, we give perspectives for future
work in Section 6.

2 Preliminaries

We now introduce the usual notation on words, as well as a formal definition of the considered
problem.

G. Blin, A. Blondin Massé, M. Gasparoux, S. Hamel, and É. Vandomme 6:3

2.1 Words
We briefly introduce the basic terminology on words. More details can be found in [7]. An
alphabet is a non-empty set Σ; its elements are called letters. It is called binary if |Σ| = 2. A
word w = w1 · · ·wn over Σ is a finite sequence of letters of Σ, where wi is the i-th letter of w.
The empty word is denoted by ε. We denote by Σ∗ the set of all words over Σ. A language L

over Σ is a subset of Σ∗.
The length of a word w is the number of its letters and is denoted by |w|. For a positive

integer n, we denote by Σn the set of all words of length n over Σ.
Given a word y ∈ Σ∗, we say that y is a factor of w ∈ Σ∗ if there exist two words x, z ∈ Σ∗

such that w = xyz. In particular, if x = ε (resp. z = ε), then y is called a prefix (resp. suffix)
of w. For two words w and u, let LCP(w, u) (resp. LCS(w, u)) denote the longest common
prefix (resp. suffix) of w and u. We denote by Pref(w) the set of all prefixes of a word w.
For an integer i, we write prefi(w) (resp. suffi(w)) the length-i prefix (resp. suffix) of w.

Given an integer n ≥ 0, we denote by wn the word ww · · ·w (n times). If w = xyz and
y = an, for some letter a ∈ Σ and some integer n ≥ 1, we say that y is an a-run in w. In the
sequel, each a-run y considered is maximal, that is, the last letter of x and the first one of z

are both different from a. Let P ⊂ Σ∗ be a finite set of words over Σ. A language L ⊆ Σ∗ is
said to avoid P if, for any w ∈ L and any y ∈ P , y is not a factor of w.

Two words w and w′ are conjugate, denoted by w ∼ w′, if there exist two words x and
y such that w = xy and w′ = yx. For w = w1 · · ·wn ∈ Σn, the j-th conjugate of w, for
1 ≤ j ≤ n, is the word wj · · ·wnw1 · · ·wj−1. It is easy to verify that the relation ∼ is an
equivalence relation. Any equivalence class of ∼ is called a circular word. For instance,
{01001, 10010, 00101, 01010, 10100} is a circular word.

2.2 Problem definition
For a given tumor, we want to design a cylindrical shield with openings, both enabling us
to apply the most accurate treatment possible to the patient and taking into account the
production process limitations. Assuming that the irradiation time is t, we represent this
shield by a circular word over the alphabet {0, t}, where each t stands for an opened section
and each 0 for a closed section. Let `1 be the minimal length for an opening, and `0 the
one for a closed sector between two openings. Then, in any word representing a producible
shield, each 0-run (resp. t-run) must be of length at least `0 (resp. `1). Thus, any such word
belongs to the following language of admissible words.

I Definition 1. For three positive integers `0, `1, t, let At be the language over the alphabet
{0, t} that avoids t0m0t and 0tm10 for all 0 < m0 < `0, 0 < m1 < `1. We say that a word u

is t-admissible if u ∈ At.

To reduce the amount of notation, we do not write `0, `1 as indices in Definition 1
since `0, `1 are fixed. So we write At instead of A`0,`1,t. Moreover, from now on, we fix
` = max{`0, `1}.

I Example 2. Let `0 = 3, `1 = 5 and t = 2. We have 02222200022 ∈ At, but the word
02222200222 is not t-admissible since it contains the factor 2022 and `0 = 3.

The doses applied through a shield depend on the associated irradiation time t. Therefore,
we select the most accurate shield for each relevant value of t.

I Definition 3. Let `0, `1, t be three positive integers. A word u ∈ At is said to be t-circularly
admissible if all of its conjugates are in At. The set of all t-circularly admissible words is
denoted by Ct.

CPM 2018

6:4 Nearest constrained circular words

Table 1 Comparison of the results of a naive algorithm (ugreedy and ugreedy&circ) with an optimal
solution (uoptimal) for ` = `0 = `1 = 3 and w = 111100111000. Each difference with w is underlined.
The last two runs of ugreedy are merged into a 0-run in ugreedy&circ. Only uoptimal is a proper solution.

w 1 1 1 1 0 0 1 1 1 0 0 0 d(u, w) u ∈ C1 ? u ∈ Sol(w) ?

ugreedy 1 1 1 1 0 0 0 1 1 1 0 0 2
ugreedy&circ 1 1 1 1 0 0 0 0 0 0 0 0 3 X

uoptimal 1 1 1 0 0 0 1 1 1 0 0 0 1 X X

I Example 4. Let `0 = 3, `1 = 5 and t = 2. We have 02222200022 ∈ At but it is
not t-circularly admissible since its conjugate 22222000220 is not t-admissible. We have
02222200000 ∈ Ct.

At last, we use a distance metric to assess the accuracy of the considered treatments.

I Definition 5. The Manhattan distance d between two words u and v ∈ Nn is d(u, v) =∑n
i=1 |ui − vi|, where |ui − vi| denotes the absolute value of ui − vi.

Our problem can formally be stated as follows.

I Problem 1. Given a word w over the alphabet N and two integers `0, `1, find t ∈ N+ and
u ∈ Ct that minimizes d(u, w).

Note that a solution to Problem 1 always exists (since u = 0|w| is t-circularly admissible
for any t), but is not necessarily unique. Therefore, we set the following notation. Let us
denote the set of all solutions to Problem 1 for w by

Sol(w) = {u ∈ ∪tSolt(w) | d(u, w) is minimal},

where Solt(w) = {u ∈ Ct | d(u, w) is minimal}. Observe that if ` = max{`0, `1} ≤ 1,
Problem 1 is trivial. Hence, in practice, we always consider ` ≥ 2.

Also, we always assume in the following that |w| ≥ `0 + `1. Indeed, the case where
|w| = n < `0 + `1 is also trivial since any solution for such a word w is either 0n or tn.

It is worth mentioning that the following naive, greedy strategy fails to solve Problem 1.
Let us consider the simple case where w is a binary word, and hence t = 1. Let ugreedy be
the word obtained by reading through w and beginning a new 0-run (resp. 1-run) as soon
as both a 0 (resp. 1) occurs in w and the length of the previous 1-run (resp. 0-run) is at
least `1 (resp. `0). Else, the last created run is extended. Then, there exist instances of
Problem 1 such that ugreedy /∈ C1, hence is not a proper solution. For such an instance, let
ugreedy&circ ∈ C1 be the word obtained by merging the last two runs of ugreedy into one run
of either 0 or 1 (the one giving the lowest distance to w). An instance such that neither
ugreedy nor ugreedy&circ minimizes the distance with w is presented in Table 1.

In what follows, we show that, in practice, Problem 1 can be solved by a polynomial
dynamic programming algorithm.

3 Computing the optimal distance for a fixed irradiation time

To solve Problem 1 for a given w, we first fix the irradiation time t and compute the optimal
distance for this fixed t. In other words, we compute d(u, w) for some u ∈ Solt(w).

G. Blin, A. Blondin Massé, M. Gasparoux, S. Hamel, and É. Vandomme 6:5

3.1 Distance matrix
Let `, `0, `1, n, t be positive integers such that ` = max{`0, `1} and n ≥ `0 + `1. Let w be
a word of length n over the alphabet N. In this section, we describe an algorithm that
computes the set Solt(w) for a fixed irradiation time t.

To compute the set Solt(w), we build a dynamic matrix using the possible prefixes of
u ∈ Solt(w), that is, the set

Pt = {0it | 1 ≤ i ≤ `0} ∪ {ti0 | 1 ≤ i ≤ `1} ∪ {0`0+1, t`1+1}.

In particular, for any word u ∈ At, |Pt ∩Pref(u)| = 1, i.e., there exists a unique word p ∈ Pt

such that p is a prefix of u. Note that |Pt| = `0 + `1 + 2 ≤ 2` + 2.

I Example 6. For `0 = 3 and `1 = 5, Pt = {0t, 00t, 000t, 0000, t0, tt0, ttt0, tttt0, ttttt0, tttttt}.

The following definition generalizes the notion of t-circularly admissible words, to describe
the (shorter) words yet to be extended into ones.

I Definition 7. Let n ∈ N, i ∈ {1, . . . , n}, p ∈ Pt and v ∈ At ∩ {0, t}`. Then a word u is
called t-circularly preadmissible (with respect to p and v) if it satisfies the following properties:
(i) (admissibility) u ∈ At and |u| = i;
(ii) (circular extendability) There exists a word x such that ux ∈ Ct;
(iii) (prefix compatibility) LCP(u, p) ∈ {u, p};
(iv) (suffix compatibility) LCS(u, v) ∈ {u, v}.
The set of t-circularly preadmissible words of length i with respect to p and v is denoted by
Ct,p(v, i).

Roughly speaking, u ∈ Ct,p(v, i) if u is t-admissible, starts with p, ends with v (whenever
u is long enough) and can be extended into at least one t-circularly admissible word. In
particular, we need to consider the longest common prefix (resp. suffix) of u and p (resp. u

and v) to take care of the cases where u is shorter than p (resp. shorter than v). Note that
each word of Pt is circularly preadmissible since n ≥ `0 + `1.

We now define a matrix whose entries indicate the minimum distance between increasingly
longer prefixes u′ of both w and u, so that u′ is preadmissible with respect to its unique
prefix p ∈ Pt. The columns of the matrix correspond to the length of these prefixes while
the rows correspond to the possible suffixes of these prefixes.

I Definition 8 (Distance matrix). For p ∈ Pt, let Dw,t,p be the matrix of size |At∩{0, t}`|×n

such that

Dw,t,p[v, i] = min{d(u, w1 · · ·wi) | u ∈ Ct,p(v, i)}.

for each v ∈ At ∩ {0, t}` and each i ∈ {1, . . . , n}, with the convention that min ∅ =∞.

I Example 9. Consider for instance, the word w = 013331102230313210 with `0 = 3 and
`1 = 5. Let t = 2 and p = 02. Figure 3 depicts the matrix Dw,t,p.

Note that the size of the matrix Dw,t,p, which is equal to |At ∩ {0, t}`| × n, is polynomial
with respect to ` and n. This comes from the following lemma.

I Lemma 10. The language At ∩ {0, t}` contains 2` +
(

`−min{`0,`1}
2

)
words.

CPM 2018

6:6 Nearest constrained circular words

Proof. Let v ∈ At ∩ {0, t}`. By Definition 1, v does not contain t0m0t and 0tm10 for all
0 < m0 < `0, 0 < m1 < `1. Recall that ` = max{`0, `1}. If `0 = `1 = `, the fact that |v| = `

implies that v either is a 1-run followed by a 0-run or vice-versa. Since there are ` positions
where this first run can end, this gives us ` words beginning by 1 and ` words beginning by
0. Now, if ` = `0 > `1, v can also begin and end with a 0-run, and have a 1-run of length at
least `1 in the middle. In this case, we need to decide where the first 0-run ends and where
the last 0-run begins. Hence we have ` − `1 possible positions to choose from. The case
` = `1 is symmetric and so we have that the language At ∩{0, t}` contains 2` +

(
`−min{`0,`1}

2
)

words. J

Moreover, it follows from Definition 8 that the matrices Dw,t,p keep track of the optimal
values. More precisely, let

Dw,t = min{Dw,t,p[v, n] | p ∈ Pt, v ∈ At ∩ {0, t}`}.

Then, the next theorem states that any word u such that d(u, w) = mint Dw,t is a solution
to Problem 1. Indeed, Definition 7 implies that all prefixes of a circularly admissible word u

are preadmissible.

I Theorem 11. Let u ∈ {0, t}n and i ∈ {1, . . . , n}. If u ∈ Ct, then there exist p ∈ Pt and
v ∈ At ∩ {0, t}` such that prefi(u) ∈ Ct,p(v, i). Consequently, for any u ∈ Solt(w),

d(u, w) = min{Dw,t,p[v, n] | v ∈ At ∩ {0, t}`, p ∈ Pt}.

Proof. Assume first that u ∈ Ct. Let p be the only word in Pt ∩Pref(u) and v ∈ At ∩{0, t}`

such that LCS(u, v) ∈ {prefi(u), v}. For i ≥ `, it is obvious that such a v always exists since
u ∈ Ct implies prefi(u) ∈ At. For i < `, let a be the first letter of u and v = a`−iprefi(u).
Then, all the conditions of Definition 7 are satisfied and prefi(u) ∈ Ct,p(v, i).

For the last part of the statement, we only need to show that u ∈ Ct,p(v, n) for some
v ∈ At ∩ {0, t}` and p ∈ Pt implies u ∈ Ct. Assume that u ∈ Ct,p(v, n) for adequate p and
v. Thus, u is admissible and |u| = n, so that u · ε = u ∈ Ct, by the circular extendability
property. The result then follows from the definition of Solt(w). J

In the next subsection, we show that, for a fixed t, for all p ∈ Pt, v ∈ At and i ∈
{|p|+ 1, . . . , n}, the value Dw,t,p[v, i] can be computed in constant time from at most two
values of the form Dw,t,p[v′, i− 1], where v′ ∈ At.

3.2 Dynamic programming
We describe now the dynamic computation of such matrices Dw,t,p. We begin by taking care
of the initialization.

I Lemma 12. Let p ∈ Pt and D = Dw,t,p. For v ∈ At ∩ {0, t}` and 1 ≤ i ≤ |p|, we have

D[v, i] =
{

d(prefi(w), prefi(p)), if LCS(v, prefi(p)) ∈ {v, prefi(p)};
∞, otherwise.

Proof. We first prove that u ∈ Ct,p(v, i) implies u = prefi(p). Indeed, assume that there
exists some u ∈ Ct,p(v, i). Then, by Definition 7, we have in particular that u is admissible,
|u| = i and LCP(u, p) ∈ {u, p}. Since i ≤ |p|, we deduce that LCP(u, p) = u, i.e. u = prefi(p).
Therefore, either Ct,p(v, i) = {prefi(p)} or Ct,p(v, i) = ∅.

G. Blin, A. Blondin Massé, M. Gasparoux, S. Hamel, and É. Vandomme 6:7

0 1 1 1

0

1

0

0

1

0

0

0

1

0

1

0

0

0

1

0

1

1

0

1

0

0

0

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

∈ Ct

∈ Ct

∈ Ct

∈ Ct

∈ Ct

∈ Ct

∈ Ct

∈ Ct

Figure 1 Circularly admissible words of length 12 with `0 = `1 = 3, t = 1 that have p = 01 as
prefix. They are constructed by successive extensions of admissible words complying with the prefix.
In blue is highlighted the prefix p; in yellow is the suffix of any such circularly admissible words; and
in red are the discarded extensions.

It remains to check under which conditions prefi(p) ∈ Ct,p(v, i). Clearly, prefi(p) is
admissible, since p is, and |prefi(p)| = i. Also, note that prefi(p) is circularly extendable,
since p ∈ Pt is circularly extendable whenever n ≥ `0 +`1. The prefix compatibility is trivially
verified since LCP(prefi(p), p) = prefi(p). Therefore, if LCS(v, prefi(p)) ∈ {v, prefi(p)}, then
Ct,p(v, i) = {prefi(p)} and the result follows. Otherwise, Ct,p(v, i) = ∅. J

To compute the other part of the table, we need to focus on words that are admissible
for w and that comply with the given prefix p ∈ Pt. Near the end of the table, we need to
add extra conditions to take into account the fact that suffixes of the circularly admissible
words are prescribed by p.

I Example 13. Let us consider the word w = 001100001111, t = 1, `0 = `1 = 3 and the
prefix p = 01 ∈ Pt. Figure 1 depicts all words considered in the computation of Dw,t,p, that
is, all admissible words that can be extended to a circularly admissible word complying with
the prefix p. This prefix condition is highlighted in blue. Starting from the left, we write
the possible extensions of an admissible word of length i to one of length i + 1. Observe
that this rule of extension sometimes leads to dead ends. Indeed, to be circularly admissible,
any admissible word of length |w| has to end with two 0’s since `0 = 3 and the prescribed
prefix p = 01 begins with only one 0 (this condition is highlighted in yellow). Therefore, the
extensions highlighted in red are not prefixes of any circularly admissible words, so that such
words need to be discarded.

In Theorem 14, the yellow condition corresponds to the case n − cp < i ≤ n and the
red dead ends are taken care of in the case n − cp − `a < i ≤ n − cp. In the remaining
case, Equation (1) translates the fact that any admissible word is the extension of a shorter
admissible word.

I Theorem 14. Let p = p1 . . . pk ∈ Pt and D = Dw,t,p. If p1 = 0, we set cp = `0 − |p|+ 1,
p1 = t and a = 1. Otherwise, we set cp = `1−|p|+1, p1 = 0 and a = 0. For v = v1 . . . v` ∈ At

and |p|+ 1 ≤ i ≤ n, we have

D[v, i] = d(wi, v`) + min{D[v′, i− 1] | v′ ∈ V ′}

CPM 2018

6:8 Nearest constrained circular words

where

V ′ =
{
∅, if n− cp < i ≤ n and suffi−n+cp

(v) 6∈ p∗1
or if n− cp − `a < i ≤ n− cp, suffi−(n−cp−`a)(v) 6∈ (p1)∗ and suff1(v) 6= p1;

and otherwise

V ′ =
{
{v′ ∈ {0v1 . . . v`−1, tv1 . . . v`−1} | v′v` ∈ At ∩ {0, t}`+1}, if i > `;
{(v`−i+1)`−i+2 v`−i+2 · · · v`−1}, if i ≤ `.

(1)

Proof. By Definition 8, D[v, i] is the minimum distance d(u, w1 . . . wi) over words u ∈
Ct,p(v, i). We begin by focusing on the circular extendability of such words (Condition (ii)
in Definition 7).

For any circularly admissible word x ∈ Ct, if x has prefix p with first letter p1, then x

must end with a suffix p
cp

1 since p begins with |p| − 1 times the letter p1 and the constant
cp = `p1 − (|p| − 1). Therefore, for n − cp < i ≤ n, any u ∈ Ct,p(v, i) is the prefix of a
circularly admissible word and it must end with p

i−n+cp

1 . Thus, if suffi−n+cp
(v) 6∈ p∗1, then

Ct,p(v, i) = ∅ and D[v, i] =∞. In this case, we set V ′ = ∅.
Consider now the case where n− cp − `a < i ≤ n− cp. Any circularly admissible word

x ∈ Ct which has prefix p, has suffix p
cp

1 . So the suffix s of length cp + `a of x ends with
cp times the letter p1. Since s has to be admissible, the factor p1p1 can not occur in s.
In particular, it can not occur in position in {n − cp − `a + 1, . . . , n − cp} in x. Thus,
u ∈ Ct,p(v, i) implies that u has a suffix of the form (p1)i−(n−cp−`a) or u ends with p1. Hence,
if suffi−(n−cp−`a)(v) 6∈ (p1)∗ and suff1(v) 6= p1, then Ct,p(v, i) = ∅ and D[v, i] = ∞. So we
set V ′ = ∅ in this case too.

Note that when |p| < i ≤ n− cp − `a, then any word u satisfying Conditions (i,iii,iv) of
Definition 7 always satisfies Condition (ii). Indeed, if u ends with p1, then we can concatenate
u and pn−i

1 to obtain a circularly admissible word. If u ends with p1, we can concatenate u

with (p1)`apn−i−`a
1 to get a circularly admissible word since cp ≤ n− i− `a.

We now turn our attention to the other cases where Condition (ii) is always satisfied. We
assume now that i and v are such that one of the following holds:
|p| < i ≤ n− cp − `a;
n− cp − `a < i ≤ n− cp and (suffi−(n−cp−`a)(v) ∈ (p1)∗ or suff1(v) = p1);
n− cp < i ≤ n and suffi−n+cp(v) ∈ p∗1.

We discuss two cases according to whether i ≤ ` or i > `.
Firstly, if i ≤ `, then u ∈ Ct,p(v, i) implies that u is admissible such that LCS(u, v) = u

and LCP(u, p) = p (as i ≥ |p|+ 1). In particular, u has a prefix prefi−1(u) that belongs to
Ct,p(v′, i− 1) for some v′ ∈ At ∩ {0, t}`. We claim that we can always choose v′ such that
v′v` ∈ At. Indeed, v′ has suffix prefi−1(u) and prefi−1(u) begins with at least |p|−1 times the
letter p1. Therefore, we can choose v′ to be the length-` word of p∗1prefi−1(u). Since u ∈ At,
we have prefi−1(u)v` ∈ At and v′v` ∈ At. As p1 = v`−i+1 and prefi−1(u) = v`−i+1 · · · v`−1,
the result follows. Similarly if Ct,p(v, i) = ∅, then Ct,p(v′, i) = ∅ for the length-` word
v′ ∈ v∗`−i+1v`−i+1 · · · v`−1. Hence, the equation ∞ = D[v, i] = d(v`, wi) + D[v′, i − 1] = ∞
holds also in this case.

Thus, we set V ′ = {v′ ∈ {0, t}`−i+1prefi−1(u) | v′v` ∈ At ∩ {0, t}`+1} and we have

D[v, i] = min{d(u, w1 · · ·wi) | u ∈ Ct,p(v, i)}
= d(v`, wi) + min{d(prefi−1(u), w1 · · ·wi−1) | u ∈ Ct,p(v, i)}
= d(v`, wi) + min{d(u′, w1 · · ·wi−1) | u′ ∈ Ct,p(v′, i− 1) s.t. v′ ∈ V ′}

and the result follows.

G. Blin, A. Blondin Massé, M. Gasparoux, S. Hamel, and É. Vandomme 6:9

Algorithm 1 Finding an optimal solution
1: function FindSolution(w : integer word, `0, `1: integers): integer word
2: Let tmax be the largest letter occurring in w

3: `← max{`0, `1}; m← min{`0, `1}
4: Let Dmin be a table of size 2` +

(
`−m

2
)
× |w|

5: dmin ← +∞
6: for t← 1, . . . , tmax do . tmax iterations
7: for p ∈ Pt do . O(`) iterations
8: D ← ComputeMatrix(w, t, p, `0, `1) . O(|w| · `2)
9: for v ∈ At ∩ {0, t}` do . O(`2) iterations
10: dist← D[v, |w|]
11: if dist < dmin then
12: (optimal, time, prefix, dmin, Dmin)← (v, t, p, dist, D)
13: end if
14: end for
15: end for
16: end for
17: u← Backtracking(Dmin, v, time, prefix) . O(|w|)
18: return u

19: end function

Secondly, if i > `, then u ∈ Ct,p(v, i) implies that u ∈ At ∩ {0, t}i, LCP(u, p) = p

and LCS(u, v) = v. In particular u ends either with 0v1 · · · v` or with tv1 · · · v` where
v = v1 · · · v`. As u ∈ At, its suffix of length ` + 1 belongs to At. Therefore we have
D[v, i] = d(wi, v`) + min{D[v′, i− 1]} where v′ ∈ {0v1 . . . v`−1, tv1 . . . v`−1} such that v′v` ∈
At ∩ {0, t}`+1 as required. J

4 Computing an optimal solution

Now, given any circular word with representative w, we are ready to solve Problem 1, i.e. to
give an algorithm to find a word u ∈ Sol(w). For each irradiation time t, we compute the
optimal distance d(u, w) for u ∈ Solt(w). We consider the minimum value obtained while t

is varying and we store the distance matrix associated to this minimum value (Algorithm 1).
As for the complexity of the algorithm, note that line 8 is computed using Lemma 12 and

Theorem 14 in O(|w| · `2) since |At ∩ {0, t}`| = 2` +
(

`−min{`0,`1}
2

)
. This gives us a pseudo

polynomial time algorithm of complexity O(|w| · tmax · `3) to compute an optimal distance.
An important note is that since tmax represents, in our context, the maximal time of an
irradiation, it should be kept as small as possible and in fact be a lot smaller than |w|. So,
in practice, we have a polynomial time algorithm. Finally, we obtain an optimal solution by
backtracking in O(|w|) with Algorithm 2.

A simple experimentation shows (see Figure 2) that, as expected, our algorithm becomes
quickly faster than a naive approach, which enumerates all the words in At of length |w|,
checks whether they are circularly admissible and computes their distance from w, and which
is exponential.

I Example 15 (Example 9 continued). Let w = 013331102230313210, `0 = 3 and `1 = 5. For
t ∈ {1, 2, 3}, let Pt = {0t, 00t, 000t, 0000, t0, tt0, ttt0, tttt0, ttttt0, tttttt}. Among the matrices
Dw,t,p, the one with t = 2 and p = 02 contains the minimum value in its last column and is

CPM 2018

6:10 Nearest constrained circular words

Algorithm 2 From distance to solution
1: function Backtracking(D : table , v = v1 . . . v` : integer word, t : integer, p : integer

word): integer word
2: n← number of columns of D

3: u← [v`]
4: for i← n− 1, . . ., `+1 do
5: x← v1 . . . v`

6: if D[0x1 . . . x`−1, i] ≤ D[tx1 . . . x`−1, i] then
7: x← 0x1 . . . x`−1; u← [x`−1] + u

8: else
9: x← tx1 . . . x`−1; u← [x`−1] + u

10: end if
11: end for
12: for i← `, . . . , |p|+ 1 do
13: x← x`−i+1 . . . x`−i+1︸ ︷︷ ︸

`−i+2 times

x`−i+2 . . . x`−1

14: u← [x`−1] + u

15: end for
16: u← p + u.
17: return u

18: end function

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

5 10 15 20 25 30

C
om

pu
ta

ti
on

ti
m

e
(i

n
se

co
nd

s)

Length n of the word

naive
dynamic

Figure 2 Comparison of the efficiency between Algorithm 1 and a naive algorithm, based on the
exhaustive enumeration of all circularly admissible factors. The computation times were obtained by
generating 5 random conformations for each n ∈ {5, 6, . . . , 30}, choosing the parameters (w, t, `0, `1)
in each case with uniform probability such that 0 ≤ wi ≤ 20 for i = 1, 2, . . . , n, 1 ≤ t ≤ 20, 2 ≤ `0 ≤ 5
and 2 ≤ `1 ≤ 5. Although the dynamic programming strategy is initially more costly, it rapidly
becomes faster than the naive strategy, as expected.

G. Blin, A. Blondin Massé, M. Gasparoux, S. Hamel, and É. Vandomme 6:11

A2 ∩ {0, 2}5

22222

22220

22200

22000

20002

20000

02222

00222

00022

00002

00000

w 0 1 3 3 3 1 1 0 2 2 3 0 3 1 3 2 1 0

∞ ∞ ∞ ∞ ∞ 5 6 8 8 8 9 11 12 13 14 14 ∞ ∞

0 ∞ ∞ ∞ ∞ ∞ 6 6 10 10 11 9 14 13 16 16 15 ∞

0 ∞ ∞ ∞ ∞ ∞ ∞ 6 8 12 13 11 12 15 16 18 17 15

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 10 15 13 14 13 18 18 19 17

∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 11 17 ∞ ∞ ∞ ∞ ∞ ∞

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10 13 15 16 15 16 20 19 19

∞ ∞ ∞ ∞ 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 12 15 18 ∞ ∞ ∞

∞ ∞ ∞ 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11 14 17 ∞ ∞ ∞ ∞

∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 13 16 ∞ ∞ ∞ ∞ ∞

∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11 15 ∞ ∞ ∞ ∞ ∞ ∞

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13 13 16 17 18 18 19 19

Figure 3 Matrix for the word w = 013331102230313210 with `0 = 3, `1 = 5, t = 2 and p = 02.
An arrow between two cells indicates that the value in the arrival cell is calculated from the one in
the origin cell. For ease of reading, the corresponding arrows of cells containing +∞ are not drawn.
In bold is a path corresponding to an optimal solution (not necessarily unique) for the irradiation
time 2.

represented in Figure 3. The path corresponding to the optimal solution, 022222000222222200
is drawn in bold. Note that it is not the only optimal solution. For instance, we also have
022222222222222200 ∈ Sol(w).

5 Forbidding overdoses

Let us now consider a subproblem by imposing an additional condition: no tissue section
can receive a dose greater than the one prescribed. That is, overdoses are forbidden. We
then need the following stronger condition on our previous admissible words. By abuse of
notation, and for the sake of simplicity, we use, in what follows, the same notation as in
Sections 2 and 3.

Let `, `0, `1, n be positive integers such that ` = max{`0, `1} and n ≥ `0 + `1. Let w be a
word of length n over the alphabet N. In this section, we show that the algorithm presented
in Section 4 can also be used here, but with more efficiency, when we replace Definitions 1
and 3 by the following one.

I Definition 16. Let us write w = w1 · · ·wn with wi ∈ N. Let t be a letter in N. A word
u ∈ Nn is t-admissible for w if u ∈ At and ui ≤ wi for i = 1, . . . , n. The set of all t-admissible
words for w is denoted by At(w). In addition, if u ∈ Ct, then u is said to be t-circularly
admissible for w. The set of all t-circularly admissible words for w is denoted by Ct(w).

This stronger requirement affects the values of the distance matrices. We have Dw,t,p[v, i] =
∞ if the last letter of v is greater than the i-th letter wi of w. Otherwise, Dw,t,p[v, i] is
computed according to Lemma 12 and Theorem 14.

By abuse of notation, we denote the set of all solutions to Problem 1 for w, under these
new conditions, by Sol(w) = {u ∈ ∪tSolt(w) | d(u, w) is minimal}, where Solt(w) = {u ∈
Ct(w) | d(u, w) is minimal} as before.

The “overdose-free” condition gives us the opportunity to do an efficient preprocessing
of w and have a smaller set of valid prefixes Pt which produces a significant gain in time

CPM 2018

6:12 Nearest constrained circular words

complexity. Firstly, the “overdose-free” and `1 constraints imply that we cannot irradiate
specific sections of w. So we apply the following preprocessing on w that does not affect the
solutions of Problem 1.

I Preprocessing. The first step is to set to 0 in w all letters that are smaller than t. Then
all non-zero factors4 that are too short, i.e. of length less than `1, are replaced by 0-runs.

Secondly, since it is best to work with words beginning with a 0-run and the preprocessed
w clearly does not always have that property, we need the following trivial lemma showing
that optimal solutions to Problem 1 are preserved by conjugacy.

I Lemma 17. Let t be a positive integer and u ∈ Solt(w). Let v be the j-th conjugate of u

and w′ be the j-th conjugate of w, for an integer j such that 1 ≤ j ≤ n. Then v ∈ Solt(w′).

Proof of Lemma 17. We have u ∈ Solt(w). Then, d(u, w) = d(u1, w1) + . . . + d(un, wn)
is minimal. Since v is the j-th conjugate of u and w′ be the j-th conjugate of w we
have that v = uj . . . unu1 . . . uj−1 and w′ = wj . . . wnw1 . . . wj−1, which gives us d(v, w′) =
d(uj , wj) + . . . + d(un, wn) + d(u1, w1) + . . . + d(uj−1, wj−1) = d(u, w), which is minimal. So
v ∈ Solt(w′). J

As a consequence, we can choose to work with a particular conjugate of the preprocessed
input. If it contains at least one 0, let j ∈ N be such that the j-th conjugate w′ of w begins
with a 0-run of length x, where x is maximal. The “overdose-free” condition implies that the
possible prefixes of a solution u′ ∈ Solt(w′) begin with a 0-run of length at least x. So we
can now compute an optimal solution u′ for this w′ using Algorithm 1 with the smaller set
of prefixes Pt = {0it | x ≤ i ≤ `0} ∪ {0`0+1} of length |Pt| = `0 − x + 2. Then, our optimal
solution u ∈ Solt(w) is obtained by taking the (n− j + 2)-th conjugate of u′. Finally, if the
preprocessed input w does not contain any 0, then Solt(w) = {tn}.

Though the complexity in the worst case is not improved, in many cases the number
of distance matrices to be computed is significantly lowered. For instance, the following
example shows that instead of 30 distance matrices needed to find the optimal solution in
the original settings, only one distance matrix is needed for the “overdose-free” problem.

I Example 18 (Example 9 continued). For the word w = 013331102230313210 with `0 = 3 and
`1 = 5, the preprocessing for the irradiation time t = 1 gives the word 013331100000313210.
We apply our dynamic programming algorithm to the 8-th conjugate of w that is w′ =
000003132100133311. Then Pt contains only one word and the associated matrix Dw′,1,0000
is given in Figure 4. The word u′ = 000001111100011111 belongs to Sol1(w′). Since the
minimum value in the last column of Dw′,1,0000 is 12 and d(w′, w) = 7, any u ∈ Sol1(w) is at
distance 12 + 7 from w.

For t = 2, the first step of the preprocessing of w leads to the word 003330000000303200
and the second step gives 018. Hence, we have Sol2(w) = {018}. It follows that Sol3(w) =
{018} too. Hence, Sol(w) = Sol1(w) and it contains the 12-th conjugate of u′.

6 Perspectives

Interesting extensions of the original problem could be considered. First, say that we have
several stopping positions of our irradiation seed and that each of these stopping positions

4 Here, factors are considered circularly. For instance, for `1 = 3 and t = 1, the word w = 100340022 has
only one too short non-zero factor, the one occurring in position 4.

G. Blin, A. Blondin Massé, M. Gasparoux, S. Hamel, and É. Vandomme 6:13

A1 ∩ {0, 1}5

11111

11110

11100

11000

10001

10000

01111

00111

00011

00001

00000

w′ 0 0 0 0 0 3 1 3 2 1 0 0 1 3 3 3 1 1

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ ∞ ∞ ∞ ∞ ∞ 16 12

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ ∞ ∞ ∞ ∞ ∞ 17

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ ∞ ∞ ∞ ∞ ∞

0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 6 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 ∞ ∞ ∞ ∞

0 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 6 ∞ ∞ ∞ ∞ ∞ 16 12 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 6 7 ∞ ∞ ∞ ∞ 14 12 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 2 5 7 8 ∞ ∞ ∞ 12 10 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ 2 3 6 8 9 ∞ ∞ 10 13 ∞ ∞ ∞ ∞

0 0 0 0 0 3 4 7 9 10 10 10 11 14 12 15 16 17

Figure 4 Matrix for the word w′ = 000003132100133311 with `0 = 3, `1 = 5, t = 1 and p = 0000,
in the case where overdoses are forbidden. An arrow between two cells indicates that the value in
the arrival cell is calculated from the one in the origin cell. For ease of reading, the corresponding
arrows of cells containing +∞ are not drawn. In bold is a path corresponding to an optimal solution
(not necessarily unique) for the irradiation time 1.

is represented by a different word, depicting the conformation of the tumor in that exact
position. If our cylindrical shield allows only one conformation of open and close sectors, the
problem considered here is to find the shield conformation that is as close as possible to all
the given tumor conformation words. A good heuristic here could be to find a consensus of
these given words and then to use our dynamic programming algorithm to find the best shield
conformation for this word. Some works has already been done on this idea of consensus of
circular words. Indeed, in [5], Lee et al. give an O(n2 log n) algorithm to compute, given
a set of three strings, a consensus for this set under the Hamming distance, i.e. a string
minimizing the sum of distances to all strings in the given set.

Another extension would be to be able to use several different irradiation times on one
tumor conformation (integer word w). Note that to be able to apply various irradiation
doses, we would either need a modified device able to close each open sector after a certain
irradiation time, or need to use several shield configurations (optimally, a minimal number
of them) for each stopping position among the catheter.

References

1 Horst Bunke and Urs Bühler. Applications of approximate string matching to 2d shape
recognition. Pattern Recognition, 26(12):1797–1812, 1993. doi:10.1016/0031-3203(93)
90177-X.

2 Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P. Pissis. Linear-time se-
quence comparison using minimal absent words & applications. In Evangelos Kranakis,
Gonzalo Navarro, and Edgar Chávez, editors, LATIN 2016: Theoretical Informatics -
12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, vol-
ume 9644 of Lecture Notes in Computer Science, pages 334–346. Springer, 2016. doi:
10.1007/978-3-662-49529-2_25.

3 Jens Gregor and Michael G. Thomason. Dynamic programming alignment of sequences
representing cyclic patterns. IEEE Trans. Pattern Anal. Mach. Intell., 15(2):129–135, 1993.
doi:10.1109/34.192484.

CPM 2018

http://dx.doi.org/10.1016/0031-3203(93)90177-X
http://dx.doi.org/10.1016/0031-3203(93)90177-X
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1109/34.192484

6:14 Nearest constrained circular words

4 Roberto Grossi, Costas S. Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P. Pissis, Ahmad
Retha, and Fatima Vayani. Circular sequence comparison: algorithms and applications.
Algorithms for Molecular Biology, 11:12, 2016. doi:10.1186/s13015-016-0076-6.

5 Taehyung Lee, Joong Chae Na, Heejin Park, Kunsoo Park, and Jeong Seop Sim. Finding
consensus and optimal alignment of circular strings. Theor. Comput. Sci., 468:92–101, 2013.
doi:10.1016/j.tcs.2012.11.018.

6 V. I. Levenshtein. Binary codes capable of correcting insertions and reversals. Sov. Phys.
Dokl., 10:707–710, 1966.

7 M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge Uni-
versity Press, Cambridge, 1997. doi:10.1017/CBO9780511566097.

8 Maurice Maes. On a cyclic string-to-string correction problem. Inf. Process. Lett., 35(2):73–
78, 1990. doi:10.1016/0020-0190(90)90109-B.

9 Andrés Marzal and Sergio Barrachina. Speeding up the computation of the edit distance
for cyclic strings. In 15th International Conference on Pattern Recognition, ICPR’00,
Barcelona, Spain, September 3-8, 2000., pages 2891–2894. IEEE Computer Society, 2000.
doi:10.1109/ICPR.2000.906217.

10 Ramón Alberto Mollineda, Enrique Vidal, and Francisco Casacuberta. Cyclic sequence
alignments: Approximate versus optimal techniques. IJPRAI, 16(3):291–299, 2002. doi:
10.1142/S0218001402001678.

11 R. Pötter, C. Haie-Meder, E. Van Limbergen, I. Barillot, M. De Brabandere, J. Dimopou-
los, I. Dumas, B. Erickson, S. Lang, A. Nulens, P. Petrow, J. Rownd, and C. Kirisits.
Recommendations from gynaecological (GYN) GEC-ESTRO working group (ii): Concepts
and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose
volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.
Radiotherapy and Oncology, 78(1):67–77, 2006. doi:10.1016/j.radonc.2005.11.014.

12 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.
ACM, 21(1):168–173, 1974. doi:10.1145/321796.321811.

http://dx.doi.org/10.1186/s13015-016-0076-6
http://dx.doi.org/10.1016/j.tcs.2012.11.018
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1016/0020-0190(90)90109-B
http://dx.doi.org/10.1109/ICPR.2000.906217
http://dx.doi.org/10.1142/S0218001402001678
http://dx.doi.org/10.1142/S0218001402001678
http://dx.doi.org/10.1016/j.radonc.2005.11.014
http://dx.doi.org/10.1145/321796.321811

Online LZ77 Parsing and Matching Statistics with
RLBWTs

Hideo Bannai
Department of Informatics, Kyushu University, Japan
RIKEN Center for Advanced Intelligence Project, Japan
bannai@inf.kyushu-u.ac.jp

https://orcid.org/0000-0002-6856-5185

Travis Gagie1

Diego Portales University and CeBiB, Chile
travis.gagie@gmail.com

Tomohiro I2

Frontier Research Academy for Young Researchers, Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

https://orcid.org/0000-0001-9106-6192

Abstract
Lempel-Ziv 1977 (LZ77) parsing, matching statistics and the Burrows-Wheeler Transform (BWT)
are all fundamental elements of stringology. In a series of recent papers, Policriti and Prezza (DCC
2016 and Algorithmica, CPM 2017) showed how we can use an augmented run-length compressed
BWT (RLBWT) of the reverse TR of a text T , to compute offline the LZ77 parse of T in O(n log r)
time and O(r) space, where n is the length of T and r is the number of runs in the BWT of
TR. In this paper we first extend a well-known technique for updating an unaugmented RLBWT
when a character is prepended to a text, to work with Policriti and Prezza’s augmented RLBWT.
This immediately implies that we can build online the LZ77 parse of T while still using O(n log r)
time and O(r) space; it also seems likely to be of independent interest. Our experiments, using an
extension of Ohno, Takabatake, I and Sakamoto’s (IWOCA 2017) implementation of updating,
show our approach is both time- and space-efficient for repetitive strings. We then show how
to augment the RLBWT further – albeit making it static again and increasing its space by a
factor proportional to the size of the alphabet – such that later, given another string S and
O(log logn)-time random access to T , we can compute the matching statistics of S with respect
to T in O(|S| log logn) time.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases Lempel-Ziv 1977, Matching Statistics, Run-Length Compressed Burrows-
Wheeler Transform

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.7

Acknowledgements This collaboration started at Shonan seminar 126, “Computation over Com-
pressed Structured Data” and the results from the first part of the paper were proven there.

1 Supported by FONDECYT Grant Number 1171058.
2 Supported by JSPS KAKENHI Grant Number JP16K16009.

© Hideo Bannai, Travis Gagie, and Tomohiro I;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 7; pp. 7:1–7:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:travis.gagie@gmail.com
mailto:tomohiro@ai.kyutech.ac.jp
https://orcid.org/0000-0001-9106-6192
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Online LZ77 Parsing and Matching Statistics with RLBWTs

1 Introduction

Indexes based on the Burrows-Wheeler Transform [4, 8] (BWT) have been in popular
use for over a decade, particularly in bioinformatics, for dealing with datasets that are
moderately large and compressible. Indexes based on the run-length compressed BWT [17]
(RLBWT) can achieve drastically better compression on massive and highly repetitive
datasets, such as databases of human genomes, but until recently their apparently inability
to support fast locating queries in small space stood in the way of their widespread use.
There have still been promising results published about RLBWTs, however, such as Policriti
and Prezza’s [23, 24, 25] recent demonstrations that we can use an augmented RLBWT
of the reverse of a text to compute offline the LZ77 parse of the text quickly in space
proportional to the number of runs in the BWT of the reversed text; and Ohno, Takabatake,
I and Sakamoto’s [20] recent practical implementation of an RLBWT that supports efficient
prepending of characters. Notably, Policriti and Prezza’s work led directly to Gagie, Navarro
and Prezza’s [10] very recent development of an RLBWT that supports fast locating while
still taking space proportional to the number of runs in the BWT.

In this paper we strengthen Policriti and Prezza’s result by showing how we can compute
online the LZ77 parse of T , while still using O(n log r) time and O(r) space. To do this, we
first extend a well-known technique for updating an unaugmented RLBWT when a character
is prepended to a text, to work with Policriti and Prezza’s augmented RLBWT. This result
seems likely to be of independent interest since, as we will show in the full version of this
paper, it can be applied to Gagie, Navarro and Prezza’s RLBWT as well. Assuming that
index will be used to store massive genomic databases to which new genomes will sometimes
be added, the cost of even occasional rebuilding could be prohibitive. We have implemented
our method of updating Policriti and Prezza’s augmented RLBWT on top of Ohno et al.’s
implementation of updating an RLBWT, and used it to compute the LZ77 parse online for
various datasets. Our experiments show our approach is both time- and space-efficient for
repetitive strings.

In the second part of this paper we show how to augment the RLBWT further – albeit
making it static again and increasing its space by a factor proportional to the size of the
alphabet – such that later, given another string S and O(log logn)-time random access to T ,
we can compute the matching statistics of S with respect to T in O(|S| log logn) time. We
note that there are practical compressed data structures supporting O(log logn)-time random
access to T in theory, that also usually perform well in practice. Matching statistics are a
popular tool in bioinformatics and so calculating them is of independent interest [16, 19],
but in this case we are motivated by a particular application to rare-disease detection, which
involves finding the minimal substrings in a genome that do not occur in a genomic database.
Our result is similar to Belazzougui and Cunial’s [2, 1] with two notable differences: first,
they use succinct space (i.e., O(n log σ) bits, where σ is the alphabet size), whereas we use
compressed space, bounded in terms of r; second, they do not consider pointers to longest
matches in T as part of the matching statistics of S with respect to T , which we do.

Indexes based on the BWT, not run-length compressed, have been augmented to support
functionalities far beyond standard pattern matching, but their “killer app” was DNA
assembly. That may not be the case for RLBWTs: high-throughput sequencing is resulting
in massive genomic databases and – although assembling genomes using entire databases as
references may be interesting for, e.g., pan-genomics [26] – there are many other things we
might want to do with those databases and some of them require rich query functionalities.
We note that another primary task in pan-genomics, parsing a given genome into the

H. Bannai, T. Gagie, and T. I 7:3

minimum number of phrases that can each be found in a database or, similarly, computing
the genomes RLZ [13] of the genome with respect to the database, is also straightforward
with an RLBWT. If we want the phrases to be aligned, we can use a combination of the
RLBWT and PBWT [6].

There are already compact data structures with rich functionalities, such as straight-line
programs [14], CDAWGS [3] and compressed suffix trees [18, 9], but none of them has caught
on among practitioners the way BWTs did. At the same time as we try to improve the
theoretical and practical time- and space-bounds of those data structures, therefore, we
should try to extend the functionalities of the RLBWT (while keeping it practical). Even
apart from the specific results we present in this paper, we hope it provides momentum for
that effort.

2 Preliminaries

For the sake of brevity, we assume the reader is familiar with LZ77 (we consider the original
version, with which phrases end with mismatch characters), matching statistics, the BWT
and RLBWT and how to search with them, etc. In this section we first briefly describe
our simplification of Policriti and Prezza’s augmented RLBWT (without going into their
algorithm for LZ77 parsing) and then we review how to update a standard BWT or RLBWT
when a character is prepended to the text.

2.1 Policriti and Prezza’s augmented RLBWT
In addition to all the data structures associated with the unaugmented RLBWT for a text,
Policriti and Prezza’s augmented RLBWT stores the suffix-array entries SA[i] and SA[j]
that are the positions in the text of the first and last characters in each run BWT[i..j]. They
showed how, with this extra information, a backward search for a pattern can be made to
return the location of one of its occurrence (assuming it occurs at all).

We can simplify and strengthen Policriti and Prezza’s result slightly, storing only the
position of the first character of each run and finding the starting position of the lexicographi-
cally first suffix starting with a given pattern. When we start a backward search for a pattern
P [1..m], the initial interval is all of BWT[1..n] and we know SA[1] since BWT[1] must be
the first character in a run. Now suppose we have processed P [i..m], the current interval is
BWT[j..k] and we know SA[j]. If BWT[j] = P [i− 1] then the interval for P [i− 1..m] starts
with BWT[LF(j)], where LF(j) = SA−1[SA[j]− 1] can be found as usual, and so we know
SA[LF(j)] = SA[j] − 1. Otherwise, the interval for P [i − 1..m] starts with BWT[LF(j′)],
where j′ is the position of the first occurrence of P [i − 1] in BWT[j..k]; since BWT[j′] is
the first character in a run, j′ is easy to compute and we have SA[j′] stored and can thus
compute SA[LF(j′)].

I Lemma 1. We can augment an RLBWT with O(r) words, where r is the number of runs
in the BWT, such that after each step in a backward search for a pattern, we can return the
starting position of the lexicographically first suffix prefixed by the suffix of the pattern we
have processed so far.

2.2 Updating an RLBWT
Suppose we have an RLBWT for $T [i + 1..n], where $ does not occur in T , and know
the position d of $ in the current BWT. To obtain an RLBWT for $T [i..n], we compute
rankT [i](d) and use it to compute LF(p), where p is the position (which we need not compute)

CPM 2018

7:4 Online LZ77 Parsing and Matching Statistics with RLBWTs

of the occurrence before $ of T [i] in the current BWT. We replace $ by T [i] in the RLBWT,
which may require merging that copy of T [i] with the preceding run, the succeeding run, or
both. We then insert $ after BWT[LF(p)], which may require splitting a run. Updating the
RLBWT for TR is symmetric when we append a character to T . Ohno et al. gave a practical
implementation that supports updates in O(r) time and backward searches in O(log r) time
per character in the pattern.

I Lemma 2 (see [20]). We can build an RLBWT for TR incrementally, starting with the
empty string and iteratively prepending T [1], . . . , T [n] – so that after i steps we have an
RLBWT for (T [1..i])R – using a total of O(n log r) time. Backward searches always take
O(log r) time per character in the pattern.

3 Online LZ77 Parsing

Our first idea is to extend the technique from Subsection 2.2 for updating an unaugmented
RLBWT, to apply to an augmented RLBWT. Then we can build an augmented RLBWT for
TR incrementally, starting with the empty string and iteratively prepending T [1], . . . , T [n].
Our second idea is to mix prepending characters to a suffix of TR with backward searching
for a prefix of that suffix, which is equivalent to appending characters to a prefix of T while
searching for a suffix of that prefix.

3.1 Updating an augmented RLBWT

Suppose we have an augmented RLBWT for $T [i+ 1..n], where $ does not occur in T , and
know the position d of $ in the current BWT. To obtain an augmented RLBWT for $T [i..n],
we compute rankT [i](d) and use it to compute LF(p), where p is the position (which we
need not compute) of the occurrence before $ of T [i] in the current BWT. At this point we
perform some calculations that were not necessary in Subsection 2.2 since, if we will split a
run when we reinsert $, we should know the position in T of the character after where we
will reinsert it.

If there is a copy of T [i] after $ in the current BWT, we find the first such copy BWT[q],
which must be the first character of a run so we have SA[q] stored. If there is no such copy,
then we find the first copy BWT[q] of the smallest character lexicographically larger than
T [i], which again must be the first character of a run so we have SA[q] stored. If there is no
such character, then BWT[LF(p)] is the last character in the current BWT, in which case
we can proceed as in Subsection 2.2.

We replace $ by T [i] in the RLBWT, which may require merging that copy of T [i] with
the preceding run, the succeeding run, or both. We then insert $ after BWT[LF(p)], which
may require splitting a run. If so, the position in T of the character now after $ is SA[q]− 1.
Updating the augmented RLBWT for TR is symmetric when we append a character to T .
We can extend Ohno et al.’s implementation to support updates to the augmented RLBWT
for TR in O(r) time and backward searches still in O(log r) time per character in the pattern.

I Lemma 3. We can build an augmented RLBWT for TR incrementally, starting with the
empty string and iteratively prepending T [1], . . . , T [n] – so that after i steps we have an
RLBWT for (T [1..i])R – using a total of O(n log r) time. Backward searches always take
O(log r) time per character in the pattern.

H. Bannai, T. Gagie, and T. I 7:5

3.2 Computing the parse
Suppose we currently have an augmented RLBWT for (T [1..j])R and the following informa-
tion:

the phrase containing T [j + 1] in the LZ77 parse of T starts at T [i];
the non-empty interval I for (T [i..j])R in the BWT for (T [1..j − 1])R;
the position in (T [1..j − 1])R of the first character in I;
the interval I ′ for (T [i..j + 1])R in the BWT for (T [1..j])R;
the position in (T [1..j])R of the first character in I ′, if I ′ is non-empty.

If I ′ is empty, then the phrase containing T [j + 1] is T [i..j + 1] with T [j + 1] being the
mismatch character, and we can compute the position of an occurrence of T [i..j] in T [1..j−1]
from the position of the first character in I. We then prepend T [j + 1] to (T [1..j])R, update
the augmented RLBWT, and start a new backward search for T [j + 1].

If I ′ is non-empty, then we know the phrase containing T [j + 2] starts at T [i], so we
prepend T [j + 1] to (T [1..j])R, update the augmented RLBWT (while keeping track of the
endpoints of I ′), and perform a backward step for T [j + 2] to obtain the interval I ′′ for
(T [i..j + 2])R in the BWT for (T [1..j + 1])R. If I ′′ is non-empty, the augmented RLBWT
returns the position in (T [1..j + 1])R of the first character in I ′′.

Continuing like this, we can simultaneously incrementally build the augmented RLBWT
for TR while parsing T . Each step takes O(log r) time and we use constant workspace on
top of the augmented RLBWT, which always contains at most r runs, so we use O(r) space.
This gives us our first main result:

I Theorem 4. We can compute the LZ77 parse for T [1..n] online using O(n log r) time and
O(r) space, where r is the number of runs in the BWT for TR.

3.3 Experimental results
We implemented in C++ the online LZ77 parsing algorithm of Theorem 4 (the source
code is available at [21]). We evaluate the performance of our method comparing with the
state-of-the-art implementations for LZ77 parsing that potentially can work in the peak
RAM usage smaller than n lg σ + n lgn bits. A brief explanation and setting of each method
we tested is the following:

LZscan [12, 15]. It runs in O(nd log(n/d)) time and (n/d) lgn bits in addition to the
input string, where d is a parameter that can be used to control time-space tradeoffs. We
set d so that (n/d) lgn is roughly half of the input size.
h0-lz77 [22, 7]. Online LZ77 parsing based on BWT running in O(n logn) time and nH0+
o(n log σ) +O(σ logn) bits of space. The current implementation runs in O(n logn log σ)
time.
rle-lz77-1 [25, 7]. Offline LZ77 parsing algorithm based on RLBWT with two sampled
suffix array entries for each run. In theory it runs in O(n log r) time and 2r lgn+ r lg σ +
o(r lg σ) +O(r lg(n/r) + σ lgn) bits of working space. The current implementation runs
in O(n log r log σ) time.
rle-lz77-2 [25, 7]. Offline LZ77 parsing algorithm based on RLBWT that theoretically
runs in O(n log r) time and z(lgn+ lg z) + r lg σ+ o(r lg σ) +O(r lg(n/r) + σ lgn) bits of
working space. The current implementation runs in O(n log r log σ) time.
rle-lz77-o [Theorem 4]. To make the parsing done in a reasonable time, our online
RLBWT implementation is based on [20], which runs faster (actually in O(n log r) time)
than [7] but needs 2r lg r extra bits. Online LZ77 parsing can be done in O(n log r) time
and 2r lg r + r lgn+O(r lg(n/r) + σ lgn) bits of working space.

CPM 2018

7:6 Online LZ77 Parsing and Matching Statistics with RLBWTs

For the above methods other than rle-lz77-2, the output space is not counted in the working
space since they compute LZ77 phrases sequentially. On the other hand, rle-lz77-2 counts
z lgn bits of working space to store the starting positions of the phrases as they are not
computed sequentially.

We tested on highly repetitive datasets in repcorpus3, well-known corpus in this field,
and some larger datasets created from git repositories. For the latter, we use the script [11]
to create 1024MiB texts (obtained by concatenating source files from the latest revisions of a
given repository, and truncated to be 1024MiB) from the repositories for boost4, samtools5
and sdsl-lite6 (all accessed at 2017-03-27). The programs were compiled using g++6.3.0 with
-Ofast -march=native option. The experiments were conducted on a 6core Xeon E5-1650V3
(3.5GHz) machine using a single core with 32GiB memory running Linux CentOS7.

In Table 1, we compare our method rle-lz77-o with rle-lz77-2, which is the most
relevant to our method as well as the most space efficient one. The result shows that our
method significantly improves the running time while keeping the increase of the space within
4 times. It can be observed that the working space of rle-lz77-o gets worse as the input is
less compressible in terms of RLBWT (especially for Escherichia_Coli).

Figure 1 compares all the tested methods for some selected datasets. It shows that
rle-lz77-o exhibits an interesting time-space tradeoff: running in just a few times slower
than LZscan while working in compressed space.

4 Matching Statistics

The matching statistics of S[1..m] with respect to T tell us, for each suffix S[i..m] of S, what
is the length `i of the longest substring S[i..i + `i − 1] that occurs in T and the position
pi of one of its occurrences there. We can compute `i and pi using Policriti and Prezza’s
augmented RLBWT for TR by performing a backward search for each (S[i..m])R – i.e.,
performing a backward step for S[i], then another for S[i + 1], etc. – until the interval in
the BWT becomes empty, and then undoing the last backward step. However, to compute
all the matching statistics this way takes time proportional to the sum of all the ` values –
which can be quadratic in m – times the time for a backward step.

Suppose we use Policriti and Prezza’s augmented RLBWT for T (which stores the
positions in T of both the first and last character of each run) to perform a backward search
for S – i.e., performing a backward step for S[m], then another for S[m− 1], etc. – until the
interval in the BWT becomes empty, and then undo the last backward step. This gives us
the last few ` and p values in the matching statistics for S, and the interval BWT[i..j] for
some suffix S[k..m] of S such that S[k − 1..m] does not occur in T (meaning S[k − 1] does
not occur in BWT[i..j]). Consider the suffixes of T starting with the occurrences of S[k − 1]
preceding BWT[i] and following BWT[j] in the BWT, which are the last and first characters
in runs, respectively. By the definition of the BWT, one of these two suffixes has the longest
common prefix with S[k− 1..m] – and, equivalently, with S[k− 1]T [pk..n] – of all the suffixes
of T . Therefore, if we know which of those two suffixes has the longer common prefix with
S[k − 1]T [pk..n], we can deduce pk−1.

3 See http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf for statistics of the datasets.
4 https://github.com/boostorg/boost
5 https://github.com/samtools/samtools
6 https://github.com/simongog/sdsl-lite

http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf
https://github.com/boostorg/boost
https://github.com/samtools/samtools
https://github.com/simongog/sdsl-lite

H. Bannai, T. Gagie, and T. I 7:7

Table 1 Comparison of LZ77 parsing time and working space (WS) between rle-lz77-o (short-
ened as -o) and rle-lz77-2 (shortened as -2), where |T | is the input size (considering each character
takes one byte), z is the number of LZ77 phrases for T and r is the number of runs in RLBWT for
T R.

dataset |T | (MiB) z r
time (sec) WS (MiB)
-o -2 -o -2

fib41 255.503 40 42 131 1334 0.065 0.071
rs.13 206.706 39 76 111 1402 0.065 0.072
tm29 256.000 54 82 104 1889 0.065 0.072
dblp.xml.00001.1 100.000 48,882 172,195 94 4754 2.694 2.258
dblp.xml.00001.2 100.000 48,865 175,278 94 4786 2.744 2.273
dblp.xml.0001.1 100.000 58,180 240,376 97 4823 3.791 2.714
dblp.xml.0001.2 100.000 58,171 269,690 97 4804 4.253 2.860
dna.001.1 100.000 198,362 1,717,162 114 3951 27.537 9.672
english.001.2 100.000 216,828 1,436,696 112 4884 23.115 10.177
proteins.001.1 100.000 221,819 1,278,264 111 4288 20.481 9.246
sources.001.2 100.000 178,138 1,211,104 105 4886 19.524 9.007
cere 439.917 1,394,808 11,575,582 737 17883 199.436 73.154
coreutils 195.772 1,286,069 4,732,794 252 9996 78.414 51.822
einstein.de.txt 88.461 28,226 99,833 82 4098 1.606 1.618
einstein.en.txt 445.963 75,778 286,697 437 21198 4.675 3.773
Escherichia_Coli 107.469 1,752,701 15,045,277 233 4674 255.363 72.527
influenza 147.637 557,348 3,018,824 168 5909 49.319 23.078
kernel 246.011 705,790 2,780,095 291 12053 46.036 28.426
para 409.380 1,879,634 15,635,177 734 17411 272.722 91.515
world_leaders 44.792 155,936 583,396 43 2002 9.092 5.932
boost 1024.000 20,630 63,710 925 46760 1.094 1.344
samtools 1024.000 158,886 562,326 1020 48967 9.445 7.190
sdsl 1024.000 210,501 758,657 1010 47964 12.677 9.138

Our first idea is to further augment Policriti and Prezza’s RLBWT such that, for any
position i in the BWT and any character c, we can tell whether cT [SA[i]] has a longer
common prefix with the suffix of T starting with the occurrence of c preceding BWT[i], or
with the one starting with the occurrence of c following BWT[i]. Although it sounds at first
like this should use Ω(n) space, in fact it takes O(σ) space per run in the BWT, where σ
is the alphabet size. With this information, we can compute the p values for the matching
statistics, using a right-to-left pass over S.

Once we have the p values, we use a left-to-right pass over S to compute the ` values.
Notice that it would again take time at least proportional to the sum of the ` values, to start
at each T [pi] and extract characters until finding a mismatch. Since `i+1 cannot be less than
`i − 1, however, if we have a compact data structure that supports O(log logn)-time random
access to T – such as the RLZ parse implemented with a y-fast trie or a bitvector [13, 5] –
then we can compute all the ` values in O(m log logn) total time using small space. Since
the size of the RLZ parse is generally comparable to that of the RLBWT when there is a
natural reference sequence, which is the case when dealing with databases of genomes from
the same species, using random access to T seems unlikely to be an obstacle in practice.

CPM 2018

7:8 Online LZ77 Parsing and Matching Statistics with RLBWTs

Figure 1 Comparison of LZ77 parsing time and working space.

4.1 Further augmentation

For each run BWT[i..k] and each character c except the one in that run, we add to Policriti
and Prezza’s augmented RLBWT the threshold position j between i and k such that, for
i ≤ i′ < j, each string cT [SA[i′]..n] has a longer common prefix with the suffix of T starting
at the copy of c preceding BWT[i] but, for j ≤ k′ ≤ k, each string cT [SA[k′]..n] has a longer
common prefix with the suffix of T starting at the copy of c following BWT[k]. By the
definition of the BWT, the length of the longest common prefix with the suffix of T starting
at the copy of c preceding BWT[i], is non-increasing as we go from BWT[i] to BWT[k],
and the length of the longest common prefix with the suffix of T starting at the copy of c
following BWT[k] is non-decreasing; therefore there is at most one such threshold j. Dealing
with special cases, such as when even cT [SA[i]..n] has a longer common prefix with the suffix
of T starting at the copy of c following BWT[k], takes a constant number of extra bits, so in
total we use O(rσ) space for this additional augmentation, where r is now the number of
runs in the BWT for T (not TR).

I Lemma 5. We can augment an RLBWT for T with O(rσ) words, where r is the number
of runs in the BWT for T and σ is the size of the alphabet, such that for any position i in the
BWT and any character c, in O(1) time we can tell whether cT [SA[i]] has a longer common
prefix with the suffix of T starting with the occurrence of c preceding BWT[i], or with the
one starting with the occurrence of c following BWT[i].

H. Bannai, T. Gagie, and T. I 7:9

Algorithm 1 Computing p values for the matching statistics of S with respect to T , using
an augmented RLBWT for T . For simplicity we ignore special cases, such as when some
character in S does not occur in T .

procedure computePs(S)
q ← position of the first or last character in any run
t← position of BWT[q] in T
for i← m. . . 1 do

if BWT[q] 6= S[i] then
if BWT[q] is before the threshold for its run then

q ← position of the preceding occurrence of S[i] in the BWT
else

q ← position of the following occurrence of S[i] in the BWT
t← position of BWT[q] in T

pi ← t

q ← LF(q)
t← t− 1

4.2 Algorithm
As we have said, our algorithm consists of first computing all the p values in the matching
statistics using a right-to-left pass over S, then computing all the ` values using a left-to-right
pass. We first choose q to be the position of the first or last character in any run and set
t to be its position in T . We then walk backward in S and T until we find a mismatch
S[i] 6= BWT[q], at which point we reset q to be the position of either the copy of S[i]
preceding BWT[q] or of the one following it, depending on whether BWT[q] is before or
after the threshold position for S[i] in its run. The time is dominated by backward-stepping,
which can be made O(log logn) with Policriti and Prezza’s RLBWT, so we use a total of
O(m log logn) time. Algorithm 1 shows pseudocode.

Once we have the p values, we make a left-to-right pass over S to compute the ` values.
We start with S[1] and T [p1] and walk forward, comparing S to T character by character,
until we find a mismatch S[1 + `1 − 1] 6= T [p1 + `1 − 1], and set `1 appropriately. We
know `2 ≥ `1 − 1, so S[2..2 + `1 − 2] = T [p2..p2 + `1 − 2] and we can jump directly to
comparing S[2 + `1 − 1..m] to T [p2 + `1 − 1..m] character by character until we find a
mismatch, S[2 + `2 − 1] 6= T [p2 + `2 − 1], and set `2 appropriately. Continuing like this with
O(log logn)-time random access to T , we compute all the ` values in O(m log logn) time.
Algorithm 2 shows pseudocode. This gives us our second main result:

I Theorem 6. We can augment an RLBWT for T with O(rσ) words, where r is the number
of runs in the BWT for T and σ is the size of the alphabet, such that later, given S[1..m]
and O(log logn)-time random access to T , we can compute the matching statistics for S with
respect to T in O(m log logn) time.

4.3 Application: Rare-disease detection
Each substring S[i..i+`i−1] is necessarily a right-maximal substring of S that has a match in
T , but not necessarily a left-maximal one. We can easily post-process the matching statistics
of S in O(m) time to find the maximal substrings with matches in T : if `i = `i+1 + 1, then
we discard `i+1 and pi+1. Similarly, in O(m) time we can find all the minimal substrings

CPM 2018

7:10 Online LZ77 Parsing and Matching Statistics with RLBWTs

Algorithm 2 Computing ` values for the matching statistics of S with respect to T , using
the p values and random access to T . Again, for simplicity we ignore special cases, such as
when some character in S does not occur in T .

procedure computeLs(S, p1, . . . , pm)
`0 ← 1
for i← 1 . . .m do

`i ← `i−1 − 1
while S[i+ `i] = T [pi + `i] do

`i ← `i + 1

of S that have no matches in T : for each maximal matching substring of S, extending it
either one character to the right or one character to the left yields a minimal non-matching
substring; assuming each character in S occurs in T , this yields all the minimal non-matching
substrings of S.

Finding all the non-matching substrings of a string relative to a large database of strings
has applications to bioinformatics, specifically, in rare-disease discovery. For example, we
might want to preprocess a large database of human genomes such that when a patient
arrives with an unknown disease we suspect to be genetic, we can quickly find all the minimal
substrings of his or her genome that do not occur in the database.

5 Recent and Future Work

We noticed recently (after the submission deadline) that we can easily remove the σ from
the space bound in Theorem 6: between two consecutive runs of a character, we need store
only a single position where suffixes switch from having a longer common prefix with the
suffix following the last character in the earlier run, to having a longer common prefix with
the suffix following the first character in the later run. Given a position in the BWT and a
character c, we find the preceding and following runs of c’s and simply check on which side
of the threshold between them the given position lies.

We think we have also found an efficient way to build the augmented RLBWT from
Theorem 6, by first storing the length of the longest common prefix (LCP) of the suffixes
following the characters on either side of each run boundary in the BWT. To find these
LCP values, we start at the position in the BWT of the first character of the text, find the
positions in the text of its neighbours in the BWT, and use random access to walk backwards
in the text, performing character-by-character comparisons until we know the LCP values.
We then move to the position in the BWT of the second character in the text. This time,
however, we know the LCP values are not less than the previous LCP values minus 1 each,
and we can use random access to skip pairs of characters we already know match, avoiding
unnecessary comparisons. Repeating this for each character of the text, from left to right, we
calculate all the LCP values in O(n log logn) total time, but we store only those at the ends
of runs in the BWT. We can then support access to the array of all LCP values at the same
time we support access to the suffix array. For each pair of consecutive runs of a character,
we scan the LCP array entries between then to find the position of the threshold between
them. This takes a total of O(σn log logn) time.

We will update Section 4 appropriately in the full version of this paper. Now that we
have a reasonable way of constructing the data structure from Theorem 6, we also plan to
implement and test it, working toward a prototype for our target application of rare-disease
detection.

H. Bannai, T. Gagie, and T. I 7:11

References
1 Djamal Belazzougui and Fabio Cunial. Fast matching statistics in small space. In Proceed-

ings of the 17th Symposium on Experimental Algorithms (SEA), pages 179–190, 2014.
2 Djamal Belazzougui and Fabio Cunial. Indexed matching statistics and shortest unique

substrings. In Proceedings of the 21st Symposium on String Processing and Information
Retrieval (SPIRE), pages 179–190, 2014.

3 Djamal Belazzougui and Fabio Cunial. Representing the suffix tree with the CDAWG.
In Proceedings of the 28th Symposium on Combinatorial Pattern Matching (CPM), pages
7:1–7:13, 2017.

4 Michael Burrows and David J. Wheeler. A block sorting lossless compression algorithm.
Technical Report 124, DEC, 1994.

5 Anthony J. Cox, Andrea Farruggia, Travis Gagie, Simon J. Puglisi, and Jouni Sirén.
RLZAP: relative Lempel-Ziv with adaptive pointers. In Proceedings of the 23rd Sympo-
sium on String Processing and Information Retrieval (SPIRE), pages 1–14, 2016.

6 Richard Durbin. Efficient haplotype matching and storage using the positional Burrows-
Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

7 Dynamic: dynamic succinct/compressed data structures library. URL: https://github.
com/xxsds/DYNAMIC.

8 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):552–581, 2005.

9 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-runs
bounded space. Technical Report 1705.10382, arXiv.org, 2017.

10 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in BWT-
runs bounded space. In Proceedings of the 19th Symposium on Discrete Algorithms (SODA),
pages 1459–1477, 2018.

11 get-git-revisions: Get all revisions of a git repository. URL: https://github.com/
nicolaprezza/get-git-revisions.

12 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing.
In Proceedings of the 13th Symposium on Experimental Algorithms (SEA), pages 139–150,
2013.

13 Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative lempel-ziv compression
of genomes for large-scale storage and retrieval. In Proceeings of the 17th Symposium on
String Processing and Information Retrieval (SPIRE), pages 201–206, 2010.

14 Markus Lohrey. Algorithmics on slp-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

15 Lzscan. URL: https://www.cs.helsinki.fi/group/pads/.
16 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I Tomescu. Genome-scale

algorithm design. Cambridge University Press, 2015.
17 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of

highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308,
2010.

18 Gonzalo Navarro and Alberto Ordóñez Pereira. Faster compressed suffix trees for repetitive
collections. ACM Journal of Experimental Algorithmics, 21(1):1.8:1–1.8:38, 2016.

19 Enno Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

20 Tatsuya Ohno, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. A faster im-
plementation of online run-length Burrows-Wheeler transform. In Proceedings of the 28th
International Workshop on Combinatorial Algorithms (IWOCA), 2017. To appear.

21 Online rlbwt. URL: https://github.com/itomomoti/OnlineRlbwt.

CPM 2018

https://github.com/xxsds/DYNAMIC
https://github.com/xxsds/DYNAMIC
https://github.com/ nicolaprezza/get-git-revisions
https://github.com/ nicolaprezza/get-git-revisions
https://www.cs.helsinki.fi/group/pads/
https://github.com/itomomoti/OnlineRlbwt

7:12 Online LZ77 Parsing and Matching Statistics with RLBWTs

22 Alberto Policriti and Nicola Prezza. Fast online Lempel-Ziv factorization in compressed
space. In Proceedings of the 22nd Symposium on String Processing and Information Re-
trieval (SPIRE), pages 13–20, 2015.

23 Alberto Policriti and Nicola Prezza. Computing LZ77 in run-compressed space. In Pro-
ceedings of the Data Compression Conference (DCC), pages 23–32, 2016.

24 Alberto Policriti and Nicola Prezza. From LZ77 to the run-length encoded Burrows-Wheeler
transform, and back. In Proceedings of the 28th Symposium on Combinatorial Pattern
Matching (CPM), pages 17:1–17:10, 2017.

25 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded
BWT. Algorithmica, Jul 2017.

26 Daniel Valenzuela and Veli Mäkinen. CHIC: a short read aligner for pan-genomic references.
bioRxiv, 2017.

Non-Overlapping Indexing – Cache Obliviously
Sahar Hooshmand
Dept. of Computer Science, University of Central Florida - Orlando, USA
sahar@cs.ucf.edu

Paniz Abedin
Dept. of Computer Science, University of Central Florida - Orlando, USA
paniz@cs.ucf.edu

M. Oğuzhan Külekci
Informatics Institute, Istanbul Technical University - Turkey
kulekci@itu.edu.tr

Sharma V. Thankachan
Dept. of Computer Science, University of Central Florida - Orlando, USA
sharma.thankachan@ucf.edu

Abstract
The non-overlapping indexing problem is defined as follows: pre-process a given text T[1, n] of
length n into a data structure such that whenever a pattern P [1, p] comes as an input, we can
efficiently report the largest set of non-overlapping occurrences of P in T. The best known
solution is by Cohen and Porat [ISAAC, 2009]. Their index size is O(n) words and query time is
optimal O(p+nocc), where nocc is the output size. We study this problem in the cache-oblivious
model and present a new data structure of size O(n logn) words. It can answer queries in optimal
O(pB + logB n+ nocc

B) I/Os, where B is the block size.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Suffix Trees, Cache Oblivious, Data Structure, String Algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.8

Funding Part of this work was done while the last author was visiting the third author with the
TÜBİTAK-BİDEB 2221 program grant number 1059B211700766. This work has also received
funding from the European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No 69094 in the form of student travel grant to present
a preliminary version of this work in the 12th Workshop on Compression, Text and Algorithms
(WCTA), 2017.

1 Introduction and Related Work

Text indexing is fundamental to many areas in Computer Science such as Information
Retrieval, Bioinformatics, etc. The primary goal here is to pre-process a long text T[1, n]
(given in advance), such that whenever a shorter pattern P [1, p] comes as query, all occ
occurrences (or simply, starting positions) of P in T can be reported efficiently. Such queries
can be answered in optimal O(p+occ) time using the classic Suffix tree data structure [14, 15].
It takes O(n) words of space. In this paper, we focus on a variation of the text indexing
problem, known as the non-overlapping indexing. Here we are interested in finding the largest
set of occurrences of P in T (denote its size by nocc), such that any two (distinct) text
positions in the output are separated by at least p characters. This primitive is central to
data compression [2, 5]. The above task can be easily reduced to a set of geometric range

© Sahar Hooshmand, Paniz Abedin, M. Oğuzhan Külekci, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 8; pp. 8:1–8:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahar@cs.ucf.edu
mailto:paniz@cs.ucf.edu
mailto:kulekci@itu.edu.tr
mailto:sharma.thankachan@ucf.edu
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Non-Overlapping Indexing – Cache Obliviously

queries, specifically (1 + nocc) number of orthogonal range next value queries on the suffix
array [12] of T. Although efficient, the solutions based on this approach are not optimal
in terms of query time [11, 13]. The first space-efficient (linear) and optimal O(p + nocc)
time solution is due to Cohen and Porat [5]. They took an alternative strategy in which
the periodicity of both text and the pattern are exploited. Subsequently, Ganguly et al. [9]
showed that the problem can also be solved in succinct space.

Unfortunately, all the aforementioned indexes heavily relay on random access over the
data structure, therefore efficient only when resides in the internal memory (usually RAM,
the random access memory). To this end, we revisit this problem in the secondary memory
model in the context of very large input data. Here we assume that the data (and the data
structure) is too big to fit within the main memory, therefore deployed in a (much larger, but
slower) secondary memory. Popular models of computation are (i) the cache-aware model
and (ii) the cache-oblivious model. We now preset a brief description of both models.

In the cache-aware model (a.k.a. external memory model, I/O model and disk access
model), introduced by Aggarwal and Vitter [1] the CPU is connected directly to an internal
memory (of size M words), which is then connected to a very large external memory (disk).
The disk is partitioned into blocks/pages and the size of each block is B words. The CPU
can only work on data inside the internal memory. Therefore, to work on some data in
the external memory, the corresponding blocks have to be transferred to internal memory.
The transfer of a block from external memory to internal memory (or vice versa) is referred
as an I/O operation. The operations inside the internal memory are orders of magnitude
faster than the time for an I/O operation. Therefore, they are considered free, and the
efficiency of an algorithm is measured in terms of the number of I/O operations. The
cache-oblivious model is essentially the same as above, except the following key twist: M
and B are unknown at the time of the design of algorithms and data structures [8, 7]. This
means, if a cache-oblivious algorithm performs optimally between two levels of the memory
hierarchy, then it is optimal at any level of the memory hierarchy. Lastly, cache-oblivious
algorithms are usually more intricate than cache-aware algorithms.

Contribution. We present the first I/O-optimal solution for the non-overlapping indexing
problem. To the best of our knowledge, this is the first of its kind over both cache-oblivious
and cache-aware models of computation. The main result is summarized below.

I Theorem 1. There exists an O(n logn) space data structure for the non-overlapping
indexing problem in the cache oblivious model, where n is the length of the input text T. It
can report the largest set of non-overlapping occurrences of an input pattern P [1, p] in their
sorted order in optimal O(pB + logB n+ nocc

B) I/Os, where nocc is the output size.

The main component of our index is the suffix tree data structure and its cache-oblivious
counter part [4]. The suffix tree of T (denoted by ST) is a compact trie of all n suffixes of
T. It has n leaves and at most (n − 1) internal nodes (each having at least two children).
Corresponding to each leaf in ST, there is a unique suffix in T. Specifically, the ith leftmost
leaf `i corresponds to the ith lexicographically smallest suffix of T, denoted by T[SA[i], n].
Edges are labeled and the concatenation of edge labels on the path from root to a node
u is called its path, denoted by path(u). The locus of a pattern P , denoted by locus(P)
is the node closest to root, such that P is a prefix of its path. The array SA is called
the suffix array of T. The suffix range of a pattern P , denoted by [sp(P), ep(P)] is the
range of (contiguous) leaves in the subtree of locus(P). Therefore, the set of occurrences
of P is {SA[i] | sp(P) ≤ i ≤ ep(P)} and ep(P) − sp(P) + 1 = occ. The suffix range can

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:3

be computed in O(p) time. The space is O(n) words for both suffix array and suffix tree.
For our problem, we maintain both the suffix tree and its cache-oblivious equivalent by
Brodal and Fagerberg [4], which occupies O(n) space and can compute locus(P) in optimal
O(p/B + logB n) I/Os. Moreover, we design a data structure for reporting occurrences in
the sorted order (see Theorem 2), which may be of independent interest. We remark that all
results in this paper assumes M > B2+Θ(1) as in [4].

I Theorem 2. A given text T[1, n] can be indexed in O(n logn) words in the cache oblivious
model, such that we can report all occ occurrences of an input pattern P [1, p] in their sorted
order in optimal O(pB + logB n+ occ

B) I/Os.

We arrive at Theorem 1 by exploring the periodicity of query pattern. Let Q be the
shortest prefix of P such that P can be written as the concatenation of α ≥ 1 copies of
Q and a (possibly empty) prefix R of Q. i.e., P = QαR. Then, the period of P , denoted
by period(P) is |Q|. For example, Q = cat, R = ca and α = 3 when P = catcatcatca. The
period can be computed in O(p) time [6]. Note that nocc ≤ occ ≤ (α+ 1)nocc.

2 An Overview of Our Non-Overlapping Indexing Framework

In this section, we present a high level description of our query algorithm with some key steps
summarized as lemmas (long proofs are deferred to later sections). We maintain a suffix tree
ST of T, however all pattern matching tasks are performed using its cache-oblivious counter
part [4]. The structure in Theorem 2 is also maintained.

We say that the input pattern P is periodic if period(P) ≤ |P |/2 (equivalently α ≥ 2),
else we say P is aperiodic (i.e., α = 1). The first step of our algorithm is to verify if P is
periodic or not, and we rely on the result in Lemma 3. We handle both cases separately.

I Lemma 3. Given a pattern P [1, p] which appears at least once in T, we can find if P is
periodic or not in in O(p/B + logB n) I/Os using an O(n logn) space structure. Also, it
returns period(P) if P is periodic.

2.1 Handling aperiodic case
When P is aperiodic, occ = Θ(nocc) and we answer queries using the structure in Theorem 2
as follows. First obtain all occurrences of P in their sorted order. Then, scan them in
the ascending order and do the following: report the first occurrence and report any other
occurrence iff it is not overlapping with the last reported occurrence. This step can be
implemented in occ/B = Θ(nocc/B) I/Os. Thus O(p/B + logB n+ nocc/B) I/Os overall.

2.2 Handling periodic case
For periodic case, we start with the following simple observation.

I Observation 4. If we list all the occurrences of P = QαR in T in the ascending order,
we can see clusters of occurrences holding the following property: two consecutive occurrences
1. within a cluster, are exactly period(P) distance apart
2. not within a cluster cannot have an overlap of length period(P) or more.

I Lemma 5. The number of clusters, denoted by π is O(nocc).

Proof. Two occurrences i, j not within the same cluster overlap only if i is the last occurrence
in a cluster and j is the first occurrence within the next cluster (follows from Observation 4(2)).
Clearly, only one of them can be a part of the final output. Therefore, nocc ≥ π/2. J

CPM 2018

8:4 Non-Overlapping Indexing – Cache Obliviously

Figure 1 Here P = catcatca, x is the cluster-head and y = x + 21 is the cluster-tail. Then, the
largest set of non-overlapping occurrences with the first occurrence included, and the first occurrence
excluded are {x, x + 9, x + 18} and {x + 3, x + 12, x + 21}, respectively.

Algorithm 1 Reports the largest set of non-overlapping occurrences of P in T.
1: report S1
2: for (i = 2 to π) do
3: if (the last reported occurrence and L′[i] are non-overlapping) then report Si
4: else report S∗i
5: end for

I Definition 6. An occurrence is a cluster-head (resp., cluster-tail) iff it is the first (resp.,
last) occurrence within a cluster. Also, let L′ (resp., L′′) be the list of all cluster heads (resp.,
tails) in their ascending order.

Observe that the distance between two consecutive non-overlapping occurrences within
the same cluster, denoted by λ is period(P) × dp/period(P)e. Let Ci be the ith leftmost
cluster and Si (resp., S∗i) be the largest set of non-overlapping occurrences in Ci including
(resp., excluding) the first occurrence L′[i] in Ci. Specifically (see Figure 1 for an illustration),

Si = {L′[i] + kλ | for k = 0, 1, 2, 3, ... until L′[i] + kλ ≤ L′′[i]}

S∗i = {period(P) +L′[i] +kλ | for k = 0, 1, 2, 3, ... until (period(P) +L′[i] +kλ ≤ L′′[i])}

Then, the final output can be generated by just examining L′ and L′′ using the procedure
in Algorithm 1. Correctness follows from Observation 4. In short, the periodic case can be
handled in O(nocc/B) I/Os, given L′ and L′′. What remains to show is, how to obtain the
arrays L′ and L′′ in optimal I/Os and we rely on the following lemmas for this crucial step.

I Lemma 7. By maintaining an O(n logn) space structure, the array L′′ corresponding to
any query pattern P [1, p] can be obtained in O(p/B + logB n+ π/B) I/Os.

I Lemma 8. By maintaining an O(n logn) space structure, the array L′ corresponding to
any query pattern P [1, p] can be obtained in O(p/B + logB n+ π/B) I/Os.

By combining all pieces together, we obtain O(n logn) total space and p/B + logB n+
π/B + nocc/B = O(p/B + logB n + nocc/B) query I/Os. This completes the proof of
Theorem 1. The rest of this paper is dedicated to missing proofs.

3 Preliminaries for Missing Proofs

3.1 Heavy Path Decomposition
We first categorize the nodes in ST into light and heavy. The root is light. For each internal
node u, its heaviest child is the one with the maximum number of leaves, denoted by size(·),
in its subtree, breaking ties arbitrarily. Therefore, the size of a light node is at most half of
the size of its parent. Thus we have the following result.

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:5

I Lemma 9 (Harel and Tarjan [10]). The number of light nodes on any root to leaf path is at
most (logn).

I Corollary 10. The sum of sub-tree sizes of all light nodes in ST is ≤ n logn.

A heavy path is a downward path in the tree, starting from a light node with all other
nodes on the path are heavy. Each heavy path ends at a unique leaf node. Also, each node
intersect with exactly one heavy path. For brevity, we shall use the following terminologies:
for any node u in ST, let

hp_root(u) be the first light node on the path from u to root. Equivalently, hp_root(u)
is the root of the heavy path that intersects with u.
hp_leaf(u) = `j , where u and `j are on the same heavy path. Note that `j is unique for
u.

3.2 Right-Maximally-Periodic Prefixes
I Definition 11. We call a substring T[i, i+ l − 1] right-maximally-periodic iff T[i, i+ l − 1]
is periodic and T[i, i+ l] is aperiodic.

I Lemma 12. For a fixed suffix T[i, n], let l1, l2, ..., lk be the length of all right-maximally-
periodic prefixes in their ascending order and q1, q2, ..., qk be their respective periods. A p-long
prefix of T[i, n] is periodic (with period qj) iff 2× qj ≤ p ≤ lj for some j.

I Lemma 13. The number of right-maximally-periodic prefixes of T[i, n] is O(logn).

Proof. From the definition of periodic and aperiodic, qj ≥ lj−1 and lj ≥ 2× qj . Therefore,
lj ≥ 2× lj−1 and lk ≥ 2k−1l1. Hence k ≤ 1 + log(n− i+ 1). J

3.3 1-Sided Sorted Range Reporting
We now prove two useful results.

I Lemma 14. Let S = {(x1, y1), (x2, y2), ..., (xm, ym)} be a set of m points in 2D. A 1-Sided
range sorted range reporting query “r” asks to return the points in S(r,−) = {(xi, yj) ∈ S |
xi ≤ r} in the sorted order of their y-coordinates. The query can be answered in optimal
O(1 + k/B) I/Os using an O(m) space data structure, where k is the size of S(r,−).

Proof. Without loss of generality, assume x1 ≤ x2 ≤ x3 ≤ ... ≤ xm. Let A[1,m] be an array
of length m, such that A[i] = xi. We maintain a Cache-Oblivious B-tree [3] over A, so that
for any query r, we can find k = max{i | A[i] ≤ r} in O(logBm) I/Os. Let D be an array of
points in the ascending order of x-coordinates (i.e., D[i] = (xi, yi)) and Dj be an array of
first j-points in D in the ascending order of y-coordinates. We explicitly maintain Dj for
j = 1, 2, 4, 8, ...,m. Total space is O(m).

Now to answer a query r, first find k using a predecessor search query. Then, simply scan
through the array Dk′ (in the left to right order) and report only those points (xi, yj) with
xi ≤ r, where k′ = 2dlog ke. I/Os required is k′/B = O(k/B). J

I Lemma 15. Let S = {(x1, y1), (x2, y2), ..., (xm, ym)} be a set of m points in 2D. A 1-Sided
range sorted range reporting query “r” asks to return the points in S(r,+) = {(xi, yj) ∈ S |
xi ≥ r} in the sorted order of their y-coordinates. The query can be answered in optimal
O(1 + k/B) I/Os using an O(m) space data structure, where k is the size of S(r,+).

Proof. Maintain the data structure in Lemma 14 over the set S∗ = {(−xi, yj) | (xi, yj) ∈ S}.
When r comes as an input, obtain S∗(−r,−) in y-sorted order and report them in the same
order after replacing each point (a, b) by (−a, b). J

CPM 2018

8:6 Non-Overlapping Indexing – Cache Obliviously

4 Proof of Theorem 2

Our data structure is simple. For each light node w in the suffix tree, define a set Hw of
two-dimensional points, where

Hw = {(δ(i), SA[i]) | `i is under w}

Here δ(i) is the string depth of the lowest common ancestor (lca) of `i and hp_leaf(w).
Note that |Hw| = size(w). For each light node w, we maintain a 1-sided sorted range
reporting structure (in Lemma 15) over the set Hw. The total space is O(n logn) words
(from Corollary 10).

To answer a query P , we first find the locus of P via searching in the cache-oblivious
suffix tree in O(p/B + logB n) I/Os [4]. The remaining task is to report the set {SA[i] |
`i is under locus(P)} with its elements sorted. Let w be the first light node on the path from
locus(P) to the root of ST. Specifically, w = hp_root(locus(P)). Then, the following holds.

{SA[i] | `i is under locus(P)} = {SA[i] | string depth of lca(`i, hp_leaf(w)) is ≥ p}

The remaining part of the query can be completed via a single 1-sided sorted range reporting
query “p” over the set of points in Hw. The total number of I/Os required is O(p/B +
logB n+ occ/B).

5 Proof of Lemma 3

The design of our data structure is straightforward from the discussion in Section 3.2. For
each T[i, n], we maintain the lengths and periods of all its right-maximally-periodic prefixes.
The space required is O(n logn) words (refer to Lemma 13).

When a pattern P comes, we first find an occurrence i of P in T. Then examine lengths of
all right-maximally-periodic prefixes (and their periods) of T[i, n] and decide if P is periodic
or not in (logn)/B = O(logB n) I/Os. Also, retrieve its period if it is periodic.

6 Proof of Lemma 7

We use the following observation [9]: a text position y is the rightmost occurrence of P within
a cluster (i.e., cluster-tail) iff T[y, n] is prefixed by P = QαR, but not by QP = Q1+αR.
This means, L′′ is the sorted list of all elements in the following set of size π (see Figure 2).

{SA[i] | i ∈ [sp(P), ep(P)] ∧ i /∈ [sp(QP), ep(QP)]}

We consider the following two cases separately.

6.1 Case 1: locus(P) and locus(QP) are on different heavy paths
Here hp_root(locus(P)) 6= hp_root(locus(QP)) (we perform this check in O(1) I/Os). The
following lemma is the key.

I Lemma 16. When locus(P) and locus(QP) are on different heavy paths, occ = Θ(nocc).

Proof. Let u be the first node on the path from locus(QP) to root, such that locus(P)
and the parent of u are on the same heavy path and u′ be the heavy sibling of u. Then,
clearly, size(locus(QP)) ≤ size(u) ≤ size(u′) ≤ π and π + size(locus(QP)) = occ. Therefore,
π ≥ occ/2 and π ≤ nocc, hence occ = Θ(nocc). J

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:7

Figure 2 Suffix tree with the region corresponding to L′ highlighted.

In the light of the above lemma, when the query P falls in this case, we can in fact
generate the final output directly instead of generating L′′ first and using it. First obtain
all occurrences of P in the sorted order (using the structure in Theorem 2) and extract the
largest set of non-overlapping occurrences from it by following the exact same procedure as
in aperiodic case. I/Os required is p/B + logB n+ occ/B = O(p/B + logB n+ nocc/B).

6.2 Case 2: locus(P) and locus(QP) are on the same heavy path

We start with two definitions and a crucial observation based on them.

I Definition 17. A pattern P is a power (or perfectly periodic) iff P = Qα for an integer
α ≥ 2.

For example, aabaabaab is a power, whereas aabaaba is not.

I Definition 18. We call a node in the suffix tree special if it is the locus of at least one
power. Note that a special node can be the locus of a pattern which is not a power.

I Observation 19. Let P be a periodic pattern with Q being its period(P)-long prefix. Then,
among all nodes on the path from locus(QP) to locus(P), excluding locus(QP), exactly one
node is special.

6.2.1 The Data Structure

For each light node w in the suffix tree, we maintain the following structure.
Let v0 = w, v1, v2, v3, .., vh be the special nodes on the heavy path corresponding to w (in

the ascending order of pre-order rank) and let vh+1 = hp_leaf(w) if it is not special. Define
sets Gw(vj) for j = 0, 1, 2, ..., h, such that Gw(vh) = {(δ(i), SA[i]) | `i is under vh} and for
j < h,

Gw(vj) = {(δ(i), SA[i]) | `i is under vj , but not under vj+1}

We then maintain the 1-sided sorted range reporting structures (in Lemma 14 and Lemma 15)
over the set of points in each Gw(vj). The space required for a fixed w is O(size(w)) words.
Hence, the space over all lights nodes is O(n logn).

CPM 2018

8:8 Non-Overlapping Indexing – Cache Obliviously

6.2.2 The Algorithm
When P is a power, L′′ can be obtained via a single 1-sided sorted range reporting query
“(p+|Q|−1)” on the structure in Lemma 14 over the set Gw(vj), where w = hp_root(locus(P))
and vj = locus(P).

For the other case, choose w = hp_root(locus(P)) and vj = locus(Qα+1). Then obtain
elements in the following two sets, in the sorted order of SA[·] via 1-sided sorted range
reported queries.
1. {(δ(i), SA[i]) | `i is under vj , but not under locus(QP)} via a query “(p + |Q| − 1)” on

the structure in Lemma 14 over Gw(vj).
2. {(δ(i), SA[i]) | `i is under locus(P), but not under vj} via a 1-sided sorted range report-

ing query “p” on the structure in Lemma 15 maintained over Gw(vj−1).

By scanning both arrays in linear I/Os, specifically O(π/B) I/Os, we obtain L′′.

7 Proof of Lemma 8

For L′, we use the following observation: for each cluster of P in T, there is a corresponding
cluster of ←−P in

←−
T . Here

←−
T (resp., ←−P) is the reverse of T (resp.., P). Then, we have the

following simple observation.

I Observation 20. Suppose z is the last occurrence of ←−P within a cluster of ←−P in ←−T , then
(n+ 2− p− z) is the first occurrence of P within the corresponding cluster of P in T.

Therefore, we simply construct and maintain our previous data structure for computing L′′,
but on ←−T . When P comes as input to the original problem, we find L′′ corresponding to ←−P
in ←−T . Then, simply report (n+ 2− p− L′′[i])’s in the descending order of i. Note that we
need to maintain the suffix tree (and its cache-oblivious version) of ←−T as well. However, the
total space is still O(n logn).

8 Concluding Remarks

We present the first I/O optimal data structure for the non-overlapping indexing problem in
both cache-award and cache-oblivious models of computation. We remark that by combining
our framework with standard techniques, we can design an I/O optimal, O(n log2 n) space
structure for the range non-overlapping problem in the cache-aware model. However, it is
not clear if the same is possible in cache-oblivious model. An interesting question is: Can we
improve the space (yet, keeping the query I/Os optimal), at least in the cache-award model ?

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.
2 Alberto Apostolico and Franco P Preparata. Data structures and algorithms for the string

statistics problem. Algorithmica, 15(5):481–494, 1996.
3 Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious b-trees.

SIAM J. Comput., 35(2):341–358, 2005. doi:10.1137/S0097539701389956.
4 Gerth Stølting Brodal and Rolf Fagerberg. Cache-oblivious string dictionaries. In Pro-

ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, January 22-26, 2006, pages 581–590. ACM Press, 2006. URL:
http://dl.acm.org/citation.cfm?id=1109557.1109621.

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1137/S0097539701389956
http://dl.acm.org/citation.cfm?id=1109557.1109621

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:9

5 Hagai Cohen and Ely Porat. Range non-overlapping indexing. In Yingfei Dong, Ding-
Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Computation, 20th International
Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings,
volume 5878 of Lecture Notes in Computer Science, pages 1044–1053. Springer, 2009. doi:
10.1007/978-3-642-10631-6_105.

6 Maxime Crochemore. String-matching on ordered alphabets. Theoretical Computer Science,
92(1):33–47, 1992.

7 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 285–298. IEEE Computer
Society, 1999. doi:10.1109/SFFCS.1999.814600.

8 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, 2012. doi:10.1145/2071379.
2071383.

9 Arnab Ganguly, Rahul Shah, and Sharma V Thankachan. Succinct non-overlapping index-
ing. In Annual Symposium on Combinatorial Pattern Matching, pages 185–195. Springer,
2015.

10 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

11 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. Range non-overlapping indexing
and successive list indexing. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh,
editors, Algorithms and Data Structures, 10th International Workshop, WADS 2007, Hali-
fax, Canada, August 15-17, 2007, Proceedings, volume 4619 of Lecture Notes in Computer
Science, pages 625–636. Springer, 2007. doi:10.1007/978-3-540-73951-7_54.

12 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

13 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Fedor V. Fomin and
Petteri Kaski, editors, Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and
Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings, volume 7357 of Lecture Notes in
Computer Science, pages 271–282. Springer, 2012. doi:10.1007/978-3-642-31155-0_24.

14 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

15 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE
Computer Society, 1973. doi:10.1109/SWAT.1973.13.

CPM 2018

http://dx.doi.org/10.1007/978-3-642-10631-6_105
http://dx.doi.org/10.1007/978-3-642-10631-6_105
http://dx.doi.org/10.1109/SFFCS.1999.814600
http://dx.doi.org/10.1145/2071379.2071383
http://dx.doi.org/10.1145/2071379.2071383
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1007/978-3-540-73951-7_54
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/978-3-642-31155-0_24
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13

Faster Online Elastic Degenerate String Matching
Kotaro Aoyama
Department of Electrical Engineering and Computer Science, Kyushu University, Japan
kotaro.aoyama@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Tomohiro I
Frontier Research Academy for Young Researchers, Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

https://orcid.org/0000-0001-9106-6192

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

https://orcid.org/0000-0002-6856-5185

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
An Elastic-Degenerate String [Iliopoulus et al., LATA 2017] is a sequence of sets of strings, which
was recently proposed as a way to model a set of similar sequences. We give an online algorithm
for the Elastic-Degenerate String Matching (EDSM) problem that runs in O(nm

√
m logm+N)

time and O(m) working space, where n is the number of elastic degenerate segments of the text,
N is the total length of all strings in the text, and m is the length of the pattern. This improves
the previous algorithm by Grossi et al. [CPM 2017] that runs in O(nm2 +N) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases elastic degenerate pattern matching, boolean convolution

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.9

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers JP17H06923
(YN), JP17H01697 (SI), JP16H02783 (HB), and JP25240003 (MT).

1 Introduction

The degenerate string matching problem [7, 1] is a variant of the string matching problem
when a position in the text may contain uncertainties; the text string, called a degenerate
string, can be regarded as a string over an extended alphabet that consists of non-empty
subsets of the original alphabet. A string matches a degenerate string if the subset at each
position of the degenerate string contains the character of the pattern at the corresponding
position. The Elastic Degenerate String Matching (EDSM) problem, first proposed by

© Kotaro Aoyama, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 9; pp. 9:1–9:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kotaro.aoyama@inf.kyushu-u.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:tomohiro@ai.kyutech.ac.jp
https://orcid.org/0000-0001-9106-6192
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:takeda@inf.kyushu-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Faster Online Elastic Degenerate String Matching

Iliopoulos et al. [9], is a further generalization of this setting, where substrings of the text
may contain uncertainties; the text string, called an elastic degenerate string (ED string), can
be regarded as a sequence of non-empty sets of strings. A string matches an ED string if it is
a substring of a string that can be obtained by taking a string from each position of the ED
string, and concatenating them. The motivation behind these problems is in bioinformatics,
where multiple genomic sequences from individuals of the same species can be obtained.
Recently, rather than than considering a single reference sequence, it is increasingly more
common to consider the multiple sequences [4], and ED strings is one way to model them.

Iliopoulos et al. [9], gave an (offline) algorithm which runs in O(N + αγnm) time, where
m is the length of the given pattern, n and N are respectively the length and total size
of the given elastic-degenerate text, α and γ respectively represent the maximum number
of strings in any elastic degenerate symbols and the largest number of elastic-degenerate
symbols spanned by any occurrence of the pattern in the text.

The online version of the problem was considered by Grossi et al. [8], where they gave
an algorithm which runs in O(nm2 + N) time. They also give an algorithm which runs
in O(Ndmw e) time, where w is the computer word size. Furthermore, Bernardini et al. [3]
consider the EDSM problem with errors, and presented an on-line algorithm that runs in
O((k + 1)2

mG+ (k + 1)N) time and O(m) space, where k is the number of allowed errors
(insertion/deletion/substitution), and n ≤ G ≤ N is the total size of the sets of subsets (i.e.,
the total number of strings) in the ED string. They also present a faster O((k+ 1)(mG+N))
time and O(m) space algorithm when considering only substitution errors.

In this paper, we improve the first algorithm by Grossi et al., and give a faster on-
line algorithm for EDSM that runs in O(nm

√
m logm+N) time and O(m) working space,

assuming that the alphabet size is constant, as in previous work. For the space complexity, we
will also assume that the strings at each position of the ED string are given in lexicographically
sorted order. We note that the algorithm can be considered better than that of Bernardini et
al. (with k = 0), when each subset in the ED string may contain many strings, which could
be the case as more sequences from many individuals become increasingly available.

2 Preliminaries

2.1 Strings

For any set Σ, an element of Σ∗ is called a string over alphabet Σ. We will assume that |Σ| is
constant. The empty string is denoted by ε. For any string w ∈ Σ∗, if w = xyz for (possibly
empty) strings x, y, z, then, x, y, and z are respectively called a prefix, substring, suffix of w.
The length of w is denoted by |w|. Let Pref (w),Sub(w),Suf (w) respectively denote the set
of prefixes, substrings, and suffixes of w. For any integers 1 ≤ i ≤ j ≤ |w|, w[i] denotes the
ith symbol of w, i.e., w = w[1] · · ·w[|w|], and w[i..j] = w[i] · · ·w[j] denotes a substring of w
that starts at position i and ends at position j. For convenience, let w[i..j] = ε when i > j,
w[i..j] = w[1..j] when i < 1, and w[i..j] = w[i..|w|] when j > |w|.

If w = xu = vx for non-empty strings u, v and possibly empty x, then x is called a border
of w. The border array of w is an array B[1..|w|] of integers such that B[i] stores the length
of the longest border of w[1..i]. It is well known that the border array of w can be computed
in linear time in an on-line fashion. Also, given the border array of w, the length of all
borders of w can be computed in linear time.

K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 9:3

2.2 Elastic-Degenerate Strings
Let Σ̃ denote the set of all finite non-empty subsets of Σ∗ excluding {ε}. An Elastic-
Degenerate string, or ED string, over alphabet Σ, is a string over Σ̃, i.e., an ED string is an
element of Σ̃∗. Below is an example of an ED string over Σ = {A,C, T}.

I Example 1 (Elastic-Degenerate String).

T̃ =
{
A,

C

}
·


C,

CA,

TACA

 ·


ε,

AC,

C

 ·
{
AT,

C

}

Let T̃ denote an ED string of length n, i.e. |T̃ | = n. We assume that for any 1 ≤ i ≤ n,
the set T̃ [i] is implemented as an array and can be accessed by an index, i.e., T̃ [i] =
{T̃ [i][k] | k = 1, . . . , |T̃ [i]|}. We will also make the assumption that the strings in T̃ [i], i.e.,
T̃ [i][1], . . . , T̃ [i][|T̃ [i]|], are sorted in lexicographic order. For any c̃ ∈ Σ̃, ‖c̃‖ denotes the
total length of all strings in c̃, and for any ED string T̃ , ‖T̃‖ denotes the total length of all
strings in all T̃ [i] for i = 1, . . . , |T̃ |, i.e., ‖c̃‖ =

∑
s∈c̃ |s| and ‖T̃‖ =

∑n
i=1 ‖T̃ [i]‖. We note

that Grossi et al. define |ε| = 1 when computing ‖T̃‖, but this only increases the value of
‖T̃‖ by at most n (which is less than ‖T̃‖, in our definition, since ‖c̃‖ ≥ 1 for any c̃ ∈ Σ̃) and
thus does not affect the asymptotic complexities.

An ED string T̃ can be thought of as a representation of the set of strings A(T̃) =
T̃ [1]× · · · × T̃ [n], where A×B = {xy | x ∈ A, y ∈ B} for any sets of strings A and B. The
string in Example 1 can be viewed as a representation of a of 2× 3× 3× 2 = 36 strings.

For any ED string T̃ and string P , we say that P matches T̃ if
1. |T̃ | = 1 and P is a substring of some s ∈ T̃ [1], or,
2. |T̃ | > 1 and P = p1 · · · p|T̃ | where p1 is a suffix of some string in T̃ [1], p|T̃ | is a prefix of

some string in T̃ [|T̃ |], and pi ∈ T̃ [i] for all 1 < i < |T̃ |.
We say that an occurrence of P in T̃ starts at position i and ends at position j, if P matches
T̃ [i..j]. Below is the problem we solve.

I Problem 2 (Elastic-Degenerate String Matching (EDSM) [8]). Given a string P of length
m, and an ED string T̃ of length n and size N ≥ m, output all positions j in T̃ where at
least one occurrence of P ends.

We will measure space complexity in terms of working space, and exclude the input pattern
and ED string, which we assume to be stored in read-only memory, as well as the space for
output, which is write-only.

3 Tools

3.1 Suffix Trees
A suffix tree [11] ST (w) of a string w is a compacted trie of all suffixes of w$, where $ is
a special symbol that does not occur in w. In other words, the suffix tree of w is a rooted
tree where each edge has string labels, where all and only suffixes of w$ are represented
in the concatenation of all labels on a root to leaf path. Furthermore, each internal node
has at least two outgoing edges where the first character of the label of the outgoing edges
are distinct. We assume that each leaf is labeled by an integer that represents the starting
position of the suffix that corresponds to the root to leaf path. Although the total length
of all labels in a suffix tree is not O(|w|), each label can be represented in constant space,

CPM 2018

9:4 Faster Online Elastic Degenerate String Matching

i.e., two integers representing positions in w, since any edge label is a substring of w. It
is well known that the suffix tree of w can be constructed in O(|w|) time for constant size
alphabets [11] (as well as integer alphabets [6]).

For any node u in the suffix tree, let str(u) denote the concatenation of all edge labels on
the root to u path, and let len(u) = |str(u)|. Let parent(u) denote the parent of u, and anc(u),
desc(u) respectively, the set of nodes in the suffix tree that are ancestors and descendants of
u, including u itself. A position in the suffix tree can be represented a a pair (u, d), where u
is a node and d ≥ 0 is an integer such that d ≤ |str(u)| and d > |str(parent(u))| (if parent(u)
exists). For any substring s of w, the locus of s in ST (w) is a position (u, d) in ST (w) where
s = str(u)[1..d]. For any string s, the locus of the longest prefix s′ of s that is a substring of
w can be obtained in O(|s′|) time by simply traversing the suffix tree from the root.

We denote by L(u), the set of integers that are labels on the leaf nodes that are descendants
of u. Let Occ(w, s) denote the set of occurrences of s in w, i.e. Occ(w, s) = {i | w[i..i+ |s| −
1] = s}. Suffix trees can be used to compute this set efficiently, since Occ(w, s) = L(vs),
where (vs, |s|) is the locus of s in ST (w), if it exists, and Occ(w, s) = ∅ otherwise.

I Lemma 3 ([11]). Given the suffix tree ST (w) of string w, Occ(w, s) for any string s can
be computed in O(|s|+ Occ(w, s)) time.

3.2 Sum Set and FFT
For any sets of integers A,B, we denote by A⊕B = {a+ b | a ∈ A, b ∈ B} the sum set of A
and B.

I Lemma 4 (Efficient Computation of SumSet). For any integer m and sets of integers
A,B ⊆ [1..m], A⊕B can be computed in O(m logm) time and O(m) space.

Proof. For any set X ⊆ [1..m], let I(X) denote an array of Boolean (true or false) values
where I(X)[i] = true if and only if i ∈ X. For any 1 ≤ i ≤ m, I(A⊕B) can be computed
by the Boolean convolution:

I(A⊕B)[i] =
m∨
j=1

(I(A)[i− j] ∧ I(B)[j]).

It is well known that these values can be done in total O(m logm) time and O(m) space for
all 1 ≤ i ≤ m, using the Fast Fourier Transform [5]. The set A⊕B can easily be obtained in
O(m) time by scanning I(A⊕B)[1..m]. J

4 Algorithm

We first give an overview of the algorithm of Grossi et al. [8] which our algorithm is based
on, and then describe our improvements to it.

4.1 Overview of Algorithm
The algorithm is on-line, i.e., for each ED string position i = 1, . . . , n, it outputs i as an
answer if there is an occurrence of P that ends at i, i.e., P matches T̃ [l..i] for some l ≤ i.
Although the total number of strings in A(T̃ [1..i]), and thus the total number of occurrences
of P in all these strings, can be exponential in i, the problem can be solved efficiently since

K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 9:5

we only consider whether there is an end of an occurrence of P in position i of the ED string.
To this end, the key of the algorithm is to compute for each i, the set

S≤i = {j | 1 < j ≤ m,∃s ∈ A(T̃ [1..i]) s.t. P [1..j − 1] is a suffix of s}

which represents the positions j in P such that P [1..j − 1] occurs as a suffix of some string
in A(T̃ [1..i]). In other words, the set corresponds to potential positions j in P that can
result in a match later, if P [j..m] is a prefix of some string in A(T̃ [i+ 1..n]). For each i, the
computation performs the following steps:
1. Determine whether P matches T̃ [i].
2. If i > 1, determine whether P matches T̃ [l..i] for some l < i.
3. Compute S≤i .
Position i is output as an ending position of an occurrence of P , if and only if a match is
found in either Step 1 or 2. We basically follow previous work for computing Steps 1 and 2,
but consider the space usage. Our main contribution is the improvement of Step 3. We note
that the set S≤i , or more generally any subset of {1, . . . ,m} can be represented as a bit array
of size m, and determining membership, as well as adding/deleting elements, can be done in
O(1) time. Also, set union can be performed in O(m) time.

4.2 Computing Step 1

In Step 1, we simply determine whether P is a substring of some s ∈ T̃ [i].

I Lemma 5. Step 1 can be computed in total of O(m+ ‖T̃‖) time for all 1 ≤ i ≤ n, using
O(m) space.

Proof. For Step 1, we can use a linear time pattern matching algorithm such as KMP [10].
Since the pattern does not change, the preprocessing of the pattern is done once in O(m)
time. The matching can be done in O(‖T̃‖) time and O(m) space. J

4.3 Computing Step 2

Steps 2 (as well as Step 3) is computed using the suffix tree ST (P) of P , and also uses S≤i−1.

I Lemma 6. Given S≤i−1, Step 2 can be computed in total of O(m + ‖T̃‖) time for all
1 ≤ i ≤ n, using O(m) space.

Proof. We first construct the suffix tree ST (P) of P , which takes O(m) time and space.
Since, by definition, a value j ∈ S≤i−1 if and only if j > 1 and P [1..j − 1] is a suffix of some
s ∈ A(T̃ [1..i− 1]), we have, as observed previously, an occurrence of P that ends at position
i if and only if there exist j ∈ S≤i−1 and t ∈ T̃ [i] such that P [j..m] is a prefix of t.

This can be checked as follows: For each string t ∈ T̃ [i], traverse the suffix tree from
the root with t. We will detect such an occurrence of P , if, at any point in the traversal,
we reach a position corresponding to a suffix P [j..m] for some j ∈ S≤i−1, i.e., when we are
at the locus (u, d) of a prefix t′ = t[1..d] of t during the traversal, either (1) u is a leaf that
corresponds to the suffix P [j..m] for some j ∈ S≤i−1, and d = m − j + 1, or, (2) u has an
outgoing edge labeled by $ that leads to a leaf that corresponds to the suffix P [j..m] for
some j ∈ S≤i−1. Since the traversal can be done in O(|t|) time for each t, the total time for
all 1 ≤ i ≤ n is O(‖T̃‖). J

CPM 2018

9:6 Faster Online Elastic Degenerate String Matching

4.4 Computing Step 3
To compute S≤i , we will compute the two sets:

S=
i = {j | 1 < j ≤ m,∃s ∈ T̃ [i] s.t. P [1..j − 1] is a suffix of s}
S<i = {j + |t| : P [j..j + |t| − 1] = t, j ∈ S≤i−1, t ∈ T̃ [i], j + |t| ≤ m}.

Then, it is clear that S≤i = S=
i ∪ S<i .

4.4.1 Computing S=
i

We first describe how to compute S=
i .

I Lemma 7. S=
i can be computed in total of O(m+ ‖T̃‖) time for all 1 ≤ i ≤ n, using O(m)

space.

Proof. Consider the string P#T̃ [i][k] for each k = 1, . . . , |T̃ [i]|, where # is a character that
does not occur in P or T̃ [i][k]. Then, it is easy to see that

S=
i = {|b|+ 1 | 1 ≤ b < m, b is a proper border of P#T̃ [i][k]}.

Since the border array of a string can be computed in an on-line fashion and in linear
time [10], the border array of P# can be computed in O(m) time once. Furthermore, since
the last element of the border array of P# is 0, the remaining elements of the border array of
P#T̃ [i][k], and thus, the lengths of all borders of P#T̃ [i][k] can be computed in O(|T̃ [i][k]|)
time for any 1 ≤ k ≤ |T̃ [i]|. Thus, the total time for computing S=

i is O(m+ ‖T̃‖).
We note that the above description is slightly different from that of Grossi et al. [8],

where they describe the computation by computing the border array of the string

X = P#1T̃ [i][1]#2 · · ·#|T̃ [i]|T̃ [i][|T̃ [i]|].

Although Grossi et al. mention that the time and space complexities for the preprocessing
(for computing the border array of P) are O(m), they do not explicitly mention the space
complexity of their matching algorithm. A naive implementation of their description would
take O(m + max{‖T̃ [i]‖ | 1 ≤ i ≤ n}) extra space for computing the border array of X,
but this can easily be reduced to O(m) extra space, since (1) we can compute the borders
separately for each T̃ [i][k] as described above, and (2) P#T̃ [i][k] can be replaced with P#Y ,
where Y = T̃ [i][k][l −m+ 2..l] and l = |T̃ [i][k]|, to obtain the same result. J

4.4.2 Computing S<
i

We first describe how Grossi et al. compute S<i . Basically, their algorithm is a fairly
straightforward approach that uses ST (P). For each t ∈ T̃ [i], compute the set {|t|} ⊕
(Occ(P, t) ∩ S≤i−1). Then, S<i is the union of this set for all t ∈ T̃ [i], i.e.,

S<i =
⋃
t∈T̃ [i]

(
{|t|} ⊕ (Occ(P, t) ∩ S≤i−1)

)
. (1)

By Lemma 3, each {|t|}⊕ (Occ(P, t)∩S≤i−1) can be computed in O(|t|+ |Occ(P, t)|) time, and
thus the total time is O(

∑
t∈T̃ [i](|t|+ |Occ(P, t)|)) = O(‖T̃ [i]‖+

∑
t∈T̃ [i] |Occ(P, t)|). Since

all strings in T̃ [i] are distinct,
∑
t∈T̃ [i] |Occ(P, t)| = O(m2), thus, giving an algorithm that

computes S<i in O(‖T̃ [i]‖+m2) time.
Next, we describe how to improve the running time. Our main idea is: rather than

compute the sum set independently for each element t ∈ T̃ [i], we appropriately group together
elements in T̃ [i] so that the efficient sum set computation of Lemma 4 can be used.

K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 9:7

$
c

a

…

…
a

a

c

b

a

b

a b

a
b

a
b

bb

$
cb

a

a 16

1 6

4

7

2

c

14c

10

5

8

3 9

11

c

1315 12…

…
… …

…

…

…
…

…
…

…

…

Figure 1 Example of a partition of ST(P) for P = aababaabbabccac with τ = 4. There are 25
nodes (including leaves) in total. The black nodes represent the root of each component, and the
dotted edges represent boundary edges. By construction, each component contains at least τ = 4
nodes, so there are 5 ≤ 25/4 components, and any sub-component rooted at a node that is not a
root of a component contains less than τ = 4 nodes.

I Lemma 8. S<i can be computed in O(‖T̃ [i]‖ + m
√
m logm) time using O(m) working

space.

Proof. To improve the running time, we first partition ST (P) into subtrees as follows, similar
to the micro-macro decomposition [2].

Let τ > 1 be a parameter that will be chosen later. Define the weight W (v) of a node v
as

W (v) =


1 v is a leaf
W ′(v) W ′(v) < τ

0 W ′(v) ≥ τ or v is the root.

where W ′(v) = 1+
∑
u∈chldr(v) W (u). The tree is partitioned into subtrees so that all nodes v

such that W (v) = 0 are roots of the subtrees that comprise the partition, i.e., each incoming
edge to a node v with W (v) = 0 is a boundary of the partition. Such an edge will be called
a boundary edge. For all nodes v, it is clear that W (v) — and thus the partition, can be
computed in linear time by a post-order traversal on ST (P). We will call each such subtree
in the partition a component. For any node v, we denote by C (v), the set of nodes that are
descendants of v, including v itself, and are in the same component as v. Also, let Cr(P)
denote the set of all roots of components of ST (P). Figure 1 shows an example of a partition.
The important properties of such a partition are:
1. The total number of nodes (including leaves) contained in each component is Ω(τ).
2. The number of components is bounded by O(m/τ).
3. For any node u that is not a root of a component, |C (u)| = O(τ).

Now, since Occ(P, t) = L(vt), where (vt, |t|) is the locus of t in ST (P), we can rewrite
Equation (1) as follows, by partitioning L(vt) according to the component that each leaf
belongs to:

CPM 2018

9:8 Faster Online Elastic Degenerate String Matching

⋃
t∈T̃ [i]

(
{|t|} ⊕ (Occ(P, t) ∩ S≤i−1)

)

=

 ⋃
t∈T̃ [i],vt 6∈Cr(P)

(
{|t|} ⊕ (L(vt) ∩ C (vt) ∩ S≤i−1)

) ∪ (2)

 ⋃
t∈T̃ [i]

⋃
v∈desc(vt)∩Cr(P)

(
{|t|} ⊕ (L(v) ∩ C (v) ∩ S≤i−1)

) (3)

Furthermore, by grouping together all t that correspond to ancestors of each component
when computing the sum set, we can rewrite Term (3) as follows:⋃

v∈Cr(P)

(
{|t| : t ∈ T̃ [i] ∩ vt ∈ anc(v)} ⊕ (L(v) ∩ C (v) ∩ S≤i−1)

)
(4)

First, we consider how to compute Term (2). For any t ∈ T̃ [i], its locus (vt, |t|) in ST (P)
can be computed in O(|t|) time, if it exists (we can simply ignore any t that does not occur
in P). Since we only consider t such that vt is not a root of a component, |C (vt)| = O(τ)
(Property 3). Then, all elements in L(vt)∩C (vt)∩S≤i−1 can be obtained by a simple traversal
on C (vt), and thus {|t|} ⊕ (L(vt) ∩ C (vt) ∩ S≤i−1) can be obtained in O(τ) time. Note that
this can also be bounded by the size of the subtree of ST (P) rooted at vt. Thus, the total
time for this traversal for all t ∈ T̃ [i] is O(

∑
t∈T̃ [i] min{τ, |Tvt

|}), where |Tvt
| denotes the size

of the subtree of ST (P) rooted at vt. Now, let XS = {t | t ∈ T̃ [i], |t| ≤ τ}, XL = T̃ [i] \XS =
{t | t ∈ T̃ [i], |t| > τ}, i.e., XS is the set of strings in T̃ [i] shorter than or equal to τ , and XL

is the set of strings in T̃ [i] longer than τ . Then,∑
t∈T̃ [i]

min{τ, |Tvt |} =
∑
t∈XS

min{τ, |Tvt |}+
∑
t∈XL

min{τ, |Tvt |}

≤
∑
t∈XS

|Tvt
|+

∑
t∈XL

τ

=
τ∑
`=1

∑
t∈XS ,|t|=`

|Tvt
|+

∑
t∈XL

τ

= O(τm+ ‖T̃ [i]‖).

Here, the last inequality uses
∑
t∈XS ,|t|=` |Tvt | = O(m), which is true because all substrings

in XS are distinct, implying that all subtrees rooted at a given depth ` of the suffix tree are
disjoint and therefore their total size is O(m). Also,

∑
t∈XL

τ <
∑
t∈XL

|t| ≤ ‖T̃ [i]‖.
The total time for computing Term (2) is therefore O(τm+ ‖T̃ [i]‖).

Next, we consider how to compute Term (4). Notice that for any v ∈ Cr(P), the size of
set {|t| : t ∈ T̃ [i] ∩ vt ∈ anc(v)} is O(m), since len(v) ≤ m+ 1, and can be obtained in O(m)
time provided that all loci of strings in T̃ [i] are marked on ST (P). Also, L(v) ∩ C (v) ∩ S≤i−1
can also be computed in O(m) time. Since the sets can be computed in O(m) time, the sum
set can be computed in O(m logm) time using Lemma 4. The total time for all components
is therefore O(mτ m logm) (Property 2).

From the above arguments, the total time for computing Equation (1) is O(‖T̃ [i]‖+ τm+
m2

τ logm). By choosing τ =
√
m logm, we obtain O(‖T̃ [i]‖+m

√
m logm).

Concerning the space complexity, it is easy to implement the above algorithm in O(m+
|T̃ [i]|) space. The term |T̃ [i]| exists because in the above description, we assumed that we
had marked the locus of each t ∈ T̃ [i] on the suffix tree. If we assume that the strings

K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 9:9

Algorithm 1: Pseudo code of algorithm for computing S<i .
Input: P , T̃ [i], S≤i−1, ST (P)
Output: S<i
// assumes T̃ [i] is lexicographically sorted.

1 S = ∅;
2 Function dfs(ancl, k, (vk, `k), v):
3 while vk = v do
4 ancl.push(`k);
5 k ← k + 1;
6 (vk, `k)← locus of T̃ [i][k] ; // (null, 0) if k > |T̃ [i]|
7 if W (v) = 0 then // v is a root of a component
8 S← S ∪ (ancl⊕ (L(v) ∩ C (v) ∩ S≤i−1));
9 for c ∈ chldr(v) do // in lexicographic order of children

10 dfs(ancl, k, (vk, `k), c); // recurse on child
11 while ancl.top() > len(c) do // discard visited descendants
12 ancl.pop();

13 ancl← empty stack;
14 r ← root of ST (P);
15 (v1, `1)← locus of T̃ [i][1];
16 dfs(ancl, 1, (v1, `1), r);
17 return S;

T̃ [i][1], . . . , T̃ [i][|T̃ [i]|] are lexicographically sorted, we can reduce the space by doing the
computation through a depth-first traversal on the suffix tree from left to right, during
which we only maintain the loci on the path we are considering. The space requirement
follows, since the length of this path is O(m). This is illustrated in the pseudo-code shown
in Algorithm 1. J

I Theorem 9. Problem 2 can be solved in O(N + nm1.5√logm) time using O(m) working
space.

Proof. For each i = 1 . . . , n, all computations other than Step 3 take O(‖T̃ [i]‖) time, while
Step 3 takes O(‖T̃ [i]‖ + m

√
m logm) time. Thus, for all 1 ≤ i ≤ n, the total time is

O(
∑n
i=1 ‖T̃ [i]‖+ nm

√
m logm) = O(N + nm

√
m logm). J

If we cannot assume that the strings in each T̃ [i] are sorted in lexicographic order, the
space complexity becomes O(m+ maxi=1,...,n |T̃ [i]|).

5 Conclusion

We present a new algorithm for the elastic degenerate string matching problem which runs
in O(nm

√
m logm+N) time using O(m) working space. While previous algorithms for the

EDSM problem are basically applications of now “standard” string matching techniques, our
algorithm applies a novel technique combining FFT and the suffix tree.

On a side note, it seems interesting that while Boolean convolution was the key technique
that Fischer and Paterson [7] used to solve the degenerate pattern matching problem, we
solve a generalized version of the problem with the same tool (Boolean convolution) but
applying it in a different way.

CPM 2018

9:10 Faster Online Elastic Degenerate String Matching

References
1 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,

1987. doi:10.1137/0216067.
2 Stephen Alstrup, Jens Peter Secher, and Maz Spork. Optimal on-line decremental connec-

tivity in trees. Information Processing Letters, 64(4):161–164, 1997.
3 Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Pattern matching

on elastic-degenerate text with errors. In Gabriele Fici, Marinella Sciortino, and Rossano
Venturini, editors, String Processing and Information Retrieval, pages 74–90, Cham, 2017.
Springer International Publishing.

4 The Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018. doi:10.1093/
bib/bbw089.

5 James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965. URL: http://www.
jstor.org/stable/2003354.

6 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.
1997.646102.

7 Michael J. Fischer and Michael S. Paterson. String matching and other products. In
Richard M. Karp, editor, Complexity of Computation, volume 7 of SIAM-AMS Proceedings,
pages 113–125, 1974.

8 Roberto Grossi, Costas S. Iliopoulos, Chang Liu, Nadia Pisanti, Solon P. Pissis, Ahmad
Retha, Giovanna Rosone, Fatima Vayani, and Luca Versari. On-line pattern matching
on similar texts. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors,
28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017,
Warsaw, Poland, volume 78 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.9.

9 Costas S. Iliopoulos, Ritu Kundu, and Solon P. Pissis. Efficient pattern matching in elastic-
degenerate texts. In Frank Drewes, Carlos Martín-Vide, and Bianca Truthe, editors, Lan-
guage and Automata Theory and Applications - 11th International Conference, LATA 2017,
Umeå, Sweden, March 6-9, 2017, Proceedings, volume 10168 of Lecture Notes in Computer
Science, pages 131–142, 2017. doi:10.1007/978-3-319-53733-7_9.

10 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

11 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE
Computer Society, 1973. doi:10.1109/SWAT.1973.13.

http://dx.doi.org/10.1137/0216067
http://dx.doi.org/10.1093/bib/bbw089
http://dx.doi.org/10.1093/bib/bbw089
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.9
http://dx.doi.org/10.1007/978-3-319-53733-7_9
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1109/SWAT.1973.13

A Simple Linear-Time Algorithm for Computing
the Centroid and Canonical Form of a Plane
Graph and Its Applications
Tatsuya Akutsu
Bioinformatics Center, Institute for Chemical Research, Kyoto University
Kyoto 611-0011, Japan
takutsu@kuicr.kyoto-u.ac.jp

Colin de la Higuera
LINA, UMR CNRS 6241, Universitéde Nantes
44322 Nantes Cedex 03, France
cdlh@univ-nantes.fr

Takeyuki Tamura
Bioinformatics Center, Institute for Chemical Research, Kyoto University
Kyoto 611-0011, Japan
tamura@kuicr.kyoto-u.ac.jp

Abstract
We present a simple linear-time algorithm for computing the topological centroid and the canon-
ical form of a plane graph. Although the targets are restricted to plane graphs, it is much simpler
than the linear-time algorithm by Hopcroft and Wong for determination of the canonical form
and isomorphism of planar graphs. By utilizing a modified centroid for outerplanar graphs, we
present a linear-time algorithm for a geometric version of the maximum common connected edge
subgraph (MCCES) problem for the special case in which input geometric graphs have outer-
planar structures, MCCES can be obtained by deleting at most a constant number of edges from
each input graph, and both the maximum degree and the maximum face degree are bounded by
constants.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Plane graph, Graph isomorphism, Maximum common subgraph

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.10

Funding TA was partially supported by JSPS KAKENHI #18H04113. TT was partially suppor-
ted by JSPS KAKENHI #25730005. A part of CDLH’s work was done when he was a visiting
professor at Kyoto University.

1 Introduction

Comparison of geometric objects is an important topic in various fields including pattern
recognition, computational geometry, and combinatorial pattern matching [7, 8, 17, 18]. In
many cases, geometric objects are given as graphs having geometric information. Therefore,
comparison of geometric objects are often modeled as pattern matching problems on graphs
possibly with geometric information.

Among various problems on graph pattern matching, the most fundamental one is the
graph isomorphism problem, which asks whether or not two given graphs are isomorphic.
Although extensive studies have been done on determining the complexity class of graph

© Tatsuya Akutsu, Colin de laHiguera, and Takeyuki Tamura;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 10; pp. 10:1–10:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takutsu@kuicr.kyoto-u.ac.jp
mailto:cdlh@univ-nantes.fr
mailto:tamura@kuicr.kyoto-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Centroid and Canonical Form of Plane Graph

isomorphism, it is still unclear for general graphs [5], Polynomial-time algorithms are known
for special graph classes, which include graphs of bounded degree [14] and graphs of bounded
treewidth [16]. In particular, it is known that planar graph isomorphism can be tested
in O(n logn) time [10] and in linear time [11], where n is the number of vertices on each
given graph, and the former one was modified for testing the congruity of polyhedra [19].
Furthermore, both algorithms can be modified for computation of the canonical form of a
given graph, where the canonical form is a unique representation of a graph that is invariant
under isomorphic transformations. Although the algorithm in [10] is conceptually simple, that
in [11] is complicated. In this paper, we focus on plane graphs, which is a planar graph with
planar embedding, and present a (conceptually) simple linear-time algorithm for computing
the canonical form of a plane graph. The algorithm first computes the topological centroid
of a given graph, then transforms the graph into a circular string, and finally computes a
canonical form of this circular string [6, 12]. Since it is known that there is a close relationship
between planar and related graph isomorphism problems and the circular string problem
[11, 15], the approach is reasonable. Of course, it seems possible to modify the algorithm
in [11] for computation of the canonical form of a plane graph with keeping the linear time
complexity. However, our algorithm is much simpler and, as far as we know, no simple
algorithm has been known for determination of the canonical form or isomorphism of plane
graphs. In addition, our algorithm constructs a tree representation of an input plane graph.
By combining with grammar-based tree compression algorithm [3, 9], plane graphs having
many local symmetries might be efficiently compressed.

We also apply the (modified) centroid to the maximum common connected edge subgraph
(MCCES) problem for two geometric plane graphs, which seeks for a graph with the max-
imum number of edges that is identical to a subgraph of each input graph under isometric
transformations. Note that MCCES for geometric plane graphs is practically important
because various kinds of maps (e.g., roadmaps) are often represented as geometric planar
graphs. Although the MCCES problem is NP-hard for considerably restricted classes of
graphs [1, 2, 4, 13], it can trivially be solved in polynomial time if graphs are restricted to
geometric graphs and isomorphism is restricted to those by isometric transformations. We
present a linear-time algorithm for the MCCES problem for the special case in which input
geometric graphs have outerplanar structures, MCCES can be obtained by deleting at most
a constant number of edges from each input graph, and both the maximum degree and the
maximum face degree are bounded by constants.

2 Preliminaries

Let G(V,E) be an undirected graph. We assume that G is connected and its planar embedding
is given. Such a graph is called a plane graph. We use n to denote the size of V (i.e., n = |V |).
Since we only consider plane graphs, |E| is Θ(n). Two plane graphs G1 and G2 are called
isomorphic if there exists an isomorphic mapping from G1 to G2 such that outer faces
correspond to each other and the circular ordering of edges connected to each vertex is
preserved. If G1 and G2 are isomorphic, we write G1 ∼= G2.

Let φ(G) be a function that maps a given undirected graph G(V,E) to a string over an
alphabet of size O(n). Then, φ(G) is called a canonical form of G(V,E) if the following
conditions are satisfied:
|φ(G)| (i.e., the length of φ(G)) is O(n),
G can be reconstructed from φ(G),
φ(G1) = φ(G2) if and only if G1 ∼= G2.

T. Akutsu, C. de laHiguera, and T. Tamura 10:3

u=v1

v=v2

v3

v4

v5

v6

v7

v8

v9

Figure 1 Example for cano(G, u, v).

We assume that a plane graph is given in a form of the doubly-connected-edge-list (DCEL)
[17] so that deletion of an edge can be done in a constant time and deletion of a face can be
done in time proportional to the number of surrounding edges.

For a string A = a0a1 . . . an−1, aiai+1 . . . ai+n−1 is called the canonical form of a circular
string A if it is lexicographycally smallest among i = 0, · · · , n−1, where indices are calculated
modulo n [6, 12].

3 O(n2) time canonical form computation

We begin with a simple O(n2) time algorithm for computing a canonical form. It is a known
fact (e.g., see [18]) but a part of this algorithm is used as a subroutine in the next section.

Let G(V,E) be a plane graph. Suppose that we are given a pair of vertices (u, v) such
that {u, v} ∈ E. We construct a string cano(G, u, v) by using the following procedure.
1. Perform depth first search (DFS) starting from u with choosing (u, v) as the first edge

(with the direction from u to v) and regarding it as the leftmost edge from u. In DFS, we
visit edges emanating from each vertex from left to right (i.e., anti-clockwise order).

2. Rename the vertices according to the visited DFS order. Let the resulting vertices be
v1, v2, . . . , vn.

3. Construct the Euler string by concatenating edges in the visited order, where each edge
is represented as (i, j) when vj is visited just after vi.

I Example 1. Consider a plane graph G(V,E) shown in Figure 1. If DFS is started from
(u, v), vertices are renamed as in Figure 1. The resulting cano(G, u, v) will be

(1, 2)(2, 3)(3, 4)(4, 2)(2, 4)(4, 3)(3, 2)(2, 5)(5, 6)(6, 7)(7, 1)(1, 7)(7, 2)(2, 7)
(7, 6)(6, 5)(5, 8)(8, 9)(9, 5)(5, 9)(9, 8)(8, 5)(5, 2)(2, 1)

It is seen from Example 1 that in cano(G, u, v), each edge appears exactly twice in
the opposite directions, which further means that cano(G, u, v) is a kind of Euler string.
Clearly, cano(G, u, v) can be computed in O(n) time and |cano(G, u, v)| is O(n). Since the
original plane graph is reconstructed from cano(G, u, v), we can see that cano(G1, u1, v1) =
cano(G2, u2, v2) holds if and only if there exists an isomorphic mapping from G1 to G2 that
maps u1 and v1 to u2 and v2, respectively. cano(G, u, v) is called an edge-specified canonical
form.

Let cano0(G) be the edge-specified canonical form which is lexicographycally smallest
among cano(G, u′, v′)s such that {u′, v′} ∈ E. Then, we have

I Proposition 2. cano0(G) is a canonical form of a plane graph G and can be computed in
O(n2) time.

CPM 2018

10:4 Centroid and Canonical Form of Plane Graph

4 Linear time canonical form computation

As shown in Section 3, we can have a canonical form in O(n) time if some unique edge is
identified. However, it is quite difficult to efficiently identify the unique edge because the
canonical form problem intrinsically includes the canonical form problem on circular strings.
Therefore, we will reduce the canonical form problem on plane graphs into the canonical
form problem on circular strings.

Our idea is to identify the (topological) centroid of a given plane graph G, where the
centroid is either a vertex, an edge, or a face. Once the centroid is found, we can create a
circular string using the method given in Section 3.

For an unordered tree T , v is called a centroid if the longest path from v to leaves is the
shortest. It is known that there exist either one centroid, or two centroids connected by an
edge. In the former case, this unique vertex is called the centroid vertex. In the latter case,
this unique edge is called the centroid edge. It is well known that for a tree T , the centroid
vertex/edge can be determined in linear time. We extend this concept for plane graphs.

In the following, we show how to construct a canonical form of a plane graph based on the
centroid and the trees connected to the centroid that are constructed in the determinization
process of the centroid. To this end, we first determine the centroid of a plane graph. It is
known that the connected plane graph has the unique outer face. We consider the directed
cycle consisting of the edges of the outer face, where edges are visited in the clockwise order.
Let C be this directed cycle (see Figure 2 (A)). An inner face (i.e., a face that is not the
outer face) of a plane graph G is called exposed if it includes an edge in C (with ignoring the
direction). Furthermore, an inner face is called singly exposed if the outer edges in this face
are connected in C. Similarly, an edge not belonging to an inner face is called singly exposed
if one of its endpoints is of degree 1. A graph consisting of a vertex, an edge, or a face
(including adjunct subgraphs) is not regarded as singly exposed. In addition, each maximally
connected subgraph GS that is surrounded by a singly exposed face with sharing only one
vertex v that is an outer one is called an adjunct subgraph (see Figure 2 (B)). Each adjunct
subgraph is ignored and removed along with its surrounding face because information on this
part can be easily included in the final canonical form as follows. According to the ordering
of C, we can define the parent vertex u of v. Then, the leftmost child w of v in the subgraph
can be uniquely determined and thus cano(GS , v, w) can be computed (see Figure 3). We
can insert this cano(GS , v, w) (delimited by a special symbol ’&’ not appearing in other
parts) into a part the canonical form corresponding to removed outer edges.

After identification of the singly exposed faces and edges, all of them will be removed.
This removal is done by deleting outer edges included in these faces and edges. However, we
keep information about all these edges in order to reconstruct tree structures at the final
stage. To this end, we virtually detach the last outer edge from the last endpoint in each
singly exposed face, where the last means that in the order of C (see Figure 2 (B)).

We use the following procedure (denoted as PEELING) to identify the centroid ver-
tex/edge/face (see Figure 4).
1. Repeat Steps 2-3 until there does not exist a singly exposed face/edge.
2. Identify all singly exposed faces and edges.
3. Delete outer edges and adjunct subgraphs in these exposed faces and edges.

The correctness of PEELING is guaranteed by the following two propositions.
I Proposition 3. After each removal step, the resulting graph is connected.
Proof. Since each face is doubly connected by its surrounding edges and only consecutive
outer edges are removed from each face, we do not lose the connectedness. J

T. Akutsu, C. de laHiguera, and T. Tamura 10:5

(A)

(B)

C

Figure 2 Example of face removal operations. (A) Directed cycle C is shown by a dashed curve.
Gray regions and bold edges correspond to singly exposed faces and edges, respectively. (B) Deleted
outer edges and adjunct subgraphs are shown by dotted lines and dashed lines, respectively.

I Proposition 4. If there does not exist a singly exposed face or edge in G, G is either a
vertex, an edge, or a face (possibly including adjunct subgraphs inside).

Proof. Suppose that G is not a vertex, an edge, or a face. Then, consider the directed cycle
C consisting of outer edges. Each edge in C belongs to a face or an edge (not in a face).
Then, C must include at least one edge in a singly exposed face or edge. J

After determining the centroid of a plane graph, we construct a canonical form using
the centroid as follows. Since the other cases are easier, we assume w.l.o.g. (without loss of
generality) that a single face fc (possibly including adjunct subgraphs inside) is finally left.
Then, we add trees and adjunct subgraphs deleted by PEELING to the centroid fc. Let G′
be the resulting graph. As mentioned before, we assume w.l.o.g. that there does not exist
any adjunct subgraph. Therefore, the resulting graph consists of the centroid and trees. Let
v1, v2, . . . , vd be the vertices of fc arranged in the clockwise order, starting from an arbitrary
one (see Figure 5). For each vertex vi, let vi

1, . . . , v
i
dv

be the neighboring vertices (not in fc)
in the clockwise order. For each subtree T i

j rooted at (vi, vi
j), we construct cano(T i

j , v
i, vi

j)
and then construct the string cano(vi) by concatenating these as

cano(vi) = #cano(T i
1, v

i, vi
1)#cano(T i

2, v
i, vi

2)# · · ·#cano(T i
dv
, vi, vi

dv
)#,

where ‘#’ is a special symbol not appearing in other parts.
Since trees in the canonical form may be obtained by decomposing cycles of the original

plane graph, leaves may need information about from which vertices they are detached.

CPM 2018

10:6 Centroid and Canonical Form of Plane Graph

u

v

w

C

Figure 3 Example of an adjunct subgraph.

centroid

G’

Figure 4 Illustration of the PEELING procedure. Deleted edges are shown by dotted lines.
Adjunct subgraphs are shown by dashed lines.

Therefore, in computation of cano(T i
j , v, v

i
j), we need to add the information about other

trees because the disconnected edge shares a vertex in T i
j , another tree, or the centroid. In

order to cope with this problem, we renumber T i
j s to be T1, . . . , Tm in the clockwise order

starting from an arbitrary tree (we only use the difference of the indices modulo m). We
consider the following three cases (see Figure 5):

if the disconnected endpoint vj of an edge (vh, vj) in Ti is actually a vertex vj′ in the
same subtree Ti, we replace j in cano(...) with (T, j′),
else if the disconnected endpoint vj of an edge (vh, vj) in Ti is actually a vertex vj′ in Ti′ ,
we replace j in cano(...) with (T + (i′ − i), j′), where i′ − i is computed modulo m,
otherwise (i.e., vj is actually a vertex vk′ in the centroid), we replace j in cano(...) with
(C + (k′ − k)). where vk is the root of Ti and k′ − k is computed modulo d.

Then, we construct cano(F) by concatenating cano(vi)s by

cano(F) = cano(v1)!cano(v2)! · · ·!cano(vk)!,

where ‘!’ is a special symbol not appearing in other parts. Finally, we regard cano(F) as a
circular string and define cano(G) to be the canonical form of this circular string.

I Theorem 5. cano(G) is a canonical form of a plane graph G and can be computed in O(n)
time.

T. Akutsu, C. de laHiguera, and T. Tamura 10:7

1

2

3

4
T1

T2

1

2

1

2

2

T3

5

(T,5)

(T+1,2)

6

(C+1)

v
1

v
2

v
3

fc
1

T4

3

3

(T+1,2)

v
1

1

v
2

1

v
3

1

v
3

2

Figure 5 Illustration of replacement of labels for disconnected vertices.

Proof. The correctness follows from the following facts:
The peeling process is invariant under isomorphic transformations, that is, the same set
of edges is always deleted at each time step for isomorphic plane graphs.
After the peeling process, only one face, edge, or vertex remains.
cano(vi) is invariant under isomorphic transformations.

Next, we analyze the time complexity. We maintain plane graphs using DCEL data structure
with adding information about exposed/not exposed. We also maintain lists of consecutively
exposed edges and pointers from each list to the corresponding face and from each face to the
corresponding lists. Each list/face also has a flag showing whether or not it is singly exposed
one. The peeling process can be done by deleting edges in lists with singly exposed flags. Of
course, all data structures must be updated, which can be done in time proportional to the
number of deleted edges and the number of newly exposed edges. Since each edge is newly
exposed only once and is deleted only once, the total time complexity is proportional to the
number of edges (i.e., the total complexity is O(n)). It is straightforward to see that cano(F)
can be obtained in O(n) time. Since the canonical form of a circular string over a general
alphabet can be computed in O(n) time [6, 12], the total time complexity is O(n). J

5 Canonical form of geometric plane graphs

The algorithm in Section 4 can be modified for computing the canonical form of a given
geometric plane graph so that the canonical form is invariant under isometric transformations.
We say that G1 and G2 are isomorphic under isometric transformations if there is an isometric
transformation T (i.e., combination of translation, rotation, and mirror image) such that
T (shape(G1)) = shape(G2), where shape(G) denotes the set of line segments in G. We may
omit shape(...) and write this relation as T (G1) = G2. Since inclusion of mirror images in
isometric transformation can be done by multiplying a constant factor to the time complexity,
we ignore them in the following.

In order to include geometric information, it is enough to add geometric information to
cano(G, u, v). Suppose that (u, v) and (v, w) are consecutive edges. Let L2(v, v′) denote the
square of the Euclid distance between v and v′, the exact value of which can be computed
from the coordinates of v and v′. Then, we add the following information to (v, w).

L2(u, v), L2(v, w), L2(u,w),
whether w is located left or right of ~uv.

It is straightforward to see the correctness of this modified procedure to define the
canonical form. Since it does not increase the order of the size of the canonical form and the
time complexity, the following holds.

CPM 2018

10:8 Centroid and Canonical Form of Plane Graph

I Proposition 6. The canonical form of a geometric plane graph be computed in O(n) time.

It might be possible to use the geometric centroid (which can be easily computed), in
place of the topological centroid, to compute the canonical form in linear time. However, it
is unclear whether or not the circular string can be constructed easily.

6 Maximum common connected edge subgraph of geometric plane
graphs

We consider the problem of finding a maximum common connected edge subgraph (MCCES)
Gc of two geometric plane graphs G1 and G2: G has the maximum number of edges such
that G = T (G1) ∩G2 for some isometric transformation T . For simplicity, we assume that
G1 and G2 have O(n) edges. We also assume Real RAM (Random Access Machine) as a
computation model in which each arithmetic computation can be done in a constant time.
This problem can be solved by the following procedure (SimpleMCCES):
1. Let G0 be an empty graph.
2. For all directed edge pairs (e1, e2) ∈ E(G1)× E(G2), repeat steps 3-6.
3. Determine isometric transformation T uniquely (except mirror image) that maps e1 to e2.
4. Let G← T (G1) ∩G2.
5. Let Ec(G) be the set of edges in the connected component of G having the maximum

number of edges.
6. If |Ec(G)| > |Ec(G0)|, then let G0 ← G.
7. Output G0.

In computation of T (G1) ∩G2, edges remain only if two corresponding edges completely
overlap. Furthermore, T is examined only if the lengths of e1 and e2 are the same. Then,
the correctness of the procedure is obvious.

Next, we analyze the time complexity. Suppose that Gc has O(k) edges. Step 4 can be
done in O(n) time by performing DFS using edges common to T (G1) and G2. If the maximum
degree is bounded by a constant, it can be done in O(k) time. Since we may examine all
edge pairs, Steps 3-6 are repeated O(n2) times. Therefore, the total time complexity is O(n3)
in a general case and is O(kn2) if the maximum degree is bounded by a constant.

When the maximum degree is bounded by a constant, we can improve the time complexity
to O(n2 logn) (it is an improvement when k > c logn for some constant c) using a geometric
hashing [20]. For each directed edge pair (e1, e2) ∈ E(G1)× E(G2) having the same length,
we compute the unique isometric transformation T such that T (e1) = e2, and put this pair
into the bin labeled with T . Then, we find the bin containing the maximum number of
pairs connected in both G1 and G2, which corresponds to MCCES. Since O(n2) pairs are
examined and finding the bin (where a respective edge pair is to be put in) needs O(logn)
time using binary search, the total computation time to create all bins is O(n2 logn). Since
we assumed that the maximum degree is bounded by a constant, connected components in
all bins can be computed in linear time of the total number of edge pairs. Therefore, the
total time complexity is O(n2 logn).

The above results are almost trivial. Here we present a faster algorithm for a special case
of geometric MCCES in which graphs are outerplanar, both the maximum degree and the
maximum face degree (i.e., maximum number of edges of a face) are bounded by constants,
and Gc is very similar to G1 and G2 (precisely, Gc is obtained by deleting at most K edges
from G1 and also by deleting at most K edges from G2). In the following, a plane graph
with outerplanar graph structure is called an outer-plane graph. Suppose that the maximum

T. Akutsu, C. de laHiguera, and T. Tamura 10:9

f3

f2

f1

f4

f5

f6

e1

e2

e3

e4

e5

f2

f4

e2

e3

e4

e5

f2

f4

e5 e5

t=1 t=2 t=3 t=4

Figure 6 Determination of the centroid for an outer-plane graph. In this case, tG(f1) = tG(f3) =
tG(f5) = tG(f6) = tG(e1) = 1, tG(e2) = G(e3) = tG(e4) = 2, tG(f2) = G(f4) = 3, and e5 is the
centroid.

degree and the maximum face degree are bounded by constants Dv and Df , respectively.
We will show that the position of the centroid changes for a constant amount by addition (or
deletion) of an edge.

To this end, we use a simpler definition of the centroid for an outer-plane graph G, where
it can also be applied to an outerplanar graph. We use the following simple procedure (see
Figure 6), where the resulting face/edge/vertex is the centroid and is denoted by cO(G).

1. Repeat Step 2 until there remains only one face, edge, or vertex.
2. Identify all faces and edges each of which overlaps with other face(s)/edge(s) at one edge

(including its endpoints) or one vertex.
3. Delete all faces and edges identified in Step 2.

It is straightforward to see that this procedure works in O(n) time and the centroid is
determined uniquely for isomorphic outer-plane graphs. For two edges e1 and e2, d(e1, e2)
denotes the shortest distance between endpoints of e1 and endpoints of e2, where the distance
between vertices is defined as the length of the shortest path connecting u and v. For the
centroid C in a graph G, let e(x) denote the set of edges in x if x is a face or an edge, and
the set of edges connecting to x otherwise (i.e., x is a vertex). In addition, let e(x, d) denote
the set of edges each of which has an edge in x within distance d in G. Then, we apply
SimpleMCCES only for the edge pairs (each with two directions) between e(cO(G1), dK)
and e(cO(G2), dK), where dK is to be determined later so that at least one edge in e(cO(Gc))
is included in both e(cO(G1), dK) and e(cO(G2), dK).

I Lemma 7. Suppose that G2 is obtained by adding an edge to G1 with keeping outerplanarity
and connectivity. Then, the minimum distance between e(cO(G1)) and e(cO(G2)) is at most
Df

2/2.

Proof. For each face or edge (not in a face), we consider the time step (the number of
repeats) at which the face/edge is deleted in the procedure determining the centroid, where
the time step for the firstly deleted faces/edges is regarded to be 1. For each face or edge x
in graph G, tG(x) denotes this deletion time step (see Figure 6).

We classify an addition of an edge into the following three cases (see Figure 7).
(a) One endpoint is a new vertex.
(b) An existing face is divided into two faces.
(c) A new face (not in an existing face) is created.

CPM 2018

10:10 Centroid and Canonical Form of Plane Graph

(a) (b) (c)

Figure 7 Classification of edge addition patterns. Added edges are shown by bold lines.

Let G2 be the graph obtained by addition of an edge to G1.
It is straightforward to see that the following properties hold.
In case (a), |tG2(x)− tG1(x)| ≤ 1 holds for each face/edge x.
In case (b), |tG2(x)− tG1(x)| ≤ 1 holds for each face/edge x.
In case (c), |tG2(x)− tG1(x)| ≤ Df holds for each face/edge x.

Since the centroid must have an overlap with the lastly deleted face(s)/edge(s) (i.e., face(s)/edge(s)
with the maximum tGi

(x)) and the distance between two vertices in the same face is at most
Df/2, the lemma holds. J

I Theorem 8. Suppose that both the maximum degree and the maximum face degree of
geometric outer-plane graphs G1 and G2 are bounded by constants Dv and Df , respectively.
Suppose also that a maximum common connected edge subgraph is obtained by deletion of at
most K edges from each of G1 and G2. Then, a maximum common connected edge subgraph
can be computed in O(f(Df , Dv,K)n) time, where f(Df , Dv,K) = D2

f ·D
KDf

2+Df +4
v .

Proof. From Lemma 7 and the assumption on Gc, the minimum distance between edges
in cO(Gc) and cO(Gi) is at most KDf

2/2. Then, all edges in e(cO(Gc)) are included
in e(cO(Gi), (KDf

2 + Df)/2) for each Gi. Therefore, by letting dK = (KDf
2 + Df)/2, a

maximum common connected edge subgraph can be found for two geometric graphsG1 andG2,
Since the vertex degree is bounded by Dv, the number of edges in e(cO(Gi), (KDf

2 +Df)/2)
is at most Df ·D

(KDf
2+Df)/2+1

v . Since we examine all pairs in e(cO(G1), (KDf
2 +Df)/2)

and e(cO(G2), (KDf
2 + Df)/2), the number of directed edge pairs examined is at most

2D2
f ·D

KDf
2+Df +2

v . For each pair, computation of T (G1) ∩G2 can be done in O(D2
vn) time

using DFS. Therefore, the theorem holds. J

It is unclear whether Lemma 7 or a similar lemma holds for outer-plane graphs if the
centroid c(Gi) defined in Section 3 is used. However, it is easy to see that a similar lemma
does not hold for plane graphs by considering a graph including large adjunct subgraphs.
Therefore, defining a centroid for plane graphs so that a property similar to Lemma 7 holds
is left as an open problem.

References
1 Faisal N. Abu-Khzam. Maximum common induced subgraph parameterized by vertex cover.

Inf. Process. Lett., 114(3):99–103, 2014. doi:10.1016/j.ipl.2013.11.007.
2 Tatsuya Akutsu. A polynomial time algorithm for finding a largest common subgraph of

almost trees of bounded degree. IEICE Transactions, 76-A(9):1488–1493, 1993.

http://dx.doi.org/10.1016/j.ipl.2013.11.007

T. Akutsu, C. de laHiguera, and T. Tamura 10:11

3 Tatsuya Akutsu. A bisection algorithm for grammar-based compression of ordered trees.
Inf. Process. Lett., 110(18-19):815–820, 2010. doi:10.1016/j.ipl.2010.07.004.

4 Tatsuya Akutsu and Takeyuki Tamura. On the complexity of the maximum common
subgraph problem for partial k-trees of bounded degree. In Kun-Mao Chao, Tsan-sheng
Hsu, and Der-Tsai Lee, editors, Algorithms and Computation - 23rd International Sym-
posium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings, volume 7676
of Lecture Notes in Computer Science, pages 146–155. Springer, 2012. doi:10.1007/
978-3-642-35261-4_18.

5 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 684–697. ACM, 2016. doi:10.1145/2897518.2897542.

6 Kellogg S. Booth. Lexicographically least circular substrings. Inf. Process. Lett.,
10(4/5):240–242, 1980. doi:10.1016/0020-0190(80)90149-0.

7 Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of
graph matching in pattern recognition. IJPRAI, 18(3):265–298, 2004. doi:10.1142/
S0218001404003228.

8 Andreas Fischer, Kaspar Riesen, and Horst Bunke. Improved quadratic time approximation
of graph edit distance by combining hausdorff matching and greedy assignment. Pattern
Recognition Letters, 87:55–62, 2017. doi:10.1016/j.patrec.2016.06.014.

9 Moses Ganardi, Danny Hucke, Markus Lohrey, and Eric Noeth. Tree compression using
string grammars. Algorithmica, 80(3):885–917, 2018. doi:10.1007/s00453-017-0279-3.

10 John E. Hopcroft and Robert Endre Tarjan. A V log V algorithm for isomorphism of
triconnected planar graphs. J. Comput. Syst. Sci., 7(3):323–331, 1973. doi:10.1016/
S0022-0000(73)80013-3.

11 John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs
(preliminary report). In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle, and
Michael A. Harrison, editors, Proceedings of the 6th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages 172–184. ACM,
1974. doi:10.1145/800119.803896.

12 Costas S. Iliopoulos and William F. Smyth. Optimal algorithms for computing the
canonical form of a circular string. Theor. Comput. Sci., 92(1):87–105, 1992. doi:
10.1016/0304-3975(92)90137-5.

13 Nils Kriege, Florian Kurpicz, and Petra Mutzel. On maximum common subgraph problems
in series-parallel graphs. Eur. J. Comb., 68:79–95, 2018. doi:10.1016/j.ejc.2017.07.
012.

14 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

15 Joseph Manning and Mikhail J. Atallah. Fast detection and display of symmetry in
outerplanar graphs. Discrete Applied Mathematics, 39(1):13–35, 1992. doi:10.1016/
0166-218X(92)90112-N.

16 Jiří Matoušek and Robin Thomas. On the complexity of finding iso- and other morph-
isms for partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992. doi:10.1016/
0012-365X(92)90687-B.

17 Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Intro-
duction. Texts and Monographs in Computer Science. Springer, 1985. doi:10.1007/
978-1-4612-1098-6.

18 Christine Solnon, Guillaume Damiand, Colin de la Higuera, and Jean-Christophe Jano-
det. On the complexity of submap isomorphism and maximum common submap problems.
Pattern Recognition, 48(2):302–316, 2015. doi:10.1016/j.patcog.2014.05.019.

CPM 2018

http://dx.doi.org/10.1016/j.ipl.2010.07.004
http://dx.doi.org/10.1007/978-3-642-35261-4_18
http://dx.doi.org/10.1007/978-3-642-35261-4_18
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1016/0020-0190(80)90149-0
http://dx.doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1016/j.patrec.2016.06.014
http://dx.doi.org/10.1007/s00453-017-0279-3
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1016/0304-3975(92)90137-5
http://dx.doi.org/10.1016/0304-3975(92)90137-5
http://dx.doi.org/10.1016/j.ejc.2017.07.012
http://dx.doi.org/10.1016/j.ejc.2017.07.012
http://dx.doi.org/10.1016/0022-0000(82)90009-5
http://dx.doi.org/10.1016/0166-218X(92)90112-N
http://dx.doi.org/10.1016/0166-218X(92)90112-N
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/10.1016/j.patcog.2014.05.019

10:12 Centroid and Canonical Form of Plane Graph

19 Kokichi Sugihara. An n log n algorithm for determining the congruity of polyhedra. J.
Comput. Syst. Sci., 29(1):36–47, 1984. doi:10.1016/0022-0000(84)90011-4.

20 KHaim J. Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE Comput.
Sci. & Eng., 4(4):10–21, 1997. doi:10.1109/99.641604.

http://dx.doi.org/10.1016/0022-0000(84)90011-4
http://dx.doi.org/10.1109/99.641604

Locally Maximal Common Factors as a Tool for
Efficient Dynamic String Algorithms

Amihood Amir1

Bar-Ilan University and Johns Hopkins University
amir@cs.biu.ac.il

Itai Boneh
Bar-Ilan University
barbunyaboy2@gmail.com

Abstract

There has been recent interest in dynamic string algorithms, i.e. string problems where the input
changes dynamically. One such problem is the longest common factor (LCF) problem. It is well
known that the LCF of two strings S and D of length n over a fixed constant-sized alphabet Σ can
be computed in time linear in n. Recently, a new challenge was introduced - finding the LCF of
two strings in a dynamic setting. The problem is the fully dynamic one sided LCF (FDOS-LCF)
problem. In the FDOS-LCF problem we get q consecutive queries of the form < i, α >, where
each such query means: “replace D[i] by α, α ∈ Σ and output the LCF of S and (the updated)
D. The goal is to initially preprocess S and D so that we do not need O(n) time to compute an
LCF for each such query.

The state-of-the-art is an algorithm that preprocesses the two strings S and D in time
O(n log4 n). Subsequently, the algorithm answers in time O(log3 n) a single query of the form:
Given a position i on D and a letter α, return an LCF of S and D′, where D′ is the string
resulting from D after substituting D[i] with α. That algorithm is not extendable to multiple
queries. In this paper we present a tool - Locally Maximal Common Factors (LMCF) - that
proves to be quite useful in solving some restricted versions of the FDOS-LCF problem . The
versions we solve are the Decremental FDOS-LCS problem, where every change < i, α > is of
the form < i, ω >, ω 6∈ Σ, and the Periodic FDOS-LCS problem, where S is a periodic string
with period length p.

For the decremental problem we provide an algorithm with linear time preprocessing and
O(log logn) time per query. For the periodic problem our preprocessing time is linear and the
query time is O(p log logn).

2012 ACM Subject Classification Theory of computation→ Pattern matching, Theory of com-
putation → Dynamic graph algorithms

Keywords and phrases Dynamic Algorithms, Periodicity, Longest Common Factor, Priority
Queue Data Structures, Suffix Tree, Balanced Search Tree, Range Maximum Queries

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.11

1 Partially supported by ISF grant 571/14

© Amihood Amir and I. Boneh;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir@cs.biu.ac.il
mailto:barbunyaboy2@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 LMCF’s for Dynamic String Algorithms

1 Introduction

Recently, there has been a growing interest in dynamic pattern matching algorithms. A
particular problem that received attention is finding the longest common factor (LCF) of
two strings. Let S and D be strings of lengths n1 and n2, respectively, over a constant
size alphabet Σ. Their longest common factor (substring) is the longest string F that is a
sunstring of both S and D. The LCF can be computed in O(n1 + n2) time [10].

As mentioned in [13], the LCF problem is not robust and its solution can vary significantly
when the input strings are changed even by one letter. It is, therefore, important to study
the dynamic instance of the problem, i.e. finding the LCF between two strings after an
arbitrary number of changes in one of the two sequences. Other than the purely theoretical
interest, the problem has applications in the field of molecular biology. For instance, when
we wish to find the LCFs by incorporating the single nucleotide polymorphisms (SNPs)
observed in a population in one of the two sequences. The longest common factor with
k-mismatches problem has also received much attention recently, in particular due to its
applications in bioinformatics [11]. We refer the interested reader to [2, 7, 9, 13].

Recently, a solution to the restricted case, where a single edit operation (substitution,
insertion or deletion) is allowed, was presented [1]. In that paper, two strings, S and D, of
length n over a finite fixed alphabet Σ, are given. The strings are preprocessed in O(n log4 n)
time and O(n log3 n) space. After preprocessing, the answer to a query replacing the symbol
in index i of string D by α is computed in O(log3 n) time.

The solution in [1] is not extendable to more substitutions. The goal is solving the
fully dynamic one sided LCF (FDOS-LCF) problem. Specifically, suppose we get q
consecutive queries of the form < i, α >, where each such query means: “replace D[i] by
α, α ∈ Σ and output the LCF of S and (the updated) D. The goal is to initially preprocess
S and D so that we do not need O(n) time to compute an LCF for each such query.

This problem, as well as many other dynamic string problems, would be efficiently solv-
able in a straight-forward manner if one could efficiently maintain a suffix tree of a changing
string. Alas, a fully dynamic suffix tree seems like a very difficult challenge. In this paper
we present a tool – Locally Maximal Common Factors (LMCF) – that proves to be quite
useful in solving some restricted versions of the FDOS-LCF problem .

The first problem we solve is the dynamic LCF problem for the decremental dynamic
model. In this model, every substitution in D is of a symbol ω 6∈ Σ. We provide an algorithm
with two implementations. The first does a linear time preprocessing and answers a query
in time O(logn). It is presented for pedagogical reasons, to describe the power of the LMCF
idea in a simple manner. The second implementation uses data structures such as the van
Emde Boaz tree, or y-fast tries that enable solving the problem in time O(log logn) per
query, following a linear time preprocessing.

The second problem we solve is the FDOS-LCF problem in the special case where S is
periodic. Our solution has a linear time preprocessing and subsequent O(p log logn) time
queries.

2 Preliminaries

We begin with basic definitions and notation generally following [4]. Let S = S[1]S[2]...S[n]
be a string of length |S| = n over a finite ordered alphabet Σ of size |Σ| = O(1). By ε we
denote an empty string. For two positions i and j on S, we denote by S[i . . j] = S[i] . . S[j]
the factor (sometimes called substring) of S that starts at position i and ends at position
j (it equals ε if j < i). We recall that a prefix of S is a factor that starts at position 1

A. Amir and I. Boneh 11:3

(S[1 . . j]) and a suffix is a factor that ends at position n (S[i . . n]). We denote the reverse
string of S by SR, i.e. SR = S[n]S[n − 1] . . . S[1]. We denote the concatenation of two
strings, S1 and S2, by S1S2.

Let Y be a string of length m with 0 < m ≤ n. We say that there exists an occurrence
of Y in S, or, more simply, that Y occurs in S, when Y is a factor of S. Every occurrence
of Y can be characterised by a starting position in S. Thus we say that Y occurs at the
starting position i in S when Y = S[i . . i+m− 1].

Given two strings S and D, a string Y that occurs in both is a longest common factor
(LCF) of S and D if there is no longer factor of D that is also a factor of S; note that S
and D can have multiple LCF strings. We introduce a natural representation of an LCF of
S and T as a triple (m, p, q) such that S[p . . p + m− 1] = T [q . . q + m− 1] is an LCF of S
and T . The decremental dynamic LCF problem is formally defined as follows;

Decremental Dynamic LCF
Input: Two strings S and D of length n over an alphabet Σ, symbol ω 6∈ Σ.
Let < i1, ω >,< i2, ω >, ..., < ik, ω > be a sequence of substitution operations in D, and
let D′ be the result of these k substitutions.
Output: An LCF of S and D′.

Clearly, the problem can be solved by computing an LCF after every change. We will
see that such a computation can be done in linear time. We show an algorithm whose
preprocessing time is linear, and where an LCF computation after each substitution can be
done more efficiently. In Section 4 we present an implementation whose query complexity
is logarithmic. In Section 5 we present an implementation whose query processing time is
O(log logn).

3 Algorithm’s Idea

We need some additional tools and definitions:

I Definition 1. Let S and D be two strings of length n over fixed finite alphabet Σ. A
locally maximal common factor (LMCF) of S in D is a factor D[i..j] of D that satisfies the
following two conditions:
1. D[i..j] is a factor of S.
2. Neither D[i..j + 1] nor D[i− 1..j] are factors of S.

The following observations are crucial.

I Observation 2. An LCF of two strings S and D is an LMCF of S in D. Moreover, a
longest LMCF of S in D is an LCF.

I Observation 3. There are at most n LMCF’s of S in D.

Proof. It is clear that only one LMCF can start at any index i of D. Otherwise, let i be
an index such that both D[i..j] and D[i..`] are LMCF’s, and wlog assume j < `. Then
D[i..j + 1] is a factor of S, contradicting D[i..j]’s maximality.
Since D is of length n there are no more than n indices where an LMCF can start. J

I Observation 4. Let D[i1..j1] and D[i2..j2] be LMCF’s of S in D. Then i1 < i2 iff j1 < j2.

Proof. Otherwise, one is contained in the other contradicting the fact that both are LMCF’s.
J

To achieve our goal, we will show that we can update and maintain a sorted list of
LMCF’s in logarithmic time per substitution. One more tool is needed.

CPM 2018

11:4 LMCF’s for Dynamic String Algorithms

3.1 The Suffix Tree
The suffix tree T (S) of a non-empty string S of length n is a compact trie representing all
suffixes of S. The branching nodes of the trie as well as the terminal nodes, that correspond
to suffixes of S, become explicit nodes of the suffix tree, while the other nodes are implicit.
Each edge of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path of that kind.
Thus, each node of the trie can be represented in the suffix tree by the edge it belongs to
and an index within the corresponding path. We let L(v) denote the path-label of a node
v, i.e., the concatenation of the edge labels along the path from the root to v. We say that
v is path-labelled L(v). Additionally, D(v) = |L(v)| is used to denote the string-depth of
node v. Node v is a terminal node if its path-label is a suffix of S, that is, L(v) = S[i . . n]
for some 1 ≤ i ≤ n; here v is also labelled with index i. It should be clear that each factor
of S is uniquely represented by either an explicit or an implicit node of T (S), called its
locus. In standard suffix tree implementations, we assume that each node of the suffix tree
is able to access its parent. Once T (S) is constructed, it can be traversed in a depth-first
manner to compute the string-depth D(v) for each node v. For every two nodes, v, u, where
L(u) = αL(v), α ∈ Σ, there is a pointer from v to u called a suffix link. It is known that the
suffix tree, with the suffix links, of a string of length n, over a fixed-sized ordered alphabet,
can be computed in time and space O(n) [16, 12, 14]. The suffix tree of an integer alphabet
can also be built in linear time [5].

3.2 Preprocessing
Our algorithm has two parts: a preprocessing part, to set up the data structures; and a
query part that maintains the data structures upon every substitution in a manner allowing
to efficiently pull a maximum LMCF at every instant.

Finding All LMCF’s:

The first preprocessing step is finding all LMCF’s. This is easily done via the suffix tree.
Algorithm AllLMCF (S,D) computes, for each index i, the longest factor starting at D[i]
that occurs in S. Then, starting from D[1], output every factor whose ending position is
farther than the previous one.

Algorithm 1: Algorithm AllLMCF(S,D) – Finding all LMCF’s
1. Construct suffix tree T (S$D) for the string S$D, where $ 6∈ Σ.
2. For every leaf, indicate whether it represents a suffix starting in S or a suffix starting

in D.
3. Traverse T (S$D) (using, e.g., DFS) and mark as blue every node that has in its

subtree at least one leaf from D and one leaf from S.
4. For every leaf representing suffix D[i], mark the lowest blue node on its path from

the root, i.e. the ending index of the longest factor that starts at D[i] and appears
in S. Denote it by LD[i].

5. Set F to be LD[1]. {F will be the farthest common factor so far. }
< 1, LD[1] > is an LMCF.

6. For i=2 to n do:
If LD[i] > F then < i, LD[i] > is an LMCF and LD[i] is the new value of F .
endFor

A. Amir and I. Boneh 11:5

Correctness: The algorithm simply follows the definition of LMCF.

Time: The construction and size of the suffix tree, as well as the tree traversals, are done
in time O(n).

Let us now examine the effects on the LMCF’s of a substitution of ω for the symbol in
index k of D. Clearly, all LMCF’s that end before index k and all those that start after
index k are not affected. Let CMk be the set of LMCF’s D[i..j] such that i ≤ k ≤ j. Since
ω 6∈ S then each of the LMCF’s in CMk is cut at index k. But because of local maximality,
for any two LMCF’s D[i1..j1] and D[i2..j2] where i1 < i2 ≤ k ≤ j1 < j2, only D[i1..k − 1]
and D[k + 1..j2] are potentially LCMF’s after the substitution in k. We can conclude:

I Observation 5. After a replacement of ω in index k of D, if CMk is empty, there is no
change to the LMCF’s. Otherwise, all LMCF’s that are elements in CMk should be deleted
and the following two strings should be inserted to the set of LMCF’s:

L1 = D[i′..k − 1], where i′ = min{i|D[i, j] ∈ CMk}
L2 = D[k + 1..jw], where j′ = max{j|D[i, j] ∈ CMk}

We now have an idea of what our algorithm should look like. We need a data structure
that allows us to efficiently delete the appropriate sets of LMCF’s, to add the two new
LMCF’s, if necessary, and to efficiently find the maximum. In particular, let LCMF D[i..j]
be represented by the pair < i, j >. We need a data structure that supports the following
operations:
1. Costruct LMCF structure
2. Given index k, Delete CMk

3. Insert LMCF < i, j >

4. Find maximum length LMCF.

4 Implementation 1: O(log n) Query Processing

Consider a balanced binary search tree T of the pairs < i, j > that represent LMCF’s, sorted
by the smaller index in every pair. Given a substitution index k, we can efficiently find the
subtree of all indices i for which i ≤ k. The problem is that some of the LMCF’s in this
subtree are not cut by k, i.e. their second index j has j < k, thus they should not be deleted.
However, Observation 4 guarantees that the second indices of all LMCF’s are sorted by the
same order as the first indices. This means that the binary search tree allows us to find i1,
the smallest i for which D[i, j] is cut by k. Similarly, we can find i2, the largest i for which
D[i, j] is cut by k. We delete all the LMCF’s starting between i1 and i2 and add L1 and
L2. We will say a few words about maintaining the tree balanced.

As for the maximum. For each node in the tree write the maximum length LMCF in its
subtree. Updating the maximum after every change means running up the tree, thus the
time is O(logn). Answering a query means starting from the root and running down the
tree towards the maximum, again having time O(logn).

Implementation Details: There are O(n) LMCF’s in total, and each one is a pair < i, j >

starting at a unique i, 1 ≤ i ≤ n. Therefore, we use the balanced binary tree of {1, ..., n},
but for every node we indicate (a) whether the node is “full”, i.e., whether there is an LMCF
that starts at the node of index i, and (b) whether the subtree rooted at node i is empty.
Since the height of the tree is O(logn), the search is bounded by the tree height even in the
tree with “empty” nodes.

CPM 2018

11:6 LMCF’s for Dynamic String Algorithms

Time:
1. Preprocessing: The balanced tree for {1, ..., n} can be constructed in linear time. The

LMCF’s can be found on the suffix tree as shown in Subsection 3.2 in linear time. The
appropriate nodes are marked and denoted “full” and the rest of the nodes as well as the
appropriate subtrees are marked “empty” in linear time using DFS. Every LMCF node
also has a “length” field and every subtree maintains in its root the maximum length in
the subtree. This is also done by DFS in linear time.

2. Deleting CMk: The j’s of the < i, j > LMCF’s are sorted in the same order as the
i’s. Thus finding the largest and smallest i for which D[i, j] includes k is done in time
O(logn). The appropriate subtrees are marked “empty”. Because the tree is balanced
this requires only O(logn) nodes to be marked. The appropriate maximum length fields
along the modified paths are also updated appropriately, also in time O(logn).

3. Inserting LMCF < i, j >: simply turn on the appropriate “full” field of node i in the
tree, as well as the appropriate j and length. Walk up the path updating the subtree
emptiness indicators and the maximum subtree length.

4. Finding Maximum Length LMCF: The maximum length appears in the subtree
max length field of the root, and can be output in constant time. All LCF’s can be
found by going down the tree. The time is then O(tocc logn), where tocc is the number
of LCF’s. A single representative LCF can be found in time O(logn).

5 Implementation 2: O(log log n) Query Processing

The implementation we suggested to our algorithm was based on a balanced search tree.
The height of such a tree is generally O(logn). However, the are data structures that allow
searching in time O(log log u), where u is the size of the universe of keys [15, 17]. Our set of
keys is {1, ..., n}, which would make the search time O(log logn). In this section we describe
an implementation that uses a data structure that supports the following operations on a
set S ⊂ {1, ..., n}: insert, delete, lookup, findnext, findprev. Using such a data structure we
show how to implement the four operations described in Section 3.

Constructing the tree, searching for a key, and inserting a constant number of LMCF’s,
can be done naturally on the vEB tree as well as the y-fast trie. The challenge is imple-
menting the deletion of CMk and the maintenance of the maximum lengths. The difficulty
arises in the fact that these trees don’t have a constant number of children per node, as does
a balanced search tree, thus these updates are more complex.

5.1 Data Structures
As mentioned, we assume a data structure that supports the following operations on a set
S ⊂ {1, ..., n}: insert, delete, lookup, findnext, findprev. We call this a fast tree. The
vEB tree [15] and the y-fast trie [17] can achieve this in space O(n) and time per oper-
ation O(log logn). Nevertheless, our algorithm can use any dynamic priority queue with
predecessor and successor query capability.

In order to implement our four operations, we will need a number of fast trees. We define
them below.

I Definition 6.
1. The LMCF tree is a fast tree of the pairs < i, j > that represent LMCF’s, sorted by the

smaller index in every pair.

A. Amir and I. Boneh 11:7

2. The Interval tree is a fast tree sorted by the starting indices of valid intervals in the
range {1, ..., n}. Each such element also holds its length. Initially, the entire range is
valid, so there is a single element starting at the first index and whose length is n, the
length of the entire range. As our algorithm progresses, we may need to delete entire
intervals of the range, in which no LMCF’s start. We implement it by “cutting” them
out of the interval tree.

3. The max length tree is a fast tree whose entries are the maximum length of the LMCF’s
in the valid intervals. There is also a link between each valid interval entry in the interval
tree and the entry of its length in the max length tree. The max length tree is sorted by
the length.

Our algorithm makes use of the range maximum query algorithm. The problem is defined
as follows:

I Definition 7. The Range Maximum Query (RMQ) problem has as its input an array
A[1..n] of natural numbers. We wish to preprocess the array in a manner that will enable
efficient solution to:

Query: Given [i, j], where 1 ≤ i ≤ j ≤ n. Return index k, i ≤ k ≤ j such that A[k] ≥
A[`], ∀` s.t. i ≤ ` ≤ æ.

Time: It was shown [8, 3, 6] that the RMQ problem can be solved using linear time and
space preprocessing and constant query time.

Space: Since both the fast tree, and the RMQ preprocessing are done in linear space, our
constructions uses linear space.

5.2 The Algorithm
We show the implenmentation of each of our operations using the fast trees.

Preprocessing - Construct the fast trees: We find the LMCF pairs as in Implementation
1 in Section 4. We construct two sets of fast trees: (a) MFT1: sorted by the starting
position of the LMCF’s, along with the length of each LMCF. The lengths are entered into
an M array which is preprocessed for RMQ queries. The length of the m array is n. M [i]
gets the value of the LMCF that starts in D[i], if such an LMCF exists, otherwise M [i]
gets the value −∞. The Interval and the max length fast trees are initialized. (b) MFT2
Sorted by the ending positions of the LMCF’s. Each entry has its length. It comes with
its accompanying interval and max length fast trees. MFT2 is symmetric to MFT1 and
thus in the rest of the paper we will describe operations on MFT1. Similar operations are
symmetrically done in MFT2.

Time: Construction time of the fast trees, and RMQ preprocessing: O(n).

Given Index k, Delete CMk: Computing CMk is straightforward in the LMCF fast trees.
For any k, let j1 be the smallest entry larger than k in the MFT2 set of trees. Initially, it is
found in the LMCF tree. Subsequently, it is checked in the LMCF tree in the closest valid
interval, as found in the interval fast tree. j represents an LMCF < i1, j1 >. If i1 < k then
i1 is the starting position of the LMCF with the smallest index that is cut by k. Therefore

CPM 2018

11:8 LMCF’s for Dynamic String Algorithms

all LMCF’s starting between indices i1 and k − 1 should be removed and replaced by the
new LMCF < i1, k − 1 >. Now, let i2 be the largest entry smaller than k in MFT1. It
represents an LMCF < i2, j2 >. If j2 > k then a new LMCF < k + 1, j2 > needs to be
added. Deleting an entry from a fast tree is simple. However, we need to efficiently delete
many entries, as well as maintain the maximum. As mentioned before, we describe how to
handle MFT1, the operations on MFT2 are symmetrical.

Recall that the interval fast tree is initialized to the entire range. Assume that [i1, k] is
the first interval to be deleted, then the interval fast tree will have a node starting at the
beginning of the interval and ending at i1−1, a node starting at k+1 and ending at the end
of the interval, and a node of length 1 at location i1. In general, the interval fast tree only
has non-overlapping intervals. Additionally, since LMCF’s are cut at the insertion point,
the following holds.

I Observation 8. An interval is deleted from the interval fast tree only if it is entirely
contained in a previous valid interval.

Another crucial observation is the following:

I Observation 9. Only intervals of length 1 (points) may be added and deleted in an interval
that was declared “invalid”.

From the above two observations we get:

I Conclusion 10. The interval tree is composed of intervals and points. Once an interval is
deleted, the activity in the entire deleted interval consists only of adding and deleting single
points.

The deletion of an lnterval requires updating the maximum lengths of the remaining
LMCF’s. If the interval was a point, this is a single operation on the max length fast tree on
the path of the change. If CMk is an interval, then it caused a range change in the interval
fast tree. We need to delete from the max length fast tree the maximum length of the range
that is cut, and add the max length LMCF in the shortened range, as well as k − i1, the
length of the new LMCF. Note that because of Conclusion 10 the only non-point interval
changes are the results of cuts in the initial ranges. But the initial ranges were preprocessed
for RMQ queries. Consequently, we can, in time O(1) update the max length fast tree.

Time: Handling points clearly takes time O(log logn) since these are regular fast tree
operations. Deleting an interval of LMCF’s consists of a fast tree operation. which takes
time O(log logn). Similarly, updating the max length fast tree takes time O(log logn), for
a total of O(log logn) time.

Insert LMCF: Done at the LMCF tree and each of the interval and max length trees.

Time: O(log logn) on the fast trees.

Find Maximum Length LMCF: Find the maximum element in the root max length fast
tree.

Time: O(log logn).

A. Amir and I. Boneh 11:9

6 Dynamic LCF for a Static Periodic String

The LMCF’s are an efficient tool for handling other dynamic versions of the problem. Our
next result is an algorithm for the fully dynamic case. The changes to the text may replace
a character in index i of D with some other character in Σ. We still assume that S is static
and D is dynamic, however, we assume that S is a periodic string whose period length is p.

I Definition 11. Let S be a string of length n. S is called periodic if S = P ipref(P), where
i ∈ N, i ≥ 1, P is a substring of S such that |P | < n, P i is the concatenation of P to itself
i times, and pref(P) is a prefix of P . The smallest such substring P is called the period of
S. If S is not periodic it is called aperiodic.

I Remark. Throughout the paper we use p to denote a period length and P the period
string, i.e., p = |P |.

Formally our problem is:

Periodic Dynamic LCF
Input: Two strings S and D of length n over an alphabet Σ, S is periodic with period
length p.
Let < i1, σ1 >,< i2, σ2 >, ..., < ik, σk > be a sequence of substitution operations in D,
where the symbol D[ij] is replaced by σj ∈ Σ, j = 1, ..., k, and let D′ be the result of
these k substitutions.
Output: An LCF of S and D′.

Our algorithm has linear preprocessing time and takes time O(p log logn) for a substi-
tution and LCF query.

6.1 Algorithm’s Idea
The periodic static string algorithm also maintain the LMCF’s and their maximum length, as
the deremental algorithm did. In order to limit the maintenance time at every substitution,
we need to prove some properties of LMCF’s in a periodic string.

I Observation 12. Every substring of S whose length is larger than p also has a period of
size p. In particular this, of course, applies to the LMCF’s of S in D.

I Lemma 13 (Periodicity unity). Let D1 =< i1, j1 > and D2 =< i2, j2 > be two LMCFs of
S in D. If the length of the overlap of D1 and D2 is at least p then D1 = D2 (i1 = i2 and
j1 = j2).

Proof. Let D1 = D[i1..j1] and D2 = D[i2..j2] be two LMCF’s of S in D s.t the overlap of D1
and D2 is an interval of at least p characters. We assume, wlog, that i1 ≤ i2. That means
that i1 ≤ j1 − p , i2 ≤ j2 − p and, because the overlap is of length at least p, i2 ≤ j1 − p.
As substrings of S, both D1 and D2 have a period of size p. Let S[i3..j3] be an instance
of D1 in S. According to the local maximum property of D1 - it must be satisfied that
D[j1 + 1] 6= S[j3 + 1]. Otherwise D1 could have been extended. S has a period of size p
so S[j3 + 1] = S[j3 + 1 − p]. The index j1 + 1 − p is still within the range of D1 because
i1 ≤ j1−p . so S[j3 +1−p] = D[j1 +1−p]. The index j1+1−p is also within the Range of
D2 because i2 ≤ j1 − p. Assuming that D1 6= D2, The index j1 + 1 is within the range of
D2 as well because j2 > j1 (Otherwise, D2 is fully contained in D1). On top of all, D2 is a
common factor of S that is larger than p. so it has a period of size p as well and it satisfies:
D[j1 + 1− p] = D[j1 + 1]. According to transitivity : D[j1 + 1] = S[j3 + 1], in contradiction
to D1’s local maximum property. J

CPM 2018

11:10 LMCF’s for Dynamic String Algorithms

I Lemma 14 (Periodicity singular extention). Let D1 = D[i..j] be a common factor of D and
S of length greater than p. Then D[i..j + 1] is also a factor of S iff D[j + 1] = D[j + 1− p].

Proof. ⇒ Assume D[i..j + 1] is a factor of S. Its length is greater than p, therefore it has
a period of size p. D1 has length greater than p so j − p + 1 is within its range. From the
indexes presence in the interval and the period we get : D[j + 1] = D[j + 1− p].
⇐ Assume D[j+1] = D[j+1−p]. Let S[i3..j3] be an insance of D1 in S. With the same

reasoning as in the proof of Lemma 13 we get that D[j + 1− p] = S[j3 + 1− p] = S[j3 + 1].
The final conclusion is derived from transitivity. J

Note: Both proofs assume that there is an index j3 + 1 in S, which is not necessarily true.
However, every substring starting after the first p letters of S is equal to a substring that
begins in the first p symbols, and thus there is an instance that can be extended to j3 + 1.
There are only at most p possible substrings where this shift can not be done - those that
already start within the first p symbols of S and extend all the way to the end. The lemmas
don’t hold for these strings, but there are only at most p of them and they are handled
separately by the algorithm.

The above lemmas indicate that given a change in index x in D, the number of LMCF’s
that are affected by this change and are “far” from x is small. “Far” means starting or
ending in an index whose distance from x exceeds O(p). The algorithm will handle “far”
LMCF’s and “close” LMCF’s separately. There are only O(p) “close” LMCF’s, thus they
can be handled in a brute force manner and still cost only O(p) per query. The two lemmas
guarantee a constant number of affected “far” LMCF’s, so they also are handled efficiently.

7 The algorithm

Preprocessing: The preprocessing stage consists of finding all of the LMCF’s, and putting
them in a convenient data structure. The LMCF’s are found using algorithm
AllLMCF (S,D), as presented in Subsection 3.2. The LMCF’s are put in an efficient dy-
namic priority queue data structure, (e.g. the fast tree mentioned above) containing the
indexes, sorted by the i value. Additionally, each node contains extra information about the
maximum value of j− i in the subtree rooted in this node. Denote this priority queue by T .

Handling an Edit Operation: Assume a change is made at location x of D. We can
apply algorithm AllLMCF on the area D[x−p..x+p] and, in time O(p) get all the LMCF’s
starting in that area and ending in D[x+p]. This is almost all we need. The only corrections
necessary are: (1) LMCF’s that started before D[x−p] and extended past D[x]; (2) LMCF’s
that started before D[x− p] and ended at D[x− 1] (maybe they need to be extended); and
(3) new LMCF’s that start at the interval D[x− p..x] and extend past D[x+ p].

Because of the Periodicity Unity Lemma, we know that there is at most one LMCF that
starts before D[x−p] and reaches to or past D[x−1]. If it passed D[x] (Case (1) above), its
endpoint should be replaced by x− 1. If it ends at x− 1 (Case (2) above), then its endpoint
should be extended. We can spend p time to see how much ahead it can be extended. If it
can be extended by more than p positions, then by the Periodicity Unity Lemma, we can
merge it with the previous LMCF that started at D[x + 1]. This leaves us with Case (3) -
all LMCF’s that start at the interval D[x − p..x] and extend past D[x + p]. Again, due to
the Periodicity Unity Lemma, there is at most one such LMCF. We merge it with the old
LMCF that started at D[x+1]. All old LMCF’s that started in D[x−p..x] are deleted. The
total number of changes is O(p) and, for each change the maximum length in the subtree is

A. Amir and I. Boneh 11:11

Algorithm 2: pseudocode for algorithm UpdateLMCF
Algorithm UpdateLMCF(x,α) – substitute location D[x] with α

1. Update D : D[x]← α.
2. Find a pair π1 =< i1, j1 > in T that satisfies j1 ≥ x− 1 and i1 ≤ x− p. If there

isn’t one: π1 ← nill.
3. Find a pair π2 =< i2, j2 > in T that satisfies i2 ≤ x+ 1 and j2 ≥ x+ p. If there

isn’t one: π2 ← nill.
4. Set two binary flags fi, i ∈ {1, 2}. fi = 1 ⇐⇒ πi = nill.
5. For c = 0, 1, 2...p do:

a. If D[x + c] 6= D[x + c − p] and f1 = 0 : Remove π1 from T and add the pair
< i1, x+ c− 1 >. Then set f1 = 1.

b. If D[x − c] 6= D[x − c + p] and f2 = 0 : Remove π2 from T and Add the pair
< x− c+ 1, j2 >. Then set f2 = 1.

6. If both flags are 0 in the end of the loop: Remove both π1 and π2 from T and add
< i1, j2 >.

7. Remove from T all the pairs < i, j > s.t i ≥ x− p and j ≤ x+ p.
8. Use ALLLMCF (S[1..p]3, D[x−p..x+p]) to get all the LMCF’s contained in this

interval. Add all the new LMCF’s found to T . Except the one with the minimal i
value and the one with the maximal j value, denoted as πleft and πright respectively.

9. Check if there is an LMCFs that contains πright in T (smaller i value and greater
j value). If there is not then add πright to T . Do the same for πleft.

end Algorithm

maintained in O(log logn))time, for the fast tree data stucture used. A pseudocode of the
algorithm can be found in Algorithm 2.

7.1 Correctness
As previously indicated, the algorithm handles two types of LMCF’s separately - “far”
LMCFs and “close” ones. A far LMCF is an LMCF that is cut (or touched) by x, the
location of the edit operation, but the diffenece between x and either i or j is at least p. An
important observation is that according to the Periodicity Unity Lemma, there is no more
than one such possible LMCF from each side of x (left and right).

Consequently, our algorithm finds the, possibly, single “far” LMCF from each side of x
and figures out how it should be modified after D has changed.

Another useful property of the “far” LMCF’s is that even if the edit operation cuts them
- they are still at least of size p in the updated D. That property enables the use of the
Singular Extention Lemma to check how far they extend in the modified D.

The final observation to be made in dealing with the “far” LMCF’s is that checking p+1
matches after (or before) x is enought. If a mismatch was found - that’s as far as the LMCF
can extend (Singular Extention Lemma). If the p first letters after x match, that means that
there were “far” LMCFs from both sides of x, and that after the edit operation, they overlap
within an interval greater than p. That makes them the same LMCF due to the Periodicity
Unity Lemma. At that point the algorithm will stop checking symbol by symbol. Rather,
it will combine the two “far” LMCF’s.

Handling the close LMCF’s is done in straightforward way - using AllLMCF on the
small interval in wich “close” LMCF’s can be found. It is easy to observe that they must be
a substring of S[1..p]3.

CPM 2018

11:12 LMCF’s for Dynamic String Algorithms

The algorithm, witout any modifications, accually answers a slighly different question
from the one asked. It finds the LCF of the dynamic string D and some infinite period
of the first p letters of S. if S is in size |D| + p, the questions are equivalent. Any other
size of S will bring into play the issue mentioned in the note that follows the proof of the
two lemmas in Subsection 6.1. For simplicity’s sake we presented the algorithm with the
assumption of the appropriate length of S. However, a slight adjustment, that can be done
without changing the time complexity, can solve this problem. Every time we add to T an
LMCF larger than n− p , wich can only happen twice in a single change, we should check if
it is an actual factor of S and fix it if its not. This can be done by locating the first instance
in S of the new LMCF and use its known size to detect if it is accually a factor. If it is not
- then the starting index of S in the LMCF and its length can be used to deduce the way it
should be partitioned, in O(1) time.

7.2 Complexity
Lines 2 and 3 are standard priority queue searches. Since the size of the LMCF collection
is bounded by n, they take O(log logn) time.
The loop in line 5 repeats at most p times. The operations in every repeat are a constant
amount of symbol comparison or priority queue manipulations, for a total of O(p+
loglogn).
Line 6 is also a priority queue manipulation.
Line 7 requires a few priority queue manipulations. There are no more than O(p) LMCF’s
starting at that area so the total time complexity is O(p log logn).
Line 8 uses AllLMCF on two inputs of size O(p). that has O(p) time complexity. Adding
the O(p) new LMCF’s to the priority queue takes time O(p log logn).
Line 9 makes a constant amount of balanced tree searches and additions for a total of
O(log logn).
Every change or addition causes a percolation up of the changes in the maximum LMCF
length in the subtree. In a balanced search tree, this is O(log logn) time per change.

Total Query Time: O(p log logn).

8 Conclusions

We have presented a tool - the LMCF - that enables efficient solutions to two variants of the
dynamic longest common factor problem. In both variants we have a static string S and a
dynamic string D. For the decremental case, i.e. where symbols of D are substituted by a
new symbol not in the alphabet, the update time is O(log logn), and for the case where S
is periodic with period p, the update time is O(p log logn). In both cases the preprocessing
is linear.

Our algorithm is designed for strings over a constant-sized alphabet. However, with a
O(n logn) pre-sorting of the strings, and converting to the alphabet {1, ..., n}, the same
algorithms will apply.

An open question is to extend this result to a fully dynamic case, that is, to propose a
data structure that allows subsequent edit operations on one or both of the strings S and D
for a general S, and reports the LCF after each operation in an efficient time complexity. Of
course the ultimate challenge is a fully dynamic suffix tree algorithm. That problem seems
hard. In the meanwhile it is important to consider dynamic versions of specific pattern
matching problems. We believe that the LMCF idea can prove useful in other dynamic
string algorithms as well.

A. Amir and I. Boneh 11:13

References
1 A. Amir, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, and J. Radoszewski. Longest

common factor after one edit operation. In Proc. 24th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS, pages 14–26. Springer, 2017. best
paper award.

2 M.A. Babenko and T.A. Starikovskaya. Computing the longest common substring with
one mismatch. Probl. Inf. Transm., 47(1):28–33, 2011.

3 O. Berkman and U. Vishkin. Finding level-ancestors in trees. Journal of Computer and
System Sciences, 48(2):214–229, 1994.

4 M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University
Press, 2007.

5 M. Farach. Optimal suffix tree construction with large alphabets. Proc. 38th IEEE Sym-
posium on Foundations of Computer Science, pages 137–143, 1997.

6 J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem,
with applications to LCA and LCE. In Proc. 17th Annual Symposium on Combinatorial
Pattern Matching (CPM), number 4009 in LNCS, pages 36–48. Springer-Verlag, 2006.

7 T. Flouri, E. Giaquinta, K. Kobert, and E. Ukkonen. Longest common substrings with k
mismatches. Information Processing Letters, 115(6-8):643–647, 2015.

8 H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry
problems. Proc. 16th ACM Symposium on Theory of Computing, 67:135–143, 1984.

9 S. Grabowski. A note on the longest common substrings with k mismatches problem.
Information Processing Letters, 115(6-8):640–642, 2015.

10 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

11 C.-A. Leimeister and B. Morgenstern. KMACS: the k-mismatch average common substring
approach to alignment-free sequence comparison. Bioinformatics, 30(14):2000–2008, 2014.

12 E. M. McCreight. A space-economical suffix tree construction algorithm. J. of the ACM,
23:262–272, 1976.

13 T. Starikovskaya. Longest common substrings with approximately k mismatches. In Proc.
27th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 54 of LIPIcs,
pages 21:1–21:11, 2016.

14 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
15 P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient

priority queue. Mathematical Systems Theory, 10:99–127, 1977.
16 P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on Switching

and Automata Theory, pages 1–11, 1973.
17 D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inform-

ation Processing Letters, 17(2):81–84, 1983.

CPM 2018

Longest substring palindrome after edit
Mitsuru Funakoshi
Department of Physics, Kyushu University, Japan
mitsuru.funakoshi@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

https://orcid.org/0000-0002-6856-5185

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
It is known that the length of the longest substring palindromes (LSPals) of a given string T
of length n can be computed in O(n) time by Manacher’s algorithm [J. ACM ’75]. In this
paper, we consider the problem of finding the LSPal after the string is edited. We present an
algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals
in O(log(min{σ, logn})) time after single character substitution, insertion, or deletion, where σ
denotes the number of distinct characters appearing in T . We also propose an algorithm that
uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(`+ logn)
time, after an existing substring in T is replaced by a string of arbitrary length `.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases maximal palindromes, edit operations, periodicity, suffix trees

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.12

1 Introduction

Palindromes are strings that read the same forward and backward. The problems of finding
palindromes or palindrome-like structures in a given string are fundamental tasks in string
processing, and thus have been extensively studied (e.g., see [2, 14, 8, 12, 16, 11, 15, 6] and
references therein).

One of the earliest problems regarding palindromes is the longest substring palindrome
(LSPal) problem, which asks to find (the length) of the longest palindromes that appear in a
given string. This problem dates back to 1970’s [13], and since then it has been popular as a
good algorithmic exercise. Observe that the longest substring palindrome is also a maximal
(non-extensible) palindrome in the string, whose center is an integer position if its length
is odd, or a half-integer position if its length is even. Since one can compute the maximal
palindromes for all such centers in O(n2) total time by naïve character comparisons, the
LSPal problem can also be easily solved in O(n2) time.

© Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mitsuru.funakoshi@inf.kyushu-u.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:takeda@inf.kyushu-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Longest substring palindrome after edit

Manacher [13] gave an elegant O(n)-time solution to the LSPal problem. Manacher’s
algorithm uses symmetry of palindromes and character equality comparisons only, and
therefore works in O(n) time for any alphabet. It was pointed out in [2] that Manacher’s
algorithm actually computes all the maximal palindromes in the string. In case where the
input string is drawn from a constant size alphabet or an integer alphabet of size polynomial
in n, there is an alternative suffix tree [19] based algorithm which takes O(n) time [9]. This
algorithm also computes all maximal palindromes.

There is a simple O(n)-space data structure representing all of these computed maximal
palindromes; simply store their lengths in an array of length 2n− 1 together with the input
string T . However, this data structure is apparently not flexible for string edits, since even
a single character substitution, insertion, or deletion can significantly break palindromic
structures of the string. Indeed, Ω(n2) substring palindromes and Ω(n) maximal palindromes
can be affected by a single edit operation (E.g., consider to replace the middle character
of string an with another character b). Hence, an intriguing question is whether there
exists a space-efficient data structure for the input string T which can quickly answer the
following query: What is the length of the longest substring palindrome(s), if single character
substitution, insertion, or deletion is performed? We call this as a 1-ELSPal query.

In this paper, we present an algorithm which uses O(n) time and space for preprocessing
and O(log(min{σ, logn})) time for 1-ELSPal queries, where σ is the number of distinct
characters appearing in T . We also consider a more general variant of 1-ELSPal queries,
where an existing substring in the input string T can be replaced with a string of arbitrary
length `, called an `-ELSPal queries. We present an algorithm which uses O(n) time and
space for preprocessing and O(`+ logn) time for `-ELSPal queries. Our results are valid for
string of length n over an integer alphabet of size polynomial in n. All bounds in this paper
are in the worst case unless otherwise stated.

Related work
This line of research was recently initiated by Amir et al. [1] for the longest common factor
(LCF) of two strings. For two strings S and T of length at most n, they proposed a data
structure of O(n log3 n) space which answers in O(log3 n) time the length of the LCF of S
and the string T ′ obtained by a single character edit operation on T . Their data structure
can be constructed in O(n log4 n) expected time.

2 Preliminaries

Let Σ be the alphabet. An element of Σ∗ is called a string. The length of a string T is
denoted by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = xyz, x, y and z are called a prefix, substring, and suffix of T , respectively. For two
strings X and Y , let lcp(X,Y) denote the length of the longest common prefix of X and Y .

For a string T and an integer 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T , and for
two integers 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins at position i and
ends at position j. For convenience, let T [i..j] = ε when i > j. An integer p ≥ 1 is said to
be a period of a string T iff T [i] = T [i+ p] for all 1 ≤ i ≤ |T | − p.

The run length (RL) factorization of a string T is a sequence f1, . . . , fm of maximal runs
of the same characters such that T = f1 · · · fm (namely, each RL factor fj is a repetition of
the same character aj with aj 6= aj+1). For each position 1 ≤ i ≤ n in T , let RLFBeg(i) and
RLFEnd(i) denote the beginning and ending positions of the RL factor that contains the
position i, respectively. One can easily compute in O(n) time the RL factorization of string
T of length n together with RLFBeg(i) and RLFEnd(i) for all positions 1 ≤ i ≤ n.

Funakoshi et al. 12:3

Let TR denote the reversed string of T , i.e., TR = T [|T |] · · ·T [1]. A string T is called a
palindrome if T = TR. For any non-empty substring palindrome T [i..j] in T , i+j

2 is called its
center. It is clear that for each center q = 1, 1.5, . . . , n− 0.5, n, we can identify the maximal
palindrome T [i..j] whose center is q (namely, q = i+j

2). Thus, there are exactly 2n − 1
maximal palindromes in a string of length n.

Let PrePals(T) and SufPals(T) denote the sets of prefix palindromes and suffix palin-
dromes of T , respectively. A non-empty substring palindrome T [i..j] is said to be a maximal
palindrome of T if T [i − 1] 6= T [j + 1], i = 1, or j = |T |. Clearly, prefix palindromes and
suffix palindromes of T are maximal palindromes of T .

A rightward longest common extension (rightward LCE) query on a string T is to compute
lcp(T [i..|T |], T [j..|T |]) for given two positions 1 ≤ i 6= j ≤ |T |. Similarly, a leftward LCE
query is to compute lcp(T [1..i]R, T [1..j]R). We denote by RightLCET (i, j) and LeftLCET (i, j)
rightward and leftward LCE queries for positions 1 ≤ i 6= j ≤ |T |, respectively. An outward
LCE query is, given two positions 1 ≤ i < j ≤ |T |, to compute lcp((T [1..i])R

, T [j..|T |]). We
denote by OutLCET (i, j) an outward LCE query for positions i < j in the string T .

Manacher [13] showed an elegant online algorithm which computes all maximal palin-
dromes of a given string T of length n in O(n) time. An alternative offline approach is to
use outward LCE queries for 2n − 1 pairs of positions in T . Using the suffix tree [19] for
string T$TR# enhanced with a lowest common ancestor data structure [10, 17, 3], where $
and # are special characters which do not appear in T , each outward LCE query can be
answered in O(1) time. For any integer alphabet of size polynomial in n, preprocessing for
this approach takes O(n) time and space [5, 9]. LetM be an array of length 2n− 1 storing
the lengths of maximal palindromes in increasing order of centers. For convenience, we allow
the index forM to be an integer or a half-integer from 1 to n, so thatM[i] stores the length
of the maximal palindrome of T centered at i.

A palindromic substring P of a string T is called a longest substring palindrome (LSPal)
if there are no palindromic substrings of T which are longer than P . Since any LSPal of T is
always a maximal palindrome of T , we can find all LSPals and their lengths in O(n) time.

In this paper, we consider the three standard edit operations, i.e., insertion, deletion, and
substitution of a character in the input string T of length n. Let T ′ denote the string after
one of the above edit position was performed at a given position. A 1-edit longest substring
palindrome query (1-ELSPal query) is to answer (the length of) a longest palindromic
substring of T ′. In the next section, we will present an O(n)-time and space preprocessing
scheme such that subsequent 1-ELSPal queries can be answered in O(log(min{σ, logn}))
time. For any integer ` ≥ 0, an `-block edit longest substring palindrome query (`-ELSPal
query), which is a generalization of the 1-ELSPal query, asks (the length of) a longest
palindromic substring of T ′′, where T ′′ denotes the string after an interval (substring) of T
is replaced by a string of length `. In the following section, we will propose an O(n)-time
and space preprocessing scheme such that subsequent `-ELSPal queries can be answered in
O(`+logn) time. We remark that in both problems string edits are only given as queries, i.e.,
we do not explicitly rewrite the original string T into T ′ nor T ′′ and T remains unchanged
for further queries.

3 Algorithm for 1-ELSPal

In this section, we will show the following result:

I Theorem 1. There is an algorithm for the 1-ELSPal problem which uses O(n) time and
space for preprocessing, and answers each query in O(log(min{σ, logn})) time for single
character substitution and insertion, and in O(1) time for single character deletion.

CPM 2018

12:4 Longest substring palindrome after edit

3.1 Periodic structures of maximal palindromes
Let T be a string of length n. For each 1 ≤ i ≤ n, let MaxPalEndT (i) denote the set
of maximal palindromes of T that end at position i. Let Si = s1, . . . , sk be the sequence
of lengths of maximal palindromes in MaxPalEndT (i) sorted in increasing order, where
k = |MaxPalEndT (i)|. Let dj be the progression difference for sj , i.e., dj = sj+1 − sj for
1 ≤ j < k. We use the following lemma which is based on periodic properties of maximal
palindromes ending at the same position.

I Lemma 2.
(i) For any 1 ≤ j < k, dj+1 ≥ dj.
(ii) For any 1 < j < k, if dj+1 6= dj, then dj+1 ≥ dj + dj−1.
(iii) Si can be represented by O(log i) arithmetic progressions, where each arithmetic progres-

sion is a tuple 〈s, d, t〉 representing the sequence s, s+ d, . . . , s+ (t− 1)d with common
difference d.

(iv) If t ≥ 2, then the common difference d is a period of every maximal palindrome which
end at position i in T and whose length belongs to the arithmetic progression 〈s, d, t〉.

Each arithmetic progression 〈s, d, t〉 is called a group of maximal palindromes. Similar
arguments hold for the set MaxPalBegT (i) of maximal palindromes of T that begin at
position i.

To prove Lemma 2, we use arguments from the literature [2, 7, 14]. Let us for now
consider any string W of length m. In what follows we will focus on suffix palindromes in
SufPals(W) and discuss their useful properties. We remark that symmetric arguments hold
for prefix palindromes in PrePals(W) as well. Let S′ = s′1, . . . , s

′
k′ be the sequence of lengths

of suffix palindromes of S′ sorted in increasing order, where k′ = |SufPals(W)|. Let d′j be
the progression difference for s′j , i.e., d′j = s′j+1 − s′j for 1 ≤ j < k′. Then, the following
results are known:

I Lemma 3 ([2, 7, 14]).
(A) For any 1 ≤ j′ < k′, d′j′+1 ≥ d′j′ .
(B) For any 1 < j′ < k′, if d′j′+1 6= d′j′ , then d′j′+1 ≥ d′j′ + d′j′−1.
(C) S′ can be represented by O(logm) arithmetic progressions, where each arithmetic pro-

gression is a tuple 〈s′, d′, t′〉 representing the sequence s′, s′ + d′, . . . , s′ + (t′ − 1)d′ of
lengths of t′ suffix palindromes with common difference d′.

(D) If t′ ≥ 2, then the common difference d′ is a period of every suffix palindrome of W
whose length belongs to the arithmetic progression 〈s′, d′, t′〉.

The set of suffix palindromes ofW whose lengths belong to the same arithmetic progression
〈s′, d′, t′〉 is also called a group of suffix palindromes. Clearly, every suffix palindrome in the
same group has period d′, and this periodicity will play a central role in our algorithms.

We are ready to prove Lemma 2.

Proof. It is clear that MaxPalEndT (i) ⊆ SufPals(T [1..i]), namely,

MaxPalEndT (i) = {s′ ∈ SufPals(T [1..i]) | T [i− s′] 6= T [i+ 1], i− s′ = 1, or i = n}.

The case where i = n is trivial, and hence in what follows suppose that i < n. Let
c = T [i + 1], and for a group 〈s′, d′, t′〉 of suffix palindromes let a = T [i − s′] and b =
T [i − s′ − (t′ − 1)d′], namely, a (resp. b) is the character that immediately precedes the
shortest (resp. longest) palindrome in the group (notice that a = b when t′ = 1). Then, it
follows from Lemma 3 (D) that s′, s′+d′, . . . , s′+ (t′− 2)d′ ∈ MaxPalEndT (i) iff a 6= c. Also,

Funakoshi et al. 12:5

s′ + (t′ − 1)d′ ∈ MaxPalEndT (i) iff b 6= c. Therefore, for each group of suffix palindromes of
T [1..i], there are only four possible cases: (1) all members of the group are in MaxPalEndT (i),
(2) all members but the longest one are in MaxPalEndT (i), (3) only the longest member is
in MaxPalEndT (i), or (4) none of the members is in MaxPalEndT (i).

Now, it immediately follows from Lemma 3 that (i) dj+1 ≥ dj for 1 ≤ j < k and (ii)
dj+1 ≥ dj + dj−1 holds for 1 < j < k. Properties (iii) and (iv) also follow from the above
arguments and Lemma 3. J

For all 1 ≤ i ≤ n we can compute MaxPalEndT (i) and MaxPalBegT (i) in total O(n)
time: After computing all maximal palindromes of T in O(n) time, we can bucket sort all
the maximal palindromes with their ending positions and with their beginning positions in
O(n) time each.

3.2 Algorithm for substitutions
In what follows, we will present our algorithm to compute the length of the LSPals after
single character substitution. Our algorithm can also return the occurrence of an LSPal.

Let i be any position in the string T of length n and let c = T [i]. Also, let T ′ =
T [1..i − 1]c′T [i + 1..n], i.e., T ′ is the string obtained by substituting character c′ for the
original character c = T [i] at position i. To compute the length of the LSPals of T ′, it suffices
to consider maximal palindromes of T ′. Those maximal palindromes of T ′ will be computed
from the maximal palindromes of T .

The following observation shows that some maximal palindromes of T remain unchanged
after character substitution at position i.

I Observation 4 (Unchanged maximal palindromes after single character substitution). For
any position 1 ≤ j < i, MaxPalEndT ′(j) = MaxPalEndT (j). For any position i < j ≤ n,
MaxPalBegT ′(j) = MaxPalBegT (j).

By Observation 4, for each position i (1 ≤ i ≤ n) of T , we precompute the largest element
of

⋃
1≤j<i MaxPalEndT (j) and that of

⋃
i<j≤n MaxPalBegT (j), and store the larger one in

the ith position of an array U of length n. U [i] is a candidate for the solution after the
substitution at position i. For each position i,

⋃
1≤j<i MaxPalEndT (j) contains the lengths of

all maximal palindromes which end to the left of i, and
⋃

i<j≤n MaxPalBegT (j) contains the
lengths of all maximal palindromes which begin to the right of i. Thus, by simply scanning
MaxPalEndT (j) for increasing j = 1, . . . , n and MaxPalBegT (j) for decreasing j = n, . . . , 1,
we can compute U [i] for every position 1 ≤ i ≤ n. Since there are only 2n − 1 maximal
palindromes in string T , it takes O(n) time to compute the whole array U .

Next, we consider maximal palindromes of the original string T whose lengths are extended
in the edited string T ′. As above, let i be the position where a new character c′ is substituted
for the original character c = T [i]. In what follows, let σ denote the number of distinct
characters appearing in T .

I Observation 5 (Extended maximal palindromes after single character substitution). For any
s ∈ MaxPalEndT (i − 1), the corresponding maximal palindrome T [i − s..i − 1] centered at
2i−s−1

2 gets extended in T ′ iff T [i− s− 1] = c′. Similarly, for any p ∈ MaxPalBegT (i+ 1),
the corresponding maximal palindrome T [i+ 1..i+ p] centered at 2i+p+1

2 gets extended in T ′
iff T [i+ p+ 1] = c′.

I Lemma 6. Let T be a string of length n over an integer alphabet of size polynomial in
n. It is possible to preprocess T in O(n) time and space so that later we can compute in
O(log(min{σ, logn})) time the length of the longest maximal palindromes in T ′ that are
extended after substitution of a character.

CPM 2018

12:6 Longest substring palindrome after edit

bbaabaabaacaabaabaaaaacaabab
i

b

b

c

b

Figure 1 Example for Lemma 6, with string bbaabaabaacaabaabaaaaacaabab where the character
a at position i = 20 is to be substituted. There are four maximal palindromes ending at position 19,
whose lengths are represented by two groups 〈2, 3, 3〉 and 〈17, 9, 1〉. For the first group, c precedes
the longest maximal palindrome and b precedes all the other maximal palindromes. The second
group contains only one maximal palindrome and b precedes it. The largest extended lengths are 21
for b, and 14 for c. Thus we have Ei = [(b, 21), (c, 14), (ĉ, 17)], where 17 is the length of the longest
maximal palindrome ending at position 19 in the original string.

Proof. By Observation 5, we consider maximal palindromes corresponding to
MaxPalEndT (i − 1). Those corresponding to MaxPalBegT (i + 1) can be treated similarly.
Let 〈s, d, t〉 be an arithmetic progression representing a group of maximal palindromes in
MaxPalEndT (i− 1). Let us assume that the group contains more than 1 member (i.e., t ≥ 2)
and that i−s ≥ 2, since the case where t = 1 or i−s = 1 is easier to deal with. Let Pj denote
the jth shortest member of the group, i.e., P1 = T [i−s..i−1] and Pt = T [i−s−(t−1)d..i−1].
Then, it follows from Lemma 2 (iv) that if a is the character immediately preceding the
occurrence of P1 (i.e., a = T [i− s− 1]), then a also immediately precedes the occurrences of
P2, . . . , Pt−1. Hence, by Observation 5, Pj (2 ≤ j < t) gets extended in the edited text T ′ iff
c′ = a. Similarly, Pt gets extended iff c′ = b, where b is the character immediately preceding
the occurrence of Pt. For each 1 ≤ j ≤ t the final length of the extended maximal palindrome
can be computed in O(1) time by a single outward LCE query OutLCE(i−s−(j−1)d−2, i+1).
Let P ′j denote the extended maximal palindrome for each 1 ≤ j ≤ t.

The above arguments suggest that for each group of maximal palindromes, there are
at most two distinct characters that can extend those palindromes after single character
substitution. For each position i in T , let Σi denote the set of characters which can extend
maximal palindromes w.r.t. MaxPalEndT (i− 1) after character substitution at position i.
It now follows from Lemma 2 and from the above arguments that |Σi| = O(min{σ, log i}).
Also, when any character in Σ \ Σi is given for character substitution at position i, then no
maximal palindromes w.r.t. MaxPalEndT (i− 1) are extended.

For each maximal palindrome P of T , let (i, c, l) be a tuple such that i is the ending
position of P , and l is the length of the extended maximal palindrome P ′ after the immediately
following character T [i+1] is substituted for the character c = T [i−|P |−1] which immediately
precedes the occurrence of P in T . We then radix-sort the tuples (i, c, l) for all maximal
palindromes in T as 3-digit numbers. This can be done in O(n) time since T is over an
integer alphabet of size polynomial in n. Then, for each position i, we compute the maximum
value lc for each character c. Since we have sorted the tuples (i, c, l), this can also be done in
total O(n) time for all positions and characters. See Figure 1 for a concrete example.

Let ĉ be a special character which represents any character in Σ \Σi (if Σ \Σi 6= ∅). Since
no maximal palindromes w.r.t. MaxPalEndT (i− 1) are extended by ĉ, we associate ĉ with
the length `ĉ of the longest maximal palindrome w.r.t. MaxPalEndT (i− 1). We assume that
ĉ is lexicographically larger than any characters in Σi. For each position i we store pairs
(c, lc) in an array Ei of size |Σi|+ 1 = O(min{σ, log i}) in lexicographical order of c. Then,

Funakoshi et al. 12:7

given a character c′ to substitute for the character at position i (1 ≤ i ≤ n), we can binary
search Ei for (c′, lc′) in O(log(min{σ, logn})) time. If c′ is not found in the array, then we
take the pair (ĉ, lĉ) from the last entry of Ei. We remark that

∑n
i=1 |Ei| = O(n) since there

are 2n− 1 maximal palindromes in T and for each of them at most two distinct characters
contribute to

∑n
i=1 |Ei|. J

Finally, we consider maximal palindromes of the original string T whose lengths are
shortened in the edited string T ′ after substituting a character c′ for the original character
at position i.

I Observation 7 (Shortened maximal palindromes after single character substitution). A
maximal palindrome T [b..e] of T gets shortened in T ′ iff b ≤ i ≤ e, T [b + e − i] 6= c′, and
i 6= b+e

2 .

I Lemma 8. It is possible to preprocess a string T of length n in O(n) time and space so
that later we can compute in O(1) time the length of the longest maximal palindromes of T ′
that are shortened after substitution of a character.

Proof. Let S be an array of length n such that S[i] stores the length of the longest maximal
palindrome that is shortened by the character substitution at position i. To compute S,
we preprocess T by scanning it from left to right. Suppose that we have computed S[i].
By Observation 7, we have that S[i] = 2(i − b+e+1

2) where T [b..e] is the longest maximal
palindrome of T satisfying the conditions of Observation 7. In other words, T [b..e] is the
maximal palindrome of T of which the center b+e

2 is the smallest possible under the conditions.
For any position i < i′ ≤ e, we have that S[i′] = S[i]. For the next position e + 1, we

can compute S[e+ 1] in amortized O(1) time by simply scanning the arrayM from position
b+e+1

2 to the right until finding the first (i.e., leftmost) entry ofM which stores the length
of a maximal palindrome whose ending position is at least e+ 1. Hence, we can compute S
in O(n) total time and space. J

Remark that maximal palindromes of T which do not satisfy the conditions of Observa-
tions 5 and 7 are also unchanged in T ′.The following lemma summarizes this subsection:

I Lemma 9. Let T be a string of length n over an integer alphabet of size polynomial in
n. It is possible to preprocess T of length n in O(n) time and space so that later we can
compute in O(log(min{σ, logn})) time the length of the LSPals of the edited string T ′ after
substitution of a character.

3.3 Algorithm for deletions
Suppose the character at position i is deleted from the string T , and let T ′i denote the
resulting string, namely T ′i = T [1..i− 1]T [i+ 1..n]. Now the RL factorization of T comes
into play: Observe that for any 1 ≤ i ≤ n, T ′i = T ′RLFBeg(i) = T ′RLFEnd(i). Thus, it suffices
for us to consider only the boundaries of the RL factors for T .

It is easy to see that an analogue of Observation 4 for unchanged maximal palindromes
holds, as follows.

I Observation 10 (Unchanged maximal palindromes after single character deletion). For
any position 1 ≤ j < RLFEnd(i), MaxPalEndT ′(j) = MaxPalEndT (j). For any position
RLFBeg(i) < j ≤ n, MaxPalBegT ′(j) = MaxPalBegT (j).

CPM 2018

12:8 Longest substring palindrome after edit

abcaaaabaaaaaacbb

i RLFEnd(i)

abcaaaabaaaaacbb

Figure 2 Example for Observation 10. The maximal palindrome aaaabaaaa do not change if the
character a at position i is deleted. The result is the same if the character a at position RLFEnd(i)
is deleted.

abcaaaabaaaaacbb

i RLFEnd(i)

abcaaaabaaaacbb

Figure 3 Example for Observation 11. The maximal palindrome aaaabaaaa gets extended to
bcaaaabaaaacb if the character a at position i is deleted. The result is the same if the character a
at position RLFEnd(i) is deleted.

accaaaaabaaaaaccb

i RLFEnd(i)

accaaaaabaaaaccb

Figure 4 Example for Observation 12. The maximal palindrome ccaaaaabaaaaacc gets shortened
to aaaabaaaa if the character a at position i is deleted. The result is the same if the character a at
position RLFEnd(i) is deleted.

See Figure 2 for a concrete example of Observation 10.
By the above observation, we can compute the lengths of the longest unchanged maximal

palindromes for the boundaries of all RL factors in O(n) time, in a similar way to the case
of substitution.

Clearly the new character at position RLFEnd(i) in the string T ′ after deletion is
always T [RLFEnd(i) + 1], and a similar argument holds for RLFBeg(i). Thus, we have the
following observation for extended maximal palindromes after deletion, which is an analogue
of Observation 5.

I Observation 11 (Extended maximal palindromes after single character deletion). For any
s ∈ MaxPalEndT (RLFEnd(i)− 1), the corresponding maximal palindrome T [RLFEnd(i)−
s..RLFEnd(i)−1] centered at 2RLFEnd(i)−s−1

2 gets extended in T ′ iff T [RLFEnd(i)−s−1] =
T [RLFEnd(i) + 1]. Similarly, for any p ∈ MaxPalBegT (RLFBeg(i) + 1), the correspond-
ing maximal palindrome T [RLFBeg(i) + 1..RLFBeg(i) + p] centered at 2RLFBeg(i)+p+1

2 gets
extended in T ′ iff T [RLFBeg(i) + p+ 1] = T [RLFBeg(i)− 1].

See Figure 3 for a concrete example for Observation 11.
Since the new characters that come from the left and the right of each deleted position

are always unique, for each RLFEnd(i) and RLFBeg(i), the longest maximal palindrome
that gets extended after deletion is also unique. Overall, we can precompute their lengths for
all positions 1 ≤ i ≤ n in O(n) total time by using O(n) outward LCE queries in the original
string T .

Next, we consider those maximal palindromes which get shortened after single character
deletion. We have the following observation which is analogue to Observation 7.

I Observation 12 (Shortened maximal palindromes after deletion). A maximal palindrome
T [b..e] of T gets shortened in T ′ iff b ≤ RLFBeg(i) and RLFEnd(i) ≤ e.

See Figure 4 for a concrete example for Observation 12.

Funakoshi et al. 12:9

By Observation 12, we can precompute the length of the longest maximal palindrome
after deleting the characters at the beginning and ending positions of each RL factors in
O(n) total time, using an analogous way to Lemma 8.

Summing up all the above discussions, we obtain the following lemma:

I Lemma 13. It is possible to preprocess a string T of length n in O(n) time and space so
that later we can compute in O(1) time the length of the LSPals of the edited string T ′ after
deletion of a character.

3.4 Algorithm for insertion
Consider to insert a new character c′ between the ith and (i+ 1)th positions in T , and let
T ′ = T [1..i]c′T [i+ 1..n]. If c′ 6= T [i] and c′ 6= T [i+ 1], we can find the length of the LSPals in
T ′ in a similar way to substitution. Otherwise (if c′ = T [i] or c′ = T [i+ 1]), then we can find
the length of the LSPals in T ′ in a similar way to deletion since c′ is merged to an adjacent
RL factor. Thus, we have the following.

I Lemma 14. Let T be a string of length n over an integer alphabet of size polynomial in n.
It is possible to preprocess in O(n) time and space string T so that later we can compute in
O(log(min{σ, logn})) time the length of the LSPals of the edited string T ′ after insertion of
a character.

3.5 Hashing
By using hashing instead of binary searches on arrays, the following corollary is immediately
obtained from Theorem 1.

I Corollary 15. There is an algorithm for the 1-ELSPal problem which uses O(n) expected
time and O(n) space for preprocessing, and answers each query in O(1) time for single
character substitution, insertion, and deletion.

4 Algorithm for `-ELSPal

In this section, we consider the `-ELSPal problem where an existing block of length `′ in the
string T is replaced with a new block of length `. This generalizes substitution when `′ > 0
and ` > 0, insertion when `′ = 0 and ` > 0, and deletion when `′ > 0 and ` = 0.

This section presents the following result:

I Theorem 16. There is an O(n)-time and space preprocessing for the `-ELSPal problem
such that each query can be answered in O(`+ logn) time, where ` denotes the length of the
block after edit.

Note that the time complexity for our algorithm is independent of the length `′ of the original
block to edit. Also, the length ` of a new block can be arbitrary.

Consider to substitute a substring X of length ` for the substring T [ib..ie] beginning at
position ib and ending at position ie, where ie − ib + 1 = `′ and X 6= T [ib..ie]. Let T ′′ =
T [1..ib−1]XT [ie +1..n] be the string after edit. For ease of explanation, we assume that there
exist two positions j1 < j2 in X such that j1 is the smallest position with T [ib +j1−1] 6= X[j1]
and j2 is the greatest position with T [ie−`+j2] 6= X[j2]. The other cases (e.g., X or T [ib..ie]
is the empty string, j1 and j2 do not exist, or j1 = j2) can be treated similarly. Given the
above assumption, we can restrict ourselves to the case where the first and last characters

CPM 2018

12:10 Longest substring palindrome after edit

accbaabaabaabaabaabaabaabaabccc

α

γ

β

Figure 5 Example for Lemma 19, where Y = accbaabaabaabaabaaba and Z = abaabaabccc.
Here we have α = 8, β = 2, and γ = 10.

of T [ib..ie] differ from those of X: Otherwise, then let pb = lcp(T [ib..ie], X) = j1 − 1 and
pe = lcp((T [ib..ie])R

, XR) = `− j2. We can compute pb and pe in O(`− ˆ̀+ 1) time by naïve
character comparisons, where ˆ̀= `− pb − pe = j2 − j1 + 1. Then, the above `-ELSPal query
reduces to an ˆ̀-ELSPal query with edited string T [1..ib + pb]X[pb + 1..`− pe]T [ie − pe..n].

We have the following observation for those of maximal palindromes in T whose lengths
do not change, which is a generalization of Observation 4.

I Observation 17 (Unchanged maximal palindromes after block edit). For any position 1 ≤ j <
ib, MaxPalEndT ′′(j) = MaxPalEndT (j). For any position ie < j ≤ n, MaxPalBegT ′′(j) =
MaxPalBegT (j).

Hence, we can use the same O(n)-time preprocessing and O(1) queries as the 1-ELSPal
problem: When we consider substitution for an existing block T [ib..ie], we take the length of
the longest maximal palindrome ending before ib and that of the longest maximal palindrome
beginning after ie as candidates for a solution to the `-ELSPal query.

Next, we consider the maximal palindromes of T that get extended after block edit.

I Observation 18 (Extended maximal palindromes after block edit). For any s ∈
MaxPalEndT (ib−1), the corresponding maximal palindrome T [ib−s..ib−1] centered at 2ib−s−1

2
gets extended in T ′′ iff OutLCET ′′(ib−s−1, ib) ≥ 1. Similarly, for any p ∈ MaxPalBegT (ie+1),
the corresponding maximal palindrome T [ie + 1..ie + p] centered at 2ie+p+1

2 gets extended in
T ′′ iff OutLCET ′′(ie, ie + p+ 1) ≥ 1.

It follows from Observation 18 that it suffices to compute outward LCE queries efficiently
for all maximal palindromes which end at position ib − 1 or begin at position ie + 1 in the
edited string T ′′. However, there can be Ω(n) maximal palindromes beginning or ending at
each position of a string of length n. Yet, we can compute the length of the longest maximal
palindromes that get extended after edit using periodic structures of maximal palindromes.

Let 〈s, d, t〉 be an arithmetic progression representing a group of maximal palindromes
ending at position ib − 1. For each 1 ≤ j ≤ t, let sj denote the jth shortest element for
〈s, d, t〉, namely, sj = s+ (j − 1)d. For simplicity, let Y = T [1..ib − 1] and Z = XT [ie + 1..n].
Let Ext(sj) denote the length of the maximal palindrome that is obtained by extending sj

in Y Z.

I Lemma 19. Let α = lcp((Y [1..|Y | − s1])R
, Z) and β = lcp((Y [1..|Y | − st])R

, Z). If there
exists sh ∈ 〈s, d, t〉 such that sh + α = st + β, then let γ = lcp((Y [1..|Y | − sh])R

, Z). Then,
for any sj ∈ 〈s, d, t〉 \ {sh}, Ext(sj) = sj + 2 min{α, β + (t − j)d}. Also, if sh exists, then
Ext(sh) = sh + 2γ ≥ Ext(sj) for any j 6= h.

See Figure 5 for a concrete example of Lemma 19.
Lemma 19 can be proven immediately from Lemma 12 of [14]. However, for the sake of

completeness we here provide a proof. We use the following known result:

Funakoshi et al. 12:11

!

"

#

$ %&' (')& *

+

,

$ %-' (')- *

$ %.' ('). *

/0 /1

2 3

Figure 6 Illustration for the proof of Lemma 19, where a1 = s, a2 = s+t1d, and a3 = s+(t1+t2)d.

I Lemma 20 ([14]). For any string Y and {sj | sj ∈ 〈s, d, t〉} ⊆ SufPals(Y), there exist
palindromes u, v and a non-negative integer k, such that (uv)t+k−1u is a suffix of Y , |uv| = d

and |(uv)ku| = s.

Now we are ready to prove Lemma 19 (see also Figure 6).

Proof. Let us consider Ext(sj), such that sj ∈ 〈s, d, t〉. By Lemma 20, Y [|Y | − s1 − (t −
1)d+ 1] = (uv)t+k−1u, where |uv| = d and |(uv)ku| = s.

Let x be the largest integer such that (Y [|Y | − x+ 1..|Y |])R has a period |uv|. Namely,
(Y [|Y | − x+ 1..|Y |])R is the longest prefix of Y R that has a period |uv|. Then x is given as
x = lcp(Y R, (Y [1..|Y | − d])R + d. Let y be largest integer such that (uv)y/d is a prefix of Z.
Then y is given as y = lcp(Y R, Z).

Let el = |Y | − x+ 1 and er = |Y |+ y. Then, clearly string T ′′[el..er] has a period d. We
divide 〈s, d, t〉 into three disjoint subsets as

〈s, d, t〉 = 〈s, d, t1〉 ∪ 〈s+ t1d, d, t2〉 ∪ 〈s+ (t1 + t2)d, d, t3〉,

such that
|Y | − el − sj + 1 > er − |Y | for any sj ∈ 〈s, d, t1〉,
|Y | − el − sj + 1 = er − |Y | for any sj ∈ 〈s+ t1d, d, t2〉,
|Y | − el − sj + 1 < er − |Y | for any sj ∈ 〈s+ (t1 + t2)d, d, t3〉,
and t1 + t2 + t3 = t.

Then, for any sj in the first sub-group 〈s, d, t1〉, Ext(sj) = sj +2(er−|Y |) = sj +2y. Also,
for any sj in the third sub-group 〈s+ (t1 + t2)d, d, t3〉, Ext(sj) = sj + 2(|Y | − el − sj + 1) =
sj + 2(x− sj). Now let us consider sj ∈ 〈a2, d, t2〉, in which case sj = sh (see the statement
of Lemma 19). Note that 0 ≤ t2 ≤ 1, and here we consider the interesting case where
t2 = 1. Since the palindrome sh can be extended beyond the periodicity w.r.t. uv, we have
Ext(sh) = sh + 2γ, where γ = lcp((Y [1..|Y | − sh])R

, Z).
Additionally, we have that y = lcp(Y R, Z) = lcp((Y [1..|Y | − s1])R

, Z) = α where the sec-
ond equality comes from the periodicity w.r.t. uv, and that x−sj = lcp((Y [1..|Y | − st])R

, Z)+
(t− j)d = β+ (t− j)d. Therefore, for any sj ∈ 〈s, d, t〉, Ext(sj) can be represented as follows:

Ext(sj) =


sj + 2α (α < β + (t− j)d)
sj + 2(β + (t− j)d) (α > β + (t− j)d)
sj + 2γ (α = β + (t− j)d)

This completes the proof. J

CPM 2018

12:12 Longest substring palindrome after edit

T [1..ib-1] T [ie+1..n]X

s

s+(t-1)d

τ ’

s α

β

Figure 7 Illustration for Lemma 21, where solid arrows represent the matches obtained by naïve
character comparisons, and broken arrows represent those obtained by LCE queries. Here we consider
the case where 0 < τ < `. To compute α, we first perform a leftward LCE query. Here, the LCE
value is less than τ and thus it is α. To compute β, we also perform a leftward LCE query. Here,
the LCE value is at least τ , and thus we perform naïve character comparisons to determine the
remainder of β. Other cases can be treated similarly.

Due to Lemma 19, provided that α, β, and γ (if sh exists) are already computed, then it
is a simple arithmetic to calculate the length of the longest extended maximal palindrome
from 〈s, d, t〉 in T ′′ = Y Z.

I Lemma 21. Let T be a string of length n over an integer alphabet of size polynomially
bounded in n. It is possible to preprocess T in O(n) time and space so that later we can
compute in O(`+ logn) time the length of the longest maximal palindromes of T ′′ that are
extended after replacing an existing block with a new block of length `.

Proof. Let 〈s, d, t〉 be any arithmetic progression representing a group of MaxPalEndT (ib−1),
and α, β, and γ be the lcp values for this group as defined in Lemma 19. Suppose that we have
already processed all groups of shorter maximal palindromes. Let s′ be one of the already
processed maximal palindromes which has the longest extension of length τ (i.e., s′+2τ is the
length of the extended maximal palindrome for s′). See also Figure 7. There are three cases:
(1) If τ = 0, then we compute α by naïve character comparisons between (T [1..ib − s− 1])R

and X. (2) If 0 < τ < `, then we first compute δ = LeftLCET (ib − s − 1, ib − s′ − 1).
(2-a) If δ < τ , then α = δ. (2-b) Otherwise (δ ≥ τ), then we know that α is at least as
large as τ . We then compute the remainder of α by naïve character comparisons. If the
character comparison reaches the end of X, then the remainder of α can be computed by
OutLCET (ib − s − ` − 1, ie + 1). Then we update τ with α. (3) If τ ≥ `, then we can
compute α by LeftLCET (ib − s − 1, ib − s′ − 1), and if this value is at least `, then by
OutLCET (ib − s− `− 1, ie + 1). β and γ (if it exists) can also be computed similarly.

After processing all arithmetic progressions representing the groups for MaxPalEndT (ib−
1), the total number of matching character comparisons is at most ` since each position of
X is involved in at most one matching character comparison. Also, the total number of
mismatching character comparisons is O(logn) since for each arithmetic progression there
are at most three mismatching character comparisons (those for α, β, and γ). The total
number of LCE queries in the original text T is O(logn), each of which can be answered in
O(1) time. Thus, together with Lemma 19, it takes O(`+ logn) time to compute the length
of the longest maximal palindromes of T ′′ that are extended after block edit. J

I Remark. An alternative method to Lemma 21 would be to first build the suffix tree of
T#TR$ enhanced with a dynamic lowest common ancestor data structure [4] using O(n)
time and space [5], and then to update the suffix tree with string T#TR$X#′XR$′ using
Ukkonen’s online algorithm [18], where #′ and $′ are special characters not appearing in T

Funakoshi et al. 12:13

T [1..ib-1] T [ie+1..n]X

p1

p2

p3
α3

α1

α2

α 3’

Figure 8 Illustration for Lemma 24, where solid arrows represent the matches obtained by
naïve character comparisons, and broken arrows represent those obtained by LCE queries. Here
are three prefix palindromes of X of length p1, p2, and p3. We compute α1 naïvely. Here, since
p1 +α1 < p2, we compute p2 naïvely. Since p2 +α2 > p3, we compute LeftLCET (ib−1, ib−α2 +α′

3−1).
Here, since its value reached α′

3, we perform naïve character comparison for X[p3 + α′
3 + 1..`] and

(T [1..ib − α′
3 − 1])R. Here, since there was no mismatch, we perform OutLCET (ib− `+ p3− 1, ie + 1)

and finally obtain α3. Other cases can be treated similarly.

nor X. This way, one can answer LCE queries between any position of the original string
T and any position of the new block X in O(1) time. Since we need O(logn) LCE queries,
it takes O(logn) total time for all LCE queries. However, Ukkonen’s algorithm requires
O(` log σ) time to insert X#′XR$′ into the existing suffix tree, where ` = |X|. Thus, this
method requires us O(` log σ + logn) time and thus is slower by a factor of log σ than the
method of Lemma 21.

Finally, we consider the maximal palindromes that get shortened after block edit.

I Observation 22 (Shortened maximal palindromes after block edit). A maximal palindrome
T [b..e] of T gets shortened in T ′′ iff b ≤ ib ≤ e and ib 6= b+e

2 , or b ≤ ie ≤ e and ie 6= b+e
2 .

The difference between Observation 7 and this one is only in that here we need to consider
two positions ib and ie. Hence, we obtain the next lemma using a similar method to Lemma 8:

I Lemma 23. We can preprocess a string T of length n in O(n) time and space so that later
we can compute in O(1) time the length of the longest maximal palindromes of T ′′ that are
shortened after block edit.

Finally, we consider those maximal palindromes whose centers exist in the new block X
of length `. By symmetric arguments to Observation 18, we only need to consider the prefix
palindromes and suffix palindromes of X. Using a similar technique to Lemma 21, we obtain:

I Lemma 24. We can compute the length of the longest maximal palindromes whose centers
are inside X in O(`) time and space.

Proof. First, we compute all maximal palindromes in X in O(`) time. Let p1, . . . , pu be
a sequence of the lengths of the prefix palindromes of X sorted in increasing order. For
each 1 ≤ j ≤ u, let αj = lcp(X[pj + 1..`], (T [1..ib − 1])R), namely, pj + 2αj is the length
of the extended maximal palindrome for each pj . Suppose we have computed αj−1, and
we are to compute αj . See also Figure 8. If pj−1 + αj−1 ≤ pj , then we compute pj by
naïve character comparisons. Otherwise, then let α′j = pj−1 + αj−1 − pj . Then, we can
compute lcp(X[pj + 1..pj + α′j], (T [1..ib − 1])R) by a leftward LCE query in the original
string T . If this value is less than α′j , then it equals to αj . Otherwise, then we compute
lcp(X[pj + α′j + 1..`], (T [1..ib − 1])R) by naïve character comparisons. The total number of
matching character comparisons is at most ` since each position in X can be involved in
at most one matching character comparison. The total number of mismatching character

CPM 2018

12:14 Longest substring palindrome after edit

comparisons is also `, since there are at most ` prefix palindromes of X and for each of
them there is at most one mismatching character comparison. Hence, it takes O(`) time to
compute the length of the longest maximal palindromes whose centers are inside X. J

References
1 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and

Jakub Radoszewski. Longest common factor after one edit operation. In SPIRE 2017,
pages 14–26, 2017.

2 Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in
a string. Theoretical Computer Science, 141:163–173, 1995.

3 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN
2000, pages 88–94, 2000.

4 Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM J. Comput.,
34(4):894–923, 2005.

5 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987–1011, 2000.

6 Pawel Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea.
Tighter bounds and optimal algorithms for all maximal α-gapped repeats and palindromes
- finding all maximal α-gapped repeats and palindromes in optimal worst case time on
integer alphabets. Theory Comput. Syst., 62(1):162–191, 2018.

7 Leszek Ga̧sieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Efficient
algorithms for Lempel-Ziv encoding. In Proc. 5th Scandinavian Workshop on Algorithm
Theory (SWAT1996), volume 1097 of LNCS, pages 392–403. Springer, 1996.

8 Richard Groult, Élise Prieur, and Gwénaël Richomme. Counting distinct palindromes in a
word in linear time. Inf. Process. Lett., 110(20):908–912, 2010.

9 Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

10 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

11 Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. Theor. Com-
put. Sci., 410(51):5365–5373, 2009.

12 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Finding distinct subpalin-
dromes online. In Proceedings of the Prague Stringology Conference 2013, Prague, Czech
Republic, September 2-4, 2013, pages 63–69, 2013.

13 Glenn Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. Journal of the ACM, 22:346–351, 1975.

14 W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto.
Efficient algorithms to compute compressed longest common substrings and compressed
palindromes. Theor. Comput. Sci., 410(8–10):900–913, 2009.

15 Shintaro Narisada, Diptarama, Kazuyuki Narisawa, Shunsuke Inenaga, and Ayumi Shino-
hara. Computing longest single-arm-gapped palindromes in a string. In SOFSEM 2017,
pages 375–386, 2017.

16 Alexandre H. L. Porto and Valmir C. Barbosa. Finding approximate palindromes in strings.
Pattern Recognition, 35:2581–2591, 2002.

17 Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput., 17(6):1253–1262, 1988.

18 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
19 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching

and Automata Theory, pages 1–11, 1973.

A Succinct Four Russians Speedup for Edit
Distance Computation and One-against-many
Banded Alignment
Brian Brubach1

Department of Computer Science, University of Maryland, College Park, MD 20742, USA
bbrubach@cs.umd.edu

https://orcid.org/0000-0003-1520-2812

Jay Ghurye2

Department of Computer Science, University of Maryland, College Park, MD 20742, USA
jayg@cs.umd.edu

https://orcid.org/0000-0003-1381-4081

Abstract
The classical Four Russians speedup for computing edit distance (a.k.a. Levenshtein distance),
due to Masek and Paterson [15], involves partitioning the dynamic programming table into k-by-
k square blocks and generating a lookup table in O(ψ2kk2|Σ|2k) time and O(ψ2kk|Σ|2k) space
for block size k, where ψ depends on the cost function (for unit costs ψ = 3) and |Σ| is the size
of the alphabet. We show that the O(ψ2kk2) and O(ψ2kk) factors can be improved to O(k2 lg k)
time and O(k2) space. Thus, we improve the time and space complexity of that aspect compared
to Masek and Paterson [15] and remove the dependence on ψ.

We further show that for certain problems the O(|Σ|2k) factor can also be reduced. Using this
technique, we show a new algorithm for the fundamental problem of one-against-many banded
alignment. In particular, comparing one string of length m to n other strings of length m with
maximum distance d can be performed in O(nm + md2 lg d + nd3) time. When d is reasonably
small, this approaches or meets the current best theoretic result of O(nm + nd2) achieved by
using the best known pairwise algorithm running in O(m + d2) time [17, 22] while potentially
being more practical. It also improves on the standard practical approach which requires O(nmd)
time to iteratively run an O(md) time pairwise banded alignment algorithm.

Regarding pairwise comparison, we extend the classic result of Masek and Paterson [15] which
computes the edit distance between two strings in O(m2/ logm) time to remove the dependence
on ψ even when edits have arbitrary costs from a penalty matrix. Crochemore, Landau, and
Ziv-Ukelson [8] achieved a similar result, also allowing for unrestricted scoring matrices, but
with variable-sized blocks. In practical applications of the Four Russians speedup wherein space
efficiency is important and smaller block sizes k are used (notably k < |Σ|), Kim, Na, Park, and
Sim [13] showed how to remove the dependence on the alphabet size for the unit cost version,
generating a lookup table in O(32k(2k)!k2) time and O(32k(2k)!k) space. Combining their work
with our result yields an improvement to O((2k)!k2 lg k) time and O((2k)!k2) space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases edit distance, banded alignment, one-against-many alignment, genomics,
method of the Four Russians

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.13

1 Supported in part by NSF awards CCF-1422569 and CCF-1749864 as well as the NIH, grant R01-AI-
100947 to Mihai Pop.

2 Supported in part by the NRL, award N00173-16-2-C001 to Mihai Pop.

© Brian Brubach and Jay Ghurye;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 13; pp. 13:1–13:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bbrubach@cs.umd.edu
https://orcid.org/0000-0003-1520-2812
mailto:jayg@cs.umd.edu
https://orcid.org/0000-0003-1381-4081
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Succinct Four Russians Speedup for Edit Distance and Banded Alignment

Acknowledgements The authors wish to thank advisors Mihai Pop and Aravind Srinivasan.

1 Introduction

Edit distance (a.k.a. Levenshtein distance) is one of the most natural and ubiquitous
measures of similarity between two strings. In the most common variant, unit cost, it counts
the minimum number of edits needed to transform one string into another. Here, we use
the Levenshtein definition of edits which include insertions, deletions, or substitutions of a
single character. However, in some cases edit operations may be assigned differring costs
from a penalty matrix and additional operations (e.g. inversions or transpositions) may be
considered. Computing this distance is a fundamental problem with applications in many
areas such as computation biology, natural language processing, and information theory.

The most well known algorithms use dynamic programming to solve the problem in
O(m2) time where m is the length of the strings. The only improvement to this has been the
Four Russians algorithm [15], running in O(m2/ logm) time. While the conditional hardness
results, such as [3], suggest this is unlikely to be improved further for arbitrary strings even
on small alphabets [5].

The problem of comparing a string against a large set of sequences is of central importance
in domains such as computational biology, information retrieval, and databases. The banded
alignment variant (a.k.a. the d differences approximate string matching problem), in which
we only report the distance when it is at most some parameter d is also highly relevant.
It’s useful in numerous settings wherein we only care about finding small distances or the
maximum distance between any two strings in known to be small. In gene clustering for
example, solving this problem is a key subroutine in many greedy clustering heuristics wherein
we iteratively choose a cluster center and form a cluster by recruiting all strings which are
within some small maximum distance d of the center [6]. With the development of faster
and cheaper DNA sequencing technologies, metagenomic sequencing datasets can contain
over 1 billion sequences [7].

Another area of research surrounding the Four Russians speedup is how to apply it in
practice. While the theoretical result uses a block size of logm, such a large block size is
impractical due the size of the lookup table exceeding hardware constraints. For the unit
cost version, [13] showed how to drastically reduce the required space, especially for large
alphabets, by avoiding redundant string comparisons. We show that our approach can be
combined with theirs to reduce the space (and preprocessing time) requirement even further.

1.1 Related Work
The edit distance problem is extremely well-studied and the following related work is by no
means exhaustive. We focus primarily on the aspects most related to this paper: pairwise
comparison, the Four Russians speedup, and one-against-many comparison. For simplicity,
we describe all results in the context wherein all strings have length exactly equal to m.

The most well-known approach for computing the edit distance between a pair of strings
of length m uses dynamic programming and requires O(m2). This was later improved to
O(m2/ logm) in 1980 using the Four Russians speedup [15, 14] and [8] achieved O(m2/ logm)
for unrestricted scoring matrices. The Four Russians speedup, originally proposed for matrix
multiplication, has been adapted to many problems besides edit distance including: RNA
folding [10], transitive closure of graphs [20], and matrix inversion [4]. On the negative
side, [3] recently showed that no algorithm for edit distance can do better than m2−ε time
unless the Strong Exponential Time Hypothesis (SETH) is false and [5] extended this to

B. Brubach and J. Ghurye 13:3

include strings on a binary alphabet. They accomplished this by reducing a satisfiability
problem to edit distance and showing that a subquadratic algorithm for edit distance implies
a subexponential algorithm for satisfiability. However, if we fix a maximum distance d and
only care about reporting the exact distance when it’s less than d, we call this the banded
alignment problem. This problem has seen improvements to O(md) time [9] and the current
best algorithm takes only O(m+ d2) time [17, 22].

One-against-many edit distance comparison involves comparing a single string to a set
of n other strings. Here, we consider only the banded alignment version of the problem
wherein we seek to find the distance to all strings within maximum distance d. This problem
can be solved in O(nm+ nd2) or O(nmd) time by iteratively applying the pairwise banded
alignment algorithms discussed above. Heuristic approaches may run much faster in practice
by exploiting properties of the input strings such as prefix similarity and storing the set of
strings in a clever data structure such as a trie or BK-tree [9]. However, little theoretical
progress has been made. A popular approach to this problem in the context of spell checkers
employs Levenshtein automata and/or transducers [21, 16, 12]. Assuming d is a fixed constant,
these algorithms run in O(nm) time. However, in practice they consider extremely small
values of d (at most 3 or 4) and their runtime appears to grow exponentially in d. In the
context of gene clustering in computational biology, [6] show that all pairs banded alignment
can be performed in O(n2m) time under the assumption that all strings are extremely
similar. They also use an extension of the Four Russians speedup to one-against-many
banded alignment, but our approach to this problem requires no assumptions on the input
strings.

The Four Russian speedup is well-studied in context of the regular expression membership
problem where the goal is to determine if a particular string matches a given regular
expression. Myers[18] showed that for a regular expression of length P and a string of length
m, the exact regular expression membership problem (no mismatches are allowed) can be
solved in O(mP/ logm) time using the Four Russian speedup compared to the naive O(mP)
runtime. Wu, Manber, and Myers [23] extended this result for approximate regular expression
membership problem where the goal is to check if a string is within an edit distance d from
the given regular expression. They showed that approximate regular expression matching
problem can be solved in O(mP/ logd+2m) time.

Space efficiency is also a major concern in practical applications of the Four Russians
speedup since the entire lookup table must be stored in main memory. Thus, block sizes
as small as k = 4 or 5 may be used. The classical approach for the unit cost variant uses
O(32kk|Σ|2k) space. Kim, Na, Park, and Sim [13] showed how to remove the dependence on
the alphabet size, generating a lookup table in O(32k(2k)!k2) time and O(32k(2k)!k) space.
This offers a significant improvement, for example, when |Σ| = 20 for protein sequences or
|Σ| = 26 for the English language.

1.2 Preliminaries

For simplicity of presentation, we assume all strings have equal length m. However, the
results extend easily to the case where strings have different lengths. We assume the lookup
table is any data structure that can perform lookups and insertions in O(k) time for blocks
which are identified by distinct keys of length O(k).

CPM 2018

13:4 A Succinct Four Russians Speedup for Edit Distance and Banded Alignment

1 -1 0 1
-1
-1
1
1 1 -1 0 1

0
0
-1

A T T C A
G
C
A
T
T

1 -1 0 1
-1
-1
1
1 1 -1 0 1

0
0
-1

. . . A T T C A. . .

.

.

.

G
C
A
T
T
.
.
.

Figure 1 Example of classic Four Russians. Left: a single block. Notice that for any input in the
upper left corner, we can sum that value with one path along the edges of the block to recover the
value in the lower right corner. Note that the offset value in the lower right corner may be different
for the row and column vectors overlapping at that cell. In this case, the lower right cell is one more
than its left neighbor and one less than its above neighbor. Right: the full dynamic programming
table divided into sixteen 5 × 5 blocks. Note that the offset values in the example block may not
correspond to the optimal alignment of the two substrings shown since they depend on the global
alignment between the two full length strings.

1.2.1 The classical Four Russians speedup
In the classical Four Russians speedup of edit distance computation due to [15, 14], the
dynamic programming table is broken up into square blocks of size k-by-k as shown in the
right of Fig. 1. These blocks are tiled such that they overlap by one column/row on each
side (for a thorough description see [11]).

The high level idea of the Four Russians speedup is to precompute all possible solutions
to a block function and store them in a lookup table. The block function takes as input the
two substrings to be compared in that block and the first row and column of the block itself
in the dynamic programming table. It outputs the last row and column of the block. We
can see in Figure 1 that given the two strings and the first row and column of the table,
such a function could be applied repeatedly to compute the lower right cell of the table and
therefore, the edit distance.

There are several tricks that reduce the number of inputs to the block function to bound
the time and space requirements of the lookup table. For example, when the edits have unit
cost, the input row and column for each block can be reduced to vectors in {−1, 0, 1}k. These
offset vectors encode only the difference between one cell and the next (see Fig. 1) which is
known to be in in {−1, 0, 1}. It has also been shown that the upper left corner does not need
to be included in the offset vectors. This bounds the number of possible row and column
inputs at 3k each [15]. More generally, when edit costs are derived from a penalty matrix,
the number of row/column inputs is bounded by ψk where ψ is the number of possible offset
values and depends on the penalty matrix.

1.3 Our Contributions
We show a new way to store and query block functions. For a given pair of strings cor-
responding to a k-by-k block in the dynamic programming table, we store an entry in the
lookup table using only O(k2 lg k) time and O(k2) space. We show how to query this entry
in O(k) time. By contrast, the classical approach requires O(ψ2kk2) time and O(ψ2kk) space,
where ψ is the number of possible offset values and depends on the costs of edits, to store a

B. Brubach and J. Ghurye 13:5

lookup entry for a pair of strings since it computes the function for all possible row/column
offset vectors and O(k) time per query. Thus, we improve the time and space complexity of
that aspect by a factor of at least ψ2k/k and remove the dependence on ψ. This result is
stated in Theorem 1.

I Theorem 1. Given two strings corresponding to a k-by-k block, we can store a lookup
entry using O(k2 lg k) time and O(k2) space such that given any values for the first row and
column of the block, we can compute the last row and column of the block in O(k) time.

We demonstrate the power of our technique for block functions by designing an algorithm
for the fundamental problem of one-against-many banded alignment. In particular, comparing
one string of length m to n other strings of length m where we only need to report distances
within a maximum distance threshold d can be performed in O(nm+md2 lg d+ nd3) time.
When d is reasonably small, this improves on the common, naive approach which requires
O(nmd) time to iteratively run an O(md) time pairwise banded alignment algorithm. It also
approaches the best theoretic result of O(nm+nd2) achieved by using the best known pairwise
algorithm running in O(m+ d2) time [17, 22]. We note that the author of [17], describes the
O(m+ d2) time algorithm as “impractical” and “primarily of theoretical interest”. We are
somewhat more optimistic, observing that our algorithm blends neatly with approaches such
as [6] for comparing genetic sequences and as discussed in Section 4.3 can be implemented in
a way that exploits the prefix similarity occurring in practice.

I Theorem 2. Performing banded alignment with maximum distance d between a string of
length m and n other strings also of length m can be done in O(nm+md2 lg d+ nd3) time.

We extend the classic result of [15] which computes the edit distance between two strings
in O(m2/ logm) time to remove the dependence on ψ even when edits have costs derived
from a penalty matrix. Here, the number of entries in the lookup table does not depend on
the penalty matrix. We acknowledge that [8] also achieves the same O(m2/ logm) running
time on unrestricted scoring matrices. However, there are some differences between our
approach and theirs which may make one or the other more advantageous in different settings.
Most notably our approach adheres more closely to the classic Four Russians speedup and
uses a uniform block size which is necessary for our one-against-many algorithm. Uniform
block sizes also allow our technique to be combined easily with the space-efficient approach
in [13] and the gene clustering technique in [6] since both rely on splitting the dynamic
programming table into uniform size blocks. In the case of [6], this is crucial to exploiting the
prefix similarity among highly conserved genomic sequences. On the other hand, the blocks
in [8] vary in size in a clever way to take advantage of the compressibility of the strings being
compared. This yields a faster running time for pairwise comparison of strings with small
entropy, O(hn2/ logn), where h ≤ 1 is the entropy of the text.

I Theorem 3. Given a penalty matrix for edit operations, the edit distance between two
strings can be computed in O(m2/ logm) time.

In practical applications of the Four Russians speedup wherein space efficiency is important
and smaller block sizes k are used (notably k < |Σ|), [13] showed how to remove the
dependence on the alphabet size for the unit cost version, generating a lookup table in
O(32k(2k)!k2) time and O(32k(2k)!k) space. Combining their work with our result yields an
improvement to O((2k)!k2 lg k) time and O((2k)!k2) space.

I Theorem 4. For a block size k, a lookup table can be generated in O((2k)!k2 lg k) time
and O((2k)!k2) space such that we can find the unit cost edit distance between two strings of
length m in O(m2/k) time.

CPM 2018

13:6 A Succinct Four Russians Speedup for Edit Distance and Banded Alignment

2 Storing and querying the block function

Here, we consider the crucial subroutine in our algorithms and prove Theorem 1. For a
block size k, we first show how to store a lookup entry for any two strings of length k in
O(k2 lg k) time and O(k2) space. Then, we show how, given two strings of length k and the
first row and column of the block, we can compute the last row and column in O(k) time
by querying the corresponding lookup entry. Notice that in contrast to the classical Four
Russians speedup, the information we precompute and store for a block function is based
only on the two strings being compared. Thus, we avoid having to store an entry for each of
the 32k possible input vectors considered in [15] (For unit costs, they encode rows/columns
as offset vectors in {-1, 0, 1} since the values in adjacent cells differ by at most 1, yielding 3k
possible inputs each for the row and column vectors).

2.1 Notation
We start by defining some notation, illustrated in Figure 2. Let U = {u1, u2, . . . , u2k−1} be an
ordered set of the cells in the first row and column of the block and let V = {v1, v2, . . . , v2k−1}
be an ordered set of the cells in the last row and column of the block. For both sets, the
ordering starts with the upper right corner and ends in the lower left corner. Thus, both
u1 and v1 correspond to the upper right corner, uk corresponds to the upper left corner, vk
corresponds to the lower right corner, and both u2k−1 and v2k−1 correspond to the lower left
corner.

For each pair of cells (u, v), we store the least cost cu,v of any path through the block
from u to v. If no such path exists, we set cu,v =∞ and if u and v correspond to the same
cell, we set cu,v = 0. Note that cu,v is not necessarily based on the optimal alignment within
the entire block. It corresponds to an alignment of the subset of the block with u as the
upper left corner and v as the lower right. Also, recall that this block will be part of a larger
dynamic programming table and the path through the block corresponding to the best global
alignment may not be the same as the path corresponding to the best local alignment within
the block.

We can think of this set of costs as a complete, weighted bipartite graph G = {U, V, U×V }
with weights cu,v on the edges. We also use cu and cv to denote the values stored in the
corresponding cells of the block within the dynamic programming table. When we query a
block function for two strings, the cu values (input row and column) will be given as input
and our goal will be to compute the cv values (output row and column). Thus, if we consider
the values stored in the cells after the full dynamic programing table has been computed, we
have that cv = minu∈U (cu + cu,v).

2.2 Storing lookup entries
For every pair of substrings we wish to query eventually, our lookup table will simply store
the cost cuv for every edge in the graph G defined by comparing those substrings. These
cost values will be stored in a |V | × |U | matrix M with a row for each v ∈ V and a column
for each u ∈ U . Cell Mji will contain cuivj . We now show that computing G and storing M
for any pair of substrings of length k can be done in O(k2 lg k) time.

I Lemma 5. Given a pair of strings of length k, we can compute all cu,v in O(k2 lg k) time.

Proof. Note that each cu,v can be seen as the weight of the shortest path in a grid graph
of dimension k × k. Thus the algorithm of [19] can be applied. That algorithm requires
O(k2 lg k) preprocessing time and can then compute each of the O(k2) cu,v entries in O(lg k)
time. This leads to an overall running time of O(k2 lg k). J

B. Brubach and J. Ghurye 13:7

u1u2u3u4

u5

u6

u7

v1

v2

v3

v4v5v6v7

cu1cu2cu3cu4

cu5

cu6

cu7

cv1

cv2

cv3

cv4cv5cv6cv7

A C A T

T

A

G

A

u1cu1

u2cu2

u3cu3

u4cu4

u5cu5

u6cu6

u7cu7

v1 cv1

v2 cv2

v3 cv3

v4 cv4

v5 cv5

v6 cv6

v7 cv7

cu1,v1

cu1,v2

cu1,v3

...

Figure 2 Illustration of how the dynamic programming table is represented as a bipartite graph
of least cost paths. Left: The dynamic programming table for a block comparing the strings “ACAT”
and “TAGA” with all u, v, cu, and cv labeled. Right: The bipartite graph representation. Note
that this will be a complete, weighted bipartite graph with costs cu,v for all pairs in U × V .

For completeness, we also state the simple fact that the space requirement for an entry is
O(k2).

I Lemma 6. Given a pair of strings of length k, storing the entry requires O(k2) space.

Proof. The proof follows directly from the fact that we are simply storing the edges of a
complete, weighted bipartite graph G = {U, V, U × V } with |U | = |V | = 2k − 1. J

2.3 Querying a block function

Given the two substrings and the input row and column vectors, we now show how to use
our lookup entry matrix M to compute the output row and column (a.k.a all cv for v ∈ V)
in O(k) time.

I Lemma 7. Given the input row and column vectors and the O(k) × O(k) lookup entry
matrix M , we can compute the output row and column in O(k) time using the SMAWK
algorithm [2].

Proof. Let ~w be the vector of all cu values generated from the input row and column vectors.
Scaling each column ofM by the corresponding cell in ~w gives us a new matrixM ′ wherein the
minimum value in each row j is our desired output value cvj = minu∈U (cu+cu,vj). It is known
that M ′ is totally monotone [1, 19] and thus we can find row minima in O(|U |) = O(k) time
using the classic SMAWK algorithm [2]. Note that we need not explicitly generate M ′ since
the value of any cell we wish to query can be computed fromM and ~w asM ′ji = Mji+ ~wi. J

The proof of Theorem 1 follows from Lemmas 5, 6, and 7.

CPM 2018

13:8 A Succinct Four Russians Speedup for Edit Distance and Banded Alignment

2.4 Alternatives to query a block function without SMAWK

While our algorithm for banded alignment in Section 3 uses larger block sizes than the typical
pairwise Four Russians approach, in many cases, the blocks will be small enough for SMAWK
to be inefficient in practice. As such, we introduce a simpler query algorithm here and briefly
discuss the potential for future work to speed up the query function in practice.

This simpler query algorithm achieves a slightly worse asymptotic running time of O(k lg k)
and can be described as follows. Recall that our goal is to find the minimum value of each
row in the totally monotone matrix M ′ with |U | columns and |V | rows. We first find the
minimum value in row |V |/2 and let mincol be the column containing that cell. We then
perform the same operation recursively on two submatrices of M ′. The first submatrix
includes all rows up to |V |/2 and all columns up to (and including) mincol. The second
includes the rows after |V |/2 and columns from mincol to |U |. We do not claim this simpler
algorithm is a novel approach to finding row minima and include it merely to illustrate
possible alternatives to SMAWK.

I Lemma 8. The algorithm described here runs in O(k lg k) time and outputs the correct
result.

Proof. For the running time, note that each recursive call nearly partitions the columns
of M ′ (pairs of submatrices overlap at single columns), resulting in O(|U |) = O(k) time
spent at each level of recursion. Since we split the rows in half at each level, there will be
O(lg |V |) = O(lg k) levels total, giving a final running time of O(k lg k).

The correctness follows directly from the properties of totally monotone matrices also
utilized in the analysis of SMAWK. J

Looking to the future, we note that neither SMAWK nor the algorithm in this section
leverage all of the specific properties of the matrix M ′. For example, M ′ is not an arbitrary
totally monotone matrix. It comes from M , a matrix which we can afford to spend k2 time
preprocessing, scaled by ~w, a vector with the property that adjacent cells differ by at most 1
in the unit cost setting.

3 One-against-many comparison

3.1 Extending the Four Russians approach to banded alignment

For our algorithm for one against many banded alignment, we use the extension to banded
alignment from [6] which simplifies both the analysis and practical implementation. The
extension uses a slightly different block function and way of tiling blocks to cover the relevant
diagonal “band” of the dynamic programming table. The blocks now overlap on a square of
size d+ 1 at the upper left and lower right corners. We will call these overlapping regions
overlap squares. The block function still takes as input the two substrings to be compared.
The set U contains only the first row and column of the the upper left overlap square and
V contains only the first row and column of the lower right overlap square as well as the
difference between the upper left corners of the two overlap squares.

Thus, we can move directly from one block to the next, storing a sum of the differences
between the upper left corners. In this case, reaching the final lower right cell of the table
requires an additional O(d2) operation to fill in the last overlap square, but this adds only a
negligible factor to the running time.

B. Brubach and J. Ghurye 13:9

0 1
-1
-1

1 1
-1
0

δ

A A C T G T C C
T
G
A
A
T
T
G
C

0 1
-1
-1

1 1
-1
0

δ

. . . A A C T G T C C. . .

.

.

.

T
G
A
A
T
T
G
C
.
.
.

Figure 3 Example of our approach to the Four Russians speedup. Left: a block for maximum
edit distance d = 2. The output δ represents the offset from the upper left corner of one block to
the upper left corner of the next block. Note that we only need to consider a diagonal band of the
block itself. Right: using these blocks to cover the diagonal band of the dynamic programming
table in the context of banded alignment.

3.2 Our algorithm
We start with some notation and definitions. For a string s, let si,i+k be a length k

substring starting at index i of s. We define two types of block comparisons, identities and
differences, based on the strings being compared. An identity comparison is between the
substring si,i+k and another substring that is identical to one of the substrings sj,j+k for
j ∈ {i − d, i − d + 1, . . . , i, . . . , i + d}. All other comparisons are difference comparisons.
In other words, identity comparisons between two strings will come from long common
subsequences between the two strings. Difference comparisons will come from the locations
where an edit occurs. Note that we can stop comparing two strings once we’ve encountered
more than d differences among their prefixes. Let S be a set of strings and let p be the single
string we wish to compare to all strings in S.

The algorithm can be summarized as follows. We first compute and store lookup entries for
all possible identity comparisons for each block in p. We then perform pairwise comparisons
between p and each string in S. A pairwise comparison is computed as follows. For each
block, we first query the lookup table using the corresponding substrings. If we find an
entry (similarity comparison), we query it as described in Section 2. Otherwise (difference
comparison), we perform standard banded alignment on the two strings with the first row
and column of the table initialized to the values of the input row and column of the block.
If at any time during a pairwise comparison the distance accumulated exceeds d, then we
immediately halt and move on to the next pair.

We divide the analysis into three parts: the time to compute and store the lookup table,
the time to query the lookup table during pairwise comparison, and the time to compute the
block function for difference comparisons.

I Lemma 9. The time to compute and store the lookup table for all block identity comparisons
in a single string p of length m and max distance d is O(md2 lg d).

Proof. Let the block size k = 2d. Then p will be divided into m/d − 1 blocks. For any
given block, let pi,i+k be the substring of p corresponding to that block. Then, for every
j ∈ {i− d, i− d+ 1, . . . , i, . . . , i+ d}, we need to store the comparison between pi,i+k and
pj,j+k. We need not compare pi,i+k to any substrings outside this range since that would
imply an alignment of distance greater than d. Thus, for each block we need to store lookups

CPM 2018

13:10 A Succinct Four Russians Speedup for Edit Distance and Banded Alignment

for at most 2d+ 1 = O(d) different identity comparisons. Computing the lookup entry for
each comparison takes O(k2 lg k) = O(d2 lg d) time by Theorem 1. Putting it all together,
we have O(m/d · d · d2 lg d) = O(md2 lg d). J

I Lemma 10. Excluding the time to compute block functions for difference comparisons, the
time to compare a string p of length m to n other strings using the precomputed lookup table
is O(nm).

Proof. Each pairwise comparison involves computing m/d− 1 block functions. If a block
corresponds to an identity comparison querying the block function takes O(k) = O(d) time
by Theorem 1. Otherwise, if it’s a difference comparison block, the only time will come from
checking the lookup table which we’ve assumed takes O(d) time. It follows that the running
time for each pairwise comparison is O(m) and comparing p to all n strings requires O(nm)
time. J

I Lemma 11. The time needed to compute block functions for difference comparisons between
p and all n other strings is O(nd3).

Proof. Notice that each edit is present in at most two overlapping blocks. It follows that
for a given pair of strings, the number of block queries corresponding to differences can be
at most 2(d+ 1) = O(d) since we will halt a comparison if the distance ever reaches d+ 1
or more. Thus, the running time to compute the full dynamic programming for difference
blocks for all n pairwise comparisons is O(n · d · d2) = O(nd3). J

The proof of Theorem 2 follows from combining Lemmas 9, 10, and 11.

4 Extensions and applications

In this section, we briefly show how the results of Section 2 can be applied to other settings
in which the Four Russians speedup is used for computing string edit distance.

4.1 Comparing two arbitrary strings with a penalty matrix
As with the classical Four Russians, when the alphabet size is constant, we can choose the
block length k to be an appropriate logarithmic function of the string length m such that
the lookup table can be computed efficiently. For an alphabet Σ, there are |Σ|2k pairs of
string of length k. By Theorem 1, each pair requires O(k2 lg k) time to compute the lookup
entry regardless of the costs of the edits. Thus, the preprocessing for k = (log|Σ|m)/2 takes
O(m log2m log logm) time. Since the total number of blocks in the dynamic programming
table is O(m2/k2) and computing each block function from the lookup table takes O(k)
time by Theorem 1, the running time to compute the distance using the lookup table is
O(m2/ logm). This completes the proof of Theorem 3.

4.2 Improved space-efficiency
The approach in Section 2 can be combined with the work of [13] to achieve the improved
time and space bound in Theorem 4 for computing the lookup table. Notice that Theorem 1
gives a time and space bound for each pair of substrings for which we need to compute
a block function. Specifically, each pair of strings contributes O(k2 lg k) time and O(k2)
space. As a complement, [13] showed how to encode strings in such a way that we reduce the
number of redundant string comparisons. There, the number of strings compared is reduced
to O((2k)!). Theorem 4 follows from these simple observations.

B. Brubach and J. Ghurye 13:11

4.3 Exploiting prefix similarity in one-against-many comparison
Since the one-against-many banded alignment algorithm in Section 3 uses the same extension
to banded alignment as [6], it can be combined with other techniques from that paper. In
particular, they divide all of the strings in the database S into blocks and store the blocks in
a trie-like data structure. This allows them to exploit prefix similarity of the strings of S and
further improve the running time in practice. Additionally, that uses lazy computation, the
technique of computing and storing the lookup table on-the-fly rather than precomputing it
to heuristically avoid comparing substrings which don’t actually appear in the dataset. In
the context of Theorem 2, that could potentially reduce the md3 factor.

5 Conclusion and future directions

In this paper, we provided an approach to storing and querying block functions in the
Four Russians speedup for edit distance computation using less time and space than the
original method. We demonstrated how this approach can lead to an algorithm for the
one-against-many banded alignment problem. Finally, we showed how our approach can
easily be combined with prior work to gain additional improvements such as space-efficiency.

The problems of comparing two similar strings and one-against-many comparison of
highly similar strings have applications in variety of domains. For example, searching a query
sequence against the database of multiple sequence within a certain similarity threshold is
one of the basic tasks in designing database management systems. In the case of document
plagiarism detection, the task is to compare two documents which are assumed to be highly
similar to each other. In the case of computational biology, sequence similarity detection is a
ubiquitous task in most analysis. Although there have been efficient algorithms proposed in
literature, they are not very easy or practical to implement on a routine basis. Our algorithm
may bridge this gap and be easier to implement while yielding similar theoretical bounds.

There are many questions and potential future directions following this work. One natural
question is whether the techniques in this paper can be applied to other problems yielding a
Four Russians speedup. In many cases, such as boolean matrix multiplication, the answer is
no. However, problems more closely related to edit distance may yield some improvement.
Regarding the specific problems in this paper, the O(nd3) term in the one-against-many
result can likely be improved to O(nd2) to match [17] and doing so using practical techniques
would be a nice addition to this work. Similarly, improving the constant factors in the
query by using a more specialized algorithm than SMAWK (even an asymptotically worse
algorithm) could enhance the practical applications of our approach. On the hardness side,
which of these results are tight?

References

1 Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays. In [Pro-
ceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages 497–
512, Oct 1988.

2 Alok Aggarwal, Maria M. Klawe, ShlomoMoran, Peter Shor, and Robert Wilber. Geometric
applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, Nov 1987.

3 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proceedings of the Forty-seventh Annual ACM Sym-
posium on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015.
ACM.

CPM 2018

13:12 A Succinct Four Russians Speedup for Edit Distance and Banded Alignment

4 Gregory Bard. Matrix inversion (or lup-factorization) via the method of four russians, in
θ(n3/logn) time. LMS J. Comput. Math, 1:14, 2008.

5 Karl Bringmann and Marvin Kunnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science (FOCS), FOCS ’15, pages 79–97, Washington,
DC, USA, 2015. IEEE Computer Society.

6 Brian Brubach, Jay Ghurye, Mihai Pop, and Aravind Srinivasan. Better greedy sequence
clustering with fast banded alignment. In Russell Schwartz and Knut Reinert, editors,
17th International Workshop on Algorithms in Bioinformatics (WABI 2017), volume 88
of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:13, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

7 J Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-Lyons, James
Huntley, Noah Fierer, Sarah M Owens, Jason Betley, Louise Fraser, Markus Bauer, et al.
Ultra-high-throughput microbial community analysis on the illumina hiseq and miseq plat-
forms. The ISME journal, 6(8):1621–1624, 2012.

8 Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic sequence
alignment algorithm for unrestricted scoring matrices. SIAM J. Comput., 32(6):1654–1673,
2003.

9 J. W. Fickett. Fast optimal alignment. Nucleic Acids Res., 12(1 Pt 1):175–179, Jan 1984.
10 Yelena Frid and Dan Gusfield. A simple, practical and complete o-time algorithm for rna

folding using the four-russians speedup. Algorithms for Molecular Biology, 5(1):13, 2010.
11 Dan Gusfield. Algorithms on strings, trees and sequences: computer science and computa-

tional biology. Cambridge university press, 1997.
12 Ahmed Hassan, Sara Noeman, and Hany Hassan. Language independent text correction

using finite state automata. In In Proceedings of the Third International Joint Conference
on Natural Language Processing, pages 913–918, 2008.

13 Youngho Kim, Joong Chae Na, Heejin Park, and Jeong Seop Sim. A space-efficient alphabet-
independent four-russians’ lookup table and a multithreaded four-russians’ edit distance
algorithm. Theor. Comput. Sci., 656:173–179, 2016. doi:10.1016/j.tcs.2016.04.028.

14 William J. Masek and Michael S. Paterson. How to compute string-edit distances quickly.
In Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence
Comparison, pages 337–349. Addison-Wesley Publ. Co., Mass., 1983.

15 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
J. Comput. Syst. Sci., 20(1):18–31, 1980. doi:10.1016/0022-0000(80)90002-1.

16 Stoyan Mihov and Klaus U. Schulz. Fast approximate search in large dictionaries. Comput.
Linguist., 30(4):451–477, 2004.

17 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(1):251–266, Nov 1986.

18 Gene Myers. A four russians algorithm for regular expression pattern matching. Journal
of the ACM (JACM), 39(2):432–448, 1992.

19 Jeanette P. Schmidt. All highest scoring paths in weighted grid graphs and their application
to finding all approximate repeats in strings. SIAM J. Comput., 27(4):972–992, 1998.

20 Claus-Peter Schnorr. An algorithm for transitive closure with linear expected time. SIAM
Journal on Computing, 7(2):127–133, 1978.

21 Klaus Schulz and Stoyan Mihov. Fast string correction with levenshtein-automata. Inter-
national Journal of Document Analysis and Recognition, 5:67–85, 2002.

22 Esko Ukkonen. Algorithms for approximate string matching. Inf. Control, 64(1-3):100–118,
1985.

23 Sun Wu, Udi Manber, and Eugene Myers. A subquadratic algorithm for approximate
regular expression matching. Journal of algorithms, 19(3):346–360, 1995.

http://dx.doi.org/10.1016/j.tcs.2016.04.028
http://dx.doi.org/10.1016/0022-0000(80)90002-1

Can a permutation be sorted by best short swaps?
Shu Zhang
Department of Computer Science and Technology, Shandong University
Jinan, China
zhangshu365@163.com

Daming Zhu
Department of Computer Science and Technology, Shandong University
Jinan, China
dmzhu@sdu.edu.cn

Haitao Jiang
Department of Computer Science and Technology, Shandong University
Jinan, China
htjiang@sdu.edu.cn

Jingjing Ma
Department of Computer Science and Technology, Shandong University
Jinan, China
majingjing.sdu@gmail.com

Jiong Guo
Department of Computer Science and Technology, Shandong University
Jinan, China

Haodi Feng
Department of Computer Science and Technology, Shandong University
Jinan, China

Abstract
A short swap switches two elements with at most one element caught between them. Sorting per-
mutation by short swaps asks to find a shortest short swap sequence to transform a permutation
into another. A short swap can eliminate at most three inversions. It is still open for whether a
permutation can be sorted by short swaps each of which can eliminate three inversions. In this
paper, we present a polynomial time algorithm to solve the problem, which can decide whether
a permutation can be sorted by short swaps each of which can eliminate 3 inversions in O(n)
time, and if so, sort the permutation by such short swaps in O(n2) time, where n is the number
of elements in the permutation.

A short swap can cause the total length of two element vectors to decrease by at most 4. We
further propose an algorithm to recognize a permutation which can be sorted by short swaps each
of which can cause the element vector length sum to decrease by 4 in O(n) time, and if so, sort
the permutation by such short swaps in O(n2) time. This improves upon the O(n2) algorithm
proposed by Heath and Vergara to decide whether a permutation is so called lucky.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases Algorithm, Complexity, Short Swap, Permutation, Reversal

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.14

Acknowledgements This paper is supported by national natural science foundation of China,
No. 61472222, 61732009, 61761136017, 61672325.

© Shu Zhang, Daming Zhu, Haitao Jiang, Jingjing Ma, Jiong Guo, and Haodi Feng;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhangshu365@163.com
mailto:dmzhu@sdu.edu.cn
mailto:htjiang@sdu.edu.cn
mailto:majingjing.sdu@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Can a permutation be sorted by best short swaps?

1 Introduction

A short swap on a permutation represents an operation which switches two elements with at
most one element caught between them in the permutation. Sorting by short swaps asks
to find a shortest sequence of short swaps which can transform a given permutation into
another. This problem was first proposed by Heath and Vergara, who also proposed an
approximation algorithm which can achieve a performance ratio 2 for this problem [9].

Short swap can be thought of as a kind of rearrangement operations on permutations,
where a rearrangement has been being used to account for the gene order variations in a
genome [3], and can be formalized as some basic operations such as reversal, translocation,
and transposition [15]. Sorting permutation by rearrangements can be used to trace the
evolutionary path between genomes [14], and plays important roles in computational biology
and bioinformatics [13][8].

A short swap can be thought of as a two or three element consecutive subsequence
reversal on a permutation [9]. Sorting a signed permutation by reversals was introduced
by Bafna and Pevzner[1]. Hannenhalli and Pevzner proposed a polynomial time algorithm
for this problem [8]. Other algorithmic progresses can be looked up in [11][6][7]. Sorting
unsigned permutation by reversals turns to be NP-hard [4]. Thus people have been engaging
in designing approximation algorithms for this problem [16][12][2].

Moreover, a short swap can be thought of as a swap of length 2 to 3 on a permutation.
Jerrum has shown that minimum sorting by swaps can be solved in polynomial time [10].
The complexity of sorting by short swaps remains open up to now. Heath and Vergara
proposed an upper bound (n

2

4) +O(n logn) for the minimum number of short swaps to sort
an n-element permutation [9]. Feng et. al. improved the bound to (3

16)n2 +O(n logn) later
[5].

In fact, the time complexity of deciding whether a permutation can be sorted by short
swaps which eliminate three inversions, is still open. In this paper, we present a sufficient
and necessary condition for a permutation to be sorted by short swaps which eliminate three
inversions, based on which, we can propose an algorithm to recognize a permutation which
can be sorted by short swaps which eliminate three inversions in O(n) time, and if so, sort
the permutation by short swaps to eliminate three inversions, in O(n2) time.

In the 2-approximation algorithm for sorting by short swaps [9], Heath and Vergara
proposed to use an element vector to indicate how long a distance the element is from that
element position it aims to be moved to, and showed that a short swap can cause two element
vector’s length sum to decrease by at most 4. Thus a so-called best cancellation refers to a
short swap which can cause two element vector’s length sum to decrease by 4. Heath and
Vergara also presented an O(n2) algorithm to decide whether a permutation can be sorted
by best cancellations. In this paper, we further propose a sufficient and necessary condition
for a permutation to be sorted by best cancellations. Based on this observation, we propose
an algorithm to recognize a permutation which can be sorted by best cancellations in O(n)
time, and if so, sort the permutation by best cancellations, in O(n2) time.

2 Preliminaries

Let π = [π1, π2, ..., πn] be a permutation of {1, 2, ..., n}. A swap on π switches πi with πj ,
where πi and πj are two elements in π. The swap is short, if there is at most one element
between πi and πj in π. Let ρ be an arbitrary swap on π. We denote by π · ρ the permutation
ρ transforms π into. For example, let ρ be a swap which switches 7 with 4 in π = [5, 3, 1, 7,
6, 4, 2]. Then π · ρ = [5, 3, 1, 4, 6, 7, 2]. The problem of sorting a permutation by short
swaps can be formulated as follows.

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng 14:3

Instance: A permutation π
Solution: A sequence of short swaps ρ1, ρ2, ..., ρk, such that π · ρ1 · ρ2, ..., · ρk = [1, 2, ...,
n] and k is minimized.

As usually used, let ι denote the identity permutation [1, 2, ..., n]. The minimum number
of short swaps which transform π into ι is referred to as the short swap distance of π, and
denoted by sw3(π).

2.1 Happy permutation
An inversion in π refers to a pair of elements that are not in their correct relative order.
Formally, the pair composed of πi and πj is an inversion of πi and πj in π, if i < j and
πi > πj . Let invπ be the set of inversions in π. A short swap ρ is said to eliminate |invπ|
− |invπ·ρ| inversions (of π), if |invπ| ≥ |invπ·ρ|, and add |invπ·ρ| − |invπ| inversions (of π)
otherwise.

A short swap can eliminate at most 3 inversions of π. If π 6= ι, at least 1 inversion of
two adjacent elements occurs in π, which can be eliminated by a short swap. Thus the short
swap distance of π can be bounded by,

I Lemma 1. d |invπ|3 e ≤ sw3(π)≤ |invπ|

Proof. See Theorem 3 in [9]. J

Due to Lemma 1, a short swap is referred to as best (resp. worst), if it can eliminate (resp.
add) 3 inversions of π. A permutation, say π is referred to as happy, if sw3(π) = |invπ|

3 . A
permutation is happy, if and only if it can be transformed into ι by none other than best
short swaps.

A consecutive sub sequence π[x→ y] ≡ [πx, ..., πy] of π is referred to as an independent
sub-permutation (abbr. ISP) in π, if for 1 ≤ l < x ≤ i ≤ y < h ≤ n, πl < πi < πh. An ISP
is referred to as minimal, if none of its sub sequence, other than itself, is an ISP. A minimal
ISP in π is abbreviated as an MISP. Since no inversion happens between two distinct ISPs,
it suffices to pay attention to sorting an MISP by best short swaps.

For an element πi in π, we refer to the integer interval [i, πi] as the vector of πi in π
and denote it as vπ(πi), where |vπ(πi)| = |πi − i| is referred to as the length of vπ(πi). The
element vector length indicates the difference between the element index and its correct
index. The element πi is referred to as vector-right, if πi− i > 0; vector-left, if πi− i < 0; and
vector-zero, if πi − i = 0. An MISP is isolated, if it contains just one element. An isolated
MISP must admit one and only one vector-zero element. Let π[x→ y] be an arbitrary MISP.
If π[x→ y] is not isolated, then πx must be vector-right, and πy vector-left.

2.2 Lucky permutation
Let Vπ = {vπ(πi) | 1 ≤ i ≤ n}. We denote by L(Vπ) the length sum of all those vectors in
Vπ. A short swap always involves two element vectors. An element can be caused by one
short swap to change its vector’s length by at most 2. Thus a short swap can cause L(Vπ) to
decrease by at most 4. If π 6= ι, Heath et. al. have shown in [9] that it can always find two
elements in π and a sequence of short swaps to switch them, such that if switching the two
elements uses m short swaps which transform π into π′, then L(Vπ) − L(Vπ′) ≥ 2m. This
leads to another short swap distance bound of π, which can be described as,

I Lemma 2. L(Vπ)
4 ≤ sw3(π) ≤ L(Vπ)

2

Proof. See Theorem 10 in [9]. J

A permutation π is referred to as lucky, if sw3(π) = L(Vπ)
4 .

CPM 2018

14:4 Can a permutation be sorted by best short swaps?

3 How to recognize a happy permutation

We denote by ρ〈i, j〉 (i < j) a swap on π, which switches πi with πj . If ρ〈i, j〉 is short, then
i+ 1 ≤ j ≤ i+ 2. The short swap ρ〈i, j〉 affects an ISP in π, if at least one of πi, πi+1, πj
occurs in the ISP. The short swap ρ〈i, j〉 acts on an ISP, if all of πi, πi+1 πj occur in the
ISP. To check if a permutation is happy, we present a sufficient and necessary condition for a
short swap to be worst. A best or worst short swap must switch two elements with another
element caught between them. Thus ρ〈i, i+ 2〉 will usually be used to represent a best or
worst short swap.

I Lemma 3. A short swap, say ρ〈i, i+ 2〉 on π is worst, if and only if πi < πi+1 < πi+2.

Let π[x→ y] be an ISP in π. If a short swap ρ〈i, j〉 which acts on π[x→ y] transforms π
into π′, then π′[x→ y] must be an ISP in π′.

I Lemma 4. If a worst short swap acts on an MISP, it must transform the MISP into an
ISP which remains an MISP.

For an arbitrary ISP π[x→ y] in π, an element πj in π[x→ y] is referred to as position-
odd, if j − x is zero or even; position-even, otherwise. An ISP is referred to as sorted if no
inversion occurs in the ISP; unsorted, otherwise. An ISP π[x → y] in π is referred to as
happy, if it can be transformed into ι[x→ y] by none other than best short swaps. By the
following theorem, we present a sufficient and necessary condition for an MISP to be happy.

I Theorem 5. An unsorted MISP is happy if and only if, (1) an element in the MISP is
vector-zero if it is position-even; not vector-zero otherwise; and (2) for any two vector-left
(resp. vector-right) elements, say πi, πj in the MISP, if i > j, then πi > πj.

To prove Theorem 5, let’s start with a couple of lemmas. Although in Theorem 5, those two
properties are mentioned for an MISP to meet, it cannot refuse an ISP in π to meet those
two properties. Thus an ISP is said to meet the Theorem-5 property (1), if all position-even
elements are vector-zero, while all position-odd elements in the ISP are not; and said to meet
the Theorem-5 property (2), if all those vector-left as well as vector-right elements increase
monotonously. To show Theorem 5, we insist to show that a worst short swap can always
transform a sorted ISP or an ISP which meets those two Theorem-5 properties into an ISP
which meets those two Theorem-5 properties. This asks to observe on if a worst short swap
acts on an ISP which meets those two Theorem-5 properties, and transform it into an MISP,
whether this MISP meets those two Theorem-5 properties. No matter how many MISPs a
short swap affects, we always treat those MISPs a short swap affects as an ISP.

I Lemma 6. If a worst short swap acts on an ISP which meets those two Theorem-5 properties,
it must transform the ISP into an ISP which meets those two Theorem-5 properties.

If the ISP the worst short swap acts on is an MISP, Lemma 6 can be redescribed as:

I Corollary 7. If a worst short swap acts on an MISP with those two Theorem-5 properties,
it must transform the MISP into an MISP with those two Theorem-5 properties.

I Lemma 8. A short swap cannot be worst, if it affects just two MISPs each of which is
isolated or meets those two Theorem-5 properties.

I Lemma 9. If a worst short swap affects three MISPs, each of which is isolated or meets
those two Theorem-5 properties, it must transform the ISP which consists only these three
MISPs into an MISP with those two Theorem-5 properties.

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng 14:5

Proof. Let ρ〈i,i+ 2〉 be a worst short swap which affects three MISPs in π, each of which
is isolated or meets those two Theorem-5 properties. Then πi < πi+1 < πi+2. That MISP
caught between the other two MISPs in π must be isolated. Thus without loss of generality,
let π[x→ i], [i+ 1] and π[i+ 2→ y] be those three MISPs ρ〈i,i+ 2〉 affects. Let π′ = π ·
ρ〈i,i+ 2〉.

Proof for π′[x → y] to be an MISP. Note that π′i = πi+2, π′i+2 = πi and π′j = πj for j 6=
i and j 6= i+ 2. We show that if π′[x1 → y1] is an MISP with x ≤ x1 ≤ y1 ≤ y, then x
= x1 and y = y1.
Otherwise, let on one hand, x 6= x1. (1) If x < x1 < i + 1, then in π′[x → x1 − 1], an
arbitrary element is less than an arbitrary element in π′[x1 → y]. Since π[x → x1 − 1]
= π′[x→ x1 − 1], π[x→ x1 − 1] must be an ISP. The assumption for π[x→ i] to be an
MISP is contracted. (2) If i+ 2 < x1 ≤ y, it can follow (1) to show that π[i+ 2→ x1 − 1]
must be an ISP. The assumption for π[i+ 2→ y] to be an MISP is contracted. (3) If x1
= i+ 1 or x1 = i+ 2, then π′[x1 → y1] cannot be an MISP because π′i > π′i+1 > π′i+2.
That is the proof for x = x1. For the same reason, y = y1.

Proof for π′[x → y] to meet those two Theorem-5 properties. Since [i + 1] is isolated,
πi+1 = i+ 1, and for x ≤ l ≤ i and i+ 2 ≤ h ≤ y, πl < πi+1 < πh.

(1) If π[x→ i] and π[i+ 2→ y] are both isolated, then i = x and y = i+ 2, and π′[x→ y]
= [i+ 2, i+ 1, i] meets those two Theorem-5 properties trivially.

(2) If one of π[x→ i] and π[i+ 2→ y] is isolated, then i = x and y 6= i + 2 or i 6= x and y
= i + 2. We only focus on the former subcase, where i = x and y 6= i + 2, to present
the proof. In this subcase, πi = π′i+2 = i < i + 2, πi+1 = π′i+1 = i + 1, which means
π′i+1 is vector-zero and π′i+2 vector-left. Since π[i+ 2→ y] is not isolated, π′i and πi+2
are vector-right. All position-odd (resp. position-even) elements in π[i+ 2→ y] remain
position-odd and not vector-zero (resp. position-even and vector-zero) in π′[x→ y].
The proof for π′[x→ y] to meet Theorem-5 property (1), is done.
The vector-zero element πi in π[x → y] turns into the vector-left element π′i+2 in
π′[x → y], and all elements in π[i + 2 → y] turn into elements in π′[x → y] in the
the same relative order as they are in π[i + 2 → y]. Thus to show that π′[x → y]
meets Theorem-5, it suffices to show that π′i+2 is the leftmost vector-left element in
π′[x→ y], and less than any other vector-left element in π′[x→ y]. Of course this is
true, because π′i is vector-right, π′i+1 is vector-zero and π′i+2 = πi < πi+1 < πh for h
> i + 1. The proof for π′[x→ y] to meet Theorem-5 property (2), is done.

(3) If none of π[x→ i] and π[i+ 2→ y] is isolated, then i 6= x and y 6= i + 2. By Lemma
6, to make sure for π′[x→ y] to meet those two Theorem-5 properties, it suffices to
show that π[x → y] meets those two Theorem-5 properties.
Since π[x→ i] and π[i+ 2→ y] meet Theorem-5 property (2), and πl < πi+1 < πh for
x ≤ l ≤ i and i+ 2 ≤ h ≤ y, π[x→ y] meets the Theorem-5 property (2).
Since π[x→ i] meets the Theorem-5 property (1), i−x is even. Then, (1)the vector-zero
element πi+1 is position-even in π[x→ y]; (2)each position-odd (resp. position-even)
element in π[x→ i] and π[i+ 2→ y], remains position-odd (resp. position-even) in
π[x→ y]. This implies that π[x→ y] meets the Theorem-5 property (1). J

The proof of Theorem 5 can be given by Corollary 7 and Lemma 8, 9.

Proof. Only if: Let π[x→ y] be an unsorted and happy MISP, which can be transformed
into ι[x → y] by m best short swaps, say ρ1, ρ2, ..., ρm. Then (π · ρ1 · ρ2 ... ρm−1 ·
ρm)[x→ y] = ι[x→ y]. Let πk[x→ y] = (ι · ρm · ρm−1 ... ρm+2−k · ρm+1−k)[x→ y] for

CPM 2018

14:6 Can a permutation be sorted by best short swaps?

1 ≤ k ≤ m. Then πm[x→ y] = π[x→ y]. By induction for k, we show every unsorted
MISP in πk[x→ y] meets those two Theorem-5 properties.

(1) Without loss of generality, let ρm = ρ〈i, i+ 2〉(1 ≤ i ≤ n − 2). Then ρ〈i, i+ 2〉 must
be a worst short swap which acts on ι. It follows that π1[x → y] = (ι · ρm)[x → y]
= [x, x+ 1, ..., i− 1, i+ 2, i+ 1, i, i+ 3, ..., y], where [x], ..., [i− 1], [i+ 3], ..., [y]
are isolated MISPs and [i+ 2, i+ 1, i] is an unsorted MISP, which meets those two
Theorem-5 properties trivially.

(2) By inductive assumption, let all unsorted MISPs in πk−1[x → y] meet those two
Theorem-5 properties. Assume again ρm+1−k = ρ〈i,i + 2〉(x ≤ i ≤ y − 2) with
πk[x→ y] = (πk−1 · ρ 〈i,i+ 2〉)[x→ y]. Note that ρ〈i, i+ 2〉 must be a worst short
swap which acts on πk−1[x→ y]. By Lemma 8, ρ〈i, i+ 2〉 cannot affect two MISPs.
By Corollary 7 and Lemma 9, all unsorted MISPs in πk[x→ y] must meet those two
Theorem-5 properties.

If: Let π[x→ y] be an MISP in π which meets those two Theorem-5 properties. The proof
for π[x→ y] to be happy, is to show that one can find a best short swap which can act
on π[x→ y] and transform it into an ISP in which each MISP either is isolated or meets
those two Theorem-5 properties.

Identify a best short swap: Let πi be the biggest element in π[x→ y]. Then ρ〈i,i+ 2〉 can
be shown to be a best short swap which acts on π[x→ y]. The proof can be stated as:

(1) Since π[x→ y] meets those two Theorem-5 properties and πi is the biggest in π[x→ y],
πi must be vector-right and position-odd in π[x→ y] and no vector-right element can
occur on the right side of πi, which implies πi+1 is position-even and equal to i + 1.

(2) Then πi ≥ i + 2 follows from that πi is vector-right, πi+2 ≤ i follows from that no
vector-right element can occur on the right side of πi. Thus πi > πi+1 > πi+2.

Let π′[x→ y] = (π · ρ〈i, i+ 2〉)[x→ y]. We devote to show that all unsorted MISPs in
π′[x→ y] must meet those two Theorem-5 properties.

The proof to meet the Theorem-5 property (2): Since πi ≥ i+ 2 is vector-right, πi+2 ≤ i

is vector-left, π′i = πi+2 ≤ i is either vector-zero or vector-left, π′i+2 = πi ≥ i+ 2 is either
vector-zero or vector-right. This indicates that no vector-left (resp. vector-right) element
in π[x→ y] can turn into vector-right (resp. vector-left) in π′[x→ y]. Moreover, no two
vector-left (resp. vector-right) elements in π[x→ y] can occur in π′[x→ y] in the other
order than they are in π[x→ y]. It follows that all unsorted MISPs in π′[x→ y] meet
the Theorem-5 property (2).

The proof to meet the Theorem-5 property (1): All position-even elements in π′[x→ y]
are vector-zero because ρ〈i, i + 2〉 switches only πi with πi+2. The first element in an
unsorted MISP in π′[x→ y] must be vector-right, then must be position-odd in π′[x→ y].
Thus to make sure for all unsorted MISPs in π′[x→ y] to meet the Theorem-5 property
(1), it suffices to show that for all π′j in π′[x→ y], if π′j is position-odd and vector-zero,
then [π′j] is an isolated MISP. Since π[x→ y] meets the Theorem-5 property (1), only π′i
and π′i+2 can be position-odd and vector-zero in π′[x→ y].
If π′i+2 is vector-zero, [π′i+2] must be an isolated MISP, because π′i+2 is the biggest element
in π′[x→ y].
If π′i is vector-zero, it must be the smallest in π′[i→ y]. The reason is, (1)since π[x→ y]
meets the Theorem-5 property (1) and πi+2 = i, an element in π[i→ y] is bigger than
πi+2 = π′i, if it is position-even in π[x → y]; (2)since π[x → y] meets the Theorem-5
property (2) and πi+2 is vector-left, an element in π[i+ 3→ y] is bigger than πi+2 = π′i,
if it is vector-left in π[x→ y]; (3)πi is the unique vector-right element in π[i→ y] and
bigger than πi+2 = π′i. It follows that [π′i] is an isolated MISP. J

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng 14:7

Algorithm 1: How to recognize a happy permutation.
Algorithm Happy permutation
Input: A permutation π.
Output: The best short swap sequence ρ if π is happy; no, otherwise.
1 lb ← 0; rb ← 0; x ← 1; b ← 0;
2 For i from 1 to n do
3 if (i > b) then x ← i; (an MISP starts with πx)
4 if (i− x mod 2 = 1 and πi = i) then i ← i+ 1; (πi is position-even, vector-zero.)
5 if (i− x mod 2 = 0 and πi < i and πi > lb)
6 then lb ← πi; i ← i+ 1; (πi is position-odd, vector-left.)
7 if (i− x mod 2 = 0 and πi > i and πi > rb)
8 then rb ← πi; i ← i+ 1; b ← πi; (πi is position-odd, vector-right.)
9 if (i = x and πi = i) then b ← πi, i ← i+ 1; ([πi] is isolated.)
10 else return no;
11 end for
12 Return Sort(π);

In fact, an MISP in π can be recognized by,

I Lemma 10. An MISP in π starts with πi, if and only if i = 1 or for 1 ≤ j ≤ i− 1, i >
πj.

To decide if π is happy, it suffices to check if all MISPs in π, if unsorted, meet those two
Theorem-5 properties.

An element in an MISP can be decided to be position-odd or position-even by the first
element index of the MISP and its index. Then an MISP can be decided to meet the
Theorem-5 property (1) by the value of |πi − i| for all πi in this MISP.

An element in π can be decided to be vector-right, vector-left or vector-zero by the value
of πi − i. To check if all unsorted MISPs in π meet the Theorem-5 property (2), it suffices
to check if π meets the Theorem-5 property (2). Fortunately, π can be decided to meet
the Theorem-5 property (2) by checking if all those vector-left (resp. vector-right) elements
increase monotonously in the order from π1 to πn.

We present an algorithm to recognize and sort a happy permutation π in Algorithm
1. If π is happy, the algorithm returns a best short swap sequence which can transform π

into ι by invoking a subroutine named as Sort(π); returns no, otherwise. In the algorithm
description, we use the integer parameter lb (resp. rb) to maintain the biggest vector-left
(resp. vector-right) element in π[1 → i− 1], b the biggest element in π[1 → i− 1], x the
starting index of the MISP in which πi is an element.

Running the algorithm from Step 1 to Step 11 can decide if π is happy or not. This can
take O(n) time, where n is the number of elements in π. Later, let π be happy. We present
on how to find a sequence of best short swaps to transform π into ι. To identify a best short
swap which switches πi with πi+2, it suffices to record the integer i. Thus in Sort(π), we will
employ a linear integer array ρ[1 ∼ X] to maintain the best short swap sequence to sort π,
where X ≤ n(n−1)

6 , ρ[j] indicates to switch πρ[j] with πρ[j]+2.
The rightmost vector-right element in π must be the rightmost vector-right element in an

MISP in π. Let πi be the rightmost vector-right element in π. Then it follows the proof of
the Theorem 5 sufficient condition that the short swap which switches πi with πi+2 is best.
By Theorem 5 again, this operation must transform π into a happy permutation. Thus the
trick for finding the rightmost vector-right element in π to identify a best short swap can be
done repeatedly until π is transformed into ι. The algorithm Sort(π) is depicted in Figure 2.

CPM 2018

14:8 Can a permutation be sorted by best short swaps?

Algorithm 2: How to sort a happy permutation.
Algorithm Sort(π)
1 x ← 0;
2 while π 6= ι

3 find the rightmost vector-right element πi;
4 while πi > i

5 ρ[x] ← i; π ← π · ρ[x]; x ← x + 1;
6 i ← i+ 2;
7 end while
8 end while
9 Return ρ.

A rightmost vector-right element, say πi, remains rightmost and vector-right in the
permutation the short swap which switches πi with πi+2 transforms π into, until it turns
into vector-zero. So it takes O(n) time to find all the rightmost vector-right elements. On
the other hand, each best short swap can eliminate 3 inversions, the total inversion number
is O(n2). Thus the time complexity of Sort(π) is O(n2). It follows that the time complexity
of recognizing a happy permutation is O(n2).

4 How to recognize a lucky permutation

A short swap on π is referred to as a best cancellation, if it cause L(Vπ) to decrease by
4 [9]. The permutation π is referred to as lucky, if it can be transformed into ι by none
other than best cancellations. A short swap is referred to as a promising cancellation (resp.
promising addition), if it switches two adjacent elements in π and causes L(Vπ) to decrease
(resp. increase) by 2.

An ISP π[x → y] is referred to as sub-lucky, if it can be transformed into ι[x → y] by
none other than promising cancellations. To check if a permutation is lucky, we set about to
check if an ISP is sub-lucky. This asks us to observe what kind of a short swap is a promising
addition or cancellation.

I Lemma 11. The short swap ρ〈i, i+ 1〉 on π is a promising addition, if and only if πi ≤ i

and πi+1 ≥ i+ 1.

Following Lemma 11, a promising cancellation can be identified by,

I Corollary 12. The short swap ρ〈i, i+ 1〉 on π is a promising cancellation, if and only if
πi ≥ i+ 1 and πi+1 ≤ i.

By the following theorem, we state for what an MISP is sub-lucky.

I Theorem 13. An unsorted MISP is sub-lucky if and only if, (1) all elements in the MISP
are not vector-zero; and (2) for any two vector-left (resp. vector-right) elements, say πi, πj
in the MISP, if i > j, then πi > πj.

The second property of the theorem implies that those vector-left as well as vector-right
elements increase monotonously. In fact, we can use the same way as used to show Theorem
5 to show the theorem. Although in Theorem 13, those two properties are mentioned for an
MISP to meet, it cannot refuse an ISP in π to meet those two properties. Thus an ISP is said
to meet the Theorem-13 property (1), if all elements in the ISP are not vector-zero; and said
to meet the Theorem-13 property (2), if all those vector-left as well as vector-right elements
increase monotonously. The following lemma, although seems trivial, deserves to be stated.

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng 14:9

I Lemma 14. If an ISP meets those two Theorem-13 properties, then all MISPs in the ISP
meet those two Theorem-13 properties.

To show Theorem 13, we show that an ISP, if meets those two Theorem-13 properties,
cannot be transformed by a promising addition into one out of those two Theorem-13
properties. That is,

I Lemma 15. If a promising addition acts on an ISP which meets those two Theorem-13
properties, it must transform the ISP into one which meets those two Theorem-13 properties.

An ISP with two or more MISPs does not always meet those two Theorem-13 properties.
However, Lemma 15 can be extended to fit for some situation where a promising addition
affects two MISPs.

I Lemma 16. If a promising addition affects two MISPs, each of which is isolated or meets
those two Theorem-13 properties, it must transform the two MISPs into an ISP which meets
those two Theorem-13 properties.

To show Theorem 13, we need to observe on what kind of an ISP a promising cancellation
can transform an MISP with those two Theorem-13 properties into.

I Lemma 17. If a promising cancellation acts on an MISP with those two Theorem-13
properties, it must transform the MISP into an ISP in which all unsorted MISPs meets those
two Theorem-13 properties.

Similar to Theorem 5, Theorem 13 can be proved with Lemma 14, 15, 16 and 17.
A best cancellation must switch two elements between which another element has been

caught. Thus we will usually denote by ρ〈i, i+2〉 a best cancellation on π. A best cancellation
can be identified by,

I Lemma 18. A short swap, say ρ〈i, i+ 2〉 on π is a best cancellation, if and only if πi ≥
i+ 2 and πi+2 ≤ i.

In π, there exist bn2 c even elements and dn2 e odd elements. Thus those even elements in π
can be extracted into a subsequence of π as [πx[1], πx[2], ..., πx[bn2 c]] where, (1) x[i] < x[i+ 1]
for 1 ≤ i ≤ bn2 c − 1; (2) πx[i] is even in π, 1 ≤ x[i] ≤ n. Likewise, those odd elements in π
can be extracted into [πy[1], ..., πy[dn2 e]] where, (1) y[i] < y[i+ 1] for 1 ≤ i ≤ dn2 e − 1; (2)
πy[i] is odd in π, 1 ≤ y[i] ≤ n. Moreover, let Even[π] ≡ [e1, e2 ... ebn2 c] with ei = πx[i]

2 , 1 ≤
i ≤ dn2 e, Odd[π] ≡ [o1, o2 ... obn2 c] with oi = πy[i]+1

2 , 1 ≤ i ≤ dn2 e. Then Even[π] must be
a permutation of {1, 2, ..., bn2 c}, Odd[π] a permutation of {1, 2, ..., dn2 e}. A sufficient and
necessary condition for a permutation to be lucky can be announced by,

I Theorem 19. The permutation π is lucky if and only if, (1) each of its elements admits a
vector with zero or even absolute value; (2) each unsorted MISP in Even[π] and Odd[π] is
sub-lucky.

Proof. Only if: Let π be lucky and unsorted, ρ〈i, i + 2〉 a best cancellation on π. Then
ρ〈i, i+2〉must cause |vπ(πi)| as well as |vπ(πi+2)| to decrease by 2. Since π can be transformed
into ι by none other than best cancellations, |πj − j| mod 2 = 0 for 1 ≤ j ≤ n. The proof
for π to meet the Theorem-19 property (1), is done.

A position-even (resp. position-odd) element in π remains position-even (resp. position-
odd) in π · ρ〈i, i + 2〉. Since π meets the Theorem-19 property (1), an even (resp. odd)
element in π must be position-even (resp. position-odd). This implies Even[π] = [π2

2 ,
π4
2 ,

...,
π2bn2 c

2], Odd[π] = [π1
2 ,

π3
2 , ...,

π2dn2 e−1

2].

CPM 2018

14:10 Can a permutation be sorted by best short swaps?

Let i be even. By Lemma 18, πi ≥ i + 2 and πi+2 ≤ i. Thus πi
2 ≥

i
2 + 1 and πi+2

2 ≤ i
2 .

By Corollary 12, ρ〈 i2 ,
i
2 +1〉 can be viewed as a promising cancellation which acts on an MISP

in Even[π]. Thus, if one can use best cancellations to transform π into a permutation, say
π′ with Even[π′] = Even[ι], then all unsorted MISPs in Even[π] are sub-lucky. The same
argument can be employed to show that all unsorted MISPs in Odd[π] are sub-lucky. The
proof for π to meet the Theorem-19 property (2), is done.

If: Let π be unsorted and meet those two Theorem-19 properties. The proof for π to
be lucky, is to show that one can find a best cancellation ρ on π which transforms π into a
permutation which meets those two Theorem-19 properties. Firstly, the Theorem-19 property
(1) implies that Even[π] = [π2

2 ,
π4
2 , ...,

π2bn2 c

2], Odd[π] = [π1
2 ,

π3
2 , ...,

π2dn2 e−1

2].
Let πi be the rightmost vector-right element in π. Then πi+2 ≤ i+2 because πi+2 is either

vector-zero or vector-left. We argue that if i is even, ρ〈i,i+ 2〉 must be a best cancellation
on π.

(1) Since i is even, πi ≥ i + 2, and πi
2 and πi+2

2 must occur in Even[π].
(2) To get to πi+2 ≤ i, we argue that πi

2 and πi+2
2 must occur in one unsorted MISP in

Even[π].
It follows πi+2 ≤ i+ 2 and πi ≥ i+ 2 that πi

2 ≥
i
2 + 1 and πi+2

2 ≤ i
2 + 1. Thus πi

2 >
πi+2

2 . Thus an inversion of πi2 and πi+2
2 occurs in Even[π], which means πi

2 and πi+2
2 occur

in one MISP. By the Theorem-19 property (2), the MISP in Even[π] with πi
2 and πi+2

2 must
be sub-lucky. Thus by the Theorem-13 property (1), πi+2

2 in Even[π] is not vector-zero. It
follows that πi+2

2 ≤ i
2 , and equivalently, πi+2 ≤ i.

The same argument can be employed to show that if i is odd, ρ〈i,i + 2〉 is a best
cancellation.

Let π′ = π · ρ〈i, i + 2〉. It remains to show that π′, if unsorted, must meet those two
Theorem-19 properties.

Since ρ〈i,i+2〉 is a best cancellation, it must cause |vπ(πi)| and |vπ(πi+2)| each to decrease
by 2. Since π meet the Theorem-19 property (1), π′ must meet the Theorem-19 property (1).

If i is even, since π meets the Theorem-19 property (1), then πi+2
2 must occur on the

right side next to πi
2 in Even[π]. Since ρ〈i, i+ 2〉 is a best cancellation, ρ〈 i2 ,

i
2 + 1〉 must be

a promising cancellation which acts on an MISP in Even[π]. By Lemma 17, all unsorted
MISPs in Even[π′] meet those two Theorem-13 properties. That is, all unsorted MISPs
in Even[π′] are sub-lucky by Theorem 13. Moreover, it follows Odd[π′] = Odd[π] that all
MISPs in Odd[π′] are sub-lucky. Thus, π′ meets Theorem-19 property (2)

If i is odd, π′ can be shown to meet the Theorem-19 property (2) in the same way as for
i to be even. J

To decide if π meets the Theorem 19 property (1), it suffices to check for all i in [1, n], if
i and πi are both even, or both odd.

Let πi be an arbitrary element in π. We refer to πi
2 (resp. πi+1

2) as the image of πi in
Even[π] (resp. Odd[π]). Then for a lucky permutation π, πi is vector-right (resp. vector-left,
vector-zero) in π, if and only if its image in Even[π] or Odd[π] is vector-right (resp. vector-left,
vector-zero). Thus, to decide if π meets the Theorem-19 property (2), it suffices to check for,
(1) if the image of a vector-zero element occurs in an isolated MISP in Odd[π] or Even[π];
and (2) if those vector-left and even (resp. odd) elements in π, as well as those vector-right
and even (resp. odd) elements, always increase monotonously in the order from π1 to πn.

The image in Even[π] (resp. Odd[π]) of a vector-zero element, say πi, can be decided
to occur in an isolated MISP in Even[π] (resp. Odd[π]) by checking if all even (resp. odd)
elements in π[1→ i− 1] are smaller than πi. Those vector-left (resp. vector-right) elements

S. Zhang, D. Zhu, H. Jiang, J. Ma, J. Guo, and H. Feng 14:11

Algorithm 3: How to recognize a lucky permutation.
Algorithm lucky permutation
Input: A permutation π.
Output: The best short swap sequence ρ if π is lucky; no, otherwise.
1 lo← 0; ro← 0; le← 0; re← 0;
2 For i → 1 to n do
3 If (i and πi are both even) then
4 If (πi ≥ i and πi > re)
5 then re ← πi; i ← i+ 1; (πi is vector-right even or [πi] is isolated)
6 If (πi < i and πi > le)
7 then le ← πi; i ← i+ 1; (πi is vector-left even)
8 If (i and πi are both odd) then
9 If (πi ≥ i and πi > ro)
10 then ro ← πi; i ← i+ 1; (πi is vector-right odd or [πi] is isolated)
11 If (πi < i and πi > lo)
12 then lo ← πi; i ← i+ 1; (πi is vector-left odd)
13 Else return no;
14 End for
15 Return Sort(π);

can be decided to be monotonous increasing by checking for each vector-left (resp. vector-
right) even (resp. odd) element, say πi, if πi is bigger than the biggest vector-left (resp.
vector-right) even (resp. odd) element in π[1→i − 1]. In fact, it is not necessary to pay
special attention to check if a vector-zero element occurs in an isolated MISP. This benefits
from

I Lemma 20. In π[1→ k] for k ≥ 2, the biggest vector-right element must be bigger than
the biggest vector-left element.

We present in Figure 3 the algorithm to decide if π is lucky, and if so, to find a best
cancellation sequence to sort π. If π is lucky, the algorithm will return a best cancellation
sequence which can transform π into ι by invoking the Sort(π); return no, otherwise. Since
by the sufficiency proof of Theorem 19, one can employ the same way as to find a best short
swap in Theorem 5 to find a best cancellation, the subroutine Sort(π) is just so as it has
been depicted in Algorithm 2.

In the algorithm description, we use the integer parameter le (resp. lo) to maintain the
biggest vector-left even (resp. odd) element in π[1→ i− 1], re (resp. ro) the biggest even
(odd) element in π[1→ i− 1]. It follows Lemma 20 that le < re, lo < ro.

Running the algorithm from Step 1 to Step 14 can inform us if π is lucky or not. This
takes O(n) time, where n is the number of elements in π. Let πi be the rightmost vector-right
element in a lucky permutation π, by the proof of Theorem 19, the short swap which switches
πi with πi+2 is a best cancellation. By Theorem 19 again, this operation must transform
π into a lucky permutation. By the complexity analysis for Sort(π) in Section 3, it has
been known Sort(π) can run in O(n2) time. Thus the time complexity of sorting a lucky
permutation is O(n2).

5 Conclusion

Sort a happy permutation or a lucky permutation by short swaps is a special case of minimum
sorting by short swaps problem. In this paper, we proposed a polynomial-time algorithm

CPM 2018

14:12 Can a permutation be sorted by best short swaps?

to recognize a happy permutation and sort it with the fewest short swaps. We also gave
a new algorithm to recognize a lucky permutation with O(n) steps, which improves the
time complexity of O(n2) [9]. The complexity of minimum sorting by short swaps problem
remains open. The best known approximation ratio of this problem is 2, which was given by
Heath and Vergara [9]. It is interesting that if we can get a smaller approximation ratio for
this problem.

References
1 V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. Siam

Journal on Computing, 25(2):272–289, 1993.
2 Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-approximation algorithm

for sorting by reversals. Lecture Notes in Computer Science, pages 200–210, 2002.
3 Guillaume Bourque and Pavel A. Pevzner. Genome-scale evolution: Reconstructing gene

orders in the ancestral species. Genome Research, 12(1):26–36, 2002.
4 Alberto Caprara. Sorting permutations by reversals and eulerian cycle decompositions.

Siam Journal on Discrete Mathematics, 12(1):91–110, 1999.
5 Xuerong Feng, Ivan Hal Sudborough, and Enyue Lu. A fast algorithm for sorting by short

swap. In Proceeding of the 10th IASTED International Conference on Computational and
Systems Biology, pages 62–67, 2006.

6 Gustavo Rodrigues Galvão and Zanoni Dias. Approximation algorithms for sorting by
signed short reversals. In Proceedings of the 5th ACM Conference on Bioinformatics, Com-
putational Biology, and Health Informatics, BCB ’14, Newport Beach, California, USA,
September 20-23, 2014, pages 360–369. ACM, 2014. doi:10.1145/2649387.2649413.

7 Gustavo Rodrigues Galvão, Orlando Lee, and Zanoni Dias. Sorting signed permutations
by short operations. Algorithms for Molecular Biology, 10(1):1–17, 2015.

8 Sridhar Hannenhalli. Transforming cabbage into turnip: polynomial algorithm for sorting
signed permutations by reversals. Journal of the Acm, 46(1):1–27, 1999.

9 L. S. Heath and J. P. Vergara. Sorting by short swaps. Journal of Computational Biology
A Journal of Computational Molecular Cell Biology, 10(5):775–89, 2003.

10 Mark R. Jerrum. The complexity of finding minimum-length generator sequences. In
Colloquium on Automata, Languages and Programming, pages 270–280, 1984.

11 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. A Faster and Simpler Algorithm for
Sorting Signed Permutations by Reversals. Society for Industrial and Applied Mathematics,
1999.

12 J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by reversals,
with application to genome rearrangement. Algorithmica, 13(1-2):180–210, 1995.

13 P Pevzner and G Tesler. Genome rearrangements in mammalian evolution: lessons from
human and mouse genomes. Genome Research, 13(1):37–45, 2003.

14 G. P. Pradhan and P. V. Prasad. Evaluation of wheat chromosome translocation lines for
high temperature stress tolerance at grain filling stage. Plos One, 10(2):1–20, 2015.

15 D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B F Lang, and R. Cedergren. Gene order
comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings
of the National Academy of Sciences of the United States of America, 89(14):6575–6579,
1992.

16 G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion
problem. Journal of Theoretical Biology, 99(1):1–7, 1982.

http://dx.doi.org/10.1145/2649387.2649413

Computing longest common square subsequences
Takafumi Inoue
Department of Informatics, Kyushu University, Japan

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Heikki Hyyrö
Faculty of Natural Sciences, University of Tampere, Finland
heikki.hyyro@uta.fi

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

https://orcid.org/0000-0002-6856-5185

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
A square is a non-empty string of form Y Y . The longest common square subsequence (LCSqS)
problem is to compute a longest square occurring as a subsequence in two given strings A and
B. We show that the problem can easily be solved in O(n6) time or O(|M|n4) time with O(n4)
space, where n is the length of the strings andM is the set of matching points between A and
B. Then, we show that the problem can also be solved in O(σ|M|3 + n) time and O(|M|2 + n)
space, or in O(|M|3 log2 n log logn+ n) time with O(|M|3 + n) space, where σ is the number of
distinct characters occurring in A and B. We also study lower bounds for the LCSqS problem
for two or more strings.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases squares, subsequences, matching rectangles, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.15

Acknowledgements The authors thank the anonymous referees for correcting errors involved in
an earlier version of this paper.

1 Introduction

Computing the longest common subsequence (LCS) of given strings is the fundamental way
to compare the strings. Given two strings A and B of length n each, the basic dynamic
programming solution computes the LCS of A and B in O(n2) time and space [27]. While
faster solutions for the LCS problem exist, such as those running in O(n2/ log2 n) time for
constant-size alphabets [22], and in O(n2(log logn)2/ log2 n) time or in O(n2 log logn/ log2 n)
time for non constant-size alphabets [5, 12] 1, no strongly sub-quadratic O(n2−ε)-time

1 Grabowski’s method [12] works when the length m of one string is at least log2 n, where n is the length
of the other string.

© Takafumi Inoue, Shunsuke Inenaga, Heikki Hyyrö, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:inenaga@inf.kyushu-u.ac.jp
mailto:heikki.hyyro@uta.fi
mailto:bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:takeda@inf.kyushu-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Computing longest common square subsequences

solutions are known for any constant ε > 0. Difficulty in breaking this barrier is supported
by recent studies on conditional lower bounds for string similarity measures: It is shown
in [1] that if there is an O(n2−ε)-time solution for the LCS problem with a constant ε > 0,
then the famous strong exponential time hypothesis (SETH) fails.

To reflect a priori knowledge to the solution to be found, many variants of the LCS
problem where some constraints are introduced in the solution have been considered (see
e.g. [7, 2, 14, 20, 9, 10, 28, 11, 29, 30, 8, 16, 19]).

This paper considers a new variant of the LCS problem where the solution must be a
square (of form Y Y with some string Y), called the longest common square subsequence
(LCSqS) problem defined as follows: Given two strings A and B of length n, compute (the
length of) a longest square which appears as a subsequence in A and B. For instance, for
A = babcabdbaca and B = dbcacbbcacd, their LCSqSs are bacbac and bcabca of length 6.

We propose several solutions for the LCSqS problem. We first show that there is a
simple O(n6)-time O(n4)-space solution for the LCSqS problem. The algorithm is also
improved to O(|M|n4)-time by using the setM of matching points between the two input
strings. Albeit M can be as large as O(n2) in the worst case, it can be smaller in many
cases. We then give two more sophisticated algorithms based on the set R of matching
rectangles: one runs in O(σ|M||R| + n) = O(σ|M|3 + n) time with O(|M|2 + n) space,
and the other in O(|M||R| log2 log logn+ |M|3 + n) = O(|M|3 log2 log logn+ n) time with
O(|M|3 + n) space, where σ denotes the number of distinct characters that appear in both
strings. These two solutions are faster than the simple O(n6)-time or O(|M|n4)-time solutions
whenM is sparse. Note e.g. that under uniformly distributed random text |M| ≈ n2/σ and
|R| ≈ |M|2/σ ≈ n4/σ3, in which case the expected running times of our three algorithms
would be O(n6/σ), O(n6/σ3) and O(n6(log2 log logn+ σ)/σ4) respectively.

The set M of matching points can easily be computed in O(|M| + n) time under a
common assumption that the input strings are over an integer alphabet of size nO(1).

We also study hardness of the LCSqS problem for two or more strings. The k-LCSqS
problem is to compute the LCSqS of given k ≥ 2 strings. We show that the k-LCSqS problem
is at least as hard as the 2k-LCS problem which asks to compute the LCS of 2k given strings.
This implies that for unfixed k the k-LCSqS problem is NP-hard, and that for fixed k it
seems hard to solve the k-LCSqS problem in O(nk−ε) time for any constant ε > 0.

Related work
It is known that one can compute (the length of) a longest square subsequence (LSqS) of
a single string of length n in O(n2) time and O(n) space [18]. Also, it is shown in [1] that
if there is an O(n2−ε)-time solution for the LSqS problem with a constant ε > 0, then the
famous strong exponential time hypothesis (SETH) fails. Our results for the LCSqS problem
can be seen as a generalization of these results for the LSqS problem.

Technically speaking, our results for the LCSqS problem are most related to those for the
longest common palindromic subsequence (LCPS) problem, where the task is to find a longest
palindrome that appears as a subsequence in both of the two strings A and B. Chowdhury
et al. [8] were the first to consider the LCPS problem, giving an O(n4)-time solution and
an O(|M|2 log2 n log logn + n)-time solution2. Inenaga and Hyyrö [16] proposed another

2 Our careful analysis reveals that Chowdhury et al.’s algorithm [8] uses at least Ω(min{|M|2n2 log n, n3})
space (and hence time), but it can be fixed to run in O(|M|2 log2 n log log n+n) time using our technique
proposed in Section 3.

T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda 15:3

algorithm which solves the LCPS problem in O(σ|M|2 + n) time and O(|M|2 + n) space.
Very recently, Bae and Lee [3] showed how to solve the LCPS problem in O(|M|2 + n) time.
Inenaga and Hyyrö [16] also showed that the LCPS problem for two strings is at least as
hard as the LCS problem for four strings, implying that it seems hard to solve the LCPS
problem in O(n4−ε) time for any constant ε > 0.

2 Preliminaries

Let Σ be the alphabet. An element X of Σ∗ is called a string. The length of string X
is denoted by |X|. For any 1 ≤ i ≤ |X|, X[i] denotes the ith character of X. For any
1 ≤ i ≤ j ≤ |X|, X[i..j] denotes the substring of X beginning at position i and ending at
position j.

A string X is said to be a subsequence of another string Y if there exists a sequence
1 ≤ i1 < · · · < i|X| ≤ |Y | of increasing positions of Y such that X = Y [i1] · · ·Y [i|X|]. In
other words, a subsequence of Y can be obtained by removing zero or more characters
from Y . The k-LCS problem is to compute the length of a longest common subsequence
(LCS) of given k strings, where k ≥ 2. Let LCS(A1, . . . , Ak) denote the length of a longest
common subsequence of k strings A1, . . . , Ak. A non-empty string X of length 2k is called
a square if there exists a string Y of length k such that X = Y Y . A square S is called a
square subsequence of another string Y if square S is a subsequence of Y . Let LCSqS(A,B)
denote the length of a longest common square subsequence (LCSqS) of strings A and B. This
paper deals with the problem of computing LCSqS(A,B) for two given strings A and B.
For simplicity, we assume that the input strings A and B are of the same length and let
n = |A| = |B|. Our algorithms can easily be extended to the case where |A| 6= |B| as well as
to the case where we wish to compute one longest common square subsequence of A and B.

For two strings A and B, a pair (i, j) of positions 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B| is said to
be a matching point if A[i] = B[j]. The set of all matching positions of A and B is denoted
by M(A,B), namely, M(A,B) = {(i, j) | 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|, A[i] = B[j]}. We will
abbreviateM(A,B) asM when it is clear from the context.

3 Algorithms

In this section, we present several algorithms for computing LCSqS(A,B). In order to avoid
processing unnecessary characters, we will assume that the input strings A and B have been
already preprocessed by an alphabet reduction technique [16] as follows: First, we compute
the lexicographical ranks of the characters in A and B. Assuming that A and B are drawn
from an integer alphabet of size nO(1), this can be done in O(n) time with radix sort. We
then replace each character in A and B with its rank, turning A and B into strings over the
integer alphabet [1, 2n]. Then we remove every character that appears only either in A or in
B. It is clear that this preprocessing essentially preserves common subsequences between
the original A and B and thus has no negative effect on computing LCSqS(A,B). Note that
n ≤M holds after alphabet reduction, whileM = O(n2) still also holds.

3.1 Simple Algorithm
Our first algorithm considers Θ(n2) pairs of partitioning of A and B. Namely, we have that

LCSqS(A,B) = max
1≤i<n,1≤j<n

{2× LCS(A[1..i], A[i+ 1..n], B[1..j], B[j + 1..n])}.

CPM 2018

15:4 Computing longest common square subsequences

This immediately implies an O(n6)-time O(n4)-space algorithm for computing LCSqS(A,B),
since the LCS of four strings can be computed in O(n4) time and space by standard DP.

The O(n6)-time complexity can be improved as follows. For any matching point (i, j) ∈M,
let i′ (resp. j′) be the smallest position such that i < i′, j < j′, and (i′, j′) ∈ M. If such
(i′, j′) does not exist, then let i′ = j′ = n.

I Observation 1. For any i ≤ k < i′ and j ≤ h < j′, LCS(A[1..k], A[k+ 1..n], B[1..h], B[h+
1..n] = LCS(A[1..i], A[i+ 1..n], B[1..j], B[j + 1..n].

By Observation 1, it is sufficient for us to consider only |M| partition points between A and
B. Hence, we can compute LCSqS(A,B) in O(|M|n4) time and O(n4) space.

3.2 O(σ|M|3 + n)-time algorithm
Here we present our O(σ|M|3 + n)-time algorithm for computing LCSqS(A,B), where σ
is the number of distinct characters occurring in A and B. This algorithm is based on
Inenaga and Hyyrö’s algorithm [16] which computes (the length of) a longest palindromic
common subsequence of two given strings in O(σ|M|2 + n) time. Consider a 2D plain
where the string A corresponds to the vertical axis upward (i.e., A[1] is on the bottom and
A[n] is on the top), and the string B corresponds to the horizontal axis rightward (i.e.,
B[1] is on the left end and B[n] is on the right end). Our key idea is to represent each
common square subsequence of strings A and B by matching rectangles defined as follows:
For 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n, a tuple r = (i, j, k, l) is said to be a matching
rectangle iff A[i] = A[j] = B[k] = B[l], and more specifically a c-matching rectangle iff
A[i] = A[j] = B[k] = B[l] = c. For a matching rectangle r = (i, j, k, l), (i, k) is said to be the
left-bottom corner of r, and (j, l) is said to be the right-upper corner of r. Let R denote the
set of matching rectangles of A and B. Notice |R| = O(|M|2). For two matching rectangles
r = (i, j, k, l) and r′ = (i′, j′, k′, l′), let

r = r′ ⇐⇒ i = i′, j = j′, k = k′, and l = l′

r < r′ ⇐⇒ i < i′, j < j′, k < k′, and l < l′

r C r′ ⇐⇒ i ≤ i′, j ≤ j′, k ≤ k′, l ≤ l′, and r 6= r′.

For two c-matching rectangles r = (i, j, k, l) and r′ = (i′, j′, k′, l′), let

r � r′ ⇐⇒ i ≤ i′, j ≤ j′, k ≤ k′ and l ≤ l′.

A sequence 〈r1, . . . , rm〉 of matching rectangles is said to be a sequence of diagonally
overlapping matching rectangles (DOMRs) iff rx < rx+1 for all 1 ≤ x < m, im < j1 and
km < l1, where we use the notation rh = (ih, jh, kh, lh) for all h = 1, . . . ,m. The size of a
sequence 〈r1, . . . , rm〉 of DOMRs is the number m of overlapping rectangles in it.

The following observation lays the foundation to the algorithms of this subsection (and
to the one of the following subsection as well):

I Observation 2. There is a common square subsequence T of length 2m of strings A and
B iff there exists a sequence 〈r1, . . . , rm〉 of DOMRs of length m.

See Figure 1 which depicts the relationship between common square subsequences and
DOMRs for two strings A and B. By Observation 2, the problem of computing LCSqS(A,B)
reduces to the problem of finding a longest sequence of DOMRs.

T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda 15:5

… a … b … c … a … b … c … !

A!

B!

c

b

a

c

b

a!

…
!

…
!

…
!

…
!

…
!

…
!
…
!

Figure 1 Illustration of the relationship between common square subsequences and DOMRs.

The basic idea of our algorithm is to extend a given sequence S = 〈r1, . . . , rm〉 of DOMRs
by adding a new matching rectangle to its right-end. We say that a c-matching rectangle
r = (i, j, k, l) is a c-extension of S if 〈r1, . . . , rm, r〉 is a sequence of DOMRs. A c-extension
r of S is dominant if the condition r � r′ holds between r and any c-extension r′ of S. The
algorithms in this subsection are based on the following lemmas.

I Lemma 3. Let S = 〈r1, . . . , rm〉 be any sequence of DOMRs. If S has at least one c-
extension, then S has a unique dominant c-extension r′. It is furthermore possible to compute
any such r′ in O(1) time after initial preprocessing of A and B in O(σn) time and space.

Proof. Consider r′ = (i′, j′, k′, l′), where i′ = min({i | im < i < j1, A[i] = c} ∪ {n + 1}),
j′ = min({j | jm < j,A[j] = c} ∪ {n+ 1}), k′ = min({k | km < k < l1, B[k] = c} ∪ {n+ 1})
and l′ = min({l | l > lm, B[l] = c}∪{n+1}). If any of i′, j′, k′ and l′ holds the sentinel value
n+ 1 that corresponds to non-existence of a further suitable match with c, then S cannot
have any c-extension. Otherwise A[i′] = A[j′] = B[k′] = B[l′] = c and r′ is a c-matching
rectangle. Furthermore im < i′, jm < j′, km < k′, lm < l′, i′ < j1 and k′ < l1, so r′ is a
c-extension of S. If we assume the existence of another c-extension r′ of S such that r′′ � r′
does not hold, then at least one of the definitions of i′, j′, k′ and l′ above is contradicted.
Hence r′ must be dominant. Finally, r′ must clearly be unique: if also r′′ 6= r′ is a dominant
c-extension, then both r′ � r′′ and r′′ � r′ must hold, but this is possible only if r′′ = r′.

The values i′ and j′ can be computed in O(1) time by using a precomputed table PA of
size σ × n that holds the values PA[c, h] = min({i | h < i,A[h] = c} ∪ {n+ 1}) for all c ∈ Σ
and 1 ≤ h ≤ n. The values k′ and l′ can be computed in O(1) time by using an analogous
precomputed table PB with values PB[c, h] = min({i | h < i,B[h] = c} ∪ {n + 1}). Both
tables can be precomputed in O(σn) time and space in a straight-forward manner. J

Note that the proof of Lemma 3 refers only to r1 and rm when determining the unique
dominant extension of 〈r1, . . . , rm〉: any inner rectangle ri for 1 < i < m does not need to be
considered. Thus all sequences of DOMRs that begin with the rectangle r1 and end with the
rectangle rm share the same unique dominant extensions.

I Lemma 4. Let S = 〈r1, . . . , rm〉 be any sequence of at least two DOMRs. If any c-matching
rectangle rh with 1 < h ≤ m is replaced by the dominant c-extension of 〈r1, . . . , rh−1〉, also
the resulting sequence of matching rectangles is a sequence of DOMRs.

Proof. The lemma clearly holds if h = m, so consider the case 1 < h < m. Let (i′, j′, k′, l′)
be the dominant c-extension of 〈r1, . . . , rh−1〉, and let S′ = 〈r′1, . . . , r′m〉 denote the sequence
obtained from S by replacing rh with (i′, j′, k′, l′). S is a sequence of DOMRs, and thus

CPM 2018

15:6 Computing longest common square subsequences

i′m = im < j1 = j′1, k′m = km < l1 = l′1, and rx < rx+1 for 1 ≤ x < m. On the other
hand r′h−1 < r′h, as also 〈r′1, . . . , r′h〉 = 〈r1, . . . , rh−1, (i′, j′, k′, l′)〉 is a sequence of DOMRs.
Because r′h is dominant, we have r′h−1 < r′h � rh < rh+1 = r′h+1, which in turn implies that
r′h < r′h+1 for 1 ≤ h < m, and hence S′ fulfills all conditions of a sequence of DOMRs. J

Basic algorithm. The basic principle of our first rectangle-based algorithm, Algorithm 1,
is to fix the first left-bottom matching rectangle rb, and then try to extend it as long as
possible to the right-upper direction. For each such starting rectangle rb, we compute a
dynamic programming table DPrb

of size O(|M|2) such that DPrb
[re] will finally store the

length of the longest sequence of DOMRs beginning with rb and ending with re, where re is
either rb itself or a dominant extension. In more detail, Algorithm 1 works as follows:

Algorithm 1:
Preprocessing: Compute a list L of all matching rectangles sorted according to < and
� by radix sorting all rectangles (i, j, k, l) as 4-digit numbers.

Compute longest sequence of DOMRs: For each matching rectangle rb (in any
order), perform the following:
(1) For each re (6= rb), we initialize DPrb

[re]← 0. We let DPrb
[rb]← 2.

(2) Suppose rb is the ith element of L. For each j = i+ 1, . . . , |L| in increasing order,
let r ← L[j] and attempt to extend a sequence 〈rb, . . . , r〉 of DOMRs as follows:
(a) If DPrb

[r] = 0, then no sequence of DOMRs of form 〈rb, . . . , r〉 exists.
(b) Otherwise, for each character c, try to compute the unique dominant c-extension

r′ of any sequence 〈rb, . . . , r〉 of DOMRs which begins with rb and ends with r.
If such r′ exists, set DPrb

[r′]← max{DPrb
[r′], DPrb

[r] + 2}.
(3) If the maximum value in DPrb

exceeds the current best solution, then update it.

Let us explain the correctness of Algorithm 1. Lemma 4 guarantees that an optimal sequence
of DOMRs can be constructed by considering only dominant extensions. Consider any
such optimal sequence of DOMRs S = 〈r1, . . . , rm〉. The outer loop of Algorithm 1 will at
some point select rb = r1. As r ← L[j] are processed in increasing order of j, the sorting
order of L guarantees that rectangles ri of S will be selected as the current r in the order
i = 1, . . . ,m. For each such r = ri, the algorithm uses Lemma 3 to consider all possible
dominant extensions, including also the extension ri+1 if i < m. A simple inductive argument
shows that the values DPr1 [ri] will become correctly computed in the order i = 1, . . . ,m.

Let us analyze the efficiency of Algorithm 1. Constructing the tables PA and PB takes
O(σn) time and space. Note that alphabet reduction guarantees that O(σn) = O(σ|M|).
Since 1 ≤ i, j, k, l ≤ n for each matching rectangle (i, j, k, l), we obtain a sorted list L of
all O(|M|2) matching rectangles in O(|M|2 + n) time and space by radix sort. Hence the
preprocessing takes O(|M|2 + n) total time and space. We test no more than σ characters
for any cell DPrb

[r] of the dynamic programming table DPrb
. By Lemma 3, we can compute

a unique dominant c-extension in O(1) time, if it exists. Since there are O(|M|2) candidates
for rb and O(|R|) = O(|M|2) candidates for r, Algorithm 1 takes overall O(σ|M|4 + n) time
and O(|M|2 + n) space.

Improved algorithm. Now we show how to reduce the number of candidates for the starting
rectangle rb. We give proof for Lemma 5. Lemmas 6 and 7 can be proven similarly.

T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda 15:7

I Lemma 5. Let rb1 = (ib1 , jb1 , kb1 , lb1) and rb2 = (ib2 , jb2 , kb2 , lb2) be any matching rectangles
s.t. ib1 < ib2 , jb1 = jb2 , kb1 = kb2 , and lb1 = lb2 . Let `1 and `2 be the lengths of LCSqS of A
and B whose corresponding sequences of DOMRs begin with rb1 and rb2 , respectively. Then,
`1 ≥ `2.

Proof. See Figure 2 for illustration. It follows from jb1 = jb2 , kb1 = kb2 , and lb1 =
lb2 that the two matching rectangles rb1 and rb2 correspond to the same character. Let
〈rb2,1, rb2,2, . . . , rb2,`2〉 be any sequence of DOMRs which begins with rb2 and represents a
common square subsequence of length `2, namely rb2 = rb2,1. Since ib1 < ib2 , jb1 = jb2 ,
kb1 = kb2 , and lb1 = lb2 , 〈rb1 , rb2,2, . . . , rb2,`2〉 is a sequence of DOMRs which begins with rb1

and represents a common square subsequence of length `2. This implies that `1 ≥ `2. J

I Lemma 6. Let rb1 = (ib1 , jb1 , kb1 , lb1) and rb2 = (ib2 , jb2 , kb2 , lb2) be any matching rectangles
s.t. ib1 = ib2 , jb1 = jb2 , kb1 < kb2 , and lb1 = lb2 . Let `1 and `2 be the lengths of LCSqS of A
and B whose corresponding sequences of DOMRs begin with rb1 and rb2 , respectively. Then,
`1 ≥ `2.

I Lemma 7. Let rb1 = (ib1 , jb1 , kb1 , lb1) and rb2 = (ib2 , jb2 , kb2 , lb2) be any matching rectangles
such that ib1 < ib2 , jb1 = jb2 , kb1 < kb2 , and lb1 = lb2 . Let `1 and `2 be the lengths of longest
common square subsequences of A and B whose corresponding sequences of DOMRs begin
with rb1 and rb2 , respectively. Then, `1 ≥ `2.

It follows from Lemmas 5–7 that it suffices to consider only all right-upper corners (jb, lb)
instead of all matching rectangles rb = (ib, jb, kb, lb). Namely, for each arbitrarily fixed
right-upper corner (jb, lb) such that A[jb] = B[lb] = c, we can always use (imin, kmin) as
its left-bottom corner, where imin and kmin are respectively the left-most occurrences of
character c in A and B. The following is our improved algorithm.

Algorithm 2:
Preprocessing: As in Algorithm 1, but now also precompute positions ib = min{i |
A[i] = c} and kb = min{k | B[k] = c} for each character c that appears in A and B.

Computing longest sequence of DOMRs: For each matching point pb = (jb, lb) ∈
M we perform the following:
(i) Let c = A[jb] = B[lb]. We compute ib = min{i | A[i] = c} and kb = min{k | B[k] =

c}, and let rb ← (ib, jb, kb, lb). If ib = jb or kb = lb, then we stop processing the
current matching point and proceed to the next matching point inM.

(ii) Perform the same procedures (1)–(3) as in Algorithm 1.
(iii) If the maximum value in DPrb

exceeds the current best solution, then update it.

The correctness of Algorithm 2 follows from that of Algorithm 1 and Lemmas 5-7.
Let us analyze the efficiency of Algorithm 2. For all characters c, we can precompute

ib = min{i | A[i] = c} and kb = min{k | B[k] = c} in total O(n) time and space. The
other preprocessing steps are the same as in Algorithm 1 and take O(σ|M|+ n) total time
and space. There are O(|M|) candidates for the right-upper corner pb = (jb, lb) of the first
matching rectangle from which considered sequences of DOMRs begin. For each pb = (jb, lb),
its left-bottom corner (ib, kb) can be retrieved in O(1) time. We again test no more than
σ characters for any cell DPrb

[r], and Lemma 3 allows to check each unique dominant
c-extension in O(1) time. Since there are O(|M|) candidates for rb and O(|R|) = O(|M|2)

CPM 2018

15:8 Computing longest common square subsequences

… a … a … !

a

a

a!ib1!

ib2!

jb1!jb2
=!

kb1! lb1!

kb2! lb2!

=
!

=
!

…
!

…
!

…
!

…
!

A!

B!

Figure 2 Illustration for
Lemma 5.

… a … a … a … !

a

a ib1!ib2
=!

jb1!jb2
=!

kb1! lb1!

kb2! lb2!
=
!

…
!

…
!

…
!

A!

B!

Figure 3 Illustration for
Lemma 6.

… a … a … a … !

a

a

a!ib1!

ib2!

jb1!jb2
=!

kb1! lb1!

kb2! lb2!

=
!

…
!

…
!

…
!

…
!

A!

B!

Figure 4 Illustration for
Lemma 7.

candidates for r, the whole algorithm takes overall O(σ|M|3 + n) time and O(|M|2 + n)
space. We have shown the following theorem:

I Theorem 8. We can compute LCSqS(A,B) in O(σ|M|3 +n) time and O(|M|2 +n) space.

3.3 O(|M|3 log2 n log logn+ n)-time algorithm
In this section we propose an O(|M|3 log2 n log logn + n)-time and O(|M|3 + n)-space
algorithm for computing LCSqS(A,B).

For any 1 ≤ i < s ≤ j ≤ n and 1 ≤ k < t ≤ l ≤ n, let LCSqSs,t(i, j, k, l) = 2 ×
LCS(A[1..i], A[s..j], B[1..k], B[t..l]).

By definition, LCSqS(A,B) = max1≤i<s≤j≤n,1≤k<t≤l≤n,(s,t)∈M{LCSqSs,t(i, j, k, l)}.
Now, let (s, t) ∈ M be an arbitrarily fixed matching point between A and B. This

corresponds to Observation 1. A recurrence for computing LCSqSs,t(i, j, k, l) is given as
follows:

LCSqSs,t(i, j, k, l) =

max(i′,j′,k′,l′)<(i,j,k,l){LCSqSs,t(i′, j′, k′, l′)}+ 2
((i, j, k, l) ∈ R,
1 ≤ i < s ≤ j ≤ n,
1 ≤ k < t ≤ l ≤ n)

max(i′,j′,k′,l′)C(i,j,k,l){LCSqSs,t(i′, j′, k′, l′)}
((i, j, k, l) /∈ R,
1 ≤ i < s ≤ j ≤ n,
1 ≤ k < t ≤ l ≤ n)

0 (otherwise)

(1)

Our technique for computing LCSqSs,t(i, j, k, l) is similar to Chowdhury et al.’s method [8]
for computing longest common palindromic subsequences, which uses the following well-
known van Emde Boas tree data structure: Let S be a set of integers from the universe [1, U].
The van Emde Boas tree for S takes Θ(U) space and supports predecessor/successor queries
and insertion/deletion operations on S in O(log logU) time each [26].

Let (s, t) ∈ M be an arbitrary fixed matching point. We plot a point (i, j, k) on the
3D grid [1..n]× [1..n]× [1..n] if and only if there is a matching rectangle of form (i, j, k, ∗),
namely, one having i, j, k as its first three coordinates. This 3D point (i, j, k) will finally be
associated with max(i,j,k,l)∈R{LCSqSs,t(i, j, k, l)}.

T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda 15:9

Now we show how to compute those associated values for all the 3D points. We consider
the permuted tuples (l, i, j, k) and sort them as 4-digit numbers, like we did for L in Section 3.2.
We process the permuted tuples in this sorted order. Suppose we are to process a permuted
tuple (l, i, j, k) such that its original tuple (i, j, k, l) is in R. It is now guaranteed that
we have processed all tuples (l′, ∗, ∗, ∗) with l′ < l. Therefore, if z is the maxima among
the associated values of all 3D points in the range [1..i − 1] × [1..j − 1] × [1..k − 1], then
we have that LCSqSs,t(i, j, k, l) = z + 2 (see also the recurrence (1) above). We maintain
these 3D points with a variant of the 3D range tree [4]. Then, the maxima z can be
efficiently retrieved by querying the point with the maximum associated value in the range
[1..i− 1]× [1..j − 1]× [1..k − 1]. If there is no existing 3D point (i, j, k), then we insert this
point with the associated value z + 2. Otherwise, we update the associated value of the
already existing 3D point (i, j, k) with z + 2.

The 3D range tree is a three layered data structure: The top layer tree maintains the
first i-coordinate [1..n], and each of its nodes is associated with a middle layer tree. Each
middle layer tree maintains the second j-coordinate [1..n], and each of its nodes is associated
with a bottom layer tree. Each bottom layer tree maintains the third k-coordinate [1..n].
Since each bottom layer tree can contain O(n) nodes, each middle layer tree can contain at
most O(n) nodes, and the top layer can contain at most O(n) nodes, the total size of the 3D
range tree data structure is trivially bounded by O(n3) = O(|M|3). Since at most O(|M|2)
points are inserted to the 3D range tree and since |M| = O(n2), the 3D range tree supports
range maxima queries and insertions of new points in O(log3(|M|2)) = O(log3 n) time.

Next, we improve the query and update times from O(log3 n) to O(log2 n log logn).
Chowdhury et al. [8] claimed that using the technique from [15] it is possible to replace each
1D range tree on the bottom layer with a van Emde Boas tree data structure [26], leading
to O(log2 n log logn) query and update times. However, the way how van Emde Boas trees
are used in the approach of [15] indeed requires to maintain a set of integers in the universe
of size Θ(n2). This implies that each van Emde Boas tree requires Θ(n2) space. Since the
total size of the top layer tree and the middle layer trees is O(n2), and since each node of a
middle layer tree maintains a van Emde Boas tree of size O(n2), it takes O(n4) space3. This
is, however, prohibitive since it can exceed our target time bound O(|M|3 log2 n log logn)
when the setM of matching points is sparse (e.g., when |M| = Θ(n)). Below, we will reduce
the space requirement for the van Emde Boas trees used in our data structure.

Space efficient 3D range tree with van Emde Boas trees. We briefly recall how the
algorithm of [15] computes the maxima in a given range using a van Emde Boas tree. Let
D[1..n] be an array of monotonically non-decreasing non-negative integers from [0..n], namely,
0 ≤ D[k] ≤ n for all 1 ≤ k ≤ n and D[k] ≤ D[k + 1] for all 1 ≤ k < n. We will store in
D the associated values of 3D points in increasing order of positions, and in the sequel we
assume that D[k+ 1]−D[k] ∈ {0, 2}. Let RMQS(1, k) denote a query to return the maxima
in the sub-array D[1..k] for 1 ≤ k ≤ n. For any integer val (1 ≤ val ≤ n), if some entry of
D stores val, then we insert the pair (pos, val) s.t. pos is the rightmost position in D that
stores val. For instance, if D = [0, 0, 2, 4, 4, 6], then the van Emde Boas tree maintains the
set {(2, 0), (3, 2), (5, 4), (6, 6)} of integer pairs. However, since a van Emde Boas tree is an
integer data structure, we convert each pair (pos, val) to integer pos× (n+ 1) + val and insert

3 A more careful analysis reveals that the total size of this variant of the 3D range tree with van Emde
Boas bottom layer trees is O(|M|2n2 log n), however, this can also exceed O(|M|3 log2 n log log n) when
M is sparse.

CPM 2018

15:10 Computing longest common square subsequences

it to the van Emde Boas tree. Now, observe that computing RMQS(1, k) reduces to finding
the successor for the pair (k − 1, n).

The value of LCSqSs,t(i, j, k, l) is monotonically non-decreasing as i, j, k, l grow, for fixed
s and t. Also, val in our case is in range [0, n]. Hence, we can use the above approach in our
algorithm. The remaining problem is that the universe size is Θ(n2), meaning that each van
Emde Boas tree above takes Θ(n2) space.

To reduce the space requirement, we maintain only pos’s in our van Emde Boas tree, and
store val’s in an array V of size n so that V [pos] = val. We let V [i] = −1 if i does not exist
in the van Emde Boas tree. Let us denote by Pos_vEB and ValPos_vEB the van Emde
Boas trees which store pos’s only and pairs (pos, val), respectively. Namely, the former is
ours and the latter is the method from [15]. It is sufficient for ValPos_vEB to support
insertions, deletions, and successor queries. These operations and queries can be simulated by
our Pos_vEB as follows: When a pair (pos, val) is inserted to ValPos_vEB, then we insert
pos to Pos_vEB and set V [pos] ← val. Notice that at any moment ValPos_vEB never
maintains two pairs (pos1, val) and (pos2, val) with pos1 6= pos2 for the same associated value
val, since otherwise we get argmax{i | D[i] = val} = pos1 6= pos2 = argmax{i | D[i] = val},
a contradiction. Therefore, we can simulate insertions on ValPos_vEB with Pos_vEB
and V as above. When we delete a pair (pos, val) from ValPos_vEB, then we delete pos
from Pos_vEB and modify the value stored in V [pos] accordingly. When we query the
successor (pos, val) of (k − 1, n) on ValPos_vEB, then we query the successor pos of k − 1
on Pos_vEB, and retrieve val = V [pos]. This way, we can simulate ValPos_vEB with
Pos_vEB of O(n) total space, retaining O(log logn) time efficiency for insertion/deletion
operations and successor queries. Since the total number of ValPos_vEB’s is linear in the
number of nodes in the top and middle layer trees, our version of 3D range tree, named
New_vEB_3DRangeTree, takes a total of O(n3) space and supports range maxima
queries in O(log2 n log logn) time for query ranges of form [1..i]× [1..j]× [i..k]. The whole
algorithm is the following:

Algorithm 3:
Preprocessing: For all matching rectangles (i, j, k, l) ∈ R, sort the permuted tuples
(l, i, j, k) as 4-digit numbers. Initialize New_vEB_3DRangeTree, so that no points
are inserted and every entry of array V in each Pos_vEB stores 0.

Compute LCSqSs,t(i, j, k, l): For each matching point (s, t) ∈M, perform the follow-
ing:
(1) Process each permuted tuple (l, i, j, k) in the sorted order. Compute

LCSqSs,t(i, j, k, l) according to recurrence (1): For each different value of l, let
PT l denote the list of permuted tuples whose first elements are l. For each per-
muted tuple q = (l, i, j, k) ∈ PT l, perform the following:

If i < s < j and k < t < l, then using New_vEB_3DRangeTree find a 3D
point with the maximum associated value zq in range [1..i − 1] × [1..j − 1] ×
[1..k − 1].
After computing LCSqSs,t(i, j, k, l) for all permuted tuples q = (l, i, j, k) ∈ PT l,
insert zq + 2 in (i, j, k) to New_vEB_3DRangeTree for all such permuted
tuples in PT `.

(2) If some value LCSqSs,t(i, j, k, l) exceeds the currently stored maxima, we update it.
Then, delete all existing 3D points from New_vEB_3DRangeTree.

T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda 15:11

Let us recall recurrence (1) to see why Algorithm 3 correctly computes LCSqSs,t(i, j, k, l).
The rule for the second case (where (i, j, k, l) ∈ R) requires (i′, j′, k′, l′) < (i, j, k, l). To
reflect this, Algorithm 3 processes all permuted tuples in PT l for each difference value of l
and in increasing order of l. After processing all permuted tuples q = (l.i, j, k) ∈ PT l, we
can safely insert the value zq + 2 in the corresponding 3D point (i, j, k) for all such tuples q,
and can proceed to the permuted tuples with larger first values.

Let us analyze the efficiency of Algorithm 3. For preprocessing, we use O(n) time and
space for alphabet reduction, for sorting the permuted tuples (l, i, j, k), and for initializing
New_vEB_3DRangeTree. For each (s, t) ∈M, we compute LCSqSs,t(i, j, k, l) with each
(i, j, k, l) ∈ R, by querying and updating New_vEB_3DRangeTree. Each query and
update here take O(log2 n log logn) time. After computing all LCSqSs,t(i, j, k, l) for the
current matching point (s, t), we delete all 3D points from New_vEB_3DRangeTree.
Thus it takes O(|R| log2 n log logn) time for each (s, t) ∈M. New_vEB_3DRangeTree
uses O(n3) = O(|M|3) space (recall that n ≤ |M| holds after alphabet reduction). Since
|R| = O(|M|2), Algorithm 3 takes a total of O(|M||R| log2 n log logn + |M|3 + n) =
O(|M|3 log2 n log logn+ n) time and O(|M|3 + n) space.

We have shown the following theorem:

I Theorem 9. We can compute LCSqS(A,B) in O(|M|3 log2 n log logn + n) time and
O(|M|3 + n) space.

4 Hardness results on the LCSqS problem

The k-LCSqS problem is to compute an LCSqS of k given strings. For simplicity, we assume
that each given string is of length n.

I Lemma 10. For any k ≥ 2, the k-LCS problem can be reduced in linear time to the
dk/2e-LCSqS problem.

Proof. Our proof uses an idea similar to [6] and [16]. We first consider the case where k
is even. Let A1, . . . , Ak be the input strings for the k-LCS problem. For each 1 ≤ i ≤ k/2,
we construct a string Bi of length 4n+ 2 such that Bi = A2i−1$n+1A2i$n+1, where $ is a
special character which does not appear in A1, . . . , Ak. Let Z be any LCSqS of B1, . . . , Bk/2.
Since each Aj (1 ≤ j ≤ k) is of length n, Z must be of form X$n+1X$n+1. Then, clearly
the string X is a longest common subsequence of the original strings A1, . . . , Ak.

For odd k, it suffices to consider the same strings Bi for 1 ≤ i ≤ bk/2c and one additional
string Bdk/2e = Ak$n+1Ak$n+1. This completes the proof. J

By Lemma 10, the k-LCSqS problem is NP-hard for an unfixed k. For an arbitrarily
fixed k, Abboud et al. [1] showed that if there exist a constant ε > 0, an integer k ≥ 2, and
an algorithm which solves the k-LCS problem for an alphabet of size O(k) in O(nk−ε) time,
then the famous strong exponential time hypothesis (SETH) is false. This suggests that it
seems hard to compute LCSqS(A,B) in O(n4−ε) time for any ε > 0.

5 Discussions

We observe that it seems difficult to shave the |M|3 term in the time complexity of any
matching-rectangle-based algorithm for computing the LCSqS: For instance, in both Algo-
rithm 2 and Algorithm 3, we first fix a matching point inM, and this indeed corresponds
to the |M| term in the O(|M|n4)-time complexity of the simple solution for computing

CPM 2018

15:12 Computing longest common square subsequences

LCSqS(A,B). The rest of all these algorithms exactly computes the LCS of the four strings
obtained by partitioning A and B at a given matching point using at least O(|M|2) or O(n4)
time. This seems almost best possible, since it is widely believed that there is no algorithm
which computes the LCS of four strings in O(n4−ε) time for any ε > 0 (recall Section 4).

Can we break the O(|M|3) or O(n6) barrier? The only hope seems to generalize an
incremental LCS computation algorithm for two strings ([21, 24, 17, 23, 25, 13]) to the case of
four strings. This would help us update a data structure for LCS(A[1..i− 1], A[i..n], B[1..j−
1], B[j..n]) to that for LCS(A[1..i], A[i+ 1..n], B[1..j], B[j + 1..n]) in faster than O(n4) time.
However, this seems difficult, too. We investigated whether Kim and Park’s method [17],
the simplest incremental LCS algorithm for two strings, can be generalized to more strings.
Their algorithm uses the differential encoding of the 2-dimensional DP tables (for two strings)
before and after the first character of one string is deleted, and they showed that only O(n)
entries of the differential encoding need to be updated. However, our preliminary experiments
for 3-dimensional DP tables (i.e. for three strings) already suggested that there would be
more than O(n2) entries in the differential encoding that need to be updated.

Overall, it is an intriguing open question how one can close the (almost) quadratic gap
between the upper and lower bounds for the LCSqS problem.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In Proc. FOCS 2015, pages 59–78, 2015.
2 Abdullah N. Arslan. Regular expression constrained sequence alignment. J. Disc. Algo.,

5(4):647–661, 2007.
3 Sang Won Bae and Inbok Lee. On finding a longest common palindromic subsequence.

Theor. Comput. Sci., 710:29–34, 2018.
4 Jon Louis Bentley and Jerome H. Friedman. Data structures for range searching. ACM

Comput. Surv., 11(4):397–409, 1979.
5 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching.

Theor. Comput. Sci., 409(3):486–496, 2008.
6 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string

problems and dynamic time warping. In Proc. FOCS 2015, pages 79–97, 2015.
7 Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S. K. Kim. A

simple algorithm for the constrained sequence problems. Inf. Process. Lett., 90(4):175–179,
2004.

8 Shihabur Rahman Chowdhury, Md. Mahbubul Hasan, Sumaiya Iqbal, and M. Sohel
Rahman. Computing a longest common palindromic subsequence. Fundam. Inform.,
129(4):329–340, 2014.

9 Sebastian Deorowicz. Quadratic-time algorithm for a string constrained LCS problem. Inf.
Process. Lett., 112(11):423–426, 2012.

10 Effat Farhana and M. Sohel Rahman. Doubly-constrained LCS and hybrid-constrained
LCS problems revisited. Inf. Process. Lett., 112(13):562–565, 2012.

11 Effat Farhana and M. Sohel Rahman. Constrained sequence analysis algorithms in compu-
tational biology. Inf. Sci., 295:247–257, 2015.

12 Szymon Grabowski. New tabulation and sparse dynamic programming based techniques
for sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016.

13 Heikki Hyyrö, Kazuyuki Narisawa, and Shunsuke Inenaga. Dynamic edit distance table
under a general weighted cost function. J. Disc. Algo., 34:2–17, 2015.

14 Costas S. Iliopoulos and Mohammad Sohel Rahman. New efficient algorithms for the LCS
and constrained LCS problems. Inf. Process. Lett., 106(1):13–18, 2008.

T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda 15:13

15 Costas S. Iliopoulos and Mohammad Sohel Rahman. A new efficient algorithm for comput-
ing the longest common subsequence. Theory Comput. Syst., 45(2):355–371, 2009.

16 Shunsuke Inenaga and Heikki Hyyrö. A hardness result and new algorithm for the longest
common palindromic subsequence problem. Inf. Process. Lett., 129:11–15, 2018.

17 Sung-Ryul Kim and Kunsoo Park. A dynamic edit distance table. J. Disc. Algo., 2:302–312,
2004.

18 Adrian Kosowski. An efficient algorithm for the longest tandem scattered subsequence
problem. In Proc. SPIRE 2004, pages 93–100, 2004.

19 Keita Kuboi, Yuta Fujishige, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Faster str-ic-lcs computation via rle. In Proc. CPM 2017, page 25:1–25:12, 2017.

20 Gregory Kucherov, Tamar Pinhas, and Michal Ziv-Ukelson. Regular language constrained
sequence alignment revisited. J. Computational Biology, 18(5):771–781, 2011.

21 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string compari-
son. SIAM J. Comp., 27(2):557–582, 1998.

22 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
J. Comput. Syst. Sci., 20(1):18–31, 1980.

23 Yoshifumi Sakai. An almost quadratic time algorithm for sparse spliced alignment. Theory
Comput. Syst., 48(1):189–210, 2011.

24 Jeanette P. Schmidt. All highest scoring paths in weighted grid graphs and their application
in finding all approximate repeats in strings. SIAM J. Comp., 27(4):972–992, 1998.

25 Alexandre Tiskin. Semi-local string comparison: algorithmic techniques and applications.
CoRR, abs/0707.3619, 2007. URL: http://arxiv.org/abs/0707.3619.

26 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proc.
FOCS 1975, pages 75–84, 1975.

27 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.
ACM, 21(1):168–173, 1974.

28 Daxin Zhu and Xiaodong Wang. A simple algorithm for solving for the generalized longest
common subsequence (LCS) problem with a substring exclusion constraint. Algorithms,
6(3):485–493, 2013.

29 Daxin Zhu, Yingjie Wu, and Xiaodong Wang. An efficient algorithm for a new constrained
LCS problem. In Proc. ACIIDS 2016, pages 261–267, 2016.

30 Daxin Zhu, Yingjie Wu, and Xiaodong Wang. An efficient dynamic programming algorithm
for STR-IC-STR-EC-LCS problem. In Proc. GPC 2016, pages 3–17, 2016.

CPM 2018

http://arxiv.org/abs/0707.3619

Slowing Down Top Trees for Better Worst-Case
Compression
Bartłomiej Dudek
Institute of Computer Science, University of Wrocław, Poland
bartlomiej.dudek@cs.uni.wroc.pl

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Abstract
We consider the top tree compression scheme introduced by Bille et al. [ICALP 2013] and
construct an infinite family of trees on n nodes labeled from an alphabet of size σ, for which
the size of the top DAG is Θ(n

logσ n
log logσ n). Our construction matches a previously known

upper bound and exhibits a weakness of this scheme, as the information-theoretic lower bound
is Ω(n

logσ n
). This settles an open problem stated by Lohrey et al. [arXiv 2017], who designed

a more involved version achieving the lower bound. We show that this can be also guaranteed
by a very minor modification of the original scheme: informally, one only needs to ensure that
different parts of the tree are not compressed too quickly. Arguably, our version is more uniform,
and in particular, the compression procedure is oblivious to the value of σ.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases top trees, compression, tree grammars

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.16

Funding Work supported under National Science Centre, Poland, project number
2014/15/B/ST6/00615.

1 Introduction

Labeled trees are fundamental data structures in computer science. Generalizing strings,
they can be used to compactly represent hierarchical dependencies between objects and have
multiple applications. In many of them, such as XML files, we need to operate on very
large trees that are in some sense repetitive. Therefore, it is desirable to design compression
schemes for trees that are able to exploit this. Known tree compression methods include
DAG compression that uses subtree repeats and represents a tree as a Directed Acyclic
Graph [3, 7, 13], compression with tree grammars that focuses on the more general tree
patterns and represents a tree by a tree grammar [4, 8, 11, 12], and finally succinct data
structures [6, 10].

In this paper we analyze tree compression with top trees introduced by Bille et al. [2]. It
is able to take advantage of internal repeats in a tree while supporting various navigational
queries directly on the compressed representation in logarithmic time. At a high level, the
idea is to hierarchically partition the tree into clusters containing at most two boundary nodes
that are shared between different clusters. A representation of this hierarchical partition is
called the top tree. Then, the top DAG is obtained by identifying isomorphic subtrees of
the top tree. Bille et al. [2] proved that the size of the top DAG is always O(n/ log0.19

σ n)
for a tree on n nodes labeled with labels from Σ where σ = max{2, |Σ|}. Furthermore, they

© Bartłomiej Dudek and Paweł Gawrychowski;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 16; pp. 16:1–16:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartlomiej.dudek@cs.uni.wroc.pl
mailto:gawry@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Slowing Down Top Trees for Better Worst-Case Compression

showed that top DAG compression is always at most logarithmically worse than the classical
DAG compression (and Bille et al. [1] constructed a family of trees for which this logarithmic
upper bound is tight). Later, Hübschle-Schneider and Raman [9] improved the bound on
the size of the top DAG to O(n

logσ n
log logσ n) using a more involved reasoning based on the

heavy path decomposition. This should be compared with the information-theoretic lower
bound of Ω(n

logσ n
).

A natural question is to close the gap between the information-theoretic lower bound of
Ω(n

logσ n
) and the upper bound of O(n

logσ n
log logσ n). We show that the latter is tight for

the top tree construction algorithm of Bille et al. [2].

I Theorem 1. There exists an infinite family of trees on n nodes labeled from an alphabet Σ
for which the size of the top DAG is Ω(n

logσ n
log logσ n) where σ = max{2, |Σ|}.

This answers an open question explicitly mentioned by Lohrey et al. [14], who developed
a different algorithm for constructing a top tree which guarantees that the size of the top
DAG matches the information-theoretic lower bound. A crucial ingredient of their algorithm
is a partition of the tree T into O(n/k) clusters of size at most k, where k = Θ(logσ n). As a
byproduct, they obtain a top tree of depth O(logn) for each cluster. Then they consider a
tree T ′ obtained by collapsing every cluster of T and run the algorithm of Bille et al. [2] on
T ′. Finally, the edges of T ′ are replaced by the top trees of their corresponding clusters of T
constructed in the first phase of the algorithm to obtain the top tree of the whole T . While
this method guarantees that the number of distinct clusters is O(n

logσ n
), its disadvantage is

that the resulting procedure is non-uniform, and in particular needs to be aware of the value
of σ and n.

We show that a slight modification of the algorithm of Bille et al. [2] is, in fact, enough
to guarantee that the number of distinct clusters, and so also the size of the top DAG,
matches the information-theoretic lower bound. The key insight actually comes from the
proof of Theorem 1, where we construct a tree with the property that some of its parts are
compressed much faster than the others, resulting in a larger number of different clusters.
The original algorithm proceeds in iterations, and in every iteration tries to merge adjacent
clusters as long as they meet some additional conditions. Surprisingly, it turns out that the
information-theoretic lower bound can be achieved by slowing down this process to avoid
some parts of the tree being compressed much faster than the others. Informally, we show
that it is enough to require that in the tth iteration adjacent clusters are merged only if their
size is at most αt, for some constant α > 1. The modified algorithm preserves nice properties
of the original method such as the O(logn) depth of the obtained top tree.

A detailed description of the original algorithm of Bille et al. [2] can be found in Section 2.
In Section 3 we prove Theorem 1 and in Section 4 describe the modification.

2 Preliminaries

In this section, we briefly restate the top tree construction algorithm of Bille et al. [2]. To
construct trees that can be used to show the lower bound and present our modification of
the original algorithm we need to work with exactly the same definitions. Consequently, the
following description closely follows the condensed presentation from Bille et al. [1] and can
be omitted if the reader is already familiar with the approach.

Let T be a (rooted) tree on n nodes. The children of every node are ordered from left
to right, and every node has a label from an alphabet Σ. T (v) denotes the subtree of v,
including v itself, and F (v) is the forest of subtrees of all children v1, v2, . . . , vk of v, that is,

B. Dudek and P. Gawrychowski 16:3

F (v) = T (v1) ∪ T (v2) ∪ . . . ∪ T (vk). For 1 ≤ s ≤ r ≤ k we define T (v, vs, vr) to be the tree
consisting of v and a contiguous range of its children starting from the sth and ending at the
rth, that is, T (v, vs, vr) = {v} ∪ T (vs) ∪ T (vs+1) ∪ . . . ∪ T (vr).

We define two types of clusters. A cluster with only a top boundary node v is of the form
T (v, vs, vr). A cluster with a top boundary node v and a bottom boundary node u is of the
form T (v, vs, vr) \ F (u) for a node u ∈ T (v, vs, vr) \ {v}.

If edge-disjoint clusters A and B have exactly one common boundary node and C = A∪B
is a cluster, then A and B can be merged into C. Then one of the top boundary nodes of
A and B becomes the top boundary node of C and there are various ways of choosing the
bottom boundary node of C. See Figure 2 in [2] for the details of all five possible ways of
merging two clusters.

A top tree T of T is an ordered and labeled binary tree describing a hierarchical decom-
position of T into clusters.

The nodes of T correspond to the clusters of T .
The root of T corresponds to the whole T .
The leaves of T correspond to the edges of T . The label of each leaf is the pair of labels
of the endpoints of its corresponding edge (u, v) in T . The two labels are ordered so that
the label of the parent appears before the label of the child.
Each internal node of T corresponds to the merged cluster of the clusters corresponding
to its two children. The label of each internal node is the type of merge it represents (out
of the five merging options). The children are ordered so that the left child is the child
cluster visited first in a preorder traversal of T .

The top tree T is constructed bottom-up in iterations, starting with the edges of T as
the leaves of T . During the whole process, we maintain an auxiliary ordered tree T̃ , initially
set to T . The edges of T̃ correspond to the nodes of T , which in turn correspond to the
clusters of T . The internal nodes of T̃ correspond to the boundary nodes of these clusters
and the leaves of T̃ correspond to a subset of the leaves of T .

On a high level, the iterations are designed in such a way that each of them merges a
constant fraction of edges of T̃ . This is proved in Lemma 1 of [2], and we describe a slightly
stronger property in Lemma 2. This guarantees that the height of the resulting top tree is
O(logn). Each iteration consists of two steps:

Horizontal merges. For each node v ∈ T̃ with k ≥ 2 children v1, . . . , vk, for i = 1 to bk2 c,
merge the edges (v, v2i−1) and (v, v2i) if v2i−1 or v2i is a leaf. If k is odd and vk is a leaf and
both vk−2 and vk−1 are non-leaves then also merge (v, vk−1) and (v, vk).

Vertical merges. For each maximal path v1, . . . , vp of nodes in T̃ such that vi+1 is the
parent of vi and v2, . . . , vp−1 have a single child: If p is even merge the following pairs of edges
{(v1, v2), (v2, v3)}, . . . , {(vp−3, vp−2), (vp−2, vp−1)}. If p is odd merge the following pairs of
edges {(v1, v2), (v2, v3)}, . . . , {(vp−4, vp−3), (vp−3, vp−2)}, and if (vp−1, vp) was not merged in
the previous step then also merge {(vp−2, vp−1), (vp−1, vp)}.

See an example of a single iteration in Figure 1. Finally, the compressed representation
of T is the so-called top DAG T D, which is the minimal DAG representation of T obtained
by identifying identical subtrees of T . As every iteration shrinks T̃ by a constant factor, T
can be computed in O(n) time, and then T D can be computed in O(|T |) time [5]. Thus, the
entire compression takes O(n) time.

CPM 2018

16:4 Slowing Down Top Trees for Better Worst-Case Compression

horizontal vertical

Figure 1 Tree T̃ after two steps of a single iteration. Dotted lines denote the merged edges
(clusters) and thick edges denote the results of merging. Note that one edge does not participate in
the vertical merge due to having been obtained as a result of a horizontal merge.

SkSkSk

︸ ︷︷ ︸
tε

′

Pk

3k steps
CS CSCS CP

Figure 2 Gadget Gk consists of 2k − 1 = O(tε′
) trees Sk and one path Pk. After 3k iterations it

gets compressed to a tree with 2k nodes connected to the root.

3 A lower bound for the approach of Bille et al.

In this section, we prove Theorem 1 and show that the O(n
logσ n

log logσ n) bound from [9]
on the number of distinct clusters created by the algorithm described in Section 2 is tight.
We first consider labeled trees for which |Σ| > 1 and σ = |Σ|. Then we show how to modify
our construction and apply it to unlabeled trees.

For every k ∈ N we will construct a tree Tk with n = Θ(σ8k) nodes for which the
corresponding top DAG is of size Θ(n

logσ n
log logσ n). Let t = 8k = Θ(logσ n). In the

beginning, we describe a gadget Gk that is the main building block of Tk. It consists of O(t)
nodes: a path of t nodes and 2k − 1 = O(tε′) full ternary trees of size O(tε) connected to the
root, where ε + ε′ < 1. See Figure 2. The main intuition behind the construction is that
full ternary trees are significantly smaller than the path, but they need the same number of
iterations to get compressed.

More precisely, let Pk be the path of length 8k = t. Clearly, after 3 iterations it gets
compressed to Pk−1, and so after 3k iterations becomes a single cluster. Similarly, let Sk be
the full ternary tree of height k with 3k leaves, so 3k+1−1

2 = O(3k) = O(t0.53) nodes in total.
Observe that after 3 iterations Sk becomes Sk−1, and so after 3k iterations becomes a single
cluster. To sum up, the gadget Gk consists of path Pk of t nodes and 2k − 1 = O(t1/3) trees
of size O(t0.53), so in total O(t) nodes. After 3k iterations Gk consists of 2k − 1 clusters CS

B. Dudek and P. Gawrychowski 16:5

. . .

G
(2)
kG

(1)
k G

(n/t)
k

P
(n/t)
kP

(2)
k

Sk

P
(1)
k

Sk

Figure 3 Tk consists of Θ(n/t) gadgets G
(i)
k , where the ith of them contains a unique path P

(i)
k .

corresponding to Sk and one cluster CP corresponding to Pk, as shown in Figure 2. In each
of the subsequent k iterations, the remaining clusters are merged in pairs.

Recall that the top DAG contains a node for every distinct subtree of the top tree, and
every node of the top tree corresponds to a cluster obtained during the compression process.
Our next step will be to create many almost identical gadgets connected to a common root.
In order to ensure that they are distinct, we assign labels on the nodes on paths Pk so that no
two paths are equal. Then the cluster CP obtained after the first 3k iterations corresponds
to a distinct subtree of the top tree. Consequently, so does the cluster obtained from CP
in each of the subsequent k iterations. Note that during all the subsequent iterations only
horizontal merges are performed and each of them halves the number of clusters.

Finally, the tree Tk consists of Θ(n/t) gadgets connected to a common root as in Figure 3.
The ith gadget G(i)

k is a copy of Gk with the labels of P (i)
k chosen as to spell out the ith (in

the lexicographical order) word of length t over Σ. For all the remaining nodes (nodes of
trees Sk, roots of gadgets and the common root of Tk) it is enough to choose the same label,
e.g. the smallest in Σ. Note that σt > n/t, so there are more possible words of length t than
the number of gadgets that we want to create. Then each C(i)

P and the clusters obtained
from it during the subsequent k iterations correspond to distinct subtrees of the top tree.
Thus, overall the top DAG contains Ω(n/t · k) = Ω(n/t · log t) = Ω(n/ logσ n · log logσ n)
nodes, which concludes the proof of Theorem 1 for labeled trees with non-unary alphabet.

Unlabeled trees. Now we modify the above construction so that it works for unary alphabets.
Recall that we set t = logn and k = log8 t. We cannot use the earlier approach directly, as
we cannot distinguish the gadgets G(i)

k by modifying labels on the path P (i)
k . To address this

we extend the gadgets G(i)
k with distinct unlabeled binary trees in such a way that after 3k

steps the new gadgets get compressed to the same trees as before (shown in Figure 2) that is
the ith gadget is compressed to tε′ clusters CS and a cluster C ′(i)P . Again CS represents the
cluster of full ternary tree Sk and clusters C ′(i)P correspond to distinct subtrees.

More precisely, now the ith gadget G′(i)k consists of tε′ trees Sk connected to the root, a
path P ′k of length 4 · 8k−1 + 1 and the ith binary tree T (i)

k on t = logn nodes (we consider
an arbitrary ordering on all such trees). Intuitively, the construction of path P ′k guarantees
that no matter how fast the tree T (i)

k gets compressed, during the first 3k steps it does not
interact with subtrees Sk. Without the path P ′k, it might happen that the single cluster
obtained from T

(i)
k participates in a horizontal step with the (partially compressed) rightmost

tree Sk within the first 3k steps. Next, the sizes of each component of G′(i)k are chosen in
such a way that again G′(i)k consists of O(t) nodes and after 3k steps the obtained tree is
exactly the same as in the case of non-unary alphabets. See Figure 4.

CPM 2018

16:6 Slowing Down Top Trees for Better Worst-Case Compression

SkSkSk

tε
′

P ′
k

3k steps
CS CSCS C

′(i)
P

G
′(i)
k : T

(i)
k

︸ ︷︷ ︸

Figure 4 The modified gadget G
′(i)
k for unlabeled trees.

Note that path P ′k gets compressed to path P ′k−1 in 3 steps. Furthermore, the first edge
of P ′k does not take part in any vertical merge unless the path consists of only two edges, that
is in the (3k)th step. Observe that trees T (i)

k are compressed with different speeds depending
on their shape and at some moment they become a single cluster that will be merged in the
next horizontal step. As pointed earlier, the first edge of P ′k does not take part in vertical
merges before the (3k)th step, so eventually it can participate in a horizontal merge with the
cluster of T (i)

k without affecting the compression of the remaining edges of P ′k. As all the
merges inside T (i)

k are independent from the rest of the tree, Lemma 1 of [2] guarantees that
after every step of the compression the tree T (i)

k shrinks at least by a factor of 8/7. Thus
T

(i)
k becomes a single cluster in at most log8/7 logn < 9 log logn = 3k steps, and so after 3k

steps the gadget G′(i)k gets compressed to the tree described in Figure 4.
Finally, in order to further apply the reasoning from the case of labeled trees, it remains

to show that there are Ω(n/t) distinct binary trees on t nodes. From the folklore properties
of Catalan numbers, there are 1

t+1
(2t
t

)
distinct binary trees on t nodes. Applying the bound(

n
k

)
≥ (nk)k we obtain that there are at least 2t

t+1 = Ω(n/t) distinct binary trees T (i)
k , which

is sufficient for our construction. It concludes the case of unlabeled trees and thus ends the
proof of Theorem 1.

4 An optimal tree compression algorithm

Let α be a constant greater than 1 and consider the following modification of algorithm [2].
Our algorithm works in the same way for both labeled and unlabeled trees. As mentioned
in the introduction, intuitively we would like to proceed exactly as the original algorithm,
except that in the tth iteration we do not perform a merge if one of the participating clusters
is of size larger than αt. However, this would require a slight modification of the original
charging argument showing that that after every iteration the tree T̃ shrinks by a constant
factor. To avoid adapting the whole proof of [2] to our new approach, we proceed slightly
differently. In each iteration we first generate and list all the merges that would have been
performed in both steps of a single iteration of the original algorithm. Then we apply only
the merges in which both clusters have size at most αt.

We run the algorithm until the tree T̃ becomes a single edge. Clearly, there are O(logn)
iterations, because after logα n iterations the algorithm is no longer constrained and can
behave not worse than the original one. Thus the depth of the obtained DAG is O(logn) as
before. In the following lemma we show that even if there are some clusters that cannot be

B. Dudek and P. Gawrychowski 16:7

Algorithm 1 A modified top tree construction algorithm of Bille et al. [2] for a tree T .
1: T̃ := T

2: initialize leaves of T with edges of T
3: for t = 1, . . . ,Θ(logn), as long as T̃ is not a single edge do
4: list all the merges that would have been made by one iteration of the original algorithm
5: filter out the merges that use a cluster of size bigger than αt
6: modify T̃ and T by applying the remaining merges
7: construct DAG T D of T . T D is the top DAG of T

merged in one step, the tree still shrinks by roughly a constant factor.

I Lemma 2. Suppose that there are m = p + q clusters in T̃ after t − 1 iterations of
Algorithm 1, where q is the number of clusters of size larger than αt. Then, after t iterations
there are at most 7/8m+ q clusters.

Proof. The proof is a generalization of Lemma 1 from [2]. There are m + 1 nodes in T̃ ,
so at least m/2 + 1 of them have degree smaller than 2. Consider m/2 edges from these
nodes to their parents and denote this set as M . Then, from a charging argument (see the
details in [2]) we obtain that at least half of the edges in M would have been merged in a
single iteration of the original algorithm. Denote these edges by M ′, where |M ′| ≥ m/4 and
observe that at least |M ′|/2 ≥ m/8 pairs of edges can be merged.

Now, q clusters (edges) are too large to participate in a merge and in the worst case
each of them would have participated in a different merge of the original algorithm. Thus,
Algorithm 1 performs at least m/8 − q merges and after a single iteration the number of
clusters decreases to at most m− (m/8− q) = 7/8m+ q. J

Our goal will be to prove the following theorem.

I Theorem 3. Let T be a tree on n nodes labeled from an alphabet of size σ. Then the size
of the corresponding top DAG obtained by Algorithm 1 with α = 10/9 is O(n

logσ n
).

In the following we assume that α = 10/9, but do not substitute it to avoid clutter.

I Lemma 4. After t iterations of Algorithm 1 there are O(n/αt+1) clusters in T̃ .

Proof. We prove by induction on t that after t iterations T̃ contains at most cn/αt+1 clusters,
where c = 113. The case t = 0 is immediate. Let t > 0. From the induction hypothesis,
after t− 1 iterations there are at most cn/αt clusters, p of them having size at most αt (call
them small) and q of them having size larger than αt that cannot be yet merged in the tth
iteration (call them big). We know that p ≤ cn/αt and, as the big clusters are pairwise
disjoint, q ≤ n/αt.

We need to show that the total number of clusters after t iterations is at most cn/αt+1.
There are two cases to consider:

q ≤ 1
100p: We apply Lemma 2 and conclude that the total number of clusters after the

tth iteration is at most 7/8(p+ q) + q < 9/10p ≤ cn/αt+1.
p < 100q: In the worst case no pair of clusters was merged and the total number of
clusters after the tth iteration is p+ q < 101q < 101n/αt ≤ 113n/αt+1 = cn/αt+1. J

Proof of Theorem 3. Clusters are represented with binary trees labeled either with pairs of
labels from the original alphabet or one of the 5 labels representing the type of merging, so
in total there are |Σ|2 + 5 ≤ σ2 + 5 possible labels of nodes in T . From the properties of

CPM 2018

16:8 Slowing Down Top Trees for Better Worst-Case Compression

Catalan numbers, it follows that the number of different binary trees of size x is bounded
by 4x. Thus there are at most

∑x
i=1(4(σ2 + 5))i ≤

∑x
i=1(12σ2)i ≤ (12σ2)x+1 distinct labeled

trees of size at most x, since σ ≥ 2. Even if some of them appear many times in T̃ , they will
be represented only once in T D.

Consider the situation after t− 1 iterations of the algorithm. Then, from Lemma 4 there
are at most O(n/αt) clusters in T̃ . Setting t to be the maximal integer number such that
αt + 1 ≤ 3/4 log12σ2 n we obtain that there are at most n3/4 distinct subtrees of T of size
at most αt. As identical subtrees of T are identified by the same node in the top DAG, all
clusters created during the first t− 1 iterations of the algorithm are represented by at most
n3/4 nodes in T D. Next, the remaining O(n/αt) clusters can introduce at most that many
new nodes in the DAG.

Finally, the size of the DAG obtained by Algorithm 1 on a tree T of size n is bounded by
n3/4 +O(n/αt) = O(n/ log12σ2 n), which is O(n/ logσ n) as σ ≥ 2. J

References
1 Philip Bille, Finn Fernstrøm, and Inge Li Gørtz. Tight bounds for top tree compression. In

SPIRE, volume 10508 of Lecture Notes in Computer Science, pages 97–102. Springer, 2017.
2 Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. Tree compression with

top trees. Inf. Comput., 243:166–177, 2015.
3 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.

In VLDB, pages 141–152. Morgan Kaufmann, 2003.
4 Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory representation

of XML document trees. Inf. Syst., 33(4-5):456–474, 2008.
5 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subex-

pression problem. J. ACM, 27(4):758–771, 1980.
6 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing

and indexing labeled trees, with applications. J. ACM, 57(1):4:1–4:33, 2009.
7 Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees

(extended abstract). In LICS, page 188. IEEE Computer Society, 2003.
8 Paweł Gawrychowski and Artur Jeż. LZ77 factorisation of trees. In FSTTCS, volume 65

of LIPIcs, pages 35:1–35:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
9 Lorenz Hübschle-Schneider and Rajeev Raman. Tree compression with top trees revisited.

In SEA, volume 9125 of Lecture Notes in Computer Science, pages 15–27. Springer, 2015.
10 Guy Jacobson. Space-efficient static trees and graphs. In FOCS, pages 549–554. IEEE

Computer Society, 1989.
11 Artur Jeż and Markus Lohrey. Approximation of smallest linear tree grammar. Inf. Com-

put., 251:215–251, 2016.
12 Markus Lohrey and Sebastian Maneth. The complexity of tree automata and xpath on

grammar-compressed trees. Theor. Comput. Sci., 363(2):196–210, 2006.
13 Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML compression via dags. In ICDT,

pages 69–80. ACM, 2013.
14 Markus Lohrey, Carl Philipp Reh, and Kurt Sieber. Optimal top dag compression. CoRR,

abs/1712.05822, 2017. arXiv:1712.05822.

http://arxiv.org/abs/1712.05822

On the Maximum Colorful Arborescence Problem
and Color Hierarchy Graph Structure

Guillaume Fertin1

LS2N UMR CNRS 6004, Université de Nantes, Nantes, France
guillaume.fertin@univ-nantes.fr

https://orcid.org/0000-0002-8251-2012

Julien Fradin2

LS2N UMR CNRS 6004, Université de Nantes, Nantes, France
julien.fradin@univ-nantes.fr

Christian Komusiewicz3

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany
komusiewicz@informatik.uni-marburg.de

https://orcid.org/0000-0003-0829-7032

Abstract

Let G = (V,A) be a vertex-colored arc-weighted directed acyclic graph (DAG) rooted in some
vertex r. The color hierarchy graph H(G) of G is defined as follows: the vertex set of H(G) is the
color set C ofG, andH(G) has an arc from c to c′ ifG has an arc from a vertex of color c to a vertex
of color c′. We study the Maximum Colorful Arborescence (MCA) problem, which takes
as input a DAG G such that H(G) is also a DAG, and aims at finding in G a maximum-weight
arborescence rooted in r in which no color appears more than once. The MCA problem models
the de novo inference of unknown metabolites by mass spectrometry experiments. Although the
problem has been introduced ten years ago (under a different name), it was only recently pointed
out that a crucial additional property in the problem definition was missing: by essence, H(G)
must be a DAG. In this paper, we further investigate MCA under this new light and provide new
algorithmic results for this problem, with a focus on fixed-parameter tractability (FPT) issues for
different structural parameters of H(G). In particular, we develop an O∗(3xH)-time algorithm
for solving MCA, where xH is the number of vertices of indegree at least two in H(G), thereby
improving the O∗(3|C|)-time algorithm of Böcker et al. [Proc. ECCB ’08]. We also prove that
MCA is W[2]-hard with respect to the treewidth tH of the underlying undirected graph of H(G),
and further show that it is FPT with respect to tH + `C , where `C := |V | − |C|.

2012 ACM Subject Classification Theory of computation→ Fixed parameter tractability, The-
ory of computation → Dynamic programming

Keywords and phrases Subgraph problem, computational complexity, algorithms, fixed-param-
eter tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.17

1 GF was partially supported by PHC PROCOPE number 37748TL.
2 JF was partially supported by PHC PROCOPE number 37748TL.
3 CK was partially supported by the DFG, project MAGZ (KO 3669/4-1).

© Guillaume Fertin, Julien Fradin, and Christian Komusiewicz;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.fertin@univ-nantes.fr
https://orcid.org/0000-0002-8251-2012
mailto:julien.fradin@univ-nantes.fr
mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

1 Introduction

Motivated by de novo inference of metabolites from mass spectrometry experiments, Böcker
et al. [4] introduced the Maximum Colorful Subtree problem. This optimization problem
takes as input a vertex-colored arc-weighted directed acyclic graph G = (V,A) rooted in some
vertex r, and asks for a maximum-weight colorful arborescence in G with root r. Herein, a
vertex-colored graph or a vertex set is called colorful if the vertices have pairwise different
colors and a directed graph G is an arborescence with root r if the underlying undirected
graph of G is a tree and there is a path from r to every vertex in G. In this model, the root
r in G represents the sought metabolite, any vertex in G represents a molecule obtained
from r after (possibly several) fragmentation(s), and vertices are colored according to their
masses. An arc connects two molecules (vertices) u and v when v can be obtained from u

by fragmentation, and is assigned a weight that indicates the (possibly negative) degree of
confidence that the fragmentation from u to v actually occurs. A maximum-weight colorful
arborescence from G with root r thus represents a most plausible fragmentation scenario
from r. Let H(G) be the following graph built from G: V (H(G)) is the set C of colors
used to color V (G), and there is an arc from c to c′ in H(G) if there is an arc in G from
a vertex of color c to a vertex of color c′. We call H(G) the color hierarchy graph of G.
Observe that H(G) must be a DAG since colors represent masses and fragmenting a molecule
gives new molecules with lower mass. As recently pointed out [14], the initial definition of
Maximum Colorful Subtree omits this crucial property of G. This led Fertin et al. [14]
to reformulate the initial Maximum Colorful Subtree problem as follows.

Maximum Colorful Arborescence (MCA)
Input: A DAG G = (V,A) rooted in some vertex r, a set C of colors, a coloring function
col : V → C such that H(G) is a DAG and an arc weight function w : A→ R.
Output: A colorful arborescence T = (VT , AT) rooted in r of maximum weight w(T) :=∑

a∈AT
w(a).

The study of MCA initiated in [14] essentially focused on the particular case where G
is an arborescence and showed for example that MCA is NP-hard even for very restricted
such instances. This work was also the first one to explicitly exploit that H(G) is a DAG. In
particular, it was shown that if H(G) is an arborescence, then MCA is polynomially solvable.
This latter promising result is the starting point of the present paper, in which we aim at
better understanding the structural parameters of H(G) that could lead to fixed-parameter
tractable (FPT), i.e. exact and moderately exponential, algorithms. As pointed out in a
recent study [12], obtaining exact solutions instead of approximate ones is indeed preferable
for MCA. Hence, improved exact algorithms are truly desirable for this problem.

Related Work

The MCA problem is NP-hard and highly inapproximable even when G is an arborescence
and every arc weight is equal to 1 [14]. Moreover, MCA is NP-hard even if `C = 0 where
`C := |V (G)| − |C| [14] (a consequence of the proof of [19, Theorem 1]). On the positive
side, MCA can be solved in O∗(3|C|) time by dynamic programming [4]. Moreover, as
previously mentioned, MCA is in P when H(G) is an arborescence [14]. This result can
be extended to some arborescence-like color hierarchy graphs as MCA can be solved by a
branching algorithm in time O∗(2s) where s is the minimum number of arcs of H whose

G. Fertin, J. Fradin, and C. Komusiewicz 17:3

Table 1 Overview of the results for the MCA problem presented in this paper. Here, xH is the
number of vertices of indegree at least two in H, tH is the treewidth of the underlying undirected
graph of H, `C := |V (G)| − |C| and ` ≥ `C is the number of vertices that are not part of the solution.

Parameter FPT status Kernel status

xH O∗(3xH) (Thm. 2.2) No poly. kernel (Thm. 2.4)

` W[1]-hard (from [19])

xH + `C FPT (from Thm. 2.2) No poly. kernel (Thm. 2.7)

xH + ` Poly. kernel (Thm. 2.8)

tH W[2]-hard (Thm. 3.3)

tH + `C O∗(2`C · 4tH) (Thm. 3.7) No poly. kernel (Cor. 3.8)

removal turns H into an arborescence [14].4 Finally, a solution of MCA of order k can
be computed in O∗((3e)k) time using the color-coding technique [1] in combination with
dynamic programming [7].

A related pattern matching problem in graphs is Graph Motif where, in its simplest
version, we are given an undirected vertex-colored graph and ask whether there is a connected
subgraph containing one vertex of each color [18, 13, 2, 3]. In contrast to MCA, Graph
Motif is fixed-parameter tractable for the parameter `C [2, 15].

Our Contribution

Our results are summarized in Table 1. We focus on two parameters from H(G), namely
its number xH of vertices of indegree at least two, and the treewidth tH of its underlying
undirected graph. This choice is motivated by the fact that when H(G) is an arborescence,
each of these two parameters is constant (namely, xH = 0 and tH = 1) and MCA is in
P. Thus, our parameters measure the distance from this trivial case [16]. In addition, we
consider the parameter `C := |V (G)|−|C| and the parameter ` which is the number of vertices
that are not part of a solution with a maximum number of vertices. More precisely, whenever
we refer to the parameter ` we consider the problem variant where we are constrained to
report the best arborescence among those with at least |V | − ` vertices. Intuitively, `C is
the number of vertices that we need to delete just to obtain a colorful subgraph of G, and
hence ` ≥ `C . Observe that MCA is W[1]-hard parameterized by ` [14]; this is a consequence
of the proof of [19, Theorem 1].

Together with FPT issues, we also address the (in)existence of polynomial problem kernels
for these parameters. In a nutshell, we provide a complete dichotomy for fixed-parameter
tractability and problem kernelization for these parameters.

Preliminaries

In the following, let G = (V,A) be the input graph of MCA, with nG := |V (G)|. For any
integer p, we let [p] := {1, . . . , p}. For any vertex v ∈ V , N+(v) is the set of outneighbors
of v. We say that a vertex v is reachable from another vertex v′ ∈ V (G) in a directed
graph G if there exists a path from v′ to v in G. The color hierarchy graph of G is denoted
H(G) := (C, AC), or, when clear from the context, simply H.

4 The notation O∗() does not take polynomial factors into account.

CPM 2018

17:4 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

We briefly recall the relevant notions of parameterized algorithmics (see e.g. [8]). A
parameterized problem is a subset of Σ× N where the second component is the parameter.
A parameterized problem is fixed-parameter tractable if every instance (x, k) can be solved
in f(k) · |x|O(1) time. A reduction to a problem kernel, or kernelization, is an algorithm
that takes as input an instance (x, k) of a parameterized problem Q and produces in
polynomial time an equivalent (i.e., having the same solution) instance (x′, k′) of Q such
that (i) |x′| ≤ g(k), and (ii) k′ ≤ k. The instance (x′, k′) is called problem kernel, and g is
called the size of the problem kernel. If g is a polynomial function, then the problem admits
a polynomial-size kernel. Classes W[1] and W[2] are classes of presumed fixed-parameter
intractability: if a parameterized problem is W[1]-hard or W[2]-hard, then it is generally
assumed that it is not fixed-parameter tractable.

This paper is organized as follows. In Section 2, we study in detail the impact of xH on
the parameterized complexity of the MCA problem, while in Section 3, the same type of
study is realized with parameter tH.

2 Parameterizing the MCA Problem by xH

Two main reasons lead us to be particularly interested in xH, the number of vertices with
indegree at least two in H. First, MCA is in P when H is an arborescence [14], thus when
xH = 0. Second, MCA can be solved in O∗(3|C|) time [4]. Since by definition xH ≤ |C|,
determining whether MCA is FPT with respect to xH is of particular interest. We answer
this question positively in Theorem 2.2. We first need some additional definitions.

Let X be the set of vertices of indegree at least two in H (thus |X| = xH) and call X the
set of difficult colors. For any V ′ ⊆ V (G), let col(V ′) denote the set of colors used by col
on the vertices in V ′. Moreover, for any vertex v ∈ V that has at least one outneighbor
in G, assume that col(N+(v)) has an arbitrary but fixed ordering. Therefore, for any
i ∈ [| col(N+(v))|], we may let col+(v, i) denote the ith color in col(N+(v)). Finally, for any
arborescence T in G or in H, let X(T) := X ∩ col(V (T)) denote the set of difficult colors
in T . We have the following lemma.

I Lemma 2.1. Let T1 and T2 be two arborescences in H such that T1 is rooted in c1, T2 is
rooted in c2 6= c1, and c1, c2 ∈ N+(c) for some c ∈ C. If X(T1) and X(T2) are disjoint,
then V (T1) and V (T2) are disjoint.

Proof. Assume without loss of generality that c1 is not reachable from c2 in H. If V (T1)
and V (T2) are not disjoint, then there exists a color c∗ ∈ C that belongs to T1 and to T2.
In order to prove that such a color c∗ cannot exist, let τ1 (resp. τ2) be the set of colors on
the path from c1 (resp. c2) to c∗ including c1 in T1 (resp. c2 in T2). Then, either τ2 ⊂ τ1
or c2 /∈ τ1. First, if τ2 ⊂ τ1, then there exists a vertex c′ ∈ τ1 such that c′ 6= c with an arc
(c′, c2). Since H contains the arc (c, c2), the color c2 is thus difficult. This contradicts the
assumption that X(T1) and X(T2) are disjoint. Second, if c2 /∈ τ1, then |τ1 ∩ τ2| ≥ 1 since
c∗ ∈ τ1 ∩ τ2. Therefore, let c̄ ∈ τ1 ∩ τ2 such that there exists a path from c̄ to any other color
of τ1 ∩ τ2. By definition, the father of c̄ in τ1 is different from the father of c̄ in τ2, which
means that c̄ is a difficult color. This contradicts the assumption that X(T1) and X(T2) are
disjoint. J

I Theorem 2.2. MCA can be solved in O∗(3xH) time and O∗(2xH) space.

Proof. We propose a dynamic programming algorithm which makes use of two tables. The
first one, A[v,X ′, i], is computed for all v ∈ V (G), X ′ ⊆ X and i ∈ {0} ∪ [| col(N+(v))|] and
stores the weight of a maximum colorful arborescence TA(v,X ′, i) in G such that

G. Fertin, J. Fradin, and C. Komusiewicz 17:5

TA(v,X ′, i) is rooted in v,
(X(TA(v,X ′, i)) \ {col(v)}) ⊆ X ′, and
TA(v,X ′, i) contains an arc (v, u) only if col(u) = col+(v, j) for some j ≤ i.

The second one, B[v,X ′, i], is computed for all v ∈ V , X ′ ⊆ X and i ∈ [| col(N+(v))|] and
stores the weight of a maximum colorful arborescence TB(v,X ′, i) in G such that

TB(v,X ′, i) is rooted in v,
(X(TB(v,X ′, i)) \ {col(v)}) ⊆ X ′, and
TB(v,X ′, i) contains an arc (v, u) only if col(u) = col+(v, i).

In a nutshell, TA(v,X ′, i) and TB(v,X ′, i) share the same root v and the same allowed set of
difficult colors X ′ (disregarding col(v)), but TA(v,X ′, i) contains outneighbors of v up to
color col+(i) and TB(v,X ′, i) contains at most one outneighbor of v which is of color col+(v, i).
Hence, there is no u ∈ N+(v) such that (v, u) ∈ TA(v,X ′, i − 1) and (v, u) ∈ TB(v,X ′, i).
We now show how to compute the two abovementioned tables.

A[v,X ′, i] =

0 if i = 0,
max

X′′⊆X′
{A[v,X ′′, i− 1] +B[v,X ′ \X ′′, i]} otherwise.

For an entry A[v,X ′, i] with i = 0 note that TA(v,X ′, i) can only contain v. For i > 0,
by definition there cannot exist any u ∈ N+(v) such that u belongs both to TA(v,X ′′, i− 1)
and TB(v,X ′ \X ′′, i). Therefore, Lemma 2.1 shows that col(v) is the only color occurring in
TA(v,X ′′, i−1) and TB(v,X ′\X ′′, i). Thus, the union of TA(v,X ′′, i−1) and TB(v,X ′\X ′′, i)
is a colorful arborescence. Finally, testing every possible X ′′ ⊆ X ′ ensures the correctness of
the formula.

B[v,X ′, i] =


0 if col+(v, i) ∈ X \X ′,

max
u∈N+(u):

col(u)=col+(v,i)

{0, w(v, u) +A[u,X ′, | col(N+(u))|]} otherwise.

For an entry of type B[v,X ′, i], if col+(v, i) is a difficult color which does not belong to
X ′, then V (TB(v,X ′, i)) = {v}, and hence B[v,X ′, i] = 0. Otherwise, recall that B[v,X ′, i]
stores the weight of a maximum colorful arborescence rooted in v containing at most one
further vertex u ∈ N+(v) of color col+(v, i). Therefore, computing the maximum colorful
arborescences for any such u and only keeping the best one if it is positive ensures the
correctness of the formula.

Recall that any DAG has a topological ordering of its vertices, i.e. a linear ordering of its
vertices such that for every arc (u, v), u appears before v in this ordering. In Algorithm 1,
we show how to compute all the entries of both dynamic programming tables. For this, we
consider the entries from last to first according to some topological ordering of G. The total
running time derives from the fact that our algorithm needs at most 3xH steps to compute
A[v,X ′, i] since a difficult color can be in X ′′, X ′ \X ′′ or in X \X ′. J

Recall that a parameterized problem Q is FPT with respect to a parameter k if and
only if it has a kernelization algorithm for k [11], but that such a kernel is not necessarily
polynomial. In Theorem 2.4, we prove that although MCA parameterized by xH is FPT (as
proved by Theorem 2.2), MCA is unlikely to admit a polynomial kernel for xH. For this, we
use the or-composition technique which, roughly speaking, is a reduction that combines many
instances of a problem into one instance of the problem Q. We first recall the definition of
or-compositions.

CPM 2018

17:6 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

Algorithm 1 Computing the entries in tables A and B.
for all v ∈ V from last to first in some topological ordering of G do

for all X ′ ⊆ X do
for all i ∈ {1, . . . , | col(N+(v))|} do

Compute B[v, X ′, i]
end for

end for
for all X ′ ⊆ X do

for all i ∈ {0, . . . , | col(N+(v))|} do
Compute A[v, X ′, i]

end for
end for

end for

I Definition 2.3. ([5]) An or-composition for a parameterized problem Q ∈ Σ × N is an
algorithm that receives as input a sequence (x1, k), (x2, k), . . . , (xt, k) with (xi, k) ∈ Σ× N
for each 1 ≤ i ≤ t, takes polynomial time in

∑t
i=1 |xi|+ k, and outputs (y, k′) ∈ Σ× N with

(y, k′) ∈ Q if and only if ∃1≤i≤t(xi, k) ∈ Q and k′ is polynomial in k.

If an NP-hard parameterized problem Q admits an or-composition, then Q does not admit any
polynomial-size problem kernel (unless NP ⊆ coNP/Poly) [5]. Our or-composition actually
shows that MCA is unlikely to admit a polynomial kernel for the parameter |C|.

I Theorem 2.4. Unless NP ∈ coNP/Poly, MCA does not admit a polynomial kernel for
parameter |C|, and consequently for parameter xH, even if G is an arborescence.

Proof. In the following, let t be a positive integer. For any i ∈ [t], let Gi = (Vi, Ai) be the
graph of an instance of MCA which is rooted in a vertex ri and assume that the t instances
are built on the same color set C′ = {c1, . . . , c|C′|}, otherwise colors can be relabeled suitably.

We now compose the t instances of MCA into a new instance of MCA. Let G = (V,A)
be the graph of such a new instance with V = {r} ∪ {r′i : i ∈ [t]} ∪ {v ∈ Vi : i ∈ [t]} and
A = {(r, r′i) : i ∈ [t]} ∪ {(r′i, ri) : i ∈ [t]} ∪ {(u, v) ∈ Ai : i ∈ [t]}. Here, r is a vertex not
contained in any of the t MCA instances and which has a path of length 2 towards the root
ri of any graph Gi; thus G is clearly a DAG. Let C be the color set of G, and let us define
the coloring function on V (G) as follows: the root r is assigned a unique color cr /∈ C′ ; all
vertices of type r′i are assigned the same color cr′ /∈ (C′ ∪ {cr}) ; all arcs of type (r′i, ri) and
(r, r′i) are given a weight of 0 ; the color (resp. weight) of all other vertices (resp. arcs) is
the same in the new instance as in their initial instance. Clearly, (G, C, col, w, r) is a correct
instance of MCA and |C| = |C′| + 2. Moreover, if Gi is an arborescence for every i ∈ [t],
then G is also an arborescence. We now prove that there exists i ∈ [t] such that Gi has
a colorful arborescence T = (VT , AT) rooted in ri of weight W > 0 if and only if G has a
colorful arborescence T ′ = (VT ′ , AT ′) rooted in r and of weight W > 0.

(⇒) If there exists i ∈ [t] such that Gi has a colorful arborescence T = (VT , AT)
rooted in ri and of weight W > 0, then let T ′ = (VT ′ , AT ′) with VT ′ = VT ∪ {r, r′i} and
AT ′ = AT ∪ {(r, r′i), (r′i, ri)}. Clearly, T ′ is connected, colorful and of weight W .

(⇐) Suppose G contains a colorful arborescence T ′ = (VT ′ , AT ′) with root r and weight
W > 0. Since T ′ is colorful and all vertices of type r′i share the same color, there cannot
exist i and j in [t], vi ∈ Vi and vj ∈ Vj such that both vi and vj belong to T ′. Thus, let i∗ be
the only index in [t] such that Vi∗ ∩ VT ′ 6= ∅ and let T = (VT , AT) with VT = VT ′ \ {r, r′i∗}
and AT = AT ′ \ {(r, r′i∗), (r′i∗ , ri∗)}. Clearly, T is connected, colorful and of weight W .

Now, recall that |C| = |C′| + 2 and thus that we made a correct composition of MCA
into MCA. Moreover, recall that MCA is NP-hard [14] and that xH ≤ |C|. As a con-
sequence, MCA does not admit a polynomial kernel for the parameter |C|, and hence for the
parameter xH, even in arborescences, unless NP ⊆ coNP/Poly. J

G. Fertin, J. Fradin, and C. Komusiewicz 17:7

Recall that MCA can be solved in time O∗(2s) where s is the minimum number of arcs
needed to turn H into an arborescence [14]. Since s < |C|2, we have the following.

I Corollary 2.5. Unless NP ∈ coNP/Poly, MCA parameterized by s does not admit a
polynomial kernel, even if G is an arborescence.

In the following, we use a different technique, called polynomial parameter transform-
ation [6], to show that MCA is also unlikely to admit a polynomial kernel for the para-
meter xH + `C , where `C = nG − |C|.

I Definition 2.6. ([6, 10, 9]) Let P and Q be two parameterized problems. We say that P
is polynomial parameter reducible to Q if there exists a polynomial-time computable function
f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all (x, k) ∈ Σ∗ × N the following
holds: (x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q, and k′ ≤ p(k). The function f is a
called a polynomial parameter transformation.

If P is an NP-hard problem and Q belongs to NP, then a polynomial parameter transformation
from P parameterized by k to Q parameterized by k′ has the following consequence: if
Q parameterized by k′ admits a polynomial kernel, then P parameterized by k admits a
polynomial kernel [6]. Using such a transformation, we obtain the following result.

I Theorem 2.7. MCA parameterized by xH does not admit a polynomial kernel unless
NP ⊆ coNP/Poly even when restricted to the special case where `C = 0.

Proof. We reduce from Set Cover, which is defined as follows.

Set Cover
Input: A universe U = {u1, u2, . . . , uq}, a family F = {S1, S2, . . . , Sp} of subsets of U ,
an integer k.
Output: A k-sized subfamily S ⊆ F of sets whose union is U .

The reduction is as follows: for any instance of Set Cover, we create a three-levels
DAG G = (V = V1 ∪ V2 ∪ V3, A) with V1 = {r}, V2 = {vi : i ∈ [p]} and V3 = {zj : j ∈ [q]}.
We call V2 the second level of G and V3 the third level of G. Informally, we associate one
vertex at the second level to each set of F and one vertex at the third level to each element
of U . There is an arc of weight −1 from r to each vertex at level 2 and an arc of weight p
from vi to zj , for all i ∈ [p] and j ∈ [q] such that the element uj is contained in the set Si.
Now, our coloring function col is as follows: give a unique color to each vertex of G. Notice
that H is also a three-levels DAG with col(V1), col(V2), and col(V3) at the first, second, and
third levels, respectively. Therefore, the above construction is a correct instance of MCA.
We now prove that there exists a k-sized subfamily S ⊆ F of sets whose union is U if and
only if there exists a colorful arborescence T in G of weight w(T) = pq − k.

(⇒) Suppose there exists a k-sized subfamily S ⊆ F of sets whose union is U and let
True = {i ∈ [p] : Si ∈ S}. Then, we set VT = {r} ∪ {vi : i ∈ True} ∪ {zj : j ∈ [q]}.
Necessarily, G[VT] is connected: first, r is connected to every level-2 vertex ; second, a vertex
zj corresponds to an element uj which is contained in some set Si ∈ S. Now, let T be a
spanning arborescence of G[VT]. Clearly, T is colorful and of weight pq − k.

(⇐) Suppose there exists a colorful arborescence T = (VT , AT) in G of weight w(T) =
pq − k. Notice that any arborescence T ′ in G which contains r and at least one vertex from
V3 must contain at least one vertex from V2 in order to be connected. Therefore, if such
an arborescence T ′ does not contain one vertex of type zj , then w(T ′) < pq − p − 1 and
w(T ′) < w(T). Hence, if w(T) = pq − k then T contains each vertex of the third level and T

CPM 2018

17:8 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

contains exactly k vertices at the second level. Now, let S = {Si : i ∈ [p] s.t. vi ∈ VT } and
notice that S is a k-sized subfamily of F whose union is U as all vertices of the third level
belong to T . Our reduction is thus correct.

Now, recall that H is a three-levels DAG with col(V1), col(V2), and col(V3) at the first,
second and third levels, respectively. By construction of G, if there exists c ∈ V (H) such that
d−(c) ≥ 1, then c ∈ col(V3). Moreover, recall that | col(V3)| = |U| and thus xH ≤ |U|. Thus
we provided a correct polynomial parameter transformation from Set Cover parameterized
by |U| to MCA parameterized by xH. Now, recall that Set Cover does not admit a
polynomial kernel for |U| unless NP ⊆ coNP/Poly [10] and that Set Cover is NP-hard [17].
Moreover, the decision version of MCA, which asks for a solution of weight at least k, clearly
belongs to NP. Finally, observe that `C = 0 as G is colorful. As a consequence, MCA does
not admit any polynomial kernel for xH unless NP ⊆ coNP/Poly even if `C = 0. J

Since ` ≥ `C , and in light of Theorem 2.7, we aim at determining whether a polynomial
kernel exists for MCA parameterized xH + `. We have the following theorem.

I Theorem 2.8. MCA admits a problem kernel with O(xH · `2) vertices.

To show this result we provide three data reduction rules. To formulate the rules, we
introduce some notation first.

For any vertex v ∈ V (G), we define G+(v) as the subgraph of G that is induced by the
set of vertices that are reachable from v in G (including v). Similarly, for any color c ∈ V (H),
we define H+(c) as the subgraph of H that is induced by the set of vertices that are reachable
from c in H (including c). We call a color c autonomous if (i) H+(c) is an arborescence, and
(ii) there does not exist an arc from a color c1 /∈ H+(c) to a color c2 ∈ H+(c) in H. For a
vertex v, let Tv denote a maximum colorful arborescence in G that is rooted at v. Finally,
for a color c ∈ C, let Vc := {v ∈ V : col(v) = c} denote the set of vertices with color c.

I Reduction Rule 1. If an instance (G, C, col, w, r) of MCA contains an autonomous color c
such that H+(c) contains at least two vertices, then do the following.

For each vertex v ∈ Vc, compute the value w(Tv) of Tv, and add w(Tv) to the weight of
each incoming arc of v.
Remove from G all vertices that are reachable from a vertex in Vc, except the vertices
of Vc.

I Lemma 2.9. Reduction Rule 1 is correct and can be performed exhaustively in polynomial
time.

Proof. Consider a vertex v ∈ Vc. Since c is autonomous, H+(c) is an arborescence and thus
we may compute Tv which contains only colors from H+(c) in polynomial time [14].

Now, we prove the correctness of the rule, that is, the original instance (G, C, col, w, r)
has a colorful arborescence T = (VT , AT) of weight at least W if and only if the new instance
(G′, C′, col′, w′, r′) has a colorful arborescence T ′ = (VT ′ , AT ′) of weight at least W . We
only show the forward direction of the equivalence; the converse can be seen by symmetric
arguments. First, recall that c is autonomous. Therefore, if T does not contain any vertex of
color c, then T does not contain any vertex whose color belongs to V (H+(c)) and we can
trivially set T ′ = T . Otherwise, if T contains a vertex v of color c, then let Sc ⊆ VT be
the set of vertices that are reachable from v in T . We now set VT ′ := (VT \ Sc) ∪ {v} and
let AT ′ contain all the arcs from AT that are not in H+(c). Now, recall that we computed
the weight w(Tv) of the maximum colorful arborescence in G that was rooted in v and
that w′(v−, v) = w(v−, v) + w(Tv) where v− is the inneighbor of v in T . This ensures that
w(T) ≤ w′(T ′). J

G. Fertin, J. Fradin, and C. Komusiewicz 17:9

In the following, for any vertices v, v′ ∈ V (G) such that v′ is reachable from v in G, we
denote π(v, v′) as the length of the maximum weighted path from v to v′ in G.

I Reduction Rule 2. If an instance (G, C, col, w, r) of MCA contains a triple {c1, c2, c3} ⊆ C
such that (i) c1 is the unique inneighbor of c2, (ii) c2 is the unique inneighbor of c3 and
(iii) c3 is the unique outneighbor of c2, then do the following.

For any v1 ∈ Vc1 and v3 ∈ Vc3 such that there exists a path from v1 to v3 in G, create an
arc (v1, v3) and set w(v1, v3) := π(v1, v3).
Add a vertex v∗ of color c3 and, for any vertex v1 ∈ Vc1 that has at least one outneighbor
of color c2 in G, add the arc (v1, v

∗) and set w(v1, v
∗) to the highest weighted outgoing

arc from v1 to any vertex of color c2 in G.
Remove all vertices of Vc2 from G′.

I Lemma 2.10. Reduction Rule 2 is correct and can be performed exhaustively in polynomial
time.

Proof. We first prove that our transformation is correct. We show only the direction
that an arborescence of weight at least W in the original instance (G, C, col, w, r) implies
an arborescence of weight at least W in the new instance (G′, C′, col′, w′, r′); the converse
direction can be shown by symmetric arguments. Let T = (VT , AT) be a colorful arborescence
of weight W in the original instance. First, if T does not contain a vertex of color c2, then
T is an arborescence of the new instance. Second, if T contains a vertex v2 of color c2
whose inneighbor is v1 in T and if T does not contain any vertex of color c3, then setting
VT ′ := VT \ {v2} ∪ {v∗} and AT ′ := AT \ {(v1, v2)} ∪ {(v1, v

∗)} gives an arborescence T ′ =
(VT ′ , AT ′) of the new instance. Moreover, w(T) = w′(T ′) since w(v1, v2) = w′(v1, v

∗).
Third, if T contains a vertex v2 of color c2 whose inneighbor is v1 in T and if T contains
a vertex v3 of color c3 (whose inneighbor is necessarily v2), then setting VT ′ := VT \ {v2}
and AT ′ := AT \ {(v1, v2), (v2, v3)} ∪ {(v1, v3)} gives an arborescence T ′ = (VT ′ , AT ′) of the
new instance. Moreover, w(T) = w′(T ′) since w(v1, v2) + w(v2, v3) = w′(v1, v3).

The polynomial running time follows from the fact that π(v1, v3) can be computed in
polynomial time. J

To describe the final rule, let N−U (v) denote the set of unique colors in the inneighborhood
of v in G, where a color c is unique if |Vc| = 1. Recall also that ` is the maximum number of
vertices that do not belong to T in G.

I Reduction Rule 3. If an instance (G, C, col, w, r) of MCA contains a vertex v ∈ V such
that |N−U (v)| > `+ 1, then delete the |N−U (v)| − `− 1 least-weighted arcs from N−U (v) to v.

I Lemma 2.11. Reduction Rule 3 is correct and can be performed exhaustively in polynomial
time.

Proof. Since |N−U (v)| > `+ 1, T has to contain at least two vertices from N−U (v). Now, let
v1 be a vertex from N−U (v) such that (v1, v) is the least-weighted incoming arc from a unique
color to v in G. Even if v1 belongs to T , there will always exist at least one other vertex v2
that will also belong to T and such that w(v1, v) ≤ w(v2, v). Thus, we may assume that T
does not contain the arc (v1, v) and safely delete it. The correctness of the rule now follows
from repeated application of this argument. J

We are now ready to prove Theorem 2.8.

CPM 2018

17:10 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

Proof. The kernelization algorithm consists of the exhaustive application of Reduction
Rules 1– 3 in polynomial time. Let (G, C, col, w, r) denote the resulting equivalent instance
and let T = (VT , AT) be a solution of this instance. It remains to show that G has
O(xH · `2) vertices. First, we show that the indegree of any color in H is at most (`+ 1)2 + `.
This will allow us to show, subsequently, the claimed bound on nG.

Let us first bound the indegree of any color inH. Since T is colorful and since |VT | = nG−`,
there exist at most ` non-unique colors in C and hence the inneighborhood of any color
c ∈ V (H) cannot contain more than ` non-unique colors in H. Moreover, since the instance
is reduced with respect to Reduction Rule 3, the inneighborhood of any vertex v ∈ V (G)
contains at most `+ 1 vertices of unique color in G. Furthermore, we may assume |Vc| ≤ `+ 1
for any any color c ∈ V (H) as T cannot be colorful if there exists more than `+ 1 occurrences
of c in G. As a consequence, for any color c ∈ V (H), the inneighborhood of c cannot contain
more than |Vc| · (`+ 1) = (`+ 1)2 unique colors in H, and hence c has at most (`+ 1)2 + `

inneighbors.
Now, let F be the forest whose vertex set is CF = C \X and which contains each arc (c, c′)

of H such that {c, c′} ⊆ CF . In the following, we successively bound the maximum number of
leaves of F , the maximum number of vertices of F , of V (H) and finally of V (G) in a function
of ` and xH. First, recall that there does not exist any autonomous color c ∈ C to which
Reduction Rule 1 applies. Thus, each leaf c of H is in fact a difficult color. Consequently,
every leaf of F is in H an inneighbor of a difficult color. Since the maximum indegree of
any color in H is at most (`+ 1)2 + `, the number of leaves in F is at most xH((`+ 1)2 + `).
Now, by Lemma 2.10, H does not contain any color which has a unique inneighbor and a
unique outneighbor. As a consequence, F has no internal vertices of degree two that are not
inneighbors of a difficult color. Hence, the number of nonleafs of F that are not inneighbors
of a difficult color is O(xH · `2), and thus |V (F)| = O(xH · `2). Moreover, since CF = C \X,
we have that |C| ≤ xH + O(xH · `2). Finally, the number of vertices in G can exceed the
number of colors in H by at most `. Therefore, nG = O(xH · `2) as claimed. J

3 Parameterizing the MCA Problem by the Treewidth of the Color
Hierarchy Graph

Let U(H) denote the underlying undirected graph of H. In this section, we are interested in
parameter tH, defined as the treewidth of U(H). Indeed, since MCA is in P whenever H is
an arborescence [14], it is natural to study whether MCA parameterized by tH is FPT. To
do so, we first introduce some definitions.

I Definition 3.1. Let G = (V,E) be a undirected graph. A tree decomposition of G is a
pair 〈{Xi : i ∈ I}, T 〉, where T is a tree whose vertex set is I, and each Xi is a subset of V ,
called a bag. The following three properties must hold:
1. ∪i∈IXi = V .
2. For every edge (u, v) ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.
3. For all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi ∩Xk ⊆ Xj .

The width of 〈{Xi : i ∈ I}, T 〉 is defined as max{|Xi| : i ∈ I} − 1, and the treewidth of G
is the minimum k such that G admits a tree decomposition of width k.

I Definition 3.2. A tree decomposition 〈{Xi : i ∈ I}, T 〉 is called nice if the following
conditions are satisfied:
1. Every node of T has at most two children.

G. Fertin, J. Fradin, and C. Komusiewicz 17:11

2. If a node i has two children j and k, then Xi = Xj = Xk and in this case, Xi is called a
Join Node.

3. If a node i has one child j, then one of the following situations must hold:
a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi and in this case, Xi is called an Introduce Node, or
b) |Xi| = |Xj | − 1 and Xi ⊂ Xj and in this case, Xi is called a Forget Node.

4. If a node i has no child, then |Xi| = 1 and in this case, Xi is called a Leaf Node.

We first show that MCA is unlikely to be FPT with respect to parameter tH.

I Theorem 3.3. MCA parameterized by tH is W[2]-hard.

Proof. We reduce from the k-Multicolored Set Cover problem, which is defined below.

k-Multicolored Set Cover
Input: A universe U = {u1, u2, . . . , uq}, a family F = {S1, S2, . . . , Sp} of subsets of U ,
a set of colors Λ with a coloring function col′ : F → Λ, an integer k.
Output: A subfamily S ⊆ F of sets whose union is U , and such that (i) |S| = k and
(ii) S is colorful, i.e. col′(Si) 6= col′(Sj) for any i 6= j such that Si, Sj ∈ S.

The reduction is as follows: for any instance of k-Multicolored Set Cover, we create
a three-level DAG G = (V = V1 ∪ V2 ∪ V3, A) with V1 = {r}, V2 = {vi : i ∈ [p]} and
V3 = {zj : j ∈ [q]}. Informally, we associate a vertex at the second level to each set of F and
a vertex at the third level to each element of U . We then add an arc of weight −1 from r to
each vertex at level 2 and an arc of weight p from vi to zj , for all i ∈ [p] and j ∈ [q] such that
uj ∈ Si. Now, our coloring function col is as follows: we give a unique color to each vertex
in V1 ∪ V3, while at the second level (thus in V2), two vertices of type vi are assigned the
same color if and only if their two associated sets are assigned the same color by col′. Notice
that H is also a three-levels DAG with col(V1), col(V2), and col(V3) at the first, second and
third levels, respectively. Therefore, (G, C, col, w, r) is a correct instance of MCA. We now
prove that there exists a colorful set S ∈ F of size k whose union is U if and only if there
exists a colorful arborescence T in G of weight w(T) = pq − k.

(⇒) Suppose there exists a colorful set S ∈ F of size k whose union is U and let
True = {i ∈ [p] : Si ∈ S}. Let VT = {r} ∪ {vi : i ∈ True} ∪ {zj : j ∈ [q]}. Necessarily, G[VT]
is connected: first, r is connected to every level-2 vertex ; second, a vertex zj corresponds to
an element uj which is contained in some set Si ∈ S. Now, let T be a spanning arborescence
of G[VT]. Clearly, T is colorful and of weight pq − k.

(⇐) Suppose there exists a colorful arborescence T = (VT , AT) in G of weight w(T) =
pq − k. Notice that any arborescence T ′ in G which contains r and at least one vertex from
V3 must contain at least one vertex from V2 in order to be connected. Therefore, if such
an arborescence T ′ does not contain one vertex of type zj , then w(T ′) < pq − p − 1 and
w(T ′) < w(T). Hence, if w(T) = pq − k then T necessarily contains each vertex from V3,
and thus contains exactly k vertices from V2. Now, let S = {Si : i ∈ [p] s.t. vi ∈ VT } and
notice that S is a colorful subfamily of size k whose union is U as all vertices of the third
level belong to T . Our reduction is thus correct.

Now, recall that H is a three-levels DAG with resp. col(V1), col(V2) and col(V3) at the
first, second and third levels. Thus, there exists a trivial tree decomposition 〈{Xi : i ∈
[| col(V3)|+ 2]}, T 〉 of U(H) which is as follows: the bag X0 = {col(r)} has an arc towards
the bag X1 = {{col(r)} ∪ col(V2)} and, for any i ∈ [| col(V3)|], there exists an arc from X1
to Xi where each Xi contains col(V2) and a different vertex of col(V3). Consequently, the
width of 〈{Xi : i ∈ [| col(V3)|+ 2]}, T 〉 is k, and hence MCA is W[2]-hard parameterized by
tH as k-Multicolored Set Cover is well-known to be W[2]-hard parameterized by k. J

CPM 2018

17:12 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

We now use the above proof to show that MCA is unlikely to admit FPT algorithms
relatively for different further parameters related to H. The vertex cover number of U(H)
is the size of a smallest subset S ⊆ V (H) such that at least one incident vertex of any arc
of H belongs to S. Notice that col(V2) is a vertex cover of U(H) and thus U(H) ≤ k. The
feedback vertex set number is the size of a smallest subset S ⊆ H whose removal makes U(H)
acyclic. The size of such a subset S is an interesting parameter as xH = 0 in H[V (H) \ S]
and any vertex cover of U(H) is also a feedback vertex set of U(H) – hence, col(V2) is also a
feedback vertex set of U(H). Altogether, we thus obtain the following corollary.

I Corollary 3.4. MCA parameterized by the vertex cover number of U(H) or the feedback
vertex set number of U(H) is W[2]-hard.

Next, recall that in the proof of Theorem 3.3 each color from the third level of H is a leaf.
Hence, the number of colors of outdegree at least two in H is | col(V1)|+ | col(V2)| = k + 1.
Although Theorem 2.2 showed that MCA is FPT relatively to xH, we obtain the following.

I Corollary 3.5. MCA parameterized by the number of colors of outdegree at least two in H
is W[2]-hard.

By Theorem 3.3, MCA parameterized by tH is W[2]-hard; thus, one may look for a
parameter whose combination with tH may lead to MCA being FPT. Here, we focus on
parameter `C = nG − |C|. We know that MCA parameterized by `C is W[1]-hard, but the
problem can be solved in O∗(2`C) time when G is an arborescence [14]. Recall also that
MCA is in P when H is an arborescence [14], and hence when tH = 1. In the following, a
fully-colorful subgraph of G is a subgraph of G that contains exactly one occurrence of each
color c ∈ C.

I Lemma 3.6. Any graph G with |C| colors has at most 2`C fully-colorful subgraphs.

Proof. Let nc be the number of vertices of color c ∈ C and notice that
∏

c∈C nc is the number
of fully-colorful subgraphs of G. Then, observe that nc ≤ 2nc−1 for all nc ∈ N, which implies∏

c∈C nc ≤ 2
∑

c∈C
nc−1 and thus

∏
c∈C nc ≤ 2`C . J

I Theorem 3.7. MCA can be solved in O∗(2`C · 4tH) time and O∗(3tH) space.

Proof. In the following, let 〈{Xi : i ∈ I}, T 〉 be a nice tree decomposition of U(H). In this
proof, we provide a dynamic programming algorithm that makes use of 〈{Xi : i ∈ I}, T 〉 in
order to compute a solution to MCA in any fully-colorful subgraph G′ ⊆ G, to which we
remove all vertices that are not accessible from r. First, observe that 〈{Xi : i ∈ I}, T 〉 is also
a correct nice tree decomposition for the (undirected) color hierarchy graph of any subgraph
of G. Second, as any colorful graph is equivalent to its color hierarchy graph, notice that
〈{Xi : i ∈ I}, T 〉 is also a correct nice tree decomposition of any fully-colorful subgraph
G′ ∈ G. Therefore, we assume without loss of generality that any bag Xi contains vertices of
such graph G′ instead of colors, and that X0 = {r} is the root of 〈{Xi : i ∈ I}, T 〉.

Now, for any i ∈ I and for any subsets L1, L2, L3 that belong toXi such that L1⊕L2⊕L3 =
Xi, let Ti[L1, L2, L3] store the weight of a partial solution of MCA in G′, which is a collection
of |L1| disjoint arborescences such that:

each v ∈ L1 is the root of exactly one such arborescence,
each v ∈ L2 is contained in exactly one such arborescence,
no vertex v ∈ L3 belongs to any of these arborescences,
any vertex v ∈ V whose color is forgotten below Xi can belong to any such arborescence,

G. Fertin, J. Fradin, and C. Komusiewicz 17:13

there does not exist another collection of arborescences with a larger sum of weights
under the same constraints.

Besides, let us define an entry of type Di[L1, L2, L3] which stores the same partial solution as
entry Ti[L1, L2, L3], except for the vertices v ∈ V whose colors are forgotten below Xi which
cannot belong to any arborescence of the partial solution. We now detail how to compute
each entry of Ti[L1, L2, L3]. We stress that each entry of Di[L1, L2, L3] is filled exactly as
an entry of type Ti[L1, L2, L3], apart from the case of forget nodes which we detail below.

If Xi is a leaf node: Ti[L1, L2, L3] = 0
Notice that leaf nodes are base cases of the dynamic programming algorithm as 〈{Xi :
i ∈ I}, T 〉 is a nice tree decomposition. Moreover, recall that leaf nodes have size 1 and
thus that the only partial solution for such nodes has a weight of zero.
If Xi is an introduce node having a child Xj and if v∗ is the introduced vertex:

Ti[L1, L2, L3] =



A) max
∀S⊆L2

{
∑

v∈S

w(v∗, v) + Tj [L1 ∪ S \ {v∗}, L2 \ S,L3]}

if v∗ ∈ L1
B) max
∀u∈(L1∪L2)

{w(u, v∗)+

max
∀S⊆(L2\{u})

{
∑

v∈S

w(v∗, v) + Tj [L1 ∪ S \ {v∗}, L2 \ S,L3]}}

if v∗ ∈ L2
C) Tj [L1, L2, L3 \ {v∗}]} if v∗ ∈ L3

where we set w(u, v) := −∞ when there is no arc from u to v in G′. There are three
cases: v∗ is the root of an arborescence in a partial solution (case A)), an internal vertex
of such a solution (case B)) or v∗ does not belong to such a solution (case C)). In
case A), S corresponds to the set of outneighbors of v∗ in the partial solution, thus the
vertices of S do not have any other inneighbor in the partial solution. Therefore, in the
corresponding entry Tj , the vertices of S are roots. Now, notice that B) is very similar
to A). In addition to a given set S of outneigbors, v∗ being in L2 implies that v∗ has an
inneighbor u ∈ (L1 ∪ L2) in the partial solution. Since the inneighbor u cannot be an
outneighbor at the same time, u is not contained in S. Exhaustively trying all possibilities
for both S and u ensures the correctness of the solution. Finally, by definition of L3,
observe that v∗ does not belong to the partial solution of Ti[L1, L2, L3] if v∗ ∈ L3.
If Xi is a forget node having a child Xj and if v∗ is the forgotten vertex:

Ti[L1, L2, L3] = max{Tj [L1, L2 ∪ {v∗}, L3], Tj [L1, L2, L3 ∪ {v∗}]}

Informally, the above formula determines whether the collection of arborescences that
is stored in Ti[L1, L2, L3] had a higher weight with or without v∗ as an internal vertex.
Observe that we do not consider the case where v∗ is the root of an arborescence as
such an arborescence could not be connected to the rest of the partial solution via an
introduced vertex afterwards. Besides, notice that Di[L1, L2, L3] = Dj [L1, L2, L3 ∪ {v∗}]
as the partial solution in Di[L1, L2, L3] does not contain any forgotten vertex by definition.

If Xi is a join node having two children Xj and Xk:

Ti[L1, L2, L3] = Tj [L1, L2, L3] + Tk[L1, L2, L3]−Di[L1, L2, L3]

Informally, the partial solution in Ti[L1, L2, L3] can contain both the forgotten vertices
of the partial solution in Tj [L1, L2, L3] and those of the partial solution in Tk[L1, L2, L3].
Recall that the partial solution in Di[L1, L2, L3] does not contain any forgotten vertices
and therefore that any arc of the partial solution in Ti[L1, L2, L3] is only counted once.

CPM 2018

17:14 Maximum Colorful Arborescence Problem and Color Hierarchy Graph Structure

We fill the tables from the leaves to the root for all i ∈ I until T0 and any entry of type
Ti[L1, L2, L3] is directly computed after the entry of type Di[L1, L2, L3]. If T ′ = (VT ′ , AT ′)
is a solution of MCA in a fully-colorful subgraph G′ ⊆ G, then w(T ′) = T0[{r}, ∅, ∅]. Thus,
for each fully-colorful subgraph we can compute the solution by filling the tables T and D.
The table has 3tH entries which implies the upper bound on the space consumption. The
most expensive recurrences in terms of running time are the one of cases A) and B) for
introduce nodes Xi where we consider altogether O(4tH) cases: each term corresponds to a
partition of Xi into four sets L1, L2 \ S, L2 ∩ S, and L3. Finally, the solution of MCA in
G is also the solution of at least one fully-colorful subgraph G′ ⊆ G. Therefore, computing
the solution of MCA for any such subgraph G′ ensures the correctness of the algorithm
and hence, by Lemma 3.6, adding a factor O(2`C) to the complexity of the above algorithm
proves our theorem. J

We now use the proof of Theorem 2.7 to show that MCA parameterized by tH + `C is
unlikely to admit a polynomial kernel. Recall that the proof shows a polynomial parameter
transformation from Set Cover to MCA and notice that (col(V1) ∪ col(V3)) is a vertex
cover of U(H) that is of size xH + 1. Moreover, recall that the size of a minimum vertex
cover of a graph is lower-bounded by its treewidth. As a consequence, MCA does not admit
any polynomial kernel for tH unless NP ⊆ coNP/Poly even if `C = 0.

I Corollary 3.8. MCA parameterized by tH does not admit a polynomial kernel unless
NP ⊆ coNP/Poly, even when restricted to the special case where `C = 0.

4 Conclusion

In this paper, we obtained an O∗(3xH) time algorithm for MCA, which improves upon
the O∗(3|C|) of Böcker et al. [4]. We also showed that MCA parameterized by xH + `C is
unlikely to admit a polynomial kernel and then that the problem admits such a kernel for
the parameter xH + `. Furthermore, we proposed an FPT algorithm for MCA relatively to
tH + `C and showed that MCA is W[2]-hard relatively to tH. Moreover, we showed that
MCA parameterized by `C + tH does not admit a polynomial kernel. In light of these results,
we ask the following question: does MCA parameterized by the larger parameter ` + tH
admit a polynomial kernel?

A further issue that is not addressed by our algorithm and previous algorithms is that
parameterization by ` or k essentially constrains the cardinality of the arborescences that are
considered to be solutions. In other words, to make use of these parameters we need to know
the number of vertices in an optimal solution in advance. Can we obtain fixed-parameter
algorithms also when we do not know the number of vertices in the optimal solution?

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
2 Nadja Betzler, René van Bevern, Michael R. Fellows, Christian Komusiewicz, and Rolf

Niedermeier. Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. Comput. Biology Bioinform., 8(5):1296–1308, 2011.

3 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Constrained multilinear detection
and generalized graph motifs. Algorithmica, 74(2):947–967, 2016.

4 Sebastian Böcker and Florian Rasche. Towards de novo identification of metabolites by
analyzing tandem mass spectra. In Proceedings of the 7th European Conference on Com-
putational Biology (ECCB ’08), volume 24(16), pages i49–i55, 2008.

G. Fertin, J. Fradin, and C. Komusiewicz 17:15

5 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

6 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/j.tcs.
2011.04.039.

7 Sharon Bruckner, Falk Hüffner, Richard M. Karp, Ron Shamir, and Roded Sharan.
Topology-free querying of protein interaction networks. J. Comput. Biol., 17(3):237–252,
2010.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Ker-
nelization hardness of connectivity problems in d-degenerate graphs. Discr. Appl. Math.,
160(15):2131–2141, 2012.

10 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and ids. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014. doi:10.1145/2650261.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

12 Kai Dührkop, Marie Anne Lataretu, W. Timothy J. White, and Sebastian Böcker. Heuristic
algorithms for the maximum colorful subtree problem. arXiv, 2018. URL: https://arxiv.
org/abs/1801.07456.

13 Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane Vialette. Upper and
lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci.,
77(4):799–811, 2011.

14 Guillaume Fertin, Julien Fradin, and Géraldine Jean. Algorithmic aspects of the maximum
colorful arborescence problem. In T. V. Gopal, Gerhard Jäger, and Silvia Steila, edit-
ors, Theory and Applications of Models of Computation - 14th Annual Conference, TAMC
2017, Bern, Switzerland, April 20-22, 2017, Proceedings, volume 10185 of Lecture Notes in
Computer Science, pages 216–230, 2017. doi:10.1007/978-3-319-55911-7_16.

15 Guillaume Fertin and Christian Komusiewicz. Graph motif problems parameterized by
dual. In Proceedings of the 27th Annual Symposium on Combinatorial Pattern Matching
(CPM ’16), volume 54 of LIPIcs, pages 7:1–7:12. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

16 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing
problems: Distance from triviality. In Proceedings of the First International Workshop on
Parameterized and Exact Computation (IWPEC ’04), volume 3162 of LNCS, pages 162–173.
Springer, 2004.

17 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York., The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. URL: http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

18 Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in graphs:
Application to metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform.,
3(4):360–368, 2006.

19 Imran Rauf, Florian Rasche, Francois Nicolas, and Sebastian Böcker. Finding maximum
colorful subtrees in practice. J. Comput. Biol., 20(4):311–321, 2013.

CPM 2018

http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1007/978-1-4471-5559-1
https://arxiv.org/abs/1801.07456
https://arxiv.org/abs/1801.07456
http://dx.doi.org/10.1007/978-3-319-55911-7_16
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

Dualities in Tree Representations
Rayan Chikhi
CNRS, Université de Lille, CRIStAL, Lille, France
rayan.chikhi@univ-lille1.fr

Alexander Schönhuth
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
alexander.schoenhuth@cwi.nl

Abstract

A characterization of the tree T ∗ such that BP(T ∗) =
←−−−−−−→
DFUDS(T), the reversal of DFUDS(T) is

given. An immediate consequence is a rigorous characterization of the tree T̂ such that BP(T̂) =
DFUDS(T). In summary, BP and DFUDS are unified within an encompassing framework, which
might have the potential to imply future simplifications with regard to queries in BP and/or
DFUDS. Immediate benefits displayed here are to identify so far unnoted commonalities in
most recent work on the Range Minimum Query problem, and to provide improvements for the
Minimum Length Interval Query problem.

2012 ACM Subject Classification Mathematics of computing → Trees

Keywords and phrases Data Structures, Succinct Tree Representation, Balanced Parenthesis
Representation, Isomorphisms

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.18

Related Version A full version with proofs is available at [4], https://arxiv.org/abs/1804.
04263.

Acknowledgements The authors are grateful to Hélène Touzet for helpful discussions, and to
CPM reviewers for insightful comments, providing Figure 2 and the reference to Davoodi et al [5].

1 Motivation

Given an array A[1, n] with elements from a totally ordered set, the Range Minimum Query
(RMQ) problem is to provide a data structure that on input positions 1 ≤ i ≤ j ≤ n returns

rmqA(i, j) := min{A[k] | i ≤ k ≤ j}. (1)

In [9], Fischer and Heun presented the first data structure that uses 2n + o(n) bits and
answers queries in O(1) time (in fact, without accessing A). They first construct a tree T [A]
(the 2D-Min-Heap of A). Then they observe that in a certain parenthesis representation of
T [A] (DFUDS), the following query leads to success for computing rmqA(i, j) (where 0 and
1 refer to closing and opening parentheses in DFUDS(T [A]), respectively):

w1 ← rmqD(select0(i + 1), select0(j)) (2)
if rank0(open(w1)) = i then return i (3)

else return rank0(w1) (4)

where rmqD refers to performing a range minimum query on the array D[x] := rank1(x)−
rank0(x) where x indexes parentheses in DFUDS(T [A]), and 1 and 0 represent opening and

© Rayan Chikhi and Alexander Schönhuth;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 18; pp. 18:1–18:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rayan.chikhi@univ-lille1.fr
mailto:alexander.schoenhuth@cwi.nl
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.18
https://arxiv.org/abs/1804.04263
https://arxiv.org/abs/1804.04263
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Tree Representation Duality

closing parentheses, respectively. open(w1) returns the position of the opening parenthesis
matching the one closing at position w1. Note that D[x] − D[x − 1] ∈ {−1, +1} for all
x ∈ {2, ..., 2N}, which turns rmqD into an easier problem (±1-RMQ), as was shown in [1].

Most recently, Ferrada and Navarro suggested an alternative approach which leads to a
shorter, hence faster query procedure [8]. They construct a tree T̂ [A] that results from a
systematic while non-trivial transformation of the edges of T [A] (the number of non-root
nodes N remains the same). They observed that in BP(T̂ [A]) the following simpler query
computes rmqA(i, j):

w2 ← rmqD(select0(i), select0(j)) (5)
return rank0(w2) (6)

The major motivation of our treatment is the observation – which passes unnoted in both
[8, 9] – that

DFUDS(T [A]) = BP(T̂ [A]) (7)

So, the shorter query raised by Ferrada and Gonzalez would have worked for Fischer and
Heun as well. It further raises the question whether there are principles by which to transform
trees T into trees T̂ such that

DFUDS(T) = BP(T̂) (8)

and, if so, what these principles look like. Here, we thoroughly investigate related questions
so as to obtain conclusive insight. We will show that the respective trees and their possible
representations can be juxtaposed in terms of a new duality for tree representations. In doing
so, we will obtain a proof for (7) as an easy corollary (to consolidate our findings, we also
give a direct proof that [8]’s query also would have worked for [9] in the Appendix of the full
version [4]). In summary, our treatment puts BP and DFUDS into a unifying context.

1.1 Related Work

RMQ’s. The RMQ problem has originally been anchored in the study of Cartesian trees
[21], because it is related to computing the least common ancestor (LCA) of two nodes
in a Cartesian tree derived from A [10], further complemented by the realization that any
LCA computation can be cast as an ±1-RMQ problem [3] for which subsequently further
improvements were raised [15, 19]. Fischer and Heun finally established the first structure
that requires 2n + o(n) space and O(1) time (without accessing A) [9], establishing an anchor
point for many related topics (e.g. [16, 17]), which justified to strive for further improvements
[8, 11].

Isomorphisms. For their latest (and likely conclusive) improvements, [8] made use of an
isomorphism between binary and general ordinary trees, presented in [15], and successfully
experiment with certain variations on the ground theme of this isomorphism, to finally obtain
the above-mentioned T̂ [A]. Here, we provide an explicit treatment of these trees, which [8]
are implicitly making use of. From this point of view, we provide a rigorous re-interpretation
of the treatments [8, 9] and the links drawn with [15] therein. Finally, note that [5] further
expands on [15].

R. Chikhi and A. Schönhuth 18:3

BP and DFUDS. The BP representation was first presented in [13] and developed further
in many ways (e.g. [15]). Since neither the BP nor the LOUDS [6, 13] representations allow
for a few basic operations relating to children and subtrees, the DFUDS representation was
presented as an improvement in this regard [2, 14]. A tree-unifying approach different to
ours was proposed by Farzan et al [7]. [5] observes relationships between BP and DFUDS
and proves them via the (above-mentioned) isomorphism by [15]. Since our treatment avoids
binary trees altogether, it establishes a more direct approach to identifying dualities between
ordinal trees than [5].

1.2 Notation
Trees. Throughout, we consider rooted, ordered trees T = (V, E) (with nodes V = V [T]
and (directed) edges E = E[T]) with root r. For the sake of notational convenience (following
standard abuse of tree notation), we will write v ∈ T instead of v ∈ V [T] and T1 ⊂ T2 for
V [T1] ⊂ V [T2]; note that induced subgraphs do not play a relevant role in this treatment.
By definition of ordered trees, siblings, that is nodes sharing their parent node are ordered,
implying the notions of left, right, immediate right, immediate left siblings. By rmcT (v), we
denote the rightmost child of a node v in T if it exists (if T is understood, we write rmc(v)).
Similarly, we denote by ilsT (v) (or ils(v) if T is understood) the immediate left sibling of
v in T if it exists. For two siblings, u < v means that u is left of v. As usual, the partial
order on siblings can be extended to a full order, ordering all v ∈ T , by depth-first-traversal
(or breadth-first-traversal) logic, for example; here, by default, we write u <T v (or u < v if
T is understood) if u comes before v in the depth-first traversal of T . We write u = pa(v)
indicating that u is the parent of v, that is (u, v) is a directed edge in T .

Parenthesis Based Tree Representations. In the following, we will deal with parenthesis
based representations for trees, which are vectors of opening parentheses ’(’ and closing
parentheses ’)’. The number of opening parentheses will match the number of closing
parentheses, thereby for a tree T , each node v ∈ T will be represented by a pair of opening
and closing parentheses, for which we write OP(v) and CP(v), respectively.

The Balanced Parenthesis (BP) representation BP(T) (e.g. [13, 15]) is built by traversing
T in depth-first order, writing an opening parenthesis when reaching a node for the first time,
and writing a closing parenthesis when reaching a node for the second time. By depth-first
order logic, this yields a balanced representation, meaning that the number of opening
matches the number of closing parentheses (see Figure 1). By default, a node is identified
with its opening parenthesis OP(v).

The Depth-First Unary Degree Sequence (DFUDS) representation DFUDS(T) [2] is again
obtained by traversing T in depth-first order, but, when reaching a node with d children for
the first time, writing d opening parentheses and one closing parenthesis (and writing no
parentheses when reaching it for the second time). This sequence of parentheses becomes
balanced when appending an opening parenthesis at the beginning. It is further convenient
to identify a node with the parenthesis preceding the block of opening parentheses that
represent its children1, which for all non-root nodes is a closing parenthesis. In other words, in
DFUDS, the i-th closing parenthesis reflects the i-th non-root node in DFT order. Note that,

1 Literature references are ambiguous about the exact choice of parenthesis. None of the alternative
choices, like the first opening parenthesis or the closing parenthesis following the block of opening
parentheses, would lead to any real complications also in our treatment.

CPM 2018

18:4 Tree Representation Duality

according to this definition, when matching opening parentheses with closing parentheses in
a balanced manner, the opening parentheses in one block refer to the children of the closing
parenthesis preceding the block from right to left.

Rank/Select/Open/Close. In the following, we will treat parenthesis vectors as bitvectors,
where opening and closing parentheses are identified with 1 and 0. Let B ∈ {0, 1}n be a
bitvector and x ∈ {1, ..., n} (for enhanced exposition, running indices run from 1 to n). Then
rankB,0(x), rankB,1(x) are defined to be the number of 0’s or 1’ in B up to (and including)
B[x]. Further, selectB,0(i), selectB,1(i) are defined to be the position of the i-th 0 or 1 in
B (if this exists). We omit the subscript B and write rank0(x), rank1(x), select0(i), select1(i)
if the choice of B is evident. As a relevant example (see (5)), for DFUDS(T) and v ∈ T ,
we have CP(v) = select0(i) if and only if DFT(v) = i + 1, that is v is the i + 1-th node in
depth-first traversal order, also counting the root. We further write open(x) and close(x) to
identify the matching partner in a (balanced parenthesis) bitvector, that is open(x) for a
position x in B with B[x] = 0 is the position of the 1 matching x and vice versa for close(x).

1.3 Outline of Sections
We will start with the definition of a dual tree T ∗ of T in section 2; according to this
definition, T ∗ is a directed graph, so we still have to prove that T ∗ is a tree, which we
will do immediately afterwards. We proceed by proving (T ∗)∗ = T , arguably necessary for
a well-defined duality. In section 2.1, we then show how to decompose our duality into
subdualities by introducing the definition of a reversed tree ←→T . We conclude by providing
the definition of T̂ as the reversed dual tree; without being able to provide a proof at this
point, note that T̂ will turn out to be the tree from (8).

In section 3, we provide the definition of a primal-dual ancestor, which is crucial for
re-interpreting RMQ’s in terms of the notions of duality provided here. Upon having proven
the unique existence of the primal-dual ancestor in theorem 13, we re-interpret RMQ’s, and
beyond that not only re-interpret, but also improve on running minimal length interval
queries (MLIQ’s) both in terms of space requirements and query counts.

We will finally prove our main theorem in section 4.

I Theorem 1. Let T be a tree and let the reversal ←→B of a bitvector B be defined by←→
B [x] := 1−B[n− x + 1], ∀x ∈ {1, . . . , n}. Then

BP(T) =
←−−−−−−−→
DFUDS(T ∗). (9)

Returning to [8], we will finally demonstrate that (7), our motivating insight, indeed
holds.

2 Tree Duality: Definition

I Definition 2 (Dual tree). Let T be a tree. The dual tree T ∗ of T is a directed graph that
has the same vertices as T . Edges and order (among nodes sharing a parent) are given by
the following rules, where we write pa∗(v) for the parent of v in T ∗:

Rule 1a: The root r of T is also the root of T ∗, that is r has no parent also in T ∗.
Rule 1b: If v = rmcT (r) then also v = rmcT ∗(r), implying in particular that pa∗(v) = r.
Rule 2: If v = rmcT (u) with u 6= r, then v = ilsT ∗(u), implying that pa∗(v) = pa∗(u).
Rule 3: If v = ilsT (u), then v = rmcT ∗(u), implying that pa∗(v) = u.

R. Chikhi and A. Schönhuth 18:5

u

T[u]

T T*1 1

2
u

2

3

3

5

5

66

BP(T) = (((()()))())
BP(T*) = (((())()()))

DFUDS(T) = ((()()(())))
DFUDS(T*) = (()((()())))

Figure 1 A tree and its dual, along with the BP and DFUDS representations. A subtree T [u] is
also highlighted, along with the corresponding nodes in the dual.

I Remark. Rules 1a, 1b, 2 and 3 immediately imply that T ∗ is a directed graph where each
node other than r has one parent. Note that the existence of a parent due to Rule 2 is
guaranteed by induction on the depth of a node in T , where Rule 1b makes the start.

I Remark. It is similarly immediate to observe that there is a well-defined order among
nodes that share a parent. It suffices to notice that in T ∗ each node either is a rightmost
child (Rules 1b, 3), or it is the (unique) immediate left sibling of another node (Rule 2).

All nodes but r have exactly one (incoming) edge, which implies |E|= |V |−1. To conclude
that T ∗ is a tree, it remains to show that T ∗ contains no cycles, which we immediately do:

I Theorem 3. T ∗ is a well-defined, rooted, ordered tree.

We do this by explicitly specifying the parents of nodes in T ∗, by making use of the
depth-first traversal order < in T . For this, let T [v] be the subtree of T that hangs off (and
includes) v ∈ T , i.e. T [v] contains v and all its descendants in T . Let further

R[v] := {u ∈ T \ T [v] | v < u}

be all nodes “right of” v according to depth-first traversal order. For two nodes u, v where u

is an ancestor of v, we immediately note that

T [v] ⊂ T [u], R[u] ⊂ R[v] and R[v] ⊂ T [u] ∪ R[u] (10)

For a node v ∈ T \ {r}, we then obtain the following lemma:

I Lemma 4.

pa∗(v) =
{

min R[v] R[v] 6= ∅
r R[v] = ∅

We refer to the Appendix of the full version [4] for the proof of Lemma 4. Using Lemma 4, a
proof of theorem 3 can be immediately given:

Proof of Theorem 3. Lemma 4 implies that v <T pa∗(v) for all v ∈ T \ {r}. Therefore, T ∗

can contain no cycles and we obtain that T ∗ is a tree as a corollary. Furthermore, lemma 4
reveals that T ∗ is unique. J

See again the Appendix of [4] for immediate corollaries which point out how parents and
subtrees in T ∗ relate with one another.

CPM 2018

18:6 Tree Representation Duality

1
−∞

2
2

3
7

4
8

5
1

6
6

7
4

8
3

9
5A

1

2

3

4

5

6 7 8

9
T [A]

1
−∞

2
5

3
3

4
4

5
6

6
1

7
8

8
7

9
2 ←→

A

1

2 3

4

5

6

7 8 9

T [←→A]

1

9 8

7

6

5

4 3 2

(T [A])∗

Figure 2 (left) An array A along with the 2D-Min-Heap T [A]. Arcs above array indices indicate
tree paths. (middle) The dual tree (T [A])∗. (right) The reversed array ←→A along with the 2D-Min-
Heap T [←→A].

I Remark. An intuitive guideline for describing T ∗ in comparison to T is that parent- and
siblinghood, as well as left and right are exchanged. In other words (and as will become
clearer explicitly later) the duality describing T ∗ can be decomposed into two subdualities,
one of which turns parents into siblings and vice versa, and the other one of which exchanges
left and right.

This remark had left us with some choices for characterizing tree duality. Our choice is
motivated by [9], arguably a cornerstone in RMQ theory development. To understand this,
let A = A[1, n] be the array, on which RMQ’s are to be run, and let ←→A be its reversal, given
by ←→A [i] = A[n− i + 1]. Let T [A] be the 2D-Min-Heap constructed from A, as described in
[9] (a definition is provided in the Appendix of [4],

to which RMQ’s refer (see (2),(3),(4)). An immediate question to ask is what RMQ’s
would look like when performing RMQ’s on ←→A instead of A. Here is the answer.

I Theorem 5. Let A[1, N] be an array and let ←→A := [A[N], ..., A[1]] its reversal. Then

(T [A])∗ = T [←→A] (11)

An illustration of the Theorem is provided in Figure 2. See the Appendix of [4] for a more
detailed treatment of this motivating example, including proofs. Thanks to theorem 5, the
definition of T ∗ can arguably be considered a most natural choice, at least when relating
tree duality with RMQ’s.

Before proceeding with results on succinct tree representations, we provide the following
intuitive lemma about the depth-first traversal order of T ∗ as a rooted, ordered tree. This
lemma, in combination with lemma 4, supports the (intended) intuition that in T ∗ up and
down, as well as left and right, are exchanged, properties that are characteristic for rooted,
ordered tree duality. It also provides motivation beyond theorem 5 in the Introduction why
T ∗ is the possibly canonical choice of the dual of a tree.

Therefore, let <∗ denote the depth-first traversal order in T ∗ (well-defined by theorem 3)
while < denotes the depth-first traversal order in (the primal tree) T .

I Lemma 6. Let u, v ∈ T \ {r}. Then

u <∗ v if and only if v < u

R. Chikhi and A. Schönhuth 18:7

The proof of lemma 6 makes use of the following technical lemmata 7 and 8, which are of use
also elsewhere. We therefore state these technical lemmata here. The proofs for all lemmata
6, 7 and 8 can finally be found in the Appendix of [4].

I Lemma 7. Let w := pa∗(v) and v2 ∈ T [v] \ v such that pa∗(v2) = w. Then v2 <∗ v.

I Lemma 8. Let v1 be a sibling left of u1 in T . Then T [v1] ⊂ T ∗[u1].

With lemma 6 proven, we can conclude with proving a main theorem of this treatment. It
states that the dual of the dual is the primal tree, arguably a key property for a sensibly
defined duality. Despite all lemmata raised so far, the proof still entails a few technically
more demanding arguments.

I Theorem 9. (T ∗)∗ = T

Proof. It suffices to show that pa∗∗(v) = pa(v), since lemma 6 establishes that the order in
(T ∗)∗ agrees with that of T . Let u = pa(v). In the Appendix of [4], we provide a (heavily
technical) proof that

u =
{

min<∗ R∗[v] R∗[v] 6= ∅
r R∗[v] = ∅

which completes the proof by applying lemma 4. J

2.1 Tree Reversal
We bring in another, simpler notion of tree duality, namely that of reversing trees. We will
further elucidate what the trees are like when combining tree reversal with the tree duality
(T ∗) raised earlier.

I Definition 10 (Reversed tree). Let T be a tree. The reversed tree ←→T of T is the tree
resulting from reversing the order among the children of each node.

I Proposition 11. Let ←→T be the reversed tree of T and
←→
T ∗ be the reversed dual of T . We

define irs (immediate right sibling) and lmc (left-most child) similarly as in Section 1.2.
(a) The root r of T is also the root of ←→T .
(b) Let u = paT (v). Then also u = pa←→

T
(v).

(c) Let u = ilsT (v). Then u = irs←→
T

(v).
(d) The root r of T is also the root of

←→
T ∗ .

(e) If v = lmcT (r) then also v = lmc←→
T ∗ (r), implying in particular that pa←→

T ∗ (v) = r.
(f) If v = lmcT (u) with u 6= r, so v = ils←→

T ∗ (u), implying that pa←→
T ∗ (v) = pa←→

T ∗ (u).
(g) If v = ilsT (u), then v = lmc←→

T ∗ (u), implying that pa←→
T ∗ (v) = u.

(h)
←→
T ∗ =←→T

∗
, that is the reversed dual tree of T is the dual of the reversed tree of T .

All of those are, in comparison with statements referring to the definition of the dual
tree, rather obvious observations. See the Appendix of [4] for the proof.

Since ←→T
∗
plays a particular role in the context of our introductory motivation, we give it a

particular name: T̂ .

I Definition 12 (Reversed dual tree). Let T be a tree. The tree T̂ :=←→T
∗
of T is the dual of

the reversed (or the reversed dual) tree of T .

CPM 2018

18:8 Tree Representation Duality

Based on proposition 11, we realize that T̂ can be described as turning leftmost children into
immediate left siblings.
I Remark. Following the arguments provided in [8], it becomes evident that the tree T in
use there, on which BP(T) is constructed, turns indeed out to be T̂ [A] =

←−−→
T [A]∗.

3 The Primal-Dual Ancestor

The following theorem points out that pairs of nodes have a unique primal-dual ancestor.
We will further point out properties of that node.

I Theorem 13. Let v1, v2 ∈ T \ {r} be two nodes where v1 ≤ v2. Then there is a unique
node v ∈ T \ {r} such that v1 ∈ T ∗[v] and v2 ∈ T [v].

We henceforth refer to this unique node as primal-dual ancestor of v1 and v2, written
pda(v1, v2).

Proof. Let

v := max
<T

{v1 ≤ x ≤ v2 | v1 ∈ T ∗[x]} (12)

be, relative to depth-first traversal order in T , the largest ancestor of v1 in T ∗ that precedes
v2. We claim that v is the unique primal-dual ancestor of v1 and v2.

By definition, we immediately obtain that v1 ∈ T ∗[v]. To prove v2 ∈ T [v], consider pa∗(v),
for which, by choice of v, we have that v2 < pa∗(v). By lemma 4, however, pa∗(v) is the
first node in R[v], relative to depth-first traversal order in T . Hence, for any y such that
v ≤ y < pa∗(v), which includes v2, it holds that y ∈ T [v].

It remains to show that v is the only possible primal-dual ancestor. By definition of the
primal-dual ancestor, v must be an ancestor of v1 in T ∗.

First, consider an ancestor y of v1 in T ∗ such that y < v. By choice of v, it holds that
pa∗(y) ≤ v2, while pa∗(y) ∈ R[y]. This implies that also v2 ∈ R[y], and not v2 ∈ T [y], hence
y cannot be a primal-dual ancestor of v1 and v2.

Second, consider an ancestor y of v1 in T ∗ such that v < y. Because v is an ancestor of
v1 in T ∗, and y is larger than v, y is also an ancestor of v in T ∗. By lemma 4, we know that
y ∈ R[v]. This, in combination with v2 ∈ T [v] implies that v2 < y, hence, y cannot be an
ancestor of v2 in T . J

For the following theorem, let

depthT (v1, v2) := min{depthT (y) | v1 ≤ y ≤ v2}

be the minimal depth of nodes between (and including) v1 and v2.

I Theorem 14. Let v1, v2 ∈ T \ {r} such that v1 < v2. It holds that

pda(v1, v2) = max
<
{v1 ≤ x ≤ v2 | depthT (x) = depthT (v1, v2)} (13)

That is, according to depth-first traversal order in T , the primal-dual ancestor is the greatest
node whose T -depth is minimal among all nodes between (and including) v1 and v2.

The proof is based on the following lemma:

I Lemma 15. Let v < w such that w ∈ T [pa∗(v)]. Then it holds that

depthT (v, w) = depthT (pa∗(v)) (14)

R. Chikhi and A. Schönhuth 18:9

See the Appendix of [4] for a proof of lemma 15 and then theorem 14.

Note immediately that theorem 14 implies that v can be found in O(1) runtime, by performing
a range minimum query on the excess array D of BP(T), defined by D[x] := rank1(x)−rank0(x)
where rank refers to BP(T). Since D[x + 1] − D[x] ∈ {−1, +1}, an RMQ on D means
performing a ±1-RMQ, for which convenient solutions exist [1].

Re-interpretation of RMQ’s. Because it was shown [9], that the node in the 2D-Min-Heap
T [A] that corresponds to the solution of rmqA(i, j) is given by the right hand side of (13),
theorems 13 and 14 allow for a reinterpretation of an RMQ query rmqA(i, j) on an array A

(without going into details here, because the proof is an easy exercise based on collecting
facts from here, [9] and [8]).
1. Determine the node v in T [A] corresponding to i.
2. Determine the node w in T [A] corresponding to j.
3. Determine pda(v, w) in T [A]; return the corresponding index io.

Re-interpretation and improvement of Minimal Length Interval Queries (MLIQ). To
illustrate the potential practical benefits of our treatment, we further revisit the problem of
minimal length interval queries (MLIQ). The improvements we will be outlining are similar
in spirit to the ones delivered in [8]. However, based on our results, they are considerably
more convenient to obtain.

I Problem 16 (MLIQ). Let ([ai, bi])i∈{1,...,n}, ai, bi ∈ N such that ai ≤ bi for all i ∈ {1, ..., n}
and ai < aj and bi < bj for i < j.

Input: (a, b) such that a < b

Output: The index i0 such that [ai0 , bi0] is the shortest interval that contains [a, b], if
such an interval exists.

This problem makes part of other relevant problems, for example the shortest unique
interval problem. In this context, a solution for the MLIQ problem was presented in [12]
that requires O(bn log bn) space to answer the query in O(1) time. Therefore, the following
strategy was suggested.

Let li := |bi − ai + 1| be the length of the i-th interval, A := [l1, ..., ln] and T [A] the
corresponding 2D-Min-Heap.

1. imin := min{i | bi > b}, imax := max{i | ai < a}; if imax < imin output ’None’.
2. Determine nodes v, w ∈ T [A] corresponding to imin, imax.
3. Determine pda(v, w) ∈ T [A]; output its index.

The solution presented in [12] can immediately be improved by employing bitmaps for
the first step (which, according to [18], requires O(n log(bn/n)) + o(bn) space). Steps 2 and
3 then reflect an ordinary RMQ, which can be dealt with following [8]. In terms of query
counts, Step 1 reflects two rank queries, while the resulting RMQ, following [8], requires two
select’s, one ±1-rmq, and one rank.

If |ai− ai−1|, |bi− bi−1| are in O(log n) (which applies for several important applications),
further improvements can be made based on suggestions made in [20] for BP representations
of trees with weighted parentheses. For that, we construct Ta = T [A] and Tb =

←−→
T [A]. We

then assign weights wa,i := |ai− ai−1| to i + 1-st opening parenthesis in Ta, whereas in Tb we
assign wb,i := |bi− bi−1| to the i-th closing parentheses (where a0 = b0 = 0; we recall that the
number of non-root nodes in T [A] is n). When aiming at running queries presented in [20],

CPM 2018

18:10 Tree Representation Duality

this requires 2n log log n + o(n) bits of space, an improvement over O(n log(bn/n)) + o(bn)
for the above, naive approach. Following [20], let bpselectwa,0(a), bpselect0,wb

(b) be defined
by selecting the largest index in the balanced parenthesis vector such that adding up all
weights attached to opening parentheses (wa) is at most a, or adding up all weights attached
to closing parentheses (wb) is at most b. We can then run
1. w := bpselectwa,0(a) in Ta and v := 2n−bpselect0,wb

(b) + 3 in Tb; if v > w output ’None’
2. Determine pda(v, w) ∈ Ta; output its index.

In comparison to the naive approach from above, this makes two bpselect queries, instead
of two rank’s and two select’s. The decisive trick is to place a and b directly into T [A], which
avoids determining indices imin, imax first, which subsequently need to be placed. Beyond
the improvements in terms of space and query counts, we argue that this solution reflects all
symmetries inherent to the MLIQ problem in a particularly compact manner.

4 Relating BP and DFUDS representations

We will use the following construction to set up a tree induction for proving our main theorem.

I Definition 17 (Tree joining operation). Let T1 and T2 be two trees, let r2 be the root of T2,
rmcT2(r2) needs to exist and be a leaf. The notation T1 y T2 will denote a new tree formed by
taking T2 and inserting the children of the root of T1 as children of the rightmost child of the
root of the new tree. Extend this operation to n trees T1, . . . , Tn where T2, . . . , Tn all satisfy
the same property as T2 above, in the following way: T1 y T2 y T3 = (T1 y T2) y T3 and
so on,

T1 y T2 . . . y Tn = ((. . . ((T1 y T2) y T3) y . . .) y Tn).

I Observation 18. Let T be a tree such that its root r has a single child c (that may or may
not be a leaf). Then in T ∗, by Rule 1b, rmcT ∗(r) = c and is a leaf.

The following Lemma (proven in the Appendix of [4])
relates the dual tree to the tree joining operation. We will use the r → T notation to

denote a new tree formed by adding a new root r as a parent of the root of T .

I Lemma 19. Let T be a tree consisting of a root r and n ≥ 1 subtrees A1, A2, . . . , An as
children. When n = 1, T ∗ is (r → A1)∗. When n ≥ 2, T ∗ is (r → A1)∗ y (r → A2)∗ y
. . . y (r → An)∗.

We are now ready to prove Theorem 1. Parentheses in BP and DFUDS representations
will be denoted by (and) to avoid confusion with usual mathematical parentheses. Recall
that we use ←→s to mirror a string s of parentheses, e.g.

←→
(() = ()) and

←→
)() = ()(.

Proof of Theorem 1. Let T be a tree with n subtrees A1, . . . , An. It is clear that BP(T) =
(BP(A1)BP(A2) . . . BP(An)). Observe that for two trees T1 and T2 with roots v1 and v2,
and where rmcT1(v1), rmcT2(v2) both exist and are leaves,

DFUDS(T1 y T2) = (DFUDS(T2 \ rmcT2(v2))DFUDS(T1 \ rmcT1(v1))).

In fact, one can show recursively that such a decomposition can be extended to T1 y
. . . y Tn. We will now prove the theorem with a tree structural induction. Observe that for
a tree T of depth 1 (a single root node),

BP(T) = () = DFUDS(T ∗) =
←−−−−−−−→
DFUDS(T ∗).

R. Chikhi and A. Schönhuth 18:11

Now, assume the theorem equality is true for trees of depth i and we will show it for
trees of depth i + 1. A tree T of depth i + 1 can be decomposed into a root node r and n

subtrees A1, . . . , An that are all of of depth ≤ i with roots a1, . . . , an. Using Lemma 19,

DFUDS(T ∗) = DFUDS((r → A1)∗ y (r → A2)∗ y . . . y (r → An)∗).

By the recursive decomposition that we observed above, and using Observation 18 stating
that the rightmost child of r in (r → Ai)∗ is a leaf,

DFUDS(T ∗) = (DFUDS((r → An)∗ \ {an}) . . . DFUDS((r → A1)∗ \ {a1})).

Observe that we can take each DFUDS term in the expression above and wrap it around
parentheses, i.e. (DFUDS((r → Ai)∗ \ {ai}) which is equal to DFUDS((r → Ai)∗). Further-
more, note the following identity: DFUDS((r → Ai)∗) = (DFUDS(A∗i)). And by inductive
hypothesis, DFUDS(A∗i) =

←−−−→
BP(Ai), thus DFUDS((r → Ai)∗ \ {ai}) =

←−−−→
BP(Ai). Hence,

←−−−−−−−→
DFUDS(T ∗) = (BP(A1) . . . BP(An)) = BP(T). J

Proving (7) from the Introduction. Eventually, we also realize that BP(←→T) =
←−−→
BP(T)

and also DFUDS(←→T) =
←−−−−−−→
DFUDS(T), both of which is straightforward [?]. Using this in

combination with theorems 9 and 1, we obtain

DFUDS(T [A]) [?]=
←−−−−−−−−→
DFUDS(

←−→
T [A]) T h.9=

←−−−−−−−−−−−→
DFUDS((

←−→
T [A]

∗
)∗) T h.1= BP(

←−→
T [A]

∗
) D.12= BP(T̂ [A])

which establishes equation (7) from the introduction.

Conclusive Remarks. In summary, we have provided a framework that unifies BP and
DFUDS. From a certain point of view, we have pointed out that neither should BP based
approaches have advantages over DFUDS based approaches, nor vice versa. As an exemplary
perspective of our framework, BP based treatments such as [17, 20] might have an easier
grasp of the advantages that DFUDS based approaches bring along. Finally, we consider
it interesting future work to also characterize trees that put BP and/or DFUDS based
representations into context with LOUDS based representations.

References
1 M. Bender and G. Farach-Colton. The LCA problem revisited. Proc. 4th LATIN, LNCS

1776:88–94, 2000.
2 D. Benoit, E.D. Demaine, J.I. Munro, R. Raman, V. Raman, and S.S. Rao. Representing

trees of higher degree. Algorithmica, 43(4):275–292, 2005.
3 O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal of

Computing, 22(2):221–242, 1993.
4 R. Chikhi and A. Schönhuth. Dualities in Tree Representations. ArXiv e-prints, 2018.

arXiv:1804.04263.
5 Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct representations

of binary trees. Mathematics in Computer Science, 11(2):177–189, 2017. doi:10.1007/
s11786-017-0294-4.

6 O. Delpratt, N. Rahman, and R. Raman. Engineering the LOUDS succinct tree represent-
ation. In Proc. of the WEA, LNCS 4007, pages 134–145, 2006.

CPM 2018

http://arxiv.org/abs/1804.04263
http://dx.doi.org/10.1007/s11786-017-0294-4
http://dx.doi.org/10.1007/s11786-017-0294-4

18:12 Tree Representation Duality

7 Arash Farzan, Rajeev Raman, and S. Srinivasa Rao. Universal succinct representations of
trees? In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikolet-
seas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Inter-
national Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part
I, volume 5555 of Lecture Notes in Computer Science, pages 451–462. Springer, 2009.
doi:10.1007/978-3-642-02927-1_38.

8 H. Ferrada and G. Navarro. Improved range minimum queries. Journal of Discrete Al-
gorithms, 43:72–80, 2017.

9 J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries
on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

10 H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques for geometry
problems. In Proc. 16th STOC, pages 135–143, 1984.

11 R. Grossi and G. Ottaviano. Design of practical succinct data structures for large data
collections. In Proceedings of the 12th SEA, volume LNCS 7933, pages 5–17, 2013.

12 X. Hu, J. Pei, and Y. Tao. Shortest unique queries on strings. In Proceedings of the
International Symposium on String Processing and Information Retrieval (SPIRE), pages
161–172, 2014.

13 G. Jacobson. Space-efficient static trees and graphs. In Proc. of the FOCS, pages 549–554,
1989.

14 J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered trees.
In Proc. of the SODA, pages 575–584, 2007.

15 J.I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal of Computing, 31(3):762–776, 2001.

16 G. Navarro, Y. Nekrich, and L.M.S. Russo. Space-efficient data analysis queries on grids.
Theoretical Computer Science, 482:60–72, 2013.

17 G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees. ACM
Transactions on Algorithms, 10(3), 2014. Article 16.

18 R. Raman, V. Raman, and S.R. Sattie. Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4),
2007.

19 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

20 D. Tsur. Succinct representation of labeled trees. Technical Report 1312.6039, ArXiV,
2015.

21 J. Vuillemin. A unifying look at data structures. Communications of the ACM, 4:229–239,
1980.

http://dx.doi.org/10.1007/978-3-642-02927-1_38

Longest Lyndon Substring After Edit
Yuki Urabe
Department of Electrical Engineering and Computer Science, Kyushu University, Japan
yuki.urabe@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

https://orcid.org/0000-0002-6856-5185

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word.
LLS(T) denotes the length of the longest Lyndon substring of a string T . In this paper, we
consider computing LLS(T ′) where T ′ is an edited string formed from T . After O(n) time and
space preprocessing, our algorithm returns LLS(T ′) in O(logn) time for any single character edit.
We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a
given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T ′)
in O(l log σ + logn) time for any block edit where σ is the number of distinct characters in T .
We can modify our algorithm so as to output all the longest Lyndon substrings of T ′ for both
problems.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Lyndon word, Lyndon factorization, Lyndon tree, Edit operation

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.19

Funding This work was supported by JSPS KAKENHI Grant Numbers JP17H06923 (YN),
JP17H01697 (SI), JP16H02783 (HB), and JP25240003 (MT).

1 Introduction

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its
non-empty proper suffixes. An equivalent definition of Lyndon words is a string w which
is lexicographically smaller than any of its cyclic rotations. For instance, aab is a Lyndon
word, but its cyclic rotations aba and baa are not. Lyndon words have many important
combinatorial properties in stringology, and have various applications in, e.g., musicology [7],
bioinformatics [12], approximation algorithms [21], string matching [9, 6, 23], combinatorics
on words [3, 15, 24], and free Lie algebras [20].

© Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 19; pp. 19:1–19:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuki.urabe@inf.kyushu-u.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:takeda@inf.kyushu-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Longest Lyndon Substring After Edit

In stringology, Lyndon words are closely related to repetitive structures. A string w
is said to be primitive if there do not exist an integer k and a string x such that w = xk.
For any primitive string w, ww contains one or two Lyndon words of length |w|. Recently,
Bannai et al. showed that the maximum number of maximal repetitions in a string of length
n, is less than n [3]. A key idea of their proof relied on the notion of the longest Lyndon word
that starts at each position of the string. There are several recent studies on Lyndon trees
and Lyndon arrays [14, 10, 22], which are closely related to longest Lyndon word because
they represent all the longest Lyndon words in a given string. Although these structures
take linear space and can be computed in linear time for an integer alphabet, they are not
easy to maintain when allowing dynamic edit operations, since the structures may change a
lot, even for a single character edit operation.

Although fully dynamic data structures are difficult in general, Amir et al. considered a
new type of problem concerning the Longest Common Factor problem [1]. The goal there
was to compute, given strings S and T , the longest common factor of strings S and T ′ where
T ′ is a string which is obtained by a single character edit operation on T . Their algorithm
uses O(n log4 n) expected time and O(n log3 n) space for preprocessing, and then for any
single character edit query, the LCF can be answered in O(log3 n) time. The important and
interesting aspect of this problem setting is that all edit queries are on the original string T ,
and the edited string is not maintained for subsequent edit queries.

In this paper, we consider the problem of computing the longest Lyndon substring after
a single (character or block) edit operation. Let LLS(T) be the length of the longest Lyndon
substring of a string T of length n. We first consider the problem of computing LLS(T ′) for
any single character edit (substitution, insertion, deletion) where T ′ is the string obtained
after the edit operation on T . We then extend the problem that asks for LLS(T ′) for
any single block edit, where T ′ is the string obtained by replacing a substring of T with a
given string of length l specified in the edit query. For single character edit operations, our
algorithm runs in O(logn) time for each edit query after O(n) time and space preprocessing.
For block edit operations, our algorithm runs in O(l log σ + logn) time for each edit query
after O(n) time and space preprocessing, where σ is the number of distinct characters in
T . We can modify our algorithm so as to output all the longest Lyndon substrings of T ′ for
both problems.

The rest of this paper is organized as follows. In Section 2, we state some definitions and
properties on strings. In Section 3, we propose our algorithm for a version of the problem
with single character edits. In Section 4, we show our algorithm for a version of the problem
with single block edits. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Strings and model of computation
Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the set
of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a
prefix, substring, and suffix of w, respectively. A prefix x, a substring y, and a suffix z of w
are called a proper prefix, a proper substring, and a proper suffix of w if x 6= w, y 6= w, and
z 6= w, respectively. The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|.
For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that
begins at position i and ends at position j. For convenience, let w[i..j] = ε when i > j. For
any string w let w1 = w, and for any integer k ≥ 2 let wk = wwk−1, i.e., wk is a k-times
repetition of w.

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 19:3

If character a is lexicographically smaller than another character b, then we write a ≺ b.
For any strings x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We
write x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.

Our model of computation is the word RAM. We assume the computer word size is at
least dlog2 |w|e, and hence, standard operations on values representing lengths and positions
of string w can be manipulated in O(1) time. Space complexities will be determined by the
number of computer words (not bits).

2.2 Lyndon words and Lyndon factorization of strings

A string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all
of its non-empty proper suffixes. The longest Lyndon substring of a string w is the longest
substring of w which is a Lyndon word. LLS(w) denotes the length of the longest Lyndon
substring of a string w.

The Lyndon factorization of a string w, denoted LFw, is the factorization `p1
1 , . . . , `

pm
m

of w, such that each `i ∈ Σ+ is a Lyndon word, pi ≥ 1, and `i � `i+1 for all 1 ≤ i < m.
The size of LFw, denoted by |LFw|, is m. LFw can be represented by the sequence
(|`1|, p1), . . . , (|`m|, pm) of integer pairs, where each pair (|`i|, pi) represents the i-th Lyndon
factor `pi

i of w. Note that this representation requires O(m) space.
In the literature, the Lyndon factorization is sometimes defined to be a sequence of

lexicographically non-increasing Lyndon words, namely, each Lyndon factor `p is decomposed
into a sequence of p `’s. In this paper, each Lyndon word ` in the Lyndon factor `p is called a
decomposed Lyndon factor. We also refer to the factorization by decomposed Lyndon factors
as the decomposed Lyndon factorization.

I Lemma 1 ([13]). For any string w, we can compute LFw in O(|w|) time.

For any string w, let LFw = `p1
1 , . . . , `

pm
m . Let lfbw(i) denote the position where the

i-th Lyndon factor begins in w, i.e., lfbw(1) = 1 and lfbw(i) = lfbw(i − 1) + |`pi−1
i−1 | for any

2 ≤ i ≤ m. For any 1 ≤ i ≤ m, let lfsw(i) = `pi

i `
pi+1
i+1 · · · `pm

m and lfpw(i) = `p1
1 `

p2
2 · · · `

pi

i . For
convenience, let lfsw(m+ 1) = lfpw(0) = ε.

2.3 Lyndon tree

Given a Lyndon word w of length |w| > 1, (u, v) is the standard factorization [8, 19] of w,
if w = uv and v is the longest proper suffix of w that is a Lyndon word, or equivalently,
the lexicographically smallest proper suffix of w. It is well known that for the standard
factorization (u, v) of any Lyndon word w, the factors u and v are also Lyndon words (e.g.[4]).
The Lyndon tree of w is the full binary tree defined by recursive standard factorization of w;
w is the root of the Lyndon tree of w, its left child is the root of the Lyndon tree of u, and
its right child is the root of the Lyndon tree of v. The longest Lyndon word that starts at
each position can be obtained from the Lyndon tree, due to the following lemma.

I Lemma 2 (Lemma 5.4 of [3]). Let w be a Lyndon word with respect to ≺. w[i..j] corresponds
to a right node (or possibly the root) of the Lyndon tree with respect to ≺ if and only if w[i..j]
is the longest Lyndon word with respect to ≺ that starts from i.

CPM 2018

19:4 Longest Lyndon Substring After Edit

2.4 Longest Common Extension
For any string w, the longest common extension query is, given two positions 1 ≤ i, j ≤ |w|,
to answer

LCEw(i, j) = max{k | w[i..i+ k − 1] = w[j..j + k − 1], i+ k − 1, j + k − 1 ≤ |w|}.

By using suffix tree [26] of w and the Lowest Common Ancestor query (also called Nearest
Common Ancestor) [16] on the suffix tree, we can compute any LCE query in constant time
after O(|w|) time and space preprocessing.

3 Longest Lyndon substring after 1-edit

In this paper, we consider three edit operations, i.e., substitution, insertion and deletion. Let
T ′ be the string which was edited at a given position from a string T of length n. A 1-edit
longest Lyndon substring query (1-edit LLS) asks us to return LLS(T ′).

Firstly, we explain a basic property of LLS(T) and give a naïve solution. The following
lemma can be obtained by the definition of Lyndon factorization.

I Lemma 3. For any string T , LLS(T) is the length of the longest decomposed Lyndon
factor of LFT .

Proof. Let x be the longest Lyndon substring of T . Suppose that x is not a decomposed
Lyndon factor of LFT . If x is a proper substring of a decomposed Lyndon factor y, then
y is a Lyndon substring which is longer than x. This implies that x contains a boundary
of consecutive decomposed factors. Let x = stu where s is a suffix of some decomposed
Lyndon factor and u is a prefix of some Lyndon decomposed factor (s, u ∈ Σ+, t ∈ Σ∗). By
the definition of Lyndon factorization, s � u holds. Thus, x is not a Lyndon word. J

This fact can be obtained by Observation 3 of [14] in a different context. Due to this
lemma, computing LFT leads to the longest Lyndon substring of T . Since we can compute
LFT ′ in O(n) time by using Duval’s algorithm [13], we can compute LLS(T ′) in O(n) time
for each query.

I Example 4 (1-edit LLS). Let T = acbabcabcabac. Since LFT = acb, (abc)2, abac, the
longest Lyndon substring of T is abac. (substitution) If the second c is replaced by b, then
the longest Lyndon substring of T ′ is abbabc since LFT ′ = acb, abbabc, abac. (insertion) If
a is inserted at the position preceded by the last b, then the longest Lyndon substrings of T ′
are acb, abc, aac since LFT ′ = acb, (abc)2, ab, aac. (deletion) If the second a from the last is
deleted, then the longest Lyndon substring of T ′ is abcabcbac since LFT ′ = acb, abcabcbac.

Our goal of this paper is the following.

I Theorem 5. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute LLS(T ′) in O(logn) time for each 1-edit query.

In this section, we explain our algorithm for substitution operations. We can solve our
problem for the other two types of operations in a similar way.

More formally, for substitutions, let T ′ = T [1..e− 1] · α · T [e+ 1..n] = Tp · α · Ts where
α ∈ Σ. In our algorithm, we compute LFT ′ by concatenating LFTp , LFα, and LFTs . I et
al. [18] showed an efficient algorithm to compute LFuv from LFu and LFv for any string
u, v (we will explain in Section 3.1). Hence, we can use this concatenation algorithm to
compute LFT ′ . The rest of this section is organized as follows. In Section 3.2, we show
how to compute LFTp . In Section 3.3, we explain how to characterize LFTs . Finally, we
summarize our algorithm in Section 3.4.

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 19:5

3.1 Overview of computing Lyndon factorization by concatenation
Here, we explain an overview of a Lyndon factorization algorithm which was proposed by I
et al. [18]. This algorithm computes the Lyndon factorization of the concatenation of two
strings by using their Lyndon factorizations.

For any string u and v, let LFu = up1
1 , . . . , u

pm
m and LFv = vq1

1 , . . . , v
qm′
m′ . Then, LFuv is

characterized as follows.

I Lemma 6 ([2, 11]). LFuv = up1
1 . . . upc

c z
kv
qc′
c′ . . . v

qm′
m′ for some 0 ≤ c ≤ m, 1 ≤ c′ ≤ m′+ 1

and LF lfsu(c+1)lfpv(c′−1) = zk.

This lemma implies that there is at most one new Lyndon factor zk (each of the other
Lyndon factors of LFuv is also a Lyndon factor of LFu or LFv). By a simple observation,
we can consider three cases as follows.

If um � v1, then LFuv = LFu,LFv(z = ε).
If um = v1, then LFuv = up1

1 , . . . , u
pm−1
m−1 , u

pm+q1
m , vq2

2 , . . . , v
qm′
m′ (z = um = v1).

If um ≺ v1, there exists the medial decomposed factor z which begins in u and ends in v.
In the first two cases, we can compute LFuv by one lexicographic string comparisons. In the
third case, computing the medial decomposed Lyndon factor z leads to computing LFuv.

I Lemma 7 (Lemma 16 of [18]). Assume that LFu and LFv have been computed. Then, we
can compute the medial decomposed Lyndon factor z by O(log |LFu|+log |LFv|) lexicographic
string comparisons.

A key point of that result is that the medial decomposed Lyndon factor z satisfies the
following properties.

The beginning position of z is equal to lfbu(i) such that lfsu(1)v � . . . � lfsu(i)v ≺ . . . ≺
lfsu(m+ 1)v.
The ending position of z is equal to lfbv(j)− 1 such that lfsv(1) � lfsv(j− 1) � lfsu(i)v �
lfsv(j) � . . . � lfsv(m′ + 1).

From these monotonous conditions of suffixes which begin at the beginning position of
some Lyndon factor, we can compute the beginning position and the ending position of z,
respectively, by a binary search. After computing z, we can compute the Lyndon factor zk
by checking whether ui−1 (vj) is equal to z or not, respectively (i.e., ui−1 and vj may be
equal to z).

I Example 8. Let LFu = abb, (ab)2, a and LFv = bc, b, abababcb, ab, (a)2. Then, the
medial decomposed Lyndon factor is z = abababcb obtained by Lyndon factors (ab)2, a, bc, b.
Since the decomposed Lyndon factor succeeding to z is also abababcb, we need to pack them.
Thus, LFuv = abb, (abababcb)2, ab, (a)2.

In addition, we can modify the second property for the decomposed Lyndon factorization
of v by using the following property.

I Lemma 9. Let z = lfsu(i)lfpv(j − 1) be the medial decomposed factor of LFuv. Then,
lfsv(j − 1) � vqj−1−1

j−1 lfsv(j) � . . . � vj−1lfsv(j) � lfsu(i)v � lfsv(j) also holds.

3.2 Computing the Lyndon factorization of Tp

The following lemma is a well-known property of Lyndon words and Lyndon factorizations.

CPM 2018

19:6 Longest Lyndon Substring After Edit

ℓ =! a! b! a! b! b! a! b! a! b! b! a! b! b!

|x|! 1! 2! 2! 2! 5! 5! 5! 5! 5! 5! 5! 5! 13!

k! 1! 1! 1! 2! 1! 1! 1! 1! 1! 2! 2! 2! 1!

|x’|! 0! 0! 1! 0! 0! 1! 2! 3! 4! 0! 1! 2! 0!

Figure 1 By Lemma 10, any prefix w of a Lyndon word ` can be represented as w = xkx′. For
instance, ababbababba = (ababb)2a. Thus, we store (|x|, k, |x′|) = (5, 2, 1) for this prefix of `.

I Lemma 10. For any string w which is a prefix of some Lyndon word, there exists a unique
Lyndon word x s.t. w = xkx′ where x′ is a proper prefix of x and an integer k ≥ 1. Moreover,
LFw = xk,LFx′ .

I Lemma 11. We can compute LFTp for any 1 ≤ e ≤ n in O(logn) time after O(n) time
and space preprocessing.

Proof. Let LFT = `p1
1 , . . . , `

pm
m . Assume that lfbT (i) + |`k−1

i | ≤ e < lfbT (i) + |`ki |, i.e., the
edited position e is in the k-th decomposed Lyndon factor of the i-th Lyndon factor. Then,
Tp = `p1

1 · · · `
k−1
i `′i where `′i is a (possibly empty) proper prefix of `i. It is easy to see

that the Lyndon factorization of `p1
1 · · · `

k−1
i is `p1

1 , . . . , `
pi−1
i−1 , `

k−1
i . On the other hand, from

Lemma 10, LF `′
i

= xj , x′ for some integer j ≥ 1 and some Lyndon word x. Since x′ is also a
prefix of Lyndon word x, we can consider LFx′ in the same way. Because x′ must be shorter
than half of `′i, it follows that LF `′

i
consists of at most log |`′i| Lyndon factors. It is easy to

see that LFTp = `p1
1 , . . . , `

k−1
i ,LF `′

i
.

Based on this observation, we show our data structure for computing LFTp . We can
compute LFT in O(n) time and store it in O(|LFT |) space. Let ` be a decomposed Lyndon
factor of T . For each prefix of `, we store a triple (|x|, k, |x′|) based on Lemma 10. An
example is shown in Figure 1. We note that all the triples for T can be computed in O(n)
time by using Duval’s Lyndon factorization algorithm [13] (we can compute them together
with the Lyndon factorization of T).

Now we explain how to compute LFTp by using above data structures. The first (i− 1)
Lyndon factors of LFTp are in LFT . The i-th Lyndon factor of LFTp is `k−1

i (changed only
the exponent of `i). Finally, we have to compute LF `′

i
. The form of LF `′

i
= uj , u′ is stored

as the |`′i|-th triple of `i. If u′ = ε (i.e., the third entry of the triple is 0), then uj is a
Lyndon factor of LFTp . Otherwise, since u′ is a prefix of `i, the form of LFu′ is stored as
the |u′|-th triple of `i. By repeating this recursively at most log |`′i| times, we can obtain
LF `′

i
. Therefore, we can compute LFTp in O(logn) time. J

3.3 The Lyndon factorization of Ts by Lyndon tree
In the previous subsection, we have computed the Lyndon factorization of a prefix of some
Lyndon word, since the number of Lyndon factors of Tp which are not in LFT is bounded
by logn. We also want to compute LFTs , but the size of the factorization can be large.
Hence, we cannot compute LFTs explicitly for each query in order to achieve an O(logn)
time bound. To overcome this problem, we use the Lyndon tree of T , which can represent
the Lyndon factorization of each suffix of T .

Let LFT = `p1
1 , . . . , `

pm
m . Assume that lfbT (i) + |`k−1

i | ≤ e < lfbT (i) + |`ki |, i.e., the
edited position e is in the k-th decomposed factor of the i-th Lyndon factor. Then, Ts =

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 19:7

a!$! a!b!a!a! a!b!b! b!a! b!b!a! a!a!b!

9! 13!5!3!1! 11!7!2! 15!4! 12!10!6! 16!14!8!0!

w
1!

w
2!

w
3!

w
4!

w
5!

w
6!

w
7!

w
8!

w
9!

w
10!

Figure 2 This figure shows the Lyndon tree of $abaababbababaaba and the path
P6 = w1, . . . , w10. P ′

6 is the sequence of internal nodes on P6 which are drawn by
circles, namely, P ′

6 = w1, w2, w4, w5, w8, w9. For this example, Lemma 12 shows that
Rstr(w9), Rstr(w8), Rstr(w5), Rstr(w4), Rstr(w2), Rstr(w1) = b, b, ab, ab, aab, a is the decomposed
Lyndon factorization of T [7..16].

`′′i `
pi−k
i · · · `pm

m where `′′i is a (possibly empty) proper suffix of `i. For convenience, we
introduce a special character $ which is lexicographically smaller than any other characters.
It is easy to see that the string $T is a Lyndon word for any T . We consider LTree($T).
Let Pj = w1, . . . , wh be the path from the root to the leaf which corresponds to T [j] in
LTree($T) (w1 is the root and wh is the leaf), and P ′j = w′1, . . . , w

′
h′ be the sequence of

internal nodes on path P such that the right child of any node on P ′j is not on Pj . For any
node w, Rstr(w) denotes the string which is represented by the rightchild of w (see also
Figure 2). The following lemma shows that the Lyndon tree of $T represents the Lyndon
factorization of any of its suffixes.

I Lemma 12. Rstr(w′h′), . . . ,Rstr(w′1) is the decomposed Lyndon factorization of LFT [j+1..n].

Proof. For any 1 ≤ i < h′, Rstr(w′i+1) is a suffix of the string which is represented by the
leftchild of w′i. Since Rstr(w′i+1) is the longest Lyndon word which begins at that position by
Lemma 2, then Rstr(w′i+1) � Rstr(w′i). It is clear that Rstr(w′h′) · · ·Rstr(w′1) = T [j + 1..n].
Thus Rstr(w′h′), . . . ,Rstr(w′1) is the decomposed Lyndon factorization of T [j + 1..n]. J

It is known that the Lyndon tree of a string can be computed in linear time [17, 3]. We
can compute LTree($T) in O(n) time and space. In addition, for our algorithm, we process
the Lyndon tree so as to be able to answer Level Ancestor Query (shortly LAQ).

I Lemma 13 (Level Ancestor Query [5]). We can pre-process a given rooted tree in linear
time and space so that the i-th node in the path from any node to the root can be found in
O(1) time for any i ≥ 0, if such exists.

For any node w, we also compute na(w) which is the nearest ancestor of w that has w in
the left subtree. This preprocessing can also be done in O(n) time and space.

CPM 2018

19:8 Longest Lyndon Substring After Edit

3.4 Computing the longest Lyndon substring
In the rest of this section, we summarize our method.

Firstly, we compute LFTp based on Lemma 11 in O(logn) time. From LFTp and α, we
compute LFTp·α by O(log |LFTp |) lexicographic string comparisons by using Lemma 6 and 7.
After that, we compute LFT ′ from LFTp·α and LFTs . Let z be the medial decomposed
Lyndon factor in this step. Since we know LFTp·α and Ts, we can compute the beginning
position of z by O(log |LFTp·α|) lexicographic string comparisons on T ′. Then we compute
the ending position of z, by using Lemmas 7 and 9.

In order to compute the ending position, we access the necessary suffixes by considering
the path Pe, defined in Section 3.3, in the LTree($T). The key idea is that we can conduct a
binary search on Pe, and obtain z by O(log h) lexicographic string comparisons on T ′. For
any range of depths on Pe, we can choose the middle node w in the range in constant time
using Lemma 13. If the rightchild of w is on Pe, we choose na(w) as w. We then compare
the suffix of Ts which begins at the beginning position of Rstr(w) and the suffix of T ′ which
begins at the beginning position of z, and recurse on the upper or lower half of the range
depending on the result of the comparison.

Thus we can get LFT ′ by O(logn) string comparisons in total. The number of Lyndon
factors of T ′ such that we should have explicitly is O(logn) (new logn factors in Tp and a
new factor by concatenations). It is easy to see that we can compare lexicographic order
between any substrings of T ′ by constant number of LCE queries on T . Thus, we can
compute LFT ′ in O(logn) time.

We have three candidates as the longest Lyndon substrings.
Unchanged Lyndon factors at prefix.
O(logn) new Lyndon factors.
Unchanged Lyndon factors at suffix.

Since we store O(logn) new Lyndon factors explicitly, we can get the longest Lyndon factor
in this part in O(logn) time. To get the longest decomposed Lyndon factor in the first
candidate, we precompute the rightmost longest Lyndon factor for each prefix of T which is
a concatenation of Lyndon factors (i.e., for each `p1

1 , . . . , `
pi

i). This can be computed in O(n)
time and space. By using this information, we can see the length of longest Lyndon factor in
the first part in constant time. For suffixes of T , we precompute the same data structure as
prefixes. Therefore, we obtain Theorem 5.

It is easy to see that we can return all the longest Lyndon substrings in unchanged part
at prefix and at suffix in linear time w.r.t. the number of such factors. Then, we can get all
the longest Lyndon substrings in T ′.

I Corollary 14. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute all the longest Lyndon substrings of T ′ in O(logn+ occ) time for each
1-edit query where occ is the number of outputs.

4 Longest Lyndon substring after block edit

Here, we consider more general problem called 1-block-edit longest Lyndon substring query
(1-block-edit LLS). Namely, a substring of T is replaced by a given string of length l.

I Example 15 (1-block-edit LLS). Let T = acbabcabcabac. The longest Lyndon substring
of T is abac since LFT = acb, (abc)2, abac. When we are given an interval [2, 3] of T and a
string bac, the longest Lyndon substring of T ′ is abacabcabc since LFT ′ = abacabcabc, abac.
When we are given [8, 10] and an empty string, thte longest Lyndon substring of T ′ is abac
since LFT ′ = acb, abc, abac.

Y. Urabe, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda 19:9

I Theorem 16. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute LLS(T ′) in O(l log σ + logn) time for each 1-block-edit query.

This algorithm is almost similar to the 1-edit version. Let α be a given string of length l.
Firstly, we need to compute LFα in O(l) time. After that we can concatenate three parts
in the similar way. The key difference is that we conduct an additional O(l log σ) time and
O(l) space processing in order to compare any two substrings in T ′ in constant time. Any
comparisons on T ′ can be separated to constant number of comparisons between

a substring in T and a substring in T ,
a substring in α and a substring in α,
a substring in T and a substring in α.

The first one can be done by an LCE query on T . The second one can be done in constant
time after constructing an LCE data structure for α in O(l) time and space. Now we explain
the last case. Assume that we have computed the suffix tree of T in O(n) time preprocessing.
For each of suffixes αi of α, we compute the lowest node in the suffix tree which corresponds
to some prefix of αi. This can be done in O(l log σ) time by using Ukkonen’s suffix tree
construction algorithm [25]. Then we can compare a substring in T and a substring in α
by using LCA queries. Thus we can do any substring comparisons in constant time after
constructing O(l log σ) time and space data structures. Therefore, we obtain Theorem 16.

In the similar way to Section 3, we can get the following.

I Corollary 17. After constructing an O(n)-space data structure of a given string T in O(n)
time, we can compute all the longest Lyndon substrings of T ′ in O(l log σ + logn+ occ) time
for each 1-block-edit query where occ is the number of outputs.

I Remark. If l is constant, we can compare the lexicographic order of any two substrings
in T ′ in constant time (by using constant number of LCE queries and constant number of
character comparisons) without using suffix trees. Then the querying time of Theorem 16
turns out to be O(logn) time. Thus, this result includes Theorem 5.

5 Conclusion

We considered the problem of computing the longest Lyndon substring after 1-edit operation.
We proposed an algorithm which uses O(n) time and space so that for any single block edit
query, the longest Lyndon substring can be answered in O(l log σ+ logn) time where l is the
length of a given query string and σ is the number of distinct characters in T .

Our algorithm in this paper is almost the same for single characters edits and single block
edits, and one of our interests is whether there is a more efficient solution at least for the
case of single character edits.

References
1 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and

Jakub Radoszewski. Longest common factor after one edit operation. In String Processing
and Information Retrieval - 24th International Symposium, SPIRE 2017, Palermo, Italy,
September 26-29, 2017, Proceedings, pages 14–26, 2017.

2 Alberto Apostolico and Maxime Crochemore. Fast parallel Lyndon factorization with ap-
plications. Mathematical Systems Theory, 28(2):89–108, 1995.

3 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The "runs" theorem. SIAM J. Comput., 46(5):1501–1514, 2017.

CPM 2018

19:10 Longest Lyndon Substring After Edit

4 Frédérique Bassino, Julien Clément, and Cyril Nicaud. The standard factorization of Lyn-
don words: an average point of view. Discrete Mathematics, 290(1):1–25, 2005.

5 Michael A. Bender and Martín Farach-Colton. The level ancestor problem simplified. TCS,
321(1):5–12, 2004.

6 Dany Breslauer, Roberto Grossi, and Filippo Mignosi. Simple real-time constant-space
string matching. In Proc. CPM 2011, pages 173–183, 2011.

7 Marc Chemillier. Periodic musical sequences and Lyndon words. Soft Comput., 8(9):611–
616, 2004.

8 K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus. iv. the quotient groups
of the lower central series. Annals of Mathematics, 68(1):81–95, 1958.

9 Maxime Crochemore and Dominique Perrin. Two-way string matching. J. ACM, 38(3):651–
675, 1991.

10 Jacqueline W. Daykin, Frantisek Franek, Jan Holub, A. S. M. Sohidull Islam, and W. F.
Smyth. Reconstructing a string from its Lyndon arrays. Theor. Comput. Sci., 710:44–51,
2018.

11 Jacqueline W. Daykin, Costas S. Iliopoulos, and William F. Smyth. Parallel RAM algo-
rithms for factorizing words. Theor. Comput. Sci., 127(1):53–67, 1994.

12 Olivier Delgrange and Eric Rivals. STAR: an algorithm to search for tandem approximate
repeats. Bioinformatics, 20(16):2812–2820, 2004.

13 Jean-Pierre Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–
381, 1983.

14 Frantisek Franek, A. S. M. Sohidull Islam, Mohammad Sohel Rahman, and William F.
Smyth. Algorithms to compute the Lyndon array. In Proceedings of the Prague Stringology
Conference 2016, Prague, Czech Republic, August 29-31, 2016, pages 172–184, 2016.

15 Harold Fredricksen and James Maiorana. Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Mathematics, 23(3):207–210, 1978.

16 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

17 Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and trees.
Theor. Comput. Sci., 307(1):173–178, 2003. doi:10.1016/S0304-3975(03)00099-9.

18 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput.
Sci., 656:215–224, 2016.

19 M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983.
20 R. C. Lyndon. On Burnside’s problem. Transactions of the American Mathematical Society,

77:202–215, 1954.
21 Marcin Mucha. Lyndon words and short superstrings. In Proc. SODA’13, pages 958–972,

2013.
22 Yuto Nakashima, Takuya Takagi, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.

On reverse engineering the Lyndon tree. In Proceedings of the Prague Stringology Confer-
ence 2017, Prague, Czech Republic, August 28-30, 2017, pages 108–117, 2017.

23 Shoshana Neuburger and Dina Sokol. Succinct 2D dictionary matching. Algorithmica,
pages 1–23, 2012. 10.1007/s00453-012-9615-9.

24 Xavier Provençal. Minimal non-convex words. Theor. Comput. Sci., 412(27):3002–3009,
2011.

25 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
26 P. Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp. on

Switching and Automata Theory, pages 1–11. Institute of Electrical Electronics Engineers,
New York, 1973.

http://dx.doi.org/10.1016/S0304-3975(03)00099-9

The Heaviest Induced Ancestors Problem
Revisited
Paniz Abedin
Dept. of Computer Science, University of Central Florida - Orlando, USA
paniz@cs.ucf.edu

Sahar Hooshmand
Dept. of Computer Science, University of Central Florida - Orlando, USA
sahar@cs.ucf.edu

Arnab Ganguly
Dept. of Computer Science, University of Wisconsin - Whitewater, USA
gangulya@uww.edu

Sharma V. Thankachan
Dept. of Computer Science, University of Central Florida - Orlando, USA
sharma.thankachan@ucf.edu

Abstract
We revisit the heaviest induced ancestors problem, which has several interesting applications in
string matching. Let T1 and T2 be two weighted trees, where the weight W(u) of a node u in
either of the two trees is more than the weight of u’s parent. Additionally, the leaves in both
trees are labeled and the labeling of the leaves in T2 is a permutation of those in T1. A node
x ∈ T1 and a node y ∈ T2 are induced, iff their subtree have at least one common leaf label. A
heaviest induced ancestor query HIA(u1, u2) is: given a node u1 ∈ T1 and a node u2 ∈ T2, output
the pair (u∗1, u∗2) of induced nodes with the highest combined weight W(u∗1) + W(u∗2), such that
u∗1 is an ancestor of u1 and u∗2 is an ancestor of u2. Let n be the number of nodes in both trees
combined and ε > 0 be an arbitrarily small constant. Gagie et al. [CCCG’ 13] introduced this
problem and proposed three solutions with the following space-time trade-offs:

an O(n log2 n)-word data structure with O(logn log logn) query time
an O(n logn)-word data structure with O(log2 n) query time
an O(n)-word data structure with O(log3+ε n) query time.

In this paper, we revisit this problem and present new data structures, with improved bounds.
Our results are as follows.

an O(n logn)-word data structure with O(logn log logn) query time

an O(n)-word data structure with O
(log2 n

log logn

)
query time.

As a corollary, we also improve the LZ compressed index of Gagie et al. [CCCG’ 13] for
answering longest common substring (LCS) queries. Additionally, we show that the LCS after
one edit problem of size n [Amir et al., SPIRE’ 17] can also be reduced to the heaviest induced
ancestors problem over two trees of n nodes in total. This yields a straightforward improvement
over its current solution of O(n log3 n) space and O(log3 n) query time.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Data Structure, String Algorithms, Orthogonal Range Queries

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.20

Funding This research is supported in part by the U.S. National Science Foundation under the
grant CCF-1703489.

© Paniz Abedin, Sahar Hooshmand, Arnab Ganguly and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 20; pp. 20:1–20:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paniz@cs.ucf.edu
mailto:sahar@cs.ucf.edu
mailto:gangulya@uww.edu
mailto:sharma.thankachan@ucf.edu
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 The Heaviest Induced Ancestors Problem Revisited

1 Introduction

Let T1 and T2 be two weighted trees, having n1 and n2 nodes respectively. The weight of a
node u in either of the two trees is given by W(u) and W(u) > W(parent(u)), where parent(u)
is the parent node of u. For simplicity, node u means the node with pre-order rank u. Each
tree has exactly m ≤ min{n1, n2} leaves. Leaves in both trees are labeled and the labeling
of the leaves in T2 is a permutation of the labeling of the leaves in T1. Two nodes, one each
from T1 and T2, are induced if the leaves in the respective subtrees have at least one common
label. For any two nodes u and v in a tree, the node v is an ancestor of u iff v is on the path
from u to the root of the tree. Moreover, v is a proper ancestor u iff u 6= v. We revisit the
following problem, which has several interesting applications in string matching.

I Problem 1 (Heaviest Induced Ancestor Problem). Given a node u1 ∈ T1 and a node u2 ∈ T2,
find HIA(u1, u2), which is defined as the pair of induced nodes (u∗1, u∗2) with the highest
combined weight W(u∗1) + W(u∗2), such that u∗1 (resp., u∗2) is an ancestor of u1 (resp., u2).

Here and henceforth, ε is an arbitrarily small positive constant and n = n1 + n2 is the
total number of nodes in the two trees. The model of computation is the standard Word
RAM with word size Ω(logn) bits. Gagie et al. [8] presented the following several results for
the Heaviest Induced Ancestor problem.

an O(n log2 n)-word index with O(logn log logn) query time
an O(n logn)-word index with O(log2 n) query time
an O(n)-word index with O(log3+ε n) query time.

Our contribution is summarized in the following Theorem.

I Theorem 2. A heaviest induced ancestor query over two trees of n nodes in total can be
answered

in O(logn log logn) time using an O(n logn)-word data structure, or

in O
(log2 n

log logn

)
time using an O(n)-word data structure.

1.1 Applications to String Matching
One motivation to study the heaviest induced ancestor problem is to design an LZ77 [20]
compressed text index that can answer longest common substring LCS(S, P) queries efficiently.
Formal definition is below.

I Problem 3 (Longest Common Substring in LZ77 Compressed Strings [8]). Given a string S
of length N , whose LZ77 parsing contains n phrases, build a data structure that can efficiently
report LCS(S, P), i.e., the longest common substring of S and P , where P is a query string
of length |P |.

If one were to forego the compression requirement, the problem can be easily solved by
maintaining a suffix tree [17] of S in O(N) words yielding O(|P |) query time. On the other
hand, we can also answer LCS(S, P) queries using compressed/succinct data structures, such
as the FM Index or Compressed Suffix Array [6, 9, 13], with a slight penalty in query time.
However, for strings having a repetitive structure, LZ77-based compression techniques offer
better space-efficiency than that obtained using FM-Index or Compressed Suffix Array.

Gagie et al. [8] showed that Problem 3 can be solved using an O(n logN + n log2 n)-word
index with very high probability in O(|P | logn log logn) query time. Alternatively, they also

P. Abedin, S. Hooshmand, A. Ganguly and S. V. Thankachan 20:3

presented an O(n logN)-word index with O(|P | log2 n) query time. Using Theorem 2 and
the techniques in [8], we present an improved result for Problem 3 (see Theorem 4). We omit
the details as they are immediate from the discussions in [8].

I Theorem 4. Given a string S of length N , we can build an O(n logN)-word index that
reports LCS(S, P) in O(|P | logn log logn) time with very high probability, where n is the
number of phrases in an LZ77 parsing of S and |P | is the length of the input query string P .

Another problem that we study is the recently introduced longest common substring after
one substitution problem [1], defined as follows.

I Problem 5 (Longest Common Substring after One Substitution [1]). Given two strings X
and Y of total length n over an alphabet set Σ, build a data structure that can efficiently
report LCS(i,α)(X,Y), the length of the longest common substring of Xnew and Y , where
Xnew is X after replacing its ith character by α ∈ Σ.

An O(n|Σ|) space and O(1) time solution is straightforward, but not efficient when |Σ| is
large. The solution by Amir et al. [1] takes O(n log3 n) space and O(log3 n) query time.
Theorem 2 combined with other techniques implies an improved result to this problem, as
summarized in the following theorem.

I Theorem 6. Given two strings X and Y of total length n, we can build indexes with the
following space-time trade-offs for reporting LCS(i,α)(X,Y)
1. an O(n logn) space data structure with O(logn log logn) query time

2. an O(n) space data structure with O
(log2 n

log logn

)
query time.

Straightforward modifications to our approach leads to an index that can also support
the case of single letter insertions or deletions in X, i.e., insert the character α after position
i and delete the character at position i.

1.2 Map
In Section 2, we revisit some of the well-known data structures that have been used to arrive
at out results. Section 3 presents an overview of our techniques, as an intermediate step into
the final data structures. The final data structures for Theorem 2 are presented in Section 4.
Section 5.1 is left to sketch our solution to Problem 5.

2 Preliminaries and Terminologies

2.1 Predecessor/Successor Queries
Let S be a subset of U = {0, 1, 2, 3, . . . , U − 1} of size n. A predecessor search query p on S
asks to return p if p ∈ S, else return max{q < p | q ∈ S}. Similarly, a successor query p on
S asks to return p if p ∈ S, else return min{q > p | q ∈ S}. By preprocessing S into a y-fast
trie of size O(n) words, we can answer such queries in O(log logU) time [18].

2.2 Fully-Functional Succinct Tree
Let T be a tree having n nodes, such that nodes are numbered from 1 to n in the ascending
order of their pre-order rank. Also, let `i denotes the ith leftmost leaf. Then by maintaining
an index of size 2n+o(n) bits, we can answer the following queries on T in constant time [14]:

CPM 2018

20:4 The Heaviest Induced Ancestors Problem Revisited

parentT (u) = parent of node u.
sizeT (u) = number of leaves in the subtree of u.
nodeDepthT (u) = number of nodes on the path from u to the root of T .
levelAncestorT (u,D) = ancestor w of u such that nodeDepth(w) = D.
lMostT (u) = i, where `i is the leftmost leaf in the subtree of u.
rMostT (u) = j, where `j is the rightmost leaf in the subtree of u.
lcaT (u, v) = lowest common ancestor (LCA) of two nodes u and v.

We omit the subscript “T ” if the context is clear.

2.3 Range Maximum Query (RMQ) and Path Maximum Query (PMQ)
Let A[1, n] be an array of n elements. A range maximum query RMQA(a, b) asks to return
k ∈ [a, b], such that A[k] = max{A[i] | i ∈ [a, b]}. Path maximum query (PMQ) (or bottleneck
edge query [5]) is a generalization of RMQ from arrays to trees. Let T be a tree having n
nodes, such that each node u is associated with a score. A path maximum query PMQT (a, b)
returns the node k in T , where k is a node with highest score among all nodes on the path
from node a to node b. Cartesian tree based solutions exists for both problems. The space
and query time are 2n+ o(n) bits and O(1), respectively [5, 7].

2.4 Orthogonal Range Queries in 2-Dimension
Let P be a set of n points in an [1, n]× [1, n] grid. Then,

An orthogonal range counting query (a, b, c, d) on P returns the cardinality of {(x, y) ∈
P | x ∈ [a, b], y ∈ [c, d]}
An orthogonal range emptiness query (a, b, c, d) on P returns “EMPTY” if the cardinality
of the set {(x, y) ∈ P | x ∈ [a, b], y ∈ [c, d]} is zero. Otherwise, it returns “NOT-EMPTY”.
An orthogonal range predecessor query (a, b, c) on P returns the point in {(x, y) ∈ P |
x ∈ [a, b], y ≤ c} with the highest y-coordinate value, if one exists.
An orthogonal range successor query (a, b, c) on P returns the point in {(x, y) ∈ P | x ∈
[a, b], y ≥ c} with the lowest y-coordinate value, if one exists.
An orthogonal range selection query (a, b, k) on P returns the point in {(x, y) ∈ P | x ∈
[a, b]} with the kth lowest y-coordinate value.

By maintaining an O(n) word structure, we can answer orthogonal range counting queries
in O(log / log logn) time [11], orthogonal range emptiness queries in O(logε n) time [3], ortho-
gonal range predecessor/successor queries in O(logε n) time [12] and orthogonal range selection
queries in O(logn/ log logn) time [2, 4]. Alternatively, by maintaining an O(n log logn) space
structure, we can answer orthogonal range emptiness and orthogonal range predecessor/suc-
cessor queries in O(log logn) time [3, 19].

2.5 Heavy Path and Heavy Path Decomposition
We now define the heavy path decomposition [10, 15] of a tree T having n nodes. First, the
nodes in T are categorized into light and heavy. The root node is light and exactly one child
of every internal node is heavy. Specifically, the child having the largest number of nodes in
its subtree (ties are broken arbitrarily). The first heavy path of T is the path starting at T ’s
root, and traversing through every heavy node to a leaf. Each off-path subtree of the first
heavy path is further decomposed recursively. Clearly, a tree with m leaves has m heavy
paths. Let u be a node on a heavy path H, then hp_root(u) is the highest node on H and
hp_leaf(u) is the lowest node on H. Note that hp_root(·) is always light.

P. Abedin, S. Hooshmand, A. Ganguly and S. V. Thankachan 20:5

I Fact 7. For a tree having n nodes, the path from the root to any leaf traverses at most
dlogne light nodes. Consequently, the sum of the subtree sizes of all light nodes (i.e., the
starting node of a heavy path) put together is at most ndlogne.

3 Our Framework

We assume that both trees T1 and T2 are compacted, i.e., any internal node has at least two
children. This ensures that the number of internal nodes is strictly less than the number
of leaves (m). Thus, n ≤ 4m− 2. We remark that this assumption can be easily removed
without affecting the query time. We maintain the tree topology of T1 and T2 succinctly in
O(n) bits with constant time navigational support (refer to Section 2.2). Define two arrays,
Labelk[1,m] for k = 1 and 2, such that Labelk[j] is the label associated with the jth leaf
node in Tk. The following is a set of m two-dimensional points based on tree labels.

P = {(i, j) | i, j ∈ [1,m] and Label1[i] = Label2[j]}

We pre-process P into a data structure, so as to support various range queries described
in Section 2.4. For range counting and selection, we maintain data structures with O(n) space
and O(logn/ log logn) time. For range successor/predecessor and emptiness queries, we have
two options: and O(n log logn) space structure with O(log logn) time, and an O(n) space
structure with O(logε n) time. We employ the first result in our O(n logn) space solution
and the second result in our O(n) space solution.

3.1 Basic Queries
I Lemma 8 (Induced-Check). Given two nodes x, y, where x ∈ T1 and y ∈ T2, we can check
if they are induced or not

in O(log logn) time using an O(n log logn) space structure, or
in O(logε n) time using an O(n) space structure.

Proof. The task can be reduced to a range emptiness query, because x and y are induced iff
the set {(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)]× [lMost(y), rMost(y)]} is not empty. J

I Definition 9 (Partner). The partner of a node x ∈ T1 w.r.t a node y ∈ T2, denoted
by partner(x/y) is the lowest ancestor y′ of y, such that x and y′ are induced. Likewise,
partner(y/x) is the lowest ancestor x′ of x, such that x′ and y are induced.

I Lemma 10 (Find Partner). Given two nodes x, y, where x ∈ T1 and y ∈ T2, we can find
partner(x/y) as well as partner(y/x)

in O(log logn) time using an O(n log logn) space structure, or
in O(logε n) time using an O(n) space structure.

Proof. To find partner(x/y), first check if x and y are induced. If yes, then partner(x/y) = y.
Otherwise, find the last leaf node `a ∈ T2 before y in pre-order, such that x and `a are
induced (`a denotes a-th leftmost leaf). Also, find the first leaf node `b ∈ T2 after y in
pre-order, such that x and `b are induced. Both tasks can be reduced to orthogonal range
predecessor/successor queries.

(·, a) = arg max
j
{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)]× [1, lMost(y)]}

(·, b) = arg min
j
{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)]× [rMost(y),m]}

CPM 2018

20:6 The Heaviest Induced Ancestors Problem Revisited

Clearly, an ancestor of y and x are induced iff either `a or `b is in its subtree. Therefore,
we report the lowest node among ua = lca(`a, y) and ub = lca(`a, y) as partner(x/y). The
computation of partner(y/x) is analogous. J

3.2 Overview
For any two nodes u and v in the same tree T , define Path(u, v, T) as the set of nodes on
the path from u to v. Let root1 be the root of T1 and root2 be the root of T2. Throughout
this paper, (u1, u2) denotes the input and HIA(u1, u2) = (u∗1, u∗2) denotes the output. Clearly,
u∗2 = partner(u∗1/u2) and u∗1 = partner(u∗2/u1). Therefore,

(u∗1, u∗2) = arg max
(x,y)
{W (x) +W (y) | y ∈ Path(root2, u2, T2) and x = partner(y/u1)}

To evaluate the above equation efficiently, we explore the heavy path decomposition of T2.

I Definition 11 (Special Nodes). For each light node in w ∈ T2, we identify a set Special(w)
of nodes in T1 (which we call special nodes) as follows: a leaf node `i ∈ T1 is special iff `i
and w are induced. An internal node in T1 is special iff it is the lowest common ancestor of
two special leaves. Additionally, for each node x ∈ Special(w), define its score w.r.t. w as
the sum of weights of x and the node partner(x/hp_leaf(w)) ∈ T2. Formally,

scorew(x) = W (x) +W (partner(x/hp_leaf(w))

Moreover, |Special(w)| ≤ 2size(w)− 1 and
∑
w is a light node |Special(w)| = O(n logn).

To answer an HIA query (u1, u2), we first identify some nodes in T1 and T2 as follows. Nodes
w1 = root2, w2, . . . , wk are the light nodes in Path(root2, u2, T2) (in the ascending order of their
pre-order ranks). Nodes t1, t2, . . . , tk are also in Path(root2, u2, T2), such that tk = u2 and
th = parent(wh+1) for h < k. Therefore, Path(root2, u2, T2) = ∪kh=1Path(wh, th, T2). Next,
α1, α2, . . . , αk and β1, β2, . . . , βk are nodes in Path(root1, u1, T1), such that for h = 1, 2, . . . , k,
αh = partner(th/u1) and βh = partner(wh/u1). Clearly, there exists an f ∈ [1, k] such that
u∗2 ∈ Path(wf , tf , T2). See Figure 1 for an illustration. We now present several lemmas, which
forms the basis of our solution.

I Lemma 12. The node u∗1 ∈ Path(αf , βf , T1).

Proof. We prove this via proof by contradiction arguments.
Suppose u∗1 is a proper ancestor of αf . Then, αf are tf induced and W (αf) +W (tf) >
W (u∗1) +W (u∗2), a contradiction. Therefore, u∗1 is in the subtree of αf .
Suppose u∗1 is in the proper subtree of βf . Then, u∗1 and wf are also induced. Therefore,
partner(wf/u1) is u∗1 or a node in the subtree of u∗1. This implies, βf = partner(wf/u1) is
in the proper subtree of βf , a contradiction. Therefore, u∗1 is an ancestor of βf .

This completes the proof. J

I Lemma 13. The node u∗1 ∈ Special(wf) ∪ {βf}.

Proof. Let z (if exists) be the first node in Special(wf) on the path from u∗1 to βf . Then,
if z exists, then u∗1 /∈ Special(wf) gives a contradiction as follows. The intersection
of the following two sets is empty: (i) set of labels of the leaves in the subtree of
u∗1, but not in the subtree of z and (ii) set of labels associated with the leaves in the
subtree of wf . This implies, z and u∗2 are induced (because u∗1 and u∗2 are induced) and
W (z) + w(u∗2) > W (u∗1) +W (u∗2), a contradiction.

P. Abedin, S. Hooshmand, A. Ganguly and S. V. Thankachan 20:7

Figure 1 We refer to Section 3.2 for the description of this figure.

otherwise, if z does not exist, then it is possible that u∗1 /∈ Special(w). However, in this
case, u∗1 = βf (proof follows from similar arguments as above).

In summary, u∗1 ∈ Special(wf) ∪ {βf}. J

I Lemma 14. For any x ∈ Path(αf , βf , T1)\{αf}, partner(x/u2) = partner(x/hp_leaf(wf)).

Proof. We claim that for any x ∈ Path(αf , βf , T1)\{αf}, partner(x/u2) is a proper ancestor
of tf . The proof follows from contradiction as follows. Suppose, there exists an x ∈
Path(αf , βf , T1)\{αf}, such that partner(x/u2) is in the subtree of tf . Then, x and tf are
induced. This means, αf = partner(tf/u1) is a node in the subtree of x, a contradiction.

Since, partner(x/u2) is a proper ancestor of tf , partner(x/u2) = partner(x/r) for any node
r in the subtree of tf . Therefore, by choosing r = hp_leaf(wf), we obtain Lemma 14. J

I Corollary 15. For any x ∈
(

Path(αf , βf , T1)\{αf}
)
,

W (x) +W (partner(x/u2)) = W (x) +W (partner(x/hp_leaf(wf))) = scorewf
(x)

I Lemma 16. The node u∗1 ∈ {αf , βf , γf}, where

γf = arg max
x
{scorewf

(x) | x ∈ Special(wf) ∩
(

Path(αf , βf , T1)\{αf , βf}
)

Proof. Follows from Lemma 12, Lemma 13, Lemma 14 and Corollary 15. J

I Lemma 17. Let C = ∪kh=1{αh, βh, γh}, where

γh = arg max
x
{scorewh

(x) | x ∈ Special(wh) ∩
(

Path(αh, βh, T1)\{αh, βh}
)

CPM 2018

20:8 The Heaviest Induced Ancestors Problem Revisited

Then,

(u∗1, u∗2) = arg max
(x,y)
{W (x) +W (y) | x ∈ C and y = partner(x/u2)}

Proof. Since f is unknown, we invoke Lemma 14 for f = 1, 2, 3, . . . , k ≤ logn. J

Next, we show how to transform the result in Lemma 17 into an efficient data structure.

4 Our Data Structures

We start by defining a crucial component of our solution.

I Definition 18 (Induced Subtree). The induced subtree of T1(w) of T1 w.r.t. a light node
w ∈ T2 is a tree having exactly |Special(w)| number of nodes, such that

for each node x ∈ T1(w), there exists a node Mapw(x) ∈ Special(w) and
for each x′ ∈ Special(w), there exists a node invMapw(x′) ∈ T1(w), such that

lcaT1(Mapw(x),Mapw(y)) = Mapw(lcaT1(w)(x, y))

Note that a node x is a leaf in T1(w) iff Mapw(x) is a leaf in T1(w). In the following lemmas,
we present two space-time trade-offs on induced subtrees.

I Lemma 19. By maintaining an O(n logn) space structure, we can compute Mapw(·) and
invMapw(·) for any light node w ∈ T2 in time O(1) and O(log logn), respectively.

Proof. Let Lw[1, |Special(w)|] be an array, such that Lw[x] = Mapw(x). For each w, maintain
Lw and a y-fast trie [18] over it. The total space is O(n logn). Now, any Mapw(·) query can
be answered in constant time. Also, for any x′ ∈ Special(w), invMapw(x′) is the number of
elements in Lw that are ≤ x′. Therefore, an invMapw(·) can be reduced to a predecessor
search and answered in O(log logn) time. J

I Lemma 20. By maintaining an O(n) space structure, we can compute Mapw(·) and
invMapw(·) for any light node w ∈ T2 in time O(logn/ log logn).

Proof. Let node p be the rth leaf in T1(w) and q = Mapw(p) be the sth leaf in T1. Then,
s is the x-coordinate of the rth point in {(i, j) ∈ P | (i, j) ∈ [1,m]× [lMost(w), rMost(w)]}
in the ascending order of x-coordinates. Also, r is the number of points in {(i, j) ∈ P |
(i, j) ∈ [1, s]× [lMost(w), rMost(w)]}. Therefore, given p, we can compute r, then s and q in
O(logn/ log logn) time via a range selection query on P . Similarly, given q, we can compute
s and then r and p in O(logn/ log logn) time via a range counting query on P.

Now, if p is an internal node in T1(w), then Mapw(p) is lcaT1(Mapw(`L),Mapw(`R)),
where `L and `R are the first and last leaves in the subtree of p. Similarly, if q is an internal
node in T1, then invMapw(q) = lcaT1(w)(invMapw(`A), invMapw(`B)) as follows:

(A, ·) = arg min
i
{(i, j) ∈ P | (i, j) ∈ [lMost(q), rMost(q)]× [lMost(w), rMost(w)]}

(B, ·) = arg max
i
{(i, j) ∈ P | (i, j) ∈ [lMost(q), rMost(q)]× [lMost(w), rMost(w)]}

Here, A and B can be computed via range successor/predecessor queries in O(logε n) time.
Therefore, the total time is logε n+ logn/ log logn = O(logn/ log logn) time. J

I Lemma 21. Given an input (a, b, w), where w is a light node in T2 and, a and b are nodes
in T1(w), we can report the node with the highest scorew(Mapw(·)) over all nodes on the path
from a to b in T1(w) in O(1) time using an O(n) space structure.

P. Abedin, S. Hooshmand, A. Ganguly and S. V. Thankachan 20:9

Proof. For each T1(w), we maintain the Cartesian tree for answering path maximum query
(refer to Section 2.3). Space for a particular w is |Special(w)|(2 + o(1)) bits and space over all
light nodes w in T2 is O(n logn) bits (from Fact 7), equivalently O(n) words. For an input
(a, b, w), the answer is PMQT1(w)(a, b). J

4.1 Our O(n logn) space data structure
We maintain T1 and T2 explicitly, so that the weight of any node in either of the trees can be
accessed in constant time. Moreover, we maintain fully-functional succinct representation
of their topologies (refer to Section 2.2) for supporting various operations in O(1) time.
Additionally, we maintain the structures for answering Induced-Check and Find-Partner
queries in O(log logn) time, data structures for range predecessor/successor queries on P
in O(log logn) time (refer to Section 2.4) and the structures described in Lemma 19 and
Lemma 21. Thus, the total space is O(n logn) words.

We now present the algorithm for computing the output (u∗1, u∗2) for a given input (u1, u2).
Following are the key steps.
1. Find wh and th for h = 1, 2, . . . , k ≤ logn.
2. Find αh and βh for h = 1, 2, . . . , k ≤ logn.
3. Let α′h be the first and β′h be the last special node (w.r.t. wh) on the path from αh

(excluding αh) to βh (excluding βh). Also, let

γh = Mapwh

(
PMQT1(wh)

(
invMapwh

(α′h), invMapwh
(β′h)

))
Compute γh for h = 1, 2, . . . , k ≤ logn.

4. Obtain C = ∪kh=1{αh, βh, γh} and report

(u∗1, u∗2) = arg max
(x,y)
{W (x) +W (y) | x ∈ C and y = partner(x/u2)}

The correctness follows immediately from Lemma 17. We now bound the time complexity.
Step 1 takes O(k) time and step 2 takes O(k) number of Find-Partner queries with O(log logn)
time per query. The procedure for computing α′h and β′h is the following.

Find the child α′′h of αh on the path from αh to βh. Then α′h = lcaT1(`ah
, `bh

), where `ah

(resp. `bh
) is the first (resp. last) special leaf in the subtree of α′′h (w.r.t wh). To compute

ah and bh, we rely on range predecessor/successor queries on P:

(ah, ·) = arg min
i
{(i, j) ∈ P | (i, j) ∈ [lMost(α′′h), rMost(α′′h)]× [lMost(wh), rMost(wh)]}

(bh, ·) = arg max
i
{(i, j) ∈ P | (i, j) ∈ [lMost(α′′h), rMost(α′′h)]× [lMost(wh), rMost(wh)]}

Find the rightmost special (w.r.t. wh) leaf `dh
before βh and the leftmost special

(w.r.t. wh) leaf `gh
after the last leaf in the subtree of βh. For this, we rely on range

predecessor/successor queries on P:

(dh, ·) = arg max
i
{(i, j) ∈ P | (i, j) ∈ [1, lMost(α′′h)− 1]× [lMost(wh), rMost(wh)]}

(gh, ·) = arg min
i
{(i, j) ∈ P | (i, j) ∈ [rMost(α′′h) + 1,m]× [lMost(wh), rMost(wh)]}

Then, β′h = lcaT1(`dh
, `gh

) if βh and wh are not induced (i.e., there does not exist a special
node (w.r.t. wh) under βh). Otherwise, β′h is the lowest node among lcaT1(`dh

, βh) and
lcaT1(βh, `gh

).

CPM 2018

20:10 The Heaviest Induced Ancestors Problem Revisited

The time for a range predecessor/successor query on P is O(log logn). Therefore, com-
putation of α′h and β′h takes O(log logn) time, and an additional O(log logn) for eval-
uating γh. Therefore, the total time for step 3 is O(k log logn). Finally, step 4 also
takes O(k log logn) time. By putting every thing together, the total time complexity is
k log logn = O(logn log logn).

4.2 Our Linear Space Data Structure
We obtain our linear space data structure by replacing all super-linear space components
in the previous solution by their space efficient counter parts. Specifically, we use linear
space structures for Induced-Check, Find-Partner, and range predecessor/successor with
query time O(logε n). Also, we use the structure in Lemma 20 instead of the structure in
Lemma 19. Thus, the total space is O(n) words.

The query algorithm remains the same. The time complexity is: O(k) for step 1,
O(k logε n) for step 2, O(k logn/ log logn) for step 3 and O(k logε n) for step 4. Thus, total
time is O(log2 n/ log logn).

5 Applications

5.1 Longest Common Substring after One Substitution
Let X and Y be two strings of total length n over an alphabet set Σ. Define, LCS(X,Y) as
the length of the longest common substring of X and Y and LCS(i,α)(X,Y) as the length
of the longest common substring of Xnew and Y , where Xnew is X after replacing its ith
character by α ∈ Σ. Our task is to build a data structure for X and Y , so that LCS(i,α)(X,Y)
for any input (i, α) can be reported efficiently.

5.1.1 The Data Structure
Let LCS(i,α) be X[l, r]. As observed by Amir et al. [1], two possible scenarios are: i /∈ [l, r]
and i ∈ [l, r]. We handle each of these scenarios separately, i.e., we find the new longest
common substring (with the character at position i replaced by α) with position i (a) not
covered and (b) covered, and choose the longest. To obtain (a), simply store an array
A[1, |X|], where

A[i] = max{LCS(Y,X[1 . . . (i− 1)]), LCS(Y,X[(i+ 1) . . . |X|]}

For case (b), we maintain the following structures.
1. A generalized suffix tree [17] of X and Y (GST), which is a compact trie over all suffixes

of X and Y , after appending each string from X (resp., Y) with a unique symbol $1
(resp., $2).

2. A compact trie of reverse of all prefixes of X and Y (GPT), after appending each string
from X (resp., Y) with a unique symbol $1 (resp., $2).

3. For each character α ∈ Σ,
a compact trie Tα of all strings in {Y [(i + 1) . . .] | Y [i] = α} after appending each
suffix with $2. We label Y [(i+ 1) . . .] with i.
Another compact trie T ′α of all strings in {

←−−−−−−−−−−
Y [1 . . . (i− 1)] | Y [i] = α}. Here

←−−−−−−−−−−
Y [1 . . . (i− 1)] is the reverse of Y [1 . . . (i− 1)] and we label it with i.

P. Abedin, S. Hooshmand, A. Ganguly and S. V. Thankachan 20:11

The data structure for HIA queries on (Tα, T ′α). Here the weight of a node is its
string-depth. Therefore, we can easily generalize our solution to the HIA problem to
the case where the input (u1, u2) is such that u1 and u2 are not necessarily nodes, but
locations on edges.

The total space is proportional to the size of an HIA structure over an input of size n.

5.1.2 Processing a query (i, α)
Get the LCS not covering i in constant time from the array A. For LCS covering i, do the
following steps.

Let `p be the leaf in GST corresponding to the suffix X[(i + 1) . . .]. Find the lowest
ancestor u of `p with at least one leaf corresponding to a suffix of Y (say Y [a . . .]) in its
subtree.
Let `q be the leaf in GPT corresponding to the reverse of the prefix X[1 . . . (i− 1)]. Find
the lowest ancestor v of `q with at least one leaf corresponding to a reverse of a prefix of
Y (say Y [. . . b]) in its subtree.
Issue an HIA query HIA(x, y) on (Tα, T ′α), where
1. x is the location in Tα on the path of the leaf corresponding to Y [a . . .] at a distance

of string-depth of u from the root.
2. y is the location in T ′α on the path of the leaf corresponding to

←−−−−
Y [. . . b] at a distance

of string-depth of v from the root.
Let (x∗, y∗) be the output. Then, LCS(i,α)(X,Y) covering position i is W (x∗) +W (y∗).

Therefore, final LCS(i,α)(X,Y) is max{A[i],W (x∗)+W (y∗)}. Steps 1 and 2 can be performed
in O(logn) time binary searches. Therefore, total time is dominated by the time for an HIA
query. The correctness can be easily verified.

5.2 All-Pairs Longest Common Substring Problem
Let S = {S1, S2, S3, ...Sn} be a collection of n strings and let L be the length of the longest
string in S. We consider the problem of finding LCS(Si, Sj) for all (i, j) pairs. This problem
can be easily solved in O(n2L) time. However, it is also possible to obtain a conditional
lower bound of Ω̃(n2L) via a reduction from the boolean matrix multiplication [16]. To this
end, we remark that the following run-time is possible with the aid of HIA framework.

Õ

(
nL+

∑
i

∑
j<i

L

LCS(Si, Sj)

)

We defer details to the full version of this paper.

References
1 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and

Jakub Radoszewski. Longest common factor after one edit operation. In Gabriele Fici,
Marinella Sciortino, and Rossano Venturini, editors, String Processing and Information
Retrieval - 24th International Symposium, SPIRE 2017, Palermo, Italy, September 26-
29, 2017, Proceedings, volume 10508 of Lecture Notes in Computer Science, pages 14–26.
Springer, 2017. doi:10.1007/978-3-319-67428-5_2.

CPM 2018

http://dx.doi.org/10.1007/978-3-319-67428-5_2

20:12 The Heaviest Induced Ancestors Problem Revisited

2 Gerth Stølting Brodal and Allan Grønlund Jørgensen. Data structures for range median
queries. In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Com-
putation, 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December
16-18, 2009. Proceedings, volume 5878 of Lecture Notes in Computer Science, pages 822–
831. Springer, 2009. doi:10.1007/978-3-642-10631-6_83.

3 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching
on the ram, revisited. In Ferran Hurtado and Marc J. van Kreveld, editors, Proceedings of
the 27th ACM Symposium on Computational Geometry, Paris, France, June 13-15, 2011,
pages 1–10. ACM, 2011. doi:10.1145/1998196.1998198.

4 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 241–251. SIAM, 2013. doi:10.1137/1.9781611973105.18.

5 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On cartesian trees and range
minimum queries. Algorithmica, 68(3):610–625, 2014. doi:10.1007/s00453-012-9683-x.

6 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

7 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range min-
imum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011. doi:10.1137/
090779759.

8 Travis Gagie, Pawel Gawrychowski, and Yakov Nekrich. Heaviest induced ancestors and
longest common substrings. In Proceedings of the 25th Canadian Conference on Compu-
tational Geometry, CCCG 2013, Waterloo, Ontario, Canada, August 8-10, 2013. Carleton
University, Ottawa, Canada, 2013. URL: http://cccg.ca/proceedings/2013/papers/
paper_29.pdf.

9 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

10 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

11 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast al-
gorithms for multidimensional dominance reporting and counting. In Rudolf Fleischer
and Gerhard Trippen, editors, Algorithms and Computation, 15th International Sym-
posium, ISAAC 2004, Hong Kong, China, December 20-22, 2004, Proceedings, volume
3341 of Lecture Notes in Computer Science, pages 558–568. Springer, 2004. doi:10.1007/
978-3-540-30551-4_49.

12 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Fedor V. Fomin and
Petteri Kaski, editors, Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and
Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings, volume 7357 of Lecture Notes in
Computer Science, pages 271–282. Springer, 2012. doi:10.1007/978-3-642-31155-0_24.

13 Kunihiko Sadakane. Succinct representations of lcp information and improvements in the
compressed suffix arrays. In David Eppstein, editor, Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA,
USA., pages 225–232. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=
545381.545410.

14 Kunihiko Sadakane and Gonzalo Navarro. Fully-functional succinct trees. In Moses
Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 134–149.
SIAM, 2010. doi:10.1137/1.9781611973075.13.

http://dx.doi.org/10.1007/978-3-642-10631-6_83
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.1137/1.9781611973105.18
http://dx.doi.org/10.1007/s00453-012-9683-x
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1137/090779759
http://dx.doi.org/10.1137/090779759
http://cccg.ca/proceedings/2013/papers/paper_29.pdf
http://cccg.ca/proceedings/2013/papers/paper_29.pdf
http://dx.doi.org/10.1137/S0097539702402354
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1007/978-3-540-30551-4_49
http://dx.doi.org/10.1007/978-3-540-30551-4_49
http://dx.doi.org/10.1007/978-3-642-31155-0_24
http://dl.acm.org/citation.cfm?id=545381.545410
http://dl.acm.org/citation.cfm?id=545381.545410
http://dx.doi.org/10.1137/1.9781611973075.13

P. Abedin, S. Hooshmand, A. Ganguly and S. V. Thankachan 20:13

15 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
In Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-
13, 1981, Milwaukee, Wisconsin, USA, pages 114–122. ACM, 1981. doi:10.1145/800076.
802464.

16 Sharma V. Thankachan, Sriram P. Chockalingam, and Srinivas Aluru. An efficient al-
gorithm for finding all pairs k-mismatch maximal common substrings. In Bioinformatics
Research and Applications - 12th International Symposium, ISBRA 2016, Minsk, Belarus,
June 5-8, 2016, Proceedings, pages 3–14, 2016.

17 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE
Computer Society, 1973. doi:10.1109/SWAT.1973.13.

18 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n).
Inf. Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

19 Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space. Inf.
Process. Lett., 116(2):171–174, 2016. doi:10.1016/j.ipl.2015.09.002.

20 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Information Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

CPM 2018

http://dx.doi.org/10.1145/800076.802464
http://dx.doi.org/10.1145/800076.802464
http://dx.doi.org/10.1109/SWAT.1973.13
http://dx.doi.org/10.1016/0020-0190(83)90075-3
http://dx.doi.org/10.1016/j.ipl.2015.09.002
http://dx.doi.org/10.1109/TIT.1977.1055714

Superstrings with multiplicities
Bastien Cazaux
Department of Computer Science, University of Helsinki, Helsinki, Finland;
L.I.R.M.M., Université Montpellier, Montpellier, France & Institute of Computational Biology,
Montpellier, France
bastien.cazaux@cs.helsinki.fi

Eric Rivals
L.I.R.M.M., Université Montpellier, Montpellier, France & Institute of Computational Biology,
Montpellier, France
rivals@lirmm.fr

https://orcid.org/0000-0003-3791-3973

Abstract
A superstring of a set of words P = {s1, . . . , sp} is a string that contains each word of P as
substring. Given P , the well known Shortest Linear Superstring problem (SLS), asks for a
shortest superstring of P . In a variant of SLS, called Multi-SLS, each word si comes with an
integer m(i), its multiplicity, that sets a constraint on its number of occurrences, and the goal is
to find a shortest superstring that contains at least m(i) occurrences of si. Multi-SLS generalizes
SLS and is obviously as hard to solve, but it has been studied only in special cases (with words
of length 2 or with a fixed number of words). The approximability of Multi-SLS in the general
case remains open. Here, we study the approximability of Multi-SLS and that of the companion
problem Multi-SCCS, which asks for a shortest cyclic cover instead of shortest superstring. First,
we investigate the approximation of a greedy algorithm for maximizing the compression offered
by a superstring or by a cyclic cover: the approximation ratio is 1/2 for Multi-SLS and 1 for
Multi-SCCS. Then, we exhibit a linear time approximation algorithm, Concat-Greedy, and show
it achieves a ratio of 4 regarding the superstring length. This demonstrates that for both measures
Multi-SLS belongs to the class of APX problems.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics, Theory
of computation → Approximation algorithms analysis

Keywords and phrases greedy algorithm, approximation, overlap, cyclic cover, APX, subset
system

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.21

Funding This work is supported by the Institut de Biologie Computationnelle http://www.
ibc-montpellier.fr (ANR-11-BINF-0002) and Défi MASTODONS C3G http://www.lirmm.
fr/~rivals/C3G/ from CNRS.

Acknowledgements We thank for the reviewers for their comments.

1 Introduction

Given a set of p words P := {s1, s2, . . . , sp} over a finite alphabet Σ, a superstring of P is a
string containing each si for 1 ≤ i ≤ p as a substring. The Shortest Linear Superstring
(SLS) problem is an optimization problem that asks for a superstring of P of minimal length.
It is also known as the Shortet Common Superstring problem, which does not convey the fact
that the output superstring is a linear rather than cyclic word. SLS has been studied in depth
for its applications in data compression, where a superstring is an alternative representation

© Bastien Cazaux and Eric Rivals;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bastien.cazaux@cs.helsinki.fi
mailto:rivals@lirmm.fr
https://orcid.org/0000-0003-3791-3973
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.21
http://www.ibc-montpellier.fr
http://www.ibc-montpellier.fr
http://www.lirmm.fr/~rivals/C3G/
http://www.lirmm.fr/~rivals/C3G/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Superstrings with multiplicities

of P , and in bioinformatics [11]. SLS is known to be hard to solve (NP-hard provided
the input words are of length at least three) and to approximate (MAX-SNP-hard), and
these difficulties remain even if one considers instances over a binary alphabet [10, 3, 17].
In bioinformatics, SLS models the initial step of genome assembly in a shotgun sequencing
approach [1], whose input is a large and redundant set of "reads". This first step consists in
merging overlapping words to obtain partial substrings of the target genome. These output
strings are called contigs. In practice, one never obtains a single superstring covering the
genome, but a large set of contigs. A major difficulty that is inherent to biology comes from
the presence of repeated regions in genomes. When assembled, the distinct copies of a repeat
tend to collapse into a single occurrence, and the corresponding contig then exhibits a higher
density of merged words [1]. By comparing the local density of a contig to the expected
density, one can estimate the underlying number of copies for a repeat. The assembly process
can then be rerun using these multiplicities, that is for each word, the number of times it
must appear in the superstring. To take into account the issue of repeated regions in SLS,
Crochemore et al. have proposed a variant of SLS called Multi-SLS1: the input consists
in P with a function m giving the multiplicity of each word of P , and the output multi
superstring must contain at least m(si) occurrences of si, for any 1 ≤ i ≤ p [8]. They present
two polynomial time algorithms to solve two special cases of Multi-SLS: First, the case
where the number of input words is constant, and second the case where each input word
has length 2. The latter generalizes SLS for words of length 2, which can also be solved in
polynomial time [10].

Contributions To our knowledge, the approximability of Multi-SLS in the general case
(i.e., with an unbounded number of words of length ≥ 2) is wide open. As for SLS, two
measures can be considered: the superstring length or its compression – the superstring
length minus the sum of the lengths of all required occurrences of words of P . In general, for
an optimization problem P, we denote by Pcomp the related problem that maximizes the
compression measure.

I Example 1. Consider the instance (P,m) with P := {aab, abaa, baba} with multiplicities
m(aab) = 2, m(abaa) = 1, and m(baba) = 2. Then w := aabaabababa is a multi superstring
of (P,m), it has length 11 and achieves of compression of 9 symbols. Similarly, the string
y := aabaababaababababa, which results from concatenating the required words, also is a
multi superstring of (P,m) of length 18 and thus yields a compression of 0.

In Section 3, we study the greedy algorithm for Multi-SLScomp and show it has a
compression ratio of 1/2 in Theorem 9. In Section 5, we propose for Multi-SLS the first
polynomial time approximation algorithm, called Concat-Greedy, and prove in Theorem 15
that it admits an approximation ratio of 4 for the superstring length measure. Hence, we
demonstrate:

I Theorem 2. Both Multi-SLS and Multi-SLScomp belong to the class APX.

In fact, the ratio of 4 follows from a stronger bound on the length of a solution of
Concat-Greedy (see Proposition 14 p. 11). Note that the same ratio of 4 was proven
for the classical SLS problem by [3] in 1994, using the Concat-Cycles algorithm. To achieve
this bound, Concat-Greedy must solve a related problem called Multi-SCCS, where the

1 According to the notation of [8], this variant was termed MULTI-SCS.

B. Cazaux and E. Rivals 21:3

solution is a set of cyclic strings that collectively contain all the required occurrences of
words of P . Such a set is called a cyclic cover of strings, or cyclic cover for short. First, we
show in Section 3 that a greedy algorithm solves exactly Multi-SCCS, and then exhibit in
Section 4 a graph based algorithm for it and bound its time complexity, which yields:

I Theorem 3. The Multi-Greedy algorithm (Algo. 2) solves the Multi-SCCS problem in a
time that is linear in the size of its output.

2 Preliminaries

Here, we introduce basic notions on strings, permutations, superstrings and formally define
the two problems Multi-SLS and Multi-SCCS. Then, we derive a logical, but important
fact: all multi superstrings (resp. multi cyclic cover) we need to consider are induced by
permutations. For any finite set U , |U | denotes its cardinality.

About strings. Let u, v be two linear strings. We denote by |u| the length of u, and by uv
their concatenation. Given a linear string u, we obtain the circular string 〈u〉 by linking the
last letter of the linear string u to its first letter. The length of the circular string 〈u〉 is the
length of the linear string u. Given a set of linear or circular strings P , we call the norm of
P , denoted by ||P ||, i.e. the sum of the lengths of the strings of P .

Let x := x1 . . . xn and y := y1 . . . ym be two linear strings (where for any 1 ≤ j ≤ m,
yj is the jth letter of y). We denote by Occ(y, x) the set of the occurences of y in x,
i.e., the set of positions i between 1 and n − m + 1 such that xi . . . xi+m−1 = y1 . . . ym.
Whenever Occ(y, x) is not empty, y is said to be a substring of x. We extend the notion of
substring to circular strings by extending the set of occurences: we denote by Occ(y, 〈x〉)
the set Occ(y, x∞) ∩ {1, . . . , |x|} (where x∞ = xx . . .). A prefix y (respectively a suffix) of
a linear string x is a substring beginning (respectively ending) x, i.e., 1 ∈ Occ(y, x) (resp.
|x| − |y|+ 1 ∈ Occ(y, x)). Furthermore, we say that y is a proper substring of x if |y| < |x|
(Definitions of a proper prefix/suffix are similar). Let M be a set of linear or circular strings;
we denote by Occ(x,M) the set of all occurences of x in all strings of M .

Problem definitions. Throughout the article, let P := {s1, . . . , sp} be a set of linear strings
P and a function m from P to N∗ giving the multiplicity of each string. We assume that
P is factor-free, i.e., si is not a substring of sj for any i, j in {1, . . . , p}. The pair (P,m) is
the input of the problems Multi-SLS and Multi-SCCS. A superstring of P is a word w such
that for any 1 ≤ i ≤ p, |Occ(si, w)| ≥ 1.

Let us define formally the two minimization problems Multi-SLS and Multi-SCCS:
both seek to minimize their output length. Note that Definition 4 is equivalent to that
MULTI-SCS(k) from [8].

I Definition 4 (Multi Shortest Linear Superstring (Multi-SLS)). Let P := {s1, . . . , sp} be a
set of strings and m a function from P to N∗. It seeks a linear string w of minimal length
and such that for all si ∈ P , |Occ(si, w)| ≥ m(si).

I Definition 5 (Multi Shortest Cyclic Cover of Strings (Multi-SCCS)). Let P := {s1, . . . , sp}
be a set of strings and m a function from P to N∗. It seeks a set C of circular strings of
minimal norm and such that for all si ∈ P , |Occ(si, C)| ≥ m(si).

In any solution of Multi-SLS or of Multi-SCCS, each string s of P must occur at least
m(s) times. Let us define P̃ to be the set containing m(s) copies of each word s of P ; to

CPM 2018

21:4 Superstrings with multiplicities

aab, 1 aab, 2 aab, 3 abaa, 1 abaa, 2 ababb, 1 abba, 1 abba, 2 abba, 3

aab abaa ababb abba

3 2 1 3

P̃

P

m

Figure 1 Example of P̃ for the instance (P,m) of Example 6. Due to space constraints, for a
pair of P̃ we may write aab,2 or 2 .

distinguish its copies we denote any element of P̃ by a pair (s, i) for 1 ≤ i ≤ m(s) – see
Example 6 and Figure 1. Formally, i.e.

P̃ =
⋃
s∈P

(
∪m(s)
i=1 {(s, i)}

)
.

For an element (s, i) of P̃ , we denote by word((s, i)) the word s of P , i.e., word((s, i)) = s.
Note that for some instances – when words of P do not overlap each other – an optimal

solution for Multi-SLS is the concatenation of all strings in P̃ , and has length ||P̃ || :=∑p
i=1 m(si) |si|. This observation remains valid for Multi-SCCS. Any algorithm solving

Multi-SLS or Multi-SCCS has its complexity bounded by the length of its output, i.e., by
||P̃ ||, which we consider to be linear in the input size. In [8], the authors seek to find a
compressed representation of the output; we dwell on this question on page 10.

I Example 6 (see Figure 1). This same instance (P,m) is used as running example throughout
the paper. Let P = {aab, abaa, ababb, abba} be a set of strings and m be the function from
P to N∗ such that m(aab) = 3, m(abaa) = 2, m(ababb) = 1 and m(abba) = 3. We have that

P̃ = {(aab, 1), (abb, 2), (abb, 3), (abaa, 1), (abaa, 2), (ababb, 1), (abba, 1), (abba, 2), (abba, 3)}.

About permutations. Given a permutation σ of a set E, a successor y of an element x of
E by σ, is an element of E such that y = σk(x) where σ1(x) = σ(x) and σk(x) = σk−1(σ(x)).
We denote by Part(E, σ) the partition {E1, . . . , Ep} of E where each element of E and its
successors are in the same subset Ei. A permutation is said circular if all the elements
of E are successors of any element of E, i.e. Part(E, σ) = {E}. Moreover, we denote by
Decomp(E, σ) the decomposition into circular permutations of the permutation σ, i.e., the set
of pairs (Ei, σi) where Ei ∈ Part(E, σ) and where σi is the restriction of σ to the elements
of Ei.

About linear and circular superstrings. Given two linear strings u and v, an overlap
from u over v is a linear string that is a proper suffix of u and a proper prefix of v. We
denote by ov(u, v) the longest overlap from u to v (also termed maximal overlap). Overlaps
are not symmetrical. The prefix from u to v, denoted by pr(u, v) is the string satisfying
u = pr(u, v)ov(u, v). The merge from u to v is the linear string pr(u, v)v if u 6= v, and the
circular string 〈pr(u, u)〉 otherwise. Given a set of strings P , we denote by Ov(P) the set of
all the maximal overlaps between any two strings of P .

Let P = {s1, . . . , sp} be a set of linear strings. We denote by Linear(s1, . . . , sp) (resp.
by Circular(s1, . . . , sp)) the linear (resp. circular) string defined by the merge of s1, . . . , sp
in this order:

Linear(s1, . . . , sp) := pr(s1, s2)pr(s2, s3) . . . pr(sp−1, sp)sp

B. Cazaux and E. Rivals 21:5

and

Circular(s1, . . . , sp) := 〈pr(s1, s2)pr(s2, s3) . . . pr(sp−1, sp)pr(sp, s1)〉.

I Remark. The starting point of the merge does not impact Circular(). Formally, for all
j ∈ {1, . . . , p}, Circular(s1, . . . , sp) = Circular(sj , . . . , sp, s1, . . . , sj−1).

About multi superstrings and multi cyclic covers induced by a permutation. The number
of possible superstrings or cyclic covers of P̃ is infinite, which makes the search space for
Multi-SLS / Multi-SCCS unpractical. Hence, a crucial issue is whether we can restrict this
search space. For this sake, we introduce the notion of multi superstring/cyclic cover induced
by a permutation.

Let τ be a permutation of P̃ . If τ is a circular permutation (meaning that all its elements
are successors of each other), we can define the multi superstring induced by τ and by an
element s̃ of P̃ as follows:

Lin(P̃ , τ, s̃) = Linear(next_word(s̃, 1), . . . , next_word(s̃, |P̃ |))

where next_word(s̃, k) = word(τk(s̃)). Here, the term Linear() of this equation is the merge
of the words of P̃ in the order given by τ and ending with the chosen element s̃ (indeed,
next_word(s̃, |P̃ |) = word(s̃)).

In general, τ is not circular. It can be decomposed in several circular permutations (see
Fig. 2a); we denote its decomposition by Decomp(P̃ , τ). We define, CC(P̃ , τ), the multi cyclic
cover of strings induced by τ as follows:

CC(P̃ , τ) =
⋃

(P̃i,σi)∈Decomp(P̃ ,τ)

{Circular(next_word(s̃, 1), . . . , next_word(s̃, |P̃i|))}

where s̃ is any element of P̃i and next_word(s̃, k) = word(σki (s̃)). CC(P̃ , τ) is a set of cyclic
strings, each obtained by merging the words in the order given by a sub-permutation σi.

I Example 7. Let σ1 and σ2 be the permutations of P̃ of Figure 2a and Figure 2b. Consider
the pair (abba, 3) in P̃ (node 3 in figures 2a and b); its direct successor with σ1 is itself, i.e.,
σ1((abba, 3)) = (abba, 3), and with σ2, it is the node 1 in Figure 2b, i.e., σ2((abba, 3)) =
(ababb, 1).

Some thoughts lead to the observation that any optimal multi superstring or multi cyclic
cover is necessarily induced by a permutation on P̃ . This yields this proposition, which
indeed restricts the search spaces of both problems. Due to space constraints, the proofs of
some results (marked with a ?) are not included here; some proofs are given in the appendix.

I Proposition 8 (?). Let (P,m) be an instance of Multi-SLS and of Multi-SCCS. Let wopt
be an optimal solution of Multi-SLS and let Copt be an optimal solution of Multi-SCCS.
Then, there exist
1. a permutation τ of P̃ such that Copt = CC(P̃ , τ).
2. a circular permutation ϕ of P̃ and an element s̃ of P̃ such that wopt = Lin(P̃ , ϕ, s̃).

3 Approximation

Here, let us define the greedy algorithms for Multi-SLS and Multi-SCCS problems and
exhibit their approximation ratios for the measure of compression.

CPM 2018

21:6 Superstrings with multiplicities

1 2 3 1 2 1 1 2 3

1 2 2 1 2 1 1 3 3

(a) Permutation σ1 of P̃

1 2 3 1 2 1 1 2 3

1 2 2 2 3 1 1 3 1

(b) Permutation σ2 of P̃

a
b

a
a

b

a

a

a b

b
a

b

a b

b

b
b

a

aab, 1 aab, 2

aab, 3

abaa, 1 abaa, 2

ababb, 1 abba, 1 abba, 2

abba, 3

(c) Cyclic cover induced by σ1

a
b

abb
a

a

b
a
a
b

a a b
b
a
b

b

ababb, 1abba, 1

aab, 1

abaa, 1

aab, 2

abba, 2abaa, 2
aab, 3

abba, 3

(d) Cyclic cover induced by σ2

Figure 2 Running example: two possible permutations of P̃ (Fig. a & b), and the cyclic covers
induced by these permutations (Fig. c and d). Permutation σ1 in (a) is decomposed in 5 circular
permutations (five colors in a) and induces 5 cyclic strings (c), while permutation σ2 cannot be
decomposed and induces a single cyclic string (d). In (c, d) input words are drawn as arrows around
the cyclic strings, and the dashed part represents the overlap with the successor.

Greedy algorithms. By Proposition 8, we have that each optimal solution of Multi-SCCS
can be induced by a permutation on P̃ . We can generalize the greedy algorithm for SCCS [5]
to Multi-SCCS.

The basic principle of the greedy algorithm for SLS or SCCS is 1/ to merge a pair of
strings at each step until all merge possibilities have been exhausted, and 2/ to consider pairs
of strings to be merged in order of decreasing overlap length, and 3/ to break ties randomly.
It is greedy because it chooses merge operations that yield the best compression first, and
never backtracks on these choices. In fact, the greedy algorithm determines a total ordering
on the merge operations (it is the greedy algorithm of a precise subset system – see [6] for
details). In stringology, the greedy algorithm is usually presented as in Algorithm 1: the
initial set of words (set Q in Algorithm 1) is iteratively modified at each iteration of the
main loop: a pair of strings is chosen, those strings removed from the set, and the string
resulting from the merge is (re-)inserted in the set. The two formulations of the algorithm
are equivalent [6], basically because the new string offers the same overlaps with remaining
words as the strings that were merged.

Of course the algorithm differs between the linear and cyclic cases. For SLS or Multi-SLS,
the loop merges pairs of words until getting a single linear string, which is the final result. For
SCCS or Multi-SCCS, the result is a set of cyclic strings, which is iteratively built (solution
set S). A merge of two linear string results in a linear string, but the merge of a single string
that self-overlaps yields a cyclic string. A cyclic string has no overlap and cannot be merged.

B. Cazaux and E. Rivals 21:7

Algorithm 1: The greedy algorithm for Multi-SCCS.
1 Input: a pair (P,m); Output: S: a cyclic cover of strings covering P̃ ;
2 S := ∅; // the solution set in construction
3 Q := P̃ ;
4 newIndex := |Q|;
5 while |Q| > 0 do
6 (u, i) and (v, j) two elements of Q such that u and v have the longest overlap;

// u can be equal to v and i equal to j
7 w is the merge of u and v;
8 Q := Q \ {(u, i), (v, j)};
9 if u = v and i = j (i.e., w is a cyclic string) then S := S ∪ {w};

10 else Q := Q ∪ {(w,newIndex++)};
11 return S

Hence, each cyclic string is directly inserted into the solution set (set S, line 9), while a
linear string is re-inserted in the set of strings remaining to be merged (set Q, line 10). This
explains why the loop condition is |Q| > 0 (line 5).
I Remark. Algorithm 1 is equivalent to iteratively merging the two elements u and v of P̃
having the longest overlap, provided that u is not merged on its right2 more than m(u) times
and v is not merged on its left more than m(v) times. The word that results from the merge
is inserted back into Q when it is linear, and inserted in the solution set S if it is cyclic. As
elements of Q are pairs, we number each inserted word with a variable newIndex that is
incremented on line 9.

We can also generalize the greedy algorithm for Multi-SCCS to Multi-SLS. To do so, we
just need to change in Algorithm 1, the while condition "|Q| > 0" by "|Q| > 1" and, on line 6
"and i equal to j" by "but i cannot be equal to j".

Measure of compression. For the both problems Multi-SLS and Multi-SCCS, we want
to minimize the length of the multi superstring or the norm of the multi cyclic cover of
strings. If instead, we want to maximize the compression, that is the difference between
the norm of P̃ and the output size, we call the corresponding problems Multi-SLScomp and
Multi-SCCScomp.

As the size of the input is constant, all optimal solutions of Multi-SCCS are also optimal
solutions of Multi-SCCScomp, and vice versa. The set of optimal solutions of Multi-SLS is
also equal to the set of optimal solutions of Multi-SLScomp. By Proposition 8, as we can
restrict to solutions induced by a permutation of P̃ , the compression can be seen as the sum
of the lengths of the overlaps between two successive strings in the permutation. Indeed, for
a permutation τ of P̃ ,

||P̃ || − |CC(P̃ , τ)| =
∑

(P̃i,σi)∈Decomp(P̃ ,τ)

(|P̃i|∑
j=1
|ov(next_word(s̃, j), next_word(s̃, j + 1))|

)
where s̃ ∈ P̃i and next_word(s̃, k) = word(σki (s̃)). Similarly, we get that Multi-SLScomp

2 Merged on its right (resp. left) means using an overlap of its suffix (resp. prefix).

CPM 2018

21:8 Superstrings with multiplicities

maximizes the sum of the lengths of the successive overlaps in a multi superstring induced
by a permutation.

Approximation for compression. We can see the greedy algorithm for SLS (and SLScomp)
as the greedy algorithm for finding a maximum weighted Hamiltonian path (Maximum
Asymmetric Travelling Salesman Problem – Max-ATSP) in the overlap graph [15]. The overlap
graph is a complete digraph labelled on the arcs, where each input word is a node, and
where the length of the maximal overlap between two words is a weight on the corresponding
arc [3]. Theorem 9 generalizes the half compression of greedy algorithm for SLS from [15] to
Multi-SLS (full proof in the Appendix).

I Theorem 9. The greedy algorithm for Multi-SLScomp has a 1
2 approximation ratio.

Proof. (See details in Appendix.) In [6], we show that one can prove the approximation ratio
of the greedy algorithm for SLScomp by combining the Monge inequality [14] with subset sys-
tems that simulate the greedy algorithm for Max-ATSP in graphs [13]. By building the overlap
graph for P̃ (see Figure 4a), we can use the same subset system on the maximal overlaps of
P̃ and obtain the same approximation ratio for the greedy algorithm of Multi-SLScomp as
for that of SLScomp. J

With the same arguments, we can show that the approximation ratio of the greedy
algorithm for Multi-SCCScomp equals that of the greedy algorithm for SCCScomp, which is
1 [6]. This yields Theorem 10.

I Theorem 10. For both problems Multi-SCCScomp and Multi-SCCS, the greedy algorithm
(Algorithm 1) yields an optimal solution.

By Proposition 8 and by the fact that greedy solutions for Multi-SCCS are optimal, we
can represent each greedy solution by a permutation of P̃ . For any instance (P,m), let
GreedyPerm(P̃) denote the set of permutations of P̃ corresponding to greedy solutions for
Multi-SCCS.

4 Linear construction of Multi-SCCS

In this section, we show how to compute a greedy solution for Multi-SCCS in linear time
in the norm of the set of strings of the input and in the norm of an optimal solution of
Multi-SCCS. To achieve this, we adapt the superstring graph [5] in order to model greedy
solutions for Multi-SCCS. Now, assume that one stores m(w), the multiplicity of a string w,
in constant space (O(1) bits); hence the input, (P,m), has size O(||P ||).

Red-Blue graphs. To begin with, we define the Red-Blue graphs, which are intermediate
digraphs needed to define the multi superstring graph – see Figure 3 (or Figure 6 in appendix).
Let τ be a permutation for P̃ and s̃ an element of P̃ . We define, RB-Graph(τ, s̃) := (V,R,B),
the Red-Blue graph of s̃ for the permutation τ as

V = {word(s̃), word(τ(s̃))} ∪ {y ∈ Ov(P) : |y| ≥ |ov(word(s̃), word(τ(s̃)))| , and
(y suffix of word(s̃) or y prefix of word(τ(s̃)))},

R = {(u, v) ∈ V × V | v is the longest proper suffix of u in V },
B = {(u, v) ∈ V × V | u is the longest proper prefix of v in V }.

By the properties of prefixes/suffixes, Red-Blue graphs are path graphs, which we illustrate
in Figure 3 (running example and permutation σ1 from Fig. 2a). Note that a Red-Blue graph
of s̃ depends on Ov(P): it may contain a suffix/prefix that is an overlap of another pair of

B. Cazaux and E. Rivals 21:9

aab, 1 abaa, 1 aab ab abaa

aab, 2 abaa, 2 aab ab abaa

aab, 3 abba, 2 aab ab abb abba

abaa, 1 aab, 1 abaa aa aab

abaa, 2 aab, 2 abaa aa aab

ababb, 1 abba, 1 ababb abb abba

abba, 2 aab, 3 abba a aa aab

abba, 3 abba, 3 abba a ab abb abba

abba, 1 ababb, 1 abba a ab ababb

(s, i) σ1((s, i)) RB-graph(σ1, (s, i))

Figure 3 Running example: set of all the Red-Blue graphs of (s, i) ∈ P̃ for the permutation σ1

(see Figure 2a). A dashed arc (in red) links a string to its longest proper suffix, while a plain arc (in
blue) links a longest proper prefix of a string to this string.

words (∈ {(word(s̃), word(τ(s̃))) | s̃ ∈ P̃}). In Figure 3, it happens on the graph for the pair
aab to abba since abb is not their maximal overlap.
Let u and v be in P ∪ Ov(P). By the definition of Red-Blue graphs, the arc linking u to v
occurs only once in a given Red-Blue graph, i.e., |{(u, v)} ∩ (R ∪B)| ∈ {0, 1} (see Lemma 16
in Appendix). We define NbOcc(τ, (u, v)) as the number of occurrences of the arc (u, v) in all
Red-Blue graphs for all s̃ in P̃ . Thus, we get:

NbOcc(τ, (u, v)) :=
∑
s̃ ∈ P̃

(V,R,B) = RB-Graph(τ,̃s)

|{(u, v)} ∩ (R ∪B)|.

Furthermore, we define PrefixArc(P) (resp. SuffixArc(P)), as the set of arcs (u, v) (resp.
(v, u)) of (P ∪ Ov(P))2 such that u is the longest prefix (resp. suffix) of v in P ∪ Ov(P).

For a permutation τ of P̃ that corresponds to a greedy solution for Multi-SCCS, we can
count the NbOcc(τ, (u, v)) for all (u, v) ∈ PrefixArc(P) ∪ SuffixArc(P). For the sake of
simplicity, we extend the function m to elements of Ov(P) and set: m(w) = 0 for any w in
Ov(P).

I Proposition 11. Let be τ ∈ GreedyPerm(P̃) and (u, v) ∈ PrefixArc(P) ∪ SuffixArc(P).
We have that

NbOcc(τ, (u, v)) =
{

Max(m(v),−a(v)) if |u| ≤ |v|
Max(m(u), a(u)) if |u| > |v|

where a(w) =
∑

(w′,w)∈SuffixArc(P)

NbOcc(τ, (w′, w))−
∑

(w,w′)∈PrefixArc(P)

NbOcc(τ, (w,w′)).

Multi superstring graph. Let τ be a permutation of P̃ . We define Gp(τ) := (V,R,B, l) as
the graph labelled on its arcs, which results from the merge of all Red-Blue graphs for all
elements of P̃ and for permutation τ . Formally:

V = Ov(P) \ U
R = {(u, v) ∈ SuffixArc(P) | NbOcc(τ, (u, v)) 6= 0}
B = {(u, v) ∈ PrefixArc(P) | NbOcc(τ, (u, v)) 6= 0}
l : (u, v) 7→ NbOcc(τ, (u, v))

CPM 2018

21:10 Superstrings with multiplicities

ababb, 1

abba, 1
abba, 2

abba, 3

abaa, 1

abaa, 2
aab, 1

aab, 2

aab, 3

(a) Overlap graph of P̃ (without weights)

ababb aab

abba abaa

abb

aa

ab

a

1

2
3

3

2

1

2

3

1

2

3

(b) Multi superstring graph of (P,m)

Figure 4 Running example: overlap graph of P̃ and multi superstring graph of (P,m).

where U = {v ∈ Ov(P) | v is not an extremity of an arc of R ∪B}.
By Proposition 11, we have that for a permutation τ of GreedyPerm(P̃) and (u, v) ∈

PrefixArc(P) ∪ SuffixArc(P), the number of occurrences of the arc (u, v),
i.e. NbOcc(τ, (u, v)), is independent of the permutation τ . From this observation and argu-
ments from [6], we deduce Proposition 12.

I Proposition 12 (?). Let τ1, τ2 be two permutations of GreedyPerm(P̃). Then, Gp(τ1) =
Gp(τ2).

By Proposition 12, all permutations inducing a greedy solution for an instance of
Multi-SCCS yield the same graph, which we call the multi superstring graph and denote by
SG(P,m) (see Figure 4b). Using data structures like the (generalised) suffix tree to determine
Ov(P) [16], and with Proposition 11, we can build the multi superstring graph of (P,m)
recursively and we obtain the following proposition.

I Proposition 13 (?). The multi superstring graph can be built in linear time and space in
||P ||.

Linear construction. By Proposition 11, we know that for SG(P,m) = (V,R,B, l) the multi
superstring graph of (P,m) the following equality holds:

∀v ∈ V,
∑

(v,u)∈R

l((v, u))−
∑

(u,v)∈B

l((u, v)) =
∑

(u,v)∈R

l((u, v))−
∑

(v,u)∈B

l((v, u)).

Hence, it follows that the multi superstring graph, in which the label of an arc is seen as a
multi-arc, is Eulerian on each of its connected components. In Figure 4b, the arc from abba

to a labelled by 3 means the Eulerian cycle must traverse this arc exactly thrice. Conversely,
we can show that every set of cycles covering the multi superstring graph corresponds to a
greedy solution for Multi-SCCS. As finding an Eulerian cycle cover of SG(P,m) takes a time
linear in ||P ||, we deduce Theorem 3 (p. 3).

Compressed output representation. At the beginning of this section, we have assumed
that for each word of P , we can store the multiplicity in constant space. To improve the
complexity, in this paragraph we assume that we can store the multiplicity of each string in
O(||P ||) bits. In [8], the authors present a compact representation of a solution for Multi-SLS

B. Cazaux and E. Rivals 21:11

Algorithm 2: The Multi-Greedy algorithm for Multi-SCCS

1 Input: a pair (P,m). Output: W a greedy solution for Multi-SCCS;
2 build SG(P,m) the multi superstring graph of (P,m);
3 compute an Eulerian multi-cycle c = (c1, . . . , cn) of GP ;
4 for j ∈ [1, n] do
5 traverse cj : list the words of P whose node is in cj and insert the cyclic string of

the concatenation of the corresponding prefixes in W ;
6 return W

a a b a a a b a a b a a b b a a b a b b a a b b a b b a

1 1 2 2 3 2 1 1 3

Figure 5 Running example: linearization LinCC(P̃ , σ1,W) of a cyclic cover of strings induced
by permutation σ1 (see Figure 2a) for W :=

(
abaa,1 , aab,2 , abba,2 , abba,1 , abba,3

)
.

with strings of length 2. They show that this compact representation has a size in O(||P ||2)
and can be computed in O(||P ||2) time.

We can apply their technique to the multi superstring graph defined for Multi-SCCS.
First, build the multi superstring graph of (P,m), and then using the algorithm EulerianCycle
from [8] on SG(P,m), compute a compact representation of a multi cyclic cover of size O(||P ||2)
in O(||P ||2) time. Now, as any connected component of SG(P,m) can be represented just by
a permutation and its first element, one gets a compact representation of size O(||P || × |P |),
therefore improving on [8].

5 Approximation algorithm for Multi-SLS

Now, we propose an approximation algorithm for Multi-SLS and derive its approximation
ratio with respect to the multi superstring length. By Theorem 9, we know that the greedy
algorithm for Multi-SLScomp has an approximation ratio of 1/2, and thus it belongs to APX.
Here, we extend the Concat-Cycles algorithm from [3] and we show that this new algorithm,
called Concat-Greedy, has an approximation ratio of 4 for Multi-SLS. The idea is to build
an Eulerian multi-cycle of the multi superstring graph of (P,m), to break each cycle and
merge its words to create linear strings, and to concatenate all these linear strings in an
arbitrary order. Figure 5 displays an example of linearization.

To define formally the linearization of a cyclic cover of strings induced by permutation τ
of P̃ , we denote LinCC(P̃ , τ, (w1, . . . , wp)) the following linearization

LinCC(P̃ , τ, (w1, . . . , wp)) = Lin(P̃1, σ1, w1) . . . Lin(P̃p, σp, wp)

where Decomp(P̃ , τ) = {(P̃1, σ1), . . . , (P̃p, σp)} and (w1, . . . , wp) ∈ P̃1 × . . .× P̃p.
Now, let us define the algorithm Concat-Greedy by Algorithm 3.
Adapting the proof by Blum et al. of the approximation ratio of Concat-Cycles

from [3], one gets the following bound on the length of a multi superstring computed
by Concat-Greedy.

CPM 2018

21:12 Superstrings with multiplicities

Algorithm 3: The algorithm Concat-Greedy for Multi-SLS

1 Input: a pair (P,m). Output: a linear solution for Multi-SLS;
2 build SG(P,m) the multi superstring graph of (P,m);
3 compute an Eulerian multi-cycle of GP and take τ the permutation in

GreedyPerm(P̃) corresponding to this multi-cycle;
4 take a tuple W of E1 × . . .× Ep where Part(P̃ , τ) = {E1, . . . , Ep};
5 return LinCC(P̃ , τ,W)

I Proposition 14 (?). Let wCG be a solution of Algorithm 3, wOPT (Multi-SLS) be an optimal
solution of Multi-SLS, and wOPT (SLS) be an optimal solution of SLS. We have:

|wCG| ≤ |wOPT (Multi-SLS)| + 3 × |wOPT (SLS)|.

As an optimal solution of Multi-SLS is longer than or equal to an optimal solution of SLS,
one gets the following approximation ratio for Concat-Greedy, which is not tight.

I Theorem 15. The approximation ratio of Algorithm Concat-Greedy for Multi-SLS is 4.

I Remark. As we have made for Multi-SCCS, we can compute a compact representation
of Multi-SLS of size O(||P || × |P |) in time O(||P ||2). Indeed, we linearize the compact
representation of Multi-SCCS using Concat-Greedy to get a compact representation for
Multi-SLS.

6 Conclusion

Here, we provide the first study of Multi-SLS in the general case, that is without restriction
on the number of words, nor on the word length. Multi-SLS can be approximated for both
the superstring length measure and for the compression measure. Finally, both Multi-SLS
and Multi-SLScomp admit a constant approximation ratio, and thus belong to the class
of APX problems. Proposition 14 shows that the difference in length between a multi-
superstring returned by Concat-Greedy and an optimal multi-superstring is bounded by a
term proportional to the length of an optimal superstring for SLS, on which the multiplicities
have no impact. In practice, Concat-Greedy may produce solutions way below this bound. A
future line of research is to implement this algorithm and evaluate its ratio experimentally, an
approach of great interest for superstring problems. Indeed, for the classical SLS problem, a
simple greedy like algorithm seems to yield superstrings very close to the optimum, achieving a
ratio that is orders of magnitude smaller than the theoretical bound [4]. Indeed, experimental
tests allow to compare approximation algorithms and may help pinpointing hard instances.
Of course, the theoretical ratio of the greedy algorithm, and the best possible approximation
ratio remain open questions for Multi-SLS.

Our main result regarding Multi-SCCS is its solvability in linear time. The Multi-Greedy
algorithm paves the way to the design of new approximation algorithms for Multi-SLS, as
was done for the classical SLS problem. Let us stress that even if our algorithm builds the
multi superstring graph for (P,m), the multiplicities do not impact the numbers of nodes
or of arcs, but only the weights on the arcs. As shown in Figure 4b, it is crucial that these
numbers are independent of the multiplicities. Another issue is to understand what influences
the number of cycles in a solution of Multi-SCCS; minimizing it may improve the output of
Concat-Greedy, which "looses" some symbols each time it breaks a cycle.

B. Cazaux and E. Rivals 21:13

Regarding future work, numerous variants of SLS (with reversals, with DNA strings [12, 9])
or restrictions of SLS (e.g. to strings of the same length [7]) can also be investigated with
multiplicities. The question of updating a shortest superstring when the instance changes
is challenging [2]. Here, a change of multiplicity can be considered as an alteration of the
instance.

References
1 Eric L. Anson and Eugene W. Myers. Algorithms for whole genome shotgun sequencing.

In Sorin Istrail, Pavel A. Pevzner, and Michael S. Waterman, editors, Proceedings of the
Third Annual International Conference on Research in Computational Molecular Biology,
RECOMB 1999, Lyon, France, April 11-14, 1999, pages 1–9. ACM, 1999. doi:10.1145/
299432.299442.

2 Davide Bilò, Hans-Joachim Böckenhauer, Dennis Komm, Richard Královic, Tobias Mömke,
Sebastian Seibert, and Anna Zych. Reoptimization of the shortest common superstring
problem. Algorithmica, 61(2):227–251, 2011. doi:10.1007/s00453-010-9419-8.

3 Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approxim-
ation of shortest superstrings. J. ACM, 41(4):630–647, 1994.

4 Bastien Cazaux, Samuel Juhel, and Eric Rivals. Practical lower and upper bounds for the
shortest linear superstring. In Gianlorenzo D’Angelo, editor, 17th International Symposium
on Experimental Algorithms (SEA) 2018, June 27–29, 2018, L’Aquila, Italy, volume 103 of
LIPIcs, page in press, 2018. doi:10.4230/LIPIcs.SEA.2018.18.

5 Bastien Cazaux and Eric Rivals. A linear time algorithm for Shortest Cyclic Cover of
Strings. J. Discrete Algorithms, 37:56–67, 2016.

6 Bastien Cazaux and Eric Rivals. The power of greedy algorithms for approximating Max-
ATSP, Cyclic Cover, and superstrings. Discrete Applied Mathematics, 212:48–60, 2016.

7 Bastien Cazaux and Eric Rivals. Relationship between superstring and compression
measures: New insights on the greedy conjecture. Discrete Applied Mathematics, 2017.
doi:10.1016/j.dam.2017.04.017.

8 Maxime Crochemore, Marek Cygan, Costas S. Iliopoulos, Marcin Kubica, Jakub Ra-
doszewski, Wojciech Rytter, and Tomasz Walen. Algorithms for three versions of the
shortest common superstring problem. In Amihood Amir and Laxmi Parida, editors, Com-
binatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA,
June 21-23, 2010. Proceedings, volume 6129 of Lecture Notes in Computer Science, pages
299–309. Springer, 2010. doi:10.1007/978-3-642-13509-5_27.

9 Gabriele Fici, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Walen. On the greedy algorithm for the Shortest Common Superstring problem with
reversals. Inf. Proc. Letters, 116(3):245–251, 2016.

10 John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings.
Journal of Computer and System Sciences, 20:50–58, 1980.

11 Theodoros P. Gevezes and Leonidas S. Pitsoulis. Optimization in Science and Engin-
eering: In Honor of the 60th Birthday of Panos M. Pardalos, chapter The Shortest Su-
perstring Problem, pages 189–227. Springer New York, New York, NY, 2014. doi:
10.1007/978-1-4939-0808-0_10.

12 Tao Jiang, Ming Li, and Ding-Zhu Du. A note on shortest superstrings with flipping.
Information Processing Letters, 44(4):195–199, 1992.

13 Julián Mestre. Greedy in Approximation Algorithms. In Proceedings of 14th Annual
European Symposium on Algorithms (ESA), volume 4168 of Lecture Notes in Computer
Science, pages 528–539. Springer, 2006.

CPM 2018

http://dx.doi.org/10.1145/299432.299442
http://dx.doi.org/10.1145/299432.299442
http://dx.doi.org/10.1007/s00453-010-9419-8
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.18
http://dx.doi.org/10.1016/j.dam.2017.04.017
http://dx.doi.org/10.1007/978-3-642-13509-5_27
http://dx.doi.org/10.1007/978-1-4939-0808-0_10
http://dx.doi.org/10.1007/978-1-4939-0808-0_10

21:14 Superstrings with multiplicities

14 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. In Mémoires de
l’Académie Royale des Sciences, pages 666–704, 1781.

15 Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing
shortest common superstrings. Theor. Comput. Sci., 57:131–145, 1988. doi:10.1016/
0304-3975(88)90167-3.

16 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
17 Virginia Vassilevska. Explicit inapproximability bounds for the shortest superstring prob-

lem. In 30th Int. Symp. on Mathematical Foundations of Computer Science (MFCS),
volume 3618 of Lecture Notes in Computer Science, pages 793–800. Springer, 2005.

A Details on the proofs for Theorems 9 and 10

This section summarizes the main lines of the proofs for Theorems 9 and 10 – formal proofs
are left for a full version of this article. The proof of Theorem 9 (resp. Theorem 10) follows
that of Theorem 3 (resp. Theorem 4) in [6]. We refer the reader to [13] for details on subset
systems and the notion of extendibility.

Both proofs rely on a subset system to analyze the greedy algorithm for solving Max-ATSP
in general graphs, and on the proof of its approximation ratio on Overlap Graphs. The goal
of Max-ATSP is to find a maximum weighted Hamiltonian path in a digraph G = (V,A). The
subset system enforces three conditions on the arcs incorporated in a greedy solution:
1. any two arcs must start from distinct nodes
2. any two arcs must end in distinct nodes (i.e., the symmetrical of the first condition)
3. there exist no cycle of length smaller than the cardinality of V .
These conditions ensure that the greedy algorithm indeed builds a Hamiltonian path. Thanks
to its 3-extendibility and to Theorem 1 from [13], one deduce that the greedy algorithm
yields a 1/3 approximation ratio for Max-ATSP, and similarly a 1/2 ratio for the Maximum
Weighted Cycle Cover problem. However, these are the ratios for general graphs. In the
case of overlap graphs, which satisfy the Monge condition [14], the proof of Theorem 3
in [6] shows by analyzing finely the greedy approximation, that the greedy algorithm yields
a 1/2 approximation ratio for Max-ATSP. Since, it is known that an approximation ratio
for Max-ATSP translates directly to an approximation ratio for Maximum Compression [11],
which is the version of Shortest Linear Superstring that seeks to maximize compression
measure, one gets a 1/2 approximation ratio for SLS. By applying this result on the overlap
graph of P̃ , one derives the 1/2 ratio for Multi-SLScomp. A similar proof ends up with an
approximation ratio of 1 for the Maximum Weighted Cycle Cover problem on overlap graph.
This yields the same ratio for Multi-SCCScomp, thereby showing that the greedy algorithm
solves this problem exactly.

B Proof of Lemma 16 and Proposition 11

I Lemma 16. Let τ be a permutation of P̃ and s̃ ∈ P̃ . Consider RB-Graph(τ, s̃) := (V,R,B)
be the Red-Blue graph of s̃, and let u and v be two strings of V . Then, the arc (u, v) occurs
only once in the Red-Blue graph, in other words

|{(u, v)} ∩ (R ∪B)| = 1.

Proof of Lemma 16. We face two alternatives: any arc belongs either to B or to R. By the
definition of R, if (u, v) belongs to R, then v is the longest proper suffix of u in V . Thus,
the length of u is strictly larger than that of v. By the definition of B, if (u, v) ∈ R, then u

http://dx.doi.org/10.1016/0304-3975(88)90167-3
http://dx.doi.org/10.1016/0304-3975(88)90167-3

B. Cazaux and E. Rivals 21:15

is the longest proper prefix of v in V . Thus, |u| < |v|. Hence, any arc of R ∪B is either in
R or in B, i.e., R ∩B = ∅. By the unicity of the longest proper prefix/suffix, (u, v) cannot
appear more than once in R nor in B, which concludes the proof. J

Proof of Proposition 11. By definition,

NbOcc(τ, (u, v)) :=
∑
s̃ ∈ P̃

(V,R,B)=RB-Graph(τ,̃s)

|{(u, v)} ∩ (R ∪B)|.

By Lemma 16, NbOcc(τ, (u, v)) is the number of times the arc (u, v) occurs in all Red-Blue
graphs of all the elements of P̃ .

To simplify the proof, we consider four alternative cases.
The case where u is an element of P . As P is factor-free, (u, v) is an arc of a

Red-Blue graph (V,R,B), and (u, v) is an element of R (since |u| > |v|). Moreover, a(u) = 0
because the set {(w′, w) ∈ SuffixArc(P)} ∪ {(w,w′) ∈ PrefixArc(P)} is empty. And thus,

NbOcc(τ, (u, v)) = |{u | ∃k ∈ N, (u, k) ∈ P̃}|
= m(u)
= Max(m(u), a(u)).

The case where v is an element of P . As P is factor-free, we get that (u, v) is an
element of B since |u| < |v|, and that a(v) = 0. Hence,

NbOcc(τ, (u, v)) = |{v | ∃k ∈ N, (v, k) ∈ P̃}|
= m(v)
= Max(m(v),−a(v)).

The case where u /∈ P , v /∈ P and |u| < |v|. As |u| < |v|, the arc (u, v) is an
element of B. As u /∈ P and v /∈ P , m(u) = m(v) = 0.

NbOcc(τ, (u, v)) = |{s̃ ∈ P̃ | (u, v) is an arc of RB-Graph(τ, s̃)}|
= |{s̃ ∈ P̃ | ov(word(s̃), word(τ(s̃))) is a prefix of u}|
= |{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| ≤ |u|}|.

As τ is a permutation of GreedyPerm(P̃), and assuming that the set

{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| ≤ |u|}

is not empty (otherwise, we would have NbOcc(τ, (u, v)) = 0), we deduce that

NbOcc(τ, (u, v)) = |{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃))}|
−|{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| = |v|}|
−|{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| > |v|}|

=
∑

(v,w)∈PrefixArc(P)

(
|{s̃ ∈ P̃ | u and w are prefixes of word(τ(s̃))}|

−|{s̃ ∈ P̃ | u and w are prefixes of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| ≥ |w|}|
)

−|{s̃ ∈ P̃ | u is a proper prefix of word(τ(s̃)), |ov(word(s̃), word(τ(s̃)))| = |v|}|
=

∑
(v,w)∈PrefixArc(P)

NbOcc(τ, (v, w))−
∑

(w′,v)∈SuffixArc(P)
NbOcc(τ, (w′v)).

Hence,

NbOcc(τ, (u, v)) = Max(m(v),−a(v)).

The case where u /∈ P , v /∈ P and |u| > |v| is similar to the previous case, where
u /∈ P , v /∈ P and |u| < |v|.
All cases have been considered and this concludes the proof. J

CPM 2018

21:16 Superstrings with multiplicities

C Example: set of all Red-Blue graphs

aab, 1 abaa, 1 aab ab abaa

aab, 2 abaa, 2 aab ab abaa

aab, 3 abba, 2 aab ab abb abba

abaa, 1 aab, 2 abaa aa aab

abaa, 2 aab, 3 abaa aa aab

ababb, 1 abba, 1 ababb abb abba

abba, 1 aab, 1 abba a aa aab

abba, 2 abba, 3 abba a ab abb abba

abba, 3 ababb, 1 abba a ab ababb

(s, i) σ2((s, i)) RB-graph(σ2, (s, i))

Figure 6 Running example: set of all the Red-Blue graphs of (s, i) ∈ P̃ for the permutation σ2

(see Figure 2b).

Linear-time algorithms for the subpath kernel
Kilho Shin1

Graduate School of Applied Informatics, University of Hyogo
Minatojima-Minamimachi, Chuo, Kobe, Japan
yshn@ai.u-hyogo.ac.jp

Taichi Ishikawa
Graduate School of Applied Informatics, University of Hyogo
Minatojima-Minamimachi, Chuo, Kobe, Japan
t.i.tkgw@gmail.com

Abstract
The subpath kernel is a useful positive definite kernel, which takes arbitrary rooted trees as
input, no matter whether they are ordered or unordered, We first show that the subpath kernel
can exhibit excellent classification performance in combination with SVM through an intensive
experiment. Secondly, we develop a theory of irreducible trees, and then, using it as a rigid
mathematical basis, reconstruct a bottom-up linear-time algorithm for the subtree kernel, which
is a correction of an algorithm well-known in the literature. Thirdly, we show a novel top-down
algorithm, with which we can realize a linear-time parallel-computing algorithm to compute the
subpath kernel.

2012 ACM Subject Classification Theory of computation → Kernel methods

Keywords and phrases tree, kernel, suffix tree

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.22

1 Introduction

Recently, designing efficient kernel functions for tree-type data has become more important
in various fields including bioinformatics, natural language processing (NLP) and so forth.
First of all, we have many applications where data are represented in the form of trees. For
instance, glycans are attracting wide attention of researchers as the third life molecule that
follows DNA and proteins, and their chemical structures are trees in contrast that DNA
and proteins are sequences. Also, results of syntactical analysis of natural languages and
documents created according to markup languages such as HTML/XML are all represented
as trees. In this paper, a tree always means a rooted tree.

To capture features of tree-type data, kernel functions are known useful. The basic nature
of kernel functions is a measure to evaluate similarity of data. Furthermore, when used with
various methods of multivariate analysis such as PCA and SVM, kernels are significantly
useful for the purposes of classification, clustering, regression and so forth.

Kernel functions applicable to tree-type data have been intensively studied in the literature.
In fact, since Haussler first introduced a generic class of positive definite kernels for semi-
structured data, named the convolution kernel [6], a variety of tree kernels have been proposed:
for example, Collins and Duffy designed the first tree kernel for the study of parse trees of
natural languages [3]; Kashima and Koyanagi relaxed application-specific constraints of the

1 This work was supported by JSPS KAKENHI Grant Number JP17H007623 and JP16K12491.

© Kilho Shin and Taichi Ishikawa;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yshn@ai.u-hyogo.ac.jp
mailto:t.i.tkgw@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 The subpath kernel, a truly practical kernel for trees

parse tree kernel by Collins and Duffy and introduced the elastic tree kernel [8]. The idea
that underlies these kernels is to count shared sub-structures.

In parallel, Shin and Kuboyama [14] showed a method to derive kernel functions from
various tree edit distances such as Taï distance [16] and the constrained distance [18]. In
fact, these counting-up-based and distance-based tree kernels can be discussed within the
common generalized framework of the mapping kernel [14]. In [15], a wide variety of tree
kernels designed within the mapping kernel framework are investigated from the accuracy
performance point of view.

This paper focuses on the subpath kernel, which extends and generalizes the spectrum
kernel [11] and the all-sequences kernel for strings, and the spectrum kernel for trees [10].
We see that the subpath kernel outperforms the benchmark tree kernels in prediction
performance, and its superiority is statistically significant. Furthermore, we present linear-
time fast algorithms to compute it with mathematical proof for their correctness.

2 The Subpath Kernel (SPK) for Trees

The subpath kernel takes two rooted labeled trees T1 and T2 as an input and returns a real
value.

The idea of the subpath kernel dates back to the spectrum kernel for strings that Leslie
et al. proposed [11]. Leslie’s spectrum kernel counts up all the pairs of congruent substrings
of a fixed length such that one substring appears in the first input string, while the other
does in the second.

Kuboyama et al. [10] have extended Leslie’s idea to trees and introduced the spectrum
tree kernel, which counts up congruent subpaths instead of substrings.

Starting from an arbitrary vertex v, a subpath of length q is the sequence of vertices
π = (v, p(v), p2(v), . . . , pq−1(v)), where p(w) denotes the parent of a vertex v.
From π, we obtain a string `(π) = `(v)`(p(v)) . . . `(pq−1(v)) ∈ Σq, where Σ is an alphabet
of labels and `(w) is the label of a vertex w.
For a tree T and s ∈ Σq, we let c(s;T) denote the number of subpaths π with `(π) = s.
Finally, the q-spectrum kernel Kq is define by

Kq(T1, T2) =
∑
s∈Σq

c(s;T1) · c(s;T2).

I Definition 1. With a decay factor λ ∈ (0, 1) and spectrum tree kernels Kq, the subpath
kernel is defined by SPK(T1, T2) =

∑
q∈N λ

qKq(T1, T2).

The subpath kernel is positive definite and the yields an inner product function in the
reproducing kernel Hilbert space [1].

3 High accuracy performance as a similarity measure.

We first see that the subpath kernel has prediction accuracy superior to major tree kernels
known in the literature through an intensive experiment.

3.1 Datasets
In the experiment, we use ten datasets, which cover three different areas of applications:
bioinformatics (three), natural language processing (six) and web access analysis (one). Three
(Colon, Cystic and Leukemia) are retrieved from the KEGG/GLYCAN database ([5])
and contain glycan structures annotated relating to colon cancer, cystic fibrosis and leukemia

K. Shin and T. Ishikaw 22:3

Table 1 Datasets: Number of examples, averaged sizes and averaged heights of trees.

Dataset AIMed BioInfer Colon Cystic Hprd50 Iepa Leukemia Lll Syntactic Web

Examples 100 70 134 160 100 100 442 100 225 500

Size 94.4 116.4 8.4 8.3 84.4 105.2 13.5 106.4 19.7 12.0
Height 13.5 14.1 5.6 5.0 12.7 13.6 7.4 14.3 6.5 4.3

Table 2 Accuracy scores, averaged ranks, and p-values in Hommel test

Kernel AIMed BioInf. Colon Cystic Hprd50 Iepa Leuk. Lll Syn. Web Av. Rnk. p-Val.

Spk 0.75 0.84 0.91 0.79 0.70 0.71 0.90 0.65 0.87 0.82 1.1 –

Prs 0.75 0.81 0.77 0.60 0.64 0.60 0.89 0.63 0.65 0.77 3.75 0.0031
Els 0.74 0.81 0.82 0.67 0.60 0.64 0.88 0.60 0.68 0.77 3.95 0.0020
Cdk 0.75 0.81 0.83 0.66 0.57 0.59 0.87 0.59 0.68 0.77 4.65 0.0001
Ctk 0.73 0.78 0.88 0.72 0.60 0.60 0.88 0.59 0.76 0.78 4.0 0.0016
Stk 0.72 0.79 0.90 0.73 0.61 0.59 0.88 0.60 0.82 0.78 3.55 0.0034

Figure 1 Hommel test: p < 0.01.

cells. One (Syntactic) is the dataset PropBank provided in [12]. This dataset includes parse
trees labeled with two syntactic role classes for modeling the syntactic/semantic relation
between a predicate and the semantic roles of its arguments in a sentence. Five (AIMed,
BioInfer, HPRD50 IEPA and LLL) are the corpora that include parse trees obtained by
analyzing documents regarding protein-protein interaction (PPI) extraction ([13]). PPI is an
intensively studied problem of the BioNLP field. The remaining one (Web), used in [17],
consists of trees representing web-page accesses by users, and the annotation is based on
whether the user is from a .edu site or not. Table 1 describes the basic features of these
datasets.

3.2 Kernels to compare
The benchmark kernels to compare with are the parse tree kernel (Prs) [3], the elastic tree
kernel (Els) [8], the sparse path kernel (STK) and the contiguous kernel (Crs). The Stk
and Ctk are two kernels that performed the best in an intensive experiment in [15]. Each
kernel includes two adjustable parameters α and β with 1 ≥ α ≥ β > 0.

3.3 Experimental results
Table 2 shows the results of the experiments. We run ten-fold cross validation with a
libSVM classifier [2] and measure accuracy scores by the accuracy index, determined by
Acc = TP+TN

TP+TN+FP+TN . The accuracy values in Table 2 are the best values obtained through
grid search changing the parameters. The subpath kernel includes one adjustable parameter
to tune, a decay factor λ, while the others include two, α and β.

Remarkably, for all of the datasets tested, the subtree kernel is ranked top. Also, Table 2
specifies the p-values obtained when we perform the Hommel multiple comparison test as
recommended by [4]. With a significance level 0.01, we can conclude that the exhibited
superiority of the subpath kernel is statistically significant (Figure 1).

CPM 2018

22:4 The subpath kernel, a truly practical kernel for trees

4 Linear-time algorithms for the subpath kernel

The subpath kernel “is known” to be one of a few tree kernels that have linear-time complexity
in the size of the input trees. In fact, [9] presented a linear-time algorithm but at the same
time reported not so good accuracy performance. For example, the accuracy scores the
subpath kernel with Leukemia was the lowest of the five tree kernels tested. This could
not help raising a question with us, and we have found the reason for this. The algorithm
proposed in [9] was wrong.

In this section, we reconstruct the algorithm based on the mathematically rigid ground,
a theory of irreducible trees (Section 4.1) and further, introduce a novel algorithm for the
subpath kernel, which realizes parallel computation of the subpath kernel in combination
with the corrected algorithm.

4.1 A theory of irreducible trees
An irreducible tree is rooted, ordered and labeled. A rooted tree T is a partially ordered set
(poset) with respect to an generation order : v < w means that a vertex v is an ancestor of
another vertex w, and hence, the root rT of T is the unique minimum vertex. Furthermore,
we let p(v) denote the parent of a vertex v, and pk(v) does the ancestor of v for k > 0 such
that there are exactly k − 1 intermediate vertices between v and pk(v). If a vertex is not
the parent of any other vertices, we call it a leaf. From the generation order, the nearest
common ancestor of a pair vertices (v, w) can be naturally introduced.

I Definition 2. For any {v, w} ⊆ T , v ` w = max≤{u ∈ T | u ≤ v, u ≤ w} is the nearest
common ancestor of v and w.

To define an ordered tree T , it is common to introduce a sibling order, but we deploy the
following definition, since we are only interested in a numbering of the leaves of T .

I Definition 3. When the entire leaves of a rooted tree T is numbered as (l1, . . . , ln), T is
said to be ordered, if, and only if, li ` lk = li ` lj ` lk holds for any 1 ≤ i < j < k ≤ n.

I Proposition 4. For a vertex v of an ordered tree, {i | li ≥ v} = [a, b] holds for some a and
b in {1, . . . , n}. We say that [a, b] is the span of v.

Proof. We let a = min{i | li ≥ v} and b = max{i | li ≥ v}. For any i ∈ (a, b), li ` la ≥ la `
lb ≥ v holds. In particular, we have li ≥ v. J

Finally, we define an irreducible tree in Definition 5.

I Definition 5. A rooted and ordered tree is irreducible, iff no vertex has only one child.

For study of irreducible trees, αi defined below plays a crucial role.

I Definition 6. For i ∈ {1, 2, . . . , n− 1}, αi denotes li ` li+1.

The rightmost (leftmost) leaf of a vertex v is lb (la), when v spans [a, b]. The rightmost
leaf of v can be characterized by αi as follows.

I Proposition 7. We assume v < li. li is the rightmost leaf of v, if, and only if, v > αi.

Proof. If li is the rightmost leaf, αi 6≥ v holds, since li+1 ≥ v holds, otherwise; If αi < v,
li ` lk ≤ αi < v, and therefore, lk 6≥ v holds for any k > i. J

Any non-leaf vertex v has at least one i such that v = αi. We have

K. Shin and T. Ishikaw 22:5

Figure 2 An irreducible tree.

I Proposition 8. For a non-leaf vertex v, we let w be the leftmost child of v and li be the
rightmost leaf of w. Then, i = min{j | αj = v} holds.

Proof. By Proposition 7, αi < w holds. On the other hand, since li is not the rightmost leaf
of v, αi ≥ v holds. αi = v immediately follows. J

I Definition 9. For an intermediate vertex v, γ(v) denotes min{i | αi = v}.

For example, in Figure 2, α4 and α5 are identical, and γ(α5) = 4 holds. Corollary 10
will play a central role when we introduce a top-down algorithm for the subpath kernel
in Section 4.5. For the convenience of explanation, without loss of generality, we add an
imaginary root ⊥ on top of rT and let αn =⊥.

I Corollary 10. If a non-leaf vertex v that spans [a, b] has children w1, . . . , wt, their rightmost
leaves are li1 , . . . , lit with {i1, . . . , it} = {j | j ∈ [a, b], αj ≤ v}.

Proof. We assume i1 < · · · < it. it = b follows from Proposition 7. li1 is the rightmost leaf
of w1 by Proposition 8. To verify that lii is the rightmost leaf of wi for 1 < i < t, we have
only to eliminate w1, . . . , wi−1 and their subordinates and then to apply Proposition 8. J

Theorem 14 and 16 stated below will be a theoretical basis to justify the correctness of
the bottom-up traversal algorithm introduced in [7] and to correct errors of the algorithm to
compute the subpath kernel proposed in [9]. We start with defining Γi and Γ̂i.

I Definition 11. Γi and Γ̂i are the subsequences of the subpath (p1(li), p2(li), . . . , p`i(li) =
rT) consisting of the vertices pj(li) such that γ(pj(li)) < i and pj(li) > αi, respectively.

I Example 12. In Figure 2, Γi and Γ̂i for i = 1, . . . , 10 are determined as follows.

i Γi Γ̂i i Γi Γ̂i

1 () () 6 (α4, α3, α2, α1) (α4, α3, α2)
2 (α1) () 7 (α6, α1) ()
3 (α2, α1) () 8 (α7, α6, α1) (α7, α6, α1)
4 (α3, α2, α1) () 9 (α8) (α8)
5 (α4, α3, α2, α1) () 10 (α9) (α9)

I Proposition 13. Any v ∈ Γ̂i has γ(v) < i. Hence, Γ̂i ⊆ Γi holds.

CPM 2018

22:6 The subpath kernel, a truly practical kernel for trees

Proof. li ` lk ≤ αi < v holds for k > i, and hence, lk 6≥ v holds. J

I Theorem 14. The sequence
∏n
i=1

[
(li) · Γ̂i

]
yields the bottom-up traversal of the vertices

of T . Given two sequences s and t, s · t denotes their concatenation.

Proof. Since every vertex v has a unique leftmost leaf, it appears in the sequence exactly
once. On the other hand, for a vertex w with w > v, the span of w is a subset of the span of
v, and hence, w appears before v in the sequence. J

I Example 15. In Figure 2, (li) · Γ̂i for i = 1, . . . , 10 is determined as follows.

i Γ̂i (li) · Γ̂i i Γ̂i (li) · Γ̂i

1 () (l1) 6 (α4, α3, α2) (l6, α4, α3, α2)
2 () (l2) 7 () (l7)
3 () (l3) 8 (α7, α6, α1) (l8, α7, α6, α1)
4 () (l4) 9 (α8) (l9, α8)
5 () (l5) 10 (α9) (l10, α9)

In fact, their concatination (l1, l2, l3, l4, l5, l6, α4, α3, α2, l7, l8, α7, α6, α1, l9, α8, l10, α9) gives
the bottom-up traversal of the vertices of the tree.

I Theorem 16. For i = 1, . . . , n− 1, the following hold.
1. If αi ∈ Γi, Γi+1 = Γi \ Γ̂i.
2. If αi 6∈ Γi, Γi+1 = (αi) ·

(
Γi \ Γ̂i

)
.

Proof. If j with j < i meets αj < li+1, αj ≤ αi holds. In fact, since αj ≥ lj ` li+1, we have
αj = lj ` li+1 ≤ αi, and hence, αj ∈ Γi \ Γ̂i. If αi ∈ Γi \ Γ̂i, Γi+1 = Γi \ Γ̂i holds. Otherwise,
we prepend αi to Γi \ Γ̂i to obtain Γi+1. J

I Example 17. In Figure 2, αi ∈ Γi holds only for i = 5. In fact, Γ6 = (α4, α3, α2, α1) is
identical to Γ5 \ Γ̂5 = (α4, α3, α2, α1) \ (). For the other i, Γi+1 = (αi) ·

(
Γi \ Γ̂i

)
holds. For

example, Γ̂5 = (α4, α3, α2) and (α6) ·
(

Γ5 \ Γ̂5

)
= (α6, α1) = Γ7 hold.

I Definition 18. h : T → N is a height function, if h(v) > h(w) holds for any (v, w) ∈ T 2

with v > w, and if h(rT) = 0.

A height function can be defined for an arbitrary rooted tree, which is not necessarily
irreducible.

I Example 19. For a rooted tree T and a vertex v in T , we let hv denote the number of
ancestors of v: that is, hv = |{w ∈ T | w < v}|. Evidently, hv is a height function.

4.2 Suffix arrays and suffix trees
The well known suffix tree is an example of irreducible trees.

Consider two rooted labeled trees T1 and T2, which are not necessarily ordered. For each
vertex v ∈ Ti, its entire path is the sequence of vertices

(
v, p(v), p2(v), . . . , phv (v) = rT

)
, and

the suffix of v is the string “L(v)L(p(v)) . . . L(phv (v))”, where L(v) denotes the label of a
vertex v. To determine the suffix array for T1 and T2, we collect all the suffices across all
the vertices of T1 and T2, and then sort them in the lexicographical order as strings. The
suffix array includes n = |T1|+ |T2| entries. In Figure 3, the first column of the right table
describes the suffix array for T1 and T2 depicted by the same figure.

K. Shin and T. Ishikaw 22:7

T1

A1

A3 B6

T2

A2

A4

A5

α5

α1

α3l1 l2

l3 l4 l5

l6

A

A

A

BA
Suffix LCP (h) c1 c2

A1 1 1 0
A2 1 0 1
A3A1 2 1 0
A4A2 2 0 1
A5A4A2 0 0 1
B6A1 −1 1 0

Figure 3 A suffix array (right) and the associated suffix tree (middle).

The suffix tree ST for T1 and T2 is derived from the suffix array. The leaf vertices
l1, l2, . . . , l|T1|+|T2| of the suffix tree uniquely correspond to the entries of the suffix array in
the order in which they appear in the array: the leaf li represents the suffix si, which is the
entry of the suffix array at position i. Because there is a one-to-one correspondence between
the entries of the suffix array and the vertices of T1 and T2, each leaf of the suffix tree also
uniquely represents a vertex in T1 or T2. Furthermore, each edge of ST is labeled with a
string of vertex labels so that the following conditions are met:
1. The concatenation of the edge labels of the path from the root rST to li is identical to si.
2. The labels of two downward edges from the same vertex of the suffix tree have no common

prefix.
Combined with the condition that the suffix tree is irreducible, these conditions uniquely
determine the suffix tree ST .

The center tree displayed in Figure 3 describes the suffix tree derived from T1 and T2
depicted in the same figure. Note that an edge label is omitted, if it is an empty string. For
example, l5 corresponds to the fifth entry of the suffix array, and therefore, represents the
vertex A5 in T2. In fact, the downward concatenation of the labels for the entire path of l5 is
identical to s5 = AAA.

An LCP value h(i) for an entry at the position i in a suffix array gives the length of
the longest common prefix between si and si+1. For example, in Figure 3, we have s2 = A
and s3 = AA, and therefore, the LCP value h(2) turns out to be 1. For the last entry of
the suffix array, we define its LCP value to be −1 for convenience of computation. In the
corresponding suffix tree, h(i) determines a height of the intermediate vertex αi.

Finally, we introduce two arrays c1 and c2 in addition to the LCP array h. c1(i) and c2(i)
for the entry at position i of a suffix array describes to which the suffix si belongs, T1 or T2:
c1(i) = 1, if si is a subpath of T1, and c2(i) = 1, if si is a subpath of T2.

To compute the subpath kernel, we have only to input these three arrays h, c1 and c2
into algorithms.

In [9], an algorithm to generate suffix arrays and suffix trees whose time complexity is
linear to the size of trees is proposed.

4.3 Reconstruction of the bottom-up traversal algorithm of [7]

We first reconstruct a linear-time bottom-up traversal algorithm based on the theory shown
in Section 4.1, which is equivalent to the one introduced in [7]. Algorithm 1 shows the
algorithm Theorem 14 and 16 clearly explain the algorithm and at the same time give a
mathematical justification for its correctness.

CPM 2018

22:8 The subpath kernel, a truly practical kernel for trees

Algorithm 1 A bottom-up traversal algorithm of an irreducible tree.
Require: (h(α1), . . . , h(αn)) ∈ Nn . h(αi): the height of αi

Ensure: A sequence (v1, . . . , v|T |) of vertices of T in the bottom-up traversal order.
1: Clear a stack Γ . popΓ, pushΓ(·), topΓ are operations on Γ
2: for i = 1, 2, . . . , n do
3: Write li
4: while Γ 6= ∅ ∧ h(topΓ) > h(αi) do . topΓ > αi ⇔ h(topΓ) > h(αi)
5: Write topΓ
6: Do popΓ
7: end while
8: if Γ = ∅ ∨ h(topΓ) 6= h(αi) then . αi ∈ Γ⇔ αi = topΓ
9: Do pushΓ(αi)
10: end if
11: end for

1. The first-in-last-out stack Γ holds Γi for each i of the for loop. If Γi = (v1, . . . , vk) with
v1 > · · · > vk, v1 is stored at the top, and vk is stored at the bottom of Γ.

2. Note that, if αi and αj are comparable with respect to the generation order, we have
αi < αj ⇔ h(αi) < h(αj). Therefore, the exit condition of the while loop is for
h(topΓ) ≤ h(αi) to hold.

3. The while loop outputs the elements of Γ̂i in the decreasing direction of the generation
order. Hence, Theorem 14 asserts that the algorithm outputs the vertices of T in the
bottom-up traverse order.

4. The while loop also eliminates Γ̂i from Γi in the stack Γ. This is done by performing
popΓ. By Theorem 16, this updates Γi to Γi+1, if αi ∈ Γi.

5. If αi 6∈ Γi, by Theorem 16, αi is to be prepended to Γi \ Γ̂i to obtain Γi+1. In fact, this
is done by performing pushΓ(αi).

6. To know whether αi ∈ Γi, we have only to examine whether topΓ = αi, equivalently,
whether h(topΓ) = h(αi).

4.4 A linear-time bottom-up algorithm for the subpath kernel
In [9], the key formula to compute SPK(T1, T2) is given as

SPK(T1, T2) =
∑
v∈ST

(w(h(v))− w(h(p(v)))) · c1(v) · c2(v). (1)

The function w is determined by w(h) =
∑h
i=1 λ

i and ci(v) is the number of leaves below v

that belong to Ti. Algorithm 2 computes SPK(T1, T2) by Eq. (1) and is also a correction to
the algorithm exhibited in [9].

The steps commented with “. For bottom-up traversal” are to perform bottom-up
traversal of vertices of the suffix tree ST derived from T1 and T2, the following are added to
Algorithm 1.

The stack Γ stores a triplet (αi, c1, c2) (Step 13) instead of αi. The second and third
components store intermediate values to compute c1(v) and c2(v).
The value (w(h(v))− w(h(p(v)))) ·c1(v) ·c2(v) computed for each vertex v is accumulated
in the variable kernel (Step 9).
When αi ∈ Γi (Step 14), the triplet (v, c′1, c′2) is updated so that leaves found during
eliminating Γ̂i from Γi are counted (Step 16).

K. Shin and T. Ishikaw 22:9

Algorithm 2 A bottom-up algorithm for SPK (correction to [9]).
Require: (h(α1), . . . , h(αn)) ∈ Nn; (c1(l1), . . . , c1(ln)) ∈ Zn

2 ; (c2(l1), . . . , c2(ln)) ∈ Zn
2 . h(αi): the

height of αi; ci(lj): belonging of lj to Ti

Ensure: SPK(T1, T2)
1: procedure SPKBU(h(α1), . . . , h(αn); c1(l1), . . . , c1(ln); c2(l1), . . . , c2(ln))
2: Clear a stack Γ . For bottom-up traversal
3: Let kernel = 0
4: for i = 1, 2, . . . , n do . For bottom-up traversal
5: Let c1 = c1(li) and c2 = c2(li)
6: while Γ 6= ∅ ∧ h(topΓ[0]) > h(αi) do . For bottom-up traversal
7: Let (v, c′1, c′2) = topΓ
8: Do popΓ . For bottom-up traversal
9: Let c1 = c1 + c′1 and c2 = c2 + c′2 . ci = ci(v)
10: if h(v) 6= 0 then
11: Let kernel = kernel + (w(h(v))− w(h(p(v)))) · c1 · c2
12: end if . Eq. (1)
13: end while . For bottom-up traversal
14: if Γ = ∅ ∨ h(topΓ[0]) 6= h(αi) then . For bottom-up traversal
15: Do pushΓ(αi, c1, c2) . For bottom-up traversal
16: else
17: Let (v, c′1, c′2) = topΓ
18: Let topΓ = (v, c′1 + c1, c

′
2 + c2)

19: end if . For bottom-up traversal
20: end for . For bottom-up traversal
21: end procedure

Algorithm 3 Computation of p(v).

Require: (h(α1), . . . , h(αn)) ∈ Nn; Γ = Γi \ {v1, . . . , vj}; v = vj . {v1, . . . , vj} ⊆ Γ̂i

Ensure: p(v)
1: if Γ = ∅ ∨ h(topΓ[0]) < h(αi) then . topΓ[0] < αi ⇔ h(topΓ[0]) < h(αi)
2: return αi

3: else
4: return topΓ[0]
5: end if

We should be careful when computing p(v) in Step 10. Proposition 13 asserts that, when
(v, c′1, c′2) is the last element eliminated from Γ, p(v) = topΓ[0] holds, if topΓ[0] > αi, and
p(v) = αi holds, otherwise.

The most important error of the algorithm of [9] was that it wrongly assumed p(v) =
topΓ[0] unconditionally. For example, for two trees T1 and T2 and the suffix tree derived
from them depicted by Figure 4, the subpath kernel value for T1 and T2 turns out to
be λ2 + 3λ, because the subpaths of T1 are {A1,B3,B3A1}, while the subpaths of T2 are
{A2,B4,B5,B4A2,B5B4,B5B4A2}.

In Algorithm 1, the bottom-up traversal visits α3, when i = 4. Since p(α3) is α4, the
value (w(h(α3)) − w(h(α4))) · 1 · 1 = λ2 + λ − λ = λ2 is added to the variable kernel
at Step 10. On the other hand, since Γ4 = (α3, α2) holds, the algorithm of [9] adds
(w(h(α3))− w(h(α2))) · 1 · 1 = λ2 + λ, instead. By this, the kernel value that the algorithm
of [9] computes becomes λ2 + 4λ.

CPM 2018

22:10 The subpath kernel, a truly practical kernel for trees

T1

B3

A1

T2

B5

B4

A2

α2

α1

α4

α3

1 2 3 4 5

A

B

BA

A

Figure 4 A counter example.

Algorithm 4 Decomposition into child trees.
Require: a; h(v); {h(α1), . . . , h(αn)} ⊂ Nn . la: the leftmost leaf of v
Ensure: ((i1, h1), . . . , (it, ht))
1: . (w1, . . . , wt): the children of v; lij is the rightmost leaf of wj ; hj = h(wj)
2: Let i = a

3: while true do
4: minh = h(αi)
5: while h(αi) > h(v) do . αi > v ⇔ h(αi) > h(v)
6: minh = min{h(αi),minh}
7: Let i = i+ 1
8: end while
9: Write (i,minh)
10: if h(αi) < h(v) then . αi < v ⇔ h(αi) < h(v)
11: return
12: end if
13: Let i = i+ 1
14: end while

4.5 A Top-Down Algorithm for the subpath kernel
We introduce a novel algorithm that computes the subpath kernel leveraging recursive
function calls. Algorithm 4 below is the key component of the algorithm, which decomposes
a tree into a sequence of child trees. Corollary 10 guarantees the correctness of Algorithm 4.

Algorithm 5 defines the function SPKTD that computes the subpath kernel. For con-
venience of explanation, we simply assume that we call the function SPKTD specifying an
interval of leaves as an input to obtain three values: the number of leaves that belong to T1
in the interval; the number of leaves that belong to T2 in the interval; and the kernel value
computed for the interval. To be specific, SPKTD(I) is formulated by

SPKTD(I) =

|STL1 ∩ I|, |STL2 ∩ I|,
∑

i∈STL1∩I

∑
j∈STL2∩I

w(h(li ` lj))

 , (2)

where STLi = {j | lj ∈ Ti} for i = 1, 2 and I = [a, b] for 1 ≤ a ≤ b ≤ n. Evidently,
SPKTD([1, n]) = SPK(T1, T2) holds.

The function first performs Algorithm 4 to decompose the input interval of leaves, spanned
by an intermediate vertex v in ST , into more than one intervals, each of which is spanned by
a child of v (Step 5). Then, the function recursively applies itself to each interval obtained
(Step 10).

The time complexity of computing SPKTD(I) can be estimated to be O
(
|I| · dp(v)

)
,

where the depth function dp(v) gives the longest length of downward paths in the suffix tree

K. Shin and T. Ishikaw 22:11

Algorithm 5 A top-down algorithm for SPK
Require: a; b; h(v); (h(α1), . . . , h(αn)) ∈ Nn; (c1(l1), . . . , c1(ln)) ∈ Zn

2 ; (c2(l1), . . . , c2(ln)) ∈ Zn
2 .

v: a vertex that spans (la, . . . , lb) in ST
Ensure: c′1; c′2; kernel′ . c′i: the number of leaves of Ti in [a, b]; kernel′: the kernel value for [a, b]
1: procedure SPKTD(a; b; h(v); h(αa), . . . , h(αb); c1(la), . . . , c1(lb); c2(la), . . . , c2(lb))
2: if a = b then
3: return (c1(la), c2(lb), 0.0)
4: end if
5: Compute ((i1, h1), . . . , (it, ht)) by Algorithm 4
6: . (w1, . . . , wt): the children of v; lij : the leftmost leaf of wj ; hj = h(wj)
7: Let i0 = a− 1
8: Let c1, c2, kernel = 0, 0, 0.0
9: for j = 1, . . . , t do
10: Let (c′1, c′2, kernel′) = SPKTD(ij−1 + 1; ij ;hj ;h(αij−1+1), . . . , h(αij);
11: c1(lij−1+1), . . . , c1(lij); c2(lij−1+1), . . . , c2(lij))
12: Let kernel = kernel + w(h(v)) · (c1 · c′2 + c2 · c′1) + kernel′

13: . w(h) = λ+ λ2 + · · ·+ λh, where λ is a decay factor
14: Let c1, c2 = c1 + c′1, c2 + c′2
15: end for
16: return (c1, c2, kernel)
17: end procedure

that start at the vertex v. This can be proven by mathematical induction as follows. Since
Algorithm 4 scans all the leaves in I exactly one time for each, its time complexity is O(|I|).
As a result of running Algorithm 4, I is partitioned to intervals I1, . . . , It. Since a suffix tree
is irreducible, t > 1 holds. By the hypothesis of mathematical induction, we suppose that
the time complexity to execute Algorithm 5 for Ii is O

(
|Ii| · dp(wi)

)
, where wi is a child of v

in the suffix tree and spans Ii. Hence, the time complexity to execute Algorithm 5 for I is
bounded above by

O(|I|) +
t∑
i=1

O
(
|Ii| · dp(wi)

)
≤ O(|I|) +

t∑
i=1

O
(
|Ii| · (dp(v)− 1)

)
= O

(
|I| · dp(v)

)
In particular, the time complexity of Algorithm 5 for two trees T1 and T2 is bounded above
by O

(
(|T1|+ |T2|) ·max{dp(T1),dp(T2)}

)
, where dp(Ti) is the depth of the root of Ti in Ti.

Although this top-down algorithm is not linear with respect to the size of trees, it leads
us to a hybrid parallel-computing linear-time algorithm as shown in the next section.

4.6 A hybrid parallel-computing linear-time algorithm
The top-down algorithm (Algorithm 5) enables us to compute the subpath kernel within the
parallel computing framework. The idea is:
1. Apply the decomposition algorithm of Algorithm 4 until the entire tree is decomposed

into an appropriate number of subtrees;
2. Use the bottom-up subpath kernel algorithm of Algorithm 2 to compute the kernel values

for the subtrees obtained in Step 1;
3. Call the SPKTD function of Algorithm 5 recursively until reaching the subtrees precom-

puted in Step 2.

Since the time complexity of Step 1 and Step 3 is linear to |T1|+ |T2|, since the parallelism
is a constant number. On the other hand, the time complexity of Step 2 is evidently linear,
and hence, the total time complexity of the hybrid algorithm is linear.

CPM 2018

22:12 The subpath kernel, a truly practical kernel for trees

Figure 5 Runtime to compute 20 kernel values.

We conducted an experiment to compare the run-time of
For the experiment, we used a Mac Book Pro with 2.9GHz Quad Core Intel Core™ i7

CPU and ran the program written in Scala on macOS High Sierra 10.13.4. For parallel
computation, we used the ParArray collection class.

The dataset used in the experiment consists of 20 pairs of randomly generated synthetic
trees, each of which consists of 107−1

9 = 1, 111, 111 vertices and uniformly has degree 10 and
height 7. The size of the alphabet of vertex lables is 100.

Figure 5 shows the run-time sores in milliseconds to compute the 20 kernel values, when
we change the parallelism from 1 to 8. Since the CPU includes four cores, the runtime rapidly
decreases until the parallelism reaches three. For the parallelism greater than three, although
the gradient of the curve becomes gentler, the runtime steadily decreases.

5 Conclusion

We have shown superiority of the subpath kernel to other benchmark tree kernels in clas-
sification performance. The superiority has proven to be statistically significant through
Hommel multiple comparison test with the significance level 0.01. In addition, we presented
a linear-time bottom-up algorithm for the subpath kernel as well as a top-down algorithm.
We have given mathematical proofs for the correctness of these algorithms based on a theory
that we have developed. By combining the bottom-up and top-down algorithms, we can build
hybrid linear-time parallel-computing algorithm, which has proven to improve the run-time
performance through experiments. Considering all the above, we conclude that the subpath
kernel should be the best kernel for analyzing tree data. As future studies, we will investigate
their performance for other purposes of data analysis such as clussification and regression.

References

1 Christensen Berg, C. and R. J. P. R., Ressel. Harmonic analysis on semigroups. theory of
positive definite and related functions. Springer, 1984.

2 C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines, 2001. URL:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

3 M. Collins and N. Duffy. Convolution kernels for natural language. Neural Information
Processing Systems, 2001.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

K. Shin and T. Ishikaw 22:13

4 J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Theory, 7:1–30, 2006.

5 K. Hashimoto, S. Goto, S. Kawano, K. F. Aoki-Kinoshita, and N. Ueda. KEGG as a
glycome informatics resource. Glycobiology, 16:63R–70R, 2006.

6 D. Haussler. Convolution kernels on discrete structures. UCSC-CRL 99-10, 1999.
7 T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-

prefix computation in suffix arrays and its applications. the 12th Annual Symposium on
Combinatorial Pattern Matching. pp., 2001.

8 H. Kashima and T. Koyanagi. Kernels for semi-structured data. in: the 9th international
conference on machine learning. ICML, 2002.

9 D. Kimura and H. Kashima. Fast computation of subpath kernel for trees. ICML, 2012.
10 T. Kuboyama, K. Hirata, H. Kashima, K.F. Aoki-Kinoshita, and H. Yasuda. A spectrum

tree kernel. JSAI, 2007.
11 C. S. Leslie, E. Eskin, and W. Stafford Noble. The spectrum kernel: A string kernel for

SVM protein classification. Pacific Symposium on Biocomputing, 2002.
12 Alessandro Moschitti. Example data for TREE KERNELS IN SVM-LIGHT. URL: http:

//disi.unitn.it/moschitti/Tree-Kernel.htm.
13 S. Pyysalo, A. Airola, J. Heimonen, J. Bjorne, F. Ginter, and T. Salakoski. Comparative

analysis of five protein-protein interaction corpora. BMC Bioinformatics, 9(S-3), 2008.
14 K. Shin and T. Kuboyama. A generalization of Haussler’s convolution kernel - mapping

kernel. ICML, 2008.
15 K. Shin and T. Kuboyama. A comprehensive study of tree kernels. in: Jsai-isai post-

workshop proceedings. Lecture Notes in Articial Intelligence, 2014.
16 K. C. Taï. The tree-to-tree correction problem. journal of the ACM, 1979.
17 M. J. Zaki and C. C. Aggarwal. XRules: An effective algorithm for structural classification

of XML data. Machine Learning, 62:137–170, 2006.
18 K. Zhang. Algorithms for the constrained editing distance between ordered labeled trees

and related problems. Pattern Recognition, 1995.

CPM 2018

http://disi.unitn.it/moschitti/Tree-Kernel.htm
http://disi.unitn.it/moschitti/Tree-Kernel.htm

Linear-Time Algorithm for Long LCF
with k Mismatches
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

https://orcid.org/0000-0002-6024-1557

Maxime Crochemore
Department of Informatics, King’s College London, London, UK
maxime.crochemore@kcl.ac.uk

https://orcid.org/0000-0003-1087-1419

Costas S. Iliopoulos
Department of Informatics, King’s College London, London, UK
costas.iliopoulos@kcl.ac.uk

Tomasz Kociumaka
Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

https://orcid.org/0000-0002-2477-1702

Solon P. Pissis
Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

https://orcid.org/0000-0002-1445-1932

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Warsaw, Poland
jrad@mimuw.edu.pl

https://orcid.org/0000-0002-0067-6401

Wojciech Rytter
Institute of Informatics, University of Warsaw, Warsaw, Poland
rytter@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Warsaw, Poland
walen@mimuw.edu.pl

https://orcid.org/0000-0002-7369-3309

Abstract
In the Longest Common Factor with k Mismatches (LCFk) problem, we are given two strings
X and Y of total length n, and we are asked to find a pair of maximal-length factors, one of X
and the other of Y , such that their Hamming distance is at most k. Thankachan et al. [27] show
that this problem can be solved in O(n logk n) time and O(n) space for constant k. We consider
the LCFk(`) problem in which we assume that the sought factors have length at least `. We
use difference covers to reduce the LCFk(`) problem with ` = Ω(log2k+2 n) to a task involving
m = O(n/ logk+1 n) synchronized factors. The latter can be solved in O(m logk+1m) time, which
results in a linear-time algorithm for LCFk(`) with ` = Ω(log2k+2 n). In general, our solution to
the LCFk(`) problem for arbitrary ` takes O(n+ n logk+1 n/

√
`) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

© Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-6024-1557
mailto:maxime.crochemore@kcl.ac.uk
https://orcid.org/0000-0003-1087-1419
mailto:costas.iliopoulos@kcl.ac.uk
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-2477-1702
mailto:solon.pissis@kcl.ac.uk
https://orcid.org/0000-0002-1445-1932
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:rytter@mimuw.edu.pl
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Linear-Time Algorithm for Long LCF with k Mismatches

Keywords and phrases longest common factor, longest common substring, Hamming distance,
heavy-light decomposition, difference cover

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.23

Related Version A full version of the paper is available at http://arxiv.org/abs/1802.06369.

Funding Jakub Radoszewski is supported by the “Algorithms for text processing with errors and
uncertainties” project carried out within the HOMING programme of the Foundation for Polish
Science co-financed by the European Union under the European Regional Development Fund.
Wojciech Rytter and Tomasz Waleń are supported by the Polish National Science Center, grant
no. 2014/13/B/ST6/00770.

1 Introduction

The longest common factor (LCF) problem is a classical and well-studied problem in
theoretical computer science. It consists in finding a maximal-length factor of a string
X occurring in another string Y . When X and Y are over a linearly-sortable alphabet, the
LCF problem can be solved in the optimal O(n) time and space [17, 15], where n is the total
length of X and Y . Considerable efforts have thus been made on improving the additional
working space; namely, the space required for computations, not taking into account the
space providing read-only access to X and Y . We refer the interested reader to [25, 21].

In many bioinformatics applications and elsewhere, it is relevant to consider potential
alterations within the pair of input strings (e.g. DNA sequences). It is thus natural to define
the LCF problem under a distance metric model. The problem then consists in finding a pair
of maximal-length factors of X and Y whose distance is at most k. In fact, this problem
has received much attention recently, in particular due to its applications in alignment-free
sequence comparison [29, 22].

Under the Hamming distance model, the problem is known as the Longest Common
Factor with at most k Mismatches (LCFk) problem. The restricted case of k = 1 was
first considered in [4], where an O(n2)-time and O(n)-space solution was given. It was later
improved by Flouri et al. [12], who built heavily on a technique by Crochemore et al. [11] to
obtain O(n logn) time and O(n) space.

For a general value of k, the problem can be solved in O(n2) time and space by a dynamic
programming algorithm, but more efficient solutions have been devised. Leimeister and
Morgenstern [22] first suggested a greedy heuristic algorithm. Flouri et al. [12] proposed
an O(n2)-time algorithm that uses O(1) additional space. Grabowski [13] presented two
algorithms with running times O(n((k + 1)(`0 + 1))k) and O(n2k/`k), where `0 and `k are,
respectively, the length of an LCF of X and Y and the length of an LCF of X and Y with
at most k mismatches. Thankachan et al. [27] proposed an O(n logk n)-time and O(n)-space
algorithm (for any constant k).

Abboud et al. [1] employed the polynomial method to obtain a k1.5n2/2Ω(
√

log n
k)-time

randomized algorithm. Kociumaka et al. [20] showed that a strongly subquadratic-time
algorithm for the LCFk problem, for binary strings and k = Ω(logn), refutes the Strong
Exponential Time Hypothesis [19, 18]. Thus, subquadratic-time solutions for approximate
variants of the problem have been developed [20, 24]. The average-case complexity of this
problem has also been considered [28, 2, 3].

http://dx.doi.org/10.4230/LIPIcs.CPM.2018.23
http://arxiv.org/abs/1802.06369

P. Charalampopoulos et al. 23:3

1.1 Our Contribution
We consider the following variant of the Longest Common Factor with at most k

Mismatches problem in which the result is constrained to have at least a given length. Let
LCFk(X,Y) denote the length of the longest common factor of X and Y with at most k
mismatches.

LCF of Length at Least ` with at most k Mismatches (LCFk(X,Y, `))
Input: Two strings X and Y of total length n and integers k ≥ 0 and ` ≥ 1
Output: LCFk(X,Y) if it is at least `, and “NONE” otherwise.

We focus on a special case of this problem with ` = Ω(log2k+2 n). Apart from its theoretical
interest, solutions to the LCFk(X,Y, `) problem may prove to be useful from a practical
standpoint. The LCFk length has been used as a measure of sequence similarity [29, 22]. It
is thus assumed that similar sequences share relatively long factors with k mismatches.

We show an O(n)-time algorithm for the LCFk(X,Y, `) problem with ` = Ω(log2k+2 n).
Moreover, we prove that the LCFk(X,Y, `) problem can be solved in O(n+ n logk+1 n/

√
`)

time for arbitrary ` and constant k. In the final section we discuss the complexity for
k = O(logn). This unveils that the O(·) notation hides a multiplicative factor that is actually
subconstant in k.

For simplicity, we only describe how to compute the length LCFk(X,Y). It is straightfor-
ward to amend our solution so that it extracts the corresponding factors of X and Y .

Toolbox. We use the following algorithmic tools:
Difference covers (see, e.g., [23, 8]) let us reduce the LCFk(X,Y, `) problem to searching
for longest common prefixes and suffixes with at most k mismatches (LCPk, LCSk) at
positions belonging to sets A in X and B in Y such that |A|, |B| = O(n/

√
`).

We use a technique of recursive heavy-path decompositions by Cole et al. [9], already
applied in the context of the LCFk problem by Thankachan et al. [27], to reduce
computing LCPk, LCSk to computing LCP, LCS in sets of modified prefixes and suffixes
starting at positions in A and B. Modifications consist in at most k changes and increase
the size of the problem by a factor of O(logk n). We adjust the original technique of Cole
et al. [9] so that all modified strings are stored in one compacted trie.
Finally we apply to the compacted trie a solution to a problem on colored trees that is
the cornerstone of the previous O(n logn)-time solution for the LCF1 problem by Flouri
et al. [12] (and originates from efficient merging of AVL trees [7]).

In total we arrive at O(n+ n logk+1 n/
√
`) time complexity for the LCFk(X,Y, `) problem.

2 Preliminaries

Henceforth we denote the input strings by X and Y and their common length by n.
The i-th letter of a string U , for 1 ≤ i ≤ |U |, is denoted by U [i]. By [i . . j] we denote

the integer interval {i, . . . , j} and by U [i . . j] we denote the string U [i] . . . U [j] that we call a
factor of U . For simplicity, we denote U [. . i] = U [1 . . i] and U [i . .] = U [i . . |U |]. By UR we
denote the mirror image of U .

For a pair of strings U and V such that |U | = |V |, we define their Hamming distance as
dH(U, V) = |{1 ≤ i ≤ |U | : U [i] 6= V [i]}|. For two strings U, V and a non-negative integer d,
we define

LCPd(U, V) = max{p ≤ |U |, |V | : dH(U [1 . . p], V [1 . . p]) ≤ d}.

CPM 2018

23:4 Linear-Time Algorithm for Long LCF with k Mismatches

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

h(3, 10) = 5 h(3, 10) = 5

Figure 1 An example of a 6-cover S20(6) = {2, 3, 5, 8, 9, 11, 14, 15, 19, 20}, with the elements
marked as black circles. For example, we may have h(3, 10) = 5 since 3 + 5, 10 + 5 ∈ S20(6).

Let T be the trie of a collection of strings F . The compacted trie of F , T (F), contains
the root, the branching nodes, and the terminal nodes of T . Each edge of the compacted trie
may represent several edges of T and is labeled by a factor of one of the strings Fi, stored in
O(1) space. The edges outgoing from a node are labeled by the first letter of the respective
strings. The size of a compacted trie is O(|F|). The best-known example of a compacted
trie is the suffix tree of a string; see [10].

2.1 Difference covers
We say that a set S(d) ⊆ Z+ is a d-cover if there is a constant-time computable function h
such that for i, j ∈ Z+ we have 0 ≤ h(i, j) < d and i+h(i, j), j+h(i, j) ∈ S(d) (see Figure 1).
The following fact synthesizes a well-known construction implicitly used in [8], for example.

I Fact 1 ([23, 8]). For each d ∈ Z+ there is a d-cover S(d) such that Sn(d) := S(d)∩ [1 . . n]
is of size O(n√

d
) and can be constructed in O(n√

d
) time.

2.2 Colored Trees Problem
As a component of our solution we use the following problem for colored trees:

Colored Trees Problem
Input: Two trees T1 and T2 containing blue and red leaves such that each internal node
is branching (except for, possibly, the root). Each leaf has a number between 1 and m.
Each tree has at most one red leaf and at most one blue leaf with a given number. The
nodes of T1 and T2 are weighted such that children are at least as heavy as their parent.
Output: A node v1 of T1 and a node v2 of T2 with maximum total weight such that v1
and v2 have at least one blue leaf of the same number and at least one red leaf of the
same number in their subtrees.

This abstract problem lies at the heart of the algorithm of Flouri et al. [12] for the
Longest Common Factor with 1 Mismatch problem. They solve it in O(m logm) time
applying a solution inspired by an algorithm of Crochemore et al. [11] finding the longest
repeat with a block of k don’t cares, which, in turn, is based on the fact that two AVL trees
can be merged efficiently [7].

I Fact 2 ([11, 12]). Colored Trees Problem can be solved in O(m logm) time.

In our solution we actually use the following problem related to families of strings
represented on a compacted trie. It reduces to the Colored Trees Problem.

Two String Families LCP Problem
Input: A compacted trie T (F) of a family of strings F and two sets P,Q ⊆ F2

Output: The value maxPairLCP(P,Q), defined as
maxPairLCP(P,Q)=max{LCP(P1, Q1)+LCP(P2, Q2) : (P1, P2) ∈ P and (Q1, Q2) ∈ Q}

P. Charalampopoulos et al. 23:5

T1

v1

44323121

T2

2431

v2

2431

Figure 2 Example instance for Colored Trees Problem. Assuming that each node has weight
equal to the distance from the root, the optimal solution is a pair of nodes (v1, v2) as shown in the
figure. Both v1 and v2 have as a descendant a blue leaf with number 4 and a red leaf with number 2.

I Lemma 3. The Two String Families LCP Problem can be solved in O(|F|+N logN)
time, where N = |P|+ |Q|.

Proof. First, we create two copies T1 and T2 of the tree T (F), removing the edge labels but
preserving the node weights w(v) equal to the sum of lengths of edges on the path to the
root.

Next, for each (P1, P2) ∈ P we attach a blue leaf to the terminal node of T1 representing
P1 and to the terminal of T2 representing P2. We label these two blue leaves with a unique
label, denoted here LP(P1, P2). Similarly, for each (Q1, Q2) ∈ Q, we attach red leaves to the
terminal node of T1 representing Q1 and the terminal node of T2 representing Q2. We label
these two red leaves with a unique label LQ(Q1, Q2). Finally, in both T1 and T2 we remove
all nodes which do not contain any colored leaf in their subtrees and dissolve all nodes with
exactly one child (except for the roots). This way, each tree Ti contains O(|P|+ |Q|) nodes,
including |P|+ |Q| leaves, each with a distinct label.

Observe that for (P1, P2) ∈ P , (Q1, Q2) ∈ Q, and j ∈ {1, 2}, the value LCP(Pj , Qj) is the
weight of the lowest common ancestor (LCA) in Tj of the two leaves with labels LP(P1, P2)
and LQ(Q1, Q2). Consequently, our task can be formulated as follows: Find a pair of internal
nodes v1 ∈ T1 and v2 ∈ T2 of maximal total weight w(v1) +w(v2) so that the subtrees rooted
at v1 and v2 contain blue leaves with the same label and red leaves with the same label. This
is exactly the Colored Trees Problem that can be solved in O(m logm) time, where
m = |T1|+ |T2| = O(|P|+ |Q|) (Fact 2). J

3 Reduction of LCFk(`) problem to multiple synchronized LCPk’s

Let U be a string of length n. We denote:

Pairs`(U) = {((U [. . i− 1])R, U [i . .]) : i ∈ Sn(`)}.

Observe that |Pairs`(U)| = |Sn(`)| = O(n/
√
`).

I Lemma 4. If LCFk(X,Y) ≥ `, then

LCFk(X,Y) =
max

p+q=k
{LCPp(U1, V1) + LCPq(U2, V2) : (U1, U2) ∈ Pairs`(X), (V1, V2) ∈ Pairs`(Y)}.

Proof. First, assume that (U1, U2) ∈ Pairs`(X), (V1, V2) ∈ Pairs`(Y), and k = p+ q. Let Ũ1
and Ṽ1 be prefixes of U1 and V1 (respectively) of length LCPp(U1, V1), and let Ũ2 and Ṽ2 be

CPM 2018

23:6 Linear-Time Algorithm for Long LCF with k Mismatches

X :

a

U1 U2

LCPp(U1, V1) LCPq(U2, V2)

Y :

b

V1 V2

LCPp(U1, V1) LCPq(U2, V2)

Figure 3 If LCFk(X, Y) ≥ `, then there exist (U1, U2) ∈ Pairs`(X) and (V1, V2) ∈ Pairs`(Y) such
that LCFk(X, Y) = LCPp(U1, U2) + LCPq(V1, V2) for some p + q = k.

prefixes of U2 and V2 (respectively) of length LCPq(U2, V2). Observe that ŨR
1 Ũ2 is a factor

of X = UR
1 U2 and Ṽ R

1 Ṽ2 is a factor of Y = V R
1 V2. Moreover,

dH(ŨR
1 Ũ2, Ṽ

R
1 Ṽ2) = dH(Ũ1, Ũ2) + dH(Ṽ1, Ṽ2) ≤ p+ q = k.

Consequently,

LCFk(X,Y) ≥ |ŨR
1 Ũ2| = |Ũ1|+ |Ũ2| = LCPp(U1, V1) + LCPq(U2, V2).

This concludes the proof of the lower bound on LCFk(X,Y).
Next, let X[i . . i′] and Y [j . . j′] be an optimal pair of factors; see Figure 3. They satisfy

|X[i . . i′]| = |Y [j . . j′]| = LCFk(X,Y) ≥ ` and dH(X[i . . i′], Y [j . . j′]) ≤ k.

Denote a = i+ h(i, j) and b = j + h(i, j), where h is the shift function associated with the
l-cover S(`). Note that a ∈ [i . . i′] ∩ S(`) and b ∈ [j . . j′] ∩ S(`). Consequently, (U1, U2) :=
((X[. . a − 1])R, X[a . .]) ∈ Pairs`(X) and (V1, V2) := ((Y [. . b − 1])R, Y [b . .]) ∈ Pairs`(Y).
Moreover,

k ≥ dH(X[i . . i′], Y [j . . j′]) = dH(X[i . . a− 1], Y [j . . b− 1]) + dH(X[a . . i′], Y [b . . j′]).

Therefore, for p = dH(X[i . . a− 1], Y [j . . b− 1]) and q = k − p, we have

LCPp(U1, V1) + LCPq(V2, U2) ≥ |X[i . . a− 1]|+ |X[a . . i′]| = |X[i . . i′]| = LCFk(X,Y).

This concludes the proof. J

4 The case of k = 0 and of k = 1 and σ = 2

In this section, as a warm-up, we show how the Two String Families LCP Problem
can be used to solve two special cases of the LCFk(X,Y, `) problem. Then in Section 6 we
explain how it can be used to solve the problem in full generality.

In order to solve the LCFk(X,Y, `) problem for k = 0, we observe that, by Lemma 4,
if LCF0(X,Y) ≥ `, then LCF0(X,Y) = maxPairLCP(Pairs`(X),Pairs`(Y)). Thus, we simply
build the joint suffix tree T of X, Y , XR, and Y R, and we solve the appropriate instance of
Two String Families LCP Problem.

The preprocessing time is clearly O(n), while solving the Two String Families LCP
Problem takes O(n+ n logn/

√
`) time, which is O(n) provided that ` = Ω(log2 n).

P. Charalampopoulos et al. 23:7

For k ≥ 1, we would ideally like to extend the family Pairs`(S) to Pairs(k)
` (S) replacing

the suffixes and reversed prefixes of S with their approximate copies so that

LCFk(X,Y) = maxPairLCP(Pairs(k)
` (X),Pairs(k)

` (Y)).

A very naive solution would be to extend the alphabet Σ to Σ$ adding a symbol $ /∈ Σ, and
for each (S1, S2) ∈ Pairs`(S) to replace an arbitrary subset of k symbols with $’s. However,
this results in

(
n
k

)
copies of each (S1, S2) ∈ Pairs`(S), which is by far too much.

Our approach is therefore based on the technique of Cole et al. [9], which has already
been used in the context of the Longest Common Factor with at most k Mismatches
problem by Thankachan et al. [27]. It allows us to reduce the number of approximate copies
of each (S1, S2) ∈ Pairs`(S) to O(logk n). However, the sets Pairs(k)

` (X) and Pairs(k)
` (Y)

cannot be constructed independently, and we actually have to build several pairs of such sets
rather just one.

Below, we explain the main points for k = 1 and σ = 2.
Let F be a family consisting of the suffixes of X, XR, Y , and Y R, appearing in Pairs`(X)

or Pairs`(Y). We apply the heavy-light decomposition on the compacted trie T (F); this
technique can be summarized as follows:

I Fact 5 (Tarjan [26]). If T is a rooted tree, then in linear time we can mark some edges in
T as light so that:

each node has at most one outgoing edge which is not light,
each root-to-leaf path contains O(log |T |) light edges.

Next, for each string F ∈ F , we construct a set N(F) consisting of F and any string
which can be obtained from F by flipping the first symbol on one of the light edges on the
path representing F in T (F). By Fact 5, we have |N(F)| = O(log |F|) = O(logn).

Let us introduce two subsets of N(F): N0(F) = {F} and N1(F) = N(F). These sets
have been constructed so that they enjoy the following crucial property:

I Lemma 6. If F,G ∈ F , then

LCP1(F,G) = max
d1+d2=1

{LCP(F ′, G′) : F ′ ∈ Nd1(F), G′ ∈ Nd2(G)}.

Proof. First, let us bound LCP1(F,G) from below. Let p = LCP(F ′, G′) be the maximum
on the right-hand side, We have

dH(F [. . p], G[. . p]) = dH(F [. . p], F ′[. . p]) + dH(G′[. . p], G[. . p]) ≤
≤ dH(F, F ′) + dH(G′, G) ≤ d1 + d2 = 1.

Consequently, LCP1(F,G) ≥ p as claimed.
To bound LCP1(F,G) from above, let us consider terminal nodes vF and vG in T (F)

representing F and G, respectively, and their LCA v. If v = vF or v = vG, then LCP1(F,G) =
LCP(F,G) and the claimed bound holds due to F ∈ N0(F) and G ∈ N1(G) (and vice versa).
Otherwise, the edge from v towards vF or the edge from v towards vG has to be light (according
to Fact 5). If the former edge is light, then N1(F) contains a string F ′ obtained from F by
flipping the first letter on that edge. Such a string F ′ satisfies LCP1(F,G) = LCP(F ′, G), so
the claimed bound holds due to G ∈ N0(G). Symmetrically, if the edge towards vG is light,
then LCP1(F,G) = LCP(F,G′) for some G′ ∈ N1(G). J

CPM 2018

23:8 Linear-Time Algorithm for Long LCF with k Mismatches

For S ∈ {X,Y } and d ∈ {0, 1}, let us define

Pairs(d)
` (S) =

⋃
(U1,U2)∈Pairs`(S)

d1+d2=1

{(U ′1, U ′2) : U ′1 ∈ Nd1(U1), U ′2 ∈ Nd2(U2)}.

Observe that Pairs(0)
` (S) = Pairs`(S), whereas the set Pairs(1)

` (S) satisfies |Pairs(1)
` (S)| =

O(|Pairs`(S)| log |F|) = O(n logn/
√
`). Lemmas 4 and 6 yield the following

I Corollary 7. If LCF1(X,Y) ≥ `, then

LCF1(X,Y) = max
k1+k2=1

maxPairLCP(Pairs(k1)
` (X),Pairs(k2)

` (Y)).

Proof. By Lemma 4, we have LCF1(X,Y) = LCPp(U1, V1)+LCPq(U2, V2) for some (U1, U2) ∈
Pairs`(X), (V1, V2) ∈ Pairs`(Y), and p + q = 1. Lemma 6 yields that LCPp(U1, V1) =
LCP(U ′1, V ′1) for some U ′1 ∈ Np1(U1) and V ′1 ∈ Np2(V1) such that p = p1 + p2. Similarly,
LCPq(U2, V2) = LCP(U ′2, V ′2) for some U ′2 ∈ Nq1(U2) and V ′2 ∈ Nq2(V2). Observe that
(U ′1, U ′2) ∈ Pairs(p1+q1)

` (X) and (V ′1 , V ′2) ∈ Pairs(p2+q2)
` (Y), so

LCF1(X,Y) ≤ maxPairLCP(Pairs(k1)
` (X),Pairs(k2)

` (Y))

for ki = pi + q1 (which satisfy k1 + k2 = p+ q = 1, as claimed).
Next, suppose that (U ′1, U ′2) ∈ Pairs(k1)

` (X) and (V ′1 , V ′2) ∈ Pairs(k2)
` (Y). We shall prove

that LCF1(X,Y) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2). Note that U ′1 ∈ Np1 and U ′2 ∈ Nq1(U2) for
some p1 + q1 = k1 and (U1, U2) ∈ Pairs`(X); symmetrically, V ′1 ∈ Np2 and V ′2 ∈ Nq2(V2) for
some p2 + q2 = k2 and (V1, V2) ∈ Pairs`(Y). By Lemma 6, LCP(U ′1, V ′1) ≤ LCPp1+p2(U1, V1)
and LCP(U ′2, V ′2) ≤ LCPq1+q2(U2, V2). Hence, the claimed bound holds due to Lemma 4:

LCF1(X,Y) ≥ LCPp1+p2(U1, V1) + LCPq1+q2(U2, V2) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2).

This concludes the proof. J

Consequently, it suffices to solve two instances of Two String Families LCP Problem,
with (P,Q) equal to (Pairs(0)

` (X),Pairs(1)
` (Y)) and (Pairs(1)

` (X),Pairs(0)
` (Y)), respectively.

I Proposition 8. The LCFk(X,Y, `) problem for k = 1 and binary alphabet can be solved
in O(n+ n log2 n/

√
`) time. If ` = Ω(log4 n), this running time is O(n).

Proof. First, we build the sets Pairs`(X) and Pairs`(Y). Next, we construct the joint suffix
tree of strings X, Y , XR, Y R (along with a component for constant-time LCA queries [5])
and we extract the compacted trie T (F) of the family F . Then, we process light edges on
T (F) (determined by Fact 5) to construct the sets N(F) as defined above for each F ∈ F .
We initialize each set N(F) with F ; then, for every light edge e, we traverse the subtree
below e and for each terminal node (representing F ∈ F), we insert to N(F) a string F ′
obtained from F by flipping the first letter represented by e. Technically, in N(F) we just
store the set of positions for which F should be flipped to obtain F ′.

To compute the compacted trie T (F ′) of a family F ′ =
⋃

F∈F N(F), we sort the strings
in F ′ ∈ F ′ using a comparison-based algorithm. Next, we extend the representation of N(F)
so that each F ′ ∈ N(F) stores a pointer to the corresponding terminal node in T (F ′). This
way, we can generate sets Pairsd

` (S) for d ∈ {0, 1} and S ∈ {X,Y } with strings represented
as pointers to terminal nodes of T (F ′). Finally, we solve two instances of Two String
Families LCP Problem according to Corollary 7.

P. Charalampopoulos et al. 23:9

We conclude with the running-time analysis. In the preprocessing, we spend O(n) time
construct the joint suffix tree. Then, applying Fact 5 to build the sets N(F) for F ∈ F takes
O(|F| log |F|) = O(n logn/

√
`) time. We spend further O(|F ′| log |F ′|) = O(n log2 n/

√
`)

time to construct T (F ′). Since |Pairs(d)
` (S)| = O(|F| log |F|) for d ∈ {0, 1} and S ∈ {X,Y },

the time to solve both instances of the Two String Families LCP Problem is also
O(n log2 n/

√
`) (see Lemma 3). Hence, the overall time complexity is O(n+n log2 n/

√
`). J

5 Arbitrary k and σ

In this section, we describe the core concepts of our solution for arbitrary number of
mismatches k and alphabet size σ. They depend heavily on the ideas behind the O(n logk n)-
time solution to the LCFk problem [27], which originate in approximate indexing [9].

I Definition 9. Consider strings U, V ∈ Σ∗ and an integer d ≥ 0. We say that strings
U ′, V ′ ∈ Σ∗$ form a (U, V)d-pair if
|U ′| = |U | and |V ′| = |V |;
if i > LCPd(U, V) or U [i] = V [i], then U ′[i] = U [i] and V ′[i] = V [i];
otherwise, U ′[i] = V ′[i] ∈ {U [i], V [i], $}.

For a string S ∈ Σ∗$ let us define #$(S) = |{1 ≤ i ≤ |S| : S[i] = $}|. The following
observation specifies key properties of (U, V)d pairs.

I Observation 10. Consider strings U, V ∈ Σ∗ and an integer d ≥ 0. If strings U ′, V ′ ∈ Σ∗$
form a (U, V)d-pair, then the following conditions hold:
(a) LCP(U ′, V ′) = LCPd(U, V),
(b) #$(U ′) = #$(V ′),
(c) d = dH(U,U ′)− 1

2#$(U ′) + dH(V, V ′)− 1
2#$(V ′).

I Definition 11. Consider a finite family of strings F ⊆ Σ∗. We say that sets N(F) ⊆ Σ∗$
for F ∈ F form a k-complete family if for every U, V ∈ F and 0 ≤ d ≤ k, there exists a
(U, V)d-pair U ′, V ′ with U ′ ∈ N(U) and V ′ ∈ N(V).

I Remark. A simple (yet inefficient) way to construct a k-complete family is to include in
N(F) all strings which can be obtained from F by replacing up to k letters with $’s. An
example of a more efficient family is shown in Table 1.

The following lemma states a property of k-complete families that we will use in the
algorithm. For F ∈ F and 0 ≤ d ≤ k, let us define Nd(F) = {F ′ ∈ N(F) : dH(F, F ′) ≤ d}.
Moreover, for a half integer1 d′, 0 ≤ d′ ≤ d, let

Nd,d′(F) = {F ′ ∈ Nd(F) : dH(F, F ′)− 1
2#$(F ′) ≤ d′},

I Lemma 12. Let N(F) for F ∈ F be a k-complete family. If F1, F2 ∈ F and 0 ≤ d ≤ k,
then

LCPd(F1, F2) = max
d1+d2=d

F ′
i∈Nd,di

(Fi)

LCP(F ′1, F ′2) = max
d1+d2<d+1

F ′
i∈Nk,di

(Fi)

LCP(F ′1, F ′2).

1 Here, a half integer is a number of the form a
2 , where a is an integer.

CPM 2018

23:10 Linear-Time Algorithm for Long LCF with k Mismatches

Table 1 A sample 1-complete family for F = {abacb, bacb, acb, cb, b} (the suffixes of abacb)
is N(b) = {a, b, $}, N(cb) = {ab, cb, $b}, N(acb) = {abb, acb}, N(bacb) = {aacb, bacb, $acb},
and N(abacb) = {abacb}. The (U, V)1-pairs for all U, V ∈ F are illustrated in the table above.
Observe that LCP1(U, V) = LCP(U ′, V ′) for the corresponding (U, V)1-pair (U ′, V ′). Also, note that
LCP1(acb, cb) = 1 even though abb ∈ N(acb), ab ∈ N(cb), and LCP(abb, ab) = 2.

b cb acb bacb abacb

abacb
a
abacb

ab
abacb

abb
abacb

aacb
abacb

abacb
abacb

bacb
b
bacb

$b
$acb

acb
aacb

bacb
bacb

abacb
aacb

acb
a
acb

ab
acb

acb
acb

aacb
acb

abacb
abb

cb
$
$b

cb
cb

acb
ab

$acb
$b

abacb
ab

b
b
b

$b
$

acb
a

bacb
b

abacb
a

Proof. We shall prove that

max
d1+d2=d

F ′
i∈Nd,di

(Fi)

LCP(F ′1, F ′2) ≥ LCPd(F1, F2) ≥ max
d1+d2<d+1

F ′
i∈Nk,di

(Fi)

LCP(F ′1, F ′2).

This is sufficient due to the fact that Nd,d′(F) is monotone with respect to both d and d′.
For the first inequality, observe that (by definition of a k-complete family) the sets N(F1)

and N(F2) contain an (F1, F2)d-pair (F ′1, F ′2). By Observation 10, we have

d ≥ dH(F1[. . |P |], F2[. . |P |]) = dH(F1, F
′
1)− 1

2#$(F ′1) + dH(F2, F
′
2)− 1

2#$(F ′2).

Consequently, F ′i ∈ Nd,di
(Fi) for di = dH(Fi, F

′
i)− 1

2#$(F ′i). If d > d1 + d2, we may increase
d1 or d2.

For the second inequality, suppose that F ′i ∈ Nk,di
(Fi) for d1 + d2 < d+ 1. Let P be the

longest common prefix of F ′1 and F ′2. Then

dH(F1[. . |P |], F2[. . |P |]) ≤ dH(F1[. . |P |], P) + dH(F2[. . |P |], P])−#$(P) ≤
≤ dH(F1, F

′
1)−#$(F ′1) + dH(F2, F

′
2)−#$(F ′2) + #$(P) ≤ d1 + d2.

Consequently, dH(F1[. . |P |], F2[. . |P |]) ≤ d1 + d2 < d+ 1, i.e., dH(F1[. . |P |], F2[. . |P |]) ≤ d,
as claimed. J

In the algorithms, we represent a k-complete family using the compacted trie T (F ′) of
the union F ′ =

⋃
F∈F N(F). Its terminal nodes F ′ are marked with a subset of strings

F ∈ F for which F ′ ∈ N(F); for convenience we also store #$(F ′) and dH(F, F ′). Each edge
is labeled by a factor of F ∈ F , perhaps prepended by $.

Our construction of a k-complete family is based on the results of [9, 27], but below we
provide a self-contained proof.

I Proposition 13 (see also [9, 27]). Let F ⊆ Σ∗ be a finite family of strings and let k ≥ 0
be an integer. There exists a k-complete family N such that |Nd(F)| ≤ 2d

(log |F|+d
d

)
for

each F ∈ F and 0 ≤ d ≤ k. Moreover, the compacted trie T (F ′) can be constructed in
O(2k|F|

(log |F|+k+1
k+1

)
) time provided constant-time LCP queries for suffixes of the strings

F ∈ F .

P. Charalampopoulos et al. 23:11

Algorithm 1: A recursive procedure inserting strings with prefix P to sets N(F).
Function Generate(P,FP) is

h := a most frequent element of {S[1] : (S, F, b) ∈ FP and S 6= ε};
foreach (S, F, b) ∈ FP do // b = k − dH(F, PS) ≥ 0

if S = ε then N(F) := N(F) ∪ {P};
else

c := S[1];
FP c := FP c ∪ { (S[2 . .], F, b) };
if c 6= h and b > 0 then
FP h := FP h ∪ { (S[2 . .], F, b− 1) };
FP $:= FP $ ∪ { (S[2 . .], F, b− 1) };

foreach c ∈ Σ ∪ {$} such that FP c 6= ∅ do
Generate(Pc,FP c);

Proof. We apply a recursive procedure that builds the subtree rooted at the node representing
P . The input FP consists of tuples (S, F, b) such that F ∈ F , S is a suffix of F of length
|S| = |F | − |P |, and b = k − dH(F, PS) ≥ 0. Intuitively, the parameter b can be seen as a
“budget” of remaining symbol changes in the string that prevents exceeding the number k of
mismatches. In the first call we have P = ε and FP = {(F, F, k) : F ∈ F}.

In the pseudocode below we state this procedure in an abstract way; afterwards we
explain how to implement it efficiently. The 1-complete family from Table 1 is a subset of
the family constructed by that procedure.

Correctness of Algorithm 1 is relatively easy to derive. Due to space constrains, the proof
of the following claim can be found in the full version.

I Claim 14. For every S, T ∈ F and 0 ≤ d ≤ k, there exists an (S, T)d-pair (S′, T ′) with
S′ ∈ N(S) and T ′ ∈ N(T).

We also refer to the full version for a complete proof of the following bound on Nd(F).

I Claim 15. For each F ∈ F , we have |Nd(F)| ≤ 2d
(log |F|+d

d

)
.

The idea is to define Nd,P (F) = {F ′ ∈ Nd(F) : P is a prefix of F ′} for each P ∈ Σ∗$ and to
prove the following bound by induction on decreasing |P |:

|Nd,P (F)| ≤
{

2b
(log |FP |+b

b

)
if (S, F, b+ k − d) ∈ FP and b ≥ 0,

0 otherwise.

Below, we show that the k-complete family N represented as a trie TN can be constructed
in O(|F|2k

(log |F|+k+1
k+1

)
) time provided constant-time LCP queries for suffixes of strings

F ∈ F .
To a tuple (S, F, b) ∈ FP we assign a number of tokens:

TokensP (S, F, b) = C(2b+1 − 1)
(log |FP |+b+1

b+1
)

where C is a sufficiently large constant. We shall inductively prove that Generate (P,FP)
can be implemented in time

∑
(S,F,b)∈FP

TokensP (S, F, b).
In the implementation of the procedure we use finger search trees [14], which maintain

subsets of a linearly-ordered universe supporting constant-time queries. Among many
applications (see [6] for a survey), they support the following two operations [16, 6]:

CPM 2018

23:12 Linear-Time Algorithm for Long LCF with k Mismatches

insert an element into a set A, which takes O(log |A|) time,
for a given key t, split the set A into A≤t = {a ∈ A : a ≤ t} and A>t = {a ∈ A : a > t},
which takes O(log min(|A≤t|, |A>t|)) time.

We are now ready to specify how the arguments to the procedure Generate (P,FP) are
given. The string P is represented by the corresponding node of the constructed trie TN ; we
also explicitly store |P | and #$(P). The set FP is stored in a finger search tree with tuples
(S, F, b) ordered by S. However, S is not stored itself as it is uniquely specified as a suffix of
F of length |F | − |P |. Thus each element in the tree is stored in O(1) space.

First, we process tuples (S, F, b) with S = ε, conveniently located at the beginning of FP .
We remove these tuples from FP and store F at the current node of TN . This simulates
inserting P to N(F); we also store auxiliary values dH(P, F) = k − b and #$(P).

Next, we compute the length of longest common prefix P ′ of non-empty strings S with
(S, F, b) ∈ FP . For this, we make an LCP query for the smallest and the largest of these
suffixes. If the longest common prefix P ′ is non-empty, we observe that FP P ′ = FP (with
the stored representation unchanged) and Algorithm 1 does not explore any other branch.
Hence, we immediately call Generate (PP ′,FP P ′) which corresponds to creating a complete
compacted edge of the resulting trie. This step takes O(1) time, but it guarantees that
Generate (PP ′,FP P ′) outputs or branches. Hence, this time gets amortized.

If P ′ = ε, we partition FP into at most σ finger search trees FP,c each storing tuples
sharing the letter S[1] = c, and we identify the heavy letter h by choosing the largest FP,c.
For this, we iteratively split out the tree with the smallest unprocessed S[1], which takes
time proportional to

∑
c 6=h log |FP,c|.

The sets FP c for c 6= h already represented by FP,c (note that the order does not change,
and the tuples need not be altered since the “budget” b remains the same and S is stored
implicitly). Similarly, we can build FP h by inserting new tuples into FP,h.

Thus, we define LP := {(S, F, b) ∈ FP : S 6= ε and S[1] 6= h} and insert to FP h and
FP $ tuples (S[2 . .], F, b− 1) for (S, F, b) ∈ LP with b > 0, which takes O(log |FP |) time per
element.

In total, the processing time is O(1) for each element of LP with b = 0, and O(log |FP |)
when b > 0. Additionally, we may spend O(1) time for a tuple with S = ε. Let us check
that the difference in the number of tokens is sufficient to cover the running time of these
operations.

The tuples with S = ε do not appear in future computations. Hence, we spend all their
tokens on the computations related to them. It is indeed sufficient:

TokensP (ε, F, b) = C(2b+1 − 1)
(log |FP |+b+1

b+1
)
≥ C

(log |FP |+1
1

)
= C(log |FP |+ 1) ≥ C.

We don’t spend any time on tuples with S[1] = h, and number of tokens for such a tuple
does not increase:

TokensP (S, F, b)− TokensP h(S, F, b) =

C(2b+1 − 1)
(log |FP |+b+1

b+1
)
− C(2b+1 − 1)

(log |FP h|+b+1
b+1

)
≥ 0.

Finally, for a tuple with S[1] 6= h (i.e., in Lp) the difference in the number of tokens is

TokensP (S, F, b)−TokensP c(S′, F, b)−TokensP h(S′, F, b− 1)−TokensP $(S′, F, b− 1)=

= C(2b+1 − 1)
(log |FP |+b+1

b+1
)
− C(2b+1 − 1)

(log |FP c|+b+1
b+1

)
− C(2b − 1)

(log |FP h|+b
b

)
− C(2b − 1)

(log |FP $|+b
b

)
≥ C

(log |FP |+b
b

)

P. Charalampopoulos et al. 23:13

where c = S[1] and S′ = S[2 . .]. It is sufficient since we spend constant time for b = 0 and
O(log |FP |) time for b ≥ 1.

The claimed bound on the overall running time follows. J

6 Main Result

Let F be a family of suffixes and reverse prefixes of X and Y occurring in Pairs`(X) or
Pairs`(Y), and let us fix a k-complete family N(F) : F ∈ F . For a half integer k′, 0 ≤ k′ ≤ k,
and a string S ∈ {X,Y } let us define

Pairs(k,k′)
` (S) =

⋃
(U1,U2)∈Pairs`(S)

{(U ′1, U ′2) : U ′i ∈ Ndi,d′
i
(Ui), k = d1 + d2, k

′ = d′1 + d′2}.

Intuitively, we extend (U1, U2) ∈ Pairs`(S), arbitrarily splitting the budgets k and k′ between
U1 and U2. To bound the size of Pairs(k,k′)

` (S), we observe that for d1 + d2 = k and
k = O(logn)

|Nd1(U1)| · |Nd2(U2)| ≤ 2k
(log |F|+d1

d1

)(log |F|+d2
d2

)
= 2O(k) logk |F|

kk .

Hence, |Pairs(k,k′)
` (S)| = 2O(k)|F| logk |F|

kk
√

`
. Combining Lemmas 4 and 12, we obtain the

following.

I Corollary 16. If LCFk(X,Y) ≥ `, then

LCFk(X,Y) = max
k1+k2=k

maxPairLCP(Pairs(k,k1)
` (X),Pairs(k,k2)

` (Y)).

Proof. By Lemma 4, there exist (U1, U2) ∈ Pairs`(X), (V1, V2) ∈ Pairs`(Y), and p + q = k

such that LCFk(X,Y) = LCPp(U1, V1)+LCPq(U2, V2). Lemma 12 further yields the existence
of half integers p′1+p′2 ≤ p and q′1+q′2 ≤ q such that LCFk(X,Y) = LCP(U ′1, V ′1)+LCP(U ′2, V ′2)
for some U ′1 ∈ Np,p′

1
(U1), V ′1 ∈ Np,p′

2
(V1), U ′2 ∈ Nq,q′

1
(U2), and V ′2 ∈ Nq,q′

2
(V2).

We set k′1 = p′1 + q′1 and k′2 = k − k′1 ≥ p′2 + q′2 so that (U ′1, U ′2) ∈ Pairs(k,k′
1)

` (X) and
(V ′1 , V ′2) ∈ Pairs(k,p′

2+q′
2)

` (Y) ⊆ Pairs(k,k′
2)

` (Y). Consequently,

LCFk(X,Y) ≤ maxPairLCP(Pairs(k,k′
1)

` (X),Pairs(k,k′
2)

` (Y)),

which concludes the proof of the upper bound on LCFk(X,Y).
For the lower bound, we shall prove that LCFk(X,Y) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2)

for all (U ′1, U ′2) ∈ Pairs(k,k′
1)

` (X) and (V ′1 , V ′2) ∈ Pairs(k,k′
2)

` (Y) such that k′1 + k′2 ≤ k. By
definition of Pairs(k,k′

1)
` , there exist (U1, U2) ∈ Pairs`(X) such that U ′1 ∈ Nk,p′

1
(U1) and

U ′2 ∈ Nk,q′
1
(U2) for half integers p′1 + q′1 ≤ k′1. Similarly, there exist (V1, V2) ∈ Pairs`(Y)

such that V ′1 ∈ Nk,p′
2
(V1) and V ′2 ∈ Nk,q′

2
(V2) for half integers p′2 + q′2 ≤ k′2. We set

p = bp′1 + p′2c and q = bq′1 + q′2c, and observe that LCPp(U1, V1) ≥ LCP(U ′1, V ′1) as well
as LCPq(U2, V2) ≥ LCP(U ′2, V ′2) due to Lemma 12. Now, Lemma 4 yields LCFk(X,Y) ≥
LCPp(U1, V1) + LCPq(U2, V2) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2), as desired. J

I Theorem 17. For k = O(logn), the LCFk(X,Y, `) problem can be solved in time O(n+
2O(k)n logk+1 n

kk
√

`
). For k = O(1), this running time becomes O(n+ n logk+1 n√

`
).

Proof. First, we build the joint suffix tree of X, XR, Y , and Y R, as well as the family F . A
component for the LCA queries on the suffix tree lets us compare any suffixes of F ∈ F in
constant time [5]. This allows us to build the k-complete family N(F) : F ∈ F , represented

CPM 2018

23:14 Linear-Time Algorithm for Long LCF with k Mismatches

as a compacted trie of F ′ :=
⋃
{N(F) : F ∈ F} using Proposition 13. Next, we construct the

sets Pairs(k,k′)
` (X) ⊆ (F ′)2 and Pairs(k,k′)

` (Y) ⊆ (F ′)2 for k′ = 0, 1
2 , . . . , k −

1
2 , k, and solve

the 2k + 1 instances of Two String Families LCP Problem, as specified in Corollary 16.
We conclude with running-time analysis. Preprocessing takes O(n) time, and the pro-

cedure of Proposition 13 runs in O(2k|F|
(log |F|+k+1

k+1
)
) = 2O(k)n logk+1 n

kk
√

`
time. We have

Pairsk,k′

` (X) = 2O(k)n logk n

kk
√

`
, so solving all instances of Two String Families LCP Prob-

lem also takes 2O(k)n logk+1 n

kk
√

`
time (Lemma 3). The overall running time is therefore as

claimed. J

In particular, for k = O(logn), there exists `0 = 2O(k) log2k+2 n
k2k such that the LCFk(X,Y, `)

problem can be solved in O(n) time for ` ≥ `0. For k = O(1), we have `0 = O(log2k+2 n),
while for k = o(logn), we have `0 = no(1). We arrive at the main result.

I Corollary 18. The LCFk(X,Y, `) problem with ` = Ω(log2k+2 n) can be solved in O(n)
time.

References
1 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polyno-

mial method to algorithm design. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 218–230. SIAM, 2015. doi:10.1137/1.9781611973730.17.

2 Hayam Alamro, Lorraine A. K. Ayad, Panagiotis Charalampopoulos, Costas S. Iliopoulos,
and Solon P. Pissis. Longest common prefixes with k-mismatches and applications. In AMin
Tjoa, Ladjel Bellatreche, Stefan Biffl, Jan van Leeuwen, and Jirí Wiedermann, editors,
SOFSEM 2018: Theory and Practice of Computer Science - 44th International Conference
on Current Trends in Theory and Practice of Computer Science, Krems, Austria, January
29 - February 2, 2018, Proceedings, volume 10706 of Lecture Notes in Computer Science,
pages 636–649. Springer, 2018. doi:10.1007/978-3-319-73117-9_45.

3 Lorraine A. K. Ayad, Panagiotis Charalampopoulos, Costas S. Iliopoulos, and Solon P.
Pissis. Longest common prefixes with k-errors and applications. CoRR, abs/1801.04425,
2018. arXiv:1801.04425.

4 Maxim A. Babenko and Tatiana A. Starikovskaya. Computing the longest common
substring with one mismatch. Probl. Inf. Transm., 47(1):28–33, 2011. doi:10.1134/
S0032946011010030.

5 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

6 Gerth Stølting Brodal. Finger search trees. In Dinesh P. Mehta and Sartaj Sahni, editors,
Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. doi:10.
1201/9781420035179.ch11.

7 Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. ACM, 26(2):211–
226, 1979. doi:10.1145/322123.322127.

8 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and
checking. In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors,
Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán,
Mexico, June 25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science,
pages 55–69. Springer, 2003. doi:10.1007/3-540-44888-8_5.

http://dx.doi.org/10.1137/1.9781611973730.17
http://dx.doi.org/10.1007/978-3-319-73117-9_45
http://arxiv.org/abs/1801.04425
http://dx.doi.org/10.1134/S0032946011010030
http://dx.doi.org/10.1134/S0032946011010030
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1201/9781420035179.ch11
http://dx.doi.org/10.1201/9781420035179.ch11
http://dx.doi.org/10.1145/322123.322127
http://dx.doi.org/10.1007/3-540-44888-8_5

P. Charalampopoulos et al. 23:15

9 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 91–100.
ACM, 2004. doi:10.1145/1007352.1007374.

10 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
Cambridge University Press, 2007.

11 Maxime Crochemore, Costas S. Iliopoulos, Manal Mohamed, and Marie-France Sagot.
Longest repeats with a block of k don’t cares. Theor. Comput. Sci., 362(1-3):248–254,
2006. doi:10.1016/j.tcs.2006.06.029.

12 Tomás Flouri, Emanuele Giaquinta, Kassian Kobert, and Esko Ukkonen. Longest common
substrings with k mismatches. Inf. Process. Lett., 115(6-8):643–647, 2015. doi:10.1016/
j.ipl.2015.03.006.

13 Szymon Grabowski. A note on the longest common substring with k-mismatches problem.
Inf. Process. Lett., 115(6-8):640–642, 2015. doi:10.1016/j.ipl.2015.03.003.

14 Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A
new representation for linear lists. In John E. Hopcroft, Emily P. Friedman, and Michael A.
Harrison, editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA, pages 49–60. ACM, 1977. doi:10.1145/800105.
803395.

15 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

16 Kurt Hoffman, Kurt Mehlhorn, Pierre Rosenstiehl, and Robert Endre Tarjan. Sorting
jordan sequences in linear time using level-linked search trees. Information and Control,
68(1-3):170–184, 1986. doi:10.1016/S0019-9958(86)80033-X.

17 Lucas Chi Kwong Hui. Color set size problem with application to string matching. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinat-
orial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April
29 - May 1, 1992, Proceedings, volume 644 of Lecture Notes in Computer Science, pages
230–243. Springer, 1992. doi:10.1007/3-540-56024-6_19.

18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

20 Tomasz Kociumaka, Jakub Radoszewski, and Tatiana A. Starikovskaya. Longest common
substring with approximately k mismatches. CoRR, abs/1712.08573, 2017. arXiv:1712.
08573.

21 Tomasz Kociumaka, Tatiana A. Starikovskaya, and Hjalte Wedel Vildhøj. Sublinear space
algorithms for the longest common substring problem. In Andreas S. Schulz and Dorothea
Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer
Science, pages 605–617. Springer, 2014. doi:10.1007/978-3-662-44777-2_50.

22 Chris-André Leimeister and Burkhard Morgenstern. kmacs: the k-mismatch average
common substring approach to alignment-free sequence comparison. Bioinformatics,
30(14):2000–2008, 2014. doi:10.1093/bioinformatics/btu331.

23 Mamoru Maekawa. A square root N algorithm for mutual exclusion in decentralized systems.
ACM Trans. Comput. Syst., 3(2):145–159, 1985.

24 Tatiana A. Starikovskaya. Longest common substring with approximately k mismatches. In
Roberto Grossi and Moshe Lewenstein, editors, 27th Annual Symposium on Combinatorial
Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs,

CPM 2018

http://dx.doi.org/10.1145/1007352.1007374
http://dx.doi.org/10.1016/j.tcs.2006.06.029
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://dx.doi.org/10.1016/j.ipl.2015.03.003
http://dx.doi.org/10.1145/800105.803395
http://dx.doi.org/10.1145/800105.803395
http://dx.doi.org/10.1016/S0019-9958(86)80033-X
http://dx.doi.org/10.1007/3-540-56024-6_19
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://arxiv.org/abs/1712.08573
http://arxiv.org/abs/1712.08573
http://dx.doi.org/10.1007/978-3-662-44777-2_50
http://dx.doi.org/10.1093/bioinformatics/btu331

23:16 Linear-Time Algorithm for Long LCF with k Mismatches

pages 21:1–21:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.CPM.2016.21.

25 Tatiana A. Starikovskaya and Hjalte Wedel Vildhøj. Time-space trade-offs for the longest
common substring problem. In Johannes Fischer and Peter Sanders, editors, Combinatorial
Pattern Matching, 24th Annual Symposium, CPM 2013, Bad Herrenalb, Germany, June
17-19, 2013. Proceedings, volume 7922 of Lecture Notes in Computer Science, pages 223–
234. Springer, 2013. doi:10.1007/978-3-642-38905-4_22.

26 Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM,
26(4):690–715, 1979. doi:10.1145/322154.322161.

27 Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. A provably efficient al-
gorithm for the k-mismatch average common substring problem. Journal of Computational
Biology, 23(6):472–482, 2016. doi:10.1089/cmb.2015.0235.

28 Sharma V. Thankachan, Sriram P. Chockalingam, Yongchao Liu, Alberto Apostolico, and
Srinivas Aluru. ALFRED: A practical method for alignment-free distance computation.
Journal of Computational Biology, 23(6):452–460, 2016. doi:10.1089/cmb.2015.0217.

29 Igor Ulitsky, David Burstein, Tamir Tuller, and Benny Chor. The average common
substring approach to phylogenomic reconstruction. Journal of Computational Biology,
13(2):336–350, 2006. doi:10.1089/cmb.2006.13.336.

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.21
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.21
http://dx.doi.org/10.1007/978-3-642-38905-4_22
http://dx.doi.org/10.1145/322154.322161
http://dx.doi.org/10.1089/cmb.2015.0235
http://dx.doi.org/10.1089/cmb.2015.0217
http://dx.doi.org/10.1089/cmb.2006.13.336

Lyndon Factorization of Grammar Compressed
Texts Revisited
Isamu Furuya
Graduate School of IST, Hokkaido University, Japan
furuya@ist.hokudai.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Tomohiro I
Frontier Research Academy for Young Researchers, Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

https://orcid.org/0000-0001-9106-6192

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
Department of Informatics, Kyushu University, Japan
RIKEN Center for Advanced Intelligence Project, Japan
bannai@inf.kyushu-u.ac.jp

https://orcid.org/0000-0002-6856-5185

Masayuki Takeda
Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
We revisit the problem of computing the Lyndon factorization of a string w of length N which is
given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which
runs in O(P (n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P (n,N),
S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data
structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm
proposed by I et al. (TCS ’17), and can be more efficient than the O(N)-time solution by Duval
(J. Algorithms ’83) when w is highly compressible.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Lyndon word, Lyndon factorization, Straight line program

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.24

Funding This work was supported by JSPS KAKENHI Grant Numbers JP17H06923 (YN),
JP16K16009 (TI), JP17H01697 (SI), JP16H02783 (HB), and JP25240003 (MT).

1 Introduction

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its
proper suffixes. For instance, abb is a Lyndon word, but bba and aba are not. The Lyndon
factorization of a string w is the sequence of strings `p1

1 , . . . , `
pm
m such that w = `p1

1 · · · `pm
m , `i

© Isamu Furuya, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 24; pp. 24:1–24:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:furuya@ist.hokudai.ac.jp
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
mailto:tomohiro@ai.kyutech.ac.jp
https://orcid.org/0000-0001-9106-6192
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:takeda@inf.kyushu-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Lyndon Factorization of Grammar Compressed Texts Revisited

is a Lyndon word, pi ≥ 1(1 ≤ i ≤ m), and `i � `i+1(1 ≤ i < m) [4]. Lyndon factorizations
are used, for example, in a bijective variant of Burrows-Wheeler transform [13, 7] and an
algorithm to check digital convexity [2].

Let LFw denote the Lyndon factorization of a string w. Given a string w of length
N , LFw can be computed on-line in O(N) time [6]. When the length N of the string w
is huge, even the O(N)-time solution may not be efficient enough. I et al. [10] showed an
efficient Lyndon factorization algorithm when the string w is given as a straight line program
(SLP), which is a compressed representation of the string based on a context free grammar
that derives only w. The algorithm runs in O(n2 + P (n,N) + Q(n,N)n logn) time and
O(n2 + S(n,N)) space where P (n,N), S(n,N), Q(n,N) are respectively the pre-processing
time, space, and query time of a data structure for longest common extensions (LCE) on
SLPs. This algorithm can be more efficient than the O(N)-time solution when w is highly
compressible.

In this paper, we revisit the Lyndon factorization problem on SLPs and give a more
efficient solution. Given an SLP S of size n representing a string w of length N , our new
algorithm runs in O(P (n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space.
If we use the LCE data structure of [8], we can compute the Lyndon factorization in
O(n logN log logN) time and O(n logN) space. This improves the previous algorithm since
logN ≤ n holds.

We note that the previous algorithm [10] computes the Lyndon factorization in a bottom-
up manner, which requires us to store the Lyndon factorization for every variable of a given
SLP. This implies that we must use Ω(n2) space (and thus time) in total because the size of
each Lyndon factorization can be Ω(n). We show that the Lyndon factorization of w can be
computed without computing the Lyndon factorization of each variable.

2 Preliminaries

2.1 Strings and model of computation
Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the set of
non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a prefix,
substring, and suffix of w, respectively. A prefix x of w is called a proper prefix of w if x 6= w.
The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and
two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position
i and ends at position j. For convenience, let w[i..j] = ε when i > j. For any string w let
w1 = w, and for any integer k ≥ 2 let wk = wwk−1, i.e., wk is a k-time repetition of w.

If character a is lexicographically smaller than another character b, then we write a ≺ b.
For any strings x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We
write x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.

Our model of computation is the word RAM. We assume the computer word size is at
least dlog2 |w|e, and hence, standard operations on values representing lengths and positions
of string w can be manipulated in O(1) time. Space complexities will be determined by the
number of computer words (not bits).

2.2 Lyndon words and Lyndon factorization of strings
Two strings x and y are conjugates, if x = uv and y = vu for some strings u and v. A
string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all of
its conjugates. Namely, w is a Lyndon word, if for any factorization w = uv, it holds that

I. Furuya, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 24:3

uv ≺ vu. An equivalent definition of Lyndon words is: a string w is a Lyndon word, if w ≺ v
for any non-empty proper suffix v of w.

The Lyndon factorization of a string w, denoted LFw, is the factorization `p1
1 , . . . , `

pm
m

of w, such that each `i ∈ Σ+ is a Lyndon word, pi ≥ 1, and `i � `i+1 for all 1 ≤ i < m.
The size of LFw is m and denoted by |LFw|. LFw can be represented by the sequence
(|`1|, p1), . . . , (|`m|, pm) of integer pairs, where each pair (|`i|, pi) represents the i-th Lyndon
factor `pi

i of w. Note that this representation requires O(m) space.
In the literature, the Lyndon factorization is sometimes defined to be a sequence of

lexicographically non-increasing Lyndon words, namely, each Lyndon factor `p is decomposed
into a sequence of p `’s. In this paper, each Lyndon word ` in the Lyndon factor `p is called
a decomposed Lyndon factor.

For any string w, let LFw = `p1
1 , . . . , `

pm
m . Let lfbw(i) denote the position where the

i-th Lyndon factor begins in w, i.e., lfbw(1) = 1 and lfbw(i) = lfbw(i − 1) + |`pi−1
i−1 | for any

2 ≤ i ≤ m. For any 1 ≤ i ≤ m, let lfsw(i) = `pi

i `
pi+1
i+1 · · · `pm

m and lfpw(i) = `p1
1 `

p2
2 · · · `

pi

i . For
convenience, let lfsw(m+ 1) = lfpw(0) = ε.

I Example 1. Let w = abcabcabababcbabababcababa. Then,
LFw = (abc)2, abababcb, abababc, (ab)2, a;
the decomposed Lyndon factorization of w is abc, abc, abababcb, abababc, ab, ab, a.

Moreover, lfbw(2) = 7, lfsw(3) = abababcababa, and lfpw(2) = abcabcabababcb.

The following is a useful lemma concerning Lyndon factorizations.

I Lemma 2 (Lemma 4 of [11]). Let LFw = `p1
1 , . . . , `

pm
m and 1 ≤ i, j ≤ m. Assume that

`pi

i · · · `
pj

j has an occurrence to the left in w. Then,
1. the leftmost occurrence of `pi

i · · · `
pj

j is a prefix of `k for some k < i;
2. `pi

i · · · `
pj

j is a prefix of every `h with k ≤ h < i.

2.3 Straight line programs (SLPs)

A straight line program (SLP) is a set of productions S = {Xi → expri}ni=1, where each
Xi is a variable and each expri is an expression of the form expri = a (a ∈ Σ), or expri =
XlXr (i > l, r). Let val(Xi) denote the string derived by Xi. Also let val(a) = a for
a ∈ Σ. We will sometimes associate val(Xi) with Xi and denote |val(Xi)| as |Xi|. An SLP S
represents the string w = val(Xn). The size of the program S is the number n of productions
in S. If N is the length of the string represented by SLP S, then N can be as large as 2n−1.

The derivation tree TS of SLP S is a labeled ordered tree obtained by recursively applying
the productions of variable Xi, starting from Xn, i.e., the root node has label Xn, and for
each internal node labeled Xi, if Xi → XlXr, then its left child is labeled Xl and its right
child is labeled Xr, if Xi → a, then its single child is labeled a.

The height of SLP S is the height of TS . We associate to each leaf of TS the corresponding
position in string w = val(Xn). An example of the derivation tree of an SLP is shown in
Figure 1.

It is known that the size of the Lyndon factorization of w is a lower bound of the size of
smallest SLP which derives w.

I Lemma 3 (Lemma 17 of [10]). For any string w, let m = |LFw|, and n be the size of an
SLP which derives w. Then m ≤ n holds.

CPM 2018

24:4 Lyndon Factorization of Grammar Compressed Texts Revisited

X
3!

X
1!

X
5!X

4!

X
7!

X
6!

X
5!

a
!

X
1!

b
!

a
!

X
2!

a
!

X
1!

b
!

X
3!

X
4!

a
!

b
!

a
!

b
!

a
!

b
!
a
!

a
!

X
2!

X
1!

X
1!

X
3!

X
2! X

1!

X
3!

X
4!

X
2!

X
1!

X
1!

X
3!

X
2!

1
!

3
!

2
!

12
!
13
!

11
!

10
!

9
!

8
!

7
!

5
!
6
!

4
!

Figure 1 The derivation tree of SLP S = {X1 → a, X2 → b, X3 → X1X2, X4 → X1X3,
X5 → X3X4, X6 → X4X5, X7 → X6X5}, representing string w = val(X7) = aababaababaab.

2.4 Longest common extension problem on SLPs
The longest common extension (LCE) problem on SLPs is to preprocess an SLP so that we
can efficiently answer LCE queries that ask to compute lcp(val(Xi)[k1..|Xi|], val(Xi)[k2..|Xi|])
for any variable Xi and 1 ≤ k1, k2 ≤ |Xi|. Currently, the best known deterministic solution
to this problem is the following.

I Lemma 4 (Theorem 2 of [8]). Given an SLP of size n representing a string of length N ,
we can preprocess in O(n log(N/n)) time and O(n+ t log(N/t)) space to support LCE queries
in O(logN) time where t is the size of non-overlapping LZ77 factorization.

In order to describe the complexity of our algorithm independent from the choice of
LCE data structures, the preprocessing time, space and query time of the chosen LCE data
structure are denoted by P (n,N), S(n,N) and Q(n,N), respectively.

3 Lyndon factorization algorithm for SLP

In this paper, we propose a new Lyndon factorization algorithm for an SLP compressed text.
More formally, we are given an SLP S which derives a string w, and we compute LFw.

Firstly, we explain the idea of our algorithm. We compute the Lyndon factorization of w
from left to right based on G-factorization defined as follows. The G-factorization of a string
w that is derived by an SLP S is defined by the Partial Parse Tree of S.

I Definition 5 (Partial Parse Tree [14]). The partial parse tree of an SLP S is a subtree of
the derivation tree of S such that each variable occurs exactly once as a label of an internal
node and the occurrence is the leftmost possible.

I Definition 6 (G-factorization [14]). The G-factorization of a string w that is derived by an
SLP S is GF (w,S) = val(leaf 1), . . . , val(leaf g), where leaf 1, leaf 2, . . . , leaf g is the sequence of
leaf labels of the partial parse tree of an SLP S.

Figure 2 shows the partial parse tree and the G-factorization of SLP S which was shown
in Figure 1. Since the number of internal nodes of the partial parse tree of S is exactly the
same as the number of variables of S, it is clear that |GF (w,S)| as well as the size of the
partial parse tree is O(n), where n is the size of SLP S.

I. Furuya, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 24:5

X
3!

X
1!

X
5!X

4!

X
7!

X
6!

X
5!

a
!

X
1!

b
!

a
!

X
2!

a
!

X
1!

b
!

X
3!

X
4!

a
!

b
!

a
!

b
!

a
!

b
!
a
!

a
!

X
2!

X
1!

X
1!

X
3!

X
2! X

1!

X
3!

X
4!

X
2!

X
1!

X
1!

X
3!

X
2!

1
!

3
!

2
!

12
!
13
!

11
!

10
!

9
!

8
!

7
!

5
!
6
!

4
!

Figure 2 The partial parse tree of SLP S which was shown in Figure 1. The G-factorization of
this string is shown by dash lines on the string.

Let GF (w,S) = val(leaf 1), . . . , val(leaf g) and wj = val(leaf 1) · · · val(leaf j) for any 1 ≤
j ≤ g. Our algorithm consists of the following two parts.
1. Compute the set of significant suffixes of Xi for all 1 ≤ i ≤ n.
2. Compute the Lyndon factorization and the significant suffixes of wj+1.
Here, significant suffixes of a string are suffixes of the string, as defined in [9, 10] (also used
in [12]), closely related to Lyndon factorizations, and will be explained in detail in Section 3.1.

The second part of our algorithm consists of g steps: In the (j+1)-th step of our algorithm,
we compute LFwj+1 by using information computed for wj and leaf i. More precisely, we
compute LFwj+1 by using:

the Lyndon factorization of wj ,
the significant suffixes of wj , and
the significant suffixes of leaf i.

The rest of this section is organized as follows. In Section 3.1, we explain what significant
suffixes are. We also show properties on significant suffixes which are used in our algorithm.
In Section 3.2 and 3.3, we describe respectively, the first part and the second part of our
algorithm.

3.1 Significant suffix
Assume that LFu = up1

1 , . . . , u
pm
m . lfsu(i) is said to be a significant suffix of u if lfsu(i+ 1) is

a prefix of lfsu(i) for any 1 ≤ i ≤ m. It is clear that lfsu(m) (i.e., the last Lyndon factor) is
always a significant suffix of u.

I Lemma 7. Assume that lfsu(i + 1) is a prefix of lfsu(i) for some 1 ≤ i ≤ m. Then
lfsu(j + 1) is a prefix of lfsu(j) for any i < j ≤ m.

Proof. Assume that lfsu(i+ 1) is a prefix of lfsu(i) for some 1 ≤ i ≤ m. Let i < j ≤ m. By
the definition, lfsu(j) and lfsu(j + 1) are suffixes of lfsu(i+ 1). Thus, lfsu(j) and lfsu(j + 1)
are proper substrings of lfsu(i). By Lemma 2, lfsu(j) and lfsu(j + 1) have to be proper
prefixes of lfsu(i). Since |lfsu(j)| > |lfsu(j + 1)|, then lfsu(j + 1) is a prefix of lfsu(j). J

Let λu be the minimum integer such that lfsu(i+ 1) is a prefix of ui for any λu ≤ i ≤ m.
We define the set of significant suffixes Λu of u as Λu = {lfsu(i) | λu ≤ i ≤ m}.

CPM 2018

24:6 Lyndon Factorization of Grammar Compressed Texts Revisited

I Example 8. Let w = abcabcabababcbabababcababa (same as Example 1). Then, λw = 3
and Λw = {abababcababa, ababa, a} since lfsw(3) is not a prefix of lfsw(2), but lfsw(4) is a
prefix of lfsw(3).

It is clear from the definition of Lyndon factorization and λu that for any λu ≤ i ≤ m,
ui = lfsu(i + 1)yi for some non-empty string yi. We will represent Λu by the sequence
(lfbu(λu), pλu), . . . , (lfbu(m), pm) of integer pairs. Note that this representation requires
O(log |u|) space by the following lemma.

I Lemma 9 (Lemma 12 of [10]). For any string u, |Λu| = O(log |u|).

3.2 Computing significant suffixes
For any strings u, v, let LFu = up1

1 , . . . , u
pm
m = U1, . . . , Um where Ui = upi

i and LFv =
vq1

1 , . . . , v
qm′
m′ = V1, . . . , Vm′ where Vi = vqi

i . Our idea of computing significant suffixes is
based on the following lemma used in [10].

I Lemma 10 ([1, 5]). LFuv = U1, . . . , Uc, z
k, Vc′ , . . . Vm′ for some 0 ≤ c ≤ m, 1 ≤ c′ ≤ m′+1

and LF lfsu(c+1)lfpv(c′−1) = zk.

This lemma says that LFuv can be obtained from LFu and LFv by computing the medial
Lyndon factor zk since the other Lyndon factors remain unchanged in uv.

Let Xi = X`Xr(1 ≤ `, r < i ≤ n). Assume that we have computed ΛX`
and ΛXr . Then

we compute ΛXi
from this information. The following lemmas are useful for our algorithm.

I Lemma 11 (Lemma 16 of [10]). λu ≤ c+ 1.

I Lemma 12. lfbuv(λuv) ∈ {lfbu(i) | λu ≤ i ≤ c+ 1} ∪ {|u|+ lfbv(max{c′, λv})}.

Proof. By Lemma 10, Vj is a Lyndon factor of uv for any c′ ≤ j ≤ |LFv|. Hence, lfsv(k) is
a significant suffix of uv for any max{c′, λv} ≤ k ≤ m. Let 1 ≤ j < λu. By Lemma 11, Uj is
a Lyndon factor of uv. By the definition of significant suffix and Lemma 7, lfsu(j + 1) is
not a prefix of lfsu(j). From this fact, it is easy to see that lfsu(j + 1)v is not a prefix of
lfsu(j)v, i.e., lfsuv(j + 1) is not a prefix of lfsuv(j). Thus, lfbuv(λuv) ≥ lfbu(λu). Therefore,
this lemma holds. J

From Lemma 10 and the definition of Lyndon factorization, there exists exact one z
which begins in u and ends in v (if um ≺ v1). We refer to this z as crossing factor. By the
next lemma, we can determine the lexicographic order between um and v1 using a single
LCE query lcp(umv, v). We remark that we do not have to know |v1| as well as the Lyndon
factorization of v.

I Lemma 13. Let α = lcp(umv, v). Then,
1. um � v1 if α < |um| and umv � v;
2. um = v1 if α ≥ |um| and umv � v;
3. um ≺ v1 if umv ≺ v.

Proof.
1. If α < |um| and umv � v, then the prefix of v of length α is not a prefix of any Lyndon

words. This implies that the longest prefix of v which is a Lyndon word is shorter than α.
Thus, um � v1 holds.

2. If α ≥ |um| and umv � v, then the prefix of v of length α + 1 can be represented as
uimu

′
mc such that i ≥ 1, u′m is a prefix of um, and um[|u′m| + 1] � c ∈ Σ. This implies

that um is the longest prefix of v which is a Lyndon word. Thus, um = v1 holds.

I. Furuya, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 24:7

3. If α ≥ |um| and umv ≺ v, then the prefix of v of length α + 1 can be represented as
uimu

′
mc such that i ≥ 1, u′m is a prefix of um, and um[|u′m| + 1] ≺ c ∈ Σ. This implies

that the prefix of v of length α + 1 is a Lyndon word which has um as a prefix. Thus,
um ≺ v1. If α < |um| and umv ≺ v, then the prefix of v of length α+ 1 is a Lyndon word
which is lexicographically larger than um. Thus, um ≺ v1. J

Due to the following lemma, we can compute the crossing factor efficiently.

I Lemma 14 (Lemma 16 of [10]). Assume that um ≺ v1. Let i, j be the beginning position
and the ending position of the crossing factor z, respectively. Then

i = lfbu(i′) for some λu ≤ i′ ≤ m,
lfsu(1)v � . . . � lfsu(i′)v ≺ . . . ≺ lfsu(m+ 1)v,
j = lfbu(j′) such that lfsv(j′ − 1) � lfsu(i′)v � lfsv(j′).

The following lemma is the main result of this section.

I Lemma 15. We can compute all significant suffixes for each variable of an SLP S by
O(n log logN) lexicographical string comparisons.

Proof. Let i ≤ n. Assume that we have computed all significant suffixes of variable Xj for
any j < i. We show how to compute all significant suffixes of variable Xi = X`Xr(`, r < i).
Let LFX`

= U1, . . . , Um and LFXr = V1, . . . , Vm′ . Firstly, we compute the lexicographic
order between um and v1 by Lemma 13. This can be done by one LCE query.

Suppose that um � v1. Then LFXi = U1, . . . , Um, V1, . . . , Vm′ by the definition of Lyndon
factorization. Since we have all significant suffixes ofX` andXr, we can compute all significant
suffixes of Xi by O(log log |val(X`)|+ log log |val(Xr)|) lexicographical string comparisons
from Lemmas 7 and 12. It is clear that the last decomposed Lyndon factor of Xi is the same
as Xr.

Suppose that um = v1. Then LFXi
= U1, . . . , Um−1, UmV1, V2, . . . , Vm′ by the definition

of Lyndon factorization. We can compute all significant suffixes of Xi in a similar way.
Suppose that um ≺ v1. We can compute the beginning position of the crossing factor

z by O(log |Λu|) lexicographic string comparisons from Lemma 14. Let b = lfbu(j) be this
position. Next, we check whether b is also the beginning position of zk or not. We can do
this with one LCE query as follows. If j = λu, then b is the beginning position of zk (since
uj−1 does not have lfsu(j) as a prefix). If the length of the longest common prefix between
uj−1 and lfsu(j)v is |uj−1|, then uj−1 = z and lfbu(j − 1) is the beginning position of zk.
Suppose that uj−1 = z. Then we can compute zk by a constant number of lexicographic
string comparisons. Thus we can also compute all significant suffixes by Lemma 12 from
significant suffixes of X` and Xr. Suppose that uj−1 6= z. Firstly, we check whether the
ending position of z which begins in u and ends in v is larger than |u| + lfbv(λv) or not.
We can do this by O(log |Λv|) lexicographic string comparisons from Lemma 14. If so, by
Lemmas 7 and 12, we can compute all significant suffixes of Xi by additional O(log |Λu|)
lexicographic string comparisons. Otherwise, Λuv ⊆ Λv holds.

Therefore, we can compute all significant suffixes of Xi by O(log logN) lexicographical
string comparisons. J

3.3 Computing Lyndon factorization
Let GF (w,S) = val(leaf 1), . . . , val(leaf g) and wj = val(leaf 1) · · · val(leaf j) for any 1 ≤ j ≤ g.
We consider computing the Lyndon factorization and the significant suffixes of wj+1 assuming
that we have computed the Lyndon factorization and the significant suffixes of wj , and

CPM 2018

24:8 Lyndon Factorization of Grammar Compressed Texts Revisited

also computed the significant suffixes for each variable of S by Section 3.2. Notice that for
wj+1 = wjval(leaf j+1), val(leaf j+1) has already occurred in wj at least once if leaf j+1 is a
variable. The following lemma is very useful for our algorithm.

I Lemma 16 (Lemma 21 of [10]). Let w be non-empty string such that w = xvyvz with v ∈ Σ+

and x, y, z ∈ Σ∗. If |xvy| < lfbw(k) ≤ |xvyv| for some k, then lfbw(k) ∈ {|xvy| + lfbv(j) |
λv ≤ j ≤ m′}, where m′ = |LFv|.

This lemma implies that the ending position of zk is restricted by significant suffixes of v.
Below, we change this lemma for the ending position of the crossing factor rather than the
ending position of zk.

I Lemma 17. Let i − 1 be the ending position of the crossing factor. Assume that v is a
substring of u. Then i ∈ {|u|+ lfbv(j) | λv ≤ j ≤ m′}, where m′ = |LFv|.

Proof. Assume for a contradiction that i < |u|+ lfbv(λv). From Lemma 16, i = lfbv(λv − 1)
and vλv−1 = z holds. Moreover, Vλv

, . . . , Vm′ are also Lyndon factors of uv. Since v is a
substring of u, Vλv

· · ·Vm′ has a left occurrence. By Lemma 2, vλv−1 = z has Vλv
· · ·Vm′ as

a prefix. This contradicts that lfsv(λv − 1) is not a significant suffix of v. J

Thus, we can compute the ending position of the crossing factor by significant suffixes of
an added string v (i.e., we do not need the whole Lyndon factorization of v).

I Lemma 18. Given an SLP S of size n representing string w of length N , we can compute
LFw in O(n log logN) lexicographic string comparisons.

Proof. Let GF (w,S) = val(leaf 1), . . . , val(leaf g) and wj = val(leaf 1) · · · val(leaf j) for any
1 ≤ j ≤ g.

Firstly we compute significant suffixes for all variables in S. By Lemma 15, it can be
done in O(n log logN) lexicographical string comparisons.

Next we consider computing LFwj+1 and significant suffixes of wj+1 assuming that we
have computed LFwj = U1, . . . , Um. Suppose now that leaf j+1 is a variable (otherwise
leaf j+1 ∈ Σ). Let leaf j+1 = Xi and LFXi

= V1, . . . , Vm′ (remark that we do not actually
have LFXi). According to the lexicographic order between Um and V1, which can be checked
using a single LCE query by Lemma 13, we proceed as follows:

Um � V1. This implies that LFwj+1 = U1, . . . , Um, V1, . . . , Vm′ . By Lemma 16, λXi
= 1

holds, which means that the significant suffixes of Xi hold the whole information of LFXi .
Thus we can get LFwj+1 without string comparisons. Finally, we can compute significant
suffixes of wj+1 by O(log |Λwj

|) string comparisons (same as Lemma 15).
Um = V1. This implies that LFXi

= U1, . . . , Um−1, UmV1, V2, . . . , Vm′ . We can compute
LFwj+1 without string comparisons in a similar way to the previous case. We can also
compute Λwj+1 by O(log |Λwj

|) string comparisons in a similar way to the previous case.
Um ≺ V1. Firstly, we compute the crossing factor z of wjXi by O(log |Λwj

|+ log |ΛXi
|)

string comparisons from Lemmas 14 and 17. Next we compute zk by checking consecutive
Lyndon factors, which can be done using two LCE queries. Then we can obtain LFwj+1 =
U1, . . . , Uc, z

k, Vc′ , . . . , Vm′ because Vc′ , . . . , Vm′ are part of the significant suffixes of Xi

due to Lemma 17. Finally, we can compute significant suffixes of wj+1 by O(log |Λwj
|)

string comparisons (same as Lemma 15).
In either case, we can compute LFwj+1 and the significant suffixes of wj+1 by O(log |Λwj

|+
log |ΛXi |) = O(log logN) string comparisons from Lemma 9.

I. Furuya, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 24:9

Now suppose that leaf j+1 ∈ Σ. Since leaf j+1 = c is a new character that does not appear
in wj , the situation does not directly match with the condition of Lemma 17. Still it is easy
to see that LFc = c, and thus, we can compute LFwj+1 and the significant suffixes of wj+1
in a similar way to the case that leaf j+1 is a variable.

Note that we do not have to “rebuild” the whole Lyndon factorization of wj+1 (which
would take O(n) time) because each Lyndon factor of LFwj+1 whose beginning position is in
[lfbwj

(λwj), lfbwj+1(λwj+1)) remains as a Lyndon factor while appending strings to it, and
thus, it is a Lyndon factor of LFw to output. Hence, we can compute LFw while treating
only the last O(logN) Lyndon factors that are corresponding to the significant suffixes of
the current wj+1’s.

Therefore, we can compute LFw = LFwg
by O(n log logN) string comparisons. J

Here, we analyze the space requirement. We need O(n logN) space for all significant
suffixes. In each step, the size of the Lyndon factorization is less than n by Lemma 3. Thus
we need O(n) space for storing the Lyndon factorization. Finally, we get the following result
by using an LCE data structure for string comparisons.

I Theorem 19. Given an SLP of size n representing string w of length N , we can compute
LFw in O(P (n,N) +Q(n,N)n log logN) time and O(n logN + S(n,N)) space.

When we use an LCE data structure of Lemma 4, we can get the following (since the size
of LZ factorization is a lower bound on the smallest grammar [3]).

I Corollary 20. Given an SLP of size n representing string w of length N , we can compute
LFw in O(n logN log logN) time and O(n logN) space.

4 Conclusion

We revisited the problem of computing the Lyndon factorization on SLPs. Given an SLP
G of size n representing a string w of length N , our new algorithm runs in O(P (n,N) +
Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P (n,N), S(n,N), Q(n,N)
are respectively the pre-processing time, space, and query time of a data structure for longest
common extensions (LCE) on SLPs. If we use the LCE data structure of [8], we can compute
the Lyndon factorization in O(n logN log logN) time and O(n logN) space.

The paper [10] also proposed an algorithm to compute in O(s log s) time and space the
Lyndon factorization of a string that is compressed by LZ78 in s size. Future work would
include improving this result and/or deriving new algorithms working on other compression
schemes.

References
1 Alberto Apostolico and Maxime Crochemore. Fast parallel Lyndon factorization with ap-

plications. Mathematical Systems Theory, 28(2):89–108, 1995.
2 Srecko Brlek, Jacques-Olivier Lachaud, Xavier Provençal, and Christophe Reutenauer. Lyn-

don + Christoffel = digitally convex. Pattern Recognition, 42(10):2239–2246, 2009.
3 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,

and abhi shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

4 K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus. iv. the quotient groups
of the lower central series. Annals of Mathematics, 68(1):81–95, 1958.

CPM 2018

24:10 Lyndon Factorization of Grammar Compressed Texts Revisited

5 Jacqueline W. Daykin, Costas S. Iliopoulos, and William F. Smyth. Parallel RAM algo-
rithms for factorizing words. Theor. Comput. Sci., 127(1):53–67, 1994.

6 Jean-Pierre Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–
381, 1983.

7 Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. CoRR,
abs/1201.3077, 2012.

8 Tomohiro I. Longest common extensions with recompression. In Proc. CPM 2017, pages
18:1–18:15, 2017.

9 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Efficient Lyndon factorization of grammar compressed text. In Proc. CPM 2013, pages
153–164, 2013.

10 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput.
Sci., 656:215–224, 2016.

11 Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M.
Shur. On the size of Lempel-Ziv and Lyndon factorizations. In Proc. STACS 2017, pages
45:1–45:13, 2017.

12 Tomasz Kociumaka. Minimal suffix and rotation of a substring in optimal time. In Proc.
CPM 2016, pages 28:1–28:12, 2016.

13 Manfred Kufleitner. On bijective variants of the Burrows-Wheeler transform. In Proc. PSC
2009, pages 65–79, 2009.

14 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6

	p000-frontmatter
	Preface
	Committee
	Reviewers

	p001-Sakai
	Introduction
	Preliminaries
	Algorithm for finding a maximal common subsequence
	Algorithm for finding a constrained maximal common subsequence
	Algorithm for determining if a common subsequence is maximal
	Conclusion

	p002-Henriques
	Introduction
	Background
	The Problem
	Related work

	Polynomial time muOPPM for equal length pattern and text
	O(mr lg r) time muOPPM when one string is indeterminate
	O(m^2) time muOPPM (r=2) with indeterminate pattern and text

	Polynomial time muOPPM
	Concluding remark

	p003-Baier
	Introduction
	Preliminaries
	Tunneling
	Invertibility
	Practical Implementation
	Block Computation
	Tunneled BWT Encoding
	Block Choice

	Experimental Results
	Conclusion

	p004-Amir
	Introduction
	Preliminaries
	Properties of Covers and Seeds

	Quasi-Periodicity Persistence Under Mismatch Errors
	Application: Closing the Complexity Gap in ACP Relaxations Study
	The Histogram Greedy Algorithm
	The Full-Tiling Primitivity Coercion Algorithm
	Correctness of the Full-Tiling Primitivity Coercion Algorithm

	p005-Brubach
	Introduction
	Problem Description
	Related Work
	Our Contributions
	Preliminaries

	Main techniques and algorithm for MWPSM
	The Alternating Triplet Matching (ATM) problem
	MWPSM algorithm and analysis

	Linear time algorithm for unweighted MPSM
	Constructing the b-ATM instance in O(n + alpha^4) time
	Solving b-ATM quickly
	Transforming the b-ATM solution to a duo matching and resolving conflicts

	A streaming algorithm for MPSM
	Conclusion and future directions

	p006-Blin
	Introduction
	Preliminaries
	Words
	Problem definition

	Computing the optimal distance for a fixed irradiation time
	Distance matrix
	Dynamic programming

	Computing an optimal solution
	Forbidding overdoses
	Perspectives

	p007-Bannai
	Introduction
	Preliminaries
	Policriti and Prezza's augmented RLBWT
	Updating an RLBWT

	Online LZ77 Parsing
	Updating an augmented RLBWT
	Computing the parse
	Experimental results

	Matching Statistics
	Further augmentation
	Algorithm
	Application: Rare-disease detection

	Recent and Future Work

	p008-Hooshmand
	Introduction and Related Work
	An Overview of Our Non-Overlapping Indexing Framework
	Handling aperiodic case
	Handling periodic case

	Preliminaries for Missing Proofs
	Heavy Path Decomposition
	Right-Maximally-Periodic Prefixes
	1-Sided Sorted Range Reporting

	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 7
	Case 1: locus(P) and locus(QP) are on different heavy paths
	Case 2: locus(P) and locus(QP) are on the same heavy path
	The Data Structure
	 The Algorithm

	Proof of Lemma 8
	Concluding Remarks

	p009-Aoyama
	Introduction
	Preliminaries
	Strings
	Elastic-Degenerate Strings

	Tools
	Suffix Trees
	Sum Set and FFT

	Algorithm
	Overview of Algorithm
	Computing Step 1
	Computing Step 2
	Computing Step 3
	Computing S^=_i
	Computing S^<_i

	Conclusion

	p010-Akutsu
	Introduction
	Preliminaries
	O(n^2) time canonical form computation
	Linear time canonical form computation
	Canonical form of geometric plane graphs
	Maximum common connected edge subgraph of geometric plane graphs

	p011-Amir
	Introduction
	Preliminaries
	Algorithm's Idea
	The Suffix Tree
	Preprocessing

	Implementation 1: O(log n) Query Processing
	Implementation 2: O(log log n) Query Processing
	Data Structures
	The Algorithm

	Dynamic LCF for a Static Periodic String
	Algorithm's Idea

	The algorithm
	Correctness
	Complexity

	Conclusions

	p012-Funakoshi
	Introduction
	Preliminaries
	Algorithm for 1-ELSPal
	Periodic structures of maximal palindromes
	Algorithm for substitutions
	Algorithm for deletions
	Algorithm for insertion
	Hashing

	Algorithm for ell-ELSPal

	p013-Brubach
	Introduction
	Related Work
	Preliminaries
	The classical Four Russians speedup

	Our Contributions

	Storing and querying the block function
	Notation
	Storing lookup entries
	Querying a block function
	Alternatives to query a block function without SMAWK

	One-against-many comparison
	Extending the Four Russians approach to banded alignment
	Our algorithm

	Extensions and applications
	Comparing two arbitrary strings with a penalty matrix
	Improved space-efficiency
	Exploiting prefix similarity in one-against-many comparison

	Conclusion and future directions

	p014-Zhang
	Introduction
	Preliminaries
	Happy permutation
	Lucky permutation

	How to recognize a happy permutation
	How to recognize a lucky permutation
	Conclusion

	p015-Inoue
	Introduction
	Preliminaries
	Algorithms
	Simple Algorithm
	O(sigma |M|^3 + n)-time algorithm
	O(|M|^3 log^2 n log log n + n)-time algorithm

	Hardness results on the LCSqS problem
	Discussions

	p016-Dudek
	Introduction
	Preliminaries
	A lower bound for the approach of Bille et al.
	An optimal tree compression algorithm

	p017-Fertin
	Introduction
	Parameterizing the MCA Problem by x_H
	Parameterizing the MCA Problem by the Treewidth of the Color Hierarchy Graph
	Conclusion

	p018-Chikhi
	Motivation
	Related Work
	Notation
	Outline of Sections

	Tree Duality: Definition
	Tree Reversal

	The Primal-Dual Ancestor
	Relating BP and DFUDS representations

	p019-Urabe
	Introduction
	Preliminaries
	Strings and model of computation
	Lyndon words and Lyndon factorization of strings
	Lyndon tree
	Longest Common Extension

	Longest Lyndon substring after 1-edit
	Overview of computing Lyndon factorization by concatenation
	Computing the Lyndon factorization of T_p
	The Lyndon factorization of T_s by Lyndon tree
	Computing the longest Lyndon substring

	Longest Lyndon substring after block edit
	Conclusion

	p020-Abedin
	Introduction
	Applications to String Matching
	Map

	Preliminaries and Terminologies
	Predecessor/Successor Queries
	Fully-Functional Succinct Tree
	Range Maximum Query (RMQ) and Path Maximum Query (PMQ)
	Orthogonal Range Queries in 2-Dimension
	Heavy Path and Heavy Path Decomposition

	Our Framework
	Basic Queries
	Overview

	Our Data Structures
	Our O(n log n) space data structure
	Our Linear Space Data Structure

	Applications
	Longest Common Substring after One Substitution
	The Data Structure
	Processing a query (i, alpha)

	All-Pairs Longest Common Substring Problem

	p021-Cazaux
	Introduction
	Preliminaries
	Approximation
	Linear construction of Multi-SCCS
	Approximation algorithm for Multi-SLS
	Conclusion
	Details on the proofs for Theorems 9 and 10
	Proof of Lemma 16 and Proposition 11
	Example: set of all Red-Blue graphs

	p022-Shin
	Introduction
	The Subpath Kernel (SPK) for Trees
	High accuracy performance as a similarity measure.
	Datasets
	Kernels to compare
	Experimental results

	Linear-time algorithms for the subpath kernel
	A theory of irreducible trees
	Suffix arrays and suffix trees
	Reconstruction of the bottom-up traversal algorithm of [Kasai, 2001]
	A linear-time bottom-up algorithm for the subpath kernel
	A Top-Down Algorithm for the subpath kernel
	A hybrid parallel-computing linear-time algorithm

	Conclusion

	p023-Charalampopoulos
	Introduction
	Our Contribution

	Preliminaries
	Difference covers
	Colored Trees Problem

	Reduction of LCF_k(ell) problem to multiple synchronized LCP_k's
	The case of k=0 and of k=1 and sigma=2
	Arbitrary k and sigma
	Main Result

	p024-Furuya
	Introduction
	Preliminaries
	Strings and model of computation
	Lyndon words and Lyndon factorization of strings
	Straight line programs (SLPs)
	Longest common extension problem on SLPs

	Lyndon factorization algorithm for SLP
	Significant suffix
	Computing significant suffixes
	Computing Lyndon factorization

	Conclusion

