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Preface

Message from the Chairs

Welcome to the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)
in Barcelona, Spain. ECRTS is the premier conference in Europe in the broad area of
real-time and embedded systems. Along with RTSS and RTAS, ECRTS ranks as one of the
three top international conferences on real-time systems. For ECRTS 2018, we have received
78 submissions with authors from 21 countries, 9 (43%) from outside Europe.

Each submission has been reviewed by at least three members of the technical programm
committee – all active researchers and experts in their field – with the help of 62 external
reviewers. The submissions have been evaluated and assessed according to their contribution
and originality, the technical correctness and writing quality. The program committee has
then selected – at the physical program committee meeting in Amsterdam – 26 of these
submissions for publication in the proceedings and presentation at the conference.

From the 26 accepted papers, three have been recognized as Outstanding Papers by the
program committee and will be presented in a dedicated session. One of these three papers
will be selected as Best Paper by a best paper committee based on both the contribution
of the paper and the presentation.

ECRTS takes a leading role in adopting novel concepts and thus shaping the way we do
science. In 2016, ECRTS has been the first conference on embedded real-time systems to
introduce the Artifact Evaluation, with the aim to promote reproducibility of our research.
An Artifact Evaluation committee validates the artifacts submitted by the authors and
includes a seal of approval for those who passed the replication test. This year, already eight
papers (31%) have been submitted to and passed the artifact evaluation and are marked with
this seal in the proceedings. In 2017, ECRTS has been again the first conference on embedded
real-time systems to introduce an Open Access publication model, while retaining the
quality-control measures. The open access model has been established with LIPIcs – Leibniz
International Proceedings in Informatics established in cooperation with Schloss Dagstuhl,
Leibniz Center for Informatics. The conference serves the research community and the
public best when results are accessible to the largest audience, i.e., the research community
and the public. This year again, the proceedings will be accessible free of charge for everyone.

ECRTS 2018 will start with a keynote on Runtime-Aware Architecture (RAA) by
Mateo Valero, director of the Barcelona Supercomputing Center. Another keynote
will follow on the second day of the conference.

ECRTS 2018 will feature in addition a Work-In-Progress session for short papers where
novel ideas will be presented to the audience, and a Journal2Conference session where work
so far only published in journals can be presented to the conference audience. Submissions
to the Work-In-Progress and Journal2Conference sessions have been evaluated separately by
dedicated committees, and are not part of these published proceedings. Furthermore, a full
presentation is dedicated to an Industrial Challenge to foster the collaboration between
the academic world and industry.

The day before the main conference is dedicated to five outstanding international work-
shops: the Real-Time Scheduling Open Problems Seminar (RTSOPS), the workshop on
30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer
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Worst-Case Execution Time Analysis (WCET), the workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications (OSPERT), the workshop on Analysis Tools
and Methodologies for Embedded and Real-Time Systems (WATERS), and the workshop
Real-Time Networks (RTN).

ECRTS 2018 is the result of the hard work of many people. We are especially grateful
for the contributions of the following people: the Barcelona Supercomputing Center
for its support with the local organization, the Program Committee and the external
reviewers, who are listed in subsequent pages; Martina Maggio as Chair of the Work-
In-Progress session and the Artifact Evaluation Committee; Patrick Meumeu Yomsi
as Chair of the Journal2Conference session; Sophie Quinton for the organization and
Arne Hamann for the presentation of the Industrial Challenge; Heechul Yun and Adam
Lackorzynski as OSPERT Workshop Chairs; Mathieu Jan and Ramon Serna Olivier
as RTN Workshop Chairs; Thidapat (Tam) Chantem and Dorin Maxim as RTSOPS
Workshop Chairs; Claire Pagetti and Arne Hamann as WATERS Workshop Chairs;
Forian Brandner as WCET Workshop Chair. A special thanks to Marc Herbstritt
of Dagstuhl Publishing and Björn Brandenburg with their support in publishing the
proceeding, and to Gerhard Fohler for his steady guidance and contributions as the
Euromicro Real-Time Technical Committee Chair.

Congratulations to all of the authors for their exceptional work. ECRTS 2018
would not exist without the contributions of the authors that submitted their work for review
and critique. We are very pleased with the quality, depth, and breadth of this year’s technical
program. We hope you enjoy yourself at ECRTS 2018!

Francisco J. Cazorla Sebastian Altmeyer
General Chair, ECRTS 2018 Program Chair, ECRTS 2018
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Abstract

Poor time predictability of multicore processors has been a long-standing challenge in the real-
time systems community. In this paper, we make a case that a fundamental problem that
prevents efficient and predictable real-time computing on multicore is the lack of a proper memory
abstraction to express memory criticality, which cuts across various layers of the system: the
application, OS, and hardware. We, therefore, propose a new holistic resource management
approach driven by a new memory abstraction, which we call Deterministic Memory. The key
characteristic of deterministic memory is that the platform–the OS and hardware–guarantees
small and tightly bounded worst-case memory access timing. In contrast, we call the conventional
memory abstraction as best-effort memory in which only highly pessimistic worst-case bounds
can be achieved. We propose to utilize both abstractions to achieve high time predictability
but without significantly sacrificing performance. We present deterministic memory-aware OS
and architecture designs, including OS-level page allocator, hardware-level cache, and DRAM
controller designs. We implement the proposed OS and architecture extensions on Linux and
gem5 simulator. Our evaluation results, using a set of synthetic and real-world benchmarks,
demonstrate the feasibility and effectiveness of our approach.
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1 Introduction

High-performance embedded multicore platforms are increasingly demanded in cyber-physical
systems (CPS)–especially those in automotive and aviation applications–to cut cost and to
reduce size, weight, and power (SWaP) of the system via consolidation [31].

Consolidating multiple tasks with different criticality levels (a.k.a. mixed-criticality
systems [58, 8]) on a single multicore processor is, however, extremely challenging because
interference in shared hardware resources in the memory hierarchy can significantly alter
the tasks’ timing characteristics. Poor time predictability of multicore platforms is a major
hurdle that makes their adoption challenging in many safety-critical CPS. For example, the
CAST-32A position paper by the avionics certification authorities comprehensively discusses
the certification challenges of multicore avionics [9]. Therefore, in the aerospace industry,
it is a common practice to disable all but one core [28], because extremely pessimistic
worst-case-execution times (WCETs) nullify any performance benefits of using multicore
processors in critical applications. This phenomenon is also known as the “one-out-of-m”
problem [27].

There have been significant research efforts to address the problem. Two common
strategies are (1) partitioning the shared resources among the tasks or cores to achieve spatial
isolation and (2) applying analyzable arbitration schemes (e.g., time-division multiple access)
in accessing the shared resources to achieve temporal isolation. These strategies have been
studied individually (e.g., cache [25, 59, 39], DRAM banks [38, 63], memory bus [64, 40]) or
in combination (e.g., [27, 51]). However, most of these efforts improve predictability at the
cost of a significant sacrifice in efficiency and performance.

In this paper, we argue that the fundamental problem that prevents efficient and predict-
able real-time computing on multicore is the lack of a proper memory abstraction to express
memory criticality, which cuts across various layers of the system: the application, OS, and
hardware. Thus, our approach starts by defining a new OS-level memory abstraction, which
we call Deterministic Memory. The key characteristic of deterministic memory is that the
platform–the OS and hardware–guarantees small and tightly bounded worst-case memory
access timing. In contrast, we call the conventional memory abstraction as best-effort memory
in which only highly pessimistic worst-case bounds can be achieved.

We propose a new holistic cross-layer resource management approach that leverages the
deterministic and best-effort memory abstractions. In our approach, a task can allocate
either type of memory blocks in its address space, at the page granularity, based on the
desired WCET requirement in accessing the memory blocks. The OS and hardware then
apply different resource management strategies depending on the memory type. Specifically,
predictability focused strategies, such as resource reservation and predictable scheduling,
shall be used for deterministic memory while average performance and efficiency-focused
strategies, such as space sharing and out-of-order scheduling, shall be used for best-effort
memory. Because neither all tasks are time-critical nor all memory blocks of a time-critical
task are equally important with respect to the task’s WCET, our approach enables the
possibility of achieving high time predictability without significantly affecting performance
and efficiency through the selective use of deterministic memory.

While our approach is a generic framework that can be applied to any shared hardware
resource management, in this paper, we particularly focus on the shared cache and main
memory, and demonstrate the potential benefits of our approach in the context of shared
cache and DRAM related resource management. First, we describe OS extensions and an
OS-level memory allocation method to support deterministic memory. We then describe a
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deterministic memory-aware cache design that provides the same level of cache space isolation
of the conventional way-based partitioning techniques, while achieving significantly higher
cache space utilization. We also describe a deterministic memory-aware DRAM controller
design that extends a previously proposed real-time memory controller [55] to achieve similar
predictability benefits with minimal DRAM space waste.

We implement the deterministic memory abstraction and an OS-level memory allocator
(replacing Linux’s buddy allocator) in a Linux 3.13 kernel and implement the proposed
deterministic-memory aware memory hierarchy hardware extensions (in MMU, TLB, cache
and DRAM controller) in a gem5 full-system simulator [7] modeling a high-performance (out-
of-order) quad-core platform as the baseline. We evaluate the system using a set of synthetic
and real-world benchmarks from EEMBC [14], SD-VBS [57] and SPEC2006 [19] suites. We
achieve the same degree of isolation with conventional way-based cache partitioning for
real-time tasks while improving the cache hit rate of co-scheduled non-real-time workloads
by 39% on average. In addition, we need significantly less memory space in reserved DRAM
banks, while achieving comparable WCET guarantees compared with a state-of-the-art
real-time DRAM controller.

The main contributions of this work are as follows:
We propose a new OS-level memory abstraction, which we call Deterministic Memory,
that enables efficient cross-layer resource management, balancing time predictability and
resource efficiency.
We present a concrete system design–from the OS down to the entire memory hierarchy,
including shared cache and DRAM controller designs–that demonstrate the potential
benefits of the new memory abstraction. The key contribution of our design is its
Memory Management Unit (MMU) based approach that provides flexible, fine-grained
(page-granularity) resource management across the entire memory hierarchy.
We implement a realistic prototype system on a Linux kernel and a cycle-accurate full
system simulator. 1 We also provide extensive empirical results, using both synthetic and
real-world benchmarks, that demonstrates the effectiveness of our approach.

The remainder of the paper is organized as follows. Section 2 provides background and
motivation. Section 3 describes the proposed Deterministic Memory abstraction. Section 4
provides an overview of the deterministic memory-aware system design. Section 5 presents
DM-aware timing analysis. Section 6 details our prototype implementation. Section 7
presents evaluation results. We review related work in Section 8 and conclude in Section 9.

2 Background and Motivation

In this section, we describe why the standard uniform memory abstraction is a fundamental
limitation for the development of efficient and predictable real-time computing infrastructures.

CPU-centric Abstractions and Resource Management. Traditionally, the CPU has been
the main focus of resource management in real-time systems. This is because, in a unicore
processor, only one task at a time can access the entire memory hierarchy and that CPU
scheduling decisions have a predominant impact on the response time of real-time tasks.
Therefore, CPU-centric abstractions such as core, task and task priority have been the
primary focus of resource management. However, in multicore platforms, which have become

1 We provide the modified Linux kernel source, the modified gem5 simulator source, and the simulation
methodology at http://github.com/CSL-KU/detmem for replication study.
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mainstream over the last decade, extensive inter-core hardware resource sharing in the
memory hierarchy heavily impacts task timing. Hence, CPU time management is no longer
the sole dimension to explore when reasoning about the temporal behavior of a system.
Various OS and hardware-level solutions have been proposed to manage shared resources
in the memory hierarchy with the goal of improving time predictability (we will provide
a comprehensive review of related work in Section 8). Nonetheless, in most approaches,
CPU-centric abstractions are still most widely used to perform allocation and scheduling of
shared resources in the memory hierarchy. Unfortunately, CPU-centric abstractions are often
too coarse-grained to enact accurate management policies on memory hierarchy resources,
such as cache lines and main memory pages. For instance, when a fraction of cache space is
reserved for a task, it cannot be used by other tasks, even if it is not fully utilized by the
reserved task. Likewise, when DRAM banks are reserved for a task, they cannot be utilized
by other tasks, resulting in under-utilized DRAM space, even though not all memory of the
task may need to be allocated on the reserved DRAM bank.

The Uniform Memory Abstraction. Operating systems and hardware traditionally have
provided a simple uniform memory abstraction that hides all the complex details of the
memory hierarchy. When an application requests to allocate more memory, the OS simply
maps the necessary amount of any physical memory pages available at the time to the
application’s address space–without considering: (1) how the memory pages are actually
mapped to the shared hardware resources in the memory hierarchy, and (2) how they will
affect application performance. Likewise, the underlying hardware components treat all
memory accesses from the CPU as equal without any regard to differences in criticality and
timing requirements in allocating and scheduling the requests.

We argue that this uniform memory abstraction is fundamentally inadequate for multicore
systems because it prevents the OS and the memory hierarchy hardware from making informed
decisions in allocating and scheduling access to shared hardware resources. As such, we
believe that new memory abstractions are needed to enable both efficient and predictable
real-time resource management. It is important to note that the said abstractions should not
expose too many architectural details about the memory hierarchy to the users, to ensure
portability in spite of rapid changes in hardware architectures.

3 Deterministic Memory Abstraction

In this section, we introduce the Deterministic Memory abstraction to address the aforemen-
tioned challenges.

We define deterministic memory as special memory space for which the OS and hardware
guarantee small and tightly bounded worst-case access delay. In contrast, we call conventional
memory as best-effort memory, for which only highly pessimistic worst-case bounds can be
achieved. A platform shall support both memory types, which allow applications to express
their memory access timing requirements in an architecture-neutral way, while leaving the
implementation details to the platform–the OS and the hardware architecture. This, in turn,
enables efficient and analyzable cross-layer resource management, as we will discuss in the
rest of the section.

Figure 1 shows the conceptual differences between the two memory types with respect to
worst-case memory access delay bounds. For clarity, we divide memory access delay into two
components: inherent access delay and inter-core interference delay. The inherent access
delay is the minimum necessary timing in isolation. In this regard, deterministic memory can
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Figure 1 Conceptual differences of deterministic and best-effort memories.

Table 1 Differences in resource management strategies.

Space allocation Request scheduling WCET bounds
Deterministic memory Dedicated resources Predictability focused Tight

Best-effort memory Shared resources Performance focused Pessimistic

be slower–in principal, but not necessarily–than best-effort memory, as its main objective
is predictability and not performance, while in the case of best-effort memory, the reverse
is true. The inter-core interference delay is, on the other hand, an additional delay caused
by concurrently sharing hardware resources between multiple cores. This is where the two
memory types differ the most. For best-effort memory, the worst-case delay bound is highly
pessimistic mainly because the inter-core interference delay can be severe. For deterministic
memory, on the other hand, the worst-case delay bound is small and tight as the inter-core
interference delay is minimized by the platform.

Table 1 shows general spatial and temporal resource management strategies of the OS
and hardware to achieve the differing goals of the two memory types. Here, we mainly focus
on shared hardware resources, such as shared cache, DRAM banks, memory controllers, and
buses. In contrast, we do not focus on core-private hardware resources such as private (L1)
caches as they do not generally contribute to inter-core interference.

In the deterministic memory approach, a task can map all or part of its memory from
the deterministic memory. For example, an entire address space of a real-time task can be
allocated from the deterministic memory; or, only the important buffers used in a control
loop of the real-time task can be allocated from the deterministic memory, while temporary
buffers used in the initialization phase are allocated from the best-effort memory.

Our key insight is that not all memory blocks of an application are equally important with
respect to the application’s WCET. For instance, in the applications we profiled in Section 7.1,
only a small fraction of memory pages account for most memory accesses to the shared
memory hierarchy (shared cache and DRAM).

Based on this insight, we now provide a detailed design and implementation of determin-
istic memory-aware OS and architecture extensions with a goal of achieving high efficiency
and predictability.
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Figure 2 Logical and physical mappings of the deterministic and best-effort memory abstractions.

4 System Design

In this section, we first provide a high-level overview of a deterministic-memory based
multicore system design (Section 4.1). We then describe necessary small OS and hardware
architecture extensions to support the deterministic/best-effort memory abstractions (Sec-
tion 4.2). Lastly, we describe deterministic memory-aware cache and DRAM management
frameworks (Section 4.3 and 4.4, respectively).

4.1 Overview

Figure 2a shows the virtual address space of a task using both deterministic and best-effort
memory under our approach. From the point of view of the task, the two memory types
differ only in their worst-case timing characteristics. The deterministic memory is realized
by extending the virtual memory system at the page granularity. Whether a certain page is
deterministic or best-effort memory is stored in the task’s page table and the information is
propagated throughout the shared memory hierarchy, which is then used in allocation and
scheduling decisions made by the OS and the memory hierarchy hardware.

Figure 2b shows the system-level (OS and architecture) view of a multicore system
supporting the deterministic and best-effort memory abstractions. In this example, each core
is given one cache way and a DRAM bank which will be used to serve deterministic memory
for the core. One cache way and four DRAM banks are assigned to the best-effort memory
of all cores. Here, the highlighted deterministic memory-aware memory hierarchy refers to
hardware support for the deterministic memory abstraction.

It is important to note that the support for deterministic memory is generally more
expensive than that of best-effort memory in the sense that it may require dedicated space,
which may be wasted if under-utilized, and predictability focused scheduling, which may not
offer the highest performance. As such, to improve efficiency and performance, it is desirable
to use as little deterministic memory as possible as long as the desired worst-case timing of
real-time tasks can be satisfied.
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Figure 3 Deterministic memory-aware memory hierarchy: Overview.

4.2 OS and Architecture Extensions for Deterministic Memory
Abstraction Support

The deterministic memory abstraction is realized by extending the OS’s virtual memory
subsystem. Whether a certain page has the deterministic memory property or not is stored
in the corresponding page table entry. Note that in most architectures, a page table entry
contains not only the virtual-to-physical address translation but also a number of auxiliary
attributes such as access permission and cacheability. The deterministic memory can be
encoded as just another attribute, which we call a DM bit, in the page table entry. 2 The OS
is responsible for updating the DM bits in each task’s page tables. The OS provides interfaces
for applications to declare and update their deterministic/best-effort memory regions at
the page granularity. Any number of memory regions of any sizes (down to a single page)
within the application’s address space can be declared as deterministic memory (the rest is
best-effort memory by default).

In a modern processor, the processor’s view of memory is determined by the Memory
Management Unit (MMU), which translates a virtual address to a corresponding physical
address. The translation information, along with other auxiliary information, is stored in a
page table entry, which is managed by the OS. Translation Look-aside Buffer (TLB) then
caches frequently accessed page table entries to accelerate the translation speed. As discussed
above, in our design, the DM bit in each page table entry indicates whether the page is for
deterministic memory or for best-effort memory. Thus, the TLB also stores the DM bit and
passes the information down to the memory hierarchy.

Figure 3 shows this information flow of deterministic memory. Note that bus protocols
(e.g., AMBA [2]) also should provide a mean to pass the deterministic memory information
into each request packet. In fact, many existing bus protocols already support some forms of
priority information as part of bus transaction messages 3. These fields are currently used
to distinguish priority between bus masters (e.g., CPU vs. GPU vs. DMA controllers). A
bus transaction for deterministic memory can be incorporated into these bus protocols, for
example, as a special priority class. The deterministic memory information can then be
utilized in mapping and scheduling decisions made by the respective hardware components
in the memory hierarchy.

In the following, we focus on cache and DRAM controllers and how the deterministic
memory information can be utilized in these important shared hardware resources.

2 In our implementation, we currently use an unused memory attribute in the page table entry of the
ARM architecture; see Section 6 for details.

3 For example, ARM AXI4 protocol includes a 4-bit QoS identifier AxQOS signal [2] that supports up to
16 different priority classes for bus transactions.
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Premise: DM-only way partitioning
- A core’s DM lines are not evicted by other cores
- A core’s DM lines can be evicted by the core’s best-effort lines (v1)
- A core’s DM lines cannot be evicted by the core’s best-effort lines (v2)

- Then you need to have at least one shared way
- DM bits can be ignored or cleared by configuring a programmable register

PartMask  ways of the given partition
IgnMask  ways to ignore DM checking

// Allocating a deterministic line
If DM==1:

victim = LRU(PartMask)
DetMask |= 1<<victim

// Allocating a best-effort line
else

victim = LRU(!DetMask U IgnMask)
DetMask ^= !(1<<victim)

fi

Way 4

shared
partition

Set 0

Set 1

Set 2

Set 3

0

DM Tag Line data

Figure 4 Deterministic memory-aware cache management.

4.3 Deterministic Memory-Aware Shared Cache
In this subsection, we present a deterministic memory-aware shared cache design that
provides the same isolation benefits of traditional way-based cache partitioning techniques
while achieving higher cache space utilization.

Way-based Cache Partitioning. In a standard way-based partitioning, which is supported
in several COTS multicore processors [15, 3], each core is given a subset of cache ways. When
a cache miss occurs, a new cache line (loaded from the memory) is allocated on one of the
assigned cache ways in order not to evict useful cache lines of the other cores that share
the same cache set. An important shortcoming of way-partitioning is, however, that its
partitioning granularity is coarse (i.e., way granularity) and the cache space of each partition
may be wasted if it is underutilized. Furthermore, even if fine-grain partition adjustment is
possible, it is not easy to determine the “optimal” partition size of a task because the task’s
behavior may change over time or depending on the input. As a result, it is often a common
practice to conservatively allocate sufficient amount of resource (over-provisioning), which
will waste much of the reserved space most of the time.

Deterministic Memory-Aware Replacement Algorithm. We improve way-based partition-
ing by taking advantage of the deterministic memory abstraction. The basic approach is that
we use way partitioning only for deterministic memory accesses while allowing best-effort
memory accesses to use all the cache ways that do not currently hold deterministic cache
lines.

Figure 4 shows an example cache status of our design in which two cores share a 4-set,
5-way set-associative cache. In our design, each cache-line includes a DM bit to indicate
whether the cache line is for deterministic memory or best-effort memory (see the upper-right
side of Figure 4). When inserting a new cache line (of a given set), if the requesting memory
access is for deterministic memory, then the victim line is chosen from the core’s way partition
(e.g., way 0 and 1 for Core 0 in Figure 4). On the other hand, if the requesting memory
access is for best-effort memory, the victim line is chosen from the ways that do not hold
deterministic cache lines. (e.g., in set 0 of Fugre 4, all but way 2 are best-effort cache lines;
in set 1, only the way 4 is best-effort cache line.)

Algorithm 1 shows the pseudo code of the cache line replacement algorithm. As in the
standard cache way-partitioning, we assign dedicated cache ways for each core, denoted as
PartMaski, to eliminate inter-core cache interference. Note that DetMasks denotes the
bitmask of the set s’s cache lines that contain deterministic memory. If a request from core
i is a deterministic memory request (DM = 1), then a line is allocated from the core’s
cache way partition (PartMaski). Among the ways of the partition, the algorithm first tries
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Algorithm 1: Deterministic memory-aware cache line replacement algorithm.
Input :PartMaski - way partition mask of Core i

DetMasks - deterministic ways of Set s
Output : victim - the victim way to be replaced.

1 if DM == 1 then
2 if (PartMaski ∧ ¬DetMasks) 6= NULL then

// evict a best-effort line first
3 victim = LRU(PartMaski ∧ ¬DetMasks)
4 DetMasks |= 1� victim

5 else
// evict a deterministic line

6 victim = LRU(PartMaski)
7 end
8 else

// evict a best-effort line
9 victim = LRU(¬DetMask)

10 end
11 return victim

to evict a best-effort cache line, if such a line exists (Line 3-4). If not (i.e., all lines are
deterministic ones), it chooses one of the deterministic lines as the victim (Line 6). One the
other hand, if a best-effort memory is requested (DM 6= 1), it evicts one of the best-effort
cache lines, but not any of the deterministic cache lines (Line 9). In this way, while the
deterministic cache lines of a partition are completely isolated from any accesses other than
the assigned core of the partition, any under-utilized cache lines of the partition can still be
utilized as best-effort cache lines by all cores.

Deterministic Memory Cleanup. Note that a core’s way partition would eventually be
filled with deterministic cache lines (ones with DM = 1) if left unmanaged (e.g., scheduling
multiple different real-time tasks on the core). This would eliminate the space efficiency
gains of using deterministic memory because the deterministic memory cache lines cannot be
evicted by best-effort memory requests.

In order to keep only a minimal number of deterministic cache lines on any given partition
in a predictable manner, our cache controller provides a special hardware mechanism that
clears the DM bits of all deterministic cache lines, effectively turning them into best-effort
cache-lines. This mechanism is used by the core’s OS scheduler on each context switch so
that the deterministic cache-lines of the previous tasks can be evicted by the current task.
When the deterministic-turned-best-effort cache-lines of a task are accessed again and they
still exist in the cache, they will be simply re-marked as deterministic without needing to
reload from memory. In the worst case, however, all deterministic cache lines of a task shall
be reloaded when the task is re-scheduled on the CPU.

Note that our cache controller reports the number of deterministic cache lines that are
cleared on a context switch back to the OS. This information can be used to more accurately
estimate cache-related preemption delays (CRPD) [1].

Guarantees. The premise of the proposed cache replacement strategy is that a core’s
deterministic cache lines will never be evicted by other cores’ cache allocations, hence

ECRTS 2018
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Figure 5 Deterministic memory-aware memory controller architecture and scheduling algorithm.

preserving the benefit of cache partitioning. At the same time, non-deterministic cache lines
in the core’s cache partition can safely be used as other cores’ best-effort memory requests,
hence minimizing wasted cache capacity due to partitioning.

Comparison with PRETI. Our DM-aware cache replacement algorithm is similar to several
prior mixed-criticality aware cache designs [32, 30, 62]. The most closely related work is
PRETI [32], which also modifies LRU to be mixed-criticality-aware. There are, however,
several notable differences. First, PRETI uses the thread(task)-id to distinguish critical
and non-critical cache accesses, whereas we use MMU, which enables finer, page granularity
criticality control. Second, in PRETI, cache-lines reserved for a critical thread can only be
released on its termination. In contrast, we provide a DM-cleanup mechanism, which enables
efficient reclamation of deterministic memory cache-lines at each context-switch. Third,
PRETI’s replacement algorithm provides a firm cache space reservation capability [44] in the
sense that a real-time task can utilize more than its dedicated private space, whereas our
replacement algorithm does not allow such additional cache space utilization. Lastly, while
the prior works mainly focus on the cache, our main goal is to provide a unified framework–the
deterministic memory abstraction–which can carry information about time-sensitivity of
memory space not only in the cache, but also in the OS and throughout the entire memory
hierarchy. We will discuss how a traditional DRAM controller can be extended to support
deterministic memory abstraction in the following.

4.4 Deterministic Memory-Aware DRAM Controller
In this subsection, we present a deterministic memory-aware DRAM controller design, which,
in collaboration with our OS support, provides strong spatial and temporal isolation for
deterministic memory accesses while also enables efficient best-effort memory processing.

First, the OS actively controls on which DRAM bank a page frame is allocated. Specifically,
the OS reserves a small number of banks for each core to be used as the deterministic memory
for the core, while the rest of the banks are used for the best-effort memory of all cores,
as shown in Figure 5a (also in Figure 2b). When the OS allocates memory pages of an
application task, deterministic memory pages of the task shall be allocated on core-private
DRAM banks to eliminate DRAM bank-level inter-core interference [24, 55], while best-effort
memory pages are allocated on the shared DRAM banks.

Second, the memory controller (MC) implements a two-level scheduling algorithm that
first prioritizes deterministic memory requests over the ones for best-effort memory. For
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deterministic memory requests, we use a round-robin scheduling policy as it offers stronger
time predictability [43], while we use first-ready first-come-first-serve (FR-FCFS) policy for
scheduling best-effort memory requests as it offers high average throughput [46]. Figure 5b
shows the flowchart of the scheduler. Note, however, that strictly prioritizing deterministic
memory requests could starve best-effort memory requests indefinitely. Since we assume the
existence of a pessimistic worst-case bound for best-effort memory, we limit the maximum
number of consecutive processing of deterministic memory requests in case best-effort memory
requests exist, in order to achieve tightly bounded worst-case timing for deterministic memory
while achieving pessimistic, but still bounded, worst-case timing for best-effort memory.

Our design is inspired by prior mixed-criticality memory controller proposals [26, 22, 55],
all of which, like us, apply different scheduling algorithms depending on memory criticality,
although detailed designs (and assumptions) are varied. In this work, we particularly use
the MEDUSA memory controller design [55] as our baseline, but improve its efficiency by
leveraging the DM-bit information passed down to the memory controller. Specifically, in [55],
a real-time task has to allocate its entire memory space from the reserved DRAM banks,
even when much of its allocated memory is never used in the time-critical part. In contrast,
our design can reduce the amount of memory allocated in the reserved DRAM banks by only
allocating the deterministic memory pages. This allows us to accommodate more real-time
tasks with the same amount of reserved DRAM banks.

The necessary changes to support deterministic memory is small. Specifically, the original
MEDUSA controller [55] uses a set of memory controller specific hardware registers to
identify reserved DRAM banks of the cores. Instead, our modified memory controller design
simply uses the DM-bit information in each memory request to determine memory criticality.
Other mixed-criticality real-time memory controllers designs [26, 22] also similarly rely on
memory-controller-specific hardware registers to identify memory criticality. Thus, we believe
they also can be easily augmented to support the deterministic memory abstraction.

4.5 Other Shared Hardware Resources
We briefly discuss other potential deterministic memory-aware shared hardware designs.

As shown in [56], the miss-status-holding-registers (MSRHs) in a shared non-blocking
cache can be a significant source of inter-core interference if the number of MSHRs in the
shared cache is insufficient to support the memory parallelism of the cores. The contention
in MSHRs can be avoided by simply having a sufficient number of MSHRs, as we did in
our evaluation setup. But if it is difficult for the reasons discussed in [56], deterministic
memory-aware MSHR management can be alternatively considered. For example, one possible
DM-aware approach is that reserving some per-core MSHR entries to handle deterministic
memory and sharing the rest of MSHR entries for best-effort memory requests from all cores.

Deterministic memory-aware TLB can also be considered. Although a TLB is not typically
shared among the cores, it is conceivable to design a DM-aware TLB replacement policy that
reserves some TLB entries for deterministic memory that cannot be evicted by access to
best-effort memory addresses. Such a policy can be useful to reduce task WCET and CRPD
overhead within a core.

5 Timing Analysis

In this section, we show how the traditional response time analysis (RTA) [5] can be extended
to account for deterministic and best-effort memory abstractions.
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In our system, a real-time task τi is represented by the following parameters:

τi = {Ci, Ti, Di, DMi, BMi} (1)

where Ci is the WCET of the τi when it executes in isolation; Ti is the period of the
task; Di is the deadline of the task; DMi represents the maximum number of deterministic
memory requests that suffer inter-core interference; BMi is the maximum number of best-
effort memory requests that are subject to inter-core interference.

Note that all these parameters can be obtained in isolation. A task is said to execute in
isolation if: (1) it executes alone on the assigned core under a given resource partition; and
(2) all the other Nproc − 1 cores are idle or offline.

Note also that in the proposed DM-aware system described earlier, DMi accounts only a
subset of deterministic memory accesses that result in L2 misses because the L2 hit accesses
would not suffer inter-core interference. On the other hand, BMi would represent a subset
of best-effort memory accesses that result in L1 misses (not L2 misses). This is because for
best-effort memory, L2 cache space is shared, and, in the worst-case, all of them will have to
be fetched from the memory controller.

We then can compute τi’s worst-case memory interference delay Ii as follows:

Ii = DMi ×RDdm +BMi ×RDbm, (2)

where RDdm and RDbm denote the worst-case inter-core interference delay of a determ-
inistic and best-effort memory request, respectively.

By our system design, RDdm is small and tightly bounded because accesses to deterministic
memory suffer minimal (or zero) inter-core interference at the shared L2 cache and the shared
DRAM. On the other hand, RDbm will be substantially higher and highly pessimistic because
we have to pessimistically assume access to best-effort memory will always miss the L2 cache
and suffer high queuing delay at the DRAM controller.

Traditional RTA analysis can then be performed by finding the first value of k such that
R

(k+1)
i = R

(k)
i (task is schedulable) or such that R(k)

i > Di (task is not schedulable), given
that R(0)

i = Ci + Ii and that R(k+1)
i is calculated as:

R
(k+1)
i = Ci + Ii +

∑
τj∈hp(i)

⌈
R

(k)
i

Tj

⌉
· (Cj + Ij), (3)

where hp(i) is the set of all the tasks with priority higher than τi.
The major benefit of our approach is its flexibility. For example, a pure COTS multicore

system may provide high performance but, doesn’t provide isolation guarantees. Therefore,
all access to shared resource may need to be assumed to suffer highly pessimistic worst-case
inter-core interference delay (e.g., RDbm above) because no isolation is guaranteed. On the
other hand, a fully time-predictable hardware architecture [37, 54, 53] may provide strong
timing predictability with a small tight worst-case inter-core interference delay (e.g., RDdm

above), but not high performance and efficiency. In contrast, the flexibility of our approach
enables hardware designs that optimize differently depending on the memory type, which in
turn enables analyzable and efficient multicore systems.

6 Prototype Implementation

In this section, we provide implementation details of our prototype, which is based on Linux
3.13 kernel and gem5 [7] full-system simulator. First, we briefly review the ARMv7 architec-
ture on which our implementation is based (Section 6.1). We then describe our modifications
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Figure 6 Small descriptor format for 2nd level page table entry in ARMv7-A family SoCs [3].

to the Linux kernel to support the deterministic memory abstraction (Section 6.2). Lastly,
we describe the hardware extensions on the gem5 simulator (Section 6.3).

6.1 ARM Architecture Background
We use the ARMv7-A [3] architecture because it is well supported by the gem5 simulator.
The ARMv7 architecture defines four primary memory types and several memory-related
attributes such as cache policy (write-back/write-through) and coherence boundaries (between
cores or beyond). Up to 8 different combinations are allowed by the architecture. Each
page’s memory type is determined by a set of bits in the corresponding 2nd-level page table
entry. Figure 6 illustrates the structure of a page table entry (PTE).

In the figure, the bits TEX[0], C and B are used to define one of the 8 memory types. The
property of each memory type is determined by two global architectural registers, namely
Primary Region Remap Register (PRRR) and Normal Memory Region Register (NMRR) 4.

6.2 Linux Extensions
We have modified Linux kernel 3.13 to support deterministic memory.

At the lowest level, we define a new memory type that corresponds to the deterministic
memory. The default ARM Linux uses only 6 out of 8 possible memory types of ARMv7,
leaving two undefined memory types. For deterministic memory, we define one of the unused
memory types as the deterministic memory type, by updating PRRR and NMRR registers
at boot time. A page is marked as deterministic memory when the corresponding page table
entry’s memory attributes point to the deterministic memory type.

At the user-level, we extend Linux’s ELF (Executable and Linkable Format [10]) loader
and the exec system call implementation. We currently use a special file extension to inform
the ELF loader whether to mark the entire memory address or a subset of task’s memory
pages as deterministic memory. For fine-grained control, the virtual page numbers which
might be marked as deterministic memory are currently hard-coded in the kernel source
and a subset of them is selected based on the arguments passed to the exec system call.
In the future, we will use Linux kernel’s debugfs interface to efficiently communicate page
information. Also, the ELF header of a program binary can be used instead to encode the
virtual page numbers.

Within the Linux kernel, a task’s virtual address space is represented as a set of memory
regions, each of which is represented by a data structure, vm_area_struct, called a VMA
descriptor. Each VMA descriptor contains a variety of metadata about the memory region,
including its memory type information. Whenever a new physical memory block is allocated
(at a page fault), the kernel uses the information stored in the corresponding VMA descriptor

4 The hardware behaves as described only when the so -called “TEX remapping” mechanism is in use. TEX
remapping can be controlled via a configuration bit (TRE) in the System Control Register (SCTLR).
The Linux kernel enabled TEX remapping by default.
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to construct the page table entry for the new page. We add a new flag VM_DETMEM to indicate
the deterministic memory type in a VMA descriptor. When a page fault happens on accessing
a memory address, if the VM_DETMEM flag of the memory region corresponding to the address
is set, or the address falls within one of the virtual page numbers hard-coded in the kernel
then OS sets the TEX[0], C and B bits in allocating the page for the address to mark that it
is a deterministic memory page.

Note that the above code changes are minimal. In total, we only have added/modified
less than 200 lines of C and assembly code over 12 files in the Linux kernel source tree.
Furthermore, because most changes are in page table descriptors and their initialization, no
runtime overhead is incurred by the code changes.

We then have applied the PALLOC patch [63], which replaces the buddy allocator to
support DRAM bank-aware page allocation. We further extend the PALLOC allocator to
support deterministic memory. Specifically, we extend PALLOC’s cgroup interface to declare
a subset of banks to be used as private banks for the cgroup’s deterministic memory pages
and another subset of banks to be used for best-effort memory pages.

6.3 Gem5 Extensions
We have modified the gem5 full-system simulator as follows.

MMU and TLB. The deterministic memory type information stored in the page table is
read by the MMU and passed throughout the memory hierarchy. When a page fault occurs,
the MMU performs the page table walk to determine the physical address of the faulted
virtual address. In the process, it also reads other important auxiliary information such as
memory attribute and access permission from the page table entry and stores them into a
TLB entry in the processor. The deterministic memory attribute is stored alongside with the
other memory attributes in the TLB entry. Specifically, we add a single bit in the gem5’s
implementation of a TLB entry to indicate the deterministic memory type. As a reference,
Cortex-A17’s TLB entry has 80 bits and a significant fraction of the bits are already used to
store various auxiliary information [4] or reserved for future use. Thus, requiring a single
bit in a TLB entry does not pose significant overhead in practice. We also extend the
memory request packet format in the gem5 simulator to include the deterministic memory
type information. In this way, the memory type information of each memory request can
be passed down through the memory hierarchy. In real hardware, bus protocols should be
extended to include such information. As discussed earlier, existing bus protocols such as
AXI4 already support the inclusion of such additional information in each bus packet [2].

Cache Controller. The gem5’s cache subsystem implements a flexibly configurable non-
blocking cache architecture and supports standard LRU and random replacement algorithms.
Our modifications are as follows. First, we extend gem5’s cache controller to support a
standard way-based partitioning capability 5. The way partition is configured via a set
of programmable registers. When a cache miss occurs, instead of replacing the cache line
in the LRU position, the controller replaces the LRU line among the configured ways for
the core. The way-based partitioning mechanism is used as a baseline. On top of the
way-based partitioning, we implement the proposed deterministic memory-aware replacement
and cleanup algorithms (Section 4.3).

5 https://github.com/farzadfch/gem5-cache-partitioning
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Table 2 Simulator configuration.

Core Quad-core, out-of-order, 2 GHz, IQ: 96, ROB: 128, LSQ: 48/48
L1-I/D caches Private 16/16 KiB (2-way), MSHRs: 2(I)/6(D)

L2 cache Shared 2 MiB (16-way), LRU, MSHRs: 56, hit latency: 12
DRAM Controller Read buffer: 64, write buffer: 64, open-adaptive page policy
DRAM module LPDDR2@533MHz, 1 rank, 8 banks

DRAM Controller. Gem5’s memory controller subsystem supports a standard FR-FCFS
algorithm [18]. We have extended the memory controller subsystem to support the two-level
scheduling algorithm described in [55]. The two-level scheduler is modified to leverage the
DM bit passed to the memory controller as part of each memory request bus transaction.
Also, to prevent starvation of best-effort memory requests, we limit the maximum consecutive
deterministic memory request processing to 30 when one or more best-effort memory requests
are in the memory controller’s queue.

7 Evaluation

In this section, we present evaluation results to support the feasibility and effectiveness of
the proposed deterministic memory-aware system design.

System Setup. For OS, we use a modified Linux kernel 3.13, which implements the modi-
fications explained in Section 6.2 to support the deterministic memory abstraction. For
hardware, we use a modified gem5 full system simulator, which implements the proposed
deterministic memory support described in Section 6.3. The simulator is configured as a
quad-core out-of-order processor (O3CPU model [16]) with per-core private L1 I/D caches, a
shared L2 cache, and a shared DRAM. The baseline architecture parameters are shown in
Table 2. We use the mlockall system call to allocate all necessary pages of each real-time
application at the beginning so as to avoid page faults during the rest of program’s execution.
In addition, we enabled the kernel configuration option NO_HZ_FULL to reduce unnecessary
scheduler-tick interrupts.

7.1 Real-Time Benchmark Characteristics

We use a set of EEMBC [14] automotive and SD-VBS [57] vision benchmarks (input: sim)
as real-time workloads. We profile each benchmark, using the gem5 simulator, to better
understand memory characteristics of the benchmarks.

Figure 7a shows the ratio between the number of accessed pages within the main loop
and the number of all accessed pages of each benchmark; the pages accessed in the loop are
denoted as critical pages. To further analyze the characteristics of the critical pages, we
profiled L1 cache misses of each critical page to see which pages contribute most to the overall
L1 cache misses. Critical(T98) shows the ratio of “top” critical pages which contribute to
98% of the L1 cache misses. The same is for Critical(T90) except that 90% of the L1 cache
misses are considered. As can be seen in the figure, only 38% of all pages, on average, are
critical pages, and this number can be as low as 6% (svm.) This means that the rest of the
pages are accessed during the initialization and other non-time-critical procedures. This ratio
is further reduced to 23% of the touched pages if 90% of L1 cache misses are considered.
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Figure 7 Space and temporal characteristics of application memory pages. Critical pages refer to
the touched pages within the main loop of each benchmark.

Note that in our system setup, the private L1 cache misses are directed to the shared
L2 cache, which is shared by all cores. Thus, those pages that show high L1 misses likely
contribute most to the WCET of the application because they can suffer from high inter-core
interference due to contention at the shared L2 cache and/or the shared DRAM. Figure 7b
shows how we determine top critical pages for the svm benchmark. We rank all pages based
on the number of L1 cache misses of each page. In case of svm, the top 26 and 16 pages
account for 98% and 90% of misses of all critical pages. These pages are 4% and 2% of all
the touched pages, respectively, as shown in Figure 7a. This suggests even among the critical
pages, certain pages contribute more to WCET than the rest of the critical pages.

The results show that selective, fine-grained application of deterministic memory can
significantly reduce WCETs while minimizing resource waste.

7.2 Effects of Deterministic Memory-Aware Cache
In this experiment, we study the effectiveness of the proposed deterministic memory-aware
cache. The basic experimental setup is that we run a real-time task on Core 3 and three
instances of a memory intensive synthetic benchmark (Bandwidth with write memory access
pattern from the IsolBench suite [56]) as best-effort co-runners on Core 0 through 2. Note that
the working-set size of the best-effort co-runners is chosen so that the sum of all co-runners
is equal to the size of the entire L2 cache. This will increase the likelihood to evict the cache
lines of the real-time task if its cache lines are not protected.

We evaluate the system with 5 different configurations: NoP, WP, DM(A), DM(T98)
and DM(T90). In NoP, the L2 cache is shared among all cores without any restrictions. In
WP, the L2 cache is partitioned using the standard way-based partitioning method, where
4 dedicated cache ways are given to each core. In DM(A), the entire address space of the
real-time task is marked as deterministic memory, while in DM(T98) and DM(90), only the
pages which account for 98% and 90%of the L1 misses, respectively, of the task’s critical
pages are marked as deterministic. In all DM configurations, each core is given 1/4 of the
cache ways for the core’s deterministic memory.

Note that, in this experiment, the results for DM(A) will be similar to that of PRETI [32],
because, in both systems, a dedicated cache space is guaranteed to a real-time task’s entire
memory space, while the presence of memory-intensive best-effort co-runners would prevent
the real-time task under PRETI from utilizing additional cache space.
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Figure 8 L2 hit-rate and cache space usage (deterministic memory only) of real-time tasks.

Effects on Real-Time Tasks. Figure 8a compares the L2 hit rates of real-time tasks for each
system configuration. First, in NoP, the L2 hit rates are low (e.g., 54% for sift) because the
cache lines of the real-time benchmarks are evicted by the co-running Bandwidth benchmarks.
In WP, on the other hand, all benchmarks show close to 100% hit rates. This is because the
dedicated private L2 cache space (4 out of 16 cache ways = 512KB) is sufficient to hold the
working-sets of the real-time benchmarks, which cannot be evicted by the co-runners. The
hit rates are also close to 100% in DM(A) because the co-runners are not allowed to evict
any of the cache lines allocated for the real-time tasks as their entire memory spaces (thus
their cache-lines in the L2) are marked as deterministic memory. In DM(T98) and DM(90),
not all pages are marked as deterministic memory. As the result, the co-runners can evict
some of the best-effort cache lines of the real-time tasks and this in turn results in slight
reduction in the hit rates.

Next, for all DM configurations, we measure the fraction of deterministic memory cache-
lines in a real-time task’s cache partition by checking DM bit in the cache lines in the
instrumented gem5 simulator. Figure 8b shows the percentage of the cache lines allocated by
the deterministic memory cache lines. On average, only 49%, 27%, and 21% of cache-lines
are deterministic memory cache-lines for DM(A), DM(T98), and DM(T90), respectively.
Note that when the conventional way partitioning is used (in WP), the unused cache space
in the private cache partition is essentially wasted as no other task can utilize it. In the
deterministic memory-aware cache, on the other hand, the best-effort tasks can use the
non-DM cache lines in the cache partition. Thus, the hit rate of the best-effort tasks can be
improved as more cache space will be available to them. This effect will be shown in the
following experiment.

Effects on Best-Effort Tasks. To study the effect of deterministic memory-aware cache
on realistic best-effort tasks (as oppose the synthetic ones used above), we designed an
experiment with the bzip2 benchmark from SPEC2006 as the best-effort task running on
Core 0, and 3 instances of a real-time task running on Core 1 through 3. We chose bzip2
based on the following selection criteria: 1) It must frequently access the shared cache; 2)
It must be sensitive to extra cache space (i.e. the hit rate shall be improved if more cache
space is given to the benchmark). The bzip2 meet both requirements according to a memory
characterization study [20] by Intel, which is also confirmed in our simulation setup.

Figure 9 shows the results. Inset (a) shows the percentage of cache space used by bzip2
for each real-time task pairing, while inset (b) shows its hit rates. Note that in WP, bzip2
can only use 25% of cache space (512kB out of 2MB), as this is the size of its private cache
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Figure 9 Cache usage and hit rate impact of DM-aware cache to the best-effort task (bzip2 ).

partition. On the other hand, in a deterministic memory-aware cache, bzip2 can allocate
more lines from the private partitions of the other cores which are not marked as deterministic
memory cache lines. Consequently, the average hit rate is improved by 39%, 49%, and 50%
in DM(A), DM(T98), and DM(T90), respectively, compared with the rate in WP. Note
also that more cache lines are allocated by bzip2 in DM(T98) and DM(T90) compared to
DM(A) because more best-effort cache lines can be available for bzip2 in these configurations.
The best-effort cache lines of each core’s cache partition are shared among all of the cores,
including the core that runs bzip2 and those that run the real-time tasks. We include the
result for NoP to show how much cache space bzip2 can allocate if there is no restriction.
These numbers can also be seen as the upper-bound cache space that bzip2 can allocate
in the deterministic memory-aware cache. By comparing the cache occupancy in DM(90)
and NoP (i.e., “free-for-all” sharing), we see that using deterministic memory-aware cache,
bzip2 ’s cache space occupancy is close to what we see in NoP.

7.3 Effects of Deterministic Memory-Aware DRAM Controller

We evaluate the deterministic memory-aware DRAM controller, using SD-VBS benchmark
suite (input: CIF). Note that we increase the input size of the SD-VBS benchmarks to ensure
that the working-sets of the benchmarks do not fit in the L2 cache and the memory accesses
have to go to the main memory. On the other hand, because the EEMBC benchmarks
are cache-fitting and their working-set size cannot be adjusted, we remove them from this
experiment. We then re-profile the SD-VBS benchmark with the new inputs, following the
method described in 7.1, to determine the critical pages.

The basic setup is the same as in 7.2: We schedule a real-time task on Core 0, while
co-schedule three instances of the Bandwidth benchmark as co-runners on Core 1 to 3. The
working-set size of the Bandwidth benchmark is configured to be 2x larger than the L2
cache size to induce lots of competing DRAM accesses. We repeat the experiment in the
following configurations. In DM(A), DM(T98), and DM(T90), the cache configurations are
the same as in 7.2. In addition, each core is given a private DRAM bank for deterministic
memory in the DM configurations. The remaining four DRAM banks are shared among the
cores for best-effort memory. With the DM-aware OS allocator support described in 4.4, the
deterministic memory blocks are allocated on the per-core private banks, and the best-effort
regions are allocated on the shared banks. In BA and FR-FCFS, the FR-FCFS algorithm is
used to schedule the memory accesses to the DRAM, and no OS-level DRAM bank control
is applied (i.e., default buddy allocator).
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Figure 10 Performance and deterministic memory space impacts of DM-aware DRAM.

Figure 10a shows the normalized slowdown results for different system configurations.
Note first that real-time tasks can suffer a significant slowdown in BA&FR-FCFS (by up
to 5.7X), while all DM-aware configurations suffer much fewer slowdowns thanks to the
two-level scheduling algorithm of our DM-aware memory controller design. Figure 10b shows
the ratio between the number pages marked as deterministic and all the pages touched by
each real-time task. In DM(A), all the pages of each benchmark are marked as deterministic
memory, while in DM(T90) only 51% of pages, on average, are marked as deterministic
as more pages are allocated in best-effort DRAM banks. This space saving is achieved at
the cost of slight execution time increase in real-time benchmarks. These results show how
the number of deterministic pages can be used as a parameter to make a trade-off between
resource utilization and isolation performance.

8 Related Work

Time-predictable hardware architecture. Time-predictable hardware architecture has long
been studied in the real-time community. Edwards and Lee proposed the PRET architecture,
which promoted the idea of making time as a first-class citizen in computer architecture [13].
A PRET machine [37] provides hardware-based isolation–featuring a thread interleaved
pipeline, scratchpad memory [6] and a bank-privatized PRET DRAM controller [45]–to
support strong timing predictability and repeatability. FlexPRET improves the efficiency
of PRET with a flexible hardware thread scheduler that guarantees hardware isolation of
hard real-time threads while allowing soft real-time threads to efficiently utilize the processor
pipeline [67]. T-CREST [48], MERASA [54] and parMERASA [53] projects also have
investigated time-predictability focused core architecture, cache, cache coherence protocol,
system-bus, and DRAM controller designs [49, 23, 47, 21, 42, 43, 33, 34]. There are also
many other proposals, which focus on improving timing predictability of each individual
shared hardware component–such as time predictable shared caches [61, 62, 32], hybrid
SPM-cache architecture [65], and predictable DRAM controllers [60, 17, 29, 12]. In most
proposals, the basic approach has been to provide space and time partitioning of hardware
resources to each critical real-time task or the cores that are designated to execute such
tasks. Thus, CPU-centric abstractions such as task priority and core/task id are commonly
used information sources, which are utilized by these hardware proposals in managing
the hardware resources. However, when it comes to managing memory related hardware
resources, these CPU-centric abstractions can be too coarse-grained, which make efficient
resource management difficult. This is because neither all tasks are time-critical (and thus
requires hardware isolation support), nor all memory blocks of a critical task are necessarily
time-critical, as we have shown in Section 7.1.
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Memory address based real-time architecture designs. The basic idea of using physical
memory address in hardware-level resource management has been explored in several prior
works. Kumar et al. proposed a criticality-aware cache design, which uses a number of
hardware range registers to declare critical memory regions. Its Least Critical (LC) cache
replacement algorithm then prioritize the cache-lines of critical memory regions over others
to ensure predictable cache performance for a single-core, fixed-priority preemptive scheduled
system setup [30]. Kim et al. similarly declare critical memory regions using a set of
hardware range registers to distinguish memory-criticality at the DRAM controller level [26].
While our approach is also based on memory address based criticality determination, our
deterministic memory abstraction is designed to be utilized by the entire memory hierarchy
whereas the prior works focused on a single individual hardware resource management.
Furthermore, a key contribution of our approach is that, in our approach, memory criticality
is determined at the page granularity by utilizing memory management unit (MMU), which
enables more flexible and fine-grained (page-granularity) memory criticality control. In
contrast, the prior works may be limited by the number of available hardware range registers
in declaring critical memory regions. As such, our MMU-based approach is compatible with
high-performance processors and general-purpose OSs such as Linux, whereas the prior works
primarily focus on MMU-less processors and RTOSs. We would like to note, however, that
our MMU-based deterministic memory abstraction can be integrated into and leveraged by
these prior works. The deterministic memory abstraction provides a general framework for
the entire memory-hierarchy and thus is complementary to the prior works.

OS-level shared resource management. In many OS-level resource management approa-
ches, MMU has been a vital hardware component that the OS leverages for implementing
certain memory management policies for real-time systems. Page-coloring is a prime example
that has been used to partition shared cache [35, 36, 66, 50, 11, 59, 39, 25], DRAM banks [63,
38, 51] and even TLB [41] by selecting certain physical addresses (cache color, DRAM bank,
etc.) in allocating pages. However, in most OS-level resource management approaches,
shared resources are allocated at the granularity of task or core, which is too coarse-grained
and therefore can result in resource under-utilization problems. Furthermore, these OS-
level resource management approaches have fundamental limitations because they generally
cannot directly influence important resource allocation and scheduling decisions done by
the underlying hardware due to the lack of a generalized abstraction that allows such cross-
layer communication. We address these limitations by proposing the deterministic memory
abstraction, which enables close collaboration between the OS and the underlying hardware
components in the memory hierarchy to achieve efficient and predictable resource allocation
and scheduling. To the best of our knowledge, we are first to propose to encode each individual
memory page’s time criticality in the page’s page table entry, which is then passed through
the entire memory hierarchy to enable system-wide, end-to-end memory-criticality-aware
resource management.

9 Conclusion and Future Work

In this paper, we proposed a new memory abstraction, which we call Deterministic Memory,
for predictable and efficient resource management in multicore. We define deterministic
memory as a special memory space where the platform–OS and hardware architecture–
guarantees small and tightly bounded worst-case access timing.
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We presented OS and architecture extensions to efficiently support the deterministic
memory abstraction. In particular, we presented a deterministic memory-aware cache design
that leverages the abstraction to improve the efficiency of shared cache without losing isolation
benefits of traditional way-based cache partitioning. In addition, we proposed a deterministic
memory-aware DRAM controller which effectively reduces the necessary core-private DRAM
bank space while still providing good isolation performance. We implemented the proposed
OS extension on a real operating system (Linux) and implemented the proposed architecture
extensions on a cycle-accurate full-system simulator (gem5).

Evaluation results show the feasibility and effectiveness of deterministic memory based
cross-layer resource management. Concretely, by using deterministic memory, we achieved
the same degree of strong isolation while using 49% less cache space, on average, than the
conventional way-based cache partitioning method. Similarly, we were able to reduce required
private DRAM bank space while achieving comparable isolation performance for DRAM
intensive real-time applications, compared to a baseline real-time DRAM controller.

We are currently working on implementing the proposed architecture extensions on a
FPGA using an open-source RISC-V based multicore platform [52]. We also plan to develop
methodologies and tools to identify “optimal” deterministic memory blocks that maximize
the overall schedulability.
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Abstract
In multicore architectures, there is potential for contention between cores when accessing shared
resources, such as system memory. Such contention scenarios are challenging to accurately ana-
lyse, from a worst-case timing perspective. One way of making memory contention in multicores
more amenable to timing analysis is the use of memory regulation mechanisms. It restricts the
number of accesses performed by any given core over time by using periodically replenished per-
core budgets. Typically, this assumes that all cores access memory via a single shared memory
controller. However, ever-increasing bandwidth requirements have brought about architectures
with multiple memory controllers. These control accesses to different memory regions and are
potentially shared among all cores. While this presents an opportunity to satisfy bandwidth
requirements, existing analysis designed for a single memory controller are no longer safe.

This work formulates a worst-case memory stall analysis for a memory-regulated multicore
with two memory controllers. This stall analysis can be integrated into the schedulability analysis
of systems under fixed-priority partitioned scheduling. Five heuristics for assigning tasks and
memory budgets to cores in a stall-cognisant manner are also proposed. We experimentally
quantify the cost in terms of extra stall for letting all cores benefit from the memory space offered
by both controllers, and also evaluate the five heuristics for different system characteristics.
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1 Introduction

The strong trend towards increasing integration in hardware for embedded real-time systems
has led to multicores becoming mainstream platforms of choice for such systems. Multicores
have significant advantages in terms of computing power, energy usage and weight over
single-cores. Yet, one issue with multicores is that worst-case timing analysis becomes more
complicated. In particular, the fact that multiple cores contend for the same shared system
resources (buses, caches, memory) must be accounted for [8].

Focusing specifically on the problem of main memory contention, we note various research
efforts [21, 22, 15, 10, 5, 11, 13, 20, 14, 3] that employ memory regulation to make the memory
access patterns of the different cores more amenable to worst-case timing analysis. Under
memory regulation schemes, each core gets an associated periodically-replenished memory
access budget. When a core attempts to issue more memory accesses than its budget, it gets
temporarily stalled, until the next replenishment.

However, engineering practice forges ahead and analysis has to catch up. In recent years,
in response to memory bandwidth often becoming a performance bottleneck, multicore chips
that integrate, not one, but two memory controllers, have become commercially available.
In such platforms, both controllers are accessible by all cores, with little to no difference
in latency. Examples include various multicore processors from the NXP QorIQ series [16],
ranging from the P5020 with 2 cores to the P4080 with 8 cores. For existing approaches
to apply to systems with multiple controllers, one could statically map cores to memory
controllers and apply the analyses to each partition independently. This simple approach
efficiently reduces contention between cores. Still, it may be hard to find a partition such
that no tasks depend on data from the memory space of the other memory controller. Core-
to-controller partitioning also reduces flexibility in bandwidth allocation, as a partition’s
bandwidth requirements must be met by just the associated memory controller. In cases
when no such partitions can be found, there are currently no good solutions, because existing
approaches can be unsafe when applied to platforms with two controllers. The reason is that
the worst-case memory access pattern for each controller in isolation will not necessarily lead
to the worst-case stall, as we demonstrate in Section 5. This reality motivated the present
work, whose main contributions are the following:

First, we show via counter-examples that existing techniques for upper-bounding the
memory stall, conceived for memory-regulated architectures with a single memory controller,
are not necessarily safe in the presence of multiple controllers. Our second and more important
contribution is new worst-case memory stall analysis for architectures with two memory
controllers, shared by all cores. This analysis, which presumes fixed task-to-core partitioning
and fixed-priority scheduling, can then be integrated to the schedulability analysis for the
system. Finally, we explore five different stall-cognisant heuristics for combined memory-
bandwidth-to-core assignment and task-to-core assignment and evaluate their performance
in terms of schedulability via experiments with synthetic task sets capturing different system
characteristics. These experiments also highlight the performance implications of having
fully shared memory controllers vs. partitioning the controllers to different cores, in cases
when the latter arrangement would be viable from the application perspective (i.e., no data
sharing across memory domains).

https://dx.doi.org/10.4230/DARTS.4.2.5
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Next, in Section 2, we discuss related work. Section 3 defines our system model and
Section 4 discusses some relevant existing results from the single-controller case. Section 5
contains our analysis. Section 6 describes five proposed stall-cognisant task-to-core assignment
heuristics. Section 7 provides an experimental evaluation of our analysis and heuristics in
terms of theoretical schedulability using synthetic task sets. Section 8 concludes the paper.

2 Related work

Several software-based approaches for mitigating memory interference in multi-core plat-
forms [21, 22, 15, 10, 5, 11, 3] have been proposed in recent years. These approaches consider
a periodic server implemented in software that manages the memory budgets of the cores.
This is combined with run-time monitoring through performance counters that keep track of
the number of memory accesses and with an enforcement mechanism that suspends tasks
whenever they exhaust their budget. Our work is similar to these, as it exploits such a
memory throttling mechanism to enforce budgets on memory requests.

The memory regulation techniques used to mitigate the interference on shared memory
controllers introduce new stalls and the existing analyses are unsafe unless adapted to
account for them. Some efforts in this direction exist for partitioned fixed-priority schedul-
ing [21, 13] and hierarchical scheduling in [5]. Mancuso et al. [13], under their Single-Core
Equivalence framework [18], addressed the problem of fixed-priority partitioned schedulability
on a multicore. They employ the periodic software-based memory regulation mechanism
MemGuard [22] to ensure that each core gets an equal share of memory bandwidth in each
regulation interval (or period) and stalls until the end of the regulation period once the
budget has been depleted. Such stalls, resulting from the memory regulation together with
contention stalls are integrated into the schedulability analysis in [13].

Even if equal sharing of memory bandwidth is simple and facilitates porting applications
from a single-core to multi-core platforms (by making the analysis akin to that for a single-
core), it is inefficient when the memory requirements of the applications on different cores are
diverse. Yao et al. [20], and Pellizzoni and Yun [17] generalise the arrangement along with
the analysis to uneven memory budgets per core. The former approach considers round-robin
memory arbitration, whereas the latter proposes a new analysis for First-Ready First Come
First Served memory scheduling. Recently, Mancuso et al. [14] improved their memory stall
analysis by considering the exact memory bandwidth distribution on other cores. However,
all these approaches are designed to work with a single memory controller and are unsafe
with more than one memory controller. The reason is that the worst-case memory access
pattern for each controller in isolation no longer necessarily leads to the worst-case stall, as
we show in Section 5. In contrast, our work provides a worst-case memory stall analysis for a
memory-regulated multicore platform with two memory controllers and incorporates this stall
analysis in the schedulability analysis for fixed-priority partitioned preemptive scheduling.
We also present five memory bandwidth allocation and task-to-core assignment heuristics.

To summarise, existing works on memory regulation rely on an assumption of a single
memory controller. Here, we expand the state-of-the-art by proposing memory stall analysis,
when each core can access two controllers, facilitating data sharing among applications
and allowing more flexible use of bandwidth. We allow uneven distribution of the memory
bandwidth of each controller to available cores. Each core is scheduled under fixed-priority
preemptive scheduling, assuming a round-robin memory arbitration policy on both controllers.
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3 System Model

We consider a platform with m identical cores (P1 to Pm) and 2 memory controllers on the
same chip, both uniformly accessible by all cores. The sets of memory regions accessible by
the two controllers are non-overlapping. Examples of platforms with 2-8 identical cores and
two memory controllers include NXP QorIQ P-series P4040, P4080, P5020 and P5040 [16].

Assume a set of n sporadic tasks, τ1 to τn. Each task has a minimum interarrival time
Ti, a deadline Di ≤ Ti, and a worst-case execution time (WCET) of Ci. Like Yao et al. [20],
we assume that CPU computation and memory access do not overlap in time. Each task
can access memory via both controllers. Therefore, Ci = Cei + Cm1

i + Cm2
i , where Cei is the

worst-case CPU computation time and Cm1
i and Cm2

i are the worst-case total memory access
times of a task via each respective controller in isolation.

The tasks are partitioned to the cores (no migration) and fixed-priority scheduling is used.
For the memory controllers and their interconnects, we assume a round-robin policy [22, 20].
The last-level cache (furthest from the cores) is either private or partitioned to each core. Like
Yao et al. [20], we assume that access to main memory is regulated, e.g., by Memguard [22]
or in hardware. We also require performance monitoring counters to count the number
of memory accesses issued to each controller from each core. As in [20], we assume each
memory access takes a constant time L. This allows us to specify P and Cei , Cm1

i and Cm2
i

as multiples of L. Our model is agnostic w.r.t. the points in time when memory accesses may
occur within the activation of a task and hence imposes no particular programming model.

Memory accesses are regulated as follows. Each core i has a memory access budget Q1i
for memory controller 1, which is the maximum allowed memory access time (measured in
multiples of L) via that controller, within a regulation period of length P . Likewise, it has
a budget Q2i for controller 2. These budgets are set at design time and may be different.
A core i that consumes its memory access budget for a given memory controller within a
regulation period is stalled until the start of the next regulation period1. Regulation periods
on all cores are synchronised. The memory bandwidth share of core i on controller 1 is
b1i = Q1i

P . Similarly for b2i and controller 2. By design,
∑
i b1i ≤ 1 and

∑
i b2i ≤ 1, i.e., the

bandwidth of any controller is not overcommitted.

4 Relevant existing results from the single-controller case

We now summarise some existing results from [20], for a similar, albeit single-controller,
system, in order to later show why those do not apply, and new analysis is needed.

The technique in [20] calculates a worst-case stall term for each task, which is added to
the right hand side of the standard worst-case response time (WCRT) recurrence relation
for fixed priorities. For ease of presentation, the authors assume that there is a single task
running on the core under consideration. Later on, for the case when many tasks are assigned
to a core, they explain how to equivalently model the considered task τi and all higher-priority
tasks as a single synthetic task, in order to apply their stall analysis and derive the worst-case
stall term for τi. Below, we similarly assume a single task per core.

A memory request may stall either (i) because of requests from other cores, contending
for the memory controller simultaneously (a case of contention stall) or (ii) because the
issuing core has exhausted its budget for the current regulation period (a regulation stall).

1 On practical grounds, we assume that a core is stalled immediately after the Qth memory access in a
regulation period via the respective controller is served. Yao et al [20], more generously, assume that it
is stalled immediately before attempting a (Q+ 1)th access within the same regulation period.
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Yao et al. identify worst-case patterns for memory accesses and computation within a
single regulation period, characterised by maximum stall with the fewest memory accesses.
Next, they use these patterns as main “building blocks” for the worst-case pattern for the
entire task activation, over multiple regulation periods. In more detail:

Case bi ≤ 1/m (regulation dominant). If bi ≤ 1/m, i.e., if the task’s bandwidth share
is “fair” at most, then a task incurs worst-case stall when all its memory accesses are
clustered at the start of its activation, before any computation. Another pessimistic
assumption is that the task is released just after a regulation stall, so it waits for (P −Qi)
until the next regulation period. The task will incur a stall of (P −Qi) within each of the
next bC

m
i

Q c regulation periods; whether this is entirely due to a regulation stall or partially
also due to contention from other cores is irrelevant. Afterwards, any remaining memory
accesses (which are too few to trigger a regulation stall), can each incur a worst-case
contention stall of (m-1), i.e., one contending access from each other core due to round
robin arbitration.

Case bi > 1/m (contention dominant). In this case, the smallest number of memory ac-
cesses per period a core must issue to get the maximum stall is RBS def= Pi−Qi

m−1 , and
occurs when the remaining budget is shared evenly among the other cores. From the
assumption of the case, bi>1/m, it follows that RBS < Qi. Therefore, the worst-case
pattern for one regulation period involves cmi = RBS accesses, each suffering a maximum
contention stall of (m− 1), for a total stall of P −Qi. This leaves Qi −RBS time units
not filled by memory accesses or respective stalls. These are filled with computation;
if memory accesses were added instead, they would incur no stall. To bound the stall
for the entire task activation, this pattern is applied to as many regulation periods as
possible. Two subcases exist: either memory accesses or computation will run out first.

Due to space constraints, we refer to [20] for details. Meanwhile, some insights driving
Yao’s analysis, for single-controller systems, are codified via the following lemmas from [20]:

I Lemma 1. Considering the stall of a core due to memory regulation alone, the worst-case
memory access pattern of one task is when all accesses within the task are clustered, and the
stall is upper bounded by P −Qi for each regulation period P .

I Lemma 2. If the memory is not overloaded and the regulation periods are the same and
synchronized, the stall due to inter-core memory contention alone on each core i with assigned
budget Qi is upper-bounded by P −Qi for every regulation period P .

I Lemma 3. Considering the contention stall alone, the maximum stall for core i with
budget Qi is obtained when the remaining budget P −Qi is evenly distributed among all other
cores and they generate the maximum amount of accesses.

5 Analysis

In this section, we formulate the main contribution of this paper: a stall analysis for multicores
with two memory controllers, which leverages on Yao et al [20] stall and schedulability analysis
for multicores with a single memory controller. First, we look at Lemmas 1 to 3 and Yao’s
analysis in general, and examine what holds over from [20] and what does not. For readability,
we omit the core (task) index, since it is implied. Table 1 summarizes the symbols used.
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Table 1 Symbols used in the analysis.

Q1, Q2 memory budget on controllers 1 and 2, respectively
Cm1, Cm2 maximum number of memory accesses via controllers 1 and 2, respectively
Ce worst-case computation time
P regulation period
m number of cores
b1, b2 core memory bandwidth shared on controllers 1 and 2, respectively
RBS1, RBS2 remaining budget share on controllers 1 and 2, respectively
cm1∗, cm2∗ worst-case number of accesses per period in contention-dominant case
K1∗ number of regulation periods of phase 1 in contention-dominant case
Ĉe, Ĉm1, Ĉm2 task computation parameters after phase 1 (in contention-dominant case)
∆ρ∗ worst-case reduction in regulation stalls w.r.t. maximum regulation stalls

in the third case (regulation is dominant only for one controller)
∆Ce additional “computation” added to contention-only phase by reducing the

number of regulation stalls by 1
∆Cm2∗

c additional number of contention stalls required when moving ∆Ce to en-
sure that the total stall is larger with one less regulation stall on controller 1

∆Cm2
c (max) maximum number of additional contention stalls obtained by moving ∆Ce

to the contention-only phase
∆Cm2

c (min) minimum number of additional contention stalls obtained by moving ∆Ce

to the contention-only phase
rm = Cm2

Cm1 ratio of memory accesses to each controller
Cm2

c̄ number of memory accesses via controller 2 without contention
single() worst-case single controller stall according to Yao’s analysis, ignoring the

regulation stall at the beginning of the execution

5.1 What holds over from Yao’s analysis and what does not
When we have multiple controllers, with an assigned memory budget Qj for each, Lemma 1
can be generalized as follows:

I Lemma 4. Considering the stall of a core due to memory regulation alone on controller
j, with budget Qj, the worst-case memory access pattern of one task is when all accesses
via controller j within the task are clustered, and the stall is upper bounded by P −Qj for
each regulation period P .

A corollary of this lemma is that the regulation stall on controller j is maximum when there
are no memory accesses to a second controller in that period. Note also that a core can only
regulation-stall on at most one memory controller in a given regulation period.

With multiple controllers Lemmas 2 and 3 apply to each controller separately. Furthermore,
because a core may access memory via multiple controllers in a single regulation period, a
consequence of Lemma 2 is the following:

I Lemma 5. If the memory is not overloaded and the regulation periods are the same and
synchronized, the stall due to inter-core memory contention alone on each core i with assigned
budget Qji on controller j is upper-bounded by min

(∑
j(P −Qji),

P
m · (m− 1)

)
for every

regulation period P .

When there are multiple memory controllers, the maximum contention stall may occur when
there are accesses via more than one controller. The first argument to the min operator in
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Cm1 = Cm2 = 12 Q1 = 6 (RBS1 = 2) Q2 = 6 (RBS2 = 2) m = 4 P = 12

24
i)

ii)
0 12

0 12 36 48
Stall = 24

24 36 48
Stall = 72

96

contention stall access via controller 1 access via controller 2

Figure 1 As shown in this example, the worst-case total stall is when there are memory accesses
via more than one controller in the same regulation period.

the above expression sums up the contention stall from each controller according to Lemma 2.
The second argument expresses the fact that no more than P/m accesses (irrespective via
which controller) can all suffer the worst-case per-access contention stall of (m− 1) because
of round robin arbitration. Both terms independently bound the contention stall.

When there are multiple shared controllers and we try to upper-bound the stall over
multiple regulation periods, Yao’s analysis may not be safe, i.e., it may underestimate the
worst-case stall, as illustrated by the example of Figure 1. Execution i) has the worst-case
stall, according to Yao’s stall analysis, when in a regulation period all memory accesses are
via the same controller. In each period, the first two memory accesses suffer the maximum
stall. However the remaining 4 memory accesses suffer no stall, because the maximum stall
in every regulation period is 6, P −Qi, and it occurs in the first two memory accesses of the
respective regulation period. Execution ii) shows the worst-case stall when there are accesses
via both controllers in the same period. In each period, we have 2 memory accesses via each
controller and each of these accesses suffers the maximum contention stall, m− 1. This is
because the contention stall on accesses via one controller does not affect the contention stall
on accesses via the other controller. Thus, in execution ii) all memory accesses suffer the
maximum contention stall, whereas in execution i) only a third does.

5.2 Two-controller Task Stall Analysis

Having shown the need for a new analysis, we consider several cases depending on the values
of b1 and b2. Some entail sub-cases. More specifically, we consider 3 cases:
1. b1 ≤ 1

m ∧ b2 ≤
1
m

2. b1 > 1
m ∧ b2 >

1
m

3. remaining cases, i.e. (b1 ≤ 1
m ∧ b2 >

1
m ) ∨ (b1 > 1

m ∧ b2 ≤
1
m )

5.2.1 Case 1: b1 ≤ 1
m
∧ b2 ≤ 1

m

In this case, for each controller, the worst case occurs when there is a regulation stall, as
shown in [20]. By Lemma 4, the following execution suffers the worst-case stall. In a first
phase, there is the longest sequence of consecutive periods with regulation stalls on controller
1, followed by a second phase consisting of the longest sequence of consecutive periods with
regulation stalls on controller 2. Finally, there is a third phase with the remaining memory
accesses via each controller, Cmi mod Qi, that suffer the maximum contention stall per
memory access, m − 1, and any computation. Because in each of the two first phases all
memory accesses are via a single controller, we can use Yao’s stall analysis to compute an
upper bound on the stall in each of these phases. The upper bound of the total stall can
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then be computed by adding the upper bounds for each phase. I.e.:

Stall =single(Cm =
⌊
Cm1

Q1

⌋
·Q1, Ce = 0, Q = Q1, P = P,m = m)

+ single(Cm =
⌊
Cm2

Q2

⌋
·Q2, Ce = 0, Q = Q2, P = P,m = m)

+ (Cm1 mod Q1 + Cm2 mod Q2) · (m− 1) (1)

where single() is the stall based on Yao’s (single controller) stall analysis for the respective
set of parameter values [20].

5.2.2 Case 2: b1 > 1
m
∧ b2 > 1

m

In this case, according to Yao’s analysis, for each controller, the worst case occurs when there
is maximum contention stall in a regulation period with the minimum number of memory
accesses. However, as shown in Figure 1, in this case the worst-case stall may occur when
a task accesses memory via different controllers in the same regulation period. Therefore,
the worst-case memory access pattern of a task in this case has 3 phases, as illustrated in
Figure 2 i):
Phase 1. In this phase, every regulation period incurs the maximum contention stall. This

phase terminates when the task runs out of memory accesses via some controller, and
therefore cannot sustain the maximum contention stall any more. In Figure 2 i), this
phase spans the two first periods, and, in each period, there are RBS1 and RBS2 memory
accesses via the respective controller.

Phase 3. In this phase, all accesses are via a single controller. This phase may not exist,
if the task runs out of memory accesses via both controllers in the same regulation
period. In Figure 2 i), this is the 4th and last period and has memory accesses only via
controller 1.

Phase 2. This “middle” phase may also not exist, but if it exists, it has only one regulation
period. In this phase, we have memory accesses via both controllers, but either there are
not enough memory accesses via at least one of the controllers to ensure the maximum
contention stall in that period, or there is not enough execution to fill the complete period.
In Figure 2 i), this is the 3rd period, and has only one memory access via controller 2.

According to Lemma 5, there are two main cases for the maximum contention stall in a
regulation period. We analyse each of these cases separately.

5.2.2.1 Sub-case 1: (P −Q1) + (P −Q2) < P
m
· (m− 1)

In this case, the maximum contention stall in a regulation period occurs when a task
performs RBS1 memory accesses via controller 1 and RBS2 memory accesses via controller
2. Therefore, the maximum stall per period is (RBS1+RBS2)·(m−1) = (P−Q1)+(P−Q2).
Because the task is non preemptive and (P −Q1) + (P −Q2) < P

m · (m− 1), by the definition
of the sub-case, there is a “hole” of size P − (RBS1 +RBS2) ·m that must be filled with
execution, i.e. either computation or memory accesses. An execution in which computation
fills as many of these holes as possible suffers the maximum stall, because any additional
memory accesses in these periods suffer no contention stall. This will minimize the number of
memory accesses without contention in Phase 1, increasing the number of memory accesses
in latter phases, and possibly their stall. Similar reasoning can be applied to Phase 2, as well.
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Cm1 = 12 Cm2 = 5 Q1 = 18 (RBS1 = 2) Q2 = 18 (RBS2 = 2) m = 4 P = 24

48
i)

ii)

0 24 72 96
Ce = 36

contention stall access via controller 1 access via controller 2 computation

iii)

480 24 72 96
Ce = 20

iv)
480 24 72 96

Ce = 4

480 24 72 96
Ce = 8

Figure 2 Example execution patterns with worst case stall, for the contention-dominant case
when (P −Q1) + (P −Q2) < P

m
· (m− 1).

Figure 2 illustrates an execution pattern that leads to the worst-case stall, based on the
above observations. In execution i) there is enough computation to fill in the holes in Phases
1 (the first two periods) and 2. However, there is not enough computation to ensure that all
memory accesses suffer contention: in the 4th and last period, which belongs to Phase 3,
there are 4 memory accesses via controller 1 that do not suffer any contention. In execution
ii) there is not enough computation to fill the holes in Phase 2, and therefore, we have 6
memory accesses via controller 1 in Phase 2, the 3rd period, that do not suffer any contention,
and there is no 3rd Phase. In execution iii) there is no Phase 2, because all memory accesses
via controller 2 are used to fill the holes in Phase 1. Phase 3 consists only of a single memory
access via controller 1. Finally, in execution iv) there is not enough computation, and Phase
1, like Phase 2, has only one period, and there is no Phase 3.

It can be shown, by case analysis, that in any of these executions swapping any com-
putation or memory access in one regulation period with computation or memory accesses
in later regulation periods does not lead to an increase in the total stall, and therefore the
execution pattern shown suffers the maximum stall. The following stall analysis is based on
the execution pattern shown in Figure 2.

In order to reuse the analysis in other cases below, let cm1∗ and cm2∗ be the minimum
values of cm1 and cm2, respectively, that maximize the contention stall in a regulation period,
assuming that any holes are filled with computation. Note that by Lemma 5, it must be
cm1∗ ≤ RBS1 and cm2∗ ≤ RBS2. In this sub-case, they are RBS1 and RBS2, respectively.

In our analysis, we consider Phase 1 separately from the remaining phases, if any.

Phase 1 stall. In Phase 1, the contention stall in every regulation period is maximum and
equal to (cm1∗ + cm2∗) · (m− 1). The total stall in this phase is:

Stall1 = K1∗ · (cm1∗
+ cm2∗

) · (m− 1) (2)

where: K1∗ = min

(⌊
Cm1

cm1∗

⌋
,

⌊
Cm2

cm2∗

⌋
,

⌊
Ce + Cm1 + Cm2

P − (cm1∗ + cm2∗) · (m− 1)

⌋)
(3)

is the number of regulation periods in Phase 1. Indeed, to sustain maximum contention stall
in every regulation period of Phase 1, the task must have both:
1. Enough memory accesses via controller 1, i.e. K1∗ ≤

⌊
Cm1

cm1∗

⌋
.

2. Enough memory accesses via controller 2, i.e. K1∗ ≤
⌊
Cm2

cm2∗

⌋
.

3. Enough execution, since when a core is not stalled it must be either computing or accessing
memory, i.e. in every Phase 1 period a task must execute for P − (cm1∗ + cm2∗) · (m− 1).
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Therefore, K1∗ ≤
⌊

Ce+Cm1+Cm2

P−(cm1∗+cm2∗)·(m−1)

⌋
.

We use the minimum of these 3 values, because this is the largest possible number of periods
in Phase 1 and, as argued above, this leads to the worst-case stall.

Remaining stall. Without loss of generality, let
⌊
Cm1

cm1∗

⌋
≥
⌊
Cm2

cm2∗

⌋
, i.e. controller 2 runs out

of memory accesses entirely in Phase 2 the latest. (The other case is symmetric.)
To analyse the stall in Phases 2 and 3, if any, we consider the stall of each controller

separately. Since memory accesses via controller 2 occur only in Phase 2 (which has at most
one regulation period) and not in Phase 3, the contention stall on controller 2 can be upper
bounded by min(Ĉm2, RBS2) · (m− 1), where Ĉm2 is the number of memory accesses via
controller 2 in Phase 2, if any. Observe that these memory accesses and respective stall
can be taken into account as computation in the analysis of the stall of memory accesses
via controller 1, in Phase 2. Furthermore, in Phase 3, if any, all memory accesses are via
controller 1, only. Therefore, we apply Yao’s stall analysis to compute the stall of memory
accesses via controller 1 in Phases 2 and 3, if they exist.

So, to complete analysis of this case, we compute Ĉm2, as well as parameters for Yao’s
single controller stall analysis. Since in the latter we consider the remaining memory accesses
via controller 2, Ĉm2, and respective stall, if any, as computation, Ce is obtained by adding to
that value the remaining computation, Ĉe, i.e. the task computation that was not performed
in Phase 1. Finally, the value of Cm to use in the single controller analysis is the number of
memory accesses via controller 1 that were not performed in Phase 1, Ĉm1, if any. Thus,

Stall =Stall1 +min(Ĉm2, RBS2) · (m− 1)

+ single(Ce = Ĉm2 +min(Ĉm2, RBS2) · (m− 1) + Ĉe,

Cm = Ĉm1, Q = Q1, P = P,m = m) (4)

where Stall1 is given by (2). Next, we derive the expressions for Ĉe, Ĉm1 and Ĉm2.
In every Phase 1 period a task must execute, i.e. either compute or access memory, when

it is not stalled. Thus, in addition to the cm1∗ + cm2∗ memory accesses that lead to the
maximum stall in a regulation period, a task may have to execute for the remaining time:
P − (cm1∗ + cm2∗) ·m. As we have argued, the total stall will be maximum in executions
where computation fills as many of these “holes” as possible. Thus:

Ĉe = max
(
0, Ce −K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

))
(5)

If there is enough computation to fill all these holes, Ce ≥ K1∗ ·
(
P − (cm1∗ + cm2∗) ·m

)
,

then Ĉm1 = Cm1 −K1∗ · cm1∗ and Ĉm2 = Cm2 −K1∗ · cm2∗.
If there is not enough computation to fill all these holes, then the remaining holes,

K1∗ · (P − (cm1∗ + cm2∗) ·m) − Ce, will be filled with memory accesses. Thus, the total
number of memory accesses that will occur in the remaining phases, if any, is:

Ĉm = Cm1 + Cm2 −K1∗ · (cm1∗ + cm2)− (K1∗ · (P − (cm1∗ + cm2∗) ·m)− Ce)
= Cm1 + Cm2 − (K1∗ · (P − (cm1∗ + cm2∗) · (m− 1))− Ce) (6)

To determine Ĉm1 and Ĉm2, we distinguish two cases, depending on the value of K1∗.
If K1∗ =

⌊
Cm2

cm2∗

⌋(
≤
⌊
Cm1

cm1∗

⌋)
, then an execution that has at least min(Cm1 − K1∗ ·

cm1∗, RBS1, Ĉm) controller 1 memory accesses in the first period of the remaining phases,
will suffer maximum stall, because all these memory accesses suffer maximum contention
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stall. The first bound is the number of memory accesses not used to ensure maximum stall in
Phase 1, the second bound is the maximum number of accesses via controller 1 that can suffer
maximum stall in a regulation period, and the third bound is the number of memory accesses
in the remaining phases. This ensures that controller 2 runs out of memory accesses before
controller 1, as shown in Figure 2 iii). Thus the number of memory accesses via controller
2 in Phase 2 is Ĉm2 = min

(
Ĉm −min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm), Cm2 −K1∗ · cm2∗

)
i.e. the number of memory accesses via controller 2 in Phase 2 is the number of memory
accesses not used to fill the holes in Phase 1, discounted by the minimum number of memory
accesses via controller 1 that suffer maximum contention in Phase 2, and upper-bounded
by the maximum number of controller 2 memory accesses that are not necessary to ensure
maximum stall in Phase 1. Finally, Ĉm1 = Ĉm − Ĉm2.

If K1∗ =
⌊

Ce+Cm1+Cm2

P−(cm1∗+cm2∗)·(m−1)

⌋
, there is not enough execution to complete the K1∗+1st

regulation period, if any – the execution has at most one regulation period after Phase 1.
In this case, the total stall is maximum in executions where the number of contention

stalls in the last period is maximum. However, there cannot be more than RBS1 (RBS2)
contention stalls on controller 1 (2, respectively) in this period. Like in the previous sub-case,
an execution with at least min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm) controller 1 memory accesses
in Phase 2, guarantees that controller 2 runs out of memory accesses no later than controller
1, and suffers maximum stall, because all these memory accesses suffer maximum contention
stall. Thus, the expressions we derived for Ĉm1 and Ĉm2 in the previous sub-case, are also
valid for this one. Summarizing, we get the following expressions:

Ĉm2 =
{
Cm2 −K1∗ · cm2∗, if Ce ≥ K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

)
min(Ĉm −min(Cm1 −K1∗ · cm1∗, RBS1, Ĉm), Cm2 −K1∗ · cm2∗), o.w

(7)

Ĉm1 =
{
Cm1 −K1∗ · cm1∗ if Ce ≥ K1∗ ·

(
P − (cm1∗ + cm2∗) ·m

)
Ĉm − Ĉm2 otherwise

(8)

5.2.2.2 Sub-case 2: (P −Q1) + (P −Q2) ≥ P
m
· (m− 1)

In this case (by the definition of RBS), RBS1 + RBS2 ≥ P
m , and therefore it is possible

to guarantee maximum contention stall in a period, without any computation or memory
accesses without contention. To ensure the maximum stall, the memory accesses should be
distributed in a “balanced” way so that both controllers run out of memory access at more
or less the same time, thus ensuring that all Cm memory access suffers the maximum stall.

Let cm1∗ and cm2∗ be the number of memory accesses via controllers 1 and 2 per regulation
period that maximize the contention stall in a period. The goal is then to ensure:

Cm1

cm1∗ = Cm2

cm2∗ ⇒ cm2∗ = Cm2

Cm1 · c
m1∗ ⇒ cm2∗ = rmcm1∗,where: rm def= Cm2

Cm1 (9)

Without loss of generality, assume rm < 1; the other case is symmetrical. Then it must be:

cm1∗ + cm2∗ = P

m
⇒ (1 + rm) · cm1∗ = P

m
⇒ cm1∗ = P

m · (1 + rm) (10)

cm2∗ = rm · cm1∗ ⇒ cm2∗ = rm · P

m · (1 + rm) (11)

We now consider three sub-cases:
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Sub-case cm1∗ ≤ RBS1∧ cm2∗ ≥ 1. In this case it is possible to ensure that all memory
accesses suffer the maximum contention stall, even without any computation. Thus:

Stall = (Cm1 + Cm2) · (m− 1) (12)

Note that even though cm1∗ or cm2∗ may be fractional, these are average values. This means
that in an execution with worst-case stall, the number of memory accesses via any controller
may not be the same across all the regulation periods. However, there is an execution such
that cm1 + cm2 = P

m , in all but possibly the last regulation period, and cm1 ≤ RBS1 and
cm2 ≤ RBS2 in every regulation period.

Sub-case cm1∗ > RBS1. In this case, both controllers would run out of computation at
the same time only if the number of memory accesses via controller 1 exceeded RBS1, and
therefore there would be memory accesses without any contention. An execution following
the pattern illustrated in Figure 2, with cm1∗ = RBS1 and cm2∗ = min( Pm −RBS1, RBS2)
will have the worst-case stall, and therefore we can apply the analysis in Section 5.2.2.1.

Sub-case cm2∗ < 1. In this case, both controllers would run out of computation at the same
time only if there are some periods without memory accesses via controller 2. An execution
following the pattern illustrated in Figure 2, with cm2∗ = 1 and cm1∗ = min( Pm − 1, RBS1)
will have the worst-case stall, and therefore we can apply the analysis in Section 5.2.2.1.

5.2.3 Case 3: (b1 ≤ 1
m
∧ b2 > 1

m
) ∨ (b1 > 1

m
∧ b2 ≤ 1

m
)

In this case, executions with the maximum number of regulation stalls do not always lead
to the worst-case stall. This is shown in Figure 3. In execution i), all memory accesses
via controller 1 are clustered, causing two regulation stalls on controller 1, in the first two
regulation periods. All the memory accesses via controller 2, occur in the third regulation
period. Of these, only the first two suffer the maximum contention stall. The remainder suffer
no contention, because the memory budget of the remaining cores, P−Qi, is exhausted by the
stalls of the first 2 memory accesses. In execution ii), there is one memory access via controller
1 in each period, and thus there is no regulation stall on controller 1, but each of these
accesses suffers the maximum contention stall. Furthermore, in each of the first 3 periods,
there are 2 memory accesses via controller 2, each of which suffers the maximum contention
stall. Thus all memory accesses via both controllers suffer the maximum contention stall,
and the total stall for execution ii) exceeds that of execution i). This is counter-intuitive,
because the contention stall by accesses via controller 1 in execution ii), 12, is smaller than
the regulation stall, 20, caused by the same number of accesses via controller 1 in execution
i). However, this loss is more than compensated by the contention stall in execution ii) of
the 4 memory accesses via controller 2 that suffer no contention stall in execution i). I.e.,
although we are trading off a regulation stall, P −Qi, for contention stalls, presumably with
maximum contention stall, Qi · (m− 1) < P −Qi, we may also be adding stall to memory
accesses via the second controller that previously suffered no stall.

Depending on whether b1 ≤ 1
m ∧ b2 >

1
m or b1 > 1

m ∧ b2 ≤
1
m , there are two sub-cases.

Because they are symmetrical, we analyse only the former.

5.2.3.1 Sub-case 3.1: b1 ≤ 1
m
∧ b2 > 1

m

Figure 3 shows that the maximum number of regulation stalls does not always lead to the
worst-case stall. Furthermore, it can be shown that the total stall is maximum if there are
no memory accesses via the second controller in periods with a regulation stall. Thus, the
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Cm1 = 4 Cm2 = 6 Q1 = 2 Q2 = 6 (RBS2 = 2) m = 4 P = 12

24
i)

ii)
0 12

0 12 36
Stall = 26

24 36
Stall = 30

contention stall access via controller 1 access via controller 2

Figure 3 Maximizing the number of regulation stalls may not lead to the worst-case stall.

Algorithm 1 Compute stall for each task.
Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index for simplicity)
Output: Stall
1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1 , RBS2 = P −Q2
m−1 and C = Ce + Cm1 + Cm2

2: if (b1 ≤ 1
m
∧ b2 ≤ 1

m
) then . Regulation stall is dominant for both controllers

3: Stall = Equation (1)
4: else if (b1 > 1

m
∧ b2 > 1

m
) then . Contention stall is dominant for both controllers

5: if ((P −Q1) + (P −Q2) < P
m
· (m− 1)) then

6: cm1∗ = RBS1, cm2∗ = RBS2
7: Compute Stall with Algorithm 2
8: else . (P −Q1) + (P −Q2) ≥ P

m
· (m− 1)

9: rm = Cm2

Cm1 , cm1∗ = Equation 10, cm2∗ = Equation 11
10: if (rm < 1) then
11: if (cm1∗ ≤ RBS1 ∧ cm2∗ ≥ 1) then
12: Stall = Equation 12
13: else if (cm1∗ > RBS1) then
14: cm1∗ = RBS1, cm2∗ = min(RBS2, P

m
−RBS1)

15: Compute Stall with Algorithm 2
16: else . cm2∗ < 1
17: cm1∗ = min(RBS1, P

m
− 1) cm2∗ = 1

18: Compute Stall with Algorithm 2
19: end if
20: else . rm ≥ 1: symmetric of previous case, swap indices
21: end if
22: end if
23: else . Regulation stall is dominant for only one controller
24: if (b1 ≤ 1

m
∧ b2 > 1

m
) then

25: Compute ∆ρ∗ using Algorithm 3
26: Stall = Equation 13
27: else . b2 ≤ 1

m
∧ b1 > 1

m
: symmetric of previous case

28: end if
29: end if
30: return Stall + = (P −min(Q1, Q2)) . This adds the stall when the task arrives.

Algorithm 2 Compute stall for contention dominant case.
Input: Parameters: cm1∗, cm2∗, Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task’s index)
Output: Stall
1: b1 = Q1

P
, b2 = Q2

P
, RBS1 = P −Q1

m−1 , RBS2 = P −Q2
m−1 and C = Ce + Cm1 + Cm2

2: K1∗ = Equation 3 ,
3: Stall1 = Equation 2
4: Ĉe = Equation 5, Ĉm1 = Equation 8, Ĉm2 = Equation 7
5: Stall23 = single(Ce = Ĉm2 ·m+ Ĉe, Cm = Ĉm1, Q = Q1, P = P,m = m)
6: return Stall = Stall1 + min(Ĉm2, RBS2) · (m− 1) + Stall23 . Equation 41
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following memory access pattern with two phases leads to the worst-case stall: in the first
phase, there is a number, possibly 0, of consecutive periods with regulation stalls; in the
second phase, the contention-only phase, there is a number of consecutive periods, possibly
only 1, with contention stalls only. Thus, the problem of finding the worst-case stall reduces
to that of determining the number of regulation stalls that maximizes that stall. Actually, to
simplify the mathematical expressions, we use the difference, ∆ρ∗, between this number and
the maximum number of regulation stalls,

⌊
Cm1

Q1

⌋
. The total stall can then be determined

using Yao’s stall analysis:

Stall = single(Q = Q1, Cm = Cm1 − Cm1 mod Q1−∆ρ∗Q1, Ce = 0)
+ ((Cm1 mod Q1) + ∆ρ∗ ·Q1) · (m− 1)

+ single(Q = Q2, Cm = Cm2, Ce = Ce + ((Cm1 mod Q1) + ∆ρ∗ ·Q1) ·m) (13)

where, for computing the stall on the memory accesses via controller 2 in the second phase, we
account the memory accesses via controller 1 in the second phase and respective contention
stalls as computation, assuming that each of them suffers the maximum contention stall
under round-robin, m−1. Algorithms 1 and 2 detail the case analysis that we have described
so far in this section. In the following, we determine the value of ∆ρ∗.

We consider two main sub-cases depending on whether there is enough computation,
including residual memory accesses via controller 1, to ensure that every memory access via
controller 2 suffers maximum contention.

5.2.3.2 Sub-case 1: Enough computation

If Ce ≥
⌊
Cm2

RBS2

⌋
· (P −m · RBS2) − (Cm1 mod Q1) ·m, then every memory access in the

contention-only phase suffers maximum contention, and therefore the total stall is maximum
when the number of regulation stalls is maximum, i.e. ∆ρ∗ = 0.

5.2.3.3 Sub-case 2: Not enough computation

In this case, as illustrated in Figure 3, if there are memory accesses in the contention-only
phase that suffer no contention, the worst-case stall may occur when the number of regulation
stalls is not maximum.

When the number of regulation stalls is decremented by one, the regulation stall reduction
by P −Q1 is partially compensated by an increase of the contention stall via controller 1 by
Q1 · (m− 1). If the increase in contention stall via controller 2, ∆stall2c is such that:

∆stall2c > ∆stall2
∗

c
def= P −Q1 −Q1 · (m− 1) = P −Q1 ·m (14)

then reducing the number of regulation stall leads to a larger total stall. In other words, the
total stall will be worse if the increase in the number of memory accesses with maximum
stall, ∆Cm2

c , satisfies the following inequality:

∆Cm2
c > ∆Cm2∗

c
def= ∆stall2∗

c

m− 1 = P −Q1 ·m
m− 1 (15)

Like in the analysis in Section 5.2.2, to compute the stall on memory accesses via
controller 2, we can view the memory accesses via controller 1 and respective contention
stall as computation. Thus, we need to determine ∆Cm2

c when the computation in the
contention-only phase increases by ∆Ce = Q1 ·m. The challenge is that this value, ∆Cm2

c ,
may not be constant. I.e., when we increase the computation by ∆Ce = Q1 ·m, ∆Cm2

c may
have different values depending on other parameter values.
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0
i)

RBS2

P

ΔCe + st

0
ii)

P

ΔCe + st

P − RBS2 ·m Maximum number of memory accesses in each interval

Increase in execution time, including stall

Figure 4 Upper (i) and lower (ii) bounds on ∆Cm2
c .

Our solution is to compute the maximum and minimum values of ∆Cm2
c , ∆Cm2

c (max)
and ∆Cm2

c (min), respectively, and then finding ∆ρ∗ by case analysis, as described below.
When we increase the computation of the contention-only phase by ∆Ce, the total

execution of that phase, including any contention, will increase at least by that much. This
execution can replace memory accesses via controller 2 that did not have any contention, i.e
memory accesses in excess of RBS2 accesses per period, which can then be shifted towards
the end of the execution. ∆Cm2

c will be maximum if the shifted memory accesses are added
to a regulation period with no memory accesses via controller 2, up to a limit of RBS2
memory accesses per regulation period, as shown in Figure 4 i). Thus, in this case, as a
result of adding ∆Ce memory accesses we get:

∆Cm2
c (max) = RBS2 ·

⌊
∆Ce

RBS2 + P −RBS2 ·m

⌋
+min(RBS2,∆Ce mod (RBS2 + P −RBS2 ·m))

= RBS2 ·
⌊

∆Ce

Q2

⌋
+min(RBS2,∆Ce mod Q2) (16)

The first term corresponds to the number of additional periods with RBS2 memory accesses.
(Note that ∆Ce is used both to shift memory accesses via controller 2, and to fill the “hole”
in the remaining of the period, P −RBS2 ·m.) The second term corresponds to the number
of memory accesses in the last incomplete regulation period, if any: essentially, the memory
accesses that can be replaced with the remaining of ∆Ce that was not used for the additional
full periods, upper-bounded by RBS2.

On the other hand, ∆Cm2
c will be minimum, if, before adding ∆Ce, the execution ended

immediately after the RBS2 accesses with contention. This is shown in Figure 4 ii). In this
case, the analysis is similar to the one above, and therefore we can also use (16), except
that rather than using ∆Ce, we need to use max(∆Ce − (P −RBS2 ·m), 0), because the
remainder of the period at which the execution ended needs to be filled with “computation”
before an earlier memory access via controller 2 without contention stall can experience the
maximum contention stall by shifting it towards the end of the execution.

We can now distinguish there sub-cases, depending on the relative values of ∆Cm2∗
c ,

∆Cm2
c (max) and ∆Cm2

c (min).

Sub-case ∆Cm2∗
c ≥ Cm2

c (max). In this case, the increase in the number of memory
accesses with contention cannot make up for the eliminated regulation stall, so ∆ρ∗ = 0.

Sub-case ∆Cm2∗
c < Cm2

c (min). In this case, the increase in the number of memory
accesses with contention suffices to make up for the eliminated regulation stall. Therefore, the
worst-case stall increases as we reduce the number of regulation stalls until one of the following
3 cases occurs: 1) there are no more regulation stalls; 2) there are not enough memory
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Algorithm 3 Compute ∆ρ∗.
Input: Parameters: Cm1, Cm2, m, Ce, Q1, Q2 and P (omitting task index for simplicity)
Output: ∆ρ∗

1: RBS1 = P −Q1
m−1 , RBS2 = P −Q2

m−1 and C = Ce + Cm1 + Cm2

2: ∆Ce = m ·Q1
3: ∆Cm2

c (max) = Equation 16
4: ∆Cm2

c (min) = Equation 16, but replacing ∆Ce with max(∆Ce − (P −m ·RBS2), 0)
5: ∆Cm2∗

c =
⌊

P −m·Q1
m−1

⌋
6: if (Ce ≥

⌊
Cm2

RBS2

⌋
· (P −m ·RBS2)− (Cm1 mod Q1) ·m) then

7: ∆ρ∗ = 0 . There is enough “computation”
8: else if ( ∆Cm2

c (max) ≤ ∆Cm2∗
c ) then . Which implies ∆Cm2

c (min) ≤ ∆Cm2∗
c

9: ∆ρ∗ = 0 . Maximize regulation stalls on Controller one
10: else if ( ∆Cm2

c (min) > ∆Cm2∗
c ) then . Which implies ∆Cm2

c (max) > ∆Cm2∗
c

11: ∆ρ∗ = 0
12: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + (Cm1 mod Q1) ·m)
13: R = Cm2 + Ce + (Cm1 mod Q1) ·m+ stall

14: Cm2
c̄ = Cm2 −

⌊
R
P

⌋
·RBS2−min

(⌊
R mod P

m

⌋
, RBS2

)
15: while

(
Cm2

c̄ > ∆Cm2∗
c ∧∆ρ∗ <

⌊
Cm1

Q1

⌋ )
do

16: ∆ρ∗
t = ∆ρ∗ + 1

17: Ĉm1 = Cm1 mod Q1 + ∆ρ∗
t ·Q1 . Accesses via controller 1 in second phase

18: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 ·m)
19: R = Cm2 + Ce + Ĉm1 ·m+ stall

20: Cm2
c̄t = max

(
Cm2 −

⌊
R
P

⌋
·RBS2−min

(⌊
R mod P

m

⌋
, RBS2

)
, 0
)

21: if
(
Ĉm1 −min

(
Q1− 1,max

(
0,
⌊

R mod P
m

⌋
−RBS2

))
≤ (Q1− 1) · R

P

)
then . Enough

reg. periods to ensure that there is no reg. stall in periods with accesses via both controllers.
22: ∆ρ∗ = ∆ρ∗

t , C
m2
c̄ = Cm2

c̄t

23: else break
24: end if
25: end while
26: else . ∆n2

c(min) ≤ ∆n2∗
c < ∆n2

c(max)
27: ∆ρ(max) = 0, stall(max) = 0 . Variables for maximum stall
28: for ∆ρ∗ = 0 to

⌊
Cm1

Q1

⌋
do . Do exhaustive search

29: Ĉm1 = Cm1 mod Q1 + ∆ρ∗
t ·Q1

30: stall = single(Q = Q2, Cm = Cm2, Ce = Ce + Ĉm1 ·m) . Cont. stall on both controllers
31: R = Cm2 + Ce + Ĉm1 ·m+ stall . Duration of contention-only phase
32: if stall +

(⌊
Cm1

Q1

⌋
−∆ρ∗

)
· (P − Q1) > stall(max)

∧
(
Ĉm1 −min

(
Q1− 1,max

(
0,
⌊

R mod P
m

⌋
−RBS2

))
≤ (Q1− 1) ·

⌊
R
P

⌋)
then

33: stall(max) = stall +
(⌊

Cm1

Q1

⌋
−∆ρ∗

)
· (P −Q1)

34: ∆ρ∗(max) = ∆ρ∗

35: end if
36: end for
37: ∆ρ∗ = ∆ρ∗(max)
38: end if
39: return ∆ρ∗

accesses via controller 2, ∆Cm2∗
c , without the maximum contention stall, to compensate

for the loss in the regulation stall; or 3) the number of memory accesses via controller 1
in at least one period of the second phase exceeds Q1− 1, in which case we would have a
regulation stall, and therefore there would be no reduction in the number of regulation stalls.
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Algorithm 4 Sensitivity analysis to reclaim memory bandwidth from both controllers.
Input: b1, b2, m, ∆ (threshold to stop the algorithm)) and τ
Output: Minimum required memory bandwidth of both controllers
1: b1min = 0, b1max = b1, b2min = 0, b2max = b2
2: while (b1max − b1min > ∆ ∨ b2max − b2min > ∆) do
3: for each controller j ∈ {1, 2} do
4: if (bj

max − bj
min > ∆) then

5: Xj = b b
j
min

+b
j
max

2 c
6: if (j == 1) then
7: Schedulability = MultiControllerSchedulabilityAnalysis(Xj , b2max, m, τ)
8: else
9: Schedulability = MultiControllerSchedulabilityAnalysis(b1max, X

j , m, τ)
10: end if
11: if (Schedulability == true) then bj

max = Xj

12: else bj
min = Xj

13: end if
14: end if
15: end for
16: end while
17: return {b1max and b2max}

Because ∆Cm2 varies, we do not know a closed form expression for the number of
regulation periods to reduce. Thus, we use the iterative procedure shown in Algorithm 3.
We hence start with ∆ρ∗ = 0 and keep increasing it by one until one of the above 3 stop
conditions is satisfied. Specifically, while there are still enough memory accesses via controller
2 without maximum contention stall, Cm2

c̄ , and there is still one regulation stall (line 15),
∆ρ∗ is tentatively increased by one. In each iteration, we tentatively compute the total stall
using Yao’s analysis with the appropriate parameters (line 18) and the number of memory
accesses via controller 2 that suffer no contention (line 20), for the tentative value of ∆ρ∗. If
the number of memory accesses via controller 1 in all periods of the contention-only phase
(line 21) does not exceed Q1− 1, then the tentative values become definitive (line 22), and
the algorithm loops again, otherwise it exits the loop and terminates.

All other cases, i.e. Cm2
c (min) ≤ ∆Cm2∗

c < Cm2
c (max). In this case, the total stall

sometimes increases when the number of regulations stalls decreases by one and sometimes it
does not. Thus in this case, our approach to find the value of ∆ρ∗ is to compute the stall for
every possible value of ∆ρ∗ and pick the one that leads to the maximum stall. Algorithm 3,
lines 27-37, details the computation of ∆ρ∗ in this case.

5.3 Schedulability analysis
Until now, we assumed one task per core. When many tasks are assigned to a core, the task
in consideration and those of higher priority can be modelled by one synthetic task, using the
approach in [20], and schedulability analysis can be performed as summarized in Section 4.

6 Bandwidth Allocation and Task-to-core Assignment Heuristics

We propose 5 heuristics for allocating tasks and memory bandwidth of both controllers to the
cores. They are evaluated in terms of system schedulability. We use Audsley’s algorithm [1]
to assign task priorities, even if it is no longer necessarily optimal in the presence of stalls.
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Even. The total memory bandwidth of both controllers is equally distributed among all
cores. Subject to this even share, the task-to-core assignment is performed using first-fit.

Uneven. Initially, this heuristic also distributes both controller’s bandwidth evenly among
cores and employs the first-fit for task-to-core assignment. However, instead of declaring
failure whenever a task does not fit on any core, it sets that task aside, and moves on
to consider the next task. Any tasks that remain unassigned after considering all tasks,
are handled in-order as follows. Each core’s memory bandwidth from both controllers is
“trimmed” to the minimum value that preserves schedulability, via the sensitivity analysis
of Algorithm 4, explained later in this section. Let the total reclaimed bandwidth from
all cores be B1 and B2 from controllers 1 and 2, respectively. A second round of first-fit
tries to assign the remaining tasks, assuming that the bandwidth of the target core i is
increased by B1 and B2 for controllers 1 and 2, respectively. Upon successfully assigning
such a task, we trim anew the target cores’s memory budgets via sensitivity analysis,
adjust the available reclaimed budgets and move on to the next task in a similar manner.

Greedy-fit. Initially, the total memory bandwidth of both controllers is assigned to the first
core and the task-set is iterated over once (in a given order) to assign the maximum
number of tasks to this core; if a task does not fit, we try the next one. Afterwards, the
spare bandwidth from each controllers on this core is reclaimed via sensitivity analysis,
and is fully assigned to next core. And so on, until all tasks are assigned or the cores run
out.

Humble-fit. Similar to greedy-fit, except that when a task assignment fails, we move to the
next core (attempting no more task assignments on the current one).

Memory-fit. Initially, b1i = b2i = 0, for every core i, where bxi is the allocated memory
bandwidth of controller x on core i. Each task is assigned to the core i that requires the
least increase to b1i + b2i to accommodate it, subject to existing task assignments.

“Uneven” explores a larger solution space than “Even. “Greedy-fit” and “Humble-
fit” aggressively optimise for processing capacity use foremost. Conversely, “Memory-fit”
optimises for bandwidth instead. Hence, all heuristics sample the solution space in different
ways.

Sensitivity analysis. Algorithm 4 presents the sensitivity analysis that trims the unused
memory bandwidth from both controllers and outputs the least required memory bandwidth
from each controller. This sensitivity analysis, used for bandwidth optimisation, is an
adaptation of binary interval search ([19, 2]). It gives both controllers an equal chance to
preserve their bandwidth in a round-robin fashion. By comparison, completely optimizing one
controller followed by the second one, may lead to an imbalanced approach, hence avoided.

7 Evaluation

Experimental Setup. We developed a Java tool for our experiments. Its first module
generates the synthetic task sets and sets up a platform with the given input parameters. A
second module performs task-to-core allocation and feasibility analysis with two controllers.

We generate the task-set with a given target U = x ·m : x ∈ (0, 1] using UUnifast-discard
algorithm [6, 9] for unbiased distribution of task utilisations. The task-set size is given as
input. Task periods are log-uniform-distributed, in the range 10-100 ms. We assume implicit
deadlines, even if our analysis also holds for constrained deadlines. The WCET of a task is
derived as Ci = Ui · Ti. The total memory accesses of each task are randomly selected in
the range [0,Γ · Ci], with memory intensity factor Γ ∈ (0, 1] user-defined. The total memory
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Table 2 Overview of Parameters.

Parameters Values Default

Number of cores (m) {4, 8, 12, 16} 4
Task-set size (n) {8, 16, 24, 32, 40, 48} 16

Regulation period (P ) {1us, 10us, 100us, 1ms} 100us
Inter-arrival time (Ti) 10ms to 100ms N/A

Nominal utilisation (Ū = U
m
) {0.1 : 0.01 : 1} N/A

Memory intensity (Γ) {0.1 : 0.1 : 1} 0.5

accesses are randomly divided between the two memory controllers. By default the task-set
is sorted in descending order of utilisation. For each set of input parameters, we generate
1000 task-sets. We use independent pseudo-random number generators for the utilisations,
minimum inter-arrival times/deadlines, memory accesses and reuse their seeds [12]. Table 2
summarises all parameters, with default values underlined. We observed that size of the
regulation period has no effect on the schedulability ratio.

To avoid having hundreds of plots, in each experiment we vary only one parameter, with
others conforming to the defaults from Table 2 and present the results as plots of weighted
schedulability. This performance metric, adopted from [4], condenses what would have been
three-dimensional plots into two dimensions. It is a weighted average that gives more weight to
task-sets with higher utilisation, which are supposedly harder to schedule. Specifically, using
notation from [7], let Sy(τ, p) represent the result (0 or 1) of the schedulability test y for a
given task-set τ with an input parameter p. Then Wy(p), the weighted schedulability for that
test y as a function p, is Wy(p) =

∑
∀τ
(
Ū(τ) · Sy(τ, p)

)
/
∑
∀τ Ū(τ). Here, Ū(τ) def= U(τ)/m

is the system utilisation, normalised by the number of cores m.
No other stall analysis with two controllers exists in the literature to compare with. We

therefore compare our approach against a system where the two controllers are partitioned
among cores that can only make requests to their assigned controller. The benefit of such
partitioning is that it roughly cuts contention in half. On the other hand, tasks assigned to
one controller cannot access data addressable by the other controller.

For the comparison, half the cores are assigned to each controller. Since each core
accesses only one controller, the feasibility of the tasks assigned to it can be tested with Yao’s
analysis [20]. We adapt the task-to-core assignment heuristics and bandwidth allocation
schemes presented in Section 6 for the partitioned case: The even heuristic equally divides a
controller’s bandwidth among its associated cores. Similarly, in the uneven heuristic, the
readjustment of the controllers bandwidth is performed only among the controller’s associated
cores. In the greedy-fit/humble-fit, all bandwidth of a given controller is only assigned to its
first associated core with an objective to maximise the number of tasks assigned to it. The
trimmed-off bandwidth from this controller is assigned to its remaining associated cores. If
the task is not feasible on the cores associated to the first controller, its feasibility is next
checked on the set of cores associated with the second controller. In the memory-fit, a task
is assigned to the core with the lowest bandwidth requirement of its controller. We use Yao-
and MC- prefixes to denote the partitioned and our approach, respectively, followed by the
name of the heuristic (even, uneven, greedy-fit, humble-fit and memory-fit).

Results. Figure 5 presents the weighted schedulability for different number of cores for
both systems with partitioned and shared controllers (our approach) using the proposed
heuristics. The first important result is that all heuristics under partitioning perform better
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than their corresponding heuristic under shared controllers, which is due to the stall being
roughly cut in half in the former approach. This difference ranges around 10% − 30% in
absolute terms of weighted schedulability. Of course, this expected result applies only when
there are no dependencies across partitions. However, in many systems, there is always
some sharing/communication of data among tasks and this might make such partitioning
impossible. In other cases, a single controller cannot deliver enough bandwidth. This may
become more frequent in the future, as applications getting more demanding. Therefore safe
analysis for predictable access to both controllers, like the one proposed here, is needed.

In terms of heuristics, memory-fit, uneven, even, humble-fit and greedy-fit is the descending
ordered list w.r.t. weighted schedulability ratio. The memory-fit heuristic, which optimises
the use of memory bandwidth, performing best, implies that memory bandwidth is typically
the scarce resource for the given set of parameters. The uneven and even heuristics are more
balanced in terms of bandwidth and processing capacity distribution and hence, perform
close to memory-fit. Humble-fit and greedy-fit are too aggressive in construction to optimise
the use of processing capacity at the cost of memory resources and hence underperform
the other heuristics in a memory-scarce setup. Greedy-fit manages the memory resources
comparatively better than humble-fit and hence, outperforms it. Yet, if the applications are
compute-intensive and the system is not scarce w.r.t. memory resource, the heuristics that
optimise for processing resources may become handy and outperform their counterparts.

With more cores, the contention from other cores increases and hence, the schedulability
of the system decreases. Figure 6 presents the effect of memory intensity over the proposed
heuristics. Obviously, higher memory intensity increases the contention on the shared
controllers, consequently decreasing the schedulability. We also compared the effect of
the task indexing over the different heuristics as shown in Figure 7. The numbers 0, 1, 2
and 3 on the X-axis correspond to task-set ordering w.r.t. descending order of deadlines,
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utilisation, total memory requests and memory density (i.e. total memory requests divided
by the Ti), respectively. Task-set indexing w.r.t. utilisation benefits the memory-fit, even
and uneven heuristics. Figure 8 shows that task-set size has very limited effect on the
memory-fit, uneven and even approaches and they scale well when that increases. Conversely,
the performance of humble-fit and greedy-fit degrade with greater task-set sizes due to their
aggressive optimisation of processor usage at the expense of memory bandwidth.

8 Conclusion

This paper demonstrated that worst-case memory stall analyses for single-memory-controller
multicores with memory regulation are unsafe if applied to multicores with multiple memory
controllers. We overcome this limitation by proposing a new memory stall analysis for
multicore platforms with two memory controllers that captures the cases where all cores can
access both controllers. We also proposed five memory allocation heuristics, each specialising
in optimising processing capacity and/or memory bandwidth. The experimentally quantified
cost of allowing all cores to flexibly access the memory space of two controllers is 10− 30%
in terms of weighted schedulability. Results further show that the proposed memory-fit
heuristic performs well if bandwidth is scarce. The even and uneven heuristics are suitable for
balanced systems, while greedy-fit and humble-fit are handy for compute-intensive systems.
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Abstract
High-performance processors have deployed multilevel cache (MLC) systems for decades. In the
embedded real-time market, the use of MLC is also on the rise, with processors for future systems
in space, railway, avionics and automotive already featuring two or more cache levels. One of
the most critical elements for MLC is the write policy that not only affects several key metrics
such as performance, WCET estimates, energy/power, and reliability, but also the design of
complexity-prone cache coherence protocol and cache reliability solutions. In this paper we make
an extensive analysis of existing write policies, namely write-through (WT) and write-back (WB).
In the context of the real-time domain, we show that no write policy is superior for all metrics:
WT simplifies the design of the coherence and reliability solutions at the cost of performance,
WCET, and energy; while WB improves performance and energy results, but complicates cache
design. To take the best of each policy, we propose Hybrid Write Policy (HWP) a low-complexity
hardware mechanism that reconciles the benefits of WT in terms of simplifying the cache design
(e.g. coherence solution) and the benefits of WB in improved average performance and WCET
estimates as the pressure on the interconnection network increases. Guaranteed performance
results show that HWP scales with core count similar to WB. Likewise, HWP reduces cache
energy usage of WT, to levels similar to those of WB. These benefits are obtained while retaining
the reduced coherence complexity of WT, in contrast to high coherence costs under WB.
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1 Introduction

High-performance processors ubiquitously deploy several levels of cache (e.g. IBM POWER
9, Intel Core i7-based systems, and the ARM A Series). This emanates from the positive
impact that MLC have on overall system performance. However, MLC design is delicate,
not only because it involves high complexity when dealing with coherence, inclusion, and
miss policies (among other issues); but also because it can affect key metrics like cycle time,
energy/power (and hence temperature), and reliability.

In the real-time domain, the increase in computation needs of critical software across
all domains, is driving system designers towards the use of multicores, which necessarily
carry the use of MLC systems. For instance, the ARM big.LITTLE (automotive), the
Aeroflex Gaisler LEON4 (space), and the NXP T2080 (railway and avionics) architectures
comprise two or more levels of cache, the last of which is shared between cores. In addition
to average performance, MLC impacts noticeably other metrics specially sensitive to real-
time systems: worst-case execution time (WCET) estimates, i.e. guaranteed performance;
hardware reliability – particularly critical in the space domain and other harsh environments;
and complexity that affects compliance with safety standards (e.g. ISO26262 [17]).

The (cache) write policy determines how writes to lower (L1) cache levels, those closer
to the cores, are handled. Under write-through (WT), write operations are performed in
the lower cache and are forwarded to the higher (L2) cache level so that both caches hold
consistent data. With write back (WB), write operations are only performed in the lower level
cache, and the update of the next level is postponed until the cache lines containing the dirty
data is evicted from the lower level cache. The write policy impacts the write-miss policy
(write-allocate or not write-allocate), the cache coherence solution (e.g. in snooping-based
protocols the write miss policy determines – together with the inclusivity protocol – the
set of actions to take on a read/write to local and global data), and the reliability solution
(e.g. WT usually requires low-overhead parity in lower level caches and ECC in higher level
caches, whereas WB requires ECC in dL1 to keep the reliability of data not backed up in
L2). Due its remarkable impact on the overall MLC cache design, the write policy affects
metrics as important as guaranteed performance, energy/power, and reliability.

Interestingly, each write policy offers a different trade-off among the different metrics and
MLC complexity. Hence, the design of the write policy requires finding a balance between
them. The latter goes beyond a simple high-performance and real-time classification. Instead,
for a given area (e.g. real-time), the particular application domain defines the relevance of
each metric and hence, the write policy to use. For instance, in the space domain, due to
exposure to radiation, hardware reliability plays a much more important role than in railway.
Likewise, performance is much more relevant in automotive, where performance needs are
expected to increase by 100x in coming years [4], than in space. In this line, we make the
following main contributions:
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P. Benedicte, C. Hernandez, J. Abella, and F. J. Cazorla 3:3

1. We make an in-depth analysis of both write policies, WT and WB, with emphasis on
those metrics of relevance for real-time systems. WT simplifies coherence since most
updated data is always in L2, and reliability since the more costly ECC is only needed in
L2 with only parity being used in dL1. However, as the pressure on the interconnection
(NoC) increases – as a result of integrating more cores – the contention on the NoC
generated by writes under WT greatly reduces guaranteed performance (i.e. increases
WCET estimates). Further, WT increases energy consumption as each write accesses the
NoC and the larger L2. With WB, each write to dL1 does not result in accessing the NoC,
with considerable energy consumption reduction; and exceptional WCET reductions. Yet,
WB complicates coherence and reliability, increasing cache complexity.

2. We propose Hybrid Write Policy (HWP), a low-overhead mechanism that takes advantage
of the good properties of each policy. Building on WT, we attack its average and
guaranteed performance issues, with a mechanism that builds on shared/private data
classification hardware and applies WT to shared data and WB to private data. HWP
removes write-through operations on private data, which in general are the most accessed
data, while keeping it for shared data, so cache coherence can be managed as in pure
WT caches. At hardware level, in the the Memory Management Unit (MMU) or Memory
Protection Unit (MPU), HWP incurs negligible cost for tracking whether memory pages
are shared or private and other page properties such as read/write permissions.

3. We evaluate WCET estimation, reliability, energy consumption and coherence cost of
HWP. Our results show that for those scenarios in which tasks have limited data sharing,
HWP delivers performance similar to WB. Even when the percentage of shared data is as
high as 40% HWP remains competitive in all evaluated metrics (other works estimate the
percentage of shared data in multiprocessor programs ranges from 25% [13] to 17% [15]).
Overall, our design has a simplicity comparable to WT in terms of coherence, while
achieving average/guaranteed performance and energy consumption comparable to WB.

The rest of this paper is structured as follows. Section 2 introduces basic concepts of
MLC. Section 3 shows some of the main tradeoffs in the design of the cache write policy.
Section 4 details our proposal (HWP) in terms of average and guaranteed performance,
energy, reliability and coherence control. Section 5 provides empirical evidence of HWP
benefits on our evaluation framework. Section 6 presents the most relevant related works.
Section 7 summarizes the main conclusions of this work.

2 Background

When designing a multilevel cache hierarchy, see the illustrative example in Figure 4, there
are several design choices to be made, which are not independent of each other but quite
tightly correlated. In addition to the write policy we have.

With write allocate (WA), on a write miss data is fetched into cache, as it is the case for
read misses, and once fetched, the write operation occurs. With no-write allocate (nWA), on a
write miss the write operation is simply forwarded to the next cache level (or memory). Both
WT and WB can use either of these write-allocation policies, but we only consider WB-WA
and WT-nWA caches, since they are the most common choices. Though, our analysis can be
extended to other combinations.

The inclusivity of the lower cache levels into the upper cache levels (those closer to
memory), imposes that all contents in the lower level cache are also included in the upper
level cache. Hence, whenever a cache line is evicted from the upper level cache, all cache
lines in the lower level cache holding any of the contents of the cache line evicted in the
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upper level cache, are also evicted. Under an exclusivity approach, cache lines can be stored
only in one of the two levels involved. When a new cache line is fetched by the processor, it
is typically fetched into the lower level and removed from the upper level. When a cache
line is evicted from the lower level it is moved up to the next level. Finally, non-inclusive
caches are those where no constraint is imposed on whether cache lines are stored in upper
or lower cache levels. This is a common choice for instruction caches since they are typically
read-only and thus, cache lines can be simply removed on an eviction.

Snooping and directory-based approaches are the most commonly used ones for imple-
menting cache coherence in multicores. For a moderate number of cores, snooping is in general
the preferred mechanism because it is faster and much easier to implement and verify [28].
We use it as reference mechanism in this paper. We also assume a bus interconnect, although
other interconnect networks would also benefit from our solution. Under snooping, writes
can be handled in two different ways: write invalidate or write update. We focus on the
write-invalidate MESI (Modified, Exclusive, Shared, Invalid) protocol as one of the most
common that also supports write-back caches. We also cover a simple valid/invalid (V/I)
protocol, used for WT caches. Under MESI when a snoop write request arrives to cache, the
cache invalidates its own copy, if the cache has it. MESI distinguishes between data that is
shared (i.e. exists a copy of the same data in another dL1), exclusive (it only exists a copy in
the local dL1 and is clean), modified data (i.e. the data only exists in the local dL1 and it is
dirty), and invalid data. Coherence is often implemented on top of inclusive caches, so that
coherence can be checked in L2 and, only on a read/write request from a core that hits in L2,
the dL1 caches of the other cores might be accessed. Under WT with a simple V/I, coherence
is completely managed in L2 and, upon a shared cache line write request, it is immediately
invalidated in the dL1 caches of the other cores and the data is delivered right away. When
dL1 caches are WB and use MESI, on an L2 match a complex process is initiated to invalidate
the corresponding dL1 lines, which may be dirty. This stalls the requesting core, with the
L2 not accepting further requests until the current one is resolved. This occurs when the
potentially dirty line in the dL1 of another core is written back to L2 and invalidated. The
fact that accesses may be multi-cycle and non-pipelined to manage coherence imposes the
use of complex logic. This may increase design cost and additional power, while significantly
affecting critical circuit paths and limit operation frequency. Alternatively, the coherence
protocol can be handled at each dL1 cache and the interconnect. With this approach dL1
caches snoop the bus to monitor the activity from the other cores and cores have to expose
its activity to the interconnect. This removes the need for using inclusive caches but comes
at the expense of an increase in power and complexity in the on-chip interconnect. For
instance, in the absence of a shared medium ensuring the in-order delivery of core/memory
transactions is difficult [29].

Error correction codes such as single error correction double error detection (SECDED)
are inherently complex mechanisms that introduce some delay to encode/decode data. When
used in dL1 caches, SECDED can increase cache latency. To prevent so, complex logic is put
in place to recover a correct state if data is delivered to upper cache levels unchecked. For
L2 caches, SECDED can be more complex since their impact on performance – for instance
by making cache access to take an extra cycle – have relatively lower impact than for dL1
caches. When there is no need to correct errors in the dL1 cache, a simple parity mechanism
can be used instead of SECDED.
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Table 1 Percentage of stores executed by the EEMBC Automotive and MediaBench suites.

EEMBC % EEMBC % MediaBench % MediaBench %
a2time 5% matrix 3% adpcm.d 13% mesa.m 12%
aifftr 18% pntrch 0% adpcm.e 14% mesa.o 14%
aifirf 8% puwmod 12% epic.d 6% mesa.t 9%
aiifft 18% rspeed 14% epi.e 5% mpeg2.d 10%
basefp 2% tblook 6% g721.d 8% pegwit.d 6%
bitmnp 11% ttsprk 4% g721.e 9% pegwit.e 6%
cacheb 16% gsm.d 3% pgp.d 5%
canrdr 15% gsm.e 3% pgp.e 13%
idctrn 8% jpeg.d 6% rasta 8%
iirflt 7% jpeg.e 10%

3 Tradeoffs in the Design of Cache Write Policy

MLC are one of the main hardware blocks in a multicore architecture devoted to improve
performance and reduce the energy/power profile of applications. MLC aim at rapidly and
efficiently satisfying data/instruction requests coming from the cores, while maintaining
the coherence (i.e. the particular value returned on a read), consistency (i.e. when data is
available), reliability (physical integrity) and more recently security (i.e. protection against
unwanted/unauthorized actions). The cache write policy, which handles write operations,
is at the core of the complexity of MLC since it has a direct impact on the design of
other policies. In this section we analyze the impact of WT and WB policies on reliability,
inclusivity, and coherence choices. We also analyze their impact on performance (average
and guaranteed), reliability, and energy/power. For the latter, the results obtained from
several controlled experiments are used as supporting argument.

3.1 Write-Through (WT)
Under WT, each store operation is sent to the L2 so it uses the NoC, which can significantly
increase the pressure on it. In the core, the store buffer decouples the commit (finalization)
of the stores so that they do not block the pipeline. To that end, once a store reaches the
commit/writeback stage, it updates dL1 and in parallel it is placed in the FIFO store buffer
allowing the execution to continue. The store is forwarded to L2 when it reaches the head of
the store buffer and there is available NoC bandwidth. The store buffer can significantly
mitigate the impact of stores in single-core architectures, but rapidly becomes insufficient in
multicore. This is better illustrated with an example: let us assume that a bus connects dL1
and L2 caches and each store operation uses it for k cycles. As long as the frequency of stores
is (on average) below 1/k, they will not significantly affect processor performance – unless
they are bursted which we do not assume in this simple example. However, in a multicore
architecture with Nc cores, as soon as the pressure in the bus increases, the actual duration
of a store becomes k ×Nc, i.e. k × (Nc − 1) cycles of contention and k cycles for the bus
access. In this scenario, stores become a performance issue as soon as their density reaches
1/(k ×Nc). As an illustrative example, Table 1 shows the percentage of store operations
executed by EEMBC and Mediabench benchmarks, see Section 5 for more details on the
experimental setup. The average percentage of stores is 9%. Further k ×Nc ∈ [15, .., 20] –
and hence it is higher than 1/9, for multicores with 4-8 cores. To make things worse, the
percentage of memory operations is growing in emerging data-intensive real-time applications,
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Core 0 Core 1 Core 2 

Bus 

L2 

Ƭi Ƭj Ƭk 

(a) Setup (b) Same duration (li = lj = lk) (c) Different duration (2 · li = lj = lk)

Figure 1 τi aBAT and wBAT as a function of its load and its contenders’ (τj and τk) load.

e.g. applications in cars managing data coming from different sensors such as radar, LIDAR,
and stereo cameras. Intuitively, this problem can be alleviated by using a crossbar between
the dL1 and the L2, at the expense of increased hardware cost. However, this would just
shift the problem from the bus to the L2 itself, since L2 access latency is longer than that of
the crossbar. Further, to preserve coherence, each store must be allowed to reach any part of
the entire L2 cache, which defeats any attempt to mitigate the problem by partitioning the
cache space.

The impact of WT on average performance due to NoC contention magnifies for guaranteed
performance, causing inflated WCET estimates. This comes from the fact that worst-case
time allowances must be done in the WCET estimates to factor in the impact of NoC
contention. In general, no assumption can be made on how the requests of the different
running tasks are interleaved in the use of the bus. The exception to this are some static
timing analysis techniques that keep track of the worst-time when each request from each
core can be issued, and hence are able to exactly determine how requests overlap in the
access to shared resources [22][14][21]. This, of course, comes at a significant cost, including
the increasing effort of making a cycle-accurate model of the MLC system and processor,
and increased analysis computation time. Further, this analysis, despite producing (in
general) tighter WCET estimates, makes them non time-composable so that any shift in
any task requires performing the WCET estimation for all tasks. Hence, to increase time
composability and reduce costs, worst-case assumptions are made on how tasks’ request
are aligned [25, 8, 19]. This is better illustrated with an example. Let us assume a bus
connecting the L2 to 3 cores (respectively executing tasks τi, τj , τk) and all bus requests
using the bus for the same duration l (shown in Figure 1 (a)). The best overlapping scenario
for average Bus Access Time (aBAT) happens when requests of the task under analysis (τi)
and the contender tasks (τj , τk, ...) do not overlap as long as the bus utilization of all tasks
is below 100%, and when the utilization goes over 100% the minimum overlap happens. For
instance if a τi uses the bus for 20% of the time and τj for 90% of the time, τi gets affected
only 10% of its time. The worst overlapping scenario for bus access time (wBAT) is assuming
that requests from τi arrive in the same cycle as the requests from the contender tasks, but
τi systematically gets the lowest priority. Figure 1(b) shows how worst-case BAT gets much
more affected than average BAT due to contention for different scenarios of bus utilization of
τi and its contenders. We see that wBAT is significantly affected even for low bus utilization.
For instance, for utilization ui = 20%, uj = 25%, uk = 25% for τi, τj , and τk respectively
(see red rectangle in Figure 1(b)), τi suffers no delay in the best case aBAT and in the worst
case it goes to 60% (a 2.4 increase). Further, typically store operations take shorter than
load operations accessing the cache (no need to wait for a response), which translates into a
scenario in which τi requests take shorter than its contenders’ request. We see in Figure 1(c),
for a scenario in which τi requests take half of its contenders, that the impact of contention
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Figure 2 Visual comparison of the WT, WB and HWP for the different metrics discussed.

on WCET estimates increase. For instance, for utilization ui = 20%, uj = 25%, uk = 25%
for τi, τj , and τk respectively (see red rectangle in Figure 1(c)), τi suffers no delay in aBAT
but a 100% in the wBAT.

Continuous store accesses to the L2 cause performance and WCET degradation but can
also increase power consumption. Updating values with WT policy implies accessing the bus
and L2, even if the core updating the values is the only consumer of this data. This can have
a significant impact on the overall power consumption. For example, when running a2time
from the EEMBC automotive benchmark suite in our reference processor setup (see Figure 4
and Section 5.1), the 14% of the energy consumption comes from the bus and L2.

Under WT, reliability can be handled with reduced overhead. A usual tradeoff consists
of using only parity for error detection in dL1 caches, and (usually) apply it at double-word
level, that is, using 1 parity bit for 64 data bits (8 bytes). This results in low overhead of
around 1.6% (1/64). Furthermore, the operations needed to compute the parity (XOR) can
be carried out in parallel and hence are unlikely to affect cycle time. On a parity error,
however, hardware support is needed to squash the execution of the instruction that obtained
erroneous data and following instructions. On completion, error-free data is fetched from L2
and execution resumes. Alternatively, parity can be checked before delivering the data to
remove the need of squash logic. However, this would likely increase cache latency since XOR
gates to compute the parity bit may easily need an extra cycle. WT parity-protected dL1
caches are used in combination with SECDED-protected L2 caches. The latter is achieved
with ECC that carries an inherent area and logic for its implementation. Typically, SECDED
requires 8 code bits per 64 data bits (so ≈ 12.5% extra bits), with negligible impact on L2
performance, since although an additional cycle may be needed to deliver data corrected,
this operation is fully-pipelined. Hence, L2 latency may increase by 1 cycle, thus slightly
increasing the latency of dL1 read misses, which are generally scarce, but without affecting
L2 throughput. Note that on the event of detection of an error in dL1 in a given cache, it is
simply discarded and data is fetched from upper cache levels since a correct copy of the data
exists in L2 or beyond.

dL1 WT caches simplify coherence management. In particular, dL1 WT caches are made
inclusive L2. As a result, when shared data exists in data dL1 (dL1), up-to-date copies of the
data is also present in L2. Hence, coherence can be managed in L2 and, upon shared data
modifications, the corresponding cores’ dL1 caches receive (infrequent) invalidation requests.
With WT caches a simple invalidation protocol (V/I)) is enough.

Overall, WT can negatively affect average and worst performance – the latter more
intensely– and energy. On the positive side, it can be used with low-overhead coherence and
reliability solutions. These properties are summarized in Figure 2(a) in a qualitative manner,
with Figure 2(d) showing the ideal scenario.
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3.2 Write-Back (WB)
For low core counts, the small average performance improvement of WB over WT does not
compensate its additional validation and design costs. However, as the number of cores of
multicore real-time systems increases, WB becomes more attractive.

WB significantly reduces the number of bus and L2 accesses compared to WT. Furthermore,
since worst-case contention is quite proportional to the number of accesses, WCET estimates
are typically much lower with WB than with WT.

WB access count reduction to shared resources decreases the power consumed by those
resources. In our setup, the bus and L2 accounts on average for 13% of the system energy,
and hence reducing its utilization translates into a non-negligible energy reduction. Also,
the need for higher reliability in the data dL1 cache (dL1) increases the power used by the
system due to the extra bits and logic needed to implement, for instance, SECDED codes.
Finally, since invalidation operations due to shared data accesses may require invalidating
dirty lines in dL1, this may cause extra energy consumption to write data back to L2.

When WB is used in the dL1, the data most frequently updated/sensible can be spread
between multiple caches (the different dL1 caches and L2). In this scenario, error detection
in dL1 and error correction in L2 is not enough, since some data is only updated in dL1 and,
upon an error, it could be detected but not corrected. In this case, there are two possible
implementations of ECC in dL1, each one with its advantages and drawbacks:

Under Data delivery after correction data is read from dL1, then ECC checked (and
eventually data corrected), and finally data is delivered. Unfortunately, checking the
ECC code increases access latency by 1 cycle. While such operation can be pipelined,
thus not increasing dL1 utilization, the effective latency for data read increases.
Under Data delivery before correction data is read from dL1 and delivered as if it was
error-free. In parallel, ECC is checked and, upon an error detection, the affected instruction
and subsequent ones need to be squashed. Then, the execution can be resumed using the
corrected data. While such process has negligible impact in performance (radiation errors
occur only sporadically), the logic for squashing instructions and resuming execution may
be complex. However, such logic is analogous to that of WT caches when operating with
parity.

With WB caches V/I is not enough because data can be in another state apart from
valid or invalid, namely, modified state. Because of this, we will use MESI (an enhancement
over MSI) for WB caches. Maintaining cache coherence in multicores with WB dL1 caches
requires frequent accesses to other cores’ dL1 caches to verify whether shared data is there
and, eventually, retrieve them (if dirty) or invalidate them (if the ongoing access is a write or
data is not dirty). Depending on the inclusivity of the cache system, we find two possible
scenarios (exclusive caches are infrequent so we do not discuss them here):

Inclusive. In an inclusive cache system (the most convenient solution) the updated data
is in dL1 or L2, but L2 has all the tags. This means that all coherence requests can go to
L2, and only upon a match ask dL1 for the data it needs.
Non-inclusive. If the system is non-inclusive, there is no unique cache that “knows”
where all the data is. This means that any request for data has to be communicated to
all caches (all the private dL1 and L2), and any cache can answer with the data. This
complicates the coherence protocol design. Hence, we disregard this option.

Either case, whenever some data is requested and the L2 experiences a hit on shared
data, it must stall the request and block further L2 accesses. Then, the corresponding dL1
caches deliver the data if dirty. Since dirtiness in dL1 caches is not known a priori by the
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Table 2 Commercial processors and their characteristics.

Processor Cores Freq. L1 WT? L1 WB?
ARM Cortex R5 1-2 160MHz Yes, ECC/parity Yes, ECC/parity
ARM Cortex M7 1-2 200MHz Yes, ECC Yes, ECC
Freescale PowerQUICC 1 250MHz Yes, ECC Yes, parity
Freescale P4080 8 1.5GHz No Yes, ECC
Cobham LEON 3 2 100MHz Yes, parity No
Cobham LEON 4 4 150MHz Yes, parity No

L2 cache, it must remain blocked long enough to allow the dirty data to be read from the
corresponding dL1 and be sent to L2. Then, the L2 can update its contents, deliver the data
and hence, serve the request. However, the complexity of the logic to manage all this process
synchronously and across multiple cycles and components may affect critical circuit paths,
which can carry a reduction of the operating frequency.

Figure 2(b) presents in a graphical manner the assessment we have done on WB. We
can see that while WT is better in reliability and coherence simplicity, it performs worse on
performance (both average and worst-case) and power.

3.3 Cache Write Policy in Some Commercial Architectures
To better illustrate the quandary chip vendors face when selecting the write policy, we have
analyzed the miss policy of several commercial processors5.

The ARM Cortex R5 [3] is a 1 (or 2) core processor that implements both WB and
WT in the dL1 cache, both with parity and ECC. This means that either policy can be
selected in a configuration register. The ARM Cortex M7 [1] is a low-performance processor.
Like the previous one, it implements both write policies in the dL1 cache, but it only has
ECC in the L2 cache. ARM acknowledges that using dL1 ECC may have an impact on
operating frequency due to the XOR trees for the ECC when getting the data from the
cache. Thus, depending on the particular chip implementation of the ARM IP processor we
might have to decrease maximum operating frequency or require two cycles to access the
dL1 to support ECC in the dL1 and have the possibility of recovering from errors in the
cache when WB is enabled. Hence, despite in general WB caches perform better the strong
reliability constraints in safety-critical systems and the associated overheads incurred due
to implementing ECC in WB caches makes chip vendors offer the users the possibility to
choose between WT/WB according to the needs of their application. However, this forces
chip vendors to carry with the effort and responsibility to implement and validate both.

The Freescale PowerQUICC [32] implements WB in the dL1 with parity and the L2 with
ECC. This lead to a system where not all cache bit-flips can be recovered. In that respect,
Freescale states that the probability of errors is so low that the target application domain
should accept the possibility of having “unrecoverable" errors.

The Cobham Gaisler LEON3 [12] is a dual-core running at 100MHz, with a 5 stage
in-order pipeline. It is designed for critical real-time systems, and implements WT in the
dL1 cache, so that reliability can be handled in L2 with more robust ECC. The LEON4 [10]
comprises with 4 cores running at 150MHz with a 7 stage pipeline. It has the same critical
real-time systems scope as its predecessor, and the same write policies in the dL1.

5 Core and frequency numbers have been obtained from specific processor implementations [36, 35, 26].
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WT has been widely implemented in the last level of private caches (mainly in dL1) due
to its simplicity (no need for reliability and simple coherence) and its acceptable single-core
performance. However, in future multi- and many-cores, the increased number of accesses to
shared resources will cause a dramatic increase in average execution time and the WCET
estimates. WB caches have performance and energy consumption benefits over WT in mid
to high core count processors. However, this performance comes at a complexity cost in the
coherence protocol mainly and, to a lower extent, in the reliability mechanisms.

4 Hybrid Write Policy (HWP)

HWP low-overhead approach addresses WT average and guaranteed performance issues
while reducing overheads w.r.t. WB. HWP eliminates the additional cost of coherence for
WB caches and, simultaneously, keeps WT operations limited to a small fraction of write
operations so that efficiency is close to that of WB caches, see Figure 2(c).

In order to reach its goals HWP builds on the following observations. First, cache
coherence management with WB caches is costly and complex because cache lines accessed
may reside dirty in local dL1 caches. Second, private data is not affected by cache coherence,
so conceptually it is irrelevant whether such data is dirty or not in dL1 caches. And third,
a significant percentage of memory data is only accessed by one processor (also in parallel
applications) and, thus, does not require keeping coherence (e.g. 75% of the access are
reported as private in [13] and around 83% in [15]).

From those observations, we design a new policy (HWP) that manages private data as in
WB caches and shared data as in WT caches. With HWP, memory contents are classified at
page granularity as either shared or private, which has been shown to be a very convenient
granularity for private/shared data classification [15, 6]. In particular, as long as a page
contains any shared data, it is (pessimistically) classified as shared. Otherwise, it is classified
as private. On a write to shared data, HWP writes it through to L2 cache (a la WT).
Meanwhile write operations to private pages are not propagated to L2 (a la WB), hence
decreasing contention in the access to L2.

Next, we discuss the key characteristics and implementation details of HWP, with emphasis
on how to classify data as private or shared (and the appropriate granularity to do so), how
to check whether data is shared or private to decide whether to proceed as in a WT or WB
cache, how cache coherence needs to be managed, what the reliability implications are, and
how contention in the access to L2 is mitigated.

4.1 Data Classification
Orthogonally to HWP, a mechanism is needed to classify data as private or shared. Techniques
exist to that end, with some of them [15] already integrated on a real hardware platform
(LEON3 processor) and Linux, providing evidence of its feasibility. Interestingly, private/share
data classification can be performed at different levels (e.g. cache line size).

Private/shared information can be managed at fine granularity (e.g. cache line level).
This would allow a much finer classification but at the cost of higher area and energy
overheads [15]. Additionally, performing the shared/private classification at page granularity
makes it possible using OS functionality to reduce hardware implementation overheads [6].

Ho et al. [15] and Cuesta et al. [6] show that the most convenient granularity to classify
data is page level. With this solution, whenever a piece of data is shared between two cores,
the whole page in which the data is is marked as shared. Hence, this solution pessimistically
assumes that all data in a shared page is shared. As part of that solution, the information on
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Figure 3 Schematic of HWP cache access protocol.

private/share information can be stored in the Memory Protection Unit (MPU) or Memory
Management Unit (MMU) for each page along with other information such as whether pages
are user-level or supervisor-level, whether they are read/write or read-only, and whether
they are cacheable or not. Such information is often cached in the Translation Lookaside
Buffer (dTLB) together with address translation. In most processors dTLBs are accessed in
parallel with dL1 caches for fast address translation and for verification of the permissions to
read/write in specific memory pages. Hence, they can store private/shared information.

In real-time systems an alternative approach to those hardware approaches is possible with
software address space partitioning. Many OS use address spaces (i.e. a range of addresses) to
map specific I/O devices. Also RTOS like PikeOS use separate address spaces to implement
resource partition. Furthermore, in the automotive domain, AURIX architectures come
equipped with caches and different memory types (e.g. flash, ram). From the software
side, address ranges are defined to map data/instructions to the desired memory and or to
make data cacheable or non-cacheable. Hence, address space can be partitioned assigning a
particular address range to shared data.

The main disadvantage of dynamic hardware solutions is that data re-classification is
needed. This happens, for instance, when a page is first loaded by one core (hence classified
as private) and then accessed by another core (being reclassified as shared). This does
not only create predictability issues in real-time systems, but it also adds complexity to
HWP, including writing through all data (dL1 lines) of this page in the owner core, while
managed those same data with WB in the other cores. This complexity is avoided with the
classification based on software address partitioning, which is the solution we assume in this
paper, without loss of generality.

4.2 Private/Shared Data Management
The way in which data is accessed under HWP varies depending on whether data is shared
or private. This is graphically illustrated in Figure 3.

On a load/store access, the dL1 and the dTLB are accessed in parallel. In case of a dTLB
miss, it is served first before proceeding with the access, as done regularly in most processors.
Note that address translation is typically needed before accessing the L2. Therefore, while
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Table 3 Timing of a dL1 hit (dTLB hit) under HWP.

cycle 1 cycle 2 

LOAD Read dL1, Read dTLB 

STORE 
Private Write dL1, Read dTLB Update dirtiness bit 

Shared Write dL1, Read dTLB Write L2 

hit 

miss 

serialization of dTLB misses and dL1 accesses may be unnecessary for some dL1 hits, dTLB
miss rates are usually extremely low, and their occurrence together with dL1 hits is even
more unlikely since this can only occur if data from the page has been fetched and sufficient
evictions occurred in the dTLB but not in the dL1.

4.2.1 Hit in dL1

In case of a dL1 hit (and dTLB hit), the shared/private information determines whether the
line hit needs to be marked as dirty or not. If the line belongs to a private page (S/P = 0)
and the access is a write operation (W/R = 1), the dirtiness bit is set. The separation of
data and dirtiness information poses no issue since dirtiness information can be accessed
systematically one cycle after, as it is only needed in case of a miss to decide whether the
evicted cache line needs being written back. Also, in case of dL1/dTLB hit, if the line belongs
to a shared page (S/P = 1) and the access is a write operation, data is written through L2
as in a regular WT MLC.

In terms of timing, Table 3 shows the different possible scenarios and their timing. After
the processor request, regardless of whether it is a read or a write, both the dL1 and the
dTLB are accessed in parallel. In the case of a read, at the end of the first cycle the data is
available and is served to the processor. In the case of a write, at the end of the first cycle
the dTLB determines whether it is a write to a shared or private page. If the store targets
a private page, the dirtiness bit is updated in the dL1 cache in the second cycle, and the
request is completed. However, if it is a write to a shared page, a write request is issued to
the L2.

4.2.2 Miss in dL1

On a dL1 miss, WT management is performed as for hits. However, if the miss corresponds
to a read operation (W/R = 0) or the address is private (S/P = 0), the line is fetched
from L2 and allocated in the dL1 data cache. Note that we assume the usual case where
WT implements no-write-allocate (nWA) policy on write misses, whereas WB implements
write-allocate (WA). Different write allocate policies could be implemented such as, for
instance, WA (or nWA) regardless of the privateness of the data accessed.

In Table 4 we see the different scenarios that can happen with a dL1 miss. In the first
cycle, both the dL1 and the dTLB are accessed in parallel. At the end of the cycle, if the
line to be evicted is dirty, the dL1 sends a dirty eviction request to the upper level. In the
load scenario, the next cycle (3 if the line was dirty, 2 if it was clean) the line is requested
to the L2. After n cycles, the cache line arrives to the dL1 and the data is be available. In
the case of a store private, it also requests the line to the L2. When the answer comes, it
updates the dL1 and update the dirty bit (allocate on private data). Finally, on a store to
a shared line, a request for the write is sent to the L2, and no update occurs in dL1 (no
allocate for shared data).
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Table 4 Timing of a dL1 miss (dTLB hit) under HWP.

hit 

miss 

cycle 1 cycle 2 cycle 3 … cycle n+3 

LOAD Read dL1, Read dTLB if dirty -> Eviction Request line L2 Read dL1 

STORE 
Private Write dL1, Read dTLB if dirty -> Eviction Request line L2 Write dL1, Update dirtiness bit 

Shared Write dL1, Read dTLB if dirty -> Eviction Write L2 

4.3 Non-Functional Metrics

This section makes a qualitative assessment of the benefits of HWP over WT and WB.
Quantitative comparisons are carried out in the Section 5.

Under HWP, shared data is consistently stored in L2, making that all shared data in dL1
caches is necessarily non-dirty. As a result, with HWP coherence is managed as in the case
of pure WT caches, hence keeping its low- cost and complexity benefits and avoiding the
overheads related to WB caches. With HWP V/I is enough, as for WT, because the shared
data will always be updated in a single place (L2), so we do not need a Modified state in the
dL1 to keep track of who has the most updated data.

Since shared contents are written through to L2, the fraction of dirty dL1 cache contents
is smaller than in pure WB caches. Yet some dL1 cache contents can be dirty. Hence,
error correction capabilities are still required in dL1, as in the case of pure WB caches. A
simple software solution to reduce the associated costs consists in marking the pages storing
error-sensitive data as shared. This way the only data that could be lost would be the private
one. However, for critical applications, the same reliability technique used in WT (SECDED
in dL1) can be used.

Under WT, performance issues relate to contention in the NoC and the L2 due to write-
through stores. With HWP, this problem is alleviated, restricting write throughs to stores
to shared data. Obviously, the lower the number of accesses to shared data, the lower the
number of WT operations, and hence, the lower the contention and the lower the sensitivity
to contention. In general, programs are designed to reduce access count to shared data
(25% [13] and 17% [15]), which usually carries a serialization of tasks.

In general, power consumption relates to the activity performed (dynamic power) and
execution time (static power). By limiting the number of WT operations, dynamic power is
reduced drastically w.r.t. pure WT designs. By reducing contention, execution time is also
lower than for pure WT designs, thus reducing static power.

Overall, our HWP hybrid cache design offers a globally better tradeoff than WB and
WT. This is illustrated in Figure 2(c). As shown, our design offers performance and power
close to that of WB, with similar reliability overheads, but much lower complexity for the
management of shared data. When compared against WT, coherence management cost is
identical, performance and power are much better, and only reliability costs are higher.

5 Evaluation

In this section we quantitatively assess the benefits of HWP over conventional write policies
(WT and WB). We use the metrics presented in previous sections, namely, guaranteed and
average performance, energy consumption, coherence overhead, and reliability.
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Figure 4 Block diagram of the main elements of our NGMP-based 8-core architecture.

Table 5 Benchmarks in EEMBC Automotive and MediaBench we use in this paper.

suite List of benchmarks
EEMBC a2time, aifftr, aifirf, aiifft, basefp, bitmnp, cacheb, canrdr
Auto idctrn, iirflt, matrix, pntrch, puwmod, rspeed, tblook, ttsprk
Media- adpcm.d, adpcm.e, epic.d, epic.e, g721.d, g721.e, gsm.d, gsm.e, jpeg.d, jpeg.e,
Bench mesa.m, mesa.o, mesa.t, mpeg2.d, pegwit.d, pegwit.e, pgp.d, pgp.e, rasta

5.1 Reference Architecture and Benchmarks
We use a simulation environment based on the cycle-accurate SoCLib [33] framework to
model the architecture of the Cobham Gaisler’s Next Generation Multipurose Processor
(NGMP), as a representative of current bus-connected multicore MPSoC. The main difference
lies in that we scale the number of cores from 1 to 8 in our experiments (See Figure 4) to
assess the impact on the different metrics, while the NGMP specifically features 4 cores. Each
processor implements a SPARC V8 architecture [11]. Each LEON4 core comprises seven
stages: fetch (F), decode (D), register access (RA), execution of non-memory operations
(Exe), dL1 access (M), Exceptions (Exc) and write back (WB). The execution units are
equipped with an integer and a floating-point unit (FPU). Each core has its own private
instruction (il1) and data (dL1) caches that are 16KB, 4-way with 32-byte lines. Processors
are connected by a shared on-chip round-robin arbitrated AHB processor bus to a shared L2
cache and memory. The shared second level (L2) cache is split among cores, each receiving
one way of the L2. All caches use LRU replacement policy.

We evaluate a large subset of the EEMBC automotive [27] suite comprising common critical
real-time applications in automotive systems and MediaBench [20] comprising embedded
applications such as multimedia and communications. The benchmarks we use from both
suites are listed in Table 5. We create several scenarios in which we vary the percentage of
accesses targeting the address range for shared data.

5.2 Energy
As presented in Section 3 each cache write policy carries side effects on the write-miss policy,
the reliability solution, inclusivity, and the coherence solution. This affects the set of activities
carried out by each task, the energy cost of each activity and hence the overall energy profile
of each task. Further, the complexity of each write policy varies which affects its ’intrinsic’
energy consumption.

We assess the energy usage under each policy using CACTI [24], the state-of-the-art
integrated model for cache and memory access time, cycle time, area, leakage and dynamic
power consumption, configured with the NGMP cache parameters. With CACTI we break-
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(a) EEMBC (b) Mediabench

Figure 5 Average energy breakdown per cache access for EEMBC and Mediabench.

down the energy usage of each cache access into 5 components: dL1 access, dL1 reliability,
L2 access, L2 reliability, and coherence.

We present the average cache access energy consumption, across all EEMBC and Me-
diabench benchmark suites, in Figures 5 (a) and 5 (b) respectively. The difference across
individual programs in each benchmark are not relevant, and hence are not shown. We
compare WT, WB and HWP; and for the latter two, we assume three different scenarios
depending on the percentage of accesses to shared data: 5%, 10%, 20% and 40%. Note that
WT results do not depend on the percentage of shared data, since all writes go to L2.

We observe that the dL1 energy usage for an access is roughly the same for all write
policies. The difference in the energy of the dL1 reliability solution is small, with WT having
the lowest value due to the use of simple parity instead of ECC (used by WB and HWP).

We also observe that the lowest access energy profile is obtained for WB and HWT. In
the case of WB, there are few L2 accesses, since stores do not access L2 every time, while
the load access rate to the L2 is relatively low. HWP has a higher L2 access rate than WB
since it writes shared data directly to the L2.

On the coherence side, WB has an increased amount of coherence-related messages as
the shared data increases. Taking into account all components, WB and HWP consume
roughly the same energy per access for a given ratio of accesses to shared data. Both show
approximately a 42-50% per access energy reduction (depending on the percentage of shared
data) with respect to WT. To sum up, when comparing the different write policies on the
energy aspect, HWP has the same reduced energy consumption as WB compared to WT (up
to 50%), but without the coherence complexity inherent to WB, as presented in Section 4.

5.3 Guaranteed Performance
WCET estimation is one of the most critical metrics for real-time systems, since it determines
the guaranteed performance that the system can deliver. As presented before, WCET
estimation is challenged by the use of multicores due to contention delay suffered by tasks.

In order to assess the benefits on WCET estimate reduction of HWP, we have created
1-, 2-, 4- and 8-task workloads, as presented in Table 6. Workloads have been generated
using benchmarks from the EEMBC automotive suite (eembc1.X, eembc2.X) and from the
MediaBench suite (media1.X, media2.X). Across workloads, the first task in each workload,
the one for which WCET estimates are produced, comprise at least one benchmark with at
most a 5% of stores, and at least one benchmark with at least a 13% of stores. The rest of
the new benchmarks in the workload are selected randomly.

Modeling multicore contention is a concern for timing validation and verification as
witnessed by a notable amount of works on the topic, summarized in [9]. Many measurement-
based approaches – the most extended industrial practice – build on the availability of
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Table 6 Benchmark mixes used to assess WCET estimates under different core counts.

Mix main cont1 cont2 cont3 cont4 cont5 cont6 cont7
eembc1.1 bitmnp
eembc1.2 puwmod
media1.1 g721.d
media1.2 jpeg.d
eembc2.1 bitmnp a2time
eembc2.2 puwmod aifftr
media2.1 g721.d adpcm.d
media2.2 jpeg.d adpcm.e
eembc4.1 bitmnp a2time matrix rspeed
eembc4.2 puwmod aifftr idctrn ttsprk
media4.1 g721.d adpcm.d gsm.d pegwit.d
media4.2 jpeg.d adpcm.e g721.e pgp.d
eembc8.1 bitmnp a2time matrix rspeed tblook canrdr aifirf aifftr
eembc8.2 puwmod aifftr idctrn ttsprk basefp cacheb tblook ttsprk
media8.1 g721.d adpcm.d gsm.d pegwit.d g721.d pegwit.d gsm.e pgp.d
media8.2 jpeg.d adpcm.e g721.e pgp.d adpcm.e jpeg.d gsm.e adpcm.e

performance monitoring counters (PMCs) [23, 25, 7, 18, 8]. From those we build on [18]
since it captures the number of requests each core performs to the shared resources. This
results in partially time composable WCET estimates, rather than fully-time composable ones
that result from assuming that every single request of the task under analysis is delayed
regardless of the load contenders put on the shared resources.

We illustrate the model [18] with a small example comprising one task under analysis
or τa and a contender task or τb. When τb has more requests than τa, each request of τb is
assumed to delay the requests of τa. The worst-case contention that τb can cause on τa, i.e.
∆cont

b→a, is computed according to Equation 1, where nt
b is the number of τb requests of type

t and latt is the latency of that request type. Note that the model makes the worst case
assumption of no overlap of requests, so each τb’s request delays τa by its latency, i.e. latt.

∆cont
b→a =

∑
t∈T

min(na, n
t
b)× latt (1)

In our case the request types are T = {L2h, L2m, s2h, s2m} corresponding to loads hitting
and missing in the L2 cache, and stores hitting and missing in the L2 cache respectively,
which can be tracked with existing PMCs [11]. The corresponding latency of each of these
event type is [18] (in processor cyles): latL2h = 9, latL2m = 7, lats2h = 1, and lats2m = 1.

Note that it does not matter the type of τa requests but just it overall number na =∑
t∈T n

t
a. That is, the contention τa suffers depends on its total number of requests and the

number of requests of each type of its contenders (τb in this case). The model factors in the
case when τb has fewer accesses than τa that results in some τa requests not being delayed
by any request from τb. The approach presented in Equation 1 for τb is followed for all the
Nc− 1 tasks simultaneously running with τa, where Nc is the number of cores. The reader
is referred to [18] for more details.

Figure 6 shows the WCET estimate obtained for the first task under each cache write
policy. WCET estimates are shown as the number of cores varies from 1 to 8. In order
to simplify the comparison, all WCET estimates are normalized to the WCET estimate of
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(a) 0% shared (b) 10% shared (c) 20% shared (d) 40% shared

Figure 6 Normalized WCET estimate for the first task in the workload under different core
counts and percentage of shared data for the different write policies.

the first task when run in isolation under WB. We see that in all cases the tightest WCET
estimates are obtained with WB. HWP obtains comparable results to those of WB and much
better than those for WT. The latter gets rapidly worse as the core count increases. Note
that Figures 6 (a), (b), (c), and (d) are not directly comparable, since for each figure WCET
estimates are normalized to that of WB when the task runs on isolation.

We also see that WT is not affected by the percentage of shared data, since it always
updates the L2 regardless if the data is shared or not. WB does not show meaningful
variations either, while HWP has small variations (mainly for eembc2 and media2). In all
cases HWP is significantly better than WT.

Across all shared-data scenarios for WT we can observe that:
Mix eembc2 suffers a significant increase in WCET estimates (more than 5x in the 8 core
configuration). This is due to the combination of memory instructions the program under
analysis executes (30% of all instructions) and the number of stores the competing tasks
have (9% of all instructions on average).
Mixes eembc1 and media2, have lower, yet significant, WCET increases (more than 2x
and 3x respectively). This is caused by the combination of the two metrics just mentioned
is lower than that of eembc2.
Finally, media1 has a small WCET estimate increase due to a lower number of memory
instructions executed by the main program (23%) and a lower percentage of stores in the
challenger tasks (6% on average).

WB is the write policy with lower WCET estimate performance penalty. WB causes a
small increase in WCET estimates even when we have 40% of data shared (higher than what
is usually found in parallel applications [13, 15]). This is so, because only data requested by
other cores is exchange via the bus.

HWP lies in between WT and WB, though it is much closer to WB. For eembc1 and
media1, the WCET estimate is remarkably low. This is also contributed by low percentage
of memory instructions combined with the low percentage of stores in the challenger tasks.
For eembc2 and media2, HWP suffers high increase in WCET estimates in the 40% shared
data scenario: despite HWP reduces the pressure on the bus, (i) the high percentage of share
data, (ii) the high percentage of memory instructions these benchmark mixes execute (30%
and 23% respectively), and (iii) the number of instructions that are stores in the competing
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(a) EEMBC (b) Mediabench

Figure 7 Number of broadcasts and write-backs per memory access.

tasks (8 and 9% respectively), cause the pressure on the bus to increase. Yet, HWP stills
performs better than WT, specially in high-core setups (4-8), where WT grows to 3-6x and
HWP only grows to less than 2x in the worst setups. The penalty difference with WB as
the number of cores and shared data increase is mainly due to the fact that all accesses to
shared data is sent to the L2 (write-through on shared data), without the need of another
core requesting the data. This means that the same core could write several times directly
to L2 without another core requesting the data in between.

To sum up, HWP obtains similar WCET estimates to WB, but significantly smaller
than WT (up to 5x) in multi-core setups. This difference in WCET estimates increases
significantly with the number of cores being used.

5.4 Coherence
The write policy impacts the selection of the coherence solution. With WT caches a simple
invalidation protocol V/I is enough, while for WB caches a more complex policy such as
MESI is required. For HWP, an invalidation protocol such as the one used in WT is enough.

The potential impact of the coherence protocol, in particular MESI, is two-fold. First,
the complexity of its design, implementation, and validation. And second, its impact on
performance since the number of messages to exchange between processors and the L2 cache
to maintain coherence.

Since the complexity has been qualitatively assessed in Sections 3 and 4, here we focus on
the number of messages that will be sent in every coherence protocol as a proxy to coherence
performance overheads. In particular we focus on the invalidation messages and the number
of write-backs caused because of coherence (not due to cache capacity issues).

Figure 7 shows the average number of coherence messages per memory access for EEMBC
(a) and Mediabench (b). We evaluate the 3 write policies: WT, WB and HWP; considering
5%, 10% and 20% of shared accesses in the last two policies. The number of invalidations in
WT is high in both benchmark suites because every write access requires that an invalidation
message is sent to the bus, since any other private cache can have a copy of the data. For
WB and HWP the number of invalidations is much smaller, since the cache directory tracks
the core having a copy of each cache line, and only shared data that actually is in private
caches will be invalidated.

The other coherence metric we analyze is the number of write-backs related to coherence,
which only happen for the WB policy. This occurs when a core c0 modifies some data in its
private dL1 and another core c1 wants to access that data. Since the L2 knows that c0 has
this data in a Modified state, the L2 asks c0 to write back the modified data to L2, and then
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the L2 sends it to c1. In the WT policy, the L2 always has the most updated values, so there
are no write-backs due to coherence. Likewise, HWP only writes back private data, treating
shared data like WT, so there are no write-backs due to coherence either.

Note that while the trend for the coherence cost shown in this section is similar to that
of energy (Figure 5), the absolute values are not the same. This is so because the energy
cost of a write-back is higher than that of an invalidation. As a result, when comparing WT
to WB/HWP, the energy consumed in coherence is not that high as the number of messages
as shown in this section.

Overall, HWP offers the best of WT and WB in terms of coherence: it generates as little
invalidations as WB without the coherence related write-backs of WB.

5.5 Reliability
We assume that caches are able to detect and correct single-bit upsets (SBU), while multi-bit
upsets (MBU) may occur when their probability is high enough. We assume that solutions
such as word interleaving6 are applied so that a N-bit MBU becomes N SBUs. Hence, the
criteria to assess reliability consists of whether designs are able to detect and correct single-bit
errors. Note that such reliability criteria are already implemented in processors targeting the
highest criticality levels in the space [11] and automotive [2] domains.

Since in WT all the updated data is always in L2, only parity is required in dL1 to detect
single-bit errors given that correct data can be retrieved from L2. WB and HWP allow dirty
data in the dL1 cache, and thus they require error correction capabilities in dL1, such as
SEC-DED. The L2 cache always implements SEC-DED, since there can be dirty data at this
cache level when using all policies.

The difference in the reliability technique used in dL1 has limited impact on area. Parity,
used in WT, imposes a 1.6% increase in the number of cells needed (1 bit per 64-bit word),
as well as few XOR gates and a comparator. SEC-DEC, used in WB and HWP, increases
by 12.5% the number of cells (8 bits per 64-bit word), and also adds extra XOR gates and
comparators [16]. Note that the relative area of dL1 cache w.r.t. L2 cache is typically low,
and all write policies implement SEC-DED in L2, thus lowering the relative additional cost
of SEC-DED vs parity in dL1 when put in the context of the complete cache system.

This section complements the comparison that has been made in Sections 3 and 4.3.

6 Related Work

Relevant related works relate to WB caches and their use in real-time systems, private/
shared data classification mechanisms, models for computing WCET estimates for multi-core
contention, and the use of other hybrid techniques for high-performance computing.

Due to the recent interest in the use of WB caches for critical real-time systems, mainly
due to its potential increase in guaranteed performance, some works [34, 5] have studied
static WCET analyses of this write policy, since it is more challenging than for WT caches.
Authors in [34] propose an eviction-focused technique, analyzing for each cache miss if it
could result in a write-back in order to estimate the WCET. In a more recent work [5], a
new method has been proposed to complement the previous work by using a store-focused
technique. This method consists in checking whether a store may transform a currently

6 Interleaving K words at bit level ensures that bits of a given word, and hence protected with the same
parity/ECC code, are at a distance of at least K bits.
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clean line into dirty, and hence result in a write-back later on. Those techniques can be
retargeted to capture HWP to tighten WCET estimates over WB/WT. In this line, previous
works [31] also propose new cache systems that take into account shared/private data to
improve WCET estimates, but with more radical changes required in the architecture.

Regarding private/shared data classification, different methods and hardware designs
based on them have been proposed [13, 15]. Some authors [13] classify the different types
of cache access patterns, and use such classification to implement a specific distributed
cache design. Authors study the percentage of data that is private, shared/read-only and
shared/modified. In [15] the authors propose a dynamic classification of shared and private
pages. This technique needs some WB mechanism when a page changes its status from
private to shared. While this technique may also improve performance over WT, it also has
to deal with the coherence complexity of WB.

WCET estimate computation in multicores has been subject to intense study [23, 25, 7,
18, 8]. In [18, 8], the authors propose techniques for computing partially time composable
Execution Time Bounds for bus accesses based on the number of requests the contenders can
generate, regardless of when they access the bus. These technique provides tighter WCET
estimates than simpler fully time composable models that always assume the worst case on a
bus access. We have built on these techniques for WCET estimation.

Techniques for a hybrid approach on coherence management have been studied in high-
performance domains [30, 6]. In [30], the authors implement a similar technique to [15]
that dynamically changes the status of memory pages from private (default) to shared when
they are accessed by more than one core. In [6], the authors propose a similar technique to
differentiate private and shared pages at OS level, thus reducing the size of cache directories
since they do not need to keep track of private lines. However, in these works there is still a
non-trivial coherence mechanism with transient states, while our proposal targets a simpler
(static) coherence mechanism.

7 Conclusions

The relentless trend towards the adoption of multilevel caches in real-time systems is a
fact, in the line of high-performance systems. Our analysis of the write miss policy shows
that WT simplifies coherence and reliability, while WB performs better in performance and
energy. From the analysis we propose a new Hybrid Write Policy (HWP) that discriminates
among shared and private data to smartly write through dL1 data or keep it dirty in dL1.
Experimental results show that HWP results in remarkably better guaranteed performance
than WT. HWP results for energy consumption per memory access improve those of WT.
In terms of complexity of the coherence protocol, HWP implements a simple Valid/Invalid
protocol like WT, compared to the complex MESI protocol used in WB.
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Abstract
Event arrival functions are commonly required in real-time systems analysis. Yet, event arrival
functions are often either modeled based on specifications or generated by using potentially
unsafe captured traces. To overcome this shortcoming, we present a compiler-based approach to
safely extract event arrival functions. The extraction takes place at the code-level considering a
complete coverage of all possible paths in the program and resulting in a cycle accurate event
arrival curve. In order to reduce the runtime overhead of the proposed algorithm, we extend
our approach with an adjustable level of granularity always providing a safe approximation of
the tightest possible event arrival curve. In an evaluation, we demonstrate that the required
extraction time can be heavily reduced while maintaining a high precision.
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1 Introduction and Motivation

The design of safety-critical real-time systems often requires an effective analysis of the
worst-case timing behavior in order to determine the compliance of the system to the timing
constraints. This usually involves a traditional two-steps approach [3] which consists of a first
low-level code analysis to determine the worst-case execution time of every task based on its
program structure, followed by a system-level timing analysis to determine the worst-case
response time of interfering tasks based on abstract models of the tasks activations and the
scheduling policy.

In particular, system-level analysis often makes use of event arrival functions [18, 20, 23, 1]
in order to bound the number of accesses to the shared resources and analyze the amount of
induced interference. Event streams abstract the notion of traces and describe the possible
I/O timing of interfering tasks sharing resources in the system under analysis. System
properties are then computed in a compositional way using algebraic techniques where event
streams are used to connect components’ analyses according to the system’s application and
communication structure.

The code-level and system-level analysis steps are complementary, however in practice
they are often considered separately. Some existing approaches, such as [19, 4] extend
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code-level analysis to system-level analysis by considering in a multicore system shared
cache preemption delays to bound tasks’ response times. These methods result in tight
upper bounds on the response times. However, they consider a holistic approach for the
evaluation of the worst-case execution time which cannot capture all the timing dependencies
of interfering tasks. Furthermore, they are hard to scale with the complexity of the system
and therefore they cannot be applied to complex hardware architectures involving on-chip
interconnects and multi-level memory hierarchies.

On the other hand, system-level performance analysis approaches such as [23, 10] are
more scalable and can be applied to analyze in a compositional way complex hardware
structures [15]. They take as input for every task the worst-case execution time resulting
from the code-level analysis, and abstract models of the arrival curves corresponding for
instance to a known (periodic) activation pattern but which are very seldom derived using
appropriate tools. This leads to harsh overapproximations in terms of timing, as the detailed
event arrival curves are not known. Furthermore, the system-level results may even be
unsafe due to unsafe event arrival curves resulting from e.g., traces which do not capture the
worst-case behavior.

In this paper we present a compiler-based extraction of event arrival curves. Our goal is
to bridge the gap between abstract system-level analysis and low-level code analysis. This
is in particular very relevant for the analysis of multicore systems where there is a strong
correlation between the individual timing of tasks and their cross-core interference [21].
Memory accesses constitute one main example where compared to existing approaches, such
as [6, 24] that only consider a maximum total number of memory accesses for each program,
arrival curves give a more precise information about the distribution of data accesses during
the program execution. This allows to provide a more detailed and accurate analysis of the
timing behavior of the system and to ease the integration between the worst-case execution
and response time analysis steps. Yet, our proposed approach is not limited to memory
accesses as it takes abstract events as an input, enabling various actions to be defined as an
event (e.g., function calls).

Several existing work have investigated deriving access patterns by exploiting low-level
informations. Li et al. [16] presented a mode-controlled data-flow model of real-time memory
controllers. It is capable of deriving a tight worst-case bandwidth (WCBW) estimation for
shared SDRAM memories. For this analysis, it is required to describe the dynamic command
scheduling used by the memory controller and transaction sequence of the applications via
so-called mode sequences.

Jacobs et al. [11] presented an approach for extracting safe upper event arrival curves
at the code-level using compiler-based techniques. They proposed a modified version of the
implicit path enumeration technique (IPET) [17] to find the maximum number of events
potentially occurring in a given time interval on any path of the program. This approach is
used to model all potential sub-paths implicitly by formulating an integer linear program
(ILP). Yet, the presented approach lacks formalisms for critical aspects to ensure safeness
(i.e., the resulting arrival curve should not be underapproximated) and tightness (i.e., the
level of overapproximation due to the model should be minimal). The modification of the
IPET approach is required since the standard approach only covers complete paths through a
program. However, it is necessary to explore all possible sub-paths in a program starting and
ending at any arbitrary node when deriving an event arrival curve. We extend this approach
to also support lower event arrival curves and introduce a variable granularity during the
extraction to find a compromise between extraction time and overapproximation.
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Beside Jacobs et al. [11], only few existing work have considered IPET-based approaches
exploring sub-paths in a program. Altmeyer et al. [2] presented an approach where sub-paths
are defined by introducing additional preemption nodes. However, these sub-paths are
restricted to the preemption nodes and are forced to terminate there which reduces the
number of explored sub-paths. Kleinsorge et al. [14] presented an explicit path analysis
which is capable of evaluating arbitrary partial worst-case execution paths. However, due to
its nature all existing loops have to be unrolled during the analysis.

Contribution

We present a formal description of a compiler-based extraction of event arrival functions. It
builds on the primary approach of Jacobs et al. and extends it in several aspects, e.g., the
non-trivial extraction of lower arrival curves and increasing tightness of the arrival curves.
The extraction of lower arrival curves is introduced since system-level analyses, such as
Real-Time Calculus [23] or SymTA/S [10], partially rely on them as well. Tightness of the
event arrival curves is increased by differentiation of loop control types and consideration
of minimum loop bounds. For this, we introduce a complete formalized set of equations of
the model. As the essential benefit of a compiler-based extraction of event arrival functions
lies in its safe- and tightness, it is relevant to formulate the description well to ensure these
characteristics. Besides, we provide an algorithm in order to derive a bound on the number
of events for all possible time intervals of a program’s runtime. The algorithm considers
a complete coverage of all possible paths and therefore builds a safe upper bound on the
number of events. The execution time of the proposed algorithm depends on the structure of
the program but also on the granularity of the considered time intervals and the clustering
of events per basic block. Therefore, we relate the extraction time of the proposed algorithm
to the granularity and discuss the duality between the considered granularity level and the
precision of the derived arrival curves.

The remainder of the paper is structured as follows. In Section 2 we present the system
model and how the IPET approach is extended to extract the event arrival curves while
providing a full coverage of all execution paths in a program. Section 3 presents our proposed
algorithm for the extraction of the event arrival curves and its extension to consider different
granularities. Section 4 evaluates our algorithm and confirms our findings. Section 5 concludes
the paper.

2 System Model

2.1 Context and Prerequisites
Event arrival functions allow to model the dynamics of a real-time system, even for arbitrarily
triggered events. They are generally defined as follows,

I Definition 1 (Event Arrival Functions). Let η+
i (∆t) and η−i (∆t) denote for each task i the

maximum and minimum number of events issued within a time window of size ∆t. Their
pseudo-inverse counterparts δ+(n) and δ−(n), return the maximum/minimum time interval
between the first and the last event in any sequence of n event arrivals. The conversion
between η and δ functions is straightforward and can be easily derived as explained in [5].

In order to extract event arrival curves using code-level analysis, we consider as input the
low-level representation of the program implementing a task annotated with loop bounds
and timings. The low-level representation of a program is close to its actual assembly
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representation, yet still represented by certain data structures to ease the handling. Loop
bounds are annotations which indicate the maximum or minimum number of possible
iterations of a loop and can be inserted by the user or automatically. Prior to the extraction
of the arrival curve, a worst-case execution time (WCET) analysis is performed considering
no interference from other cores or tasks. The WCET of a program is the worst possible
time it needs when it runs in isolation from its start until its termination. Subsequently, a
best-case execution time (BCET) analysis is also performed. We are not discussing these
analyses in further detail, since existing methods are used.

We denote events as actions triggered by an instruction or a sequence of instructions.
Most notably this can be a memory access to a shared memory region or an access to an
I/O device. However, the model is not restricted to this, since it solely takes as input the
maximum and minimum of occurring events per basic block (BB).

2.2 Path Analysis and Event Arrival Functions
We base the extraction of the event arrival curves of a program on the control flow graph
(CFG) extracted from its low-level representation. In order to determine the maximum (resp.,
minimum) number of events in a specific time interval ∆t, all possible paths in this CFG have
to be considered. Since the number of existing paths grows exponentially with the depth of
conditional statements and variable loop bounds, considering all existing paths individually
easily becomes infeasible. Jacobs et al. [11] proposed to exploit the so-called implicit path
enumeration technique (IPET) as presented by Li and Malik [17]. This technique is typically
used to locate the worst-case execution path (WCEP) of a program, over which its WCET
occurs.

Using the IPET, a set of integer linear programming (ILP) flow constraints is generated to
describe the CFG. All possible paths through the task’s CFG are then implicitly described by
the relation of its basic blocks in the constraints. By setting distinctive conditions, e.g., the
first and last basic blocks have to be executed exactly once while maximizing the accumulated
time, the WCEP can be found.

Yet, the classical IPET formulation can not be directly applied to the problem of finding
maximum number of events during a given time window. This originates from the fact that
we do not enforce one full path through the CFG, since we are only interested in sub-paths.
Such a sub-path does not need to start at an entrypoint, nor end at an exit block. This way
all possible sub-paths, which can be executed in a given time window, need to be considered.

Jacobs et al. introduced a modified IPET-based approach, in which all possible sub-paths
are considered. Therefore any basic block can act as a source, whereas any reachable block
can be a sink. This way any consecutive path, starting and ending at an arbitrary basic
block, can be chosen by the ILP solver in order to find the sub-path over which the maximum
number of events with respect to a given time interval are present.

In the sequel, we present the underlying basic model based on the previous work. A set
of linear inequations is set up to describe the CFG of a program. The objective function is
set to maximize the number of events on a to be chosen sub-path of the CFG, whereas the
timing of this sub-path is not allowed to exceed a user-given constant.

For the upcoming we use the following notational conventions. Lower case italic Latin
letters like a will be used for ILP variables. Upper case italic Latin letters like A represent
constants inside the ILP model. Table 1 contains all ILP variables used in the paper. Unless
otherwise stated, all ILP variables have a lower bound of 0. Lower case Latin letters as a
subscript represent an index. Table 2 contains further miscellaneous symbols used.
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Table 1 ILP decision variables.

Symbol Description
a+

i (a−
i ) Maximum (minimum) number of events contributed by basic block i on the

sub-path
a+

Total (a−
Total) Maximum (minimum) number of events occurring along the sub-path

bi Reduction factor for basic block i if it is used as a starting and/or ending
block

ei Basic block i is used as an end of the sub-path
f Binary variable indicating if the chosen path covers a complete path through

the program
g` Number of flows at the loop entrance of loop `
h` Number of flows exiting the loop `
nT

` Maximum number of flows through the back edge of tail-controlled loop `
nH

` Maximum number of flows into the body of head-controlled loop `
o` Binary variable indicating the if the start of the sub-path was placed inside

the loop `
pi,j Total number of flows from basic block i to j

rs (re) Binary variable indicating if a timing reduction is applied at the starting
(ending) block

si,j Edge from basic block i to j is used as a starting edge
sj Any incoming edge at basic block j is used as starting edge

w+
i (w−

i ) Total number of cycles contributed by basic block i on the sub-path when
generating an upper (lower) arrival function

Table 2 Miscellaneous symbols.

Symbol Description
A+

i (A−
i ) Maximum (minimum) number of events of basic block i

B A set containing all basic blocks of the program
BUp

` (BLow
` ) The upper (lower) loop bound of loop `

C+
i (C−

i ) WCET (BCET) of basic block i
Cz A set containing all calling edges to the function z
E` A set containing all entry basic blocks of loop `

Er
` (Ei

`) A set containing all regular (irregular) entry basic blocks of loop `
F A set containing all functions of the program
L A set containing all loops of the program

LT (LH) A set containing all tail-controlled (head-controlled) loops
M` A set containing all basic blocks belonging to loop `
N` A set containing all back edges of loop `
Pi A set containing all direct predecessors of basic block i
Rz A set containing all possible return edges of the function z
Rz,(i,j) A set containing all possible return edges of the function z when called using

edge (i, j)
Si A set containing all direct successors of basic block i
T` Equals 1 if loop ` is tail-controlled, otherwise 0
X` A set containing all exit basic blocks of loop `
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As mentioned previously, a WCET (resp., BCET) analysis is first executed where all
accesses to a shared memory are assumed with a minimal (resp., maximum) latency. Addi-
tionally, variable timings (which may be influenced by the event-type under focus or caches)
have to be considered carefully, such that they do not thwart a safe WCET (resp., BCET)
estimation. Note that, the system is evaluated in isolation, without considering interference
from other cores. We consider the timing of a basic block in terms of cycles. Therefore
integer variables are suitable to represent the timing of a basic block. Subsequently, the CFG
is synthetically modified, such that every basic block has a successor and predecessor. These
additional blocks are not inserted into the actual program code and are only present in our
analysis. A virtual source 	 is created for the entrypoint and inserted as a predecessor to
the first basic block. In the same fashion, virtual sinks ⊥ are created for all possible exits
and inserted as a successor to the last basic blocks. Therefore, for every basic block i in the
CFG, a flow constraint is generated as follows,∑

j∈Pi

pj,i − ei =
∑
k∈Si

(pi,k − si,k) (1)

The integer variable pi,k describes the number of times the control flow (subsequently
simply called flow) enters basic block k from basic block i. Each input flow of a basic block
represents one execution of the basic block. The variable ei is bound to a binary value and
is set to 1 when the basic block i is used as the last basic block in the chosen sub-path. It
represents a "movable" sink. In a similar manner, the variable si,k is bound to a binary value
and is set to 1 when the basic block k is the first basic block in the chosen sub-path. In
particular, the edge from basic block i to basic block k is used as the initial flow. The set Pi
contains all directly preceding basic blocks of i. Similarly, the set Si contains all directly
succeeding basic blocks of i. This way, Equation (1) functions as a node law, assuring that
the amount of flow into a node is equal to the amount of flow leaving it. Additionally, one
initial flow can be inserted into a basic block without violating the constraint. In the same
fashion, a path can end at a particular node if the corresponding e variable is set to 1.

The flows originating from (resp., directed to) the virtual sources (resp., sinks) are defined
as follows,

p	,i = s	,i (2)
pi,⊥ = 0 (3)

Since only one consecutive path is allowed, the sum over all starting (ending) points is limited
to be smaller or equal to one. Additionally, if a starting point is existing, there has to be an
ending point as well:∑

i∈B

∑
j∈Pi

sj,i =
∑
i∈B

ei ≤ 1 (4)

where, B is the set holding all basic blocks of the current task.
The ILP variable si is set to 1 if any of the ingoing edges of basic block i is used as an

initial flow. It is defined as follows:

si =
∨
j∈Pi

sj,i (5)

Logical operators like ∨ or ∧ can be easily described inside the ILP formulation as shown by,
e.g., Johannes [12].
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We assume that all instructions which may cause an event are known. It is possible to
perform a value analysis for this purpose, although potential over- or underapproximations
due to unknown values should be handled carefully. Architectures featuring out-of-order
execution need a particularly careful micro-architectural analysis, as instruction order may
change during the execution. We will not discuss these issues in detail since they exceed the
scope of this paper. We define the maximum number of events per basic block i as A+

i . This
is used to calculate the amount of events happening on the chosen sub-path.

a+
i = A+

i ·
∑
j∈Pi

pj,i (6)

a+
Total =

∑
i∈B

a+
i (7)

The ILP variable a+
i represents the maximum accumulated number of events of basic block i

over all its executions which are part of the chosen sub-path. a+
Total defines the maximum

number of events existing on the chosen sub-path.
Besides the control flow and the events, also the timing has to be considered. We define

w+
i as the number of cycles which basic block i contributes on the chosen sub-path.

w+
i =

C−i ∑
j∈Pi

pj,i

− (C−i − 1) · bi (8)

C−i is the BCET of the basic block i. The BCET is chosen instead of WCET here, since we
are interested in the maximum amount of events in a given time interval. Hence, using the
WCET would be too optimistic, as the accumulated time over the sub-path may require less
time. The ILP variable bi is bound to an integer value between [0,2] and is defined as follows:

bi =


0 if si = ei = 0,

2 if si ∧ ei ∧
( ∑
j∈Pi

pj,i > 1
)
,

1 else.

(9)

The variable bi functions as a reduction factor to the timing contribution of basic block
i. As it is not considered at which particular location inside the basic block its events are
triggered, the first and last basic block of the sub-path need to be handled with special care
in order to be safe: Since a sub-path through the program can in fact start (or end) at a
specific instruction inside the basic block, assuming its full BCET for this case would be
too pessimistic. For this particular case we assume that all events at this bounding block
happen at the very last (or first if the ending block) cycle of the basic block. In case the
chosen sub-path does neither start nor end at basic block i, the accumulated timing w+

i is not
reduced, as the reduction factor bi is set to 0. If basic block i is chosen as the start and end
of the sub-path (and it does not solely consist of the basic block i), the reduction factor bi is
set to 2. Thereby the timing contribution of basic block i is reduced by 2 · (C−i − 1). Finally,
if the basic block i is chosen as the start or end block (or the sub-path only consists of BB i),
the reduction factor is set to 1 as a safe overapproximation. We show in Section 3 a simplistic
approach to increase the granularity to a single-event level with a minor preparation of the
control flow graph to reduce the introduced pessimism.
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(a) Tail-controlled. (b) Head-controlled. (c) Head-controlled (irr.).

Figure 1 Sample loop structures.

Finally, the sum of all timing contributions is limited to be smaller or equal to the chosen
time interval ∆t, while maximizing the number of events.

∆t ≥
∑
i∈B

w+
i (10)

max : a+
Total (11)

2.3 Handling Loops and Function Calls
So far, the model does not limit loop iterations. It is assumed that all loops are annotated
with loop bounds. The deriving of loop bounds or control type (head- or tail-controlled) is
beyond the scope of this paper and well researched [22, 25]. The previous work by Jacobs
et al. [11] covers the handling of loops only very briefly. It is stated that the original IPET
formulation has to be extended for the case that a path is starting inside a loop, where the
loop’s back edge may be taken an additional loop bound-times. Yet, no formal description is
given. In the sequel, we introduce a tight and accurate description of handling loops. Besides,
we introduce how function calls can be handled which the previous work [11] lacks of.

We differentiate between head- and tail-controlled loops. For tail-controlled loops we
limit the number of back edges taken:

∀` ∈ LT :
∑

(i,j)∈N`

pi,j ≤ nT` (12)

LT defines the set of all tail-controlled loops. The set N` contains all back edges of the loop
`. A back edge of a loop originates from the loop tail to its head. In the exemplary loop
in Figure 1a this is the edge from basic block D to B. The ILP variable nT` denotes the
maximum flow through all back edges of the loop `.

nT` = (BUp
` − 1) ·

∑
i∈E`

∑
j∈(Pi\M`)

pj,i + o`

 (13)

BUp
` is defined as the upper loop bound of loop `. The upper loop bound of a loop defines

the maximum number of loop body iterations. The set E` contains all basic blocks, which
are entrances of loop `, whileM` contains all members of this loop (including nested loop
members). We define an entrance block of a loop as a basic block which belongs to the loop
and has a predecessor which is not part of the loop. In the exemplary loop in Figure 1a basic
block B is the entrance block. This implies that pj,i in Equation (13) covers all edges which
are entering the loop from outside, which would be the edge pA,B in the sample loop.

The binary ILP variable o` is forced to 1 in case any of the basic blocks inside the loop is
chosen as a starting point and is defined as follows:

o` =
∑
i∈M`

∑
j∈(Pi∩M`)

sj,i (14)
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Thereby, Equation (13) permits the loop body to be executed BUp
` times for every time the

loop is entered. Furthermore, if the starting point is chosen inside the loop, the loop body
can be executed BUp

` times additionally. This is required, as the starting block can also be
chosen inside a loop.

The constraints handling head-controlled loops are very similar, yet with a few modifica-
tions in order to tighten the resulting number of events. In contrast to the tail-controlled
loops, for head-controlled loops we limit the number of times the loop is actually entered.
Otherwise, one additional loop execution more than feasible by the CFG would be permitted.

Example: Assume the head-controlled loop in Figure 1b has an upper loop bound of
1. If the starting point is chosen at, e.g., basic block B, the number of executed back
edges would be restricted to 1, since there is no flow entering the loop. Yet, without
violating the constraints, the loop body could be executed twice according to the model
(sequence {B,C,D,B,C,D}), since the back edge is only executed once. Especially in case
of nested loops, an overapproximation of a single loop iteration can lead to a significant
overapproximation of total number of events. We therefore introduce the following equations,
which limit the number of times a head-controlled loop is entered.

∀` ∈ LH :
∑
i∈Er

`

∑
j∈(Si∩M`)

pi,j ≤ nH` (15)

The set LH contains all head-controlled loops, while the set Er` contains the regular entrance
block of the loop ` (|Er` | = 1). The exemplary loop in Figure 1b only has a regular entry,
while the exemplary loop in Figure 1c has two entries: One regular entry (B), and one
irregular entry (C ) (irregular entries arise due to, e.g., goto-statements into loops at the
source code level). Equation (15) restricts the number of times the loop body is entered
via its regular entry to a maximum of nH` . Regarding the exemplary loop in Figure 1c this
represents the edge from B to C. This limit is defined as follows:

nH` = BUp
` ·

∑
i∈E`

∑
j∈(Pi\M`)

pj,i + o`

− o` −∑
i∈Ei

`

∑
j∈(Pi\M`)

pj,i (16)

Similar to tail-controlled loops, Equation (16) permits the loop body to be executed BUp
`

times for every flow entering the loop. In case the starting point is chosen inside the loop
(o`=1), the loop body can be entered an additional (BUp

` -1) times. The deduction of 1 stems
from the fact that if the starting point is chosen inside the loop, the loop is already entered
once. The right-hand subtractive term is required for irregular loops. If the loop is entered
via an irregular entry, the first loop iteration clearly does not include one entry from the
regular entry into the loop body. As we limit the loop iterations via the number of times
the loop body is entered via its regular entry, the upper limit nH` has to be lowered for each
time the loop is entered via an irregular entry.

In order to tighten the results, the ILP model also considers the minimum loop iterations.

∀` ∈ L : g` =
∑
i∈E`

∑
j∈(Pi\M`)

pj,i (17)

h` =
∑
i∈X`

∑
j∈(Si\M`)

pi,j (18)

∑
(i,j)∈N`

pi,j ≥ min (g`, h`) · (BLow
` − T`) (19)
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Figure 2 Exemplary CFG.

The set L contains all loops, whereas set X` contains all exit blocks of the loop `. Equa-
tions (17) and (18) are solely present for a better readability. Equation (17) defines the
number of flows arriving at the loop head, while (18) defines the flows exiting the loop.
Equation (19) sets a minimum number of loop iterations for each time the loop is entered
and exited. BLow

` is the lower loop bound of loop `, whereas T` equals 1 if ` is tail-controlled
and 0 otherwise. The min()-Function in Equation (19) is described in the ILP as shown by
Oehlert et al. [19].

Beside loops, our model is also capable of modeling function calls. It is sensitive to call
edges and their corresponding return edges, i.e., for each calling edge, all valid return edges
are evaluated. Calling contexts are currently not supported. To ensure tightness, we restrict
the difference between ingoing and outgoing flows of functions. Since the start or end block
may be chosen inside a called function, the in- and outgoing flows of a function may differ.

∀γ ∈ F : ∀(i, j) ∈ Cγ : pi,j ≥ min

 ∑
(m,n)∈Rγ,(i,j)

pm,n,
∑

(x,y)∈Cγ

px,y

− sγ (20)

∑
(m,n)∈Rγ,(i,j)

pm,n ≥ min

pi,j , ∑
(x,y)∈Rγ

px,y

− eγ (21)

The set F consists of all functions inside the program, while Cγ contains all calling edges to the
function γ. The set Rγ contains all possible return edges from the function γ. Furthermore,
the set Rγ,(i,j) contains all possible return edges from the function γ when called via the edge
(i, j) (Rγ,(i,j) ⊆ Rγ). sγ is set to 1 if any basic block of function γ or a basic block contained
by a function called by γ is used a starting block. eγ is the corresponding counterpart for
the ending points. Equation (20) sets up one constraint for every call inside the program.
It sets a lower bound for the number of times the calling edge (i, j) is executed. Therefore,
the minimum of flows entering the function γ and exiting via a return-edge belonging to the
caller-edge (i, j) is determined. Equation (21) then sets a lower bound on the number of times
a corresponding return-edge is executed. More generally speaking, the equations enforce
that only call- and return-edges which belong together are allowed to be used. Example:
Figure 2 depicts an exemplary CFG with 2 calls. The set of constraints modeling the function
Fun contains two incoming edges, one from basic block A and one from B, as well as two
corresponding exiting edges. Obviously, only the CFG-feasible paths A → Fun → B and
B → Fun → C should be allowed, yet paths like A → Fun → C not. The original IPET
formulation can easily ensure this by forcing a calling edge’s number of executions to be
equal to the executions of its feasible return edges. As in our case sub-paths may also start
(end) in a called function, the number of calls and returns may differ. Therefore the lower
bound of a call-edge (return-edge) is decreased by one in case the starting (ending) point
is chosen inside the called function. As recursive functions may be exited (called) multiple
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times without being called (exited), this difference can also be greater than 1 (e.g., the
sub-path is chosen to start in the deepest recursion level). Therefore the min()-function is
used, such that minimum of overall executed calling edges and dedicated returns is evaluated
in Equation (20), whereas Equation (21) handles the return-edges likewise.

This differentiation is done on one hand to ensure tightness (dedicated caller-return pairs)
and on the other to enable starting and ending points to be chosen inside called functions.

2.4 Lower Bound on the Event Arrival Function

The previous approach by Jacobs et al. only focused on the extraction of an upper event
arrival curve. In this section we present how lower event arrival curves can be extracted.

A lower bound on the event arrival function η−i (∆t) can be similarly derived using the
introduced ILP model, yet with several modifications and additions. Since we want to
determine the minimum amount of events in a given time window, we use the WCET of
a basic block instead of the BCET used for the upper bound. Therefore Equation (8) is
replaced with the following one:

w−i =

C+
i

∑
j∈Pi

pj,i

− bi · ((si ∧ rs) ∨ (ei ∧ re)) (22)

Instead of the BCET C−i of a basic block i, its WCET C+
i is used. In order to derive a

safe lower event arrival curve, C+
i has to include all potential interferences, stalls or similar.

If C+
i is depending on the event-type under focus, it is possible to derive an upper event

arrival curve up-front and use system analysis tools [5, 23] to determine a safe WCET. In
case the basic block i is used as a starting and/or ending block and the corresponding binary
variable r is set to 1, the block’s timing is reduced by bi (c.f. Equation (9)). This again is
done as a safe overapproximation, since we are not considering at which particular locations
the event triggering instructions are located in a basic block. Although the multiplication
term does not appear to be linear, it can be expressed using a simple case-structure since
((si ∧ rs) ∨ (ei ∧ re)) is restricted to Boolean values. In a similar manner Equation (6) is
replaced:

a−i =

A−i ·∑
j∈Pi

pj,i

− bi · ((si ∧ rs) ∨ (ei ∧ re)) ·A−i (23)

A−i represents the minimum number of events in basic block i. The first term remains the
same while a second subtractive term is introduced. Similar to Equation (22), in case basic
block i is the start and/or end block of the path, its number of events can be reduced by
bi ·A−i . The modifications of (23) is done since we do not account for the location of events
inside the basic blocks, similarly as in Equation (22). By this overapproximation we assume,
that all events happen at the very first cycle (very last cycle) of a starting (ending) node.
Therefore, if rs (or respectively re for an end block) is set to 1, a basic block’s timing is
reduced and bi ·A−i events are subtracted. The variables rs and re are used in order to apply
a safe overapproximation for the first and last basic block of a sub-path, yet still cover all
occurring events when a full path through the program is found.
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We insert additional constraints to detect the case that a complete path through the
program (starting at the entrypoint and ending at a sink) is chosen.

s	 = s	,j (24)

e⊥ =
∨
i∈T

ei (25)

f = s	 ∧ e⊥ (26)

In Equation (24) the basic block j is the entry basic block of the program (c.f. block A in
Figure 4). The set T contains all possible exiting basic blocks. Therefore f is set to 1 in case
the chosen path starts at the entrypoint and ends at an exiting block, resulting in a complete
path through the program.

Finally, Equations (10) and (11) are replaced by the following two:

∆t ≤
(∑
i∈B

w−i

)
+ (f ∧ (rs ∨ re)) ·M (27)

min : a−Total (28)

Most notably the direction of the comparison operator in Equation (27) is flipped and the
objective is changed to minimize. Again, ∆t is given as a constant, representing the time
interval for which the minimum number of events should be determined. Therefore the solver
is forced to find a (sub-)path in the CFG which takes at least ∆t cycles and the minimum
amount of events. M is a sufficiently large constant. A trivial sufficient value is the WCET
of the analyzed program.

In case a complete program path is covered and no reductions in terms of cycles and
events are applied, Equation (27) is always satisfied. Therefore the arrival function converges
at a complete path with the minimum number of total events.

3 Event Arrival Extraction Over All Existing Paths

In the following, we present how event arrival curves can be obtained with an adjustable
level of precision while still resulting in a safe overapproximation. This subject is not part of
the scope of the previous work [11].

3.1 Extraction Algorithms
As described previously, in order to derive an upper (resp., lower) bound on the event arrival
curves by a given task, we need to explore different time intervals and extract for each
duration the maximum (resp., minimum) number of events during this interval. For this,
the IPET approach is customized to consider all sub-paths of duration ∆t and maximing
(resp., minimizing) the number of events. This procedure has to be repeated multiple times
to cover all possible values of ∆t. In the following we present two algorithms to explore the
space of all possible values of time intervals.

Algorithm 1 is used to generate an arrival curve with an adjustable level of time granularity
I . Here the value of ∆t is bound to increasing values with a fixed increment I while solving
the ILP for every value of ∆t. The WCET of the program is used as an upper bound, since
by definition no path can result in a higher timing than the WCEP. Note that, the smaller
the value of I, the more fine-grained the generated arrival curve is. This comes with a linear
increase in the number of ILP variants to be solved, one for every possible new value of ∆t.
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Algorithm 1 Fixed granularity extraction.
Input: I - Time granularity
Output: m - Map with the max. number of arrivals with ∆t as a key
1: Map m
2: for (∆t=0; ∆t ≤ WCET; ∆t += I) do
3: m[ ∆t ] = solveILP(∆t)
4: end for

Algorithm 2 Binary search.
Input: -
Output: m - Map with the max. number of arrivals with ∆t as a key
1: Map m, List w // w contains all windows to be analyzed
2: w.push({ 0, WCET } )
3: while !(w.empty()) do
4: Pair curWindow = w.pop()
5: if !(m[curWindow.lower] exists) then
6: ∆t = curWindow.lower
7: m[curWindow.lower] = solveILP(∆t)
8: end if
9: if !(m[curWindow.upper] exists) then

10: ∆t = curWindow.upper
11: m[curWindow.upper] = solveILP(∆t)
12: end if
13: if m[curWindow.lower] 6= m[curWindow.upper] and (curWindow.upper -

curWindow.lower ) > 1 then
14: x = b(curWindow.lower + curWindow.upper)/2c
15: w.push({curWindow.lower, x})
16: w.push({x, curWindow.upper})
17: end if
18: end while

It is noteworthy that this approach still results in a safe (overapproximated) arrival curve
where a coarse-grain arrival curve always dominates a fine-grain arrival curve. A further
discussion will be presented in the evaluation Section 4.

While this approach is reasonable for a limited amount of sample points over the arrival
curve, it is not applicable for generating an arrival curve covering all potential intervals
(i.e I = 1). For this circumstance, we present in Algorithm 2 another procedure based
on a binary search. We exploit two facts regarding the event arrival curves: i) they are
monotonically increasing, ii) they are piecewise step functions (i.e., we will not necessarily
have for instance a memory access at every cycle of execution). Therefore, for a given interval
of ∆t, we first examine the maximum number of events at the outer boundaries of the
interval. If this number is equal at the boundaries, then no new event has occurred during
this interval and thereby no further analysis is required inside the current time interval, since
all intermediate values will result in the same maximum (resp., minimum) number of events
at the interval boundaries. Otherwise, the interval (initially set to [0,WCET]) is split in half
and the procedure is further repeated until all intervals in the curve are covered. Note that,
both algorithms can be used to generate either an upper event arrival curve or a lower event
arrival curve.
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(a) (b)

Figure 3 A sample basic block before and after splitting.

3.2 Refining the Basic Block Granularity
The number of events is analyzed on a basic block level. In case a basic block i has Ai events,
this number is accounted for the whole block, leading to another overapproximation since we
do not consider where these events are located during the execution of the basic block. In
order to refine the level of granularity we partially re-structure the basic blocks which contain
potential event triggering instructions. These basic blocks are transformed into multiple
"sub basic blocks" as shown in [19]. Therefore, all basic blocks containing instructions which
potentially trigger an event are split up into so-called sub basic blocks to isolate the event.
Such sub basic blocks solely consist of the event’s single instruction.

Consider the example depicted in Figure 3. After refining the granularity the basic block
is split up into 3 sub basic blocks, where the second sub basic block only consists of the
potentially data accessing instruction. This is shown in Figure 3b. This technique can be
applied prior to the ILP generation. Besides, the ILP model with the refined sub basic blocks
can be set up using the same constraints as presented.

Therefore, combining this refining technique and the presented extraction algorithms, the
granularity can be adjusted at two levels: 1) Calculating a fixed number of sample points
versus a complete curve coverage. 2) Considering a clustered number of events per basic
block versus isolating each event in a separate sub basic block.

4 Evaluation

All experiments are performed on an Intel Xeon Server (20 cores at 2.3 GHz, 94 GB RAM)
and the ILPs were solved using Gurobi 7.5.0. For evaluation purposes the MRTC benchmark
suite [9] with annotated loop bounds from the TACLeBench project [7] are used. All
benchmarks are compiled with the WCET-aware C compiler (WCC) [8] and the -O2 flag
activated which enables several ACET-oriented optimizations. As an exemplary evaluation
platform the ARM7TDMI architecture (without caches) is chosen. Timing analyses are
performed using methods described by Kelter [13]. The benchmark duff is excluded from
the evaluation, as it is not supported by the currently used timing analysis tool.

For all our experiments, we focus on extracting event-arrival functions for data accesses.
We therefore assume each access of a data object to generate an event.

4.1 An Illustrative Example
In the following, we illustrate the approach considering the control flow graph example
depicted in Figure 4. We show how to derive the arrival curve η+(∆t) representing an upper
bound on the number of data accesses. For this, each basic block i is annotated with its
execution time Ci (for this particular example we assume that the BCET of a basic block
is equal to its WCET) and its number of events Ai. Note that we do not consider any
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Figure 4 Sample control flow graph.

distribution of events inside a basic block. The considered example contains a tail-controlled
loop with a minimum and maximum number of executed back edges of 2 and 4 and therefore
loop bounds of [3,5].

We first derive the ILP model of the given CFG example. A virtual source is inserted as
a predecessor of the task’s entrypoint basic block A and a virtual sink as a successor to its
exiting basic block E. We start by setting up the node equation for the basic block A (cf.
Equations (1) - (3)).

s	,A − eA = pA,B − sA,B + pA,C − sA,C (29)

We continue with the rest of the basic blocks of our main function.

pA,B − eB = pB,E − sB,E (30)
pA,C + pD,C − eC = pC,F − sC,F (31)

pI,D − eD = pD,E − sD,E + pD,C − sD,C (32)
pB,E + pD,E − eE = 0 (33)

As all node constraints for the main functions are set up, additional node constraints for the
function fun are inserted in the same fashion.

pC,F − eF = pF,G − sF,G + pF,H − sF,H (34)
pF,G − eG = pG,I − sG,I (35)
pF,H − eH = pH,I − sH,I (36)

pG,I + pH,I − eI = pI,D − sI,D (37)

After all basic node constraints have been inserted, additional constraints concerning the
loop are also inserted (cf. Equations (12)-(14)).

pD,C ≤ nTL1 (38)
nTL1 = 4 · (pA,C + oL1) (39)
oL1 = sD,C + sC,F + sF,G + sF,H + sG,I + sH,I + sI,D (40)

As shown in Figure 4, the loop is tail-controlled. Therefore Equation (38) limits the
number of back edges executed to a maximum of nTL1. In case a chosen path starts inside
the loop body oL1 is set to 1. Since the loop is not nested, pA,C can be at most 1, which
bounds the number of back edges executed to be at most 4 in any case. In case the loop
would be nested, for each flow entering the loop an additional 4 flows through the back edge
would be permitted.
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In order to tighten the number of possible events, we also consider the minimum number
of loop iterations (cf. Equations (17)-(19)).

pD,C ≥ min(pA,C , pD,E) · 2 (41)

Equation (41) sets a minimum number of loop iterations in case the chosen path enters and
exits the loop.

Furthermore, we restrict the number of in- and outgoing flows of the function Fun (cf.
Equations (20),(21)):

pC,F ≥ min (pI,D, pC,F )− sFun (42)
pI,D ≥ min (pC,F , pI,D)− eFun (43)

Anyhow, since Fun is only called by one location and not recursive, Equations (42) and (43)
can be omitted in this case.

Subsequently the constraints concerning the events are inserted (cf. Equations (6), (7)).

a+
A = 8 · s	,A (44)
a+
B = 10 · pA,B (45)
...

a+
I = 0 (46)

a+
Total = a+

A + a+
B + ...+ a+

I (47)

As the timing contribution of a basic block is dependent on the subtracting factor bi (cf.
Equation (9)), the corresponding constraints are inserted:

bA =


0 if sA = eA = 0,
2 if sA ∧ eA ∧ (p	,A > 1) ,
1 else.

(48)

...

Finally, the timing constraints are added (cf. Equations (8)-(10)).

w+
A = 88 · s	,A − 87 · bA (49)
...

w+
I = 32 · (pG,I + pH,I)− 31 · bI (50)

∆t ≥ w+
A + w+

B + ...+ w+
I (51)

With ∆t being a constant, representing the length of the current interval.
The resulting lower and upper arrival function are depicted in Figure 5 where the

granularity of ∆t for the algorithm of extraction was set to 1 cycle. In the following, we
detail the results of the arrival curve η+(∆t). The very first step appears at ∆t=1 to 10
events (basic block B). The subsequent second step to 18 events occurs at ∆t=2, happening
on the path from basic block A to B. At ∆t=85 a step to 19 events occurs which happens
on the path {A,B,E}. The next step to 20 events is at ∆t=298. This is occurring on the
path {A,C, F,H, I,D,C, F,H}. The next step up to 22 events happens at ∆t=415, where
the previous path is extended to include basic blocks I and D (forming two complete loop
iterations). At ∆t=520 the maximum number of events increases to 27, including additional
executions of basic blocks C, F and H. Note that there is no intermediate step to 23 events
via the loop exiting path {D,E} due to the lower loop bound of 3. From this point on the
arrival curve follows a repetitive pattern. The arrival curve converges at ∆t=1112 with 44
events, which covers the whole right side of the CFG from Figure 4 with the maximum
amount of loop iterations.
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Figure 5 Extracted event arrival curves for CFG in Figure 4.
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Figure 6 Extracted event arrival curves for benchmarks (refined BBs, binary search).

4.2 Benchmarks Evaluation
In the following, we present the event arrival curves of 4 selected benchmarks from the MRTC
benchmark suite [9]. The benchmarks are chosen in order to investigate different program
behaviors. Note that, an exhaustive evaluation of the benchmark suite follows in Section 4.3.
All event arrival curves were extracted using Algorithm 2, while refining the event granularity
to a single access. Additionally, an upper event arrival function η+

L (∆t) is generated using the
same parameters, yet neglecting the loop differentiation and minimum iteration constraints
introduced in Section 2.3. The sole purpose of this is to show the increased tightness due to
these additional constraints in comparison to the previous work. In case of the benchmark
qurt, η+

L (∆t) is identical to η+(∆t).
Figures 6a and 6b show η+(∆t) and η−(∆t) for the benchmarks compressdata and qurt.

For both benchmarks the upper curve differs from the lower curve. This is caused by variable
loop bounds, conditional statements and multiple program exits. E.g., the benchmark qurt
can terminate with solely 12 data accesses in total or with up to 48.

Figures 6c and 6d depict the lower and upper arrival curve functions for the benchmarks
sqrt and binarysearch. For both programs η+(∆t) and η−(∆t) converge to a common
value. This results from the fact that each possible path through the program covers an
identical total number of data accesses. However it is noteworthy that the minimum and
maximum arrival of events per interval of time differs.

4.3 Granularity Evaluation
The execution time of the algorithm used for extracting the arrival curves depends on the
granularity considered. Figure 7 depicts the upper event arrival functions for the benchmark
compressdata considering different granularities. The finest possible granularity (i.e., ∆t = 1
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Figure 7 Event arrival curves with a different granularity and therefore number of samples.
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Figure 8 Overall runtimes of the extraction algorithms with different granularities.

cycle) is leading to a total number of 696 sample points (using the presented Algorithm 2).
A more coarse granularity using only a total of 50 sample points is depicted as well. Note
that the arrival curve with a coarse granularity always dominates the arrival curve with a
finer granularity therefore leading to a safe approximation of the arrival curve. Even though
we reduce the number of sample points, we still receive an arrival curve very close to the
possible finest granularity but with the benefit of a smaller execution time. This obviously
depends on the structure of the program under analysis.

Figure 8 depicts the overall execution times of the extraction, separated by the applied
granularity. It is differentiated between the total number of sample points and considering
the utilization of the proposed basic block refinement in Section 3.2. The right-hand side
boxplot shows the execution time when using the binary search approach (Algorithm 2, 5h
timeout). The central mark of each box denotes the median, while the edges depict the 25th
and 75th percentiles. The maximum whisker length is defined as 1.5 times the difference
between the 75th and 25th percentile. Note that a higher number of sample points leads
to a finer granularity and therefore more precision of the results. The refined BB approach
also leads to more precise results as it isolates the instructions potentially accessing data,
compared to the non-refined BB approach where a basic block may contain multiple data
accesses. However, the refinement leads to a more complex ILP model and therefore longer
execution times.

Therefore, we can clearly see that the execution time increases as we increase the number
of sample points. As expected, the execution time increases as well with the utilization of the
BB refinement. While the median of the extraction runtime without a basic block refinement
and just 100 samples is about 9 seconds, it increases to 189 seconds with 1000 samples and
refinement applied. The median of the binary search approach runtime is 673 seconds. Out
of the 34 benchmarks evaluated, 10 benchmarks were canceled due to the 5h timeout when
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Figure 9 The metric used to evaluate the overapproximation is based on the area between the
extracted curve and a corresponding pessimistic curve.

performing Algorithm 2. Therefore, there is clearly a trade-off to find between precision and
execution time. In the following, we present a metric to measure the precision loss resulting
from a coarser granularity approach.

4.4 Measuring the Overapproximation
In order to evaluate the level of overapproximation, we introduce the metric dappr. The
metric dappr is defined as the area between the extracted curve and a corresponding simplistic
pessimistic curve, normalized on the area below the pessimistic curve. The pessimistic curve
only takes into account the maximum number of events over a complete program path and
the minimum time between two events (given, e.g., by memory latencies). Therefore, dappr is
defined as follows:

dappr = APess −AExtr

APess
(52)

Whereas APess is the area below the pessimistic curve and AExtr is the area below the
extracted curve. Figure 9 depicts the parameters used. The upper curve represents the
pessimistic curve, solely generated using the maximum overall number of events and minimum
time between events. The lower curve represents a curve extracted using the presented ILP
model. The area difference (marked in yellow) is calculated and then normalized on the total
area below the pessimistic curve. Thereby, dappr reflects a magnitude to which extend the
extracted curve is tighter in comparison to the pessimistic approach. When comparing the
metric dappr of curves extracted using different parameters of granularity (e.g., basic block
refinement), the level of introduced overapproximation can be evaluated. A higher value of
dappr denotes a tighter curve, hence most likely leading to a tighter system-level analysis.

Figure 10 shows dappr for the extracted upper arrival curves using 100, 500 and 1000
sample points. Accesses are considered separately considering a refined BB approach or
bundled as initially structured by the program. It also depicts dappr for upper arrival curves
using the binary search approach (cf. Algorithm (2)) with basic block refinement applied. In
cases the binary search algorithm was canceled due to the 5h timeout, the bar is not depicted
in the diagram. The pessimistic reference curve for each benchmark was generated by using
the maximum overall number of events and the minimum number of cycles between two
events, given by the memory latencies. The benchmarks are listed on the x-axis. Benchmarks
janne_complex, expint, fac, fibcall, prime, recursion and cover were evaluated but
are not shown in the diagram, since no potential data accesses were detected (no data was
allocated to the .data section).

As expected, dappr is always greater or equal for a fixed number of samples when
considering separated requests in comparison to bundled requests. The highest relative
difference comparing separated and bundled accesses at a fixed number of sample points
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Figure 10 Metric dappr for benchmarks of the MRTC benchmark suite [9].

occurs, amongst others, at the fdct benchmark. Using 1000 sample points and considering
all requests separated, dappr is at 25.7%, whereas considering accesses bundled per BB (same
number of samples) results a dappr value of only 18.7%. However, there are also several
benchmarks for which the consideration of separated requests does not result in a lower value
of dappr. The benchmark bsort100 represents such an example. Though dappr increases with
the number of samples, it is irrelevant whether requests are split into single blocks or not.

An exception can be seen for the benchmarks adpcm_decoder and adpcm_encoder when
extracted with only 100 samples (BB refinement irrelevant), as they yield a value of dappr of
-1%. This is due to the low number of sample points in regard to the benchmarks’ size and
event arrival curves’ steepness. Besides, for no other benchmark and granularity configuration
a negative value of dappr was observed. Overall it can be observed that dappr is increasing
with a higher number of samples as it is expected.

Bringing together the results regarding the required runtime from Figure 8 and the
quality of the approximated curves, we can conclude that approximating the event arrival
curve offers a good trade-off between extraction time and quality. If we take the benchmark
crc as an example, the required extraction time for 500 samples and without basic block
refinement drops by 98% in comparison to the extraction using the binary search algorithm
in combination with refinement. Yet, dappr only drops by 0.2%.

5 Conclusion and Future Work

In this paper we presented an approach to extract safe and tight event arrival functions
from code-level analysis. The extracted event arrival functions can be generated with an
adjustable level of granularity in order to reduce the execution time of the proposed extraction
algorithm. Despite the induced overapproximation by the choice of the granularity, the
presented approach results safe upper bounds of the actual event arrival curve. Furthermore,
it has been shown that for some benchmarks a very good trade-off can be achieved in order
to extract rapidly event arrival functions with a very good quality precision.

As a part of future work, we plan to integrate calling contexts into the model. This could
further improve the tightness. Besides, we plan to exploit the detailed event arrival function
knowledge for optimizations, hence improving a system’s worst-case timing using the gained
informations.
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Abstract
Under the federated paradigm of multiprocessor scheduling, a set of processors is reserved for the
exclusive use of each real-time task. If tasks are characterized very conservatively (as is typical
in safety-critical systems), it is likely that most invocations of the task will have computational
demand far below the worst-case characterization, and could have been scheduled correctly upon
far fewer processors than were assigned to it assuming the worst-case characterization of its run-
time behavior. Provided we could safely determine during run-time when all the processors are
going to be needed, for the rest of the time the unneeded processors could be idled in low-energy
“sleep” mode, or used for executing non-real time work in the background. In this paper we
propose a model for representing parallelizable real-time tasks in a manner that permits us to
do so. Our model does not require us to have fine-grained knowledge of the internal structure
of the code represented by the task; rather, it characterizes each task by a few parameters that
are obtained by repeatedly executing the code under different conditions and measuring the
run-times.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Soft-
ware and its engineering → Real-time schedulability, Theory of computation → Parallel comput-
ing models

Keywords and phrases multiprocessor federated scheduling, parallel tasks, work and span, mixed
criticality
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1 Introduction

Scheduling theory is concerned with the analysis of real-time systems. As multiprocessor and
multicore implementations of real-time systems become prevalent, it is desirable that the
models used in scheduling theory for representing real-time workloads be capable of exposing
the parallelism that may exist within these workloads. This need has given rise to formal
task models such as the fork-join model [1, 2], the sporadic DAG tasks model [3] (see [4,
Chapter 21] for a text-book description), the multi-DAG model [5], the conditional DAG
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tasks model [6, 7] etc. Each of these models represents the internal structure of the piece of
code being modeled at a relatively fine level of granularity, with the parallelism in the code
typically modeled as a directed acyclic graph (DAG). Each vertex in such a DAG represents
a segment of sequential code, and edges represent precedence constraints between such code
segments: the segment of sequential code represented by the vertex at the tail of an edge
much complete execution before the segment of sequential code represented by the vertex at
the head of the edge may begin to execute.

Such DAG-based models for representing parallel real-time code have proved popular in
the real-time scheduling theory community, and much important and interesting research has
been accomplished that is based upon representing systems using these models. This body of
research has indeed provided us with a deeper insight into the issues that arise in exploiting
parallelism in multiprocessor real-time systems; however due to a variety of reasons (some of
which are enumerated and discussed in some detail in Section 2) there are some classes of
real-time applications for which such DAG-based representations may not be appropriate
for the purposes of schedulability analysis; alternative representations are needed. In this
paper we propose one such possible alternative representation that may be suitable under
certain circumstances. In this model we do not attempt to explicitly represent the internal
parallel structure of the code. Instead, we seek to identify a few important parameters of
parallalizable code that are most useful for scheduling algorithms that seek to schedule such
code upon multiprocessor platforms, and propose that the code be looked upon as a “black
box” that is characterized by just these parameters. Furthermore, we do not require that
the internal structure of the code be examined in order to obtain these parameter values.
Rather, we propose that values for these parameters be estimated via extensive simulation
experiments: repeatedly executing the code in a controlled laboratory environment in order
to be able to compute bounds on the parameter values. (Such an approach is inspired by the
large and growing body of current research [8] on probabilistic worst-case execution time –
pWCET – analysis.) Since measurement-based approaches are typically not able to provide
parameter values that are guaranteed correct with absolute certainty, we incorporate, from
the mixed-criticality scheduling literature [9], Vestal’s idea [10] of characterizing a single
task with two sets of parameters: one set very conservative and hence trusted to a very high
level of assurance and the other, far less conservative but more representative of “typical”
behavior.

Organization. The remainder of this paper is organized as follows. In Section 2 we motivate
the new model by identifying relevant characteristics of parallelizable real-time code that
current models are not well-suited to represent, and formally define the workload and system
model that we are proposing. In Section 3 we briefly discuss some prior research that
provides the foundations upon which our proposed model is built. In Section 4 we derive, and
prove the correctness and other relevant properties of, an algorithm for scheduling systems
represented using the proposed model. Our overall objective is to be able to obtain more
resource-efficient implementations of systems, while ensuring correctness; in Section 5 we
explore some possible means of further enhancing the efficiency of the algorithm presented in
Section 4. We conclude in Section 6 with a discussion on the relevance, significance, and
limitations of our proposed model, and an enumeration of possible directions for continued
research.
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2 System model: Motivation and Definition

In this section we flesh out the details of the model we are proposing for representing
parallelizable real-time code that is not conveniently represented using previously-proposed
DAG-based task models. We will first motivate the model informally, and seek to explain
aspects of the model via illustrative examples. A formal definition of the model is then
provided in Section 2.1; our proposed algorithm for scheduling tasks represented using this
model is described in Section 2.2.

Why a new model? As stated in Section 1 above, several excellent DAG-based models for
representing parallel real-time code have been developed in the real-time scheduling theory
community; however there are some classes of real-time applications for which such models
have proved unsuitable. This may be for one or more of the following reasons:
1. The internal structure of the parallel code may be very complex, with multiple conditional

dependencies (as may be represented in e.g., the conditional DAG tasks model [6, 7]) and
(bounded) loops. Explicit enumeration of all possible paths through such code in order
to identify worst-case behavior may be computationally infeasible.3

2. If some parts of the code are procured from outside the application-developers’ organiza-
tion, the provider of this code may seek to protect their intellectual property (IP) by not
revealing the internal structure of the code and instead only providing executables – this
may be the case if, e.g., commercial vision algorithms are used in a real-time application.
(Although reverse-engineering of the executable code in order to determine its internal
structure may be possible in principle, such reverse engineering tends to be tedious and
error-prone.)

3. Algorithms for the analysis of systems represented using DAG-based models tend to
have run-time pseudo-polynomial or exponential in the size of the DAG. Such run-times
have traditionally been considered acceptably small enough to allow the algorithms to be
practical in practice; however, this state of affairs may not continue in the future. For
many cyber-physical real-time systems, constraints such as deadlines are typically dictated
by physical factors. As the processors upon which we implement such cyber-physical real-
time systems become increasingly more powerful, it becomes possible to incorporate far
more complex processing that would be represented as larger DAGs than was previously
the case. As this trend towards more complex processing and the consequent larger DAGs
continues, run-times pseudo-polynomial in the size of these larger DAGs may become too
large be used in practice during system design and analysis.

4. Further exacerbating the situation, explicitly representing the internal structure of some
pieces of parallel code in DAG form results in DAGs that may be of size exponential
in the size of the code. Consider, for example, the following code snippet written in
OpenMP (http://www.openmp.org/), an application programming interface (API) that
supports multi-platform shared memory multiprocessing programming:

#pragma omp parallel
#pragma omp for
for (i=0; i<10; i++) {

//do_something
}

3 We point out that techniques for approximating the worst-case behavior of complex conditional par-
allelizable code have been proposed with regards to specific scheduling algorithms such as global
fixed-priority [6], global EDF [7] or federated [11].
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This code snippet would translate to a DAG with (1 + 10 + 1 =) 12 nodes. If we were to
replace the “10” in the upper bound of the for loop with a “100”, however, the resulting
DAG would have 102 nodes; replacing it with “1000” would yield 1002 nodes, etc. –
increasing the size of the program by one ASCII character results in an almost ten-fold
increase in the size of the DAG.

5. Particularly for conditional code, it may be the case that the true worst-case behavior
of the code is very infrequently expressed during run-time.4. Traditional models based
on conditional DAGs may not be suitable for representing such code (although mixed-
criticality [10, 12, 13, 14] extensions of such conditional DAG models are a possibility –
to our knowledge, such models have not yet been proposed, let alone studied).

For pieces of parallel real-time code possessing one or more of the characteristics discussed
above, DAG-based representations may not be appropriate for the purposes of schedulability
analysis; alternative representations are needed. Let us now discuss what such a representation
should provide.

Identifying relevant characteristics of parallelizable real-time code. In modeling paral-
lelizable real-time code that is to be executed upon a multiprocessor platform, a prime
objective is to enable the exploitation of the parallelism that may be present in the code by
scheduling algorithms, in order to enhance the likelihood that we will be able to meet timing
constraints. We are interested here in developing predictable real-time systems – systems that
can have their timing (and other) correctness verified prior to run-time. For the purposes of
enabling a priori timing verification, decades of research in the parallel computing community
suggests the following two timing parameters of a piece of parallelizable code are particularly
significant:
1. The work parameter denotes the cumulative worst-case execution time of all the parallel

branches that are executed across all processors. Note that for non-conditional paralleliz-
able code this is equal to the worst case execution time of the code on a single processor
(ignoring communication overhead from synchronizing processors).

2. The span parameter denotes the maximum cumulative worst-case execution time of any
sequence of precedence-constrained pieces of code. It represents a lower bound on the
duration of time the code would take to execute, regardless of the number of processors
available.
The span of a computation is also called the critical path length of the computation, and
a sequence of precedence-constrained pieces of code with cumulative worst-case execution
time equal to the span, a critical path through the computation.

The relevance of these two parameters arises from well-known results in scheduling theory
concerning the multiprocessor scheduling of precedence-constrained jobs (i.e., DAGs) to
minimize makespan – this is the widely-studied P| prec| Smax problem in the classic 3-
field α | β | γ notation that is commonly used in scheduling theory [15]. This problem
has long been known to be NP-hard in the strong sense [16]; i.e., computationally highly
intractable. However, Graham’s list scheduling algorithm [17], which constructs a work-
conserving schedule by executing at each instant in time an available job, if any are present,
upon any available processor, performs fairly well in practice. It was shown [17] that list

4 Consider, for example, a real-time application that periodically monitors a sensor for anomalous input.
Most of the time the sought-for anomolous input is not detected, and not much computation needs to
be performed. But on the rare occasions when anomalous input is detected, considerable additional
processing of such input is necessary.
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scheduling makes the following guarantee: if Smax denotes the minimum makespan with which
a particular DAG can be scheduled upon m processors, then the schedule generated by list
scheduling this DAG upon m processors will have a makespan no greater than (2− 1

m )×Smax.
This result, in conjunction with a hardness result in [18] showing that determining a schedule
for this DAG of makespan ≤ 4

3Smax remains NP-hard in the strong sense5, suggests that list
scheduling is a reasonable algorithm to use in practice, and in fact most run-time scheduling
algorithms that are used for scheduling DAGs upon multiprocessors use some variant or the
other of list scheduling. We will do so in this paper as well.

An upper bound on the makespan of a schedule generated by list scheduling is easily
stated. Letting work and span denote the work and span parameters of the DAG being
scheduled, it has been proved in [17] that the makespan of the schedule for a given DAG is
guaranteed to be no larger than

work− span
m

+ span (1)

Thus a good upper bound on the makespan of the list-scheduling generated schedule for
a DAG may be stated in terms of only its work and span parameters. Equivalently if the
DAG represents a real-time piece of code characterized by a relative deadline parameter
D, (work−span

m + span) ≤ D is a sufficient test for determining whether the code will
complete by its deadline upon an m-processor platform. We therefore identify the work and
span parameters of a piece of parallel real-time code as being particularly relevant from the
perspective of schedulability analysis.

A measurement-based approach to parameter estimation. The work and span parameters
of tasks that are represented using DAG-based models are quite straightforward to compute
in time linear in the representation of the DAGs (algorithms for doing so are described
in [3, 7]). As we have discussed above, however, our interest is in characterizing parallel code
that is typically not conveniently represented using DAG-based models. We propose that
for the purposes of representing pieces of such code for schedulability analysis, we ignore
their internal structure and instead seek to characterize them solely via their work and span
parameters. And since we cannot in general determine the precise values of the work and
span parameters of a piece of code without knowing its internal structure, we advocate here
that measurement-based approaches be used to estimate these parameters. Measurement-
based approaches have been developed for estimating probabilistic worst-case execution
time (pWCET) [20, 21, 22] distributions of individual pieces of code, and implemented in
pWCET tools such as RapiTime (https://www.rapitasystems.com/products/rapitime)
from Rapita Systems. We now briefly discuss how measurement-based approaches may be
adapted to estimate the work and span parameters of parallel code. Ignoring overhead
associated with implementing global scheduling, observe that the work parameter of a piece
of code is equal to the time needed to complete its execution upon a single processor, while
its span parameter is equal to the time needed to complete its execution upon an unbounded
number of processors. Hence one can estimate the probability distribution of the work
parameter of a piece of code by using pWCET techniques to estimate its WCET distribution
upon a single processor. One can similarly estimate the probability distribution of the span
parameter by

5 In fact, assuming a reasonable complexity-theoretic conjecture that is somewhat stronger than P 6=
NP, a result of Svensson [19] implies that a polynomial-time algorithm for determining a schedule of
makespan ≤ 2Smax for all m is ruled out.
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1. first adapting the measurement-based techniques underpinning pWCET-estimation to
determine the makespan probability distribution upon a given number of processors
(rather than the completion-time upon a single processor); and then

2. estimating the makespan distribution of the parallel code upon platforms in which the
number of processors is repeatedly increased, until further increases do not result in
significant changes to the estimated distribution.

The proposed model: multiple work and span estimates. As discussed above, it is possible,
by suitable adaptation and application of pWCET techniques, to estimate probability
distributions for the work and span parameters of pieces of parallel real-time code. It is
understood in the pWCET community that pWCET-based techniques cannot in general
determine bounds that are guaranteed to be correct with absolute certainty; rather, they
provide bounds that are guaranteed correct to specified probabilistic degrees of confidence/
levels of assurance (Davis et al. [8] provide a thoughtful and considered discussion as to how
the concept of probabilities should be interpreted when used in such a manner). In the model
we propose for representing parallel real-time code, we suggest that each such piece of code
be characterized by two pairs of (work, span) parameter values, each pair corresponding to
a different probability threshold in the work and span distributions and therefore valid at
different levels of assurance. Specifically, one pair of values should be very conservative and
therefore trusted to a very high level of assurance and the other, while still relatively safe,
should be more representative of “typical” behavior, not attempting to cover scenarios that
are highly unlikely to occur. We illustrate via an example.

I Example 1. Suppose that we were able to determine for a piece of code that
Its work parameter is > 120 with some small probability p, but > 900 with a far smaller
probability p′ � p.
Its span parameter is > 40 with probability p; however the probability that it is > 600 is
p′.

We could characterize this piece of code with two ordered pairs of (work,span) values –
a (1 − p) probability of being ≤ (120, 40), and a far greater (1 − p′) probability of being
≤ (900, 600).

We require that correctness criteria hold under the more conservative estimate. Suppose
for instance that it were specified that this code should execute within a relative deadline of
D; we require that the makespan by ≤ D provided work ≤ 900 and span ≤ 600. J

The proposed run-time scheduling approach. Since correctness is defined with respect to
the more conservative estimates for work and span, in order to satisfy correctness requirements
we must provision computing resources to a task assuming these more conservative estimates.
However, it is our expectation that the task’s run-time behavior is very likely to be bounded
by the less conservative parameter estimates, and hence statically provisioning adequate
resources for it under the more conservative assumptions is likely to result in significant
wastage of computing resources during run-time. One manner of ameliorating such wastage is
by keeping some of the provisioned resource in “reserve”, perhaps by placing some processors
in sleep mode or having them execute background (non real-time) work, with the option
of switching them to work upon executing the task if we determine, during run-time, that
the task’s run-time behavior is in fact not likely to be bounded by the less conservative
parameter estimates. The following example illustrates.
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I Example 2. Suppose the code in Example 1 to be scheduled with a relative deadline
equal to 690, upon a 10-processor platform. According to Expression 1, the makespan of the
schedule upon 10 processors is no more than

900− 600
10 + 600 = (30 + 600) = 630

assuming the more conservative work and span estimates hold. Hence, correctness is
guaranteed.

In fact, ten processors are not necessary for correctness: if we were executing this piece of
code upon just four processors, the corresponding makespan bound according to Expression 1
would be ( 900−600

4 ) + 600 = 675. Our run-time algorithm could therefore realize some energy
savings by simply switching off six of the ten provided processors, and executing the task on
the remaining four.

Could we switch off seven processors? The reader may verify that with three processors
Expression 1would yield a makespan bound of ( 900−600

3 ) + 600 = 700. Since 700 exceeds
the specified relative deadline of 690, we conclude that we may miss the deadline if we were
to switch off seven processors and the system behaved worse than anticipated by its less
conservative parameters (although not its more conservative parameters). We therefore
conclude that we need at least 4 processors to not be in sleep mode, in order to ensure
correctness.

The run-time algorithm we will derive in this paper is designed for systems in which the
less conservative parameters are very likely to hold “most of the time”; i.e., the value of p is
itself very small. Provided such is the case for this example

our run-time scheduling algorithm starts out scheduling the system on just three processors,
leaving the remaining seven processors in sleep mode.
If execution has not completed by some time-instant (whose value is precomputed), it
wakes up the sleeping processors and makes all ten processors available for this task to
execute upon.

We will prove later that with this algorithm, the task completes by the specified deadline of
690 provided the more conservative task parameters hold; correctness is thus established.
Additionally, there is a ≤ p probability that it will not complete by the pre-computed
time-instant and hence need to awaken the remaining seven processors.

To evaluate the efficiency, suppose, for this example, that p = 0.05, indicating that the
less conservative parameters hold with 95% probability. There is therefore a ≤ 5% probability
that the task will not complete by the specified time-instant,6 and the expected number of
processors that would be needed is no larger than(

0.95× 3 + 0.05× 10
)

=
(
2.85 + 0.5

)
= 3.35

in contrast to the four that would be needed if our run-time scheduling algorithm were to
not be used. J

Examples 1 and 2 above have illustrated the task model, and the associated run-time
strategy for scheduling tasks that are so modeled, that we are proposing in this paper. We
now formally define the task model in Section 2.1, and the run-time scheduler in Section 2.2,
below.

6 In fact, since the work and span parameters will not in general be perfectly correlated, the expected
probability of this happening is likely to be far less than 5%. (This issue is revisited in Section 5.)
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2.1 System Model

We now provide a formal definition of our model, by describing in detail the workload model
we assume. The workload we seek to model comprises a single piece of parallelizable real-time
code that is characterized by the following list of parameters:〈

workO, spanO,workN , spanN , D
〉
,

with the following interpretation:
1. (workO, spanO). These represent very conservative estimates of the true “worst-case”

values of the work and span parameters; as discussed above, we expect that these estimates
will be obtained using the kinds of measurement-based techniques that have been developed
for estimating probabilistic worst-case execution time (pWCET) distributions.

2. D denotes the relative deadline parameter: for correct execution it is required that the
job be scheduled with makespan no greater than D.
We highlight here that timing correctness is specified assuming that the (workO, spanO)
parameter estimates are correct: the code is required to complete execution within the
specified relative deadline D provided its work and span parameters are no larger than
workO and spanO respectively.

3. (workN , spanN ). These are less conservative estimates on the values of the work and
span parameters: it is expected that the actual values of the work and span parameters
are very likely to be no larger than workN and spanN respectively. (The subscript “N”
in workN and spanN stand for “nominal” [23].)
These parameter estimates play no role in defining correctness; rather (as we have seen in
Examples 1 and 2), their values may be used for the purposes of devising more resource-
efficient scheduling strategies. It is hence not as critical that their values be assigned
correctly as it is for the workO and spanO parameters: while incorrectly estimated values
for workO and spanO may compromise timing correctness in the sense that we may end
up missing deadlines, incorrectly estimated values for workN and spanN simply result in
less efficient implementations.
We assume that workN ≤ workO and spanN ≤ spanO. (Although our results are readily
extended to situations where these assumptions do not hold, we do not see a rationale
for relaxing these assumptions, since by very definition the (workN , spanN ) parameters
represent less conservative estimates than the (workO, spanO) parameters.)

In this paper, we consider the scheduling of a single such task upon a dedicated bank of
identical processors. We point out that our results are directly applicable to the scheduling
of recurrent – periodic or sporadic – real-time DAGs under the federated paradigm [24] of
multiprocessor scheduling, provided each periodic/ sporadic task satisfies the additional
constraint that its relative deadline parameter is no larger than its period parameter (i.e.,
they are constrained-deadline tasks). We believe our approach is particularly appropriate for
scheduling systems of recurrent tasks: for such tasks, we anticipate that the (workN , spanN )
parameters will bound the behavior of most invocations (“dag-jobs” [3]) of the task, with
an occasional rare dag-job exceeding these bounds. Hence many of the allocated processors
will remain in sleep mode most of the time, with the occasional dag-job requiring that the
sleeping processors be awakened until that dag-job completes execution, after which they
can be returned to sleep mode.
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2.2 The Scheduling Algorithm
Given a task as specified above:〈

workO, spanO,workN , spanN , D
〉
,

that is to be executed upon a platform comprising m identical processors, we first perform
some pre-run-time schedulability analysis that determines whether we are able to schedule
the task upon the m processors in a manner that ensures correctness. Recall that correctness
is specified as requiring that the task meet its deadline provided its work parameter is
≤ workO and its span parameter is ≤ spanO: by Expression 1, this is guaranteed provided(workO − spanO

m
+ spanO

)
≤ D; (2)

If Condition 2 does not hold, our scheduling algorithm declares failure: it is unable to schedule
this instance in a manner that guarantees timing correctness. Otherwise, it computes a pair
of values mN and SN – the manner in which these values are computed will be derived in
Section 4.2. These computed parameters have the following intended interpretation: provided
the less conservative work and span parameter estimates are correct (i.e., work is ≤ workN

and span is ≤ spanN for the task), list scheduling can schedule the task upon mN processors
to have a makespan no greater then SN .

Run-time scheduling. Suppose that the piece of parallelizable real-time code represented
by this task is activated at some time-instant to during run-time.
1. The scheduler sets a timer to go off at time-instant (to + SN ), and begins executing

the task upon mN processors using the list-scheduling algorithm [17]. The remaining
(m−mN ) processors assigned to this task are placed/ remain in sleep mode.

2. If the task has not completed execution by time-instant (to + SN ), then the scheduler
awakens the (m − mN ) sleeping processors, and uses list-scheduling to execute the
remainder of the task upon the entire bank of m processors.

3. As mentioned in Section 2.1 above, in the case of recurrent tasks these awakened processors
are returned to sleep mode upon completion of execution of the current dag-job of the
task.

In Section 4 we will derive the manner in which the values of mN and SN are to be
computed in order to guarantee correctness: the algorithm completes execution of the task
within D time units of its arrival, provided its work parameter is ≤ workO and its span
parameter is ≤ spanO.

We close this section with an example illustrating the operation of our run-time scheduler.

I Example 3. Consider once again the instance discussed in Examples 1 and 2. In the
notation of Section 2, this task is represented by the following parameters:〈

workO, spanO,workN , spanN , D
〉

=
〈

900, 600, 120, 40, 690
〉
.

It is to be scheduled upon m = 10 processors. In Example 4 we will show that the algorithm
of Section 4 assigns the parameter mN the value 3, and the parameter SN , a value 66 2

3 .
Hence our run-time scheduler starts out scheduling this task on 3 processors. If the task
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5:10 A Measurement-Based Model for Parallel Real-Time Tasks

behaves as specified by its workN , spanN parameters, then by Expression 1 the makespan is
no more than

120− 40
3 + 40 = 262

3 + 40 = 662
3

and hence the additional seven processors are not needed. If it does not complete by time-
instant 66 2

3 , all ten processors become available for this task to execute upon, and results
in Section 4 allow us to conclude that the task does execute correctly, completing by the
specified deadline at time-instant 690. J

3 Related Work

The approach to the modeling and run-time scheduling of parallelizable tasks that we are
proposing here draws inspiration from research in the areas of parallel computing, mixed-
criticality scheduling, and probabilistic WCET. As stated in Section 2 above, the problem of
scheduling DAGs to minimize makespan (the P| prec| Smax problem in 3-field notation [15]) has
been very widely studied in “traditional” scheduling theory. Given the inherent intractability
of this problem [16] and the existence of a good approximation (as represented by List
Scheduling [17] with its associated makespan bound – Inequality 1), the parallel computing
community soon began to focus upon the work and span parameters as reasonable proxies for
parallelizable computational workloads; this is one of the fundamental ideas that underpins
our proposed approach.

The concept of specifying multiple values, which are considered trustworthy to different
levels of assurance, to a task’s parameters was proposed by Vestal [10] and forms the basis of
mixed-criticality scheduling theory. There is a large body of research exploring the Vestal
model – see [14] for a survey. In studying the scheduling of mixed-criticality parallel tasks,
Li et al. [23] first proposed a model in which each task is characterized by different work and
span parameters at low and high criticality levels – it is this model that we are studying in
depth here. (The overall context of the research in [23] is quite different from ours: while we
are, in the terminology of [23], considering the scheduling of a single parallelizable real-time
task with the objective of minimizing the number of processors used in the nominal case while
concurrently guaranteeing to meet deadlines in the overloaded case, [23] was concerned with
devising mixed-criticality scheduling algorithms with good capacity augmentation bounds.)

Our approach also draws upon ideas from the considerable body of prior research
(e.g., [20, 21, 22]) on measurement-based techniques for estimating probabilistic worst-
case execution time distributions (pWCET). The correctness of our scheduling framework
very strongly depends upon the validity and accuracy of pWCET-estimation techniques,
since we are in effect guaranteeing correct timing behavior (meeting deadlines) under the
assumption that the more conservative estimations – workO and spanO – are correct upper
bounds. In contrast, incorrect estimations of workN and spanN do not compromise correct-
ness, although they could have an adverse impact on efficiency. Rather than being considered
as estimations of worst-case parameter values, these parameters are perhaps closer in spirit
to what Chisholm et al [25] have called provisioned parameter values and Li et al. [23],
nominal parameter values – values that represent typical or common-case behavior and may
be obtained by, e.g., somewhat inflating average-case parameter values.
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Figure 1 The parallel task begins execution at time-instant 0 with a deadline at time-instant D.
It executes upon mN processors over the interval [0,SN ), and upon m processors over the interval
[SN , D). (The x-axis thus denotes time, and the y-axis, the processors.)

4 Scheduling Algorithm Derivation and Analysis

Given a task characterized, as described in Section 2.1, by the parameters〈
workO, spanO,workN , spanN , D

〉
and m processors upon which to execute it, we discuss in this section how we should compute
values of mN and SN in order to ensure that the run-time scheduling algorithm described in
Section 2.2 above completes execution of the task within D time units of its arrival. We will
start out in Section 4.1 assuming that values for mN and SN are already known, and derive
sufficient conditions for ensuring timing correctness given these values of mN and SN . We
will then describe, in Sections 4.2, how values may be assigned to mN and SN in a manner
that ensures that these sufficient conditions are satisfied.

4.1 Sufficient Schedulability Conditions
Suppose that we are given values of mN and SN (with 0 < mN ≤ m and 0 ≤ SN ≤ D), and
the run-time algorithm schedules the task on mN processors using list scheduling. If the
task completes execution within SN time units, correctness is preserved since SN ≤ D. It
remains to determine sufficient conditions for correctness when the task does not complete
by time-instant SN ; this we do in the remainder of this section.

Figure 1 depicts the processors that are available for this task if it does not complete
execution within SN time units, thereby resulting in the run-time scheduler awakening
the (m −mN ) processors that had been in sleep mode over [0,SN ). We will now derive
conditions for ensuring that the task completes execution by its deadline at time-instant D
when executing upon these available processors, given that its work parameter may be as
large as workO and its span parameter, spanO.

Let work′ and span′ denote the work and span parameters of the amount of computation
of the parallel task that remains at time-instant SN (these are > 0, since the task is assumed
to not have completed execution by time-instant SN ). This remaining computation executes
upon m processors; By Expression 1 the overall makespan is therefore bounded from above
by

SN +
(work′ − span′

m
+ span′

)
(3)
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Since the remaining span at time-instant SN is span′, an amount (spanO − span′) of the
critical path of the task has executed during [0,SN ]. At each instant when the critical path
is not executing, it must be the case that all mN processors are busy executing tasks not on
the critical path. Hence the total amount of execution occurring over [0,SN ) is at least(

SN − (spanO − span′)
)
×mN + (spanO − span′),

from which it follows that

work′ ≤ workO − SN ×mN + (spanO − span′)×mN − (spanO − span′)
= workO − SN ×mN + (spanO − span′)× (mN − 1)
= workO − SN ×mN + spanO × (mN − 1)− span′ × (mN − 1) (4)

Substituting Inequality 4 into the Expression 3, we obtain the following upper bound on the
overall makespan:

SN +
(workO − SN ×mN + spanO × (mN − 1)− span′ × (mN − 1)− span′

m
+ span′

)
= SN +

(workO − SN ×mN + spanO × (mN − 1)− span′ ×mN

m
+ span′

)
= SN +

(workO − SN ×mN + spanO × (mN − 1)
m

− span′ × mN

m
+ span′

)
= SN +

(workO − SN ×mN + spanO × (mN − 1)
m

+ span′ ×
(
1− mN

m

))
(5)

SincemN ≤ m, Expression 5 is maximized when span′ is large as possible; i.e., span′ = spanO

(the physical interpretation is that the worst case occurs when no job on the critical path
is executed prior to time-instant SN : instead the entire critical path executes after SN ).
Substituting span′ ← spanO into Expression 5, we get the following upper bound on the
overall makespan:

SN +
(workO − SN ×mN + spanO × (mN − 1)

m
+ spanO ×

(
1− mN

m

))
= SN +

(workO − SN ×mN − spanO

m
+ spanO

)
Correctness is guaranteed by having this upper bound on the makespan be ≤ D:(

SN +
(workO − SN ×mN − spanO

m
+ spanO

))
≤ D

⇔
(
SN −

SN ×mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
⇔ SN

(
1− mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
(6)

Expression 6 above is thus the sufficient schedulability condition we seek: values of mN and
SN satisfying Expression 6 guarantee timing correctness.

4.2 Computing mN and SN

We saw in Section 4.1 above that in order to ensure correctness, our scheduling algorithm
should choose the parameters mN and SN such that Condition 6 above is satisfied. Recall
that an additional goal is efficiency: the smaller the value of mN , the better, since the
remaining (m −mN ) processors can be placed in sleep mode. In this section we describe
how our algorithm computes such a value.
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One reasonable approach for assigning a value to the mN parameter is by using the task’s
nominal work and span parameters workN and spanN . Assuming that these parameters
bound the work and span values of a “typical” invocation of the task, it is guaranteed by
Inequality 1 that upon mN processors a typical invocation will have a makespan no greater
than

(
(workN − spanN )/mN + spanN

)
. We may hence assign SN a value as follows:

SN ←
(workN − spanN

mN
+ spanN

)
(7)

Substituting this value for SN into Expression 6, we get(workN − spanN

mN
+ spanN

)
×
(

1− mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
(8)

as a sufficient schedulability condition. Since every term other than mN is a constant in
this expression, the expression can be algebraically simplified to a form that is a quadratic
expression in mN ; solving this quadratic expression, and taking the ceiling (since the number
of processors mN must be integral) yields the desired value. Once mN is so computed, the
value of SN may be obtained from Expression 7. We illustrate via an example; the algorithm
for computing mN and SN is provided in pseudo-code form after the example.

I Example 4. Consider once again the instance discussed in Examples 1 and 2:〈
workO, spanO,workN , spanN , D

〉
=

〈
900, 600, 120, 40, 690

〉
to be scheduled upon m = 10 processors.

Substituting these values into Expression 8, we get(workN − spanN

mN
+ spanN

)
×
(

1− mN

m

)
≤
(
D − workO − spanO

m
− spanO

)
≡

(120− 40
mN

+ 40
)
×
(

1− mN

10

)
≤
(

690− 900− 600
10 − 600

)
≡

( 80
mN

+ 40
)
×
(

1− mN

10

)
≤ 60

≡ 40 ·
( 2
mN

+ 1
)
×
(

1− mN

10

)
≤ 60

≡ 2 ·
(2 +mN

mN

)
×
(10−mN

10

)
≤ 3

≡ (2 +mN )× (10−mN ) ≤ 15mN

≡ 20 + 8mN −m2
N ≤ 15mN

≡ m2
N + 7mN − 20 ≥ 0

from which we obtain

mN ≥
−7 +

√
129

2 ≈ 2.18

Since the number of processors must be integral, we conclude that mN ← 3. The correspond-
ing value for SN is equal to(workN − spanN

mN
+ spanN

)
=
(120− 40

3 + 40
)

= 262
3 + 40 = 662

3
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Algorithm 1: Computing values for mN ,SN .

Input:
(〈

workO, spanO,workN , spanN , D
〉
,m
)

Output: failure, or values for mN , SN

1 begin
2 if

(
m < d(workO − spanO)/(D − spanO)e

)
then

3 return (failure) /* The test of Inequality 1 cannot guarantee that
the deadline will be met on m processors */

4 end
5 A← spanN

6 B ← m× (D − (spanO + spanN ))− (workO − spanO) + (workN − spanN )
7 C ← (−1)×m× (workN − spanN )
8 mN ←

⌈
(−1×B +

(√
B2 − 4×A× C)/(2×A)

)⌉
9 SN ← spanN + (workN − spanN )/mN

10 return(mN ,SN )
11 end

Pseudo-code representation. It may be verified that Expression 8 can be rewritten to be
of the form

A×m2
N +B ×mN + C ≥ 0

with A,B, and C assigned the following values:

A ← spanN

B ←
(
m
(
D − (spanO + spanN )

)
− (workO − spanO) + (workN − spanN )

)
C ← −1×m× (workN − spanN )

The pseudo-code in Algorithm listing 1 finds the positive root of this quadratic inequality;
the ceiling of which denotes the number mN of processors needed – this computation occurs
in Line 8. In Line 9 the value computed for mN is used to determine the value to be assigned
to SN .

Run-time complexity. Algorithm 1 comprises straight-line code with no loops or recursive
calls. Hence given as input the parameters specifying a task, it is evident that Algorithm 1
has constant – Θ(1) – run-time.

5 Achieving Greater Efficiency: A More Aggressive Approach

In an attempt to achieve efficiency (reducing the number of processors used in the “common
case”) while maintaining correctness (guaranteeing to meet deadlines provided task behavior
does not exceed the worst-case bounds of workO and spanO), the approach derived in
Section 4.2 above uses the nominal parameter values workN and spanN to assign values to
mN and SN . In this section, we propose a more aggressive approach to achieving perhaps
greater efficiency without compromising correctness in any manner. This more aggressive
approach is based upon exploiting insights regarding(i) the probabilistic characterization of
the run-time behavior of the system; and (ii) the typical behavior of List Scheduling.
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The probabilistic characterization of run-time behavior. As discussed in Section 2 (and
illustrated in Examples 1 and 2), we may have a probability associated with the likelihood
that the workN and spanN parameter values are correct. We may, for example be able to
assert that there is a ≤ 0.05 probability that the actual work will exceed workN , and a
≤ 0.05 probability that the actual span will exceed spanN . Now this threshold probability
of 0.05 may have been selected because we desire that the probability that the (m−mN )
sleeping processors will need to be awakened be ≤ 0.05. If so, the method for computing SN

and mN described in Section 4.2 above may be overly conservative since the work and span
distributions may not be perfectly correlated – if they are not, the probability that both
the work would exceed workN and the span exceed spanN , during a particular execution
of the task is smaller than 0.05. (In the extreme if the two distributions are more or less
independent, the probability is closer to 0.052 which equals .0025, a value that is is far smaller
than the sought-for threshold probability of 0.05.)

Some observations on List Scheduling. Assuming that the actual work and span parame-
ters of the computation do not exceed workN and spanN respectively, in Section 4.2 we used
Expression 1 to assign values to mN and SN in a manner guaranteeing that the computation
will complete execution within an interval of duration SN upon mN processors. Note that
Expression 1 is an upper bound on the makespan of a List Scheduling generated schedule
of a DAG; this upper bound is tight only for DAGs possessing a very specific structural
form and/ or List Scheduling making a particular sequence of scheduling decisions (and then
only if each node of the DAG executes for its entire WCET). Simulation experiments using
randomly-generated graphs seem to indicate that these structures and scheduling decisions
are relatively rare; for randomly-generated graphs, the makespans of actual list-scheduling
generated schedules tend to cluster closer towards the lower end of the interval between the
upper bound of Expression 1 and the obvious lower bound of

max
(work

m
, span

)
, (9)

even if each node of the DAG does actually execute for its entire WCET. To illustrate this, we
randomly generated 1000-node DAGs with varying numbers of edges in the manner described
in Section 5.1 below; for each, we computed the lower bound of Expression 9, the actual
makespan using a list scheduling implementation, and the upper bound of Expression 1, for
scheduling the DAG upon a 10-processor platform. The results are listed in Table 1. The
right-most column – the one titled “Ratio” – denotes the fraction of the interval between the
lower bound and the upper bound upon which the actual makespan encroaches.

More aggressive computation of mN and SN . We highlight the fact that being too
optimistic in assigning values to SN and mN does not compromise correctness: the sole
effect is upon efficiency in terms of the number of processors we are able to maintain in sleep
mode, and the likelihood that these processors will need to be switched on during some run
of the system. Hence one possible –more aggressive– approach towards achieving greater
resource efficiency during run-time would be to assign SN a value between the lower and
upper bounds of Expressions 9 and 1 as follows (rather than according to Expression 7):

SN ← max
(workN

mN
, spanN

)
+α·

[(workN − spanN

m
+spanN

)
−max

(workN

mN
, spanN

)]
(10)

with α, 0 ≤ α ≤ 1 a “tuning” parameter: the smaller the value of α, the more aggressive
the choice of SN . (An intuitive interpretation of the tradeoff here is that the smaller the
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Table 1 Actual makespan, and lower and upper bounds, of randomly-generated DAGs upon a
10-processor platform. Each graph has 1000 vertices; each row corresponds to 1000-vertex DAGs
with the number of edges specified in the first column. The last column denotes the ratio (actual
makespan - lower bound) ÷ (upper bound - lower bound) – small values denote that the actual
makespan is close to the lower bound.
(The experiments used to generate this table are detailed in Section 5.1.)

M A K E S P A N
# edges Lower (Exp. 9) Actual Upper (Exp. 1) Ratio
977 2627 2667 2818 0.208
2017 2539 2587 2889 0.137
4921 2567 2603 3222 0.055
9935 2554 2709 3725 0.132
20094 2599 2977 4774 0.174
39935 4056 4113 6154 0.027
50036 4454 4480 6491 0.013
60212 5674 5674 7658 0.000

value of α, the greater the number of processors we can switch off, but the greater the
likelihood that they will need to be awakened during some execution of the task.) For the
randomly-generated DAGs of Table 1, a value of α ≥ 0.208 would have been safe: during
run-time the sleeping processors are not awakened as long as the task’s run-time behavior
does not violate its nominal parameters workN and spanN .

If SN is assigned a value according to Expression 10 rather than Expression 7, it is no
longer the case that solving Expression 8 yields the desired value of mN . We have not
attempted to derive a closed-form solution for mN when Expression 10 is used in place
of Expression 7; rather, we iterate through candidate values for mN over the range [1,m),
stopping at the first such value for which this value for mN , and the resulting value for
SN computed according to Expression 10, causes Condition 6 to evaluate to true. This
more aggressive approach to computing mN and SN therefore has run-time complexity Θ(m)
where m denotes the number of processors available; a straightforward application of the
idea of binary search reduces this to Θ(logm).

5.1 The Experiments Reported in Table 1

We now briefly describe the experimental procedure used to generate the data populating
Table 1. Graphs were synthesized using a DAG-generating variant of the well-known Erdös-
Rényi method [26] for generating random graphs. The Erdös-Rényi method, given parameters
(n, p), yields a graph on n vertices in which each edge has an independent probability p
of existence. We modified this method to generated directed acyclic graphs with a target
number of edges. Specifically,

The number of vertices in the DAG, n, the maximum WCET parameter for a vertex
w, and the desired number of edges e, are specified. The number of processors m upon
which the DAG is to be scheduled is also specified.

Each vertex is assigned a WCET parameter that is a randomly and uniformly drawn
integer over the range (1, w).
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The parameter p, denoting the probability of existence of each edge, is computed as
follows:

p← 2e
n× (n− 1) .

The idea is that since a DAG with n vertices has a maximum of n/× (n− 1)/2 edges, if
we were to create each such edge independently with probability p, on average the desired
number e of edges would be created.
All edges are assumed to be directed from the lower-indexed vertex to the higher-indexed
vertex (hence a topological sorting of the DAG could yield the vertices in order of
increasing index). Each such edge is created with probability p, as follows:

for i := 1 to n
for j := (i+1) to n

create edge (i,j) with probability p

The work and span parameter of the generated DAG are computed, assuming that each
vertex executes for exactly its WCET parameter value (i.e., WCET parameters are taken
to represent the actual execution duration, rather than an upper bound on the execution
duration). Using these values, a lower bound on makespan as given by Expression 9, and
an upper bound as given by Expression 1, for the DAG upon the specified number m of
processors are computed.
A schedule of the DAG upon m processors using a standard implementation of list
scheduling is generated (once again assuming that each vertex executes for exactly its
WCET parameter value). The makespan of the resulting schedule is recorded.
Each data-point reported in Table 1 was obtained by generating one hundred such graphs,
computing the reported parameters upon each, and taking their averages.

6 Summary and Conclusions

Although DAG-based models for representing parallelizable real-time code have proved very
popular in the real-time scheduling theory community, they suffer from several shortcomings
that restrict their usefulness in representing some kinds of real-time code. In this paper, we
have explored an alternative model, one that is based upon characterizing a task by just two
parameters – work and span – with two estimates on upper bounds on the value of each
parameter – one that may be very large but is trust-worthy to a very high level of assurance,
and a second that is smaller and is more reflective of typical or nominal behavior. We have
developed an algorithm for scheduling tasks that are so modeled upon a dedicated cluster
of processors in a manner guaranteeing correctness – deadlines are always met provided
run-time behavior does not violate the high-assurance bounds – while striving for efficiency
– many processors can remain in sleep mode much of the time, only being switched on in rare
circumstances when run-time behavior exceeds the normal bounds.

The model for representing parallelizable code that is being proposed in this paper, and
the associated run-time scheduling algorithm, is particularly suitable for a certain kind of
real-time application: one that repeatedly (i.e., periodically or sporadically) monitors the
external environment seeking to detect some particular kind of anomalous sensory input.
Most of the time the sought-for input is not detected, and not much computation needs to
be performed. But on the rare occasions when the anomalous input is detected, considerable
additional processing of such input is necessary; furthermore, such processing is highly
parallel in nature. Example applications of this kind include real-time intrusion detection,
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vision-based monitoring systems, etc. For such systems, we would expect that the nominal
workload, as represented by the workN and spanN parameters, is quite small and may not
exhibit much parallelism; however the workload upon “overload” (i.e., when the monitored-for
condition occurs) is quite intensive (workO is large) but exhibits considerable parallelism
(i.e., spanO is relatively small compared to workO: equivalently, the ratio workO/spanO is
large). If the system is hard-real-time, resource allocation for guaranteeing correctness must
be made under worst-case assumptions – the workO and spanO parameters. However, much
of these allocated resources will remain unused much of the time during run-time; by being
able to determine in a timely manner precisely when these unused resources will be needed
during run-time. our approach allows us to place these resources in sleep mode until needed.

We believe our main contribution here is the model for parallel tasks – the run-time
scheduler is presented as proof-of-concept evidence of the potential benefits, in terms of
resource-efficiency, of adopting this model. As future work we plan to demonstrate the
model’s applicability in a wider range of settings: under different scheduling paradigms (such
as global EDF and global Fixed-Priority). We are also working on further extending the task
model if additional profiling data of the task’s run-time behavior is available (and known to
be reliable). For example, straight-forward generalizations allow us to specify multiple sets
of parameter values at different probability thresholds (rather than just two sets of values) –
are we able to develop scheduling strategies that can meaningfully exploit such additional
information?
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Abstract
This paper explores the probability of deadline misses for a set of constrained-deadline sporadic
soft real-time tasks on uniprocessor platforms. We explore two directions to evaluate the prob-
ability whether a job of the task under analysis can finish its execution at (or before) a testing
time point t. One approach is based on analytical upper bounds that can be efficiently com-
puted in polynomial time at the price of precision loss for each testing point, derived from the
well-known Hoeffding’s inequality and the well-known Bernstein’s inequality. Another approach
convolutes the probability efficiently over multinomial distributions, exploiting a series of state
space reduction techniques, i.e., pruning without any loss of precision, and approximations via
unifying equivalent classes with a bounded loss of precision. We demonstrate the effectiveness
of our approaches in a series of evaluations. Distinct from the convolution-based methods in the
literature, which suffer from the high computation demand and are applicable only to task sets
with a few tasks, our approaches can scale reasonably without losing much precision in terms of
the derived probability of deadline misses.
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1 Introduction

For many embedded systems, timeliness is an important feature, especially when such systems
interact with physical environments. A stronger requirement of timeliness is to provide
hard real-time guarantees, i.e., to ensure that the calculated results are not just functionally
correct but also always delivered within given timing constraints. Such hard guarantees are
necessary if any deadline miss can be catastrophic and should be avoided. By contrast, a
weaker requirement of timeliness is to allow occasional deadline misses, called soft real-time
systems. In this case the system can still function correctly as long as the deadline misses can
be quantified and bounded. For example, the system may adopt fault tolerance techniques
like checkpointing, redundant execution, etc. [13, 20, 23, 28, 19], to neglect transient faults
resulting from electromagnetic interference and radiation [3]. Although the additional
computation incurred by such methods may lead to deadline misses, the system may still
provide timing guarantees even without any online adaption [26]. A second example are the
safety standards in the industry that require low (or very low) probability of failure (e.g.,
due to deadline misses) such as IEC-61508 [1] and ISO-26262 [14].

Probability theory is a basic language to describe probabilistic phenomenons, e.g., occa-
sional deadline misses. It is based on the idea that most natural phenomena are either too
complex to construct deterministic models or simply not fully observable but can be described
in a probabilistic way. For example, we can establish probabilistic bounds on the worst-case
execution times (WCETs) to model the execution of a task depending on the occurrence
of soft errors and the triggered error recovery routines. This allows the system designer
to provide probabilistic arguments based on the occurrence of error recovery. Otherwise,
only the WCET, assuming that the recovery always takes place, has to be considered in the
response time analysis, which is very pessimistic and therefore leads to overestimating the
necessary system resources.

Probability of Deadline Misses. A key procedure needed for such soft real-time systems is
the analysis of the probability of deadline misses for a real-time task. Now, we take a closer
look of the problem by using the following example: Suppose that we have two periodic
tasks τ1 and τ2 that release task instances, called jobs, periodically, starting from time 0.
Each task τi ∈ {τ1, τ2} has two versions of execution times Ci,1 and Ci,2 with probability
Pi(1) and Pi(2), respectively. The period of task τ1 is 1 and the period of task τ2 is 100. We
assume that task τ1 always has a higher priority than task τ2 and task τ1 can always meet
its deadline under a fixed-priority preemptive scheduling strategy in a uniprocessor system.

In this example, the system reboots if a job of task τ2 is not finished before the next job of
task τ2 is released. Therefore, the probability of deadline misses corresponds to the probability
of system rebooting. Essentially, we are interested to know whether a job of τ2, arriving at
time ta, can finish its execution before ta + 100. This can be achieved by the convolution of
the probability density functions of the jobs’ execution times. An intuitive procedure is to
evaluate the probability of the accumulative execution time, denoted as workload, of the jobs
released from time ta to ta + `− 1 (inclusive), starting from ` = 1, 2, 3, . . . , 100. When ` is 1,
we have 22 combinations of the workload of the two jobs released at time ta. When ` is 2,
we can have up to 22 × 2 = 23 combinations of the workload. It is rather obvious that we
can have up to 2101 combinations of the workload when ` is 100, which is exponential with
respect to the number of jobs that may interfere with a job of task τ2.

http://sfb876.tu-dortmund.de/
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Since there are only two versions of task τ1, there are in fact only `+ 1 different workload
combinations of the ` jobs released from time ta to time ta + `− 1. As a result, there are
only 2(`+ 1) different workload combinations of the jobs released from time ta to ta + `− 1.
We can evaluate all of them from ` = 1, 2, . . . , 100. However, this remains inefficient as we
are only interested in the probability of the deadline miss at time ta + 100. For this example,
we do not actually care about the individual execution versions of the 100 jobs of task τ1
released from ta to ta + 99. Instead, we only care about their overall workload, which can be
calculated by using a binomial distribution over 100 independent random variables with the
same distribution. As a result, we only have to consider 101 different workload combinations
for the jobs of τ1. Together with the job of task τ2, there are in fact only 2× 101 different
workload combinations.

These approaches are different realizations of the same concept to convolute the probability
density functions of the jobs’ execution times. However, depending on how the convolution
is performed, the complexity can differ largely.

Related Work. As explained above for uniprocessor systems, it is necessary to safely
derive (an upper bound on) the probability of a desired workload constraint to analyze the
probability of deadline misses or the probabilistic response time. Towards this, for periodic
real-time task systems, Diaz et al. [9] developed a framework for calculating the deadline
miss probability based on convolution. Moreover, Tanasa et al. [24] used the Weierstrass
Approximation to approximate any arbitrary execution time distributions and applied a
customized decomposition procedure to search all the possible combinations, in which the
decomposition results in a list with O(4|J|) elements where |J | is the number of jobs in the
interval of interest. These two results have exponential-time complexity with respect to the
number of jobs in the interval of interest. Therefore, both of them suffer from the scalability
with respect to the number of jobs. In the experimental results in [9] and [24], they can
derive the probability of deadline misses with 7 and 25 jobs in the hyper-period, respectively.

For sporadic real-time task systems, in which two consecutive jobs of a task do not
have to be released periodically, Axer et al. [2] proposed to evaluate the response-time
distribution and iterate over the activations of job releases for non-preemptive fixed-priority
scheduling. Maxim et al. [17] provided a probabilistic response time analysis by assuming
probabilistic minimum inter-arrival as well as probabilistic worst-case execution times for the
fixed-priority scheduling policy. Ben-Amor et al. [4] extended the probabilistic response time
analysis in [17], considering precedence constrained tasks. All these approaches convolute the
probability whenever a new job arrives in the interval of interest. Therefore, the convolution
procedure is also heavily dependent on the number of jobs in the interval of interest.

Due to the high complexity, these convolution-based approaches are not scalable with
respect to the number of jobs in the interval of interest and, thus, infeasible. Approximation
techniques can be used to provide an upper bound on the probability. For example, re-
sampling [17] and dynamic-programming based on user-defined granularity can be applied to
reduce the time complexity. Moreover, Chen and Chen [8] provided a scalable approximation
based on the Chernoff bounds. The evaluation results in [8] confirm the applicability and the
scalability of such approximations, even when considering 20 tasks and more than thousand
jobs in the hyper-period.

Our Contributions. We consider the problem of determining the deadline miss probability
of a task under uniprocessor fixed-priority preemptive scheduling when each task has dis-
tinct execution modes that are executed with a known probability distribution. Our main
contributions are:
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We provide a novel approach based on the multinomial distribution that, compared to the
traditional convolution-based approach, allows to calculate the deadline miss probability
with better analysis runtime and without any precision loss.
The analysis is enhanced by a state pruning technique that significantly improves the
runtime as well as the scalability without any loss of precision.
We further improve our approach by merging equivalence classes, thus further reducing
the runtime of our analysis while the introduced precision loss can be bounded in advance.
In the evaluation, we show that our approach is applicable for significantly larger task
sets than the previously known convolution-based approaches by testing it for task sets
of up to 100 tasks.
Furthermore, we provide additional analytical bounds based on the Hoeffding’s [12] and
Bernstein’s [11] inequalities. Our evaluations show that these inequalities lead to fast
results and can be used if the over-approximation is acceptable.

2 Task Model, System Model, and Notation

We consider a given set of n independent periodic (or sporadic) tasks Γ = {τ1, τ2, · · · , τn} in
a uniprocessor system. Each task τi releases an infinite number of task instances, called jobs,
and is defined by a tuple ((Ci,1, ..., Ci,h), Di, Ti), where Di is the relative deadline of τi and
Ti is its minimum interarrival time. In addition, each task has a set of h distinct execution
modes M and each mode j with j ∈ {1, ..., h} is associated with a different worst-case
execution time (WCET) Ci,j . We assume those execution modes to be ordered increasingly
according to their WCETs, i.e., Ci,m ≤ Ci,m+1 ∀m ∈ {1, ..., h− 1}. Furthermore, we assume
that each job of τi is executed in one of those distinct execution modes. To fulfill its timing
requirements in the jth execution mode, a job of τi that is released at time ta must be able to
execute Ci,j units of time before ta +Di. The next job of τi must be released at ta + Ti for a
periodic task and for a sporadic task the next job is released at or after ta + Ti. In this work,
we focus on implicit-deadline task sets, i.e., Di = Ti for all tasks, and constrained-deadline
task sets, i.e., Di ≤ Ti for all tasks. The task set is assumed to be scheduled according to a
preemptive fixed-priority scheduling policy, i.e., each task has a unique fixed priority, the
priority cannot be changed during runtime, and the priority of each task instance is identical
to the priority of the related task. At each point in time, the scheduler ensures that the
job with the highest priority, among the jobs currently ready in the system, is executed.
We assume that the tasks are indexed according to their priority, i.e., τ1 has the highest
and τn has the lowest priority. In addition, hp(τk) denotes the set of tasks with higher
priority than τk and hep(τk) is hp(τk) ∪ {τk}. For a task τi in hp(τk), ρi,t is the maximum
number of jobs that are released in an interval [0, t), also called the interval of interest, and
therefore interfere with task τk, i.e., the number of jobs released in the interval [0, t) under
the critical instance of τk. Furthermore, ρk,t is the number of jobs of task τk in the analysis
window. This notation implicitly assumes that the time window analyzed for τk starts at
0 for notational brevity. Pi(j) denotes the probability that a job of task τi is executed in
mode j with related WCET Ci,j and we assume that each job is executed in exactly one
of these distinct execution modes, i.e.,

∑h
j=1 Pi(j) = 1. In addition, we assume that these

probabilities are independent from each other according to the following definition:

I Definition 1 (Independent Random Variables). Two random variables are (probabilistically)
independent if the realization of one does not have any impact on the probability of the other.

Especially, for a newly arriving job the probability of the execution modes is independent
from the execution mode of the jobs currently in the system or of previous jobs. We aim
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Table 1 Important notation used in this work. Please note that not all explanations in this table
are precise. The precise notations can be found in the Section indicated in the table.

Task-related Quantities

τi = ((Ci,1, ..., Ci,h), Di, Ti) Task τi and related WCETs (Ci,1, ..., Ci,h), deadline Di, and period Ti Sec. 2
(Ci,1, ..., Ci,h) WCET of the h different execution modes of τi Sec. 2
Pi(j) Probability that a job of τis is executed in mode j with related WCET Ci,j Sec. 2
M Set of the possible execution modes (assumed identical for all tasks). |M| = h Sec. 2
hp(τk) and hep(τk) Tasks with higher priority than τk (higher and equal priority, respectively) Sec. 2
ρi,t = dt/Tie Maximum number of jobs of τi released in an interval [0, t) under the critical instant Sec. 2
J(t) =

∑
τi∈hep(τk) dt/Tie Total number of jobs released in the interval [0, t) Sec. 5.1

St Maximum accumulated workload over an interval of length t Sec. 3.1

Probabilistic Quantities

Φk Probability of deadline miss for task τk Sec. 3.1
P(St > t) Probability of overload for an interval of length t Sec. 3.1
X̄ Arithmetic mean of a random variable X Sec. 4
E[X] Expected value of a random variable X Sec. 4
V[X] Variance of a random variable X Sec. 4
X(t) Random variable representing the possible execution modes of all jobs in [0, t) Sec. 5.1
X (t) The state space of X(t) with X (t) =MJ(t) since all jobs are considered Sec. 5.1
x ∈ X (t) One concrete variable assignment for X(t) over [0, t) Sec. 5.1
P(X(t) = x) Probability that the state space X(t) has the concrete variable assignment x Sec. 5.1
Xi(t) Subset of random variables in X(t)) that relate to τi Sec. 5.2
Ci(Xi,j(t)) WCET for the jth job of τi based on its random execution mode Xi,j(t) Sec. 5.1

Combinatorial Quantities

1{expression} Indicator function, i.e., evaluates to 1 iff the expression is true, and 0 otherwise Sec. 5.1
σ(x) A permutation of x Sec. 5.1
Sn Set of all permutations of length n Sec. 5.1
[[x]] Equivalence class of x, i.e., all x′ ∈ X (t) that can be permuted into x Sec. 5.1

at relaxing the independence assumptions on tasks and jobs in future work by employing
techniques from the field of probabilistic graphical models [21, 22].

A list of our notation together with a brief explanation can be found in Table 1.

3 Motivation, Problem Definition, and State-of-the-Art

In this section, we will motivate the importance of the considered problem, i.e., the calculation
of the probability of deadline misses, and formally define it. Afterwards, the state-of-the-art
techniques are introduced, namely the traditional convolution-based approach by Maxim
and Cucu-Grosjean [17] as well as the approach by Chen and Chen [8] that uses Chernoff
bounds and the moment-generating function. We use the term traditional convolution-based
approach when referring to the approach by Maxim and Cucu-Grosjean to avoid confusion,
since our novel approach based on multinomial distributions also uses convolution.

3.1 Motivation and Problem Definition
One main assumption when considering real-time systems is that a deadline miss, i.e., a job
that does not finish its execution before its deadline, will be disastrous and thus the WCET
of each task is always considered during the analysis. Nevertheless, if a job has multiple
distinct execution schemes, the WCETs of those schemes may differ largely. One example
are software-based fault-recovery techniques as they rely on (at least partially) re-executing
the faulty task instance. However, when such techniques are applied, the probability that
a fault occurs and thus has to be corrected is very low; otherwise hardware-based faulty-
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recovery techniques would be applied. If such re-execution may happen multiple times, the
resulting execution schemes have an increased related WCET while the probability decreases
drastically. Therefore, considering solely the execution scheme with the largest WCET at
design time would lead to largely over-designing the system resources. Furthermore, many
real-time systems can tolerate a small number of deadline misses at runtime as long as these
deadline misses do not happen too frequently. Hence, being able to predict the probability of
a deadline miss is an important property when designing real-time systems. We will consider
the probability of deadline misses for a single task here which is defined as follows:

I Definition 2 (Probability of Deadline Misses). Let Rk,j be the response time of the jth job
of τk. The probability of deadline misses (DMP) of task τk, denoted by Φk, is an upper bound
on the probability that a job of τk is not finished before its (relative) deadline Dk, i.e.,

Φk = max
j
{P(Rk,j > Dk)} , j = 1, 2, 3, ... (1)

It was shown in [17] that the DMP of a job is maximized when τk is released at its critical
instant, i.e., together with a job of all higher priority tasks and all consecutive jobs of
those higher priority tasks are released as early as possible. This implicitly assumes that
no previous job has an overrun that interferes with the analyzed job. Hence, time-demand
analysis (TDA) [16] can be applied to determine the worst-case response time of a task
when the execution time of each job is known. TDA is an exact schedulability test for
constrained and implicit deadline task sets with pseudo-polynomial runtime that, under the
assumption that the schedulability of all higher priority tasks is already ensured, determines
the schedulability of task τk by finding a point in time t where the total workload generated
by tasks in hep(τk) is smaller than t. To be more precise: τk is schedulable if and only if

∃ t with 0 < t ≤ Dk such that St = Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (2)

Thus, if Dk ≤ Tk, task τk is schedulable if the statement St ≤ t is true. When probabilistic
WCETs are considered, the WCET will obtain a value in (Ci,1, ..., Ci,h) with a certain
probability Pi(j) for each job of each task τi. Therefore, for a given t we are not looking for a
binary decision anymore. Instead, we are interested in the probability that the accumulated
workload St over an interval of length t is at most t. The probability that τk cannot finish in
this interval is denoted accordingly with P(St > t). We call the situation where St is larger
than t an overload for an interval of length t and hence P(St > t) is the overload probability
at time t. According to the previously introduced notation, ρi,t = dt/Tie for each task τi in
hp(τk) and ρk,t = 1, i.e., only the first job of τk is considered here. Since TDA only needs to
hold for one t with 0 < t ≤ Dk to ensure that τk is schedulable, the probability that the test
fails is upper bounded by the minimum probability among all time points at which the test
could fail. Therefore, the probability of a deadline miss Φk can be upper bounded by

Φk = min
0<t≤Dk

P(St > t) (3)

The number of points considered in Eq. (2) and therefore in Eq. (3) can be reduced by
only considering the points of interest, i.e., Dk and the releases of higher priority tasks.
Nevertheless, in the worst case this still leads to a pseudo-polynomial number of points. Since
the minimum value among all these points is taken, an upper bound will still be obtained
when only a subset of those points is considered. Two approaches to calculate Φk are known
from the literature and are summarized in the following subsections.
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In some cases it is easier to determine P(St ≥ t) instead of P(St > t), especially when
analytical bounds are used (see Sec. 3.3 and Sec. 4). Since P(St ≥ t) ≥ P(St > t) by definition,
these values can be used directly when looking for an upper bound of P(St > t).

3.2 Traditional Convolution-Based Approaches
Each task is defined by a vector of the possible WCETs and the related probabilities, e.g.,( 3

0.9
5

0.1
)
where 3 and 5 are the WCETs and 0.9 and 0.1 are the related probabilities. The

notation we use is similar to the one used by Maxim and Cucu-Grosjean in [17]. The
convolution of two such vectors is denoted by ⊗ and results in a new vector. To determine
this new vector, each element of the first vector is combined with each element of the second
vector by 1) multiplying the related probabilities, and 2) summing up the related WCETs.

I Example 3 (Convolution).
( 3

0.9
5

0.1
)
⊗
( 5

0.8
6

0.2
)

=
( 8

0.72
9

0.18
10

0.09
11

0.01
)

Note that the summation of the probabilities is 1 for each of these vectors. The general idea
of the traditional convolution-based approach [17] is the direct enumeration of the WCET
state space1 and the related probabilities. To this end, it considers the jobs in non-decreasing
order of their arrival times. For each arriving job, the current system state, represented by a
vector of possible states, i.e., possible total WCETs and related probability, is convoluted
with the arriving job. This results in a new vector of possible states, representing the state
space after the arrival of the job. After all jobs released before a certain time point are
convoluted, the probability that the workload is smaller than the next arrival time of a job
is calculated. Afterwards, the jobs arriving at that time are convoluted with the current
states, and the probability for the next arrival time is checked etc. This process is repeated
until t = Dk is reached. A small example explaining the approach considering two tasks
can be found in Figure 1. The first jobs of τ1 and τ2 are both convoluted with the initial
state and the four resulting states are each convoluted with the second release of τ1 at t = 8.
Obviously, when all jobs that are released up to any point in time are convoluted, states that
result in the same execution time can be combined by adding up the related probability, e.g.,
the states with WCET 13 and 14, respectively, in Figure 1.

On one hand, applying the traditional convolution-based approach can easily lead to a
state explosion where the number of states is exponential in the number of jobs. On the
other hand, it calculates the exact probabilities for each t in the interval of interest in one
iteration. To tackle the problem of state explosion, Maxim and Cucu-Grosjean introduced a
re-sampling approach to reduce the number of states to a given threshold and thus to reduce
the runtime while only slightly decreasing the precision as shown in [17].

3.3 Chernoff-Bound-Based Approaches
Chen and Chen [8] use the moment generating function (mgf ) in combination with the
Chernoff bound to over-estimate the deadline miss probability. We only briefly introduce
the techniques here, i.e., describe how they can be used in our setting. Details can be
found in, e.g., [18]. The mgf of a random variable is an alternative way to specify its
probability distribution. For the specific case of the WCET distribution of a task τi the mgf
is mgfi(s) =

∑h
j=1 exp(Ci,j · s) ·Pi(j) where exp is the exponential function, i.e., exp(x) = ex,

and s > 0 is a given real number.

1 Please note that the approach in [17] does not only consider probabilistic WCETs but also probabilistic
periods. Since we only consider probabilistic WCETs here, the approach is summarized accordingly.
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D1 = T1 = 8

τ1
C1
P1 =

(
3
0.9

5
0.1

)

D2 = T2 = 14

τ2
C2
P2 =

(
5
0.8

6
0.2

)

(
3
0.9

5
0.1

) (
5
0.8

6
0.2

) (
3
0.9

5
0.1

)

(
0
1

)

(
3
0.9

)

(
5
0.1

)

(
8

0.72

)

(
9

0.18

)

(
10
0.08

)

(
11
0.02

)

(
11

0.648

)

(
13

0.072

)

(
12

0.162

)

(
14

0.018

)

(
13

0.072

)

(
15

0.008

)

(
14

0.018

)

(
16

0.002

)

(
13

0.144

)

(
14

0.036

)

t = 0 t = 8 t = 14 Legend:

Task

Related Job Release

Release Time

First Execution Mode

Second Execution Mode

Considered Time

Deadline Misses

State Merging

Figure 1 An example for the traditional convolution-based approach. Assume that P(S14 > 14)
should be determined for two tasks τ1 and τ2. The initial state is convoluted with the two jobs
released at t = 0 and the second job of τ1 released at t = 8. Then, P(S14) is determined by summing
up the probabilities of the states related to a workload larger than 14 (red dotted circle), leading to
P(S14 > 14) = 0.01. Note that states with the same execution time can be merged (dashed green
arrows). This usually happens when the related paths are permutations of each other, e.g., both
paths to 13 have one execution of C1,1 and one of C1,2.

The Chernoff bound can be exploited to over-approximate the probability that a random
variable exceeds a given value. This statement is summarized in the following lemma:

I Lemma 4 (Lemma 1 from Chen and Chen [8]). Suppose that St is the sum of the execution
times of the ρk,t +

∑
τi∈hp(τk) ρi,t jobs in hep(τk) at time t. In this case

P(St ≥ t) ≤ mins>0

(∏
τi∈hep(τk)(mgfi(s))ρi,t

exp(s · t)

)
(4)

The Chernoff bound is in general pessimistic and there is no guarantee for the quality of
the approximation, even if the optimal value for s is known, i.e., the value that minimizes
the right-hand side in Eq. (4). However, as the condition always holds, an upper bound
can be obtained by taking the minimum over any number of s values. In contrast to the
convolution-based approach, the evaluation of the right hand side of Eq. (4) is linear to the
number of jobs in the interval of interest.

4 Analytical Upper Bounds

Concentration inequalities have various applications in machine-learning, statistics, and
discrete-mathematics. Here, we show how some of them can be used to derive analytical
bounds on P(St ≥ t) which are easier to compute than the Chernoff bounds. Specifically, we
will apply the Hoeffding’s inequality [12] and Bernstein’s inequality [11].

The Hoeffding’s inequality derives the targeted probability that the sum of independent
random variables exceeds a given value. For completeness, we present the original theorem
here:

I Theorem 5 (Theorem 2 from [12]). Suppose that we are given M independent random
variables, i.e., X1, X2, . . . , XM . Let S =

∑M
i=1 Xi, X̄ = S/M and µ = E[X̄] = E[S/M ]. If
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ai ≤ Xi ≤ bi, i = 1, 2, . . . ,M , then for s > 0,

P(X̄ − µ ≥ s) ≤ exp
(
− 2M2s2∑M

i=1 (bi − ai)2

)
(5)

Let s′ = sM , i.e, s = s′/M . Hoeffding’s inequality can also be stated with respect to S:

P(S − E[S] ≥ s′) ≤ exp
(
− 2s′2∑M

i=1 (bi − ai)2

)
(6)

By adopting Theorem 5, we can derive the probability that the sum of the execution
times of the jobs in hep(τk) from time 0 to time t is no less than t:

I Theorem 6. Let ai be Ci,1 and bi be Ci,h. Suppose that St is the sum of the execution
times of the ρk,t +

∑
τi∈hp(τk) ρi,t jobs in hep(τk) released from time 0 to time t. Then,

P(St ≥ t) ≤

exp
(
− 2(t−E[St])2∑

τi∈hep(τk)
(bi−ai)2ρi,t

)
if t− E[St] > 0

1 otherwise
(7)

where ρi,t =
⌈
t
Ti

⌉
and E[St] =

∑
τi∈hep(τk)(

∑h
j=1 Ci,jPi(j)) · ρi,t.

Proof. Since the execution time of a job of task τi is an independent random variable,
there are in total ρi,t independent random variables with the same distribution function
upper bounded by Ci,h and lower bounded by Ci,1 for each τi ∈ hep(τk). With Eq. (6) and
s′ = t− E[St], we directly get:

P(St ≥ t) = P(St − E[St] ≥ t− E[St]) ≤ exp
(
− 2(t− E[St])2∑

τi∈hep(τk) (bi − ai)2
ρi,t

)
(8)

when s′ > 0. Otherwise, i.e., when s′ ≤ 0, we use the safe bound P(St ≥ t) ≤ 1. J

The Chernoff bound and the related inequality by Hoeffding and Azuma can be generalized
by the Bernstein’s inequality. The original corollary is also stated here:

I Theorem 7 (Corollary 7.31 from [11]). Suppose that we are given L independent random
variables, i.e., X1, X2, . . . , XL, each with zero mean, such that |Xi| ≤ K almost surely for
i = 1, 2, . . . , L and some constant K > 0. Let S =

∑L
i=1 Xi. Furthermore, assume that

E[X2
i ] ≤ θ2

i for a constant θi > 0. Then for s > 0,

P(S ≥ s) ≤ exp
(
− s2/2∑L

i=1 θ
2
i +Ks/3

)
(9)

The proof can be found in [11]. Note, however, that the result in [11] is stated for the
two-sided inequality, i.e., as upper bound on P(|S| ≥ s). Here, the one-sided result, which is
a direct consequence of the proof in [11] (page 198), is tighter.

Hence, we can derive the following upper bound:

I Theorem 8. Suppose that the sum of the execution times of all L = ρk,t +
∑
τi∈hp(τk) ρi,t

jobs is St. Let K = maxτi∈hep(τk) Ci,h − E[Ci] be the centralized WCET of any job, where
E[Ci] =

∑h
j=1 Pi(j)Ci,j is the expected execution time of a job of task τi. Then,

P(St ≥ t) ≤

exp
(
− (t−E[St])2/2∑

τi∈hep(τk)
V[Ci]ρi,t+K(t−E[St])/3

)
if t− E[St] > 0

1 otherwise
(10)

for any t > 0, where ρi,t =
⌈
t
Ti

⌉
and E[St] =

∑
τi∈hep(τk)(

∑h
j=1 Ci,jPi(j))ρi,t.
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Proof. Since for each task τi ∈ hep(τk) the execution time of a job of task τi is an indepen-
dent random variable, there are in total ρi,t independent random variables with the same
distribution function. Suppose that Cl is a random variable representing the execution time of
a job of task τi and let Yl = Cl−E[Ci] = Cl−

∑h
j=1 Ci,jPi(j) denote its centralized execution

time. Since the expected execution time of a job is fully determined by its corresponding
task, we have E[Cl] = E[Ci].

Hereinafter, we explain why we adopt V[Ci] instead of θ2
i as known from Theorem 7.

Consider Eq. (9) with S =
∑M
l=1 Yl. The exact variance V[Yl] = E[Y 2

l ]− E[Yl]2 = E[Y 2
l ] is

unknown and hence some loose upper bound θ2 must be considered in most applications
of Bernstein’s inequality, like stated in Theorem 7. Here, the probabilities of the different
execution modes are given numerically, i.e., Pi(j) for Ci,j . Hence, for an arbitrary but fixed
task τi with h different execution modes, this results in

V[Yl] =
h∑
j=1

Pi(j) (Ci,j − E[Ci])2 =
h∑
j=1

Pi(j)
(
C2
i,j − 2Ci,jE[Ci] + E[Ci]2

)
=

h∑
j=1

Pi(j)C2
i,j −

h∑
j=1

Pi(j)2Ci,jE[Ci] +
h∑
j=1

Pi(j)E[Ci]2 = E[C2
i ]− E[Ci]2 = V[Ci] (11)

i.e., V[Yl] = V[Ci], which can be computed exactly in time O(h). Instead of imposing an
upper bound θ2, we can invoke the tightest version of Theorem 7 by using the exact variance.

Since E[Yl] = 0 and ∀1 ≤ l ≤M : Yl ≤ K, we can invoke Theorem 7 with s = t− E[St].
When s ≤ 0, we use a safe bound P(St ≥ t) ≤ 1. When s > 0, Eq. (9) can be rewritten as

P

(
M∑
l=1

Yl ≥ t− E[St]
)
≤ exp

(
− (t− E[St])2/2∑M

l=1 V[Yl] +K(t− E[St])/3

)
(12)

Finally, observing that
∑M
l=1 Yl = St − E[St] and

∑M
l=1 V[Yl] =

∑
τi∈hep(τk) V[Ci]ρi,t (from

Eq. (11)) completes the proof. J

5 The Multinomial-Based Approach

In the traditional convolution-based approach [17], the underlying random variable represents
the execution mode of each single job. First, we take a closer look on the related state space
and show that the complexity of this approach depends on the specific definition of these
random variables. Afterwards, we explain how this state space can be transformed into an
equivalent space that describes the states on a task-based level by proving the invariance
when considering equivalence classes for each task. As a result, we introduce our novel
approach that is based on the multinomial distribution. The section is concluded with
a short discussion regarding the complexity of our approach compared to the traditional
convolution-based approach presented in Section 3.2.

5.1 The State Space of the Traditional Convolution-Based Approach
In this approach [17], X(t) is the set of the random variables representing the individual jobs
released in the interval [0, t) in the order of their arrival times. Note that the notion of X(t)
instead of X is necessary, since the underlying state space and thus the underlying set of
random variables are dependent on the considered t. Let J(t) be the number of jobs released
in [0, t) under the critical instance of τk. Hence, X(t) represents a set of J(t) independent
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random variables representing the execution modes of the individual tasks, i.e., X(t) is the
Cartesian product over those J(t) variables. To understand how the computation can be
simplified, it is necessary to explicitly consider the random variables X(t) as well as the
dependence between X(t) and the quantities St and Ci. To simplify notation, let us assume
that all jobs have a common set of h execution modesM, i.e., |M| = h.2 Thus, the state
space of the random variable X(t) is X (t) =MJ(t). A concrete assignment of these variables
is denoted x ∈ X (t), and the portion of x that corresponds to the jobs of task τi is denoted
xi. Each task τi releases ρi,t = dt/Tie jobs, and thus J(t) =

∑
τi∈hep(τk) dt/Tie. Hence,

dt/Tie of the J(t) random variables in X(t) are related to the task τi. Since the execution
time of the jth job of task τi depends on the related random variable Xi,j(t) we denote it
Ci(Xi,j(t)). Linking the total workload St to the random variables, from Eq. (2) we get:

St = St(X(t)) = Ck(Xk,1(t)) +
∑

τi∈hp(τk)

ρi,t∑
j=1

Ci(Xi,j(t)) (13)

Based on this, we denote the exact expression for the probability of a overload at time t as

P(St(X(t)) > t) =
∑

x∈X (t)

P(X(t) = x)1{St(x)>t} (14)

Here, 1{expression} is the indicator function which evaluates to 1 if and only if the expression
is true, and to 0 otherwise. Since the execution modes of the jobs are assumed to be
independent, the joint probability mass P(X(t)) factorizes over the jobs. The probability of
each execution mode per job is fully determined by its corresponding task, and hence

P(X(t) = x) =
∏

τi∈hp(τk)

ρi,t∏
j=1

Pi(xi,j(t)) (15)

Each factor Pi(x) is the probability mass of any job of task τi, being in some state x ∈M.
Note that Eq. (14) is exactly the quantity computed by the traditional convolution-based
approach [17]. Hence, its stems from the state space X (t) =MJ(t) that is exponential in the
total number of jobs. Nevertheless, we leverage the independence of job modes to compute
P(St(X(t))) ≥ t) over a different state space, which is the key insight of our method.

5.2 Invariance and Equivalence Classes
In Eq. (15), for any fixed task τi, the expression

∏ρi,t
j=1 Pi(xi,j) is determined by the num-

ber of jobs for each state in M. As an example, consider an arbitrary task τi with two
distinct execution states, i.e.,M = {Ci,1, Ci,2}, and suppose that xi = (Ci,1, Ci,2, Ci,1, Ci,2),
x′i = (Ci,1, Ci,1, Ci,2, Ci,2), and x′′i = (Ci,2, Ci,1, Ci,1, Ci,2). The resulting probability is identi-
cal in all three cases, i.e., Pi(xi) = Pi(x′i) = Pi(x′′i ). We formalize this property subsequently.

I Lemma 9 (Probability Permutation Invariance). Let τi be a task with a set of distinct
execution modes M, let ρi,t be the number of jobs of τi released up to time t, and let
xi ∈Mρi,t be the random vector that represents the execution mode of all jobs which belong
to task τi. The probability mass Pi is permutation invariant with respect to xi, i.e.,

∀ xi ∈Mρi,t : ∀σ ∈ Sρi,t : Pi(xi) = Pi(σ(xi)) (16)

where Sn contains all permutations of n objects.

2 If a task has less than h (or even only one) execution modes, dummy modes with probability 0 can
ensure this condition. Alternatively,Mi and hi can be defined based on the execution modes of τi.
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Proof. The lemma follows directly from the independence of job-wise execution modes, thus
Pi(xi) =

∏ρi,t
j=1 Pi(xi,j), and from the commutativity of the multiplication. J

Up to now, we considered just a single task τi, but the lemma indeed holds for all tasks
simultaneously. Recall that the random modes of all tasks are represented by X(t). Let
Xi(t) represent the random modes of the jobs of task τi, i.e., Xi(t) is the subset of random
variables in X(t) that relate to the random modes of τi. Applying the permutation invariance
to each Xi(t), we derive a partition on X (t) into equivalence classes.

I Definition 10 (Execution Mode Equivalence Classes). For any x ∈ X (t), its equivalence
class [[x]] with respect to permutation invariance is given by

[[x]] = {x′ ∈ X (t) | ∀τi ∈ hep(τk) : ∃σ ∈ Sρi,t : xi = σ(x′i)} (17)

Based on this definition, the statement ∀x′ ∈ [[x]] : P(x) = P(x′) is a straightforward
corollary of Lemma 9. The equivalence relation in Lemma 10 is established by an equivalent
occurrence of execution modes for each task. Hence, each equivalence class has a canonical
representative, given by a tuple ` ∈ ⊗τi∈hep(τk){1, 2, . . . , ρi,t}|M|, which for each task contains
the number of jobs for all execution modes. For convenience we use [[`]] to address the set of
all x in the same equivalence class and rephrase Eq. (14) accordingly.

I Lemma 11 (Class-based Overload Probability). For any set of execution modes M, let
L(t) = ⊗τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M|. Then,

P(St(X(t)) ≥ t) =
∑

`∈L(t)

∏
τi∈hep(τk)

ρi,t!
∏|M|
j=1 Pi(j)`i,j∏
x∈M `i,x! 1{St([[`]])≥t} (18)

where `i,j denotes the number of jobs of task τi which are in the j-th execution mode, and
St([[`]]) denotes the execution time for some arbitrary x ∈ [[`]].

Proof. For all members of the class [[x]], each task has the same number of jobs which are in
the same state. Iterating over the set L(t) =

⊗
τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M| corresponds to

iterating over all such count vectors, which is in turn the same as iterating over all equivalence
classes [[x]]. Each class [[`]] contains all state permutations for all jobs of each task. For each
task τi, this is equivalent to the well-known combinatorial problem of counting the number of
ways how ρi,t objects can be placed into |M| bins, given by the corresponding multinomial
coefficient. Combining those for all tasks, we get

|[[`]]| =
∏

τi∈hep(τk)

(
ρi,t

`i,1 `i,2 . . . `i,|M|

)
=

∏
τi∈hep(τk)

ρi,t!∏
x∈M `i,x! (19)

Combining these facts, we get∑
x∈X (t)

P(X(t) = x) =
∑

`∈L(t)

|[[`]]|P(X(t) = [[`]]) (20)

Observing that P(X(t) = [[`]]) =
∏|M|
j=1 Pi(j)`i,j implies the lemma. J

5.3 Detailing the Multinomial Approach
Now, we can combine the findings of Section 5.1 and Section 5.2 into an algorithm for
calculating P(St > t), i.e., the probability of an overload for a length t, more efficiently.
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For simplicity of presentation, we will also refer to the overload probability at time t and
the state space at time t, implicitly assuming that both the probability and the state space
is calculated considering the interval [0, t) with respect to the critical instant of τk. The
traditional convolution-based approach determines this probability by successively calculating
the probability for all other points of interest in the interval [0, t). Nevertheless, the probability
for t is evaluated based on the resulting states after all jobs in [0, t) are convoluted. With
respect to t, the intermediate states are not considered.

We utilize this insight to calculate the vector representing the possible states at time
t more efficiently. Lemma 9 shows that the overload probability of a state for a concrete
variable assignment x ∈ X (t) is identical to the probability of all permutations of x, i.e., the
related equivalence class. This allows us to consider the jobs in J(t) in any order. We further
know from Lemma 11 that all assignments that are part of the same equivalence class result
in the same value for St. Considering only one task τi, those assignments differ regarding
the order in which the execution modes happen but not with respect to the total number
of executions in a given mode. However, if the jobs are convoluted in the non-decreasing
order of their arrival times, this leads to a large number of unnecessary states that will be
merged in the end. For example, in Figure 1 the state space can be reduced if the second job
of τ1 would be convoluted before the job of τ2 is convoluted, since the resulting merged state
space after the convolution of the two jobs of τ1 only has 3 states that represent the number
of executions in each mode. Therefore, to reduce the state space as much as possible, we
consider the jobs ordered according to the tasks they are related to, i.e., first all ρ1,t jobs of
τ1 are considered, then all ρ2,t jobs of τ2, etc. However, if the jobs are just reordered and
then convoluted, this still leads to a large number states that are merged later on.

Regardless, the number of states is already significantly lower than in the traditional
convolution-based approach. Fortunately, if the number of jobs for a task is known, all
possible combinations and the related probabilities can be calculated directly using the
multinomial distribution. To be more precise, assume a given task τi as well as a given
number of releases ρi,t in an interval of length t and let `i,j be the number executions in mode
j ∈ {1, ..., h}. We know that `i,j ∈ {0, 1, ..., ρi,t} and

∑h
j=1 `i,j = ρi,t, leading to

(
ρi,t+h−1
h−1

)
possible combinations of `i,1, ..., `i,h where

(
a
b

)
= a!

b!(a−b)! is the binomial coefficient. For
each combination, we can calculate the related probability as

ρi,t!
`i,1!`i,2!...`i,h!Pi(1)`i,1 · Pi(2)`i,2 · ... · Pi(h)`i,h (21)

where ρi,t!
`i,1!`i,2!...`i,h! determines the number of possible paths for the related equivalence

classes and Pi(1)`i,1 · Pi(2)`i,2 · ... · Pi(h)`i,h is the probability of one of these paths. The
total workload of the ρi,t jobs of τi is calculated for each of these combinations based on
the related values of `i,1 to `i,h. The

(
ρi,t+h−1
h−1

)
states represent the equivalence classes of

τi and the related probabilities. After calculating these representatives for each task, the
overload probability can be calculated by convoluting them and adding up the overload
probabilities of the resulting state space. A concrete example for our approach, assuming
that each task has two possible execution modes, is given in Figure 2. Details on how some
equations can be simplified in this case can be found in the related full version [27]. Note
that based on Lemma 9 the states representing the tasks can be convoluted in any order.

In fact, considering t, the job-based state space of the traditional convolution-based
approach has been transferred into a task-based space state with identical properties regarding
the overload probability. To visualize the different approaches, the traditional convolution-
based approach constructs a binary tree based on the jobs (see Figure 1) where each layer
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Legend:
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Figure 2 The multinomial approach convoluting 3 tasks with two modes. The number of children
depends on the number of jobs of the related task. Note that nodes can be ignored in further steps
if they never lead to an overload (green solid circles) or if they always lead to an overload (red
solid circle). In the end, the overload probability at t = 24 is calculated by summing up the related
probabilities (dashed and solid red) which leads to deadline miss probability of 0.00574.

represents the state of the system after the related job is convoluted. The multinomial-based
approach on the other hand constructs a tree based on the tasks (see Figure 2) which means
that the number of children on each level depends on the number of jobs the related task
releases. If the nodes on the J(t)th level of the binary tree are merged as show in Figure 1,
the number of states on that level is identical to the number of states on the kth level of the
tree resulting from our approach. While the state space of our reformulation is still large, it
opens up opportunities for pruning strategies and other state reduction strategies which are
not suitable for the traditional approach. These strategies will be explained in Section 6.

5.4 Complexity Discussion and Comparison
When considering the complexity of the multinomial-based approach for τk over an interval
[0, t) (an interval of length t that ends at time t for notational brevity) under the critical
instance of τk, both the number of tasks that are contributing to the workload in the interval,
i.e., ρi,t for the higher priority tasks, and the total number of jobs in the interval J(t) have
to be considered. The number of multinomial coefficients depends on ρi,t and the number of
possible execution states h for each task and can be calculated as

(
ρi,t+h−1
h−1

)
. This is also

called the h-simplex of the ρthi,t component. The convolution of these states over all tasks
leads to a total number of states of

∏k
i=1

(
ρi,t+h−1
h−1

)
.

The classical convolution-based approach considers each job individually with h possible
outcomes and, therefore, leads to hJ(t) states, i.e., it is exponential in the number of jobs.
Hence, without state merging, it is not feasible for input sets with a sensible cardinality.
However, the convolution-based approach in the process also calculates the deadline miss
probability at all possible points of interest in the interval, i.e., at each point in time a job is
released. Furthermore, states can be merged when they have the same related workload, e.g.,
states resulting from a permutation of the same number of abnormal executions of a given
task. Lemma 9 directly implies that when convolution is used in combination with merging
states, the final number of states for the convolution-based approach at time t is identical to
the number of states created by the multinomial-distribution-based approach (assuming that
all states created by our approach lead to pairwise different workloads). However, while our
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approach creates only necessary states, the traditional convolution-based approach not only
creates unnecessary states but also requires additional overhead for state merging after each
step. Therefore, when considering a single point in time our approach is significantly faster
than the traditional convolution-based approach with task merging. On the other hand, since
our approach needs to consider all points of interest individually, if the number of such points
increases due to the number of tasks the traditional convolution-based approach should be
favoured. However, we were not able to observe this behaviour in our evaluation since both
our multinomial-based approach as well as the traditional convolution-based approach with
state merging only rarely were able to provide results for task sets with a cardinality of 10.
Hence, for our approach runtime optimizations are provided in the next section. Note that
this differs depending on the actual setting and that the period range is the most important
parameter since it relates to the number of jobs.

6 Runtime Improvement

Here we introduce two strategies to improve the runtime efficiency. The first one prunes the
state space, i.e., discards states directly if the impact on the overload probability can be
determined without considering the remaining tasks, detailed in Section 6.1. This reduces
the runtime without sacrificing any precision. The second technique combines execution
mode equivalence classes with very low probability when creating the task representations to
reduce the size of the state space beforehand, explained in Section 6.2. While this leads to
an increase of the resulting overload probabilities, this error can be bounded for each task
under consideration and therefore also with respect to the total error of the derived overload
probability. Note that both techniques can be combined, which is done in the evaluation.

6.1 Pruning the State Space
Our multinomial-based approach calculates the probabilities for each interval individually,
a property we already used when we transferred the state space from a job-based to a
task-based state space. For convenience, assume that in our multinomial-based approach
the representatives of the tasks are convoluted according to the task index. Recall that the
state space can be seen as a rooted tree where each node on the jth row represents a possible
state after the convolution of the first j tasks and that we are only interested in the nodes
on the kth (and last) layer, i.e., the states after all task representations are convoluted. Such
a tree is displayed in the example in Figure 2. The general concept of pruning is to remove a
state R if the resulting subtree, i.e., the subtree with root R, has no further impact on the
evaluation on the kth layer, i.e., either all states on the kth layer in the subtree with root
R evaluate to an overload or for all states on the kth layer in the subtree with root R the
resulting workload is less than the interval length. In the first case, the state is discarded and
the related probability is added to the overload probability considering t. In the second case,
the state is directly discarded. This is done by checking the boundary conditions. To this
end, for each task we determine the minimum and maximum execution time it can contribute
to the total workload up to time t, respectively, which can be easily done while calculating
the vectors that represent the task. On the ith layer, the minimum and maximum workload
that can be contributed by the remaining tasks, denoted as Cmini and Cmaxi , is the sum
of the minimum and maximum values related to the remaining tasks. Let P(discard) be a
variable accounting for the overload probability of discarded states, initialized with 0. For
each state Q created by the convolution of τi with the previous state space let C(Q) be the
related total workload. We check the two following conditions:
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1. C(Q) + Cmaxi ≤ t: In this case the subtree rooted at Q only leads to states that will
not lead to an overload at time t, since the branch related to the maximum cumulative
workload in this subtree does not lead to an overload. Therefore, Q can directly be
discarded. In the example in Figure 2 those states are marked with a solid green circle.

2. C(Q) + Cmini > t: All paths in the subtree rooted at Q result in an overload at time t,
since the branch related to the minimum cumulative workload in this subtree leads to
an overload. Hence, Q can directly be discarded and P(discard) is increased by the
probability of Q. In Figure 2 those states are marked with a solid red circle.

Obviously all created states can only fulfill one of these two conditions but not both due to
C(Q) + Cmini ≤ C(Q) + Cmaxi . If Q fulfills none, the state is added to the representation
of τ1, ..., τi. The correctness of this pruning approach follows directly from the observations
that the total probability of a subtree on each level is equal to the probability of the root and
from the fact that the total workload of each branch is always smaller than the maximum
workload (larger than the minimum workload, respectively). A proof is therefore omitted.
Note that the order in which the tasks are considered has no impact on the applicability of
the pruning technique.

When considering a similar technique for the traditional convolution-based approach, one
major difference is that the overload probability of all values is calculated successively. To be
more precise, it considers the critical instant of τk at time 0 and the deadline miss probability
for all intervals [0, t), where t is the release time of a higher priority task. The interval [0, Dk)
is calculated successively and the result at time tb depends on the result at time ta if ta < tb.
We visualize this by a rooted directed binary tree where each layer represents an arriving
job and the layers are created according to the jobs arrival time, i.e., the height of the tree
depends on the number of considered jobs (see Figure 1). The nodes on each layer represent
the state space after the convolution of the related job. One important property of this
approach is that the probability of deadline miss is calculated on each layer. Hence, pruning
a state, i.e., removing a state and the branches resulting from it, can only be done if those
branches have no impact on the probability on all following layers, i.e, a state R at time ta
can only be pruned if all branches of the subtree with root R will for all tb ∈ (ta, Dk] either
lead to an overload at tb or to no overload at tb. This cannot be determined by evaluating
the overload condition for any single time point tb ∈ (ta, Dk]. Assume, for instance, for a
tb ∈ (ta, Dk] that C(Q) + Cmintb > tb where Cmintb is the minimum workload created by
jobs released in the interval [ta, tb). Let tb−1 and tb+1 be the previous and next considered
points with respect to tb in the convolution based approach. We observe that τk may have
no overload at tb−1, if the minimum workload of the job released at tb−1 is smaller than
tb − tb−1. Similar arguments can be taken to create a case with no overload at tb+1 and for
the cases where τk has no overload at tb if Cmaxtb is considered.

6.2 Union of Execution Mode Equivalence Classes
The general concept of the presented runtime improvement technique is to reduce the state
space by unifying equivalence classes with low probability when creating the representation
for the individual tasks. In contrast to the pruning technique, this obviously results in a
loss of precision when approximating the deadline miss probability for a given point in time.
However, if done carefully, the precision loss can be upper bounded by a constant. We will
introduce the concept based on the example in Table 2. Therein, we detail the release of 10
jobs in the interval of interest for a task τi with two execution modes that have a WCET of
Ci,1 = 1 and Ci,2 = 2, with related probabilities Pi(1) = 0.975 and Pi(2) = 0.025. In the
upper half, the original equivalence classes are displayed, i.e., one for each possible number
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Table 2 Distribution for 10 releases of τi with Ci,1 = 1, Ci,2 = 2, Pi(1) = 0.975, Pi(2) = 0.025.
The upper part details the distribution before and the lower part after merging equivalence classes.

# Ci,2 jobs 0 1 2 3 4 5 6 7 8 9 10
Total Ci 10 11 12 13 14 15 16 17 18 19 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.63 · 10−08 6.8 · 10−10 6.53 · 10−12 3.72 · 10−14 9.5 · 10−17

# Ci,2 jobs 0 1 2 3 4 5 6 or 7 8, 9, or 10
Total Ci 10 11 12 13 14 15 17 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.701 · 10−08 6.564711 · 10−12

of jobs (0 to 10), together with their total WCET and their (rounded) related probability.
We will explain afterwards how the approach can be generalized.

The probability decreases rapidly with respect to the number of executions in the mode
related to Ci,2. Such distributions are common when considering probabilistic execution
times for real-time systems. The reason is that if the execution mode with larger WCET has
a comparatively high probability, classical non-probabilistic worst-case response time analysis
considering the larger WCET should be used to ensure timeliness for relatively common
cases. Since the probability of the equivalence classes decreases, the impact of those classes
on the overload probability over the given interval decreases as well. Therefore, the number
of states that are created in our approach, and thus the runtime, can be reduced by unifying
some of these highly unlikely equivalence classes. To guarantee a safe approximation, i.e., the
resulting overload probability is only increased, we define the merge of a set of equivalence
class as follows:

I Definition 12 (Union of Task Equivalence Classes). Let C = {[[xi]], [[x′i]], [[x′′i ]], . . .} be a set
of |C| = q equivalence classes of task τi in a given interval of interest [0, t). For each class
[[xi]] ∈ C, let Pi([[xi]]) and Ci([[xi]]) denote its probability and the related total worst-case
execution time, respectively. Furthermore, let [[xmax

i ]] ∈ C be the equivalence class with the
highest total WCET, i.e., [[xmax

i ]] = arg max[[xi]]∈C Ci([[xi]]).
When we union all classes in C = {[[x1]], ..., [[xq]]}, the classes in C are replaced by a a

new class [[xCi ]] =
⋃

[[xi]]∈C [[xi]] that has the following characteristics:
1. Ci([[xCi ]]) = Ci([[xmax

i ]])
2. Pi([[xCi ]]) =

∑
[[xi]]∈C Pi([[xi]])

As shown in Table 2, merging the equivalence classes for 6 and 7 executions of mode 2,
the probability of the newly created class is the summation of their probabilities and the
related WCET is the maximum among those two classes, i.e., the WCET of the class with 7
executions. We now show that merging a set of equivalence classes leads to a bounded error
with respect to the overload probability.

I Lemma 13 (Unifying Equivalence Classes Leads to a Bounded Maximum Error). For task
τi let C = {[[x′i]], [[x′′i ]], . . .} be a set of |C| = q equivalence classes for the interval of interest
[0, t). If C is merged into [[xCi ]] according to Definition 12, the probability of overload can only
increase and the error is bounded by (

∑
[[xi]]∈C |[[xi]]|Pi([[xi]]))− |[[x

max
i ]]|Pi([[xmax

i ]]).

This follows from Eq. (18), Eq. (20), and the fact that any C in which no class [[xi]] triggers the
indicator function 1{St([[x]])>t} does not introduce any error. Hence, if at least [[xmax

i ]] triggers
1{St([[x]])>t} the maximum probability increase happens if all other classes did not trigger
1{St([[x]])>t} before the unification but do afterwards. Since the process can be repeated for
all tasks this directly leads to:
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I Theorem 14 (Bounded For The Overall Increase On The Overload Probability). If equivalence
classes of tasks with respect to the interval [0, t) are merged, the total increase of the overload
probability for this interval is increased by the sum of the individual overload probability
increase of the individually tasks.

Now we can calculate the overloaded probability over [0, t) with a bounded total error
while reducing the states that have to be considered. Assume a value b for the allowed
maximum error to be given and a set of n tasks. The maximum error is bounded by b if
for each task the error is bounded by b/n. This can be achieved by ordering the related
states in decreasing order of probability, traversing them in this order while summing up the
probabilities of each state, and keeping all states until the summation is larger than 1− b/n.
Afterwards the remaining states are unified into one.

So far we considered a setting similar to the one displayed in Table 2, i.e., the workload
increases as the probability decreases. However, this is not necessarily the case, e.g., when a
task has two execution modes with an equal probability or when a task has three execution
modes and Ci,2 has the lowest probability. Nevertheless, in such cases the approach based on
Theorem 14 can still directly be exploited since the union of equivalence classes is agnostic
to the workloads and related probabilities as long as the total probability of the combined
equivalence classes is less than b/n and thus the approach can directly be used. Hence, for a
given task properties of the related distribution can be exploited in the process. For example,
for two execution modes with identical probability the symmetry of the resulting distribution
can be used if modes with a total probability of b/2n at both ends are unified.

7 Evaluation

The main focus of our evaluation was to determine if our novel multinomial-based approach
can provide good results in reasonable analysis runtime, especially considering the scalability
with respect to the number of tasks for reasonable settings. To this end, for a given utilization
Usum and a number of tasks, we generated random implicit-deadline task sets with one
execution mode according to the UUniFast method [6]. As suggested by Emberson et al. [10],
the periods of those tasks were generated according to a log-uniform distribution with two
orders of magnitude, i.e., 10ms − 1000ms. We only considered tasks with two distinct
execution modes in the evaluation, called normal and abnormal execution mode and hence
M = {N,A}. The normal execution mode is considered to have a (much) higher probability.
The WCET in the normal mode was set according to the utilization, i.e., Ci,N = Ui · Ti and
the WCET in abnormal mode was calculated as Ci,A = f · Ci,N for all tasks in the set.

We used a fixed setting, defined by Usum, f , and Pi(A), tracking the resulting deadline
miss probability and runtime related parameters. In each setting, the deadline miss probability
for the lowest-priority task under the rate-monotonic scheduling approach was determined.
In our evaluations, we considered the following approaches where the bold name indicates
how the approach is referred to:
1. Convolution: The traditional convolution-based approach [17].
2. Conv. Merge: The traditional convolution-based approach [17] with state merging.
3. Multinomial: Our novel multinomial-based approach from Sec. 5.3.
4. Pruning: The approach in Sec. 5.3 combined with the pruning technique in Sec. 6.1.
5. Unify: The approach in Sec. 5.3 combined with the pruning technique in Sec. 6.1 and

reducing the complexity with the union of equivalence classes presented in Sec. 6.2.
6. Approx: Approximation of Pruning by only considering the deadline of τk and the last

releases of higher-priority tasks, inspired from the literature, e.g., [7, 5, 25, 8].
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Figure 3 (a) Average runtime with respect to task set cardinality. (b) Approximation quality for
5 sets with 15 tasks. (c) Detailed approximation quality for the multinomial-based approaches.

7. Chernoff: The analytical approach using Chernoff bounds by Chen and Chen [8].
8. Hoeffding: The analytical approach using Hoeffding’s inequality (Sec. 4).
9. Bernstein: The analytical approach using Bernstein inequalities (Sec. 4).
To allow runtime comparisons, all approaches were implemented in the same programming
language, i.e., Python, and executed on the same machine, i.e., a 12 core Intel Xeon X5650
with 2.67 GHz and 20 GB RAM. For the analytical bounds, in contrast to the work by Chen
and Chen [8], all releases of higher-priority tasks were considered since the bounds have a
lower runtime than our novel approach.

Figure 3 shows the results for randomly generated tasks sets with a normal-mode utilization
of Usum = 70, and for all tasks f = 2 and Pi(A) = 0.025 were assumed. Hence, Pi(N) = 0.975.
To analyze the scalability, the cardinality of the task sets ranged from 5 to 35 in steps of 5.
In Figure 3(a) the average runtime of the analysis is displayed with respect to the cardinality.
For a cardinality from 5 to 20 tasks, we evaluated 20 task sets while a cardinality from 25
to 35 tasks, due to the high runtime, 5 task sets were analyzed. For Convolution usually
no result was delivered for a cardinality of 5, i.e., a crash due to an out of memory error
occurred. Even for 3 tasks no result could be provided in some cases since, for instance,
38 jobs already leads to 238 = 274877906944 states for Dk in Convolution. For Conv.
Merge and Multinomial a setting with 10 tasks often lead to no results. Hence, those
three approaches are not displayed. However, the results for Conv. Merge, Multinomial,
and Pruning were always identical (if Conv Merg and Multinomial derived results),
showing that our pruning technique drastically decreases the runtime of the analysis and
increases the scalability without any precision loss. We see that Bernstein and Hoeffding
are orders of magnitude faster than the other approaches which are compatible with respect
to the related runtime. The large runtime of Chernoff yields from finding a good s value
in Eq. (4) which may differ for each point in time. The difference between Approx and
Pruning stems from a different number of tested time points, i.e., for Approx this number
depends on the number of tasks while for Pruning it is related to the number of jobs, while
the calculation for one time point does not differ largely.

The statistical information of the derived deadline miss probabilities is unfortunately not
meaningful. For example, for task sets with 15 tasks, the derived deadline miss probability in
our evaluations under Pruning ranged from 3.0 · 10−39 to 6.1 · 10−5. Therefore, comparing
the average values or other statistical means does not yield much information. In addition,
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comparing relative values is problematic if the probability gets low. Hence, we show a small
sample of 5 task sets with roughly similar probabilities in Figure 3(b). These are the first 5
randomly generated task sets with deadline miss probability larger than 10−6. This selection
is only done to increase the readability of the figure. We observed in general similar relative
behaviour among (nearly) all the evaluated task sets. We see that the error of Bernstein
and Hoeffding is large compared to Chernoff, i.e., by several orders of magnitude, while
the three approaches based on the multinomial distribution result in similar values, roughly
one order of magnitude better than Chernoff. We also conducted experiments with different
probabilistic distributions which in general lead to identical results.

In Figure 3(c), we compare the deadline miss probability of the three multinomial-
distribution based approaches more closely. We can see that Unify performs very similar
to Pruning, i.e., the error is in the magnitude of 10−9. This is significantly smaller than
the predefined allowed error of 10−6 for Unify in the experiments since: 1) execution mode
equivalences classes are only merged for some of the tasks and the maximum error for each
task may already be significantly smaller than 10−6, and 2) the worst-case analysis in Sec. 6.2
is pessimistic. For Approx the error for Set 4 and Set 5 is in the magnitude of 10−5 and
10−7, respectively, since only a subset of the points of interest is considered. In some rare
cases even a larger relative difference could be observed.

Most importantly, all approaches we provide are able to deliver results even for large task
sets, since the time needed to evaluate a single point in time remains still in the scale of
minutes, i.e., in runs with 75 and 100 tasks one time point was evaluated on average in 621.6
and 791.1 seconds, respectively. Therefore, when a given task set needs to be analyzed, the
approach can be used directly, especially since it is highly parallelizable due to the fact that
different points in time can be analyzed completely individually. Hence, we suggest to first
run Hoeffding’s as well as Bernstein’s bounds since they have a small runtime even for large
task sets. If a sufficiently low deadline miss probability cannot be guaranteed from these
bounds, we propose to run the multinomial-based approach with equivalence class union in
parallel on multiple machines by partitioning the time points equally. We point out that it is
especially helpful to use the union of equivalence classes if the periods of tasks differ largely,
e.g., in automotive applications where periods often range from 1 to 1000 ms [15].

8 Conclusion

We provide a novel way to analyze the deadline miss probability of constrained-deadline
sporadic soft real-time tasks on uniprocessor platforms where points in time are considered
individually. Our main approach convolutes the equivalence classes of a task represented by
the values of the multinomial distribution. The runtime of this approach can be improved
by the detailed pruning technique without any precision loss. Furthermore, we present an
approximation via unifying equivalent classes with a bounded loss of precision. In addition,
we provide two analytical bounds based on the well-known Hoeffding’s and Bernstein’s
inequalities which have polynomial runtime with respect to the number of considered time
points. We demonstrate the effectiveness in the evaluations, specifically showing that our
approaches scale reasonably even for large task sets.
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Abstract
This paper describes four impact case studies where real-time systems research has been success-
fully transferred into industrial practice. In three cases, the technology created was translated
into a viable commercial product via a start-up company. This technology transfer led to the
creation and sustaining of a large number of high technology jobs over a 20 year period. The final
case study involved the direct transfer of research results into an engineering company. Taken
together, all four case studies have led to significant advances in automotive electronics and
avionics, providing substantial returns on investment for the companies using the technology.
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1 Introduction

This paper describes four impact case studies where real-time systems research has been
successfully transferred into industrial practice. The four studies relate to:
1. Volcano: Guaranteeing the real-time performance of in-vehicle networks (Section 2).
2. RTA-OSEK and RTA-OS: The world’s smallest commercial automotive real-time operating

systems (Section 3).
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3. RapiTime: A tool suite for analyzing the timing behaviour of real-time software (Section
4).

4. Visual FPS: The first CAA certified use of a fixed priority scheduler in an avionics system
of the highest criticality (Section 5).

Preliminary versions of the first three impact case studies were informally published as
white papers [30], [38], and [31]. Some of the content was also used in the University of York
submissions to the Research Excellence Framework1 (REF) assessment of UK Universities.

Each of the impact case studies is organised into the following subsections:
Impact Summary: An executive summary of the impact achieved.
Background: An overview of the industrial technology and practice prior to the research
and development taking place.
Research: An overview of the underpinning research, outlining the key insights and
findings that contributed to the industrial impact.
Route to Impact: The story of how the academic research was translated into viable
commercial products.
Impact: How the technology has been used, and by whom. (Note, due to non-disclosure
agreements and commercial sensitivities, it is not always possible to give full details).
Beneficiaries: Lists the beneficiaries and describes the benefits they have obtained by
using the technology.
Future Challenges: Sets out the main challenges in the specific technological area today.

The paper ends with a discussion of the key success factors and potential roadblocks. It
is hoped that this information will be useful to others taking the exciting entrepreneurial
step of trying to commercialise their research.

2 Volcano: Guaranteeing the Real-Time Performance of In-Vehicle
Networks

2.1 Impact Summary

Controller Area Network (CAN) is a digital communications bus used by the automotive
industry for in-vehicle networks. During 1994, research from the Real-Time Systems Research
Group at the University of York introduced techniques that enable CAN to operate under
high loads (approx. 80% utilisation) while ensuring that all messages meet their deadlines
[65], [68], [67], [69]. This research led directly to the development of commercial products,
now called Volcano Network Architect (VNA) and the Volcano Target Package (VTP). This
Volcano technology (VNA and VTP) is now owned by Mentor Graphics. In recent years,
VNA has been used to configure CAN communications for all Volvo production cars, with
VTP used in the majority of Electronic Control Units (ECUs) in these vehicles, including the
S40, S60, S80, V50, V70, XC60, XC70, XC90, C30, and C70; total production volume rising
from 330,000 in 2008 to 530,000 vehicles per year in 2016. This Volcano technology is also
used by Jaguar, LandRover, Aston Martin, Mazda, and the Chinese automotive company
SAIC. It is used by the world’s leading automotive suppliers, including Bosch and Visteon.
It is also used by Airbus.

1 http://www.ref.ac.uk/2014/

http://www.ref.ac.uk/2014/
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2.2 Background
Prior to the 1990s, cars used point-to-point wiring. This was expensive to manufacture,
install and maintain. From 1991, the automotive industry began to use Controller Area
Network (CAN) [21] to connect ECUs such as engine management and transmission control.
Using this approach dramatically reduced the size, weight and complexity of the wiring
harness, for example with CAN, a door system in a high-end car typically requires 4 wires,
compared to 50+ with point-to-point wiring. The adoption of CAN led to significant cost
savings and reliability improvements. It has supported a revolution in the complexity of
automotive electronics, with the number of ECUs in a typical mainstream car increasing
from 5-10 in the mid to late 1990’s to 25-35 today.

CAN supports communications at typical bus speeds of 500Kbit/sec for powertrain
applications and 125Kbits for body electronics. In a typical application, over 2000 individual
signals (e.g. switch positions, wheel speeds, temperatures etc.) are sent in hundreds of CAN
messages. There are deadlines on the maximum time that these messages can take to be
transmitted on the bus. If a message fails to meet its deadline, then the reliability and
functionality of the electronic systems can be compromised. This can lead to intermittent
problems, and high warranty costs associated with ‘no fault found’ replacement of ECUs.

Messages queued by ECUs connected to a CAN bus compete to be sent on the bus
according to their IDs, which represent their priority. Higher priority messages are sent in
preference to those with lower priority. In the early 1990’s, CAN messages were typically
assigned IDs according to the data in the message, with a range of message IDs assigned
to each supplier. Further, extensive testing was the only way of trying to verify that the
messages would meet their deadlines. This was effective up to bus utilisations of about 30%;
however, higher bus loads would result in deadline failures and intermittent problems.

2.3 Research
In 1994, three members of the Real-Time Systems Research Group at the University of York;
Ken Tindell, Alan Burns, and Andy Wellings, introduced schedulability analysis of messages
on CAN. This research [65], [68], [67], and [69] computed the longest time that each message
could take from being queued by an ECU to being successfully transmitted on the bus and
therefore received by other ECUs, referred to as the worst-case response time. This analysis
enabled system designers to determine offline if all of the messages on a CAN bus could be
guaranteed to always meet their deadlines during operation. This systematic approach was a
significant improvement over the methods previously used in the automotive industry, which
involved extensive testing, followed by hoping that the worst-case response time of every
message had been seen.

This work also showed how to obtain optimal priority assignments for CAN messages.
The research in [65] provided the fundamental analysis of message response times. This was
extended in [68] to account for errors on the network, and integrated in [67] with information
about the timing behaviour of the sending and receiving software. The analysis provided in
[65], [68], [67], does not apply to all CAN hardware, some specific CAN Controller designs
were shown in [69] to have relatively poor real-time performance, while others matched the
requirements of the theory well. In 2007 research published by Davis et al. [33] corrected
some flaws in the original analysis of CAN message response times, and was used by Mentor
Graphics to check their Volcano Network Architect implementation. More recent research has
addressed areas where the CAN controller hardware and the communications stack depart
from the assumptions of the original research, such as non-abortable transmit buffers [54],
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and the use of FIFO [35], [36] and other work-conserving [37] queuing policies, as well as
systems where peak network load is reduced using offset message release times [73]. Further
research has studied robust priority assignment policies [32], including the case where some
messages are constrained to have specific IDs [34].

2.4 Route to Impact
The initial research on schedulability analysis for CAN [65] was disseminated at the 1st
International CAN Conference in 1994. As a direct result of this Ken Tindell was approached
by Antal Rajnak, then working for Volvo Car Corporation. In April 1995, Ken Tindell and
Robert Davis founded a start-up company called Northern Real-Time Technologies Ltd.
(NRTT) to exploit the research in [65], [68], [67], and [69]. This company was contracted
by Volvo Car Corporation to develop a CAN software device driver library and associated
configuration tools [47], now referred to as the Volcano Target Package. Over the next two
years, NRTT developed the Volcano Target Package through 4 major versions, and ported
it to more than 10 different microprocessors used in the Volvo S80 and other automotive
applications. At the same time, the message priority assignment policies and schedulability
analysis techniques first introduced in [65], [68], [67], [69] were implemented in a CAN
message configuration and analysis toolkit called Volcano Network Architect (VNA). The
initial versions of VNA were developed by Kimble AB (a Swedish company founded by Antal
Rajnak), working in conjunction with NRTT. Rights to the initial versions of the Volcano
Target Package were transferred to Volcano Communications Technologies AB (a Swedish
company founded by Antal Rajnak) which subsequently developed fully commercial versions
of the Volcano technology (VNA and VTP), before being acquired by Mentor Graphics in
2005 [45]. From 1997 onwards the Volcano technology was used in the Volvo XC90, S80,
S/V/XC70, S60, S40, and V50. When Volvo was bought by Ford in 1999, this technology
was adopted by Ford Premier Automotive Group (Jaguar, Land Rover, and Aston Martin).

As part of its work on the Volcano technology, in 1995/6 NRTT consulted with Motorola,
strongly influencing the hardware design used in the on-chip peripheral MSCAN controller
[47], [43] (Section 4.2 of that document). This design used a 3 transmit buffer solution to
ensure that the MSCAN controller can send out a stream of high priority CAN messages
without releasing the bus – essential in achieving high bus utilisation without deadline
failures. The 3 transmit buffer solution reduced the silicon area, and hence the unit cost of
the hardware, compared to a ‘full’ CAN controller with 15 or 16 transmit buffers. This gave
Motorola a competitive advantage, and reduced unit production costs for Volvo. Since 1997,
microprocessors using MSCAN have been used in the door modules and other ECUs in a
wide range of Volvo cars. In 2007, the analysis in [33] was used by Mentor Graphics to verify
that the analysis provided by VNA [44] was correct. Further details of the Volcano Target
Package and Volcano Network Architect can be found on Mentor Graphics’ website [43], [44]
with detailed descriptions given in [56].

2.5 Impact
The initial research [65], [68], [67], and [69] from 1994 was exploited in the design of CAN
network layer software, called the Volcano Target Package (VTP), and network schedulability
analysis tools, called Volcano Network Architect (VNA). The Volcano Target Package is
deployed in ECUs, while Volcano Network Architect is used to configure networks and to
ensure that the configurations obtained result in all messages meeting their time constraints.
The research was initially exploited by a start-up company called Northern Real-Time
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Technologies Ltd. (NRTT) that developed the first versions of the Volcano Target Package
for Volvo Car Corporation (VCC) and worked in conjunction with Kimble AB to develop
the first versions of Volcano Network Architect. Fully commercial versions of the Volcano
technology (VNA and VTP) were later produced by Volcano Communications Technologies
AB, which was sold to Mentor Graphics in 2005 [45].

In 2018, the Volcano Target Package is available for more than 30 different ECU micro-
controllers [48], including: Fujitsu 16LX, FR Series; Hitachi H8S, SH7055, SH7058; Infineon
C16x, TC179x, TC176x, XC800, XC2000; Renesas M16C, R32C/M32C; Freescale HC08,
HC12, MC683xx, MPC5xx, MAC71xx; S12, S12X, MPC55xx, MPC 56xx; Mitsubishi M32R,
MC32C; PowerPC; National CR16; NEC V85x, 78K0; ST Microelectronics ST9, ST10; Texas
Instruments TMS470; Toshiba TMP92/TMP94.

Since the introduction of the Volvo S80 in 1998, Volcano Network Architect has been
used to configure CAN communications in all new Volvo production cars, with the Volcano
Target Package used in the majority of Electronic Control Units (ECUs) in these vehicles.
During the period 2008 – 2016, this includes the S40, S60, S80, V50, V70, XC60, XC70,
XC90, C30, and C70; total production volume 330,000 to 530,000 vehicles per year [70].

The Volcano technology (VNA and VTP) is also used by Jaguar, LandRover and Aston
Martin. Since 2007, this technology has been used in its own branded vehicles by the Chinese
automotive giant SAIC [46]. In 2012, Mazda announced that they would be using Volcano
technology in order to make more efficient and reliable use of CAN in vehicles featuring their
“Skyactiv Technology” [49]. The Volcano Target Package is also used by the world’s leading
automotive suppliers, including Bosch and Visteon.

2.6 Beneficiaries
Volcano Network Architect, and the Volcano Target Package software that conforms to
its assumptions, enable system architects at automotive manufacturers to configure in-car
networks using CAN such that all of the messages are guaranteed to meet their deadlines at
bus loads (utilisations) of up to approx. 80%. This compares with a maximum of approx.
30% using the approach otherwise prevalent in industry, where message IDs (priorities) are
assigned in groups according to ECU supplier, and extensive testing and a large engineering
margin for error is used to gain some confidence that message deadlines will be met. Achieving
higher bus utilisation enables far more functionality to be supported using the same bus
speed and communications hardware, providing those automotive manufacturers that adopt
this technology with a key competitive advantage. With higher bus utilisations, more ECUs
can be connected to the same network, and the network can support a larger number of
signals and messages. Wiring complexity can be reduced, with fewer connectors, increased
reliability, and improved brand image. Further, there is enhanced support for the addition of
lucrative ‘software-only’ options.

These benefits are summarised in the Volvo Technology Report [25]:
“The advantages to Volvo of the development and application of Volcano include: Produc-

tion cost benefits due to high bus efficiency (four times as many signals can be transmitted at
half the baud rate). Development cost benefits (in the form of a single, proven implementation
which is much cheaper than multiple implementations by suppliers and conformance testing
by Volvo). Improved network reliability, resulting in higher product quality. Reduction in
Volvo´s test load. Reduction in supplier´s test load. High degree of flexibility (useful in
many situations). Recognition of the real-time problem (Volvo developed solutions before the
problem had been recognised generally)”.

Although [25] was written in 1998, the benefits of using this technology remain the same
today. They are highlighted in 2006 [46] in relation to the Chinese automotive giant SAIC:
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“By using Volcano, network design is made easy and predictable, guaranteeing data
communication, which reduces the verification effort to almost zero and eliminates warranty
and change costs caused by networking issues.”

Similarly, in 2012 [49]:
“Mazda’s use of VNA has enabled significant improvements in network efficiency and

reliability.” . . . “This procedure increased the network utilization and significantly reduced the
testing requirements and time”.

The research on CAN also led directly to the design by Motorola (now Freescale) of a
low-cost on-chip CAN peripheral MSCAN [25], [55] that requires less silicon area than a ‘full’
CAN controller, and so reduces unit costs in production.

In summary, car manufacturers and their sub-suppliers have benefited from the research
in terms of reductions in development, production, and warranty costs. Development costs
have been reduced via improvements in the time taken to verify network timing behaviour,
reducing the cost of testing, and time-to-market. Production costs have been reduced via the
ability to run in-vehicle networks at high loads while ensuring that all message deadlines are
met. This has enabled increasing amounts of functionality to be accommodated using the
same low cost CAN hardware. Improvements in network reliability, via off-line guarantees
that messages will always meet their deadlines, have reduced warranty costs, in particular,
costly ‘no fault found’ ECU replacement. In a competitive marketplace, benefits to the
car manufacturers have been passed on to the consumer, in terms of vehicles that are less
expensive, yet have more functionality, and better reliability.2

2.7 Future Challenges
The future challenges in this area originate from:

The use of multiple networks, often of different types, with signals and messages transferred
between them. Here, gateway policies, signal packing, and prioritization all influence
end-to-end response times.
The need to efficiently utilise network bandwidth. Message priority assignment, offset
assignment and signal packing all influence the useful bandwidth that can be employed
before messages begin to miss their deadlines. The recent CAN-FD protocol increases
network speed during data transmission.
The need to deal with legacy applications and ECUs. It is rare that any automotive
system begins with a clean sheet design.
Security issues. Connection of in-vehicle networks to the internet raises significant security
concerns.

3 RTA-OSEK and RTA-OS: The World’s Smallest Automotive
Real-Time Operating Systems

3.1 Impact Summary
Research [2], [3], [24], [4], [66] published by the Real-Time Systems Research Group at the
University of York from 1993 to 1995 was exploited in 1997 to design an exceptionally efficient
Real-Time Operating System (RTOS), used in automotive Electronic Control Units (ECUs),
and its associated schedulability analysis tools . By 2017, the RTOS had been deployed

2 Accounting for inflation, the average car purchased in the USA in 2015 was less expensive than the
average car purchased during 1990 ($25,300 versus $27,300).
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in over 1.25 billion ECUs. It has been standardised upon by many of the world’s leading
automotive powertrain systems and chassis electronics suppliers, and is used in cars produced
by nearly all of the world’s major car manufacturers.

3.2 Background
In real-time embedded systems, such as the ECUs used in vehicles, system functionality
is decomposed into multiple software tasks running on a microprocessor. The system
requirements place time constraints on these tasks. Hence a task may be required to execute
every 10 milliseconds, read and process data from sensors, and output its results within a
specific time constraint or deadline. When there are multiple tasks with different periods
and deadlines running on the same microprocessor, an RTOS is needed to schedule when
each task should execute. It is essential that all of the tasks are guaranteed to meet their
deadlines during operation; otherwise the system may suffer from intermittent timing faults
that compromise its functionality and reliability.

Given the complex behaviour of these systems, it is impossible to obtain a 100% guarantee
that tasks will always meet their deadlines via testing. Instead, a rigorous scientific and
systematic solution to this problem is schedulability analysis; a set of techniques used to
determine off-line if each task can be guaranteed to meet its deadline under a specific
scheduling policy. Schedulability analysis is used to compute the worst-case response time,
the longest time that can elapse from a task being released to it outputting its results and
completing execution. If this is less than the deadline, then the task can be guaranteed to
always meet its time constraints.

3.3 Research
In the early 1990’s seminal research into schedulability analysis [2], [3], [24], [4], and [66] for
fixed priority pre-emptive scheduling, originally called Deadline Monotonic Schedulability
Analysis but now widely referred to as Response Time Analysis, was introduced by the
Real-Time Systems Research Group at the University of York.

This analysis is applicable to fixed priority scheduling, and a task model that accurately
accounts for the detailed timing behaviours of tasks in automotive systems. These timing
behaviours include: tasks that are invoked sporadically (i.e. with minimum inter-arrival
times, but not necessarily strictly periodically in time); tasks with deadlines that are less
than their periods and prior to completion [2], [3] — accounting for tasks that need to make
a response prior to their next invocation to avoid buffer overruns, and to carry out further
computations after a response has been made, in preparation for the next cycle; tasks with
offset release times [4] – used as a means of avoiding peak load in short time intervals; tasks
with jittered released times [66] – that are triggered by the arrival of messages that can take
a variable amount of time to be transmitted, and tasks that share resources [2], [3] – such as
data structures and peripheral devices used for communication. The analysis also accounts
for the overheads of a well-designed RTOS [24].

This research therefore introduced for the first time, schedulability analysis that could
be applied in practice to commercial real-time systems, providing a rigorous approach to
obtaining timing correctness. This was recognised in the EPSRC International Review of
Computer Science undertaken in 2002: “These researchers are credited with a significant
body of research in static real-time scheduling theory. They have also demonstrated how
to employ these theoretical results in practice, by accounting for networking and operating
system overheads. This combination of theory and practice has resulted in important and
practical applications of their work.”
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The techniques developed also built upon other important research contributions such as
the Stack Resource Policy [7] for resource locking.

3.4 Route to Impact
In 1997, Robert Davis and Ken Tindell co-founded a company called Northern Real-Time
Applications (NRTA) Ltd., with the aim of developing an RTOS and schedulability analysis
tools specifically tailored to automotive applications that use low cost microcontrollers.

There were two fundamental design goals:
1. The real-time behaviour of systems built using the RTOS must be fully analysable using

schedulability analysis tools. In other words the behaviour of the RTOS must match the
assumptions of the underpinning schedulability analysis techniques.

2. The memory and execution time overheads of the RTOS must be significantly less than
those of any other RTOS available for use in automotive applications.

Robert Davis led the team that developed the SSX5 RTOS and associated schedulability
analysis tools (originally called the “Time Compiler”, later “Real-Time Architect (RTA)” and
“RTA-OS Analysis Visualizer”). The schedulability analysis tools implemented Response Time
Analysis as introduced in [2], [3], [24], [4], and [66]. The SSX5 RTOS was developed precisely
to meet the assumptions of this analysis. The execution time overheads (of preemption, task
termination, interrupt service routine entry and exit, and all system calls that can cause
context switches) were minimised and made constant, independent of the number of tasks,
allowing them to be accurately measured and integrated into the schedulability analysis
implemented in Real-Time Architect.

The memory overheads of applications built on SSX5 were radically reduced by comparison
with other automotive RTOSes. This was achieved via the use of single-stack execution and
compile time, i.e. off-line, configuration of the RTOS data structures to minimise RAM usage.
NRTA attracted significant venture capital funding in 1998 (£1 million from 3i) and again
in 2000 (£9.2 million from 3i and TecCapital). In 2001, the company changed its name to
LiveDevices Ltd.3

In March 2003 LiveDevices was sold to ETAS GmbH, a wholly owned subsidiary of Robert
Bosch GmbH. The reason for the trade sale was that Robert Bosch had benchmarked RTA-
OSEK and found it to be significantly more efficient than its subsidiary’s Ercos RTOS. Rather
than attempt to write a new OSEK RTOS from scratch and compete with LiveDevices, ETAS
chose to buy the company, bringing the RTA-OSEK technology and the 20+ LiveDevices
engineering team in-house.

3.5 Standards
During the development of the SSX5 RTOS, the automotive industry was working on
standards via the OSEK organisation. As a Technical Committee Member of OSEK, NRTA
influenced the OSEK OS standard [52] ensuring that the basic conformance classes (BCCx)
could be achieved with a single-stack RTOS, leveraging the execution time and memory
savings which that approach facilitates [29]. NRTA modified the SSX5 RTOS to comply
with the OSEK standard, in the process renaming the product: RTA-OSEK.

3 This name change was marketing led as the company was also developing Internet-of-Things technology,
including a very small TCP-IP stack. This technology was not commercially successful; in hindsight it
was around 10 years ahead of its time.
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Subsequently, ETAS, as a premium partner of the AUTOSAR (AUTomotive Open System
ARchitecture) partnership [6], have been heavily involved in specifying the AUTOSAR
operating system standard [5], which extends the OSEK operating system standard. ETAS
derived an AUTOSAR compliant RTOS called RTA-OS from RTA-OSEK [42].

3.6 Impact
As of 2018, ETAS sells two versions of the RTOS, RTA-OSEK and RTA-OS compliant with
the OSEK and AUTOSAR operating system standards respectively.

The RTOS is currently available for more than 50 different ECU microcontrollers [42]
including: Renesas: V850E, SH2, SH2A, H8S, H8SX, M16C; Xilinx Microblaze, PPC405
Core; Texas Instruments TMS470P, TMS570P; Infineon Tricore TC17x6, C166, XC2000;
Freescale Star12, MPC555, MPC55xx, S12X, MPC56x, HC12X16, HC08, HCS12; Fujitsu
16LX; Analog Devices Blackfin, STMicroelectronics ST30, ST7, ST10.

RTA-OS is also available for the following multi-core processors: Infineon Aurix, Freescale
MPC57xx, Renesas RH850, STMicroelectronics SPC57x, and the Xilinx Zynq-7000 family.

ETAS customers for the RTOS cover a wide range of application areas within Automotive
Electronics. It has been standardised upon (used by default in all ECUs) by many of the
world’s leading automotive powertrain systems and chassis electronics suppliers, and is used
in cars produced by nearly all of the world’s major car manufacturers. By 2017, the RTOS
had been deployed in over 1.25 billion ECUs. This number is increasing at a rate of between
1 and 2 million new ECUs per week.

3.7 Beneficiaries
Use of the RTOS and its associated schedulability analysis tools has benefitted automotive
manufacturers and their Tier 1 suppliers in the following ways:
(i) A reduced memory footprint means that cheaper microcontroller variants with smaller

on-chip RAM / Flash memory can be used. (The code size of RTA-OS is typically in
the range 1 Kbytes to 1.5 Kbytes depending on the processor – making it, to the best
of our knowledge, world’s smallest commercial AUTOSAR OS.4 This has reduced unit
costs in production.

(ii) The very low execution time overheads5 of the RTOS mean that more functionality
can be included on a given low cost microprocessor reducing costs by avoiding the need
for hardware upgrades to more capable but expensive devices.

(iii) A reduction in the time spent debugging intermittent timing issues. Schedulability
analysis and appropriate use of proven real-time mechanisms have enabled off-line
analysis of task response times, reducing system integration time and testing effort,
and improving reliability.

For these reasons the world’s major ECU suppliers and car manufacturers have adopted this
technology. In a competitive market, some of these benefits will have been passed on to their
customers in the form of cheaper, more reliable vehicles.

The Automotive Electronics market is both huge and highly competitive, with electronics
now contributing 15-30% of overall vehicle production costs. For the reasons given above,
the world’s leading Automotive OEMs and Tier-1 suppliers have adopted the RTA-OSEK
and RTA-OS operating systems. They have done so for the substantial benefits it brings to
them and to their customers. The technology has led directly to the creation and sustaining,
over a period of more than 15 years, of a large number of high technology jobs in York, UK.

4 See section 8 of [41] for an example of the RTA-OS ROM and RAM usage.
5 See section 8.5.1 of [41] for an example of the overheads in CPU cycles and nano-seconds for different
types of context switches, along with diagrams explaining the precise measurements.
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3.8 Future Challenges
Automotive systems are now moving towards implementations on multi-core hardware. This
leads to the following challenges:

The use of high performance multi-core hardware, with shared interconnects and other
shared hardware resources makes it significantly more difficult to obtain an accurate
understanding of the execution time behaviour of tasks, due to issues of cross-core
interference. In some cases this interference can be so severe that guaranteed performance
using multiple cores may be no better than could be obtained by utilising just one core.
Synchronization via non-preemptive execution is no longer effective in a multi-core
environment, creating significant difficulties in porting legacy applications. More complex
and potentially substantially less efficient synchronization and locking mechanisms need
to be employed, and large amounts of code potentially re-factored.
High performance multi-core hardware means that it is cost effective to integrate different
applications that would otherwise have run on independent ECUs onto the same hardware
platform. These different applications have different criticality levels which leads to a host
of interesting problems. Mixed criticality systems are currently a hot topic in real-time
systems research [22].

4 RapiTime: A Tool Suite for Analyzing the Timing Behaviour of
Real-Time Software

4.1 Impact Summary
Research [18], [16], [28], [27], [17] from the Real-Time Systems Research Group at the
University of York published in 2002-2005 resulted in a measurement-based Worst-Case
Execution time (WCET) analysis technology now called RapiTime, which was transferred
to industry via a spin-out company, Rapita Systems Ltd, founded in 2004. The technology
enables companies in the aerospace, space and automotive industries to reduce the time and
cost required to obtain confidence in the timing correctness of the systems they develop.
The RapiTime technology has global reach having been deployed on major aerospace and
automotive projects in the UK, Europe, Brazil, India, China, and the USA. Key customers
include leading aerospace companies as well as major automotive suppliers.

4.2 Background
Determining the longest time that software components can execute on a microprocessor,
referred to as the Worst-Case Execution Time (WCET), is a key issue in the development of
real-time embedded systems in the aerospace and automotive industries. Here, intermittent
timing failures caused by software exceeding its budgeted execution time can lead to oper-
ational problems, reliability issues, and in some cases catastrophic consequences. In these
applications the WCET of software components needs to be tightly bounded to avoid the
need to over-provision hardware in terms of faster, but more costly processors.

Prior to this research, there were two main approaches to WCET estimation; end-to-end
measurement and static analysis. End-to-end measurement techniques insert profiling code
into the software. During testing this profiling code records the end-to-end execution time
of each invocation of each software component. End-to-end measurement alone typically
under-estimates the WCET, and provides little confidence that timing constraints will always
be met during operation. Static analysis techniques analyse the software object code and
compute the WCET using a model of the timing behaviour of the microprocessor. This
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is done without running the code. Using static analysis alone has the disadvantage that
the computed WCETs depend on the model of the processor and its hardware acceleration
features; as processor technology advances this becomes more complex, and expensive to
determine, and in some cases may not be possible due to a lack of detailed information.

4.3 Research

During the NextTTA project (2002 to 2004), Guillem Bernat, Antoine Colin, Stefan Petters,
and Alan Burns developed a set of hybrid and probabilistic techniques for WCET analysis
[18], [16], [28], [27], and [17], now referred to as RapiTime. The RapiTime approach combines
static analysis of the structure of the source code with timing measurements taken during
testing, which record the execution time of short sub-paths through the code. RapiTime
recognises that the best possible model of an advanced microprocessor is the microprocessor
itself and therefore uses online testing to measure the execution time of short sub-paths in
the code. By contrast, offline static analysis is the best way to determine the overall structure
of the code and the paths through it. Therefore RapiTime uses path analysis techniques to
build up a precise model of the overall code structure and determine which combinations of
sub-paths form complete and feasible paths through the code. Finally the measurement and
path analysis information are combined using mathematical techniques to compute WCETs
in a way that accurately captures the execution time variation on individual paths due to
hardware effects.

This novel approach combines the advantages of both measurement and static analysis
techniques while avoiding the majority of their drawbacks. Unlike static analysis, it does not
require the expensive and time consuming production of a precise timing model for each new
microprocessor variant and its hardware acceleration features, and so is portable to a wide
range of different microprocessors. RapiTime is also viable when the only accurate timing
model that is available is the microprocessor itself. Further, RapiTime does not require
the manual annotations that static analysis alone needs to establish essential information
about control flow. This reduces the amount of engineering time required before meaningful
results can be obtained, and removes a potential source of errors. Compared to measurement,
RapiTime is able to identify the worst-case path and compute the overall WCET of software
components from the WCETs of sub-paths when not all of the complete paths through the
code have been executed. This significantly reduces the amount of testing required to verify
timing correctness. For a detailed discussion of the advantages / disadvantages of static and
measurement based approaches to timing analysis, the interested reader is referred to [71].

4.4 Route to Impact

During the EU FP5 NextTTA project, Guillem Bernat, Antoine Colin, Stefan Petters,
and Alan Burns, introduced research on hybrid measurement-based WCET analysis. This
approach combined both measurement and static analysis techniques to accurately estimate
the WCET of complex software components running on advanced microprocessors. As part
of the project, they also developed a prototype WCET analysis tool called pWCET [17].
This tool was evaluated on an Audi drive-by-wire system. Audi was an industrial partner
in the NextTTA project. Audi’s expression of interest in pWCET and its capabilities led
directly to the formation of a spin-out company to transfer this technology into industry.

In 2004, Guillem Bernat, Ian Broster, Antoine Colin, and Robert Davis founded a spin-
out company called Rapita Systems Ltd. (www.rapitasystems.com) to commercialise the
technology and bring it to market. All rights to the technology and prototype tools were
transferred to the company by the University of York in exchange for shares in the company.
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In 2005, Rapita Systems received £200k of funding from Viking Investments Ltd. and
an associated group of Business Angels [72]. Following the initial technology transfer, the
pWCET prototype was re-implemented as a commercial quality tool and re-branded as
RapiTime. RapiTime has since been extended to support analysis of systems written in
C++ as well as the C, and Ada programming languages. RapiTime has been complemented
by RapiCover, an on-target structural code coverage tool, and RapiTask, a tool which
enables users to visualize high-level system scheduling, locate rare timing events such as
race conditions, and verify actual timing behaviour. Both RapiCover and RapiTask use
the underpinning RapiTime technology for code instrumentation and analysis. RapiTime,
RapiCover, and RapiTask form part of the Rapita Verification Suite (RVS).

In 2006, BAE Systems used RapiTime on the Hawk Advanced Jet Trainer project [60].
Here, RapiTime was used to identify opportunities for WCET reduction, thus creating
headroom for new functionality to be added to the system, while avoiding the need for a
costly hardware upgrade. Using RapiTime, BAE identified that just 1% of hundreds of
thousands of lines of code contributed 29% of the overall WCET. By focusing optimisation
efforts on this 1% of the code, they were able to reduce the WCET by 23% [19]. Further,
RapiTime was quantified as being able to identify timing problems with less than 10% of the
effort of previous approaches, potentially saving months of work. As a result Rapita received
a BAE chairman’s award for Innovation in the category Transferring Best Practice.

In April 2016, Rapita Systems Ltd. was sold to Danlaw Inc. in a trade sale [64]. (Danlaw
is a global connected vehicle, automotive electronics and embedded engineering enterprise
with facilities in USA, Europe, India, and China).

4.5 Impact
As described in the previous section, research from the Real-Time Systems Research Group
at the University of York was exploited in the development of an innovative Worst-Case Exe-
cution time (WCET) analysis technology called RapiTime. This technology was transferred
to industry via the formation in 2004 of a spin-out company; Rapita Systems Ltd.

RapiTime has been deployed on, and is in continuous use on, a number of major long-
term space, aerospace and automotive projects world-wide, examples include: Flight Control
Computers [61] and FADECs (Full Authority Digital Engine Control); Alenia Aermacchi
(Italy) Flight Control System for the M-346 military transonic trainer [62] (since 2010), and
various projects for the European Space Agency (ESA) (since 2008). RapiCover has also been
qualified for MC/DC coverage of the DO-178B DAL A Flight Control System of the M-346
[63]. Rapita has also won significant export orders to China via its distributor Cinawind.

4.6 Beneficiaries
RapiTime enables companies in the aerospace and automotive electronics industries to reduce
the time and cost required to obtain confidence in the timing correctness of the systems
they develop. It provides a cost-effective means of targeting software optimisation, such that
new functionality can be added to existing systems without the need for expensive hardware
upgrades. Further, RapiTime is portable across a wide range of different microprocessors,
meaning that companies can use the same technology across multiple projects without the
need for re-training or adoption of multiple solutions.

A major aerospace supplier described the benefits of using RapiTime to identify timing
problems during continued development of a Flight Control System as follows: “The biggest
benefit that RapiTime brought to our development process was just how quickly we could
get comprehensive timing measurements from our tests. Not only did we reduce our effort
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requirements for the testing, but we could use our results in ways that were infeasible before.
It is now significantly faster for us to identify a timing issue, update the software to resolve
the issue, test the updated software and verify that it’s fixed” - Wayne King, Engineering
Fellow – 30th July 2009.

Without RapiTime, the timing measurement and analysis process needed to determine
WCETs has to be done manually. This is a painstaking and error prone process that takes
considerable time and effort. It also needs to be repeated when changes are made to the
application software. Further, the manual process provides no information about the worst-
case path, or the contribution of different sections of code to the WCET. This makes code
optimisation an ad-hoc, ineffective and inefficient process, as optimising for the worst-case is
very different from optimising for the average case.

Alenia Aermacchi engineers working on the M-346 Flight Control System in 2010 said, “the
main advantage [of using RapiTime] is the possibility to identify software bottlenecks that can
be subject to optimisation. Without RapiTime the mandatory code optimisation would have
been done without the knowledge of where to concentrate the efforts.” [62]. Overall, “Using
RVS, customers have cut the worst-case execution time of large scale, legacy applications
by up to 50% with only a few days effort, and significantly reduced unnecessary testing and
instrumentation overheads” [61].

Embraer used Rapita’s RVS tool suite to capture WCET and stack usage data for DO178B
level A Flight Control Systems (FCS) [58]. Because it was not necessary to manually design
a test case for the worst-case path, significant effort was avoided, saving time and money.
“We have successfully shown the viability of using RapiTime to measure WCET. It was able to
support our hardware platform and once the system was set up, the analysis method could be
repeated with relative ease. With the WCET results, time partitioning was easily configured
in the platform for the FCS application. Processing resources could be optimized by tightening
the time window, even leaving some room for future expansion”, Felipe Kamei, Embraer [58].

Infineon asked Rapita Systems to use RapiTime to look for optimization opportunities to
reduce the execution times of the SafeTCore drivers which form part of Infineon’s PRO-SIL
concept. (These drivers are functionally independent of micro-controller hardware and can
run on all micro-controllers in Infineon’s TriCore family). The timing analysis part of the
case study focused on 5 Tricore functions, giving up to 43.9% reduction in the WCET [59].

4.7 Future Challenges
In the next 5 to 10 years, complex multi-core and many-core systems will present an extreme
challenge in terms of the difficulty involved in obtaining tight worst-case execution time
estimates.

The use of high performance multi-core hardware, with shared interconnects and other
shared hardware resources means that execution times can be heavily impacted by
contention over shared resources by co-running tasks on other cores. WCETs obtained
in isolation can thus be substantially optimistic, when compared to the values for an
operational system that runs applications on multiple cores.
Obtaining context independent WCETs presents a significant challenge, since it is not
obvious what pattern of co-runner execution will produce the most interference on shared
resources. Even if a fully context independent WCET can be found, then it may be
substantially pessimistic, compared to the actual WCET in the context of the deployed
system.

Hardware and software techniques which ensure isolation from the effects of co-runner
contention may be effective here. Another promising approach, is to use measurement-based
probabilistic timing analysis techniques.
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5 Visual FPS: The First CAA Certified use of a Fixed Priority
Scheduler in an Avionics System of the Highest Criticality

5.1 Impact Summary
Fixed Priority Scheduling (FPS) research from the Real-Time Systems Research Group at
the University of York was exploited to make the design and maintenance of the software in
Rolls-Royce’s Full Authority Digital Engine Controllers (FADEC) more efficient in terms of
resource usage and cost [51]. The most notable benefit to Rolls-Royce was that they did not
need to procure new more powerful processing hardware for a project where the processor
which they normally used had run out of capacity. Unlike conventional systems, a processor
board for a safety-critical avionics system costs thousands of pounds and has lead times of
between one and two years. Changing the hardware would have meant that the software
team would not have had access to the actual target until very late in the development, and
the project would most likely have been late incurring significant penalties. Overall, the risk
of such a change was unacceptable.

5.2 Background
FADECs are responsible for the control and monitoring of aircraft engines. They play a vital
role in not only the reduction of hazardous events related to the aircraft engine, but also the
overall safety and certification of the aircraft. FADECs do much more than inject fuel and
control the engine. They help keep both the aircraft’s cabin and fuel at the right temperature,
receive information and commands from the cockpit and send back information, they also
log information about the engine for future maintenance, and play other vital roles such as
helping the aircraft brake on landing via the use of thrust reversers. Over time, this has led
to an increase in the amount of software in the system, most of which is hard real-time. The
timing requirements that have to be guaranteed span not only deadlines, but also tight jitter
requirements. These requirements have to be guaranteed for both independent tasks and
precedence constrained tasks, referred to as transactions.

For many years, the avionics industry used static scheduling to try and meet the timing
requirements. Despite the use of automated tools, e.g. search-based algorithms for choosing
task attributes [23], a number of issues remained unresolved. Firstly, the static scheduler
places restrictions on the timing requirements, for example minimising the number of periods
used, and making them harmonics of a single period. Secondly, and more importantly, the
schedules become hard to maintain as the number of tasks and their execution times change
as the system’s build progresses. Here, the software in the FADEC is slowly integrated
through a number of carefully considered phases; however, most approaches to designing
the schedule do not consider maintenance and ensuring the minimum change between
synthesised schedules [40] nor the similarity of schedules between functional modes [39]. This
is significant as changes to the order in which tasks execute changes both the timing and
functional characteristics which makes regression testing a much larger and hence more costly
activity. Finally, as with many systems the processor was almost fully utilised (approaching
100%), making meeting the timing requirements difficult. Therefore as part of a University
Technology Centre based at the University of York, a significant body of research was initiated
to consider how fixed priority scheduling could be migrated into the development of the
FADEC software. This work needed to be performed in the context of DO-178B [57] (which
was later replaced by DO-178C), and the software written in SPARK 95, which is a subset
of Ada supported by verification tools [8].
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5.3 Research

In the early 1990s there was significant work by a number of research groups on fixed priority
preemptive scheduling, including by the Real-Time Systems Research Group at the University
of York. This led to a number of approaches to both priority assignment and schedulability
analysis [2] (see also the material referenced in Section 3.3). This analysis largely covered
independent tasks and systems without overheads. Similar to the majority of works in this
area, it did not consider how the scheduling policies used affect software development.

The first consideration, in 1995/6, was to establish a detailed understanding of why the
software was currently developed the way it was and what the implications of any change
would be [14]. This work was undertaken by Iain Bate, under the guidance of Alan Burns,
as part of a long-term project funded by Rolls Royce., The most obvious and important
conclusion of this work was that a non-preemptive approach should be used. There were
three main reasons for this. Firstly, the existing software was written in a non-preemptive
fashion, therefore the minimal change and the one that carried least risk was to stay with
that approach. This also gave the easiest reversion path in case the Aviation Authorities,
who regulate the certification of systems, rejected the final safety case. Secondly, fixed
priority scheduling was already causing a significant increase in the number of paths through
the software, since for the majority of tasks there was no longer a deterministic order of
execution. As functional verification is much more costly than timing verification then
managing its financial cost was deemed more important. Finally, the potential overheads and
the complexity of the Real-Time Operating System (RTOS) was higher with a preemptive
scheduler.

Given the decision to employ a non-preemptive scheduler, the lack of substantial work
in the academic literature, and a need to keep the overheads as low as possible, the next
piece of work looked at how the RTOS should be designed and analysed. This led to a
detailed assessment of how the existing RTOS was designed, the minimal migration path
possible while reusing the existing mechanisms for timing watchdogs, and how the timing
overheads could be analysed. This assessment resulted in a new task release mechanism
that ensured the overheads were O(1) [1]. The final technical challenge was how to take the
complex timing requirements of the FADEC and map these onto a set of task attributes. The
approach taken was based on the use of offsets to control the jitter within the system [11] and
setting independent task deadlines such that the transactional (precedence) requirements
were met [12]. The overall research and strategy [9], [13] were published in 1998.

5.4 Route to Impact

A key aspect of the work was engaging with Rolls-Royce’s technical staff to understand how
they develop systems and how the adoption of fixed priority scheduling would affect their
work. This meant Iain Bate spending extensive periods of time within Rolls-Royce not only
on fixed priority scheduling for FADECs but also gaining their trust by helping out with
other immediate technical concerns [15]. As part of this strategy, a champion within the
company was created who could not only guide the research but would help pull it into the
organisation and then own it after the research was complete [51]. Four other important
activities were undertaken. Firstly, FADECs have a need for regulatory approval and hence
once some key decisions were taken a Preliminary Safety Case was established in 1997 which
could then be discussed with both Rolls-Royce’s engineers as well as representatives from
the Civil Aviation Authority (CAA) [53]. The result of this step was a clear picture of the
implications of the technology and company approval to continue the investigation. Secondly,
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a cost-benefit analysis was undertaken to not only understand the financial implications for
the whole engine development but also the risks. Thirdly, a RTOS was written in SPARK
and a qualified tool, VisualFPS, produced for task attribute assignment and schedulability
analysis. Finally, Rolls-Royce placed patents [10] on the work in 1997 and the University of
York’s legal team addressed potential litigation issues that could emerge.

After the technology was “adopted” by the project team for its first project, the technology
was abandoned as the project fell behind schedule and any unnecessary risk was cut. The
links with Rolls-Royce then went quiet until the next project reached a point at which a
hardware re-design would be necessary without VisualFPS. This led to its adoption in 2003
and its subsequent on-going use. Notably during this time there was little contact between
the University of York and Rolls-Royce due there being no reason to change the adopted
approach. This demonstrates that a robust future-proofed approach had been developed.

The FADEC software including the fixed priority non-preemptive scheduler were certified
to DAL-A by the CAA in December 2002 for the Tay 611-8C engine. (Note, the Honeywell
Digital Engine Operating System (DEOS), which uses fixed priority preemptive scheduling
is noted as being “contracted for use in 6 FAA certified jet products” in 2001 [20]).

5.5 Standards
As previously stated, the FADEC software is produced in accordance with DO-178C/ED-12C.
This provides a set of objectives for the software development and verification process,
and requires evidence to be produced by the development organisation to demonstrate
compliance as part of the engine/aircraft certification activity. However, DO-178C/ED-12C
is a process-based guidance document, and the certification objectives focus on compliance
to requirements and conformance to standards. There is little guidance on specific product
performance aspects, for example. A common myth is that the standards and the regulatory
authorities demand that timing requirements are always met and static analysis is mandatory
[50]. Instead current best practice, arguments and evidence for acceptable safety, and graceful
degradation when the inevitable failures occur is what matters. Predictability of system-level
performance is the overriding principle. Safety experts including the regulatory authorities
also provide some steer towards achieving these things in the presence of new technologies
through position papers by the Certification Authorities Software Team. For example, CAST
20 [26] gives guidance to those considering using processors with caches. For the FADEC
software, this meant supporting the relevant parts of the safety argument through a No Less
Safe Than Before approach, i.e. that the new technology did not introduce new hazardous
events or make existing ones more likely or more severe. It is worth noting that a significant
influence in the regulatory authority’s decision was that the scheduling approach came with
mathematical analysis that had been peer reviewed in top international conferences by
specialists in the field.

A further complication was that the certification regime differs between Europe and the
US. The European Aviation Safety Agency (EASA) tend to regulate civil aviation certification
centrally, using a team of experts employed by EASA. The Federal Aviation Agency (FAA)
in the USA operate a “Designated Engineering Representative” (DER) scheme, where DERs
are licensed by the FAA but employed by the applicant companies. This can lead to variation
in how the certification rules and compliance evidence requirements are applied.

5.6 Impact
The impact of this work was easy to gauge as millions of pounds were saved by avoiding the
need to change the hardware platform and hence the attendant risk of delivering the aircraft
engine late. Since then, the technology has been used within Rolls-Royce without the need
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for any updates. The benefits of this are much harder to quantify. Outside the FADEC,
fixed priority scheduling has now been widely adopted in avionics and other critical systems
including automotive.

5.7 Beneficiaries
The beneficiaries of this successful technology transfer are many fold. External to Rolls-Royce,
its questionable whether Rolls Royce adopting fixed priority scheduling made it easier for
others, or whether the change of scheduling practice was inevitable, but it certainly didn’t
harm. Internal to Rolls-Royce, the benefits are clear. Financially it saved a significant amount
of money some of which was easy to quantify, i.e. the immediate saving of not procuring a
new processing platform. Further, there is the longer term benefit of an automated tool for
synthesising the scheduler and producing analysis results. The change of scheduler has also
given Rolls Royce’s engineers the freedom to specify different timing requirements, which has
allowed both better control of jitter and more flexible choices of task periods. Both of these
have enabled improvements in engine performance and reductions in processor utilisation.

5.8 Future Challenges
The future challenges for Rolls Royce are significant.6 As of 2018, they are currently
undertaking their most ambitious engine re-design in more than 30 years. This re-design is
targeted at dramatic improvements in engine efficiency, towards the industry wide Clean
Skies initiative, while at the same time reducing costs. This has led to significant interest
in mixed-criticality scheduling [22], cheaper to implement and maintain communications,
and more advanced control and monitoring systems. In response, Rolls Royce has started a
number of research projects including ones to derive a new scheduling and timing analysis
strategy. There are a number of major challenges to tackle including:
1. Where do the values for the high-criticality WCET and low-criticality WCET estimates

come from?
2. If low-criticality services can be dropped or degraded for a period of time, then how

regularly and for how long?
3. How to generate the test vectors to support timing analysis?
4. How to create an equivalent No Less Safe Than Before argument?
5. How to move to preemptive, as apposed to non-preemptive, scheduling?
6. How to implement a predictable scheduler with minimal overheads complemented by

appropriate timing analysis?
7. How to allocate tasks and assign task attributes so that the timing requirements are met?

6 Key Success Factors and Roadblocks

Below, we list some of the key success factors in transferring real-time systems research
into industrial practice. First we consider the experience of developing the three start-up
companies discussed above. With the benefit of hindsight, these were the main factors in
ensuring that the companies succeeded, growing from less than 5 employees to more than 20,
and culminating in successful trade sales.

6 See the Keynote presentation at WMC (RTSS) in 2017 – https://github.com/CPS-research-group/
WMC2017/raw/master/keynote.pdf

ECRTS 2018

https://github.com/CPS-research-group/WMC2017/raw/master/keynote.pdf
https://github.com/CPS-research-group/WMC2017/raw/master/keynote.pdf


7:18 Transferring Real-Time Systems Research into Industrial Practice

1. Having an idea and then a product that made a step change for customers, providing
a return on their investment. Each commercial product provided this step change.
Volcano increased network utilisation from 30% to 80% with improved reliability, and
reduced development, production and warranty costs. The reduced memory footprint and
overheads of the RTA-OSEK/RTA-OS operating systems resulted in lower production
costs, while the use of proven real-time policies and mechanisms as well as schedulability
analysis improved reliability resulting in lower warranty costs. Finally, RapiTime provided
an efficient WCET analysis process, which was portable across different platforms,
providing a significant reduction in testing and optimisation effort and costs.

2. A core team of smart and hardworking people. The founders of each company and the
first few employees worked very hard (6 days per week 12+ hours per day) over many
years to ensure that the company was a success.

3. A product that was not easy to replicate: barrier to competition. This was important in
obtaining funding and getting a foothold in the market. It was particularly evident with
the RTOS since the company was subsequently bought by one of its competitors.

4. Extremely high product quality and outstanding customer support. When a company is
small and has only been around for a year or two it needs to build an excellent reputation.
Quality is absolutely essential at this time, since it is make or break in terms of winning
the trust of major companies who are considering adopting the technology.

5. A balanced team of people. On the technical side, it was not sufficient to just have
technologists and software engineers who worked in the back office. Field application
engineers and support staff who could do an exceptional job at customer sites / handling
customer issues were also needed. Marketing and sales staff who actually understood
the technology and could therefore talk effectively to both engineers and managers at
customer sites were essential.

6. Previous experience. Having someone on board who has previous experience in a successful
start-up company in the same field can be hugely advantageous, as they will understand
what is needed to grow a company successfully and help avoid all manner of pitfalls.

7. Attracting an acquisition. An acquisition can lead to scaling up of the success of the
technical transfer. In all cases the speed of adoption accelerated after acquisition.
Therefore structuring the company not only for standalone success, but also acquisition
was a common success factor.

There were also a number of major roadblocks and difficulties in turning promising
research results into commercial reality.
1. Funding the initial development from academic ideas and prototypes to saleable product. A

high quality industry ready product is very different from academic prototypes. It needs
to be robust, with full error handling; easy to use, (since users will typically not be experts)
and supported by full documentation including internal documents, e.g. requirement and
test specifications, as well as external documentation such as user guides, tutorials, and
marketing material. It also needs to be of extremely high quality; fully tested against its
specification, and as far as possible the code needs to be bug free. The difficulty arises
because considerable effort is needed in this area when the company first starts and has
few sales. This effort has to be funded somehow. Self-funding by the founders can be
effective if they can afford not to be paid for a while, or they can get one or two early
contracts from a benevolent customer. Business angel or venture capital funding is also
effective but comes at a cost of giving up some proportion of the equity (shares) in the
company. Assistance from the host University or institution in terms of providing time
to cover initial development efforts is also greatly beneficial at this stage.
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2. Adapting academic research to cater for industrial realities. It is rarely if ever the case
that academic theories and prototypes cover all of the details that need to be catered
for in real industrial systems. There are inevitably different behaviours, aspects that
are left out of models, and extra functionality that is required in commercial tools. The
analysis of CAN used in the Volcano technology came close to a direct transfer. Even
so, it required that the Volcano Target Package was carefully designed and developed
to meet the assumptions of the theory, which was itself extended to account for specific
implementation behaviours (e.g. polling input and output). Substantial engineering work
was also needed to support key commercial requirements, such as the ability to re-configure
signal packing and message IDs post-production. Each of the start-ups described in this
paper undertook substantial engineering efforts as well as further adaptation and extension
to academic results to produce commercially viable products. Again the difficulty arises
because much of this effort is needed at a time when the company first starts and may
have little funding and few staff.

3. Finding the right sales staff. In each of the three start-up companies discussed in the
previous sections, it proved remarkably difficult to find people who were both good at
sales and really understood the technology. In each company, sales were led by someone
with a strong technical background who had the right personality and turned themselves
into an excellent salesman via appropriate training. Bringing in “high flying” sales staff
without a strong technology background was an expensive mistake. Beware that sales
staff can be very good at selling themselves!

4. Convincing major companies to adopt a new technology. This is problematic due to the
conservative approach often taken to purchasing from small companies. Major companies
rightly have the following concerns: (i) Will the start-up be around in a year’s time? (ii)
Can it handle the volume of support that may be needed? (iii) Is the product really of a
high enough quality to rely upon for future production? The main factors in addressing
these questions were product and customer service quality, and simply time; it becomes
easier to make larger sales once a company has been established for a few years.

For the final case study, where the technology transfer was into the company that directly
benefited from its adoption, the existence of a long term link between the company and the
research group was crucial. Simple things such as developing a common vocabulary, terms,
and concepts take time. Also important are champions in both the industrial partner and
the academic group. The simplistic notion that ‘industry has the problem, and academia the
solution’ is far from true. Academics have a crucial role in understanding the problem, and
experienced engineers are essential in shaping the solution. For example, moving to fixed
priority scheduling meant that engineers now had greater flexibility in setting the timing
requirements of the system, e.g. not just being restricted to a harmonic of the minor cycle
rate. This raised the question of what the real timing requirements were. As part of the
technology transfer the academics worked with engineers from Rolls-Royce across multiple
disciplines, (e.g. software, hardware and control systems) to establish what the limits of the
timing requirements were. This allowed significant extra benefits to be gained. Within the
company there must be pull, and of course within academia, push. Research benefits from
extensive use of abstraction to get to the core of the issues being addressed; however, to
deploy this research the devil is in the detail, which takes both time and commitment.

Once a new technology, analysis method or design approach is adopted then it must be
transferred completely. The academic cannot be part of the day-to-day application of the
new ideas. A successful partnership has periods of deep interaction and periods of separation.
New challenges may lead to a rekindled partnership.
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7 Conclusions

In this paper, we described how real-time systems research has been successfully transferred
into industrial practice via three start-up companies, and by direct application. Each of these
impact case studies represents a success story for the real-time community. Each start-up
company has developed commercially viable products, which are in use today by many of
the world’s leading automotive and aerospace companies and their tier 1 suppliers.

Volcano technology is used for in-vehicle communication between Electronic Control Units
(ECUs) in millions of cars produced by Volvo since 1998, as well as in vehicles from a number
of other major automotive manufacturers in Europe, America and Asia. The RTA-OS and
RTA-OSEK real-time operating systems are used by the overwhelming majority of the world’s
car makers; with the number of deployed units exceeding 1.25 billion in 2017, and continuing
to increase by 50-100 million per year (i.e. 1-2 million per week!). RapiTime is in use on a
wide range of aerospace projects where customers need to understand the detailed execution
time behaviour of their systems. The company, Rapita Systems, has recently undergone
a successful trade sale (April 2016) and continues to employ a large number of graduate
and post-graduate staff with expertise in real-time systems gained in the Real-Time System
Research Group at the University of York. Rolls Royces’ use of Visual FPS continues and
has demonstrated that scheduling ideas from the research community can be exploited in
the most safety-critical application domain.

Other real-time systems research groups have also succeeded in transferring their research
into commercial products via start-up companies, examples include: Symptavision Gmbh
(acquired by Luxoft in 2016) and Absint Gmbh, while others are just beginning.

It takes some excellent research and ideas, a willingness to take a risk and start a company
or commit to a long term relationship with an industrial partner, a great deal of hard work
and persistence, and perhaps an element of luck to succeed in transferring research into
world-class commercial products and systems. We hope that these impact case studies will
inspire others in the community to take this entrepreneurial step.
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1 Introduction

The sporadic task model is the basic task model in real-time systems, where each task τi
releases an infinite number of task instances (jobs) under its minimum inter-arrival time
(period) Ti and is further characterized by its relative deadline Di and its worst-case execution
time Ci. The sporadic task model has been widely adopted in real-time systems. A sporadic
task defines an infinite sequence of task instances, also called jobs, that arrive under the
minimum inter-arrival time constraint, i.e., any two consecutive releases of jobs of task τi are
temporally separated by at least Ti. When a job of task τi arrives at time t, it must finish no
later than its absolute deadline t+Di. If all tasks release their jobs strictly periodically with
period Ti, the task model is the well-known Liu and Layland task model [33]. A sporadic task
set is called with 1) implicit deadlines, if the relative deadlines are equal to their minimum
inter-arrival times, 2) constrained deadlines, if the minimum inter-arrival times are no less
than their relative deadlines, and 3) arbitrary deadlines, otherwise.

To schedule such task sets on a multiprocessor platform, three paradigms have been
widely adopted: partitioned, global, and semi-partitioned multiprocessor scheduling. The
partitioned scheduling approach partitions the tasks statically among the available processors,
i.e., a task executes all its jobs on the assigned processor. The global scheduling approach
allows a job to migrate from one processor to another at any time. The semi-partitioned
scheduling approach decides whether a task is divided into subtasks statically and how each
task/subtask is then assigned to a processor. A comprehensive survey of multiprocessor
scheduling for real-time systems can be found in [23].

We focus on global fixed-priority preemptive scheduling on M identical processors, i.e.,
unique fixed priority levels are statically assigned to the tasks and at any point in time the
M highest-priority jobs in the ready queue are executed. Hence, the schedule is workload-
conserving. The response time of a job is defined as its finish time minus its arrival time.
The worst-case response time of a task is an upper bound on the response times of all the
jobs of the task and can be derived by a (worst-case) response time analysis for a sporadic
task under a given scheduling algorithm. Verifying whether a set of sporadic tasks can meet
their deadlines by a scheduling algorithm is called a schedulability test, i.e., verifying if the
(worst-case) response time is smaller than or equal to the relative deadline.

1.1 Related Work
For uniprocessor systems, i.e, M=1, the exact schedulability test and the (tight) worst-case
response time analysis by using busy intervals were provided by Lehoczky [32]. Several
approaches have been proposed to reduce the time complexity, e.g., [35]. Bini and Buttazzo
[12] proposed a framework of schedulability tests that can be tuned to balance the time
complexity and the acceptance ratio of the schedulability test for uniprocessor sporadic
task systems. To achieve polynomial-time schedulability tests and response time analyses,
Lehoczky [32] proposed a utilization upper bound for a set of sporadic arbitrary-deadline
tasks under fixed-priority scheduling. The linear-time response-time bound for fixed-priority
systems was first proposed by Davis and Burns [22], and later improved by Bini et al. [14, 15]
and Chen et al. [18]. The computational complexity of the schedulability test problem and
the worst-case response time analysis in uniprocessor systems for different variances can be
found in [16, 25, 24, 27, 26].

In this paper, we will implicitly assume multiprocessor systems, i.e., M ≥ 2. Many results
are known for constrained-deadline (Di ≤ Ti) and implicit-deadline task systems (Di = Ti)
on identical multiprocessor platforms, e.g., [2, 5, 30, 1, 7, 18]. For details, please refer to the
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survey by Davis and Burns [23]. Unfortunately, deriving exact schedulability tests under
multiprocessor global scheduling is much harder than deriving them for uniprocessor systems
due to the lack of concrete worst-case scenarios that can be constructed efficiently. Most
results in the literature focus on sufficient schedulability tests. Exceptions are the exhaustive
search under discrete time parameters by Baker and Cirinei [4], finite automata under discrete
time parameters by Geeraerts et al. [29], and hybrid finite automata by Sun and Lipari [36].
Specifically, Geeraerts et al. [29] showed that the schedulability test formulation by Baker
and Cirinei [4] is Pspace-Complete.

Regarding global fixed-priority scheduling for arbitrary-deadline task systems, several
sufficient schedulability tests and safe worst-case response time analyses have been proposed,
e.g., [3, 4, 8, 9, 30, 37, 31]. Baker [3] designed a test based on certain properties to characterize
a problem window. Baruah and Fisher [8, 9] used different annotations to extend the analysis
window and derived corresponding exponential-time schedulability tests. The first worst-case
response-time analysis for arbitrary-deadline task systems was proposed by Guan et al. [30],
where the authors used the insight proposed by Baruah [5] to limit the number of carry-in
jobs, and then apply the workload function proposed by Bertogna et al. [11] to quantify the
requested demand of higher-priority tasks. Unfortunately, it has recently been shown by Sun
et al. [37] that this analysis in [30] is optimistic. In addition, Sun et al. [37] derived a complex
carry-in workload function for the response time analysis where all possible combinations of
carry-in and non-carry-in functions have to be explicitly enumerated. However, their method
is computationally intractable since the time complexity is exponential. Huang and Chen
[31] proposed a more precise quantification for the number of carry-in jobs of a task than the
bounds used in the tests provided in [3, 9]. They also presented a response time bound for
arbitrary-deadline tasks under global scheduling in multiprocessor systems with linear-time
complexity.

1.2 Our Contribution
We consider arbitrary-deadline sporadic task systems, which is the most general case of the
sporadic real-time task model. To quantify the performance loss due to efficient schedulability
tests and the non-optimality of scheduling algorithms, we will adopt the notion of speedup
factors/bounds, also known as resource augmentation factors/bounds. Table 1 summarizes
the state-of-the-art speedup bounds for the global deadline-monotonic (DM) scheduling, one
specific global fixed-priority scheduling algorithm. Under global DM, a task τi has higher
priority than task τj if Di ≤ Dj , in which ties are broken arbitrarily. The authors note
that the proof by Lundberg [34] seems incomplete. However, the concrete task set in [34]
provides the lower bound 2.668 of the speedup factors for global DM. Moreover, Andersson
[1] showed that global slack monotonic scheduling has a speedup bound of 3+

√
5

2 ≈ 2.6181 for
implicit-deadline task systems. However, no better global fixed-priority scheduling algorithms
with respect to speedup factors are known for constrained-deadline and arbitrary-deadline
task systems.

Our Contributions. Table 1 summarizes the related results and the contribution of this
paper for multiprocessor global fixed-priority preemptive scheduling. We improve the best
known results by Baruah and Fisher [8] with respect to the speedup bounds. Our contributions
are:

For any global fixed-priority preemptive scheduling, we provide a series of schedulability
tests with different tradeoffs between time complexity and accuracy in Section 3 and
Section 4.

ECRTS 2018
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Table 1 Speedup bounds of the global deadline-monotonic (DM) scheduling algorithm for sporadic
task systems.

implicit deadlines constrained deadlines arbitrary deadlines

Global DM
upper bounds

2.668 [34] (poly.-time) 3− 1/M [7] (expo.-time) 2(M−1)
4M−1−

√
12M2−8M+1

≤ 3.73 [8] (expo.-time)

2.823 [18] (poly.-time) 3− 1/M [18] (poly.-time) 3− 1
M

(this paper) (poly.-time)

lower bounds
2.668 [34] 2.668 [34] 2.668 [34]

3− 3
M+1 (this paper)

We show that the global deadline-monotonic scheduling algorithm has a speedup factor
3− 1/M with respect to the optimal multiprocessor scheduling policies when considering
task systems with arbitrary deadlines. This improves the analyses by Fisher and Baruah
with respect to the speedup bounds, i.e., 4− 1/M [9] and 3.73 [8].
We show that all the schedulability tests we provide in this paper analytically dominate
the tests by Baruah and Fisher [8] for global DM. We also show that global DM has a
speedup lower bound of 3− 3/(M + 1), which shows that our schedulability analyses are
asymptotically tight with respect to the speedup factors.

2 System Model, Definitions, and Assumptions

We consider an arbitrary-deadline sporadic task set T with N tasks executed on M ≥ 2
identical processors based on global fixed-priority preemptive scheduling. We assume that
the priority levels of the tasks are unique (and given) and that τi has higher priority than
task τj if i < j. When there is only one processor, i.e., M = 1, the existing results discussed
in Section 1.1 can be adopted, and our analysis here cannot be applied. We will implicitly
use the assumption M ≥ 2 in the paper.

By definition, M is an integer. In addition to Ci, Ti, Di, we also define the utilization
Ui task τi as Ci/Ti. We will implicitly assume that Di > 0, Ci > 0, Ti > 0, Ci/Di ≤ 1, and
Ui ≤ 1 ∀τi in this paper. Moreover, intra-task parallelism is not allowed. At most one job of
task τi can be executed on at most one processor at each instant in time, regardless of the
number of the jobs of task τi awaiting for execution and the number of idle processors. We
denote the set of natural numbers as N.

2.1 Resource Augmentation
We assume the original platform speed is 1. Therefore, running the platform at speed s

implies that the worst-case execution time of task τi becomes Ci/s. A scheduling algorithm
A has a speedup bound s with respect to the optimal schedule, if it guarantees to always
produce a feasible solution when 1) each processor is sped up to run at s times of the original
speed of the platform and 2) the task set T can be feasibly scheduled on the original M
identical processors, i.e., running at speed 1.

We will use the negation of the above definition to quantify the failure of algorithm A: If
A fails to ensure that all the tasks in T meet their deadlines, then no feasible multiprocessor
schedule exists when each processor is slowed down to run at speed 1/s.

2.2 Definitions and Necessary Condition
We define the following notation according to the task system and the priority assignment:

density δi of task τi: δi = Ci/min{Di, Ti}
maximum density δmax(k) among the first k tasks: δmax(k) = maxki=1 δi
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maximum between the utilization of the higher-priority tasks and the density of task
τk: Umax

δ,k = max{maxk−1
i=1 Ui, δk}

demand bound function [10] dbf(τi, t) of task τi, further explained in Definition. 2.1

load load(k) of the first k tasks: load(k) = maxt>0

∑k

i=1
dbf(τi,t)
t

I Definition 2.1 (demand bound function (dbf) by Baruah [10]). For any t ≥ 0

dbf(τi, t) = max
{

0,
(⌊

t−Di

Ti

⌋
+ 1
)
Ci

}
(1)

The demand bound function dbf(τi, t) defines the execution time task τi must finish for any
interval length t to ensure its timing correctness.

Since δi ≥ Ui by definition, we know that Umax
δ,k ≤ δmax(k). As we assume Ci/Di ≤ 1 and

Ui ≤ 1 we know that δi ≤ 1. In addition to DBFs, we will heavily use the following workload
function:

I Definition 2.2 (Workload function). Let worki(t) be a workload function, representing
the maximum amount of time for sequentially executing the jobs of task τi released in time
interval [a, a+ t), i.e., jobs released before a are not considered. For any t ≥ 0

worki(t) =
⌊
t

Ti

⌋
Ci + min

{
Ci, t−

⌊
t

Ti

⌋
Ti

}
. (2)

For notational brevity, we set worki(t) to −∞ if t < 0.

The workload function worki(t) defined above is a piecewise function, i.e., linear in intervals
[`Ti, `Ti +Ci] with a slope 1 and constant, (`+ 1)Ci, in intervals [`Ti +Ci, (`+ 1)Ti] for any
non-negative integer `. Two examples of the workload function are illustrated in Figure 2 in
Section 3. To prove the speedup bound, we will utilize the following necessary condition.

I Lemma 2.3. A task set T with N tasks is not schedulable by any multiprocessor scheduling
algorithm when the M processors are running at any speed s, if

max
{

max
t>0

∑
τi∈T dbf(τi, t)

Mt
,

∑
τi∈T Ui

M
, δmax(N)

}
> s. (3)

Proof. This is widely used based on a reformulation in the literature, e.g., [8, 9]. J

2.3 Analysis Based on DBFs
Baruah and Fisher in [8] provided a schedulability test for task τk under global deadline-
monotonic (DM) scheduling that is based on the Demand Bound Functions (DBF), assuming
that the tasks are sorted according to DM order already, i.e., D1 ≤ D2 ≤ . . . ≤ DN :

I Theorem 2.4 (Baruah and Fisher [8], revised in [17]). Let µk be defined as M − (M −
1)δmax(k). Task τk is schedulable under global DM if 1

2load(k) + (dµke − 1)δmax(k) ≤ µk. (4)

1 The original proof by Baruah and Fisher [8] had a mathematical flaw in their Lemma 3, i.e., setting µk

to M − (M − 1)δk. It can be fixed by setting µk to M − (M − 1)δmax(k).

ECRTS 2018
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3 Schedulability Test by Pushing Forward

In this section, we provide several conditions for the schedulability of task τk under a given
preemptive global fixed-priority scheduling algorithm. They lead to a sufficient schedulability
test for τk, assuming that the schedulability of the tasks τ1, τ2, . . . , τk−1 under the given
algorithm is already verified. This means that for all tasks τi with i < k the worst-case
response time is at most Di. Therefore, the test should be applied for all tasks, i.e., from the
highest-priority task to the lowest-priority task, to ensure the schedulability of the task set
under the (specified/given) global fixed-priority scheduling. As the test presented here has a
high time complexity, we provide more efficient tests in Section 4.

3.1 Analysis Window Extension
We analyze the schedulability of τk by looking at the intervals where τk is active in the
schedule S provided by the global fixed-priority scheduling algorithm according to the
following definition:

I Definition 3.1 (active task). For a schedule S, a task τi is active at time t, if there is (at
least) one job of τi that has arrived before or at t and has not finished yet at time t.

The schedulability conditions are proved by using contrapositive. Suppose a schedule S
produced by the given global fixed-priority scheduling algorithm and that td is the earliest
(absolute) deadline at which a job of task τk misses its deadline. Let ta be the time instant in
S such that τk is continuously active in the time interval [ta, td) and is not active immediately
prior to ta. By definition, ta must be the arrival time of a job of task τk. Suppose that td
is the absolute deadline of the `-th job of task τk that arrived in the time interval [ta, td).
Therefore, as τk is a sporadic task, td − ta ≥ (` − 1)Tk + Dk. For notational brevity, we
define D′k = (`− 1)Tk +Dk and C ′k = `Ck.

We remove all the jobs of task τk that arrive before ta and all the jobs with priorities lower
than τk from the schedule S. The schedule of task τk remains unchanged in the resulting
(new) schedule S, due to the preemptiveness of the global fixed-priority scheduling algorithm.
Let C∗k be the amount of time that task τk is executed from ta to td. Since the `-th job of
task τk misses its deadline, we know that C∗k < `Ck = C ′k. We now introduce three functions
that are defined for any t ≤ td.

Let E(t, td) be the amount of workload (sum of the execution times) of the higher-priority
jobs, i.e., from τ1, τ2, . . . , τk−1, executed in the time interval [t, td) in schedule S.
Let W (t, td) be C∗k + E(t, td).
Let Ω(t, td) be W (t,td)

td−t .

Those definitions and the deadline miss of task τk at time td lead to the following lemma.

I Lemma 3.2. Since τk misses its deadline at td in S, the following conditions hold:

E(ta, td) ≥M × (td − ta − C∗k) (5)
W (ta, td) > M × (td − ta)− (M − 1)C ′k (6)

Ω(ta, td) > M − (M − 1)× C ′k
D′k

(7)

Proof. Since task τk is active from ta to td and is only executed for exactly C∗k amount of
time, we know that all M processors must be busy executing other higher-priority jobs for
at least td − ta − C∗k amount of time. Therefore, the amount of workload E(ta, td) of the
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Edeadline miss
time

tdta

≥ (`− 1)Tk +Dk = D′k

t0ti

τi is active

φi ∆

Figure 1 The notation used in Section 3: 1) task τk is continuously active from ta to td with a
deadline miss at time td; 2) time instant t0 is the smallest value of t ≤ ta such that Ω(t, td) ≥ µk; 3)
time instant ti is the arrival time of a higher-priority carry-in task τi if τi is continuously active in
time interval [ti, t0 + ε], where ti < t0 and ε > 0 is an arbitrarily small number; 4) φi is t0 − ti and
∆ is td − t0.

higher-priority jobs executed in the time interval [ta, td) must be at least M × (td − ta −C∗k),
i.e., Eq. (5) must hold.2 Therefore, since W (ta, td) is defined as E(ta, td) + C∗k , we have

W (ta, td) ≥M × (td − ta − C∗k) + C∗k > M × (td − ta)− (M − 1)C ′k,

where the last inequality is due to M ≥ 2 and C ′k > C∗k . This leads to the conditions in
Eq. (6). Since Ω(ta, td) is defined as W (ta,td)

td−ta and D′k ≤ td − ta, we have

Ω(ta, td) ≥M − (M − 1) C ′k
td − ta

≥M − (M − 1)C
′
k

D′k
,

i.e., the condition in Eq. (7). J

Although the interval [ta, td) can already be used for constructing the schedulability tests,
researchers have tried to push the interval of interest towards [t0, td) for some t0 ≤ ta based
on certain properties, e.g., [31, 9, 8]. Such extensions have been shown to provide better
quantifications of the interfering workload from the higher-priority tasks. In our analysis,
we will use a similar extension strategy as suggested by Baruah and Fisher [8] based on a
user-specified parameter ρ.

The following definition and lemmas are from [8]. Figure 1 provides an illustration of our
notation based on the above definitions.

I Definition 3.3. Suppose that µk = M − (M − 1)ρ for a certain ρ with 1 ≥ ρ ≥ C′k
D′
k
. For

the schedule S, let time instant t0 be the smallest value of t ≤ ta such that Ω(t, td) ≥ µk.
This means, Ω(t, td) < µk for any t < t0.

I Lemma 3.4. If τk misses its deadline at td, for any ρ with 1 ≥ ρ ≥ C′k
D′
k
, the time t0, as

defined in Definition 3.3, always exists with Ω(t0, td) ≥ µk and t0 ≤ ta.

Proof. By Eq. (7) from Lemma 3.2 and ρ ≥ C′k
D′
k
, we know

Ω(ta, td) > M − (M − 1)× C ′k
D′k
≥M − (M − 1)ρ = µk.

Therefore, such a time instant t0 ≤ ta exists, at least when the system starts. J

I Definition 3.5 (carry-in task). A task τi is a carry-in task in the schedule S, if τi is
continuously active in a time interval [ti, t0 + ε], for ti < t0 and an arbitrarily small ε > 0.

I Lemma 3.6. For 1 ≥ ρ ≥ C′k
D′
k
, there are at most dM − (M − 1)ρe − 1 carry-in tasks at t0

in schedule S.

2 The condition in Eq. (5) is widely used in the form of E(ta, td) > M × (td − ta − `Ck). Here, since we
will use C∗

k , the correct form is with ≥.

ECRTS 2018
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3.2 Analysis Based on Workload Functions
By extending the interval of interest to [t0, td), Baruah and Fisher provided the schedulability
test shown in Theorem 2.4 in this paper. However, they analyzed the workload in [t0, td)
based on the DBFs by using the function load(k) as an approximation, which will be shown
pessimistic in Corollary 5.1 in Section 5. Moreover, their final analysis can only be applied
for global DM. We will carefully analyze the workload executed in [t0, td) to ensure that
the analytical accuracy is better preserved and that the analysis can be used for any global
fixed-priority preemptive scheduling. We will demonstrate that our analysis dominates the
analysis by Baruah and Fisher [8] in Corollary 5.1.

For the analysis before Theorem 3.10, we will assume that ρ is given and t0 is already
defined. According to Lemma 3.6, at time t0 at most dM − (M − 1)ρe−1 tasks are active in
schedule S. We quantify their contribution to the executed workload in time interval [t0, td)
with two different forms from Lemma 3.7, denoted by ωheavyi (td − t0), and from Lemma 3.8,
denoted by ωlighti (td − t0). While Lemma 3.7 can be used in general, Lemma 3.8 only holds
if Ui ≤ ρ. After these workload functions are detailed and explained, we will show their
relationship in Lemma 3.9. Then, we will explain how they can be used and detail the
constructed schedulability test in Theorem 3.10 based on the above concepts.

I Lemma 3.7. If all jobs of a higher-priority task τi meet their deadlines, the upper bound
ωheavyi (∆) on the workload of task τi executed from t0 to td with ∆ = td − t0 in schedule S
is at most:

ωheavyi (∆) = worki(∆ +Di). (8)

Proof. Since all jobs of τi meet their deadlines, the jobs of τi executed in [t0, td) must arrive
in the time interval (t0 −Di, td). Therefore, the workload of task τi that can be sequentially
executed is upper bounded by the workload function with length td− (t0−Di) = ∆ +Di. J

The key improvement achieved in this paper is due to the following Lemma 3.8 to safely
bound the workload of a light task.

Figure 2 demonstrates the workload function for different cases in Lemma 3.8, together
with a linear approximation that will be presented in Lemma 4.3. For the workload function
defined in Eq. (9), informally speaking, the workload defined by (p2 + 1)Ci + max{0, Ci −
ρ(Ti − q2)} can be imagined as if 1) there is an offset for Ci amount of execution time at
beginning of the interval, and 2) the workload in each period starting from Ci + p2Ti to
Ci+ (p2 + 1)Ti is pushed to the end of the period with a slope ρ. For example, in Figure 2(b),
the offset is 3, the workload increases from 3 at time 7 to 6 at time 13 with a slope ρ = 0.5,
the workload increases from 6 at time 17 to 9 at time 23 with a slope ρ = 0.5, etc.

I Lemma 3.8. If all jobs of a higher-priority task τi meet their deadlines and Ui ≤ ρ ≤ 1,
the upper bound ωlighti (∆) on the workload of task τi executed from t0 to td with ∆ = td − t0
in schedule S is:

ωlighti (∆) =


∆ if 0 < ∆ ≤ Ci

max
{
worki(∆),
(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)}

}
if ∆ > Ci

(9)

where p2 = d(∆− Ci)/Tie − 1 and q2 is ∆− Ci − p2Ti.

Proof. As the case when 0 < ∆ ≤ Ci is due to the definition, let ∆ > Ci for the rest of
the proof. Based on the schedule S, let ti < t0 be the time instant such that task τi is
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worki(∆) (dotted)

safe approximation of ωlight
i (∆) in Lemma 4.3 (dashed)

(a) Ui = 0.3 and ρ = 0.3

∆
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ωlight
i (∆) = (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)} (solid)

worki(∆) (dotted)

safe approximation of ωlight
i (∆) in Lemma 4.3 (dashed)

(b) Ui = 0.3 and ρ = 0.5

Figure 2 Two examples for the approximation of worki for τi with Ti = 10, Ci = 3, Di = 45:
black curves for ωlight

i (∆) defined in Lemma 3.8 and the approximation in Lemma 4.3 (blue curves).

continuously active in the time interval [ti, t0] and task τi is not active immediately prior to
ti. If ti does not exist, then task τi does not have workload released before t0 that is still
active. Therefore, the worst-case workload is worki(∆) in this case.

Let φi be t0 − ti. By the definition of ti, if it exists, there are at most
⌈
φi
Ti

⌉
jobs of task

τi executed in time interval (ti, t0]. For the rest of the proof, we only consider that ti exists
and that ∆ > Ci. By definition, ti must be the arrival time of a job of task τi. Moreover,
due to the definition of t0 in Definition 3.3, we know that Ω(ti, td) < M − (M − 1)ρ. Since
Ω(ti, td) < M − (M − 1)ρ and Ω(t0, td) ≥M − (M − 1)ρ, we have

W (t0, td) = Ω(t0, td) · (td − t0) ≥ (td − t0)µk = ∆µk (10)
W (ti, td) = Ω(ti, td) · (td − ti) < (td − ti)µk = (∆ + φi)µk (11)

Substracting Eq. (11) by Eq. (10), we have W (ti, td)−W (t0, td) < φiµk, i.e., in schedule S
the workload executed in time interval [ti, t0) is strictly less than φiµk. Suppose that yi is
the amount of time that task τi is executed in time interval [ti, t0), i.e., task τi is active but
blocked by other higher-priority jobs for φi − yi amount of time in this time interval. When
task τi is blocked in global fixed-priority scheduling, all the M processors are executing other
jobs. The workload executed in time interval [ti, t0) is at least M(φi − yi) + yi. Therefore,
by the above discussions, we know that

M(φi − yi) + yi < φiµk = φi(M − (M − 1)ρ)⇒ yi > ρφi, (12)

since M ≥ 2. At time t0, the remaining execution time of the jobs of task τi that arrived
before t0 in schedule S is at most dφi/TieCi − ρφi. Note that the existence of ti in our
definition means that dφi/TieCi − yi > 0, i.e., dφi/TieCi − ρφi > 0.

The workload of task τi that is executed in the time interval [ti, td) in schedule S is at
most worki(td − ti) = worki(∆ + φi). The workload of task τi that is executed in the time
interval [ti, t0) is at least y > ρφi. Therefore, the workload of task τi that is executed in the
time interval [t0, td) in schedule S is upper bounded by worki(∆ + φi)− ρφi.

The rest of the proof is to provide an upper bound of worki(∆+φi)−ρφi for any arbitrary
φi > 0. The proof involves some detailed manipulations of the workload function. Before
proceeding, we explain two basic properties of the workload function here by inspecting the
periodicity of the workload function worki(t) where p = bt/Tic, a non-negative integer:

For t = pTi + x with 0 ≤ x, the recursion worki(pTi + x) = pCi + worki(x) holds.
For t = pTi + x with 0 ≤ x ≤ Ci, the simplification worki(pTi + x) = pCi + x holds.
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To identify the exact value of worki(∆ + φi), we define the following variables p1, p2, q1,
and q2 for brevity:

Let p1 be dφi/Tie− 1 and q1 be φi− p1Ti, i.e., p1 + 1 is the number of jobs of task τi that
can be released in [ti, t0]. By definition φi > 0, which implies that p1 is a non-negative
integer, 0 < q1 ≤ Ti, and φi = p1Ti + q1.
Let p2 be d(∆− Ci)/Tie − 1 and q2 be ∆− Ci − p2Ti, i.e., p2 + 1 is the number of jobs
of task τi that can be released in [t0 + Ci, td]. Due to the assumption ∆ > Ci, we know
that p2 is a non-negative integer, 0 < q2 ≤ Ti, and ∆− Ci = p2Ti + q2.

By the above definition, we achieve φi + ∆ = (p1 + p2)Ti + q1 + q2 + Ci, and

worki(∆ + φi)− ρφi
= worki((p1 + p2)Ti + q1 + q2 + Ci)− ρ(p1Ti + q1)
= worki(p2Ti + q1 + q2 + Ci) + p1Ci − ρ(p1Ti + q1)
= worki(p2Ti + q1 + q2 + Ci) + p1UiTi − ρ(p1Ti + q1)
≤ worki(p2Ti + q1 + q2 + Ci)− ρq1 (13)

where the inequality is due to the assumption that 0 ≤ Ui ≤ ρ. We will prove that the
right-hand side of Eq. (9) is a safe upper bound on the condition in Eq. (13). By the definition
of q1 and q2, we know that 0 ≤ q1 + q2 ≤ 2Ti, i.e., Ci ≤ p2Ti + q1 + q2 + Ci ≤ 2Ti + Ci.
Depending on the value of q1 + q2, there are four cases for different (linear or constant)
segments of worki(p2Ti + q1 + q2 + Ci) to be analyzed:

Case 1: 0 ≤ q1 + q2 ≤ Ti − Ci: That is, p2Ti + Ci ≤ p2Ti + q1 + q2 + Ci ≤ p2Ti + Ti.
Therefore, worki(p2Ti + Ci) ≤ worki(p2Ti + q1 + q2 + Ci) ≤ worki(p2Ti + Ti). Since
worki(p2Ti + Ci) = worki(p2Ti + Ti) = (p2 + 1)Ci, we have

RHS. of Eq. (13) =(p2 + 1)Ci − ρq1 ≤ worki(p2Ti + Ci + q2) = worki(∆),

where ≤ is due to ρ ≥ 0 and q1 > 0.
Case 2: Ti − Ci < q1 + q2 ≤ Ti: By definition, when p2 is a nonnegative integer and
0 < x ≤ Ci, worki((p2+1)Ti+x) = (p2+1)Ci+x. By Ti−Ci < q1+q2 ≤ Ti, we know that
(p2 + 1)Ti < p2Ti+ q1 + q2 +Ci ≤ (p2 + 1)Ti+Ci. Therefore, worki(p2Ti+ q1 + q2 +Ci) =
(p2 + 1)Ci + (p2Ti + q1 + q2 + Ci − (p2 + 1)Ti) = (p2 + 1)Ci + (q1 + q2 + Ci − Ti). Let η
be Ti − (q1 + q2). By definition η ≥ 0. Therefore,

RHS. of Eq. (13) =(p2 + 1)Ci + (Ci − η)− ρ(Ti − q2 − η)
=(p2 + 1)Ci + (Ci − ρ(Ti − q2)) + η(ρ− 1)
≤(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)},

where ≤ is due to 0 ≤ ρ ≤ 1 and η ≥ 0.
Case 3: Ti < q1 + q2 ≤ 2Ti − Ci: Thus, worki(p2Ti + q1 + q2 + Ci) = (p2 + 2)Ci, and

RHS. of Eq. (13) = (p2 + 1)Ci + Ci − ρq1 ≤ (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)},

where ≤ is due to ρ ≥ 0 and q1 + q2 > Ti.
Case 4: 2Ti − Ci < q1 + q2 ≤ 2Ti: In this case worki(p2Ti + q1 + q2 + Ci) is equal to
(p2 + 2)Ci+ (q1 + q2 +Ci− 2Ti), similar to the analysis in Case 2. Let η be 2Ti− (q1 + q2).
By definition η ≥ 0. Therefore,

RHS. of Eq. (13) =(p2 + 1)Ci + 2Ci − η − ρ(2Ti − q2 − η)
=(p2 + 1)Ci + Ci + Ti(Ui − ρ)− η(1− ρ)− ρ(Ti − q2)
≤(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)},
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where ≤ is due to 0 < Ui ≤ C′k
D′
k
≤ ρ ≤ 1 and η ≥ 0, i.e., Ui − ρ ≤ 0 and −η(1− ρ) ≤ 0.

Since 0 < q1 + q2 ≤ 2Ti, we know that worki(∆) is a safe upper bound for Case 1 and that
(p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)} is a safe upper bound for the other cases, and we reach
the conclusion of this lemma. J

I Lemma 3.9. If Ui ≤ ρ, then ωheavyi (∆) ≥ ωlighti (∆) for all ∆ > 0.

Proof. This inequality can be proved formally, but can also be derived by following the
definitions. When 0 < ∆ ≤ Ci, the inequality holds naturally. In the proof of Lemma 3.8,
the workload of task τi that is executed in the time interval [ti, td) in schedule S is at most
worki(td − ti) = worki(∆ + φi). Since φi ≤ Di, we know that ωlighti (∆) ≤ worki(∆ + φi) ≤
worki(∆ +Di) = ωheavyi (∆). J

Here is a short summary of the information provided by Lemmas 3.6, 3.7, and 3.8.
According to Lemma 3.6, at time t0, there are at most dM − (M − 1)ρe − 1 = dµke − 1
carry-in tasks.
Among the dµke − 1 carry-in tasks, there are two types of carry-in tasks, i.e., heavy
and light tasks. A light carry-in task τi can be described by ωlighti (∆) from Eq. (9)
if the utilization is no more than ρ and a heavy carry-in task τi can be described by
ωheavyi (∆) from Eq. (8). By observing the conditions in Eqs. (8) and (9), we know that
worki(∆) ≤ ωlighti (∆) ≤ ωheavyi (∆).
Since ρ is a user-defined parameter, a smaller ρ implies a larger µk, i.e., potentially more
carry-in tasks and more heavy carry-in tasks. By constrast, a larger ρ implies a smaller
µk, i.e., potentially less carry-in tasks and more light carry-in tasks. Therefore, a larger
ρ is better for minimizing the carry-in workload.
However, the window of interest [t0, td) is defined by the condition Ω(t0, td) ≥M−(M−1)ρ.
The window of interest is smaller when ρ is larger. As a result, there is no monotonicity
with respect to the schedulability test for setting the value of ρ.

I Theorem 3.10. Task τk is schedulable by the given global fixed-priority scheduling if

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk),∀∆ ≥ (`− 1)Tk +Dk

`Ck +
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆) ≤ ∆ · µk (14)

holds, where µk = M − (M − 1)ρ,

ωdiffi (∆, ρ) =
{
ωheavyi (∆)− worki(∆) if Ui > ρ

ωlighti (∆)− worki(∆) if Ui ≤ ρ
(15)

and Tcarry is the set of the dµke − 1 tasks among the k − 1 higher-priority tasks with the
largest values of ωdiffi (∆, ρ). If Dk ≤ Tk, we only need to consider ` = 1.

Proof. We prove this theorem by contrapositive, i.e., task τk misses its deadline first at time
td in a global fixed-priority preemptive schedule S. We know that ta can be defined for
schedule S, and t0, i.e., Ω(t0, td) ≥M − (M − 1)× C′k

D′
k
in Definition 3.3 can be defined for

any ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk) due to Lemma 3.4.
By the existence of td, the choice of ρ, and the definition of t0 in Definition 3.3, we know

that the deadline miss of task τk at time td in the schedule S implies

∃` ∈ N, ∀1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), ∃∆ = td − t0, Ω(t0, td) ≥M − (M − 1)ρ (16)
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By the fact that C∗k < C ′k = `Ck and the definition of Ω(), we have

Ω(t0, td) = C∗k + E(t0, td)
td − t0

<
`Ck + E(t0, td)

td − t0
(17)

By Lemma 3.6, for a specific ρ, there are at most dM − (M − 1)ρe − 1 = dµke − 1
higher-priority carry-in tasks at time t0 and the other higher-priority tasks do not have any
unfinished job at time t0. Suppose that Theavy and Tlight are the sets of the heavy and
light carry-in tasks at time t0, respectively. By Lemma 3.6, |Theavy|+ |Tlight| ≤ dµke − 1.
Therefore, by using Lemmas 3.7 and 3.8 and 3.9, we have

E(t0, td) ≤
∑

τi∈Theavy
ωheavyi (∆) +

∑
τi∈Tlight

ωlighti (∆)

=
∑

τi∈Theavy

(
ωheavyi (∆)− worki(∆)

)
+

∑
τi∈Tlight

(
ωlighti (∆)− worki(∆)

)
+
k−1∑
i=1

worki(∆)

≤
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆) (18)

where ωdiffi (∆, ρ) is defined in Eq. (15), and Tcarry is defined in the statement of the
theorem.

By Eqs. (16), (17), and (18), and the fact td − ta ≥ D′k = (`− 1)Tk +Dk, the deadline
miss of task τk at td implies

∃` ∈ N,∀1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk),∃∆ ≥ (`− 1)Tk +Dk

`Ck +
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆) > ∆ · µk (19)

Therefore, the negation of the above necessary condition for the deadline miss of task τk
at time td is a safe sufficient schedulability test. We reach the conclusion of the schedulability
test.

When Dk ≤ Tk, since td is the earliest moment in the schedule S with a deadline miss
of task τk, we know that ta is by definition td −Dk and ` is 1. Therefore, we only have to
consider ` = 1 when Dk ≤ Tk. J

The schedulability test described in Theorem 3.10 can be informally explained as follows:
1) it requires to test all the possible positive integers for `, like the busy-window concept, 2)
it has to find a ρ value in the specified range, and 3) for the specified combination of ` and ρ,
we have to test whether the condition in Eq. (14) holds for every ∆ ≥ (`− 1)Tk +Dk.

3.3 Remarks on Implementing Theorem 3.10
Unfortunately, due to the following issues, implementing the schedulability test in Theo-
rem 3.10 directly would lead to a high time complexity:

Issue 1 due to ∆: For specific ` and ρ, testing the schedulability condition in Eq. (14)
requires to evaluate all ∆ ≥ (`− 1)Tk +Dk. Suppose that HP (k) is the hyper-period of
{τ1, τ2, . . . , τk−1}, i.e., the least common multiple of the periods of τ1, τ2, . . . , τk−1. Since
worki(∆) +HP (k)Ui = worki(∆ +HP (k)), ωlighti (∆) +HP (k)Ui = ωlighti (∆ +HP (k)),
and ωheavyi (∆) +HP (k)Ui = ωheavyi (∆ +HP (k)), we only have to test ∆ ∈ [(`− 1)Tk +
Dk, (`− 1)Tk +Dk +HP (k)], as long as

∑k−1
i=1 Ui ≤ µk. However, the time complexity

can still be exponential. We will explain how to reduce this complexity by using safe
upper bounds in Section 4.
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Issue 2 due to ρ: For a specific `, the schedulability condition in Eq. (14) is dependent
on the selection of ρ. If ρ is smaller, then µk is larger, and vice versa. A smaller ρ
increases the right-hand side in the schedulability test in Eq. (14), but it also increases the
left-hand side, since there are potentially more carry-in tasks. One simple strategy to find
a suitable ρ instead of searching for all values of ρ is to start from ρ = `Ck/((`−1)Tk+Dk

and increase ρ to the next (higher) Ui for certain higher-priority task τi if necessary.
Therefore, in the worst case, we only have to consider k different ρ values. We will deal
with this in Theorems 4.4 and 4.5 in Section 4.
Issue 3 due to `: We need to consider all positive integer values of ` in the schedulability
condition in Eq. (14), as the test is only valid when the condition holds for all ` ∈ N.
Therefore, if we only test some `, it is necessary to prove that the other ` configurations
are also covered even though they are not tested. We will explain how to deal with this
in Theorems 4.6 and 4.7 in Section 4.

4 Efficient Schedulability Tests

In this section we provide several schedulability tests based on approximate workload functions
to test the schedulability of task τk more efficiently. The following three lemmas approximate
the piecewise linear workload function worki(∆), ωheavyi (∆) and ωlighti (∆) by linear functions
with respect to ∆ for any ∆ ≥ 0.

I Lemma 4.1. When 0 ≤ Ui ≤ 1, for any ∆ ≥ 0,

worki(∆) ≤ Ci − CiUi + Ui∆. (20)

Proof. This inequality was already stated in Eq. (5) by Bini et al. [14] as a fact. Here, we
provide the proof for completeness. Suppose that ∆ is p3Ti + q3, where p3 is

⌊
∆
Ti

⌋
and q3 is

∆−
⌊

∆
Ti

⌋
Ti. Therefore, we know Ui∆ = p3Ci + q3Ui and worki(∆) = p3Ci + min{Ci, q3}.

We have to consider two cases:
If q3 ≤ Ci: we have

worki(∆) = p3Ci + q3 ≤ p3Ci + Ci − (Ci − q3)
≤1 p3Ci + Ci − (Ci − q3)Ui = Ci − CiUi + Ui∆,

where ≤1 is due to 0 ≤ Ui ≤ 1 and Ci − q3 ≥ 0.
If q3 > Ci: we have

worki(∆) = p3Ci + Ci ≤ p3Ci + Ci + (q3 − Ci)Ui = Ci − CiUi + Ui∆,

where ≤ is due to 0 ≤ Ui ≤ 1 and q3 − Ci > 0. J

I Lemma 4.2. For any ∆ ≥ 0,

ωheavyi (∆) ≤ Ci + UiDi − CiUi + Ui∆. (21)

Proof. Due to Lemma 3.7 and Lemma 4.1, the inequality holds. J

I Lemma 4.3. If Ui ≤ ρ ≤ 1, for any ∆ ≥ 0,

ωlighti (∆) ≤ Ci − CiUi + Ui∆. (22)
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Proof. We consider the three upper bounds in Lemma 3.8 individually. When ∆ ≤ Ci, this
follows from Lemma 4.1 directly. When ∆ > Ci and ωlighti (∆) = worki(∆), it holds due to
Lemma 4.1 as well.

For the last case we have to bound (p2 + 1)Ci + max{0, Ci − ρ(Ti − q2)}, as defined
in Lemma 3.8. By the definition of p2 and q2, i.e., ∆ − Ci = p2Ti + q2, in the statement
of Lemma 3.8, we have p2 + 1 = d(∆− Ci)/Tie and (p2 + 1)Ci = worki(p2Ti + Ci) =
worki(∆− q2). Therefore, for any ∆ > Ci, if Ci − ρ(Ti − q2) ≥ 0, we get

ωlighti (∆) = (p2 + 1)Ci + Ci − ρ(Ti − q2)
= worki(∆− q2) + Ci − ρ(Ti − q2)
≤1 Ci − CiUi + Ui(∆− q2) + Ci − ρ(Ti − q2)
= Ci − CiUi + Ui∆− q2(Ui − ρ)− Ti(ρ− Ui)
= Ci − CiUi + Ui∆ + (Ti − q2)(Ui − ρ)
≤2 Ci − CiUi + Ui∆,

where ≤1 is due to Lemma 4.1 and ≤2 is due to q2 ≤ Ti and Ui ≤ ρ. For any ∆ > Ci, if
Ci − ρ(Ti − q2) < 0, similarly, we have

ωlighti (∆) =(p2 + 1)Ci = worki(p2Ti + Ci) ≤ worki(p2Ti + Ci + q2) = worki(∆)
≤Ci − CiUi + Ui∆.

Therefore, we reach the conclusion. J

With the help of the above lemmas for safe approximations, we can now safely and
efficiently handle the schedulability test for specific ` and ρ in the following theorem. This
handles Issue 1 explained at the end of Section 3.

I Theorem 4.4. Task τk is schedulable by the given global fixed-priority scheduling if

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk)

`Ck
D′k

+
∑

τi∈Tcarry−approx

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk, (23)

where µk = M − (M − 1)ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), D′k is (`− 1)Tk +Dk,

γi =
{

1 if Ui > ρ

0 if Ui ≤ ρ
(24)

and Tcarry−approx is the set of the dµke − 1 tasks among the k − 1 higher-priority tasks with
the largest values of γiUiDi. Note that |Tcarry−approx| can be smaller than dµke − 1 if the
number of tasks with Ui > ρ is less than dµke − 1. If Dk ≤ Tk, we only need to consider
` = 1.

Proof. We prove that the condition in this theorem is a safe upper bound of that in
Theorem 3.10. For specific `, ρ,∆, we can find Tcarry as defined in Theorem 3.10. By
Lemmas 4.1, 4.2, and 4.3 and the assumptions ∆ ≥ (`− 1)Tk +Dk = D′k and 0 < Ui ≤ 1∀τi,
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we have

`Ck +
∑

τi∈Tcarry
ωdiffi (∆, ρ) +

k−1∑
i=1

worki(∆)

≤`Ck +
∑

τi∈Tcarry
γiUiDi +

k−1∑
i=1

(Ci − CiUi + Ui∆) (25)

≤`Ck +
∑

τi∈Tcarry−approx
γiUiDi +

k−1∑
i=1

(Ci − CiUi + Ui∆) (26)

≤∆ ·

`Ck
D′k

+
∑

τi∈Tcarry−approx

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

) (27)

Therefore, the test in Theorem 3.10 can be safely over-approximated as follows:

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk)Tk +Dk

`Ck
D′k

+

 ∑
τi∈Tcarry−approx

γiUiDi

D′k

+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk (28)

J

Theorem 4.4 provides two interesting implications to handle Issue 2. Firstly, if Ui ≤ ρ,
the linear approximation of worki(∆) by considering task τi as a non-carry-in task in
Lemma 4.1 is the same as the linear approximation of ωlighti (∆) by considering task τi as a
carry-in task in Lemma 4.3. Therefore, the carry-in tasks are only effective for those tasks τi
with Ui > ρ. Secondly, for a specific `, deciding whether a specific ρ exists to pass the test
in Eq. (23) can be done by only testing a finite number of ρ values, i.e. by starting from
ρ = `Ck/((`− 1)Tk +Dk and increasing ρ to the next (higher) values where Tcarry−approx

changes. This means either 1) ρ = Ui for certain higher-priority task τi, i.e., the summation
can be larger with the same number of summands; or 2) µk = M− (M−1)ρ is an integer, i.e.,
the number of summands increases. This only has time complexity O((k +M) log(k +M)),
mainly due to the sorting, when proper data structures are used. Details can be found in
Appendix of the full version [21].

4.1 Linear-Time Schedulability Tests
The time complexity of Theorem 4.4 is due to the search of possible ρ values. Nevertheless,
we can directly set ρ to Umax

δ,k which implies that there is no carry-in task in the linear-
approximation form. With this simplification, we can conclude different schedulability tests
in Theorems 4.5, 4.6, and 4.7. Although these tests are not superior to Theorem 4.4, our
main target is the test in Theorem 4.7, which will be used mainly to derive the speedup
bounds later in Theorem 5.2.

I Theorem 4.5. Task τk is schedulable by the given global fixed-priority scheduling if ∀` ∈ N

`Ck
D′k

+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ (M − (M − 1)Umax

δ,k ) (29)

holds, where D′k is (`− 1)Tk +Dk.

ECRTS 2018



8:16 Push Forward: Arbitrary-Deadline Sporadic Task Systems

Proof. This comes directly from Theorem 4.4 by setting ρ to Umax
δ,k and the facts that

Umax
δ,k ≥ Ui for i = 1, 2, . . . , k − 1 and Umax

δ,k ≥ δk ≥ `Ck/((`− 1)Tk +Dk) by definition. J

I Theorem 4.6. Suppose that Dk > Tk. Let b be Dk−Tk
Tk

. Task τk is schedulable by the given
global fixed-priority scheduling algorithm if:

k∑
i=1

Ui ≤ (M − (M − 1)Umax
δ,k ), when bUk −

k−1∑
i=1

Ci − CiUi
Tk

> 0 (30)

Ck
Dk

+
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤ (M − (M − 1)Umax

δ,k ), otherwise (31)

Proof. For a given `, the left-hand side in Eq. (29) can be rephrased as:

F (`) = `Ck
D′k

+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
=
`Uk +

∑k−1
i=1

Ci−CiUi
Tk

`+ b
+
k−1∑
i=1

Ui (32)

The first order derivative of F (`) with respect to ` is:

∂F (`)
∂`

=
bUk −

∑k−1
i=1

Ci−CiUi
Tk

(`+ b)2 . (33)

We have to consider two cases:
Case 1: if bUk −

∑k−1
i=1

Ci−CiUi
Tk

> 0, then F (`) is an increasing function with respect to `.
Therefore, F (`) is maximized when `→∞, i.e., F (`) ≤

∑k
i=1 Ui.

Case 2: if bUk−
∑k−1
i=1

Ci−CiUi
Tk

≤ 0, then F (`) is a non-increasing function with respect to
`. Therefore, F (`) is maximized when `→ 1, i.e., F (`) ≤ Ck

Dk
+
∑k−1
i=1 (Ci−CiUiDk

+Ui). J

I Theorem 4.7. Task τk is schedulable by the given global fixed-priority scheduling if

δk +
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤M − (M − 1)Umax

δ,k (34)

Proof. Based on Theorem 4.5 and the two facts that D′k = (` − 1)Tk + Dk ≥ Dk and
δk ≥ `Ck/((`− 1)Tk +Dk) for all ` ∈ N, we reach the conclusion. J

4.2 Dominance
We now show analytical dominance among the tests presented above and in Theorem 3.10 in
the following corollary. A test B1 analytically dominates another test B2 if the schedulability
condition in B1 always dominates that in B2. This means, if task τk is deemed schedulable
by B2, task τk is also deemed schedulable by B1.

I Corollary 4.8. For arbitrary-deadline sporadic real-time systems under global fixed-priority
scheduling, the schedulability tests have the following dominance relations.

Theorem 3.10 analytically dominates Theorem 4.4.
Theorem 4.4 analytically dominates Theorem 4.5.
Theorem 4.5 is equivalent to the test in Theorem 4.6.
Theorem 4.6 analytically dominates Theorem 4.7.

Proof. They follow directly from the above analyses. The reason why Theorems 4.5 and 4.6
are equivalent is because the conditions in Theorem 4.6 represent exactly the worst-case `
selection in Theorem 4.5. The other cases are obvious. J
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Although we will show in Theorem 5.3 that all the above schedulability tests have the
same speedup bound for global DM, the performance of the schedulability tests in this section
can be very different in practice. Chen et al. [19] have recently shown that “Speedup factors
... often lack the power to discriminate between the performance of different scheduling
algorithms and schedulability tests even though the performance of these algorithms and tests
may be very different when viewed from the perspective of empirical evaluation.” To avoid
concluding an algorithm with a reasonable speedup bound but practically not useful, we
performed a series of experiments and present the results in Section 6. Moreover, according
to the experimental results, the domination relations among Theorems 4.4, 4.5, and 4.7 are
strict, i.e., there is a concrete input instance that is deemed schedulable by a dominating
schedulability test but is not deemed schedulable by a dominated schedulability test.

5 Global Deadline-Monotonic (DM) Scheduling

After presenting the schedulability tests for any global fixed-priority scheduling algorithms,
we focus ourselves on global DM in this section. We will discuss the speedup upper bound and
the speedup lower bound. Baruah and Fisher [8] showed that global DM has a speedup upper
bound of 2 +

√
3 ≈ 3.73 compared to the optimal schedules, based on the test restated

in Theorem 2.4. This is the best known upper bound on speedup factors for arbitrary-
deadline sporadic task systems under global fixed-priority scheduling. Evaluating load(k)
in Theorem 2.4 requires to calculate

∑k
i=1 dbf(τi, t)/t at all time points t. This means, the

naïve implementation has an exponential-time complexity. There are more efficient methods,
as discussed by Baruah and Bini [6], but the time complexity remains exponential. Although
it is possible to approximate load(k) by using approximate demand bound functions in
polynomial time, this is at a price of higher load(k). We show that the test in Theorem 2.4
is over-pessimistic and is analytically dominated by our linear-time schedulability test in
Theorem 4.7 under global DM.

I Corollary 5.1. For global DM, the schedulability test in Theorem 4.7 analytically dominates
the schedulability test in Theorem 2.4 proposed by Baruah and Fisher [8].

Proof. This is due to the following facts:
By definition, load(k) ≥ limitt→∞

∑k
i=1 dbf(τi, t)/t =

∑k
i=1 Ui.

Since Di ≤ Dk in global DM for i = 1, 2, . . . , k − 1, we know that
∑k

i=1
dbf(τi,Dk)
Dk

≥∑k
i=1

Ci
Dk

. Therefore, load(k) ≥
∑k
i=1

Ci
Dk

.
Combining these facts, we get

δk +
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤

k∑
i=1

Ci
Dk

+ Ui ≤ 2load(k). (35)

Since we know that the right-hand side in Eq. (4), i.e., M − (M − 1)δmax(k), is less than or
equal to M − (M − 1)Umax

δ,k in Eq. (34), we reach the conclusion. J

I Theorem 5.2. Global DM has a speedup bound of 3 − 1
M , with respect to the optimal

schedule, when M ≥ 2.

Proof. We only prove the speedup bound by using the schedulability test in Theorem
4.7. Due to the dominance properties in Corollary 4.8, such a bound also holds for the
schedulability tests from Theorems 3.10, 4.4, 4.5, and 4.6.

ECRTS 2018
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Suppose that task τk is not schedulable by global DM. Since Di ≤ Dk for any i =
1, 2, . . . , k − 1 under global DM, we know dbf(τi, Dk) ≥ Ci. Therefore, under global DM,∑k

i=1
Ci
MDk

≤
∑k
i=1

dbf(τi,Dk)
MDk

≤
∑

τi∈T
dbf(τi,Dk)
MDk

≤ maxt>0

∑
τi∈T

dbf(τi,t)
Mt .

By the assumption that task τk is also deemed not schedulable by Theorem 4.7, we have

δk +
k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
> M − (M − 1)Umax

δ,k

⇒
k∑
i=1

Ci
MDk

+
k∑
i=1

Ui
M

> 1−
(

1− 1
M

)
Umax
δ,k

⇒
k∑
i=1

Ci
MDk

+
k∑
i=1

Ui
M

+
(

1− 1
M

)
Umax
δ,k > 1

x+ x+ (1− 1/M)x > 1⇒ max
{

k∑
i=1

Ci
MDk

,

k∑
i=1

Ui
M
,Umax

δ,k

}
>

1
3− 1/M (36)

Therefore, either maxt>0

∑
τi∈T

dbf(τi,t)
Mt ≥

∑k
i=1

Ci
MDk

> 1
3−1/M , or

∑k
i=1

Ui
M > 1

3−1/M ,
or δmax(k) ≥ Umax

δ,k > 1
3−1/M . By Lemma 2.3, we reach the conclusion of the speedup bound

for global DM with respect to the optimal schedule. J

I Theorem 5.3. For global DM, the schedulability tests in Theorems 3.10, 4.4, 4.5, 4.6,
and 4.7 have a speedup bound of 3− 1

M , with respect to the optimal schedule, when M ≥ 2.

Proof. This is due to Theorem 5.2 and Corollary 4.8, because all of the tests in Theo-
rems 3.10, 4.4, 4.5, 4.6 dominate the test in Theorem 4.7 as presented in Corollary 4.8. J

I Theorem 5.4. The speedup bound of global DM for arbitrary-deadline task systems is at
least 3− 3

M+1 .

Proof. The proof is based on a concrete task set. We specifically use the following task set
Tad with N = 2M + 1 tasks. Let ε be an arbitrarily small positive real number such that
1/ε is an integer. Let η � ε be an arbitrarily small positive number, that is used to enforce
the priority assignment under global DM:

Ci = ε
3 , Ti = ε, Di = 1, for i = 1, 2, . . . ,M .

Ci = 1
3 , Ti =∞, Di = 1 + η, for i = M + 1,M + 2, . . . , 2M .

Ci = 1+ε
3 , Ti =∞, Di = 1 + 2η, for i = 2M + 1

As the setting of η � ε is just to enforce the indexing, we will directly take η → 0 here. In the
Appendix, we prove two properties: 1) Tad is not schedulable by global DM under a concrete
instance which releases all the tasks at time 0 and the subsequent jobs periodically. 2) There
exists a feasible schedule for task set Tad at any speed no lower than 1+ε

3 + 1+ε
3M under a

concrete semi-partitioned multiprocessor schedule, i.e., {τm, τm+M} assigned to processor
m for m = 1, 2, . . . ,M and task τ2M+1 executed partially on each of the M processors.
Therefore, a lower bound on the speedup bound of global DM is:

lim
ε→0

1
1+ε

3 + 1+ε
3M

= lim
ε→0

3M
(1 + ε)× (M + 1) = 3M

M + 1 = 3− 3
M + 1 . J

By Theorems 5.2 and 5.4, we can reach the conclusion that all the schedulability tests
from Theorems 3.10, 4.4, 4.5, 4.6, and 4.7 are asymptotically tight with respect to speedup
bounds. However, these tests have different performance with respect to the schedulability.
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6 Evaluation

We evaluated the scheduling tests provided in this paper by comparing their acceptance
ratio to the acceptance ratio of other algorithms, i.e., comparing the percentage of task
sets accepted for the different schedulability tests, using different settings for the number of
processors, the scheduling policy, and the ratio of the relative deadline to the period.

Evaluation Setup. We conducted evaluations for homogeneous multiprocessor systems with
M = 4, M = 8, and M = 16 processors. We generated 100 task sets with cardinality of both
N = 5×M and N = 10×M , and utilization ranging from M × 5% to M × 100% in steps of
M × 5%. The UUniFast-Discard method [13] was adopted to generate the utilization values
of a set of N tasks under the target utilization. As suggested by Emberson et al. [28], the
periods were generated according to a log-uniform distribution, with 1, 2, and 3 orders of
magnitude, i.e., [1ms−10ms], [1ms−100ms], and [1ms−1000ms]. For each task, the relative
deadline was set to the period multiplied with a value randomly drawn under a uniform
distribution from a given interval I. We conducted evaluations using different interval, i.e., I
was [0.8, 2], [0.8, 5], [0.8, 10], [1, 2], [1, 5], or [1, 10]. To schedule the task sets, we applied global
deadline-monotonic (DM) and global slack-monotonic (SM) [1] scheduling.

Whether the task set is schedulable under the given scheduling approach or not was
tested using the following schedulability tests:

LOAD: The load-based analysis by Baruah and Fisher in [9], only for DM scheduling.
BAK: The test by Baker in Theorem 11 in [3].
HC: The sufficient test in Corollary 2 by Huang and Chen in [31].
OUR-4.4: The sufficient test in Theorem 4.4 in this paper.
OUR-4.6: The sufficient test in Theorem 4.6 in this paper.
OUR-4.7: The sufficient test in Theorem 4.7 in this paper.

We also checked if a task set was schedulable according to at least one of the tests,
denoted as ALL. We only present a small set of the conducted tests here. The diagrams of
all conducted evaluations can be found in [20].

Evaluation Results. Figure 3 shows the evaluations under the setting used in the paper by
Huang and Chen [31]. They used DM scheduling on M = 8 processors, a task set containing
40 tasks and ratios of DiTi ∈ [0.8, 2] and analyzed the schedulability for Ti values that differ
up to 1, 2, and 3 orders of magnitude, i.e., Ti in a range of [1ms, 10ms], [1ms, 100ms], or
[1ms, 1000ms]. The test by Baruah and Fisher [9] is clearly outperformed by Theorem 4.6,
Theorem 4.7, and Baker’s test [3], which provide similar acceptance ratios. The test by
Huang and Chen [31] outperforms those three tests and is worse than the test in Theorem 4.4
in these settings. However, there is no dominance relation between Theorem 4.4 and the test
by Huang and Chen [31], as some task sets are schedulable under the test by Huang and
Chen [31] but not schedulable under Theorem 4.4 and vise versa.

There are other configurations where the test by Huang and Chen [31] performs better
than Theorem 4.4. One example is shown in Figure 4, analyzing the impact of the number
of processors. Here Theorem 4.4 performs compatible to Theorem 4.6, Theorem 4.7, and
Baker’s test [3] for M = 4. When the number of processors increases, Theorem 4.4 performs
better. The gap to Huang and Chen [31] is smaller for 8 processors and Theorem 4.4 has
a higher acceptance rate when the utilization level is 80% ×M . For M = 16 processors
Theorem 4.4 accepts more task sets than Huang and Chen [31] when the utilization level is
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Figure 3 Comparison of the tests presented in Theorem 4.4, 4.6, and 4.7 with the methods from
Baruah and Fisher (LOAD) [9], Baker [3], and Huang and Chen [31] for different ranges of period.
The evaluation setup is the same as in [31], i.e., DM, M = 8, N = 40, Di

Ti
∈ [0.8, 2].
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Figure 4 Comparison of the tests presented in Theorem 4.4, 4.6, and 4.7 with the methods from
Baruah and Fisher (LOAD) [9], Baker [3], and Huang and Chen [31] for different M values. The
other parameters are fixed, i.e., DM, N = 5×M , Ti ∈ [1ms, 10ms], and Di

Ti
∈ [0.8, 10].

≥ 65%×M . In addition, it is possible that the number of task sets that is accepted by at
least one algorithm is not close to the number of task sets accepted by Huang and Chen [31]
or Theorem 4.4 as can be seen for the utilization level 75%×M in the case where M = 8.

Furthermore, we tracked if the test by Baker [3] accepted some task sets that were not
accepted by Huang and Chen [31] or Theorem 4.4, which happened occasionally. Therefore,
we conclude that there is no dominance relation between any of those three tests, i.e.,
Theorem 4.4, and the tests by Baker [3] and by Huang and Chen [31]. As these tests can all
be implemented with polynomial-time complexity, all three should be applied.

7 Conclusion

We present a series of schedulability tests for multiprocessor systems under any given fixed-
priority scheduling approach. Those schedulability tests have different tradeoffs between their
accuracy and their time complexity. All those schedulability tests dominate the approach
by Baruah and Fisher [9], both with respect to speedup bounds and schedulability analysis.
Theorem 3.10 is the most powerful schedulability test in this paper. However, we do not
reach any concrete implementation with affordable time complexity. In the future work, we
will seek for efficient methods to implement the schedulability test in Theorem 3.10.



J.-J. Chen, G. von der Brüggen, and N. Ueter 8:21

References
1 Björn Andersson. Global static-priority preemptive multiprocessor scheduling with uti-

lization bound 38%. In Principles of Distributed Systems, 12th International Conference,
OPODIS, pages 73–88, 2008. doi:10.1007/978-3-540-92221-6_7.

2 Björn Andersson, Sanjoy K. Baruah, and Jan Jonsson. Static-priority scheduling on
multiprocessors. In Real-Time Systems Symposium (RTSS), pages 193–202, 2001. doi:
10.1109/REAL.2001.990610.

3 Theodore P Baker. An analysis of fixed-priority schedulability on a multiprocessor. Real-
Time Systems, 32(1-2):49–71, 2006. doi:10.1007/S11241-005-4686-1.

4 Theodore P. Baker and Michele Cirinei. Brute-force determination of multiprocessor
schedulability for sets of sporadic hard-deadline tasks. In Principles of Distributed
Systems, 11th International Conference, OPODIS, pages 62–75, 2007. doi:10.1007/
978-3-540-77096-1_5.

5 Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In Proceedings
of the 28th IEEE International Real-Time Systems Symposium, pages 119–128, 2007. doi:
10.1109/RTSS.2007.35.

6 Sanjoy Baruah and Enrico Bini. Partitioned scheduling of sporadic task systems: an ILP-
based approach. In Proc. DASIP, 2008.

7 Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller.
Improved multiprocessor global schedulability analysis. Real-Time Systems, 46(1):3–24,
2010. doi:10.1007/s11241-010-9096-3.

8 Sanjoy K. Baruah and Nathan Fisher. Global deadline-monotonic scheduling of arbitrary-
deadline sporadic task systems. In Principles of Distributed Systems, 11th International
Conference, OPODIS 2007, Guadeloupe, French West Indies, December 17-20, 2007. Pro-
ceedings, pages 204–216, 2007. doi:10.1007/978-3-540-77096-1_15.

9 Sanjoy K. Baruah and Nathan Fisher. Global fixed-priority scheduling of arbitrary-deadline
sporadic task systems. In Distributed Computing and Networking, 9th International Con-
ference, ICDCN, pages 215–226, 2008. doi:10.1007/978-3-540-77444-0_20.

10 Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In In Proceedings of the 11th Real-Time Systems
Symposium, pages 182–190, 1990. doi:10.1109/REAL.1990.128746.

11 Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. New schedulability tests for
real-time task sets scheduled by deadline monotonic on multiprocessors. In Principles
of Distributed Systems, 9th International Conference, OPODIS, pages 306–321, 2005.
doi:10.1007/11795490_24.

12 Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic fixed priority
systems. IEEE Trans. Computers, 53(11):1462–1473, 2004. doi:10.1109/TC.2004.103.

13 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005. doi:10.1007/s11241-005-0507-9.

14 Enrico Bini, Thi Huyen Chau Nguyen, Pascal Richard, and Sanjoy K. Baruah. A response-
time bound in fixed-priority scheduling with arbitrary deadlines. IEEE Trans. Computers,
58(2):279–286, 2009. doi:10.1109/TC.2008.167.

15 Enrico Bini, Andrea Parri, and Giacomo Dossena. A quadratic-time response time upper
bound with a tightness property. In IEEE Real-Time Systems Symposium (RTSS), pages
13–22, 2015. doi:10.1109/RTSS.2015.9.

16 Vincenzo Bonifaci, Ho-Leung Chan, Alberto Marchetti-Spaccamela, and Nicole Megow.
Algorithms and complexity for periodic real-time scheduling. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1350–1359,
2010. doi:10.1137/1.9781611973075.109.

ECRTS 2018

http://dx.doi.org/10.1007/978-3-540-92221-6_7
http://dx.doi.org/10.1109/REAL.2001.990610
http://dx.doi.org/10.1109/REAL.2001.990610
http://dx.doi.org/10.1007/S11241-005-4686-1
http://dx.doi.org/10.1007/978-3-540-77096-1_5
http://dx.doi.org/10.1007/978-3-540-77096-1_5
http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1007/978-3-540-77096-1_15
http://dx.doi.org/10.1007/978-3-540-77444-0_20
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1007/11795490_24
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/TC.2008.167
http://dx.doi.org/10.1109/RTSS.2015.9
http://dx.doi.org/10.1137/1.9781611973075.109


8:22 Push Forward: Arbitrary-Deadline Sporadic Task Systems

17 Jian-Jia Chen. Erratum: Global deadline-monotonic scheduling of arbitrary-deadline
sporadic task systems, 2017. URL: http://ls12-www.cs.tu-dortmund.de/daes/media/
documents/publications/downloads/2016-chen-erratum-globalDM.pdf.

18 Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. k2q: A quadratic-form response time
and schedulability analysis framework for utilization-based analysis. In Real-Time Systems
Symposium, RTSS, pages 351–362, 2016. doi:10.1109/RTSS.2016.041.

19 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Robert I. Davis. On the
pitfalls of resource augmentation factors and utilization bounds in real-time scheduling.
In Euromicro Conference on Real-Time Systems, ECRTS, pages 9:1–9:25, 2017. doi:10.
4230/LIPIcs.ECRTS.2017.9.

20 Jian-Jia Chen, Georg von der Brüggen, and Niklas Ueter. Evaluation re-
sults: Push forward: Global fixed-priority scheduling of arbitrary-deadline sporadic
task systems. URL: http://ls12-www.cs.tu-dortmund.de/daes/media/documents/
publications/downloads/eval_push_forward.zip.

21 Jian-Jia Chen, Georg von der Brüggen, and Niklas Ueter. Push forward: Global
fixed-priority scheduling of arbitrary-deadline sporadic task systems, 2017. URL:
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/
downloads/2018-chen-ecrts-push-forward-full.pdf.

22 Robert I. Davis and Alan Burns. Response time upper bounds for fixed priority real-
time systems. In Real-Time Systems Symposium (RTSS), pages 407–418, Nov 2008. doi:
10.1109/RTSS.2008.18.

23 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., 43(4):35, 2011. doi:10.1145/1978802.1978814.

24 Friedrich Eisenbrand and Thomas Rothvoß. Static-priority real-time scheduling: Response
time computation is np-hard. In Proceedings of the 29th IEEE Real-Time Systems Sympo-
sium, RTSS, pages 397–406, 2008. doi:10.1109/RTSS.2008.25.

25 Friedrich Eisenbrand and Thomas Rothvoß. EDF-schedulability of synchronous periodic
task systems is coNP-hard. In ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1029–1034, 2010. doi:10.1137/1.9781611973075.83.

26 Pontus Ekberg and Wang Yi. Uniprocessor feasibility of sporadic tasks remains conp-
complete under bounded utilization. In 2015 IEEE Real-Time Systems Symposium, RTSS,
pages 87–95, 2015. doi:10.1109/RTSS.2015.16.

27 Pontus Ekberg and Wang Yi. Uniprocessor feasibility of sporadic tasks with constrained
deadlines is strongly coNP-Complete. In 27th Euromicro Conference on Real-Time Systems,
ECRTS, pages 281–286, 2015. doi:10.1109/ECRTS.2015.32.

28 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of mul-
tiprocessor tasksets. In International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.

29 Gilles Geeraerts, Joël Goossens, and Markus Lindström. Multiprocessor schedulability of
arbitrary-deadline sporadic tasks: complexity and antichain algorithm. Real-time systems,
49(2):171–218, 2013. doi:10.1007/s11241-012-9172-y.

30 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority
multiprocessor scheduling. In IEEE Real-Time Systems Symposium, pages 387–397, 2009.
doi:10.1109/RTSS.2009.11.

31 Wen-Hung Huang and Jian-Jia Chen. Response time bounds for sporadic arbitrary-deadline
tasks under global fixed-priority scheduling on multiprocessors. In International Conference
on Real Time Networks and Systems, RTNS, pages 215–224, 2015. doi:10.1145/2834848.
2834849.

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-erratum-globalDM.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-erratum-globalDM.pdf
http://dx.doi.org/10.1109/RTSS.2016.041
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.9
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.9
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/eval_push_forward.zip
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/eval_push_forward.zip
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2018-chen-ecrts-push-forward-full.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2018-chen-ecrts-push-forward-full.pdf
http://dx.doi.org/10.1109/RTSS.2008.18
http://dx.doi.org/10.1109/RTSS.2008.18
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1109/RTSS.2008.25
http://dx.doi.org/10.1137/1.9781611973075.83
http://dx.doi.org/10.1109/RTSS.2015.16
http://dx.doi.org/10.1109/ECRTS.2015.32
http://dx.doi.org/10.1007/s11241-012-9172-y
http://dx.doi.org/10.1109/RTSS.2009.11
http://dx.doi.org/10.1145/2834848.2834849
http://dx.doi.org/10.1145/2834848.2834849


J.-J. Chen, G. von der Brüggen, and N. Ueter 8:23

32 John P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines.
In proceedings Real-Time Systems Symposium (RTSS), pages 201–209, Dec 1990. doi:
10.1109/REAL.1990.128748.

33 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.
321743.

34 Lars Lundberg. Analyzing fixed-priority global multiprocessor scheduling. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 145–153, 2002. doi:
10.1109/RTTAS.2002.1137389.

35 Mikael Sjodin and Hans Hansson. Improved response-time analysis calculations. In Real-
Time Systems Symposium, 1998. Proceedings., The 19th IEEE, pages 399–408, 1998. doi:
10.1109/REAL.1998.739773.

36 Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test
of sporadic tasks on multiprocessor global fixed-priority scheduling. Real-Time Systems,
52(3):323–355, 2016. doi:10.1007/s11241-015-9245-9.

37 Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang Yi. Improving the response time
analysis of global fixed-priority multiprocessor scheduling. In International Conference
on Embedded and Real-Time Computing Systems and Applications, pages 1–9, 2014. doi:
10.1109/RTCSA.2014.6910543.

A Appendix: Additional Proofs

A.1 Proof of Theorem 5.4: Speedup lower bound of global DM for
arbitrary-deadline task systems

We will specifically use the following task set Tad with N = 2M + 1 tasks. Let ε be an
arbitrarily small positive real number such that 1/ε is an integer. Let η � ε be an arbitrarily
small positive number, that is used to enforce the priority assignment under global DM:

Ci = ε
3 , Ti = ε, Di = 1, for i = 1, 2, . . . ,M .

Ci = 1
3 , Ti =∞, Di = 1 + η, for i = M + 1,M + 2, . . . , 2M .

Ci = 1+ε
3 , Ti =∞, Di = 1 + 2η, for i = 2M + 1

As the setting of η � ε is just to enforce the indexing, we will directly take η → 0 here.

I Lemma A.1. Tad is not schedulable by global DM.

Proof. This can be proved by showing that task τN misses its deadline in the following
concrete arrival pattern: all tasks release their first jobs at time 0 and the subsequent jobs
arrive as early as possible while respecting their minimum inter-arrival times. For this
arrival pattern, the jobs of tasks τ1, τ2, . . . , τM are executed from time iε to time iε + ε

3
for i = 0, 1, 2, . . . , 1/ε. Therefore, these M tasks are executed for in total 1/3 time units
from time 0 to time 1. For tasks τ1+M , τ2+M , . . . , τ2M , each of them is executed for 1/3
time units from time 0 to time 1 when the processors do not execute τ1, τ2, . . . , τM . Task
τ2M+1 is executed alone without any overlap with the executions of the higher-priority tasks.
Therefore task τ2M+1 misses its deadline since it needs 1+ε

3 time units, but only 1
3 time units

are available before its deadline. J

I Lemma A.2. There exists a feasible schedule for task set Tad at any speed no lower than
1+ε

3 + 1+ε
3M .

Proof. We apply multiprocessor semi-partitioned scheduling, in which tasks in {τm, τm+M}
are assigned to processor m for m = 1, 2, . . . ,M . In our designed semi-partitioned schedule,
a job of task τ2M+1, i.e., a part of τN , is executed partially on each of the M processors as
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follows: it runs on processor m for CN/M amount of time, and then migrates to processor
m+ 1 to continue its execution, for m = 1, 2, . . . ,M − 1. To ensure that the migration can
be served immediately, τN is given the the highest-priority in this schedule. Therefore, a
subtask of task τN on processor m, denoted as τN,m, has a relative deadline CN/M . As long
as the speed of the processors is greater than or equal to 1+ε

3 , task τN can meet its deadline.
Therefore, in our designed semi-partitioned schedule, each processor m has a task set Tm

that consists of three tasks: τm and τm+M from Tad and a subtask τN,m of task τN with
execution time CN/M . We assign the second priority to task τm+M and the lowest priority
to task τm on processor m.

We utilize the worst-case response time analysis by Bini et al. [14]. They showed that
if 1−

∑
τi∈hp(τk,m) Ui ≤ 1, then the worst-case response time of a task τk in a task set Tm

under fixed-priority scheduling on a processor is at most

Ck +
∑
τi∈hp(τk,m) Ci −

∑
τi∈hp(τk,m) UiCi

1−
∑
τi∈hp(τk,m) Ui

, (37)

where hp(τk,m) is the set of the tasks in Tm that have a higher priorities than task τk. Note
that the precondition 1−

∑
τi∈hp(τk,m) Ui ≤ 1 for the test in Eq. (37) to be applicable always

holds at any arbitrarily speed since we assign τm as the lower-priority task on processor m
and Um+M → 0, and UN,m = CN,m/TN → 0.

By Eq. (37), if the speed of processor m is greater than or equal to CN
M +Cm+M = 1+ε

3M + 1
3 ,

task τm+M can still meet its deadline in this schedule. By Eq. (37), task τm can meet its
deadline at speed s in this schedule if

1 ≥
Cm/s+

∑
τi∈hp(τk,m) Ci/s−

∑
τi∈hp(τk,m)

Ui
s
Ci
s

1−
∑
τi∈hp(τk,m) Ui/s

= ε

3s + 1
3s + 1 + ε

3sM (38)

Therefore, as long as s ≥ 1+ε
3 + 1+ε

3M , task τm meets its deadline under our designed
schedule. J
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1 Introduction

While modern multicore platforms offer ample processing power and a compelling price/per-
formance ratio, they also come with no small amount of architectural complexity. Unfor-
tunately, this complexity—such as shared caches, memory controllers, and other shared
micro-architectural resources—has proven to be a major source of execution-time unpre-
dictability, and ultimately a fundamental obstacle to deployment in safety-critical systems.

In response, the research community has developed a number of innovative approaches
for managing such challenging hardware platforms. One particularly promising approach
explored in recent work [1, 15, 24] is to split each job into three distinct phases: (i) a
dedicated memory-load or prefetching phase, which transfers all of a job’s required memory
from the shared main memory to a core-local private cache or scratchpad memory; followed
by (ii) the actual execution phase, in which the job executes non-preemptively and in an
isolated manner without interference from the memory hierarchy as all memory references
are served from a fast, exclusive private memory, which greatly enhances execution-time
predictability; and finally (iii) a write-back phase in which any modified data is flushed to
main memory. As a result of the high degree of isolation restored by this approach [20],
a more accurate worst-case execution time (WCET) analysis becomes possible since the
complete mitigation of inter-core interference during the execution phase allows existing
uniprocessor techniques [25] to be leveraged. Recent implementations of the idea, such as
Tabish et al.’s scratchpad-centric OS [24], have shown the phased-execution approach to
indeed hold great promise in practice.

From a scheduling point of view, however, the phased-execution approach poses a number
of difficult challenges. As jobs must execute non-preemptively—otherwise prefetching becomes
impractical and there would be only little benefit to predictability—the phased-execution
approach fundamentally requires a non-preemptive real-time multiprocessor scheduling problem
to be solved. In particular, Alhammad and Pellizzoni [1] and Maia et al. [15] considered the
phase-execution model in the context of non-preemptive global scheduling, where pending
jobs are allocated simply to the next available core in order of their priorities.

Crucially, to make schedulability guarantees, Alhammad and Pellizzoni [1] and Maia et
al. [15] rely on existing state-of-the-art analyses of global non-preemptive scheduling as a
foundation for their work. Unfortunately, as we show in Sec. 6, this analytical foundation—i.e.,
the leading schedulability tests for global non-preemptive scheduling [4, 10, 11, 13]—suffers
from substantial pessimism, especially when applied to periodic hard real-time workloads.

To attack this analysis bottleneck, we introduce a new, much more accurate method
for the schedulability analysis of finite sets of non-preemptive jobs under global job-level
fixed-priority (JLFP) scheduling policies. Our method, which can be applied to periodic
real-time tasks (and other recurrent task models with a repeating hyperperiod), is based on
a novel state-space exploration approach that can scale to realistic system parameters and
workload sizes. In particular, this work introduces a new abstraction for representing the
space of possible non-preemptive multiprocessor schedules and explains how to explore this
space in a practical amount of time with the help of novel state-pruning techniques.

Related work. Global non-preemptive multiprocessor scheduling has received much less
attention to date than its preemptive counterpart. The first sufficient schedulability test
for global non-preemptive scheduling was proposed by Baruah [4]. It considered sequential
sporadic tasks scheduled with a non-preemptive earliest-deadline-first (G-NP-EDF) scheduling
algorithm. Later, Guan et al. [10, 11] proposed three new tests; one generic schedulability
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test for any work-conserving global non-preemptive scheduling algorithm, and two response-
time bounds for G-NP-EDF and global non-preemptive fixed-priority (G-NP-FP) scheduling.
Recently, Lee et al. [13, 14] proposed a method to remove unnecessary carry-in workload
from the total interference that a task suffers. These tests for sporadic tasks have been used
in various contexts such as the schedulability analysis of periodic parallel tasks with non-
preemptive sections [21] and systems with shared cache memories [26] or with transactional
memories [1, 24]. However, these tests become needlessly pessimistic when applied to periodic
tasks as they fail to discount many execution scenarios that are impossible in a periodic
setting. Moreover, these tests do not account for any release jitter that may arise due to
timer inaccuracy, interrupt latency, or networking delays.

To the best of our knowledge, no exact schedulability analysis for global job-level fixed-
priority non-preemptive scheduling algorithms (including G-NP-EDF and G-NP-FP) either
for sporadic or for periodic tasks has been proposed to date. The exact schedulability
analysis of global preemptive scheduling for sporadic tasks has been considered in several
works [3, 5, 6, 9, 23]. These analyses are mainly based on exploring all system states that can
be possibly reached using model checking, timed automata, or linear-hybrid automata. These
works are inherently designed for a preemptive execution model, where no lower-priority task
can block a higher-priority one, and hence are not applicable to non-preemptive scheduling.
The second limitation of the existing analyses is their limited scalability. They are affected
by the number of tasks, processors, and the granularity of timing parameters such as periods.
For example, the analysis of Sun et al. [23] can only handle up to 7 tasks and 4 cores, while
the solution by Guan et al. [9] is applicable only if task periods lie between 8 and 20.

In our recent work [16], we have introduced an exact schedulability test based on a
schedule-abstraction model for uni-processor systems executing non-preemptive job sets with
bounded release jitter and execution time variation. By introducing an effective state-merging
technique, we were able to scale the test to task sets with more than 30 tasks or about
100000 jobs in their hyperperiod for any job-level fixed-priority scheduling algorithm. The
underlying model and the test’s exploration rules, however, are designed for, and hence
limited to, uniprocessor systems and cannot account for any scenarios that may arise when
multiple cores execute jobs in parallel.

Contributions. In this paper, we introduce a sufficient schedulability analysis for global
job-level fixed-priority scheduling algorithms considering a set of non-preemptive jobs with
bounded release jitter and execution time variation. Our analysis derives a lower bound on
the best-case response time (BCRT) and an upper bound on the worst-case response time
(WCRT) of each job, taking into account all uncertainties in release and execution times.
The proposed analysis is not limited to the analysis of periodic tasks (with or without release
jitter), but can also analyze any system with a known job release pattern, e.g., bursty releases,
multi-frame tasks, or any other application-specific workload that can be represented as a
recurring set of jobs.

The analysis proceeds by exploring a graph, called schedule-abstraction graph, that
contains all possible schedules that a given set of jobs may experience. To render such an
exploration feasible, we aggregate all schedules that result in the same order of start times
of the jobs and hence significantly reduce the search space of the analysis and makes it
independent from the time granularity of the timing parameters of the systems. Moreover,
we provide an efficient path-merging technique to collapse redundant states and avoid non-
required state explorations. The paper presents an algorithm to explore the search space,
derives merge rules, and establishes the soundness of the solution.

ECRTS 2018
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2 System Model and Definitions

We consider the problem of scheduling a finite set of non-preemptive jobs J on a multicore
platform with m identical cores. Each job Ji = ([rmin

i , rmax
i ], [Cmin

i , Cmax
i ], di, pi) has an

earliest-release time rmin
i (a.k.a. arrival time), latest-release time rmax

i , absolute deadline di,
best-case execution time (BCET) Cmin

i , WCET Cmax
i , and priority pi. The priority of a job

can be decided by the system designer at design time or by the system’s JLFP scheduling
algorithm. We assume that a numerically smaller value of pi implies higher priority. Any
ties in priority are broken by job ID. For ease of notation, we assume that the “<” operator
implicitly reflects this tie-breaking rule. We use N to represent the natural numbers including
0. We assume a discrete-time model and all job timing parameters are in N.

At runtime, each job is released at an a priori unknown time ri ∈ [rmin
i , rmax

i ]. We say
that a job Ji is possibly released at time t if t ≥ rmin

i , and certainly released if t ≥ rmax
i .

Such release jitter may arise due to timer inaccuracy, interrupt latency, or communication
delays, e.g., when the task is activated after receiving data from the network. Similarly,
each released job has an a priori unknown execution time requirement Ci ∈ [Cmin

i , Cmax
i ].

Execution time variation occurs because of the use of caches, out-of-order-execution, input
dependencies, program path diversity, state dependencies, etc. We assume that the absolute
deadline of a job, i.e., di, is fixed a priori and not affected by release jitter. Released jobs
remain pending until completed, i.e., there is no job-discarding policy.

Each job must execute sequentially, i.e., it cannot execute on more than one core at a
time. Hence, because jobs are non-preemptive, a job Ji that starts its execution on a core
at time t occupies that core during the interval [t, t + Ci). In this case, we say that job
Ji finishes by time t + Ci. At time t + Ci, the core used by Ji becomes available to start
executing other jobs. A job’s response time is defined as the length of the interval between
the arrival and completion of the job [2], i.e., t+ Ci − rmin

i . We say that a job is ready at
time t if it is released and did not yet start its execution prior to time t.

In this paper, we assume that shared resources that must be accessed in mutual exclusion
are protected by FIFO spin locks. Since we consider a non-preemptive execution model, it is
easy to obtain a bound on the worst-case time that any job spends spinning while waiting to
acquire a contested lock; we assume the worst-case spinning delay is included in the WCETs.

Throughout the paper, we use {·} to denote a set of items in which the order of elements
is irrelevant and 〈·〉 to denote an enumerated set of items. In the latter case, we assume that
items are indexed in the order of their appearance in the sequence. For ease of notation, we
use max0{X} and min∞{X} over a set of positive values X ⊆ N that is completed by 0 and
∞, respectively. That is, if X = ∅, then max0{X} = 0 and min∞{X} =∞, otherwise they
return the usual maximum and minimum values in X, respectively.

The schedulability analysis proposed in this paper can be applied to periodic tasks. A
thorough discussion of how many jobs must be considered in the analysis for different types
of tasks with release offset and constrained or arbitrary deadlines has been presented in [16].

We consider a non-preemptive global JLFP scheduler upon an identical multicore platform.
The scheduler is invoked whenever a job is released or completed. In the interest of simplifying
the presentation of the proposed analysis, we make the modeling assumption that, without
loss of generality, at any invocation of the scheduler, at most one job is picked and assigned
to a core. If two or more release or completion events occur at the same time, the scheduler
is invoked once for each event. The actual scheduler implementation in the analyzed system
need not adhere to this restriction and may process more than one event during a single
invocation. Our analysis remains safe if the assumption is relaxed in this manner.
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We allow for a non-deterministic core-selection policy when more than one core is available
for executing a job, i.e., when a job is scheduled, it may be scheduled on any available core.
The reason is that requiring a deterministic tie-breaker for core assignments would impose
a large synchronization overhead, e.g., to rule out any race windows when the scheduler is
invoked concurrently on different cores at virtually the same time, and hence no such rule is
usually implemented in operating systems.

We say that a job set J is schedulable under a given scheduling policy if no execution
scenario of J results in a deadline miss, where an execution scenario is defined as follows.

I Definition 1. An execution scenario γ = {(r1, C1), (r2, C2), . . . , (rn, Cn)}, where n = |J |,
is an assignment of execution times and release times to the jobs of J such that, for each
job Ji, Ci ∈ [Cmin

i , Cmax
i ] and ri ∈ [rmin

i , rmax
i ].

We exclusively focus on work-conserving, and priority-driven scheduling algorithms, i.e.,
the scheduler dispatches a job only if the job has the highest priority among all ready jobs,
and it does not leave a core idle if there exists a ready job. We assume that the WCET of
each job is padded to cover the scheduler overhead and to account for any micro-architectural
interference (e.g., cache or memory bus interference).

3 Schedule-Abstraction Graph

Our schedulability analysis derives a safe upper bound on the WCRT and a safe lower bound
on the BCRT of each job by exploring a superset of all possible schedules. Since the number
of schedules depends on the space of possible execution scenarios, which is a combination
of release times and execution times of the jobs, it is intractable to naively enumerate all
distinct schedules. To solve this problem, we aggregate schedules that lead to the same
ordering of job start times (a.k.a. dispatch times) on the processing platforms. To this end,
in the rest of this section, we introduce an abstraction of job orderings that encodes possible
finish times of the jobs.

To represent possible job orderings we use an acyclic graph whose edges are labeled
with jobs. Thus, each path in the graph represents a dispatch order of jobs in the system.
Fig. 1-(b) shows an example of such a graph. For example, the path from v1 to v9 means
that the jobs 〈J1, J2, J3, J4, J5〉 have been scheduled one after another. The length of a path
P , denoted by |P |, is the number of jobs scheduled on that path.

To account for the uncertainties in the release times and execution times of jobs, which
in turn result in different schedules, we use intervals to represent the state of a core. For
example, assume that there is only one core in the system and consider a particular job
Ji. Assume that the release interval and execution requirement of Ji are [0, 5] and [10, 15],
respectively. In a job ordering where Ji is the first job dispatched on the core, the resulting
core interval will become [10, 20], where 10 = rmin

i + Cmin
i and 20 = rmax

i + Cmax
i are the

earliest finish time (EFT) and latest finish time (LFT), respectively, of the job on the core.
Here, the interval [10, 20] means that the core will be possibly available at time 10 and will be
certainly available at time 20. Equivalently, any time instant t in a core interval corresponds
to an execution scenario in which the core is busy until t and becomes available at t.

Using the notion of core intervals, we define a system state as a set of m core intervals.
System states are vertices of the graph and represent the states of the cores after a certain
set of jobs has been scheduled in a given order.

ECRTS 2018
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Figure 1 A schedule-abstraction graph G for five jobs that are scheduled on two cores: (a) shows
the job set information (jobs do not have release jitter), (b) shows the schedule-abstraction graph,
(c) to (k) show the state of the two cores at system states v2 to v10, respectively.

3.1 Graph Definition
The schedule-abstraction graph is a directed acyclic graph G = (V,E), where V is a set of
system states and E is the set of labeled edges. A system state v ∈ V is a multiset of m
core intervals denoted by {φ1, φ2, . . . , φm}. A core interval φk = [EFTk,LFTk] is defined
by the EFT and LFT of a job that is scheduled on the core, denoted by EFTk and LFTk,
respectively. Equivalently, EFTk is the time at which the core becomes possibly available
and LFTk is the time at which the core becomes certainly available. Since cores are identical,
the schedule-abstraction graph does not distinguish between them and hence does not keep
track of the physical core on which a job is executing.

The schedule-abstraction graph contains all possible orderings of job start times in any
possible schedule. This ordering is represented by directed edges. Each edge e = (vp, vq)
from state vp to state vq has a label representing the job that is scheduled next after state
vp. The sequence of edges in a path P represents a possible sequence of scheduling decisions
(i.e., a possible sequence of job start times) to reach the system state modeled by vp from
the initial state v1.

3.2 Example
Fig. 1-(b) shows the schedule-abstraction graph that includes all possible start-time orders
of the jobs defined in Fig. 1-(a) on a two-core processor. In the initial state v1, no job is
scheduled. At time 0, two jobs J1 and J2 are released. Since p1 < p2, the scheduler first
schedules J1 on one of the available cores. For the sake of clarity, we have numbered the
cores in this example, however, they are identical from our model’s perspective.
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Fig. 1-(c) shows the state of both cores after job J1 is scheduled. The dashed rectangle
that covers the interval [0, 2) shows the time during which the core is certainly not available
for other jobs since Cmin

1 = 2. In this state, the EFT of φ1 is 2 and its LFT is 4, as shown
by the white rectangle, i.e., φ1 may possibly become available at time 2 and will certainly be
available at time 4. From the system state v2, only v3 is reachable. The transition between
these two states indicates that job J2 is scheduled on the available core φ2 starting at time 0.

As shown in Fig. 1-(d), core φ1 is certainly available from time 4. Thus, when job J3
is released at time 5, the scheduler has no other choice but to schedule job J3 on this core.
The label of this transition shows that J3 has been scheduled.

From system state v4, two other states are reachable depending on the finish times of
jobs J2 and J3.

State v5. If core φ1 becomes available before core φ2, then J4 can start its execution on
φ1. This results in state v5 (Fig. 1-(f)). The core intervals of v5 are obtained as follows.
According to the intervals of v4, the earliest time at which φ1 becomes available is 6, while
the release time of J4 is 8, thus, the earliest start time of J4 on core φ1 is 8, which means
that its earliest finish time is 10. The latest start time of J4 such that it is still scheduled on
core φ1 is time 12. The reason is that J4 is released at time 8 and hence is pending from that
time onward. However, it cannot be scheduled until a core becomes available. The earliest
time a core among φ1 and φ2 becomes available is at time 12 (which is the latest finish time
of J3). Since the scheduling algorithm is work-conserving, it will certainly schedule job J4
at 12 on the core that has become available. Consequently, the latest finish time of J4 is
12 + 3 = 15.

State v6. In state v4, if core φ2 becomes available before φ1, then job J4 can be scheduled
on φ2 and create state v6 (Fig. 1-(g)). In this case, the earliest start time of J4 is at time 10
because, although it has been released before, it must wait until core φ2 becomes available,
which happens only at time 10. As a result, the earliest finish time of J4 will be time
10 + 2 = 12. On the other hand, the latest start time of J4 such that it is scheduled on core
φ2 is 12 because at this time, job J4 is ready and a core (φ1) becomes available. Thus, if J4
is going to be scheduled on φ2, core φ2 must become available by time 12. Note that since
our core-selection policy is non-deterministic, if φ2 becomes available at time 12, J4 may be
dispatched on either core. Consequently, the latest finish time of J4 when scheduled on φ2 is
12 + 3 = 15. Furthermore, system state v6 may arise only if core φ1 has not become available
before time 10, as otherwise job J4 will be scheduled on φ1 and create state v5. Thus, state v6
can be reached only if φ1 does not become available before time 10. To reflect this constraint,
the core interval of φ1 must be updated to [10, 12]. The red dashed rectangle in Fig. 1-(g)
illustrates this update. According to the schedule-abstraction graph in Fig. 1-(b), there exist
three scenarios in which J5 finishes at time 16 and hence misses its deadline. These scenarios
are shown in Figs. 1-(h), (i) and (k), and are reflected in states v7, v8, and v10, respectively.

4 Schedulability Analysis

This section explains how to build the schedule-abstraction graph. Sec. 4.1 presents the
high-level description of our search algorithm, which consists of alternating expansion, fast-
forward, and merge phases. These phases will be discussed in details in Sec. 4.2, 4.3, and 4.4,
respectively. Sec. 5 provides a proof of correctness of the proposed algorithm.
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4.1 Graph-Generation Algorithm
During the expansion phase, (one of) the shortest path(s) P in the graph from the root to a
leaf vertex vp is expanded by considering all jobs that can possibly be chosen by the JLFP
scheduler to be executed next in the job execution sequence represented by P . For each such
job, the algorithm checks on which core(s) it may execute. Finally, for each core on which
the job may execute, a new vertex v′

p is created and added to the graph, and connected via
an edge directed from vp to v′

p.
After generating a new vertex v′

p, the fast-forward phase advances time until the next
scheduling event. It accordingly updates the system state represented by v′

p.
The merge phase attempts to moderate the growth of the graph. To this end, the terminal

vertices of paths that have the same set of scheduled jobs (but not necessarily in the same
order) and core states that will lead to similar future scheduling decisions by the scheduler,
are merged into a single state whose future states cover the set of all future states of the
merged states. The fast-forward and merge phases are essential to avoid redundant work,
i.e., to recognize that two or more states are similar early on before they are expanded. The
algorithm terminates when there is no vertex left to expand, that is, when all paths in the
graph represent a valid schedule of all jobs in J .

Algorithm 1 presents our iterative method to generate the schedule-abstraction graph in
full detail. A set of variables keeping track of a lower bound on the BCRT and an upper
bound on the WCRT of each job is initialized at line 1. These bounds are updated whenever
a job Ji can possibly be scheduled on any of the cores. The graph is initialized at line 2 with
a root vertex v1. The expansion phase corresponds to lines 6–21; line 13 implements the
fast-forward, and lines 14–18 realize the merge phase. These phases repeat until every path
in the graph contains |J | distinct jobs. We next discuss each phase in detail.

4.2 Expansion Phase
Assume that P is a path connecting the initial state v1 to vp. The sequence of edges in P
represents a sequence of scheduling decisions (i.e., a possible sequence of job executions) to
reach the system state modeled by vp from the initial state v1. We denote by J P the set of
jobs scheduled in path P . To expand path P , Algorithm 1 evaluates for each job Ji ∈ J \J P

that was not scheduled yet whether it may be the next job picked by the scheduler and
scheduled on any of the cores. For any job Ji that can possibly be scheduled on a core
φk ∈ vp before any other job starts executing, a new vertex v′

p is added to the graph (see
lines 6–12 of Algorithm 1).

To evaluate if job Ji is a potential candidate for being started next in the dispatch
sequence represented by P , we need to know:
1. The earliest time at which Ji may start to execute on core φk when the system is in the

state described by vertex vp. We call that instant the earliest start time (EST) of Ji on
core φk, and we denote it by EST i,k(vp).

2. The time by which Ji must have certainly started executing if it is to be the next job
to be scheduled by the JLFP scheduler on the processing platform. This second time
instant is referred to as the latest start time (LST) of Ji and is denoted by LST i(vp).

LST i(vp) represents the latest time at which a work-conserving JLFP scheduler schedules
Ji next after state vp. Note that LST i(vp) is a global value for the platform when it is in
state vp, while EST i,k(vp) is related to a specific core φk.
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Algorithm 1: Schedule Graph Construction Algorithm.
Input : Job set J
Output : Schedule graph G = (V,E)

1 ∀Ji ∈ J ,BCRT i ←∞,WCRT i ← 0;
2 Initialize G by adding a root vertex v1 =

{
[0, 0], [0, 0], . . . , [0, 0]

}
, where |v1| = m;

3 while ∃ a path P from v1 to a leaf vertex vp s.th. |P | < |J | do
4 P ← a path from v1 to a leaf with the least number of edges in the graph;
5 vp ← the leaf vertex of P ;
6 for each job Ji ∈ J \ J P do
7 for each core φk ∈ vp do
8 if Ji can be dispatched on core φk according to (1) then
9 Build v′

p using (10);
10 BCRT i ← min{EFT ′

k − rmin
i ,BCRT i};

11 WCRT i ← max{LFT ′
k − rmin

i ,WCRT i};
12 Connect vp to v′

p by an edge with label Ji;
13 Fast-forward v′

p according to (13);
14 while ∃ path Q that ends to vq such that the condition defined in

Definition 4 is satisfied for v′
p and vq do

15 Update v′
p using Algorithm 2;

16 Redirect all incoming edges of vq to v′
p;

17 Remove vq from V ;
18 end
19 end
20 end
21 end
22 end

A job Ji can be the next job scheduled in the job sequence represented by P if there is a
core φk for which the earliest start time EST i,k(vp) of Ji on φk is not later than the latest
time at which this job must have started executing, i.e., before LST i(vp) (see Lemma 7 in
Sec. 5 for a formal proof). That is, Ji may commence execution on φk only if

EST i,k(vp) ≤ LST i(vp). (1)

For each core φk that satisfies (1), a new vertex v′
p is created, where v′

p represents the state
of the system after dispatching job Ji on core φk.

Below, we explain how to compute EST i,k(vp) and LST i(vp). Then we describe how
to build a new vertex v′

p for each core φk and job Ji that satisfies (1). Finally, we explain
how the BCRT and WCRT of job Ji are updated according to its EST i,k(vp) and LST i(vp),
respectively. To ease readability, from here on we will not specify any more that φk, EST i,k(vp)
and LST i(vp) are related to a specific vertex vp when it is clear from context, and will instead
use the short-hand notations EST i,k and LST i.

Earliest start time. To start executing on a core φk, a job Ji has to be released and φk has
to be available. Thus, the earliest start time EST i,k of a job Ji on a core φk is given by

EST i,k = max{rmin
i ,EFTk}, (2)

where rmin
i is the earliest time at which Ji may be released and EFTk is the earliest time at

which φk may become available.
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Figure 2 (a) Expansion scenario for Ji and φ2, where ph < pi < px. (b) An example merge.

Latest start time. Because we assume a work-conserving JLFP scheduling algorithm, two
conditions must hold for job Ji be the next job scheduled on the processing platform: (i) Ji

must be the highest-priority ready job (because of the JLFP assumption), and (ii) for every
job Jj released before Ji, either Jj was already scheduled earlier on path P (i.e., Jj ∈ J P ),
or all cores were busy from the release of Jj until the release of Ji.

If (i) is not satisfied, then a higher-priority ready job is scheduled instead of Ji. Therefore
the latest start time LST i of Ji must be earlier than the earliest time at which a not-yet-
scheduled higher-priority job is certainly released, that is, LST i < thigh, where

thigh = min
∞
{rmax

x | Jx ∈ J \ J P ∧ px < pi}. (3)

If (ii) is not satisfied, then an earlier released job Jj will start executing on an idle core
before Ji is released. Therefore the latest start time LST i of Ji cannot be later than the
earliest time at which both a core is certainly idle and a not-yet-scheduled job is certainly
released. Formally, LST i ≤ twc, where

twc , max{tcore, tjob}, (4)
tcore , min{LFTx | 1 ≤ x ≤ m}, and (5)
tjob , min

∞
{rmax

y | Jy ∈ J \ J P }. (6)

In the equations above, tcore is the earliest time at which a core is certainly idle and tjob is
the earliest time at which a not-yet-scheduled job is certainly released.

Combining LST i < thigh and LST i ≤ twc, we observe that Ji must start by time

LST i = min{twc, thigh − 1}. (7)

I Example 2. Fig. 2-(a) shows how EST i,k and LST i are calculated when job Ji is scheduled
on core φ2. In this example, tjob = 14 since job Jx becomes certainly available at that time.
However, the earliest time at which a core (in this case, core φ1) becomes available is
tcore = 24, thus, twc = 24. On the other hand, the earliest time at which a job with a higher
priority than Ji is certainly released is thigh = 17. Thus, LST i = thigh − 1 = 16.

Building a new system state. If Inequality (1) holds, it is possible that job Ji is the next
successor of path P and is scheduled on core φk at any t ∈ [EST i,k,LST i] (Lemma 7 in Sec. 5
proves this claim). Our goal is to generate a single new vertex for the schedule-abstraction
graph that aggregates all these execution scenarios.
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Let v′
p denote the vertex that represents the new system state resulting from the execution

of job Ji on core φk. The earliest and latest times at which φk may become available after
executing job Ji is obtained as follows:

EFT ′
k = EST i,k + Cmin

i and LFT ′
k = LST i + Cmax

i . (8)

Furthermore, because the latest scheduling event in the system state v′
p occurs no earlier

than EST i,k, no other job in J \ J P may possibly be scheduled before EST i,k.

I Property 3. If job Ji is the next job scheduled on the platform, and if it is scheduled on
core φk, then no job ∈ J \ J P starts executing on any core φx, 1 ≤ x ≤ m before EST i,k.

Proof. By contradiction. Assume a job Jj ∈ J \ J P starts executing on a core φx before
EST i,k. Because Ji cannot start executing on φk before EST i,k, Jj must be different from
Ji and hence Jj starts to execute before Ji. That contradicts the assumption that Ji is the
first job in J \ J P to be scheduled on the platform. J

To ensure that Property 3 is correctly enforced in the new system state represented by
v′

p, we update the core intervals in state v′
p as follows

φ′
x ,


[EFT ′

k,LFT ′
k] if x = k,

[EST i,k,EST i,k] if x 6= k ∧ LFTx ≤ EST i,k,

[max{EST i,k,EFTx},LFTx] otherwise.
(9)

The first case of (9) simply repeats (8) for job Ji. The second and third cases ensure that
no job in J \ J P can be scheduled on those cores before EST i,k. This is done by forcing
φx’s earliest availability time to be equal to EST i,k. Finally, for cores that would certainly
be idle after EST i,k (i.e., the second case in (9)), we set LFTk (i.e., the time at which it
becomes certainly available) to EST i,k.

Finally, the new vertex v′
p is generated by applying (9) on all cores, i.e.,

v′
p = {φ′

1, φ
′
2, . . . , φ

′
m}. (10)

Deriving the BCRT and WCRT of the jobs. Recall that the BCRT and the WCRT of
a job are relative to its arrival time, i.e., rmin

i , and not its actual release time, which can
be any time between rmin

i and rmax
i . In other words, release jitter counts towards a job’s

response time. As stated earlier, the earliest finish time of Ji on core φk cannot be smaller
than EFT ′

k and the latest finish time of Ji on core φk cannot be larger than LFT ′
k (obtained

from (8)). Using these two values, the BCRT and WCRT of job Ji are updated at lines 10
and 11 of Algorithm 1 as follows.

BCRT i ← min{EFT ′
k − rmin

i ,BCRT i} (11)
WCRT i ← max{LFT ′

k − rmin
i ,WCRT i} (12)

If the algorithm terminates, then WCRT i and BCRT i contain an upper bound on the
WCRT and a lower bound on the BCRT of job Ji, respectively, over all paths. Since the
graph considers all possible execution scenarios of J , it considers all possible schedules of Ji.
The resulting WCRT and BCRT estimates are therefore safe bounds on the actual WCRT
and BCRT of the job, respectively. This property is proven in Corollary 18 in Sec. 5.

The quality of service of many real-time systems depends on both the WCRT and
response-time jitter [7] of each task, i.e., the difference between the BCRT and WCRT of that
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Algorithm 2: Algorithm that merges vp and vq, and creates v′
p.

1 Sort and re-index the core intervals φk(vp) of vp in a non-decreasing order of their
EFTs, such that EFT1(vp) ≤ EFT2(vp) ≤ . . .EFTm(vp);

2 Sort and re-index vq’s core intervals in a non-decreasing order of their EFTs such that
EFT1(vq) ≤ EFT2(vq) ≤ . . .EFTm(vq);

3 Pair each two core intervals φx(vp) and φx(vq) to create
φx(v′

p) , [min{EFTx(vp),EFTx(vq)},max{LFTx(vp),LFTx(vq)}];

task. One of the advantages of our schedule-abstraction graph is that it not only provides a
way to compute those quantities, but also allows to extract the maximum variation between
the response times of successive jobs released by the same task, hence allowing a more
accurate analysis of (for instance) sampling jitter in control systems.

4.3 Fast-Forward Phase
As shown in lines 6 and 7, one new state will be added to the graph for each not-yet-
scheduled job that can be scheduled next on one of the cores. This situation can lead to
an explosion in the search space if the number of states is not reduced. In this work, we
merge states to avoid redundant future explorations. To aid the subseqent merge phase, the
fast-forward phase advances the time until a job may be released. We denote that instant by
tmin , min∞

{
rmin

x | Jx ∈ J \ J P \ {Ji}
}
. The fast-forward phase thus updates each core

interval φ′
x ∈ v′

p as follows:

φ′
x =

{
[tmin, tmin] LFTx ≤ tmin,

[max{tmin,EFTx},LFTx] otherwise.
(13)

The first case of (13) relies on the fact that from LFT ′
x onward (i.e., the time at which a

core φ′
x becomes certainly available), φ′

x remains available until a new job is scheduled on it.
Since the earliest time at which a job can be scheduled is tmin, this core remains available at
least until tmin. Thus, it is safe to update its interval to [tmin, tmin], which denotes that the
core is certainly free by tmin. Similarly, the second case of (13) is based on the fact that a
core φx that is possibly available at EFT ′

x remains possibly available either until reaching
LFT ′

x (where it certainly becomes free) or until a job may be scheduled on φx, which does
not happen until tmin at the earliest. Lemma 9 in Sec. 5 proves that fast-forwarding state v′

p

will not change any of the future states that can be reached from v′
p before applying (13).

4.4 Merge Phase
The merge phase seeks to collapse states to avoid redundant future explorations. The goal
is to reduce the size of the search space such that the computed BCRT of any job may
never become larger, the computed WCRT of any job may never become smaller, and all
job scheduling sequences that were possible before merging states are still considered after
merging those states. The merge phase is implemented in lines 14–18 of Algorithm 1, where
the condition defined below in Definition 4 is evaluated for paths with length |P |+ 1.

Since each state consists of exactly m core intervals, merging two states requires finding
a matching among the two sets of intervals to merge individual intervals. Let states vp and
vq be the end vertices of two paths P and Q. In order to merge vp and vq into a new state
v′

p, we apply Algorithm 2. Next, we establish our merging rules, which will be proven to be
safe in Corollary 15 in Sec. 5.
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I Definition 4. Two states vp and vq can be merged if (i) J P = JQ, (ii) ∀ φi(vp), φi(vq),
max{EFT i(vp),EFT i(vq)} ≤ min{LFT i(vp),LFT i(vq)}, and (iii) at any time t, the number
of possibly-available cores in the merged state must be equal to the number of possibly-
available cores in vp or vq, i.e.,

∀t ∈ T,B(t, v′
p) = B(t, vp) ∨ B(t, v′

p) = B(t, vq), (14)

where B(t, vx) counts the number of core intervals of a state vx that contain t, i.e.,

B(t, vx) =
∣∣∣∣{φy(vx) | t ∈

[
EFTy(vx),LFTy(vx)

]}∣∣∣∣, (15)

and where T is the set of time instants at which the value of B(·) may change, i.e.,

T = {EFTx(vp)| ∀x} ∪ {LFTx(vp)| ∀x} ∪ {EFTx(vq)| ∀x} ∪ {LFTx(vq)| ∀x}. (16)

I Example 5. Fig. 2-(b) shows two states vp and vq that are merged to create state v′
p. As

shown, for any t ∈ T , B(t, v′
p) is equal to B(t, vp) or B(t, vq).

Notably, any merge rule that respects condition (i) in Definition 4 is safe (see Corollary 1
in Sec. 5.3). The role of conditions (ii) and (iii) is to trade-off between the accuracy and
performance of the analysis by evading the inclusion of impossible execution scenarios in
the resulting state. We leave the investigation of more accurate (or more eager) merging
conditions, as well as the applicability of abstraction-refinement techniques, to future work.

5 Correctness of the Proposed Solution

In this section, we show that the schedule-abstraction graph constructed by Algorithm 1
correctly includes all job schedules that can arise from any possible execution scenario, i.e.,
for any possible execution scenario, there exists a path in the graph that represents the
schedule of those jobs in that execution scenario (Theorem 17). The proof has two main
steps: we first assume that the fast-forward and merge phases are not executed and show
that the EFT and LFT of a job obtained from Equation (8) are correct lower and upper
bounds on the finish time of a job scheduled on a core (Lemma 6) and that for an arbitrary
vertex vp, Inequality (1) is a necessary condition for a job to be scheduled next on core φk

(Lemma 7). From these lemmas, we conclude that without fast-forwarding and merging, for
any execution scenario there exists a path in the schedule graph that represents the schedule
of the jobs in that execution scenario (Lemma 8).

In the second step, we show that the fast-forward and merge phases are safe, i.e., these
phases will not remove any potentially reachable state from the original graph (Lemma 9
and Corollary 16). Finally, we establish that Algorithm 1 correctly derives an upper bound
on the WCRT and a lower bound on the BCRT of every job (Corollary 18).

5.1 Soundness of the Expansion Phase
In this section, we assume that neither the fast-forward nor the merge phase is executed.

I Lemma 6. For any vertex vp ∈ V and any successor v′
p of vp such that job Ji ∈ J \ J P

is scheduled on core φk between vp and v′
p, EFTk(v′

p) and LFTk(v′
p) (as computed by (8))

are a lower bound and an upper bound, respectively, on the completion time of Ji.
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Proof. If neither the fast-forward nor the merge phases are executed, (9) is the only equation
used to build a new state v′

p. In this lemma, we first prove that the EST and LST of the job
obtained from (2) and (7) are a lower and an upper bound on the start time of job Ji on
φk after the scheduling sequence represented by P . Then, we conclude that EFTk(v′

p) and
LFTk(v′

p) are safe bounds on the finish time of Ji on φk. The proof is by induction.
Base case. The base case is for any vertex v′

p that succeeds to the root vertex v1 where all
cores are idle. Hence in v′

p, job Ji is scheduled on one of the idle cores, say φk. Since all
cores are idle at time 0, Equation (2) yields EST i,k(v1) = rmin

i , which is by definition
the earliest time at which job Ji may start. Consequently, the earliest finish time of Ji

cannot be smaller than EFTk(v′
p) = rmin

i + Cmin
i .

Similarly, (7) yields LST i(v1) = min{thigh − 1, tjob} (recall that tcore = 0 since all cores
are idle in v1). Ji cannot start later than LST i(v1) = tjob if it is the first scheduled job
as all cores are idle and hence as soon as a job is certainly released, it will be scheduled
right away on one of the idle cores. Similarly, Ji cannot start its execution if it is not
the highest-priority job anymore, i.e., at or after time thigh. As a result, the latest finish
time of Ji cannot be larger than LFTk(v′

p) = min{tjob, thigh − 1} + Cmax
i . Therefore,

EFTk(v′
p) and LFTk(v′

p) are safe bounds on the finishing time of Ji on φk after the
scheduling sequence P = 〈v1, v

′
p〉.

For all other cores φx such that x 6= k, (9) enforces that EFTx(v′
p) = LFTx(v′

p) =
EST i,k(v1) = rmin

i (recall that EFTk(v1) = LFTk(v1) = 0), which is indeed the earliest
time at which any job may start on φx if Ji is the first job executing on the platform and
Ji is not released before rmin

i .
Induction step. Assume now that each core interval on every vertex from v1 to vp along

path P provides a lower bound and an upper bound on the time at which that core will
possibly and certainly be available, respectively, to start executing a new job. We show
that in the new vertex v′

p obtained from scheduling job Ji on core φk after P , (8) provides
a safe lower and upper bound on the finish time of Ji, and for other cores, the new core
intervals computed by (9) are safe, i.e., no new job can start its execution on a core φx

before EFTx and the core cannot remain busy after LFTx.
EFT. The earliest start time of Ji on core φk, i.e., EST i,k(vp), cannot be smaller than

EFTk(vp) since, by the induction hypothesis, EFTk(vp) is the earliest time at which core
φk may start executing a new job. Moreover, a lower bound on EST i,k(vp) is given by
rmin

i , because Ji cannot execute before it is released. This proves (2) for φk. Further,
if Ji starts its execution at EST i,k(vp), it cannot finish before EST i,k(vp) + Cmin

i since
its minimum execution time is Cmin

i . Thus, the EFT of job Ji on φk in system state
v′

p cannot be smaller than EST i,k(vp) + Cmin
i , which proves the correctness of (8) for

EFTk(v′
p).

The EFTs of all other cores φx in v′
p cannot be smaller than EFTx(vp) in state vp

since no new job is scheduled on them. Furthermore, according to Property 3, job
Ji can be scheduled on core φk (instead of any other core) only if no other job in
J \ J P has started executing on any other core than φk until EST i,k(vp). Hence,
max{EST i,k(vp),EFTx(vp)} is a safe lower bound on the EST of a job in state v′

p (as
computed by (9)).

LFT. Next, we show that LST i(vp) cannot exceed thigh − 1 or twc as stated by (7). First,
consider thigh and suppose thigh 6= ∞ (otherwise the claim is trivial). Since a higher-
priority job is certainly released at the latest at time thigh, job Ji is no longer the
highest-priority job at time thigh. Consequently, it cannot commence execution under a
JLFP scheduler at or after time thigh if it is to be the next job scheduled after P . Hence,
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job Ji will be a direct successor of path P only if its execution starts no later than time
thigh − 1. Now, consider twc. At time twc, a not-yet-scheduled job is certainly released
and a core is certainly available. Hence a work-conserving scheduler will schedule that
job at twc, thus, job Ji will be a direct successor of path P only if its execution starts
no later than time twc. Since LST i(vp) is the upper bound on the time at which job Ji

can start its execution while being the next job scheduled after path P , the latest finish
time of Ji on core φk cannot be larger than min{thigh − 1, twc}+Cmax

i , which proves the
correctness of (8) for LFTk(v′

p).
Since in state v′

p job Ji is scheduled on core φk other cores cannot be available before
EST i,k, otherwise a work-conserving scheduler would schedule Ji on one of those cores
instead of on φk. Equation (9) ensures that if Ji is the next job to be scheduled and
if φk is the core on which Ji is scheduled, no other core will certainly be available by
EST i,k(vp), i.e., EFTx(v′

p) ≥ EST i,k(vp).
By induction on all vertices in V , we have that EFTk(v′

p) and LFTk(v′
p) are safe bounds

on the finish time of any job scheduled between any two states vp and v′
p, including

Ji. J

I Lemma 7. Job Ji can be scheduled next on core φk after jobs in path P only if (1) holds.

Proof. If job Ji is released at time rmin
i and the core φk becomes available at EFTk, then it

can be dispatched no earlier than at time EST i,k = max{rmin
i ,EFTk}. If (1) does not hold,

then thigh or twc (or both) are smaller than EST i,k. This implies that either a higher-priority
job other than job Ji is certainly released before EST i,k or a job other than Ji is certainly
released before EST i,k and a core is certainly available before EST i,k. In both cases, a
work-conserving JLFP scheduling algorithm will not schedule job Ji until that other job is
scheduled. Consequently, job Ji cannot be the next successor of path P . J

I Lemma 8. Assuming that neither the fast-forward nor the merge phases are executed
in Algorithm 1, for any execution scenario such that a job Ji ∈ J completes at some
time t on core φk (under the given scheduler), there exists a path P = 〈v1, . . . , vp, v

′
p〉

in the schedule-abstraction graph such that Ji is the label of the edge from vp to v′
p and

t ∈ [EFTk(v′
p),LFTk(v′

p)], where EFTk(v′
p) and LFTk(v′

p) are given by Equation (8).

Proof. Since Algorithm 1 creates a new state in the graph for every job Ji and every core
φk that respects Condition (1), the combination of Lemmas 6 and 7 proves that all possible
system states are generated by the algorithm when the fast-forward and merge phases are
not executed. Further, Lemma 6 proves that EFTk(v′

p) and LFTk(v′
p) are safe bounds on

the finishing time of Ji, meaning that if Ji finishes at t in the execution scenario represented
by path P , then t is within [EFTk(v′

p),LFTk(v′
p)]. J

5.2 Soundness of the Fast-Forward Phase
We prove that fast-forwarding will not affect any of the successor states of an updated state.

I Lemma 9. Updating the core intervals of vertex vp during the fast-forwarding phase does
not affect any of the states reachable from vp.

Proof. Let vp be the original state and vq be the updated state after applying (13). Let
path P denote the path from v1 to vp. Note that state vq shares the same path P as vp. We
show that for any arbitrary job Ji ∈ J \ J P (i.e., those that are not scheduled in path P )
and any arbitrary core φk(vp) ∈ vp, the EST and LST of job Ji is the same as for core
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φk(vq) ∈ vq. From this we conclude that all system states reachable from vp are reachable
from vq and that those reachable states remain unchanged. More precisely, we show that,
∀k, (i) EST i,k(vp) = EST i,k(vq) and (ii) LSTk(vp) = LSTk(vq).
Claim (i). From (2), we have EST i,k(vp) = max{rmin

i ,EFTk(vp)}. If the EFT of φk(vq) has
not been updated by (13), i.e., EFTk(vp) > tmin, then we trivially have EST i,k(vq) =
EST i,k(vp). Otherwise, if EFTk(vq) has been updated, it must be true that EFTk(vp) ≤
tmin and EFTk(vq) = tmin. In this case, EST i,k(vq) =
max{rmin

i , tmin} = max{rmin
i ,EFTk(vp)} = EST i,k(vp) since EFTk(vp) ≤ tmin ≤ rmin

i

(from the definition of tmin). Thus, in both cases, EST i,k(vp) = EST i,k(vq).
Claim (ii). From (13) we know that if the LFT of a core φk(vp) is being updated, LFTk(vp) <

tmin and LFTk(vq) = tmin. By definition, tmin = min{rmin
x | Jx ∈ J \ J P } ≤

min{rmax
x | Jx ∈ J \J P } = tjob(vp) (the last equality is due to (6)). Moreover, by (5) we

have tcore(vp) ≤ LFTk(vp) < LFTk(vq) = tmin ≤ tjob(vp) and tcore(vq) ≤ LFTk(vq) =
tmin ≤ tjob(vq) (because tjob only depends on path P and vp and vq share the same
path). Therefore, by (7), LSTk(vp) = min{thigh(vp) − 1, max{tjob(vp), tcore(vp)}} =
min{thigh(vp)−1, tjob(vp)} and LSTk(vq) = min{thigh(vq)−1, max{tjob(vq), tcore(vq)} =
min{thigh(vq)− 1, tjob(vq)}. Since tjob and thigh only depend on path P , and vp and vq

share the same path, the LST in both states is identical, i.e., LSTk(vp) = LSTk(vq). J

5.3 Soundness of the Merge Phase
We now establish that merging two states is safe, i.e., it neither removes a possible job
sequence from the graph (Corollary 16), nor does it decrease the upper bound on the WCRT
(or increase the lower bound on the BCRT) of any job in J (Corollary 18).

We first define the notion of a “mutated” vertex as follows: v′
p is a mutated version of vp if

it has the same set of scheduled jobs as the original state vp and ∀x, EFTx(v′
p) ≤ EFTx(vp)

and ∀x, LFTx(vp) ≤ LFTx(v′
p) ∨ LFTx(vp) ≤ tjob(vp). We assume that a mutated state v′

p

sits in place of the original state vp in the schedule-abstraction graph.
Next, for any such mutated vertex, we prove that any job that was a direct successor of

the original state is also a direct successor of the mutated vertex (Lemma 10). Moreover, we
show that the direct successors of mutated states are also mutated (Lemma 11 and 12). This
property is then used to prove the main claim that merging is safe. Due to space limitations,
we provide the proofs of Lemmas 10 to 14 in an online technical report [19].

I Lemma 10. For a vertex v′
p created by mutating vp, any job Ji that can be scheduled on

core φk(vp) according to (1), can still be scheduled on core φk(v′
p) according to (1).

I Lemma 11. Let v′
p be created by mutating vp, and let vq and v′

q be the vertices resulting
from scheduling job Ji on core φk(vp) and φk(v′

p), respectively. ∀x, LFTx(v′
q) ≥ LFTx(vq)

or LFTx(vq) ≤ tjob(vq).

I Lemma 12. Let v′
p be created by mutating vp, and let vq and v′

q be the vertices resulting
from scheduling job Ji on core φk(vp) and φk(v′

p), respectively. ∀x, EFTx(v′
q) ≤ EFTx(vq).

I Lemma 13. If v′
p is a vertex created by mutating vp, then all the system states reachable

from vp are also reachable from v′
p.

I Lemma 14. Let vq and vp be two vertices such that J P = JQ (i.e., the set of jobs
scheduled until reaching vq is equal to the set of jobs scheduled until reaching vp), then the
state v′

p resulting from merging vp and vq with Algorithm 2 is a mutated version of both vp

and vq.
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By successively applying Lemmas 13 and 14, we obtain the following corollary.

I Corollary 15. Let vq and vp be two vertices such that J P = JQ (i.e., the set of jobs
scheduled until reaching vq is equal to the set of jobs scheduled until reaching vp), all system
states reachable from vp and vq are also reachable from the merged state v′

p.

I Corollary 16. For two states that are merged by Algorithm 1, all system states reachable
from either of them are also reachable from the merged state.

Proof. Since for two states vp and vq, Definition 4 enforces that J P = JQ, the resulting
merged state satisfies the requirement of Corollary 15 and hence proves the claim. J

5.4 Soundness of Algorithm 1

By successively applying Lemmas 8 and 9 and then Corollary 16, we obtain that the analysis
is safe, as stated in Theorem 17 and its corollary below.

I Theorem 17. For any execution scenario such that a job Ji ∈ J completes at some
time t on core φk (under the given scheduler), there exists a path P = 〈v1, . . . , vp, v

′
p〉

in the schedule-abstraction graph such that Ji is the label of the edge from vp to v′
p and

t ∈ [EFTk(v′
p),LFTk(v′

p)], where EFTk(v′
p) and LFTk(v′

p) are given by Equation (8).

I Corollary 18. Lines 10 and 11 of Algorithm 1 calculate a lower and an upper bound on
the BCRT and WCRT, respectively, of every job in J .

Proof. Lines 10 and 11 obtain a job’s response time directly from (8), which provides correct
bounds on the earliest and latest finish times of a job according to Lemma 6. Since according
to Theorem 17, for any execution scenario, there is a path in the graph, Algorithm 1 includes
all possible schedules of a job and hence the obtained values are correctly lower-bounding
and upper-bounding the actual BCRT and WCRT of that job. J

5.5 Inexactness of Algorithm 1

The following example shows that the abstraction that we use to represent core states may
reflect impossible execution scenarios. Therefore, Algorithm 1 is sufficient but not exact.

Assume that a system state vp contains two core intervals φ1 = [5, 10] and φ2 = [1, 10]
and that there is an unscheduled job J1 with Cmin

1 = Cmax
1 = 5, rmin

1 = rmax
1 = 1, and

d1 = 30. Further, assume that during the expansion phase of Algorithm 1, J1 is dispatched to
φ1, which results in φ1 = [10, 15] and φ2 = [5, 10] (after the update phase). According to this
new system state, it may happen that core φ2 becomes available at time 5 ∈ [5, 10], and that
core φ1 remains busy until time 15 ∈ [10, 15]. However, this scenario is actually impossible.
If φ1 remains busy until time 15, then J1 must have started to execute at time 10, implying
that both φ1 and φ2 must have been busy until time 10. Otherwise, job J1 would have been
dispatched on φ2 rather than φ1. In other words, φ1 may become available at time 15 only if
φ2 becomes available no earlier than time 10. This example shows a dependency between
the availability time of the cores, which is ignored in the current system state abstraction
to keep the system state encoding simple, and to increase the number of states that can
be merged. This design decision, however, makes the analysis inexact since it considers all
possible but also some impossible execution scenarios.
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6 Empirical Evaluation

We conducted experiments to answer two main questions: (i) does our test yield better
schedulability; and (ii) is the runtime of our analysis practical? To answer the first question,
we applied Algorithm 1 to two global non-preemptive scheduling policies: G-NP-FP and
G-NP-EDF. As we are unaware of any schedulability analysis for non-preemptive job sets
(or periodic tasks) for the aforementioned global scheduling policies, we used the existing
tests designed for sporadic non-preemptive task sets as a baseline. These tests include the
schedulability test of Baruah [4] for G-NP-EDF (denoted by Baruah-EDF), two tests of Guan
et al. [10] for any global non-preemptive work-conserving scheduler (denoted by Guan-Test1-
WC), and for G-NP-FP (denoted by Guan-Test2-FP), and the recent schedulability test of
Lee (denoted by Lee-FP) [13]. For the sake of comparison, we used simple rate-monotonic
priorities for the fixed-priority tests since we did not observe substantial differences when
trying out other heuristics such as laxity-monotonic priorities.

To randomly generate a periodic task set with n tasks and a given utilization U , we
first randomly generated n period values in the range [10000, 100000] microseconds with
log-uniform distribution (and a granularity of 5000µs as suggested by Emberson et al. [8].
We then used the RandFixSum [22] algorithm to generate n random task-utilization values
that sum to U . From the task utilization, we obtained Cmax

i and set Cmin
i to be 0.1 · Cmax

i .
Tasks were assumed to have implicit deadlines. We discarded any task set that had more
than 100000 jobs per hyperperiod. Although, in theory, a hyperperiod may contain many
more jobs, in industrial settings, e.g., automotive systems [12], periods are usually chosen
such that the hyperperiod includes only at most a couple of thousand jobs.

The experiments were performed by varying (i) the total system utilization U (for 4 cores
and 10 tasks), (ii) the number of tasks n (for 4 cores and U = 2.8, which is 70% of the
capacity of the cores), (iii) the number of cores m (for 10 tasks and U = 2.8), and (iv) the
total task utilization U while tasks had 100 microseconds release jitter (10 tasks and 4 cores).
This roughly represents jitter magnitudes that can be expected due to interrupt handling
delays. For each combination of n, m, and U , 1000 random task sets were generated.

To evaluate schedulability of a task set, we implemented Algorithm 1 as a single-threaded
C++ program and performed the analysis on a cluster of hosts having an Intel Xeon E7-8857
v2 processor clocked at 3 GHz and 1.5 TiB RAM. In the experiments, a task set was claimed
unschedulable as soon as either an execution scenario with a deadline miss was found or
a timeout of four hours was reached. Fig. 3 reports the observed schedulability ratio and
runtime of Algorithm 1 for different setups. The schedulability ratio is the ratio of task sets
deemed to be schedulable divided by the number of generated task sets.

Schedulability results. Figs. 3-(a) to (c) show a significant gap between the schedulability
ratio of our solution and the state-of-the-art tests. For example, while Lee-FP could only
identify 8% of schedulable task sets for U = 2.4, our test shows that at least 72% of them are
schedulable. Similar patterns are seen when for increasing task and core counts. Fig. 3-(b)
shows that schedulability improves as the number of tasks increases. This is since, by keeping
U constant, increasing n decreases per-task utilization, which in turn reduces WCETs and
blocking. Thus, more task sets become schedulable. Of the existing tests, however, only
Lee-FP and Guan-Test2-FP benefit from this effect, and only by up to 16% (for n = 30).

With the increase in the number of cores, blocking scenarios caused by tasks with large
execution times are less likely to occur and hence more task sets are deemed schedulable.
However, as shown in Fig. 3-(c), the current tests are quite pessimistic, e.g., Lee-FP could
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Figure 3 Experimental results for various parameters. (a, b, c, d) Schedulability ratio. (e, f,
g, h) Average analysis runtime. (i, j) Analysis runtime vs. the number of jobs in a hyperperiod.

identify only 11% of the task sets as schedulable when (at least) 82% of the task sets are
schedulable on 5 cores. From Figs. 3-(a) to (c), we conclude that our analysis is able to
reclaim a large portion of pessimism in the baseline analyses (when applied to periodic tasks).

Fig. 3-(d) shows the effect of jitter on schedulability. Since jitter increases the number of
possible interleavings between the start time of the tasks, more blocking scenarios become
possible and hence tasks with tight deadlines may become unschedulable. This behavior can
be observed in the average runtime of the analysis reported in Fig. 3-(h). Yet, our analysis
achieves a substantially higher schedulability ratio than the baselines.

It is worth noting that for U = 0.4, the counterintuitive drop in schedulability for tasks
with jitter is due to the timeout. The bar chart shown at the bottom of Fig. 3-(d) represents
the ratio of task sets that could not be analyzed within the four-hour limit. The reason is
that for U = 0.4, tasks have a small WCET and thus more combinations of job orderings
may require analysis before Algorithm 1 is able to merge the branches. In the future, we
plan to develop techniques to handle lower (or higher) utilization tasks differently, e.g., by
designing more eager merge rules that combine paths with different job sets.
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Moreover, we observed that the gap between the schedulability ratio of EDF and FP is
small because most of the deadline misses are due to the work-conserving nature of the policy
rather than the priority assignment. Namely, since a work-conserving scheduler cannot leave
the processor idle, it will schedule any lower-priority job before the next higher-priority job
is released. As a result, high-frequency tasks with tight deadlines will miss their deadline
before the priority assignment method can play a significant role in improving the order of
executions. We conclude that there is a need for a global scheduling algorithm that is able
to avoid such blocking scenarios, for instance by being non-work-conserving. While such
non-work-conserving non-preemptive scheduling algorithms have recently been proposed for
uniprocessor systems [17, 18], currently no such solution exists for multiprocessor platforms.

Runtime of the analysis. Fig. 3-(e) shows that the average analysis runtime increases with
increasing task-set utilization, since busy windows become longer. Consequently, paths that
have the same set of jobs are merged only at later stages. For larger utilizations such as for
U ≥ 2.8, however, identifying unschedulable task sets becomes easy due to the presence of
tasks with large WCETs that can block all cores for a long time. Since we stop the analysis
as soon as a deadline miss is found, not-schedulable task sets with large utilization can be
identified quickly. The analysis runtime hence decreases rapidly for larger utilization values.

Figs. 3-(f) and (g) show that the analysis runtime grows with increasing tasks and core
counts because more states are generated in the expansion phase. It is worth noting that
unlike the effect pertaining to the number of tasks, increasing the number of cores will not
increase the runtime monotonically. The reason is that, as shown in Fig. 3-(c), for a workload
with U = 2.8 and 10 tasks, almost all task sets are schedulable on 6 cores or more. That is,
the number of cores per se only has a limited effect on the runtime of the algorithm; however,
larger platforms are likely to host large task sets, with a potentially large number of jobs per
hyperperiod, and our analysis is sensitive to such increases in workload size.

Figs. 3-(i) and 3-(j) report the runtime of the analysis for each task set w.r.t. the number
of jobs in a hyperperiod for two scenarios: varying utilization and varying the number of
tasks, respectively. As shown by the figures, the runtime of the analysis grows with the
increase in the number of jobs in a hyperperiod. We also observe that with an increase in
the number of tasks from 10 (Fig. 3-(i)) to up to 30 (Fig. 3-(j)), the largest observed runtime
of the analysis grows linearly, i.e., from 1000 to 4000.

Since a naive analysis without path merging does not scale even for a uniprocessor system,
as shown in [16], we did not perform a separate experiment to show the efficiency of the path
merging technique. In the future, we plan to further explore the design space for different
merge conditions and their efficiency for different task set types and utilizations.

Overall, we conclude that: (i) the proposed analysis is practical for realistic workload
sizes, (ii) it identifies a significantly larger portion of schedulable tasks in comparison with
state-of-the-art tests for sporadic tasks, and (iii) even when jitter is considered (which
allows for more blocking scenarios and uncertainties), our analysis still achieves much higher
schedulability than the baseline tests (which, to be clear, are designed for sporadic task sets).

In terms of limitations, we also observed that the runtime of the analysis grows quickly
(e.g., more task sets hit the four-hour timeout) for larger systems (e.g., when n ≥ 20 and
m ≥ 16). This is due to the increase in the number of tasks and the number of ways a task
can be assigned to a core in the expansion phase of the algorithm. To scale to such large
systems, a more efficient abstraction is needed that allows for more eager merging techniques.
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7 Conclusion

The paper provides a sufficient schedulability analysis for global job-level fixed-priority
scheduling algorithms and non-preemptive job sets. We have presented a technique for
deriving an upper bound on the WCRT and a lower bound on the BCRT by exploring an
abstraction of all possible schedules of a job set that reflects the uncertainties in job execution
and release times. We developed the notion of a schedule-abstraction graph for global
schedulers and introduced two key techniques, namely path merging and fast-forwarding, to
slow the state-space growth and proved the analysis to be sound.

Our empirical evaluation using periodic workloads shows significant schedulability im-
provements w.r.t. the state-of-the-art tests in all experimental setups. The observed runtime
of the analysis ranged from a couple of seconds to a couple of hours for realistic system
setups, e.g., up to 30 tasks, up to 9 cores, and up to 100000 jobs per hyperperiod, which is
an acceptable performance for an offline, design-time analysis.

Furthermore, our current implementation is sequential. We expect that parallelizing
the analysis, so that naturally independent scenarios are explored in parallel, would yield a
substantial speedup. To this end, we hope to derive rules that allow maximum paralellism
between independent exploration frontiers. Moreover, we will investigate different merge
rules to reduce the runtime of the analysis. We also plan to extend the solution presented
here to analyze systems with more complicated properties such as precedence constraints
and preemption points, and to other scheduling problems such as gang scheduling.

References
1 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-

predictable scheduling. In ACM International Conference on Embedded Software, pages
20:1–20:10, 2014.

2 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority preemptive scheduling. Software Engineering
Journal, 8(5):284–292, 1993.

3 Theodore P. Baker and Michele Cirinei. Brute-force determination of multiprocessor schedu-
lability for sets of sporadic hard-deadline tasks. In International Conference on Principles
of Distributed Systems (OPODIS), pages 62–75. Springer, 2007.

4 Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In IEEE Real-Time
Systems Symposium (RTSS), pages 159–168, 2006.

5 Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility analysis of sporadic real-
time multiprocessor task systems. Algorithmica, 63(4):763–780, 2012.

6 Artem Burmyakov, Enrico Bini, and Eduardo Tovar. An exact schedulability test for
global FP using state space pruning. In International Conference on Real-Time Networks
and Systems (RTNS), 2015.

7 Anton Cervin, Bo Lincoln, Karl-Erik Arzen, and Giorgio Buttazzo. The Jitter Margin and
Its Application in the Design of Real-Time Control Systems. In International Conference
on Real-Time and Embedded Computing Systems and Applications (RTCSA), pages 1–9,
2004.

8 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques For The Synthesis Of
Multiprocessor Tasksets. In International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), pages 6–11, 2010.

9 Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Exact Schedulability
Analysis for Static-Priority Global Multiprocessor Scheduling Using Model-Checking. In
Software Technologies for Embedded and Ubiquitous Systems (SEUS), pages 263–272, 2007.

ECRTS 2018



9:22 A Response-Time Analysis of Global Non-Preemptive Scheduling

10 Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis for
non-preemptive fixed-priority multiprocessor scheduling. Journal of Systems Architecture,
57(5):536–546, 2011.

11 Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng, and Ge Yu. New schedulability test
conditions for non-preemptive scheduling on multiprocessor platforms. In IEEE Real-Time
Systems Symposium (RTSS), pages 137–146, 2008.

12 S. Kramer, D Ziegenbein, and A Hamann. Real world automotive benchmark for free.
In International Workshop on Analysis Tools and Methodologies for Embedded Real-Time
Systems (WATERS), 2015.

13 Jinkyu Lee. Improved schedulability analysis using carry-in limitation for non-preemptive
fixed-priority multiprocessor scheduling. IEEE Transactions on Computers, 66(10):1816–
1823, 2017.

14 Jinkyu Lee and Kang G. Shin. Improvement of real-time multi-coreschedulability
with forced non-preemption. IEEE Transactions on Parallel and Distributed Systems,
25(5):1233–1243, 2014.

15 Cláudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia
Pérez. Schedulability analysis for global fixed-priority scheduling of the 3-phase task model.
In IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 1–10, 2017.

16 Mitra Nasri and Björn B. Brandenburg. An exact and sustainable analysis of non-
preemptive scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 1–12, 2017.

17 Mitra Nasri and Gerhard Fohler. Non-work-conserving non-preemptive scheduling: motiva-
tions, challenges, and potential solutions. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 165–175, 2016.

18 Mitra Nasri and Mehdi Kargahi. Precautious-RM: a predictable non-preemptive scheduling
algorithm for harmonic tasks. Real-Time Systems, 50(4):548–584, 2014.

19 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis for
Non-Preemptive Job Sets under Global Scheduling. Technical Report MPI-SWS-2018-003,
Max Planck Institute for Software Systems, Germany, 2018. URL: http://www.mpi-sws.
org/tr/2018-003.pdf.

20 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
269–279, 2011.

21 Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-
pher D. Gill. Parallel real-time scheduling of DAGs. IEEE Transactions on Parallel and
Distributed Systems, 25(12):3242–3252, 2014.

22 Roger Stafford. Random vectors with fixed sum. Technical report, University of Oxford,
2006. URL: http://www.mathworks.com/matlabcentral/fileexchange/9700.

23 Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test
of sporadic tasks on multiprocessor Global Fixed-Priority scheduling. Real-Time Syst.,
52(3):323–355, 2016.

24 Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak, Rodolfo
Pellizzoni, and Marco Caccamo. A real-time scratchpad-centric OS for multi-core embedded
systems. In IEEE Conference on Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–11, 2016.

25 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The

http://www.mpi-sws.org/tr/2018-003.pdf
http://www.mpi-sws.org/tr/2018-003.pdf
http://www.mathworks.com/matlabcentral/fileexchange/9700


M. Nasri, G. Nelissen, and B. B. Brandenburg 9:23

worst-case execution-time problem - overview of methods and survey of tools. ACM Trans-
actions on Embedded Computing Systems, 7(3):36:1–36:53, 2008.

26 Jun Xiao, Sebastian Altmeyer, and Andy Pimentel. Schedulability analysis of non-
preemptive real-time scheduling for multicore processors with shared caches. In IEEE
Real-Time Systems Symposium (RTSS), 2017.

ECRTS 2018





Beyond the Weakly Hard Model: Measuring the
Performance Cost of Deadline Misses
Paolo Pazzaglia
Scuola Superiore Sant’Anna, Pisa, Italy
paolo.pazzaglia@sssup.it

Luigi Pannocchi
Scuola Superiore Sant’Anna, Pisa, Italy
luigi.pannocchi@sssup.it

Alessandro Biondi
Scuola Superiore Sant’Anna, Pisa, Italy
alessandro.biondi@sssup.it

Marco Di Natale
Scuola Superiore Sant’Anna, Pisa, Italy
marco@sssup.it

Abstract
Most works in schedulability analysis theory are based on the assumption that constraints on
the performance of the application can be expressed by a very limited set of timing constraints
(often simply hard deadlines) on a task model. This model is insufficient to represent a large
number of systems in which deadlines can be missed, or in which late task responses affect the
performance, but not the correctness of the application. For systems with a possible temporary
overload, models like the m-K deadline have been proposed in the past. However, the m-K model
has several limitations since it does not consider the state of the system and is largely unaware
of the way in which the performance is affected by deadline misses (except for critical failures).
In this paper, we present a state-based representation of the evolution of a system with respect
to each deadline hit or miss event. Our representation is much more general (while hopefully
concise enough) to represent the evolution in time of the performance of time-sensitive systems
with possible time overloads. We provide the theoretical foundations for our model and also show
an application to a simple system to give examples of the state representations and their use.
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1 Introduction and Motivation

The development of most control applications is based on the assumption that the design,
definition and analysis of the controls functionality can be separated from the development
and analysis of the software code implementing it. The functional model of the controls and
of the program threads implementing them are connected by a suitable set of assumptions
on the time properties of the code. In most cases, the assumptions relate to the activation
periods, the maximum allowed response times (or deadlines) and possibly the output jitter.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
  Evaluated  *

  E
C

R
T
S
  *

 Artifact  *
  A

E

© Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pazzaglia@sssup.it
mailto:luigi.pannocchi@sssup.it
mailto:alessandro.biondi@sssup.it
mailto:marco@sssup.it
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.10
https://dx.doi.org/10.4230/DARTS.4.2.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 Beyond the Weakly Hard Model

In many instances, if the periodic tasks are schedulable within the deadlines, then the system
is assumed to be correct. This assumption corresponds to the hard deadline model.

As highlighted by several authors (a comprehensive discussion of the issue is in [10]),
this assumption is simplistic and may lead to overprovisioning of resources on one side (by
requesting that all deadlines are met when in reality the system may be tolerant to some
deadline misses) and the inability to model the impact of late responses as a performance
degradation, given that the only possible outcome is a binary (feasible, infeasible) assessment
of the system correctness.

To cope with the possibility of deadline misses, more sophisticated task models have
been proposed, including analysis methods that compute the maximum lateness or number
of consecutive deadline misses, or the Weakly Hard model, aimed at verifying whether the
system can guarantee that at most m deadlines are missed for every set of K consecutive
task instances. These models have been developed by the real-time analysis community,
often inspired by generic requirements from controls developers, but mostly abstract from
considerations on the performance of the controls.

Alternatively, the timing model of the software tasks is included in a general model of the
system together with the model of the controls, that is, the two domains are not separated
but jointly considered. Examples of these approaches include system models using hybrid or
timed automata (such as those used by the Times tool [18]) and models that cosimulate the
control functionality and the task timing, to assess the impact of scheduling delays on the
performance (examples are the Jitterbug, TrueTime [10] and TRes tools [11]).

Contribution and Paper Structure

In this work, we propose to define a new abstraction for Cyber Physical Systems (CPSs)
analysis that represents the performance degradation of the system in correspondence to
possible deadline misses. In particular, the focus of the paper is on computing the evolution
of control performance for a CPS in which its control tasks can suffer sporadic deadline
misses, that can be described by a set of Weakly Hard constraints. We consider a task
actuation implemented using the LET paradigm, where the control output is updated at
the task deadlines. When a job misses its deadline, the control output is not updated. The
LET implementation imposes fixed delays of the control output, thus enabling a precise
analysis of the control system. First, the freshness of the control output is extracted for each
step of the possible sequences of hit and missed deadlines, considering different handling
methods for the deadline miss event. Then, the corresponding sequence of update matrices
for the state variables is constructed, and a performance value is assigned to the sequence.
The sum of squared errors is chosen as a representative performance index. The proposed
approach allows extracting useful information such as worst-case performance bounds and
critical sequences of deadline hits/misses with respect to a target performance.

Our model is more detailed than the Weakly Hard model (summarized in Section 2) since
it considers the evolution of the system state in correspondence to miss events and, by taking
into account the actual patterns of hits and misses, it includes an estimate of the system
performance at each state. The proposed model is still much simpler than hybrid automata
since it only considers the impact of a finite number of job completions and abstracts the
time behavior by means of deadline miss/hit sequences. The model of the system assumed in
this paper is summarized in Section 3, and the proposed approach with the overall objectives
are discussed in Section 4.
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We show how the size of the state description can be bounded by a set of scheduling
assumptions, or as a result of timing analysis, and how the performance annotation can be
computed for simple metric functions on Linear Time Invariant (LTI) systems. Furthermore,
under the hypothesis that the system evolution is bounded by an exponential function, the
number of steps in each analyzed sequence can be effectively limited with a bounded error
on the performance index. Section 5 contains the description of how to compute the impact
on the control values (update freshness) as a consequence of possible deadline misses, and
Section 6 how to compute a state trajectory from sequences of hits and misses. These results
are used in Section 7 to assign performance values to the sequences and possibly compute
the worst-case values. Finally, in Section 8 we show the application of the proposed method
to a case study consisting of a control of a Furuta pendulum.

1.1 State of the Art
The weakly-hard real-time schedulability analysis targets the problem of bounding the
maximum number of deadline misses over a number of task activations. A dynamic assignment
of priorities for streams with m-K requirements is proposed by Hamdaoui et al. [20] to reduce
the probability of missing more than m deadlines every K iterations. Weakly hard real-time
schedulability analysis can be traced back to the work of Bernat et al. [5] on the m-K model.
The analysis in [5] and in other works assumes that there is an explicit initial state of the
system, in which the initial offset of each task in the system is known. This limitation is
removed in [34].

Recent developments in the study of overloaded systems allow to relax the requirement of
knowing the initial system state. The approach proposed by Quinton et al. [23] consists in the
worst-case analysis of a system model represented as the superposition of a typical behavior
(e.g., of periodic task activations) that is assumed feasible, and a sporadic overload (i.e., a rare
event). Under such an assumption, other works [16,30] proposed methods for weakly-hard
analysis that consists of two phases: 1) the system is verified to be schedulable under the
typical scenario (by the classical hard analysis), and 2) when the system is overloaded, it can
be guaranteed that out of K successive activations of a task, at most m of them will miss
the deadline.

The analysis of overload conditions is also closely related to the co-design of control and
CPU-time scheduling [3]. The influence of response times on the performance of control
tasks has been studied in several works such as those by Xu et al [31, 32]. Aminifar et al. [2]
proposed an integrated approach for controller synthesis, by selecting the task parameters
that meet the expected control performance and guarantee the stability. The concept is later
extended [1] to distributed Cyber Physical Systems, while in [15] FlexRay is considered as
the communication medium. The m-K model has also been investigated in the co-design of
controls (with respect to their performance) and scheduling [12,24], and is used in [7,8,26,27]
to define the maximum number of samples (jobs) that can be dropped over any sequence
(density of dropped samples), to guarantee a minimum level of quality to the controls. In [29]
the problem of modifying the controller for improving the worst-case performance under m-K
constraints is addressed. Moreover, the m-K model has been used for describing stability
properties of a controlled system, e.g., to account for the maximum number of deadlines that
can be missed in a row without making the system unstable (see [25]). Recent work by Blind
and Allgöwer [6] showed that an unstable plant with feedback control that executes in open
loop for finite time intervals under m-K constraints, can be subject to stability analysis by
means of the Lyapunov method. In a subsequent work, Linsenmayer and Allgöwer [19] faced
the problem of finding a controller that stabilizes the plant described in [6] under a given set
of weakly hard constraints.
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In the controls literature, Yoshimoto and Ushio [33] consider an overloaded real-time
platform with multiple controllers. The system described is a LTI plant, with the deadline of
the control task equal to the period of the task. They create an arbiter for skipping jobs
that maintain the system schedulable while minimizing a performance degradation index
based on the number of consecutively skipped jobs.

Frehse et al. [12] consider a Weakly Hard system, with a control task that is implemented
using the Logical Execution Time (LET) paradigm [17]. The authors create a hybrid
automaton that represent the connection between the physical system (described with
piecewise affine functions) and the discrete controller, analysing the system with the TWCA
approach [23]. They propose then the use of reachability analysis with the model checker
SpaceEx to analyze if the trajectories guarantee the required performance.

2 The Weakly-Hard Task Model

The m-K model [20] and its generalization in the weakly-hard model [5] are an attempt at
describing the impact of deadline misses on the correctness of the application. The approach
can be used for a real-time system in which a given number of misses can be tolerated without
critical consequences. When the number of deadline misses can be bounded in any time
interval of a given length, the system is defined as weakly-hard.

In this paper, we are interested in Cyber-Physical Systems where control tasks have
weakly-hard constraints. The main goal is to extract bounds for the control performance as
a function of the weakly-hard constraints, and monitor the system at each step. To make the
paper self-contained, this section recalls the standard definitions for weakly-hard real-time
systems, and provides an overview of the major limitations of state-of-the-art approaches.

2.1 Definitions

In a weakly-hard system, the (m,K) constraint provides a bound on the number m of
deadline misses that a task can experience every K instances (i.e., jobs). In the following,
the definitions of satisfaction set and hardness of an (m,K) constraint, taken from the work
of Bernat, Burns, and Llamosí [5], are used.

I Definition 1 (Satisfaction set). Given a constraint (m,K), the satisfaction set SN of
(m,K) is the set of all the sequences of hit and missed deadlines of length N that satisfy the
constraint.

A sequence s ∈ SN is represented by a string of N letters, using "M" for a deadline miss and
"H" for a hit. When necessary, the sequence s will also be denoted as H/M. As a particular
case, the satisfaction set of the constraint (0,K) (for any K) includes sequences with all hits.
This sequence is named hereafter as H-sequence. The H-sequence, also denoted as sH , is the
only sequence that satisfies all the possible (m,K) constraints.

When analyzing the weakly-hard properties of a real-time task, it is generally possible to
extract a set of constraints under different values for K. A set of p weakly-hard constraints
is denoted with Γ, and is defined as: Γ = {(m1,K1), (m2,K2), . . . , (mp,Kp)}. The definition
of satisfaction set is then extended to a set Γ:

I Definition 2. Given a set Γ of weakly-hard constraints, the satisfaction set of Γ is the
intersection of the satisfaction sets of all the constraints in Γ.
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Figure 1 Comparing different state trajectories of a controlled roller moving a sheet of paper,
with 2 deadlines missed in a row every 5 instances. Changing the order of the missed deadlines in a
H/M sequence leads to different behaviors with different control performance.

2.2 Limitations of the Weakly-Hard Model
In this work, we are interested in finding a model that puts in correspondence the timing
properties of a control task (expressed as a sequence of deadline hits and misses), the dynamics
of the physical plant (the controlled system), and the control performance. Unfortunately,
our objective cannot be achieved with a simple m-K weakly-hard model.

In fact, the weakly-hard model has several limitations when applied to the control domain.
First of all, the (m,K) constraint is a model with a “binary” outcome, where either the
system satisfies the constraint or not (e.g., for the purpose of stability analysis [25]), but it
does not provide any information concerning the control performance that can be guaranteed
when the constraint is met.

Another important limitation is that the order (i.e., the actual pattern) of deadline misses
and hits cannot be fully described by using a combination of (m,K) constraints. This is
true even when using the extended model proposed in [5], where the maximum number
of consecutive deadline misses is considered. Indeed, different H/M sequences in the same
satisfaction set generally lead to different control performance values, thus making the (m,K)
constraint a coarse (and possibly misleading) description of the system when addressing the
performance analysis. The explicit consideration of all the valid H/M sequences, together
with the evolution of the system state during the sequence, may be important to enable a
precise study of the control performance. For instance, if the system is near the steady state,
the errors produced by an actuation that uses stale data (e.g., as a result of a deadline miss)
are limited. However, if the system is in a transient condition, actuation errors will have
a much higher impact. Since the sensitivity of the control performance changes with the
system state and its evolution, the adoption of the existing weakly-hard models to analyze
the control performance requires to always account for the overall worst-case scenario.

For example, consider the model of a paper roller, as described in [22] (pag. 40), which
is controlled to zero with a periodic task with T = 50ms and D = 0.7T . The control task
satisfies a weakly-hard constraint with 2 deadline misses in a row every 5 instances. Five
H/M sequences that satisfy the considered weakly-hard constraints are applied, and when a
deadline is missed the control output is not updated. The results are reported in Figure 1 and
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show that each H/M sequence leads to a different state trajectory. If the sum of quadratic
errors (with respect to a reference) is considered as a control performance metric, then
different values will be computed for each trajectory.

These observations motivate the development of a richer model, with an associated
analysis technique to study the control performance under weakly-hard constraints.

3 System Model

This section presents the model of the considered Cyber-Physical System in terms of the
physical plant, the controller, and its task implementation.

3.1 Plant and Control Description
We consider a physical system modeled as a Linear Time-Invariant (LTI) plant, multi-input-
multi-output (MIMO), strictly causal, operating in a well-defined region Ω ∈ Rn of the state
space (possibly the entire state space Rn). A continuous-time description of the plant is
provided by the following state equation:

ẋc(t) = Acxc(t) +Bcuc(t), (1)

where xc(t) is the state vector, uc(t) the control output, and Ac and Bc are constant matrices
of the dynamics with appropriate dimensions. We assume that a discrete-time controller
is implemented as a periodic task τi, with period Ti and relative deadline Di ≤ Ti. The
task is released at the system startup, i.e., time t = 0. The period Ti is chosen as a
compromise between the stability properties of the system (e.g., the phase margin) and
the schedulability constraints given by the available computational resources (speed of the
processor, communication rates, etc.). A general heuristic for the choice of the sampling rate
consists in guaranteeing that there are 4 to 10 samples during the rise time in response to a
step input [28].

The time interval between the k-th and the (k + 1)-th activation of the control task is
defined as [kTi, (k + 1)Ti).

The Logical Execution Time (LET) paradigm is adopted [12] for the control task. An
example execution is shown in Figure 2 with three tasks for sensing (τS), control (τC), and
actuation (τA). The k-th job of the control task uses the system state sensed at the activation
time kTi (without sensing jitter), and the output is used by the actuator at the deadline
(time kTi +Di). Furthermore, we assume that the actuation value is kept constant until the
next update, which occurs at time (k + 1)Ti +Di (as shown by the u[k − 1], u[k] = u[k + 1]
and u[k+2] values in Figure 2). The choice of updating the control value at the task deadline
leads to regularity of the output timing, with no output jitter, thus simplifying the control
synthesis by means of classic techniques based on the assumption of a constant delay Di

(e.g., see [21] for the case with Di = Ti). Moreover, the enforcement of fixed time instants
for the control update enhances the predictability of the system.

The notation x[k] = xc(kTi) is used to denote the discrete-time measure (or an estimate)
of the system state. Analogously, u[k] denotes the discrete-time representation of the control
output. Note that, due to the delay Di, x[k] and u[k] are not updated at the same time
instant. We assume x[k] = x[0],∀k < 0.

The output u[k] is generated by a control function that is assumed to stabilize the
discrete-time plant under consideration. The discrete-time representation of the plant is [4]

x[k + 1] = Adx[k] +Bd1u[k − 1] +Bd2u[k], (2)
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Figure 2 Time execution of sensor, control and actuation tasks.

where the involved matrices are defined as:

Ad = eAcTi , (3)

Bd1 =
∫ Di

0
eAcsdsBc, and Bd2 =

∫ Ti

Di

eAcsdsBc. (4)

For this work, we consider a standard state-feedback controller of the following form:

u[k] = Kd(r − x[k]), (5)

where Kd is the stabilizing control matrix, and r is the reference equilibrium state. Without
loss of generality, from now on we consider that that the reference is equal to the zero vector,
i.e., u[k] = −Kdx[k]. Finally, we assume that the initial state x[0] (and thus the input u[0])
is known.

In the following, we are interested in reasoning about the output value before and after
the deadline for each periodic instance. As shown in Figure 2, in the portion of the control
period before the deadline, the value considered is u[k − 1] = Kdx(k −∆p − 1), and in the
other part is u[k] = Kdx(k−∆c). The delays ∆p and ∆c, which will be defined and analyzed
in detail in Section 5, depend on possible deadline misses (for example, ∆p = 0 and ∆c = 0
for the first cycle in the Figure, and ∆p = 1 and ∆c = 1 for the third cycle).

3.2 Task Set Description

The control task τi is implemented on a real-time platform, together with N other tasks that
can be either periodic or non-periodic. The Worst Case Execution Time (WCET) is assumed
to be known for each task and the periodic control task τi has WCET Ci ≤ Di. We assume
a fixed-priority, fully-preemptive scheduler, as in most established commercial standards. Of
course, the approach is also applicable to multiple independent control tasks in execution on
the same core.
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3.3 The Task Model of the Controller
The effect of a deadline miss on the controller output depends on the structure of the controller
task and the semantics of information passing. We assume that the task τi computes the
actuation command using the data sensed at every activation. At its completion, the task
copies the output data in a shared memory address, making it accessible to the process that
handles the actuator. To match the considered LET paradigm, we also assume that the
actuator is activated with the same period of τi (equal to Ti) but executed at its deadline
(with very high priority and minimum jitter, possibly as a hardware implementation, Figure
2). The actuator reads the data from the shared memory and uses it as the actuation value
during the next interval of length Ti. This means that if the output variable of τi is not
ready at the deadline, the previously-stored value is used for the actuation.

To ensure a one-to-one correspondence between each element in an H/M sequence and
the corresponding actuation update, we restrict our analysis to the case in which every
execution of a control job is guaranteed to complete at least within (Ti +Di) time units from
its activation. This means that the Worst-Case Response Time WCRTi of the task τi, is
upper bounded as follows:

WCRTi < Ti +Di. (6)

This condition ensures that there cannot be more than one pending invocation of τi at each
deadline. The case in which the WCRT exceeds (Ti +Di) needs a richer description than
H/M sequences, hence a considerable additional complexity for the model and the analysis:
for this reason it is left as a future work. However, note that only part of the presented
analysis relies on this assumption (further details are provided in Section 5.1.1).

4 Approach and Objective

The objective of this work is to propose a new model for relating the performance of control
systems to schedulability conditions with possible deadline misses. Our model consists of
a (finite) state-based representation, in which a control job belongs at every point in time
to one state in the set. The new state is evaluated at each deadline hit or miss event, and
represents a specific sequence of hits and misses. This state is annotated with a control
performance value (as summarized in Figure 3).

This model can be used as a time contract between the design of the controls and their
software (task) implementation. It enables

the definition of monitors that can not only intercept at run time unforeseen timing faults,
but also possible performance degradation that requires a recovery action, and
the definition of the performance of the system at each deadline hit or miss event.

The approach presented in this paper is divided in steps:
1. A conventional m-K timing analysis (such as in [5] or [34]) is assumed to be performed

on the tasks (using the timing model with WCETs). This analysis allows to bound the
possible sequences of hits and misses and the number of states that are reachable. Safety
monitors can be added to the system to guard against additional misses that can bring the
system outside of the set of reachable states and would indicate an error in the estimate
of the WCETs or other inaccuracies in the model of the task set.

2. For each state and each hit or miss event, two parameters (∆p, ∆c) are computed (as
shown at the bottom of Figure 2), that relate to the freshness of the control updates.
This step requires only knowledge on the task execution model and the deadline handling
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Figure 3 State machine representation of performance indexes for H/M sequences with constraint
(m, K) = (1, 2) and window of N = 3 steps. The reachability boundary restricts the analysis only to
the possible combinations of N steps of hits and misses that satisfy the given (m, K) constraint.

strategy (extracted from the software implementation of the controls). The values ∆p,
∆c are computed using a set of state machines as shown in Figure 4 of Section 5 (different
from the one of Figure 3).

3. Each state is annotated by the corresponding state update matrix, computed considering
the plant model and the control parameters.

4. Performance bounds for the controlled system are extracted, and a description suitable for
the on-line monitoring of the system behavior is created, in which each state is annotated
by a performance matrix Πi. Whenever the system transitions to a state with a degraded
performance and before it can further progress into a poor performance condition, a
monitor may be triggered to try to perform recovery actions.

In the following sections, steps number 2, 3 and 4 are analyzed in detail.

5 From Deadline Misses to Update Freshness

This section studies the impact of deadline misses on the freshness of the control updates. The
presented approach is general enough to be applied to different deadline miss management
policies. This analysis step only requires information related to the software implementation
of the controller, i.e., it is independent of the physical system and the control parameters.

5.1 Handling Deadline Misses
Depending on the system implementation, and possibly on the configuration of the operating
system, a job that misses its deadline can be handled in different ways. In this work, two
common strategies are considered:
1. Job killed: the execution of the job that misses its deadline is aborted.
2. Job continued: a job that misses its deadline continues to execute until it completes.

Multiple pending jobs are served in first-in-first-out order.
Each strategy not only results in a different effect on the timing properties (schedulability
and response time) of the task set, but also in a different impact on the freshness of the
control update and a different performance of the control system.
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The update freshness is a parameter used to describe the age (as a number of control
steps) of the current actuation value, which can be formally defined as follows.

I Definition 3 (Update freshness ∆k). Let k′ be the control step for which the state x[k′] is
used to generate the k-th control update u[k], with k′ ≤ k. The update freshness ∆k ∈ N≥0
is defined as ∆k = k − k′, that is

u[k] = −Kdx[k −∆k].

Furthermore, we also introduce the worst update freshness ∆max, that is the maximum
number of aging steps for the active control value.

The proposed analysis considers each k-th control window (i.e., [kTi, (k+1)Ti)). Due to the
delay Di in the generation of the actuation, two control outputs can exist within such windows,
each with a corresponding update freshness. In the sub-window [kTi, kTi +Di) the control
output is equal to the one generated in the previous control window, i.e., u[k−1]. Conversely,
the control output in the window following the actuation update [kTi + Di, (k + 1)Ti) is
equal to u[k]. Taking into account the update freshness, the two control outputs within the
k-th control window are defined as

u[k − 1] = −Kdx[k − 1−∆k−1] (7)
u[k] = −Kdx[k −∆k]. (8)

For example, considering the example of Figure 2, the task instance released at time kTi

completes its execution within the deadline, and the actuation value u[k] after the deadline
is equal to −Kdx[k] with update freshness 0. As the next deadline is missed, u[k + 1] is not
updated and remains equal to −Kdx[k], thus the value of the update freshness ∆k+1 is now
equal to 1.

The next sections will show how to compute the sequences in time of the update freshness
values ∆k−1 and ∆k (also denoted as update freshness pairs) for all the possible H/M
sequences that satisfy an (m,K) constraint. The possible time traces of the freshness pairs
are represented using a state machine, where each node is described by a pair (∆k−1,∆k).
For the sake of clarity, we will refer to the state machine defining the update freshness as
F-state machine, and its vertexes as F-states. The F-state evolution rules for the job killed
and job continued strategies need to be defined to construct the F-state machines.

5.1.1 Job Killed
Under this policy, whenever the job executing in the k-th control window misses its deadline,
the actuator uses the previous value for the control output u[k], consequently increasing
the update freshness ∆k. Hence, the definition of the F-state evolution rule for the update
freshness follows.

Job killed: F-state evolution rule. Consider the k-th control window, characterized by the
pair (∆k−1,∆k). The update freshness pair of the (k + 1)-th control window is:

(∆k, 0), if the (k + 1)-th job of the control task hits its deadline;
(∆k,∆k + 1), otherwise (deadline miss).

The above rule comes from the following rationale. If a deadline hit occurs in the (k+1)-th
control window, then the corresponding control output will use a fresh value, i.e., ∆k+1 = 0.
Otherwise, the control output of the k-th control window will also be used in the next window,
with an increase of the update freshness. Therefore, the update freshness of u[k + 1] is given
by the update freshness of u[k] plus one period, i.e., ∆k+1 = ∆k + 1.
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Figure 4 State machines expressing the evolution of the update freshness pair (∆p, ∆c). The one
related to the job killed strategy corresponds to the case with ∆max = 3.

Given a boundMmax on the number of consecutive deadline misses, it is possible to bound
the maximum update freshness experienced in a control window, that is ∆max = Mmax.
Finally, it is important to observe that the above rule is independent of the assumption
stated in Equation (6) that bounds the worst-case response time of the control task. In fact,
under the job killed strategy, the response-time is always implicitly bounded by the relative
deadline Di.

5.1.2 Job Continued
Under the assumption of Equation (6), the evolution of the update freshness under the job
continued strategy is determined by the following rule.

Job continued: F-state evolution rule. Consider the k-th control window, characterized
by the pair (∆k−1,∆k). The update freshness pair of the (k + 1)-th control window is:

(∆k, 0), if the (k + 1)-th job of the control task hits its deadline;
(∆k, 1), otherwise (deadline miss).

Like for the job killed strategy, when the deadline is hit the next control output will dispose
of a fresh value, i.e., ∆k+1 = 0. On the other hand, if the deadline in the (k + 1)-th control
window is missed, the corresponding control output will be equal to u[k]. By Equation (6),
a pending job of the control task cannot span more than two consecutive control windows.
As a consequence, the state sensed at the beginning of the k-th control window, i.e., time
kTk, will be used at most for producing the (k+ 1)-th control output, which implies that the
update freshness is implicitly bounded by one, i.e., ∆max = 1 (independent of Mmax). Note
that, despite this advantage with respect to the job killed strategy, the number of deadline
misses under the job continued strategy can significantly increase because of self-pushing [34].

5.2 Constructing the State Machines for the Update Freshness
Given the F-state update rules introduced above, this section shows how to construct a
F-state machine that describes the possible evolutions of the update freshness pairs. Each
F-state machine is defined by a set of vertexes V , where each vertex is tagged with a freshness
pair, and a set of directed edges E connecting the vertexes. An edge e ∈ E is defined as a
triplet consisting in the source vertex, the destination vertex, and a label that states if the
vertex is taken when a deadline is hit or miss. For instance, e = ((0, 0), (0, 1),M) is an edge

ECRTS 2018



10:12 Beyond the Weakly Hard Model

Algorithm 1 Construction of state machines for the update freshness.
1: global A = {(0, 0)}
2: global V = {(0, 0)}
3: global E = {}
4:
5: function Entry_Point( )
6: explore( (0, 0), H )
7: explore( (0, 0), M )
8: end function
9:

10: function explore( (∆p,∆c), x )
11: (∆′p,∆′c) = State evolution rule((∆p,∆c), x)
12: V = V ∪ { (∆′p,∆′c) }
13: E = E ∪ { ((∆p,∆c), (∆′p,∆′c), x) }
14: if (∆′p,∆′c) /∈ A then
15: A = A ∪ { (∆′p,∆′c) }
16: explore( (∆′p,∆′c), H )
17: if ∆′c < Mmax then
18: explore( (∆′p,∆′c), M )
19: end if
20: end if
21: end function

that connects an F-state with update freshness defined by the pair (0, 0) to another vertex
corresponding to the pair (0, 1) to represent the F-state evolution after a deadline miss.

These F-state machines are characterized by the following two properties: (i) the same
update freshness pair can be obtained for different values of k (i.e., different control windows
may have the same update freshness), and (ii) the evolution of the update freshness pair
is only dependent on the immediately preceding pair (∆k−1,∆k). For this reason, when
needed, the following short notation is adopted to get rid of the index k: ∆c denotes the
current update freshness, i.e., ∆c = ∆k for the k-th control window; and ∆p denotes the
previous update freshness, i.e., ∆p = ∆k−1.

Algorithm 1 reports the pseudocode to generate the F-state machines. The algorithm
exploits the recursive procedure explore that (i) computes the next state (∆′p,∆′c) by means
of a state evolution rule given a deadline hit (x = H) or miss (x = M), (ii) adds and connects
the new node to the F-state machine, and (iii) finally opens two recursive branches related
to a deadline hit or miss, respectively. The algorithm termination is guaranteed by keeping
track of the previously-visited states in the set A and by the bound ∆max, both limiting
the opening of recursive branches. Two illustrations of the resulting F-state machines are
reported in Figure 4. It is worth noting that, given the strategy to handle the deadline misses
and the bound ∆max, such F-state machines are fixed and independent of the parameters of
the control tasks and the control plant. As a consequence, they provide a very general model
to study the evolution of the update freshness.

6 Computing State Trajectories

In the previous section, we defined the relation between H/M sequences and the freshness of
the control update. The next step requires combining the update freshness parameters with
the information coming from the plant model, which is used to compute the update matrices
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of the plant state for each step of an H/M sequence. This leads to the definition of a chain of
matrices that is then used to extract the state trajectory of the plant (subject to the control).

6.1 State Update Function and Stability Properties
Starting from Equation (2) and combining it with Equations (7) and (8), we derive the state
update of the system with an arbitrary freshness pair (∆p,∆c). The resulting state equation
can be rewritten as:

x[k + 1] = Adx[k]−Bd1Kdx[k − 1−∆p]−Bd2Kdx[k −∆c] (9)

In order to achieve a compact representation of the above equation for different freshness
pairs (∆p,∆c), we introduce the augmented plant state vector ξ[k] as

ξ[k] =
[
x[k]; x[k − 1]; · · · x[k −∆max − 1]

]
, (10)

which contains the state values of the last ∆max + 2 control steps, i.e., from x[k] to x[k −
∆max − 1]. Note that x[k −∆max − 1] is the last possible value of the state considered in
Equation (9). Then, by leveraging this augmented state, it is possible to rewrite the state
update function of the control system in Equation (9) as follows

ξ[k + 1] = Φ(∆p,∆c)ξ[k]. (11)

Here ,Φ(∆p,∆c) is the state update matrix, which is defined as

Φ(∆p,∆c) =


Ad · · · −Bd2Kd · · · −Bd1Kd · · ·
In 0n · · · · · · · · · · · ·
0n In 0n · · · · · · · · ·
... · · ·

. . . . . . · · · · · ·

 , (12)

where 0n and In are square matrices of zeros and the identity matrix, respectively, with
dimension n (n denotes the size of the state space, i.e., x[k] ∈ Rn). Φ(∆p,∆c) is square
with dimension n · (∆max + 2). The definition of Φ(∆p,∆c) in Equation (12) is not a direct
function of ∆p and ∆c: rather, ∆p and ∆c determine the position of the blocks −Bd1Kd

and −Bd2Kd. The value ∆max determines the matrix size.
Using the state machines for the update freshness defined in the previous section, it is

possible to assign each vertex (by means of the corresponding pair (∆p,∆c)) with a matrix
Φ(∆p,∆c). For instance, the matrices for the state machine when the job-continue strategy
is used (reported in Figure 4(b)) are:

Φ(0, 0) =

 Ad −Bd2Kd −Bd1Kd 0n

In 0n 0n

0n In 0n

 (13)

Φ(0, 1) =

 Ad −(Bd1 +Bd2)Kd 0n

In 0n 0n

0n In 0n

 (14)

Φ(1, 0) =

 Ad −Bd2Kd 0n −Bd1Kd

In 0n 0n

0n In 0n

 (15)

Φ(1, 1) =

 Ad −Bd2Kd −Bd1Kd

In 0n 0n

0n In 0n

 . (16)
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Each such matrix corresponds to a possible mode in which the control system can operate,
and such modes can be reached as a function of the pattern defined by an H/M sequence
depending on the state machine that defines the update freshness. Furthermore, not all
the possible transitions between such modes are actually possible: only the subset of H/M
sequences that belong to the satisfaction set of Γ is possible, limiting the possible paths in
the state machine of the update freshness. In this view, the control system under analysis
can be considered as a particular case of a constrained switched linear system [29].

Equation (11) is particularly useful when studying the stability of the controlled system.
According to the choice of Kd discussed in Section 3, the system is stable when no deadline
misses occur (i.e., the dynamic related to matrix Φ(0, 0) is stable). However, no stability
properties are guaranteed for the other operating modes. A performance analysis is mean-
ingless for an unstable system, therefore all possible mode switches must lead to a stable
behavior. An interesting approach for defining a controller that is stable for each possible
H/M sequences (even if related to a simplified model with respect to the one presented here)
is presented in [19]. However, in order to dispose of a bound on the number of steps of the
H/M sequences under analysis, we require the stronger condition of exponentially stability:
given the matrices Φ(∆p,∆c), this property can be verified with the technique presented by
Yu and Zhang in [35]. More details are provided in Section 7.2.

6.2 Mapping H/M Sequences to State Trajectories
After assigning a matrix Φ(∆p,∆c) to each vertex of the state machine for the update
freshness, it is possible to obtain a sequence of such matrices given an initial vertex and an
H/M sequence. The compact notation Φk denotes the matrix Φ(∆p,∆c) obtained at the
k-th step of an arbitrary H/M sequence. If the initial state ξ[0] is known, it is possible to
recursively compute the (k + 1)-th state of the system as follows:

ξ[k + 1] = Φkξ[k]
ξ[k] = Φk−1ξ[k − 1]
. . .

ξ[1] = Φ0ξ[0],

so obtaining the following compact form:

ξ[k + 1] = ΦkΦk−1 · · ·Φ0ξ[0]. (17)

Thus, by simply multiplying a set of matrices Φk, it is possible to compute the corresponding
state trajectory of the system. By considering each possible valid path in the state machine
of the update freshness, it is also possible to compute all state trajectories subject to the
weakly-hard constraints of the control task. To practically enable such computations, an
initial state (in terms of update freshness) and a given length for H/M sequences are required.
The former can be selected as the one characterized by the pair (0, 0), which matches the
condition at the system startup. A bound on the length of H/M sequences is provided in
the next section. Finally, it is worth noting that the initial state ξ[0] contributes to the
state trajectory with a fixed proportional constant. This means that the initial state can
be treated as a scaling factor, while the shape of the trajectory is only determined by the
sequence of hit and missed deadlines. This consideration is fundamental for the performance
analysis that will be addressed in the following section, as it allows a significant reduction of
its computational complexity.



P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale 10:15

7 Assigning Performance Values to H/M sequences

The first objective of this section is to assign a control performance index to each state
trajectory, computed for a given H/M sequence (as defined in the previous section). As a
result, H/M sequences are associated with a performance value, enabling the computation
of the worst-case system performance over all the possible H/M sequences. Then, for the
purpose of monitoring the evolution of the performance online, we provide a richer state-based
performance model.

7.1 Mapping Trajectories to Performance
The proposed approach can be used with different performance metrics: as a representative
case, we focus on the sum of quadratic error of the augmented plant state vector, which is
formally defined for a given H/M sequence s as

P (s) =
N−1∑
i=0

ξ[i]T ξ[i], (18)

where N is the length of the sequence s. This index is indeed the discrete representation of
the widely-adopted integral of squared error [14]. Note that our approach is also compatible
with other performance indexes. Combining Equation (18) with Equation (17), we obtain
the following expanded expression for P (s):

P (s) =
N−1∑
i=0

ξ[i]T ξ[i]

= ξ[0]T
(
I + ΦT

0 Φ0 + ΦT
0 ΦT

1 Φ1Φ0 + ...+ ΦT
0 ΦT

1 · · ·ΦT
N−1ΦN−1 · · ·Φ1Φ0

)
ξ[0]

= ξ[0]T Ψ(s)ξ[0] (19)

The resulting matrix Ψ(s) is then a function of the ordered system states during the
trajectory determined by the sequence s.

Likewise Equation (17), the initial state ξ[0] can be treated as a proportional constant
value also for the performance P (s). This means that an order between the performance of
different H/M sequences can be defined independently of the initial state. Motivated by this,
we select the norm of Ψ(s), defined as Π(s) = ||Ψ(s)||2, as a scalar performance index.

7.2 Bounding the Number of Steps
To bound the complexity of the analysis, a finite horizon approach is selected, with N steps
for the considered H/M sequences. Theoretically speaking, an exact performance analysis
should consider an infinite horizon: however, given an arbitrary small error, a limited number
of steps is sufficient to obtain a performance measurement.

As a lower bound, the value of N must never be less than the maximum window size K of
the weakly-hard constraints, in order to avoid pathological cases where the constraint is not
even completely defined on an input sequence. From a control perspective, it is important
that the resulting performance analysis is applied to a sufficiently long interval of control
steps, such that meaningful information can be extracted. For instance, the number of
control steps N should be sufficient to include the settling time of the step response of the
system. In general, the interval size must be carefully chosen to include the step response of
all the possible H/M sequences. As the global switching system is exponentially stable by
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hypothesis, following the results presented in [35], all the possible response dynamics of the
plant state can be upper-bounded by an exponential function. Thus, a safe upper bound for
N can be computed as the number of steps for which the exponential envelope converges
within a given error of the reference.

7.3 Worst-Case Performance
The worst-case performance can be computed as a function of the weakly-hard constraints of
the control task. In this paper, the performance is a quadratic error metric, and is therefore
formally a cost; for a true performance (positive) metric, the maximum in (20) (in the
following definition) should become a minimum.

I Definition 4 (Worst-Case Performance). Given a set Γ of weakly-hard constraints for the
control task and a number of steps N , the worst-case performance for Γ is the maximum
value of Π(s) provided by all sequences in the satisfaction set of Γ with length N , i.e.,

WCP (Γ, N) = max
s∈SN

Π(s). (20)

The normalized worst-case performance WCPn(Γ, N) is computed with respect to the
sequence sH of all hits and is defined as

WCPn(Γ, N) = WCP (Γ, N)
Π(sH) . (21)

Interestingly, the worst-case performance is not necessarily associated with the sequence that
has the largest number of deadline misses in the satisfaction set of Γ. Also, the proposed
analysis allows to discern the effects on the performance of the order of deadline misses in
the H/M sequence. Deadline misses in the early steps of the sequence s typically lead to
worse performance with respect to deadline misses that occur late in the sequence. This
behavior can intuitively be explained by the results derived by Yu and Zhang in [35]. In
Equation (17), the j-th extended state ξ[j] is computed as the result of the multiplication of
j matrices Φj . Early misses contribute to the first terms, e.g., with only two or four matrices
in the product. Since some matrices related to steps with missed deadlines can determine an
unstable steady-state system (i.e., operating modes in which the system can diverge) these
terms can result in a system that temporally tends to diverge from the control reference.
Otherwise, since a switching control system is stable when the norm of the asymptotic
multiplication of such matrices tends to zero, it is expected that longer terms (such as those
towards the end of Eq. (17) representing late events in the hit/miss sequence) tend to be
inherently more stable and contribute less to the dynamic (the unstable modes are dampened
due to the asymptotic stability).

7.4 State-Based Representation of the Performance
The last step of our analysis is creating a state machine where every vertex represents the
performance value of a H/M sequence of N control steps. For the sake of clarity, the states
of this machine will be denoted as P-states. The edges between vertexes represent one step
in the H/M sequence (hence a hit or missed deadline).

In the resulting P-state machine, it is possible to identify sets of sequences that lead to
various degrees of acceptable or poor performance. Performance monitors can be inserted
into the system for controlling (and possibly avoiding) transitions to a poor performance
sequence. This can be obtained by increasing the priority of the control task, shedding higher
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Figure 5 State machine representation of performance indexes for H/M sequences, for the case
with Γ = (1, 2) and N = 4. The vertexes in green are the best values for performance, the red ones
are undesirable values and the orange one is a sequence that may lead to an undesirable behavior.
The edges marked with a red X are unfeasible transitions.

Figure 6 Scheme of the Furuta inverted pendulum, as the plant model used in the case of study.

priority load, or switching to a less computationally expensive implementation. Interesting
information can also be extracted by analyzing the number of hits that are needed to recover
from sequences with poor performance. If an unacceptable sequence is found, the design of
the system must be changed in order to compensate this behavior. The solution can be, e.g.,
changing the control law parameters, or modifying some implementation strategies, such as
the task implementation or the deadline miss handling policy.

The resulting P-state machine is a powerful tool for the performance analysis or possibly
for the synthesis of runtime monitors controlling the evolution of the system and triggering
recovery actions when needed. An illustrative example of the P-state machine for performance
analysis is shown in Figure 5. Some transitions are marked with a red X and correspond
to transitions that should never occur because of the results of the weakly hard analysis.
The vertexes are colored differently following their performance values and critical P-states
leading to poor performance can be easily identified.

8 Case Study

In this section, the proposed methodology is applied to a case study, consisting of a small
rotary inverted pendulum (Furuta’s Pendulum [13]) as illustrated in Figure 6. The objective of
the control is to keep the pendulum in the upright position, which is an unstable equilibrium.
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Table 1 Numerical values for the parameters describing the Furuta pendulum.

Parameters Arm Pendulum Units Motor Units

m 0.4 0.02 kg kt 0.768 N · m/A

L 0.1 0.2 m ke 0.768 V · s/rad

l 0.06 0.1 m Rm 3.3 Ω
J 0.0018 2.67 · 10−4 kg · m2 Jm 0.0015 kg · m2

b 0.0004 0.005 kg/(m · s)

The geometry and mass properties of the system are described by the set of parameters
(Lp, lp, Jp, mp) and (Lr, lr, Jr, mr), which are the length, barycenter position, inertia and
mass of pendulum stick (index p) and arm (index r), respectively. The viscous damping on
the arm and pendulum joints have coefficients br and bp, respectively. The state vector of the
considered plant is defined as x = [θ, α, θ̇, α̇]T , where θ is the angular position of the arm and
α is the position of the pendulum with respect to the vertical. The controlled input voltage
drives an electric motor on the arm joint, producing a torque Λ. The equation relating
the voltage and the generated torque is Λ = (kt(Vm − kmθ̇))/Rm, where kt is the torque
constant of the motor, Vm is the voltage applied, ke is the back e.m.f constant, and Rm is
the resistance of the motor winding. The balancing control problem is considered, using a
model linearized in the neighborhood of the upward position of the pendulum arm. Under
the defined state vector, the following Linear Time Invariant (LTI) model [9] is obtained:

Ac =


0 0 1 0
0 0 0 1
0 m2

pL2
pLrg

Υ
Jp(−bm−br)

Υ
−mpLpLrbp

Υ
0 (Jr+mpL2

r)gmpLp

Υ
mpLrLp(−bm−br)

Υ
−(Jr+mpL2

r)bp

Υ

 , Bc =


0
0

Jpkt

Rm
mpLrLpkt

Rm


where bm = kekt/Rm and Υ = (Jr +mpL

2
r)Jp −m2

pL
2
rL

2
p.

Performing the discretization of the system, following Equations (3) and (4), using a
sample time Ti = 0.1s and deadline Di = 0.2Ti, and substituting the values with ones
provided in Table 1, the model can be expressed in the following numerical form:

Ad =


1.0000 0.0036 0.0188 −0.0007

0 1.2282 −0.0332 0.0503
0 0.0266 0.0081 −0.0032
0 3.7230 −0.2448 0.2794

 , Bd1 =


0.0381
0.0109
0.0261
−0.1006

 , Bd2 =


0.0666
0.0320
1.2539
0.4166


The control law used for this example is a stabilizing static feedback of the state with
constants Kd = [−1.4557, 62.8126,−2.0459, 2.7210].

Experimental Setup

The tests have been carried out covering all the possible combinations of hits and misses
that satisfy different (m,K) constraints, with an analysis horizon of N = 20 steps. For
the purposes of this case study, this value is sufficient to capture the main features of the
dynamics when different weakly-hard constraints are used. Both the job killed and job
continued strategies have been considered. The scheduling parameters (m,K) are computed
for K ∈ [5, 8] and m ∈ [1,K − 3], respectively. In order to study the evolution of the control
performance, for each strategy, the corresponding matrices Φk have been computed.
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Figure 7 Results related to the job continued strategy. Plots on the left: state trajectories for
the H/M sequence that leads to the worst-case performance under different (m, K) constraints. Plot
on the right: normalized worst-case performance for the considered configurations.

Experimental Results

The experiments produced a big volume of data, thus, for the sake of clarity and compactness,
only the most representative results have been represented and discussed here.

By considering different weakly-hard constraints (m,K), Figure 7 reports the trajectories
of the system in correspondence to the H/M sequence that originates the worst-case per-
formance. The figure also reports the normalized performance for each of the considered
constraints. The plots of the state trajectory (on the left) show that, fixed the window K, the
settling time and the width of possible oscillations (of the trajectory) increase as the number
of deadline misses m increases. Looking at the plot on the right, it is noticeable that the
worst-case performance is monotone with respect to the dimension of the scheduling window
K. In particular, note that for the same number of deadline misses, better performance can
be obtained for larger values of K. This can be explained by the fact that deadlines are to
be placed with a lower density.

Figure 8 shows the experimental results under the same configurations considered in the
previous figure but related to the job kill strategy. While it is possible to observe the same
monotonic trend of the performance with respect to parameter K, the value of the normalized
WCP is worse than the one obtained with the job continued strategy. As a matter of fact,
for the same constraint (m,K), the job killed strategy also shows worse trajectories in terms
of settling time and oscillations.

Also note that this strategy leads to unstable configurations (e.g., see the case for
(m,K) = (3, 6) in the figure), which tend to arise to the larger value of ∆max. The
performance value has also been computed for the particular cases of unstable systems only
for the purposes of comparison with the job continued strategy of Figure 7. These results pose
an interesting observation on the trade-offs between schedulability and performance analysis
for the tested system: while the job killed strategy can improve the system schedulability,
lowering the computational workload and possibly simplifying schedulability analysis, it
tends to provide worse performance. For this reason, we believe that the proposed analysis
framework may be valuable when facing with control-scheduling co-design activities.
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Figure 8 Results related to the job killed strategy. Plots on the left: state trajectories for the
H/M sequence that leads to the worst-case performance under different (m, K) constraints. Plot
on the right: normalized worst-case performance for the considered configurations. The elements
marked with a "x" refer to unstable configurations.

9 Conclusions

We presented a new methodology to compute a state machine abstraction that allows to
relate the performance of a control application to a sequence of deadline hits and misses,
subject to weakly-hard constraints, in the execution of a control task updating a control
value. We show the possibility of computing the state machine by formal derivation assuming
knowledge of the deadline management policy, the LTI system and a simple performance
metric. The size of our state representation is constrained by leveraging worst case timing
analysis and assuming a finite time horizon.

Future work will include consideration of additional performance metrics and the possible
use of simulation techniques to compute the state abstraction when an analytical derivation
is not possible.
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Abstract
In seeking to develop mixed-criticality scheduling algorithms, one encounters challenges arising
from two sources. First, mixed-criticality scheduling is an inherently an on-line problem in
that scheduling decisions must be made without access to all the information that is needed
to make such decisions optimally – such information is only revealed over time. Second, many
fundamental mixed-criticality schedulability analysis problems are computationally intractable
– NP-hard in the strong sense – but we desire to solve these problems using algorithms with
polynomial or pseudo-polynomial running time. While these two aspects of intractability are
traditionally studied separately in the theoretical computer science literature, they have been
considered in an integrated fashion in mixed-criticality scheduling theory. In this work we seek
to separate out the effects of being inherently on-line, and being computationally intractable, on
the overall intractability of mixed-criticality scheduling problems. Speedup factor is widely used
as quantitative metric of the effectiveness of mixed-criticality scheduling algorithms; there has
recently been a bit of a debate regarding the appropriateness of doing so. We provide here some
additional perspective on this matter: we seek to better understand its appropriateness as well
as its limitations in this regard by examining separately how the on-line nature of some mixed-
criticality problems, and their computational complexity, contribute to the speedup factors of
two widely-studied mixed-criticality scheduling algorithms.
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1 Introduction

In the decade or so since it was first proposed as a formal model for representing mixed-
criticality workloads, the Vestal model [15] has been the focus of a large body of scheduling-
theoretic research (see [6] for a survey). One reasonable high-level “meta” conclusion that
may be drawn from this research is that it is remarkably challenging to come up with general
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algorithms for mixed-criticality scheduling that are efficient in terms of both running time
and resource utilization; although impossibility and intractability results abound, relatively
few efficient algorithms have been derived.

In this paper we report some of the findings of our ongoing efforts at obtaining a
comprehensive understanding of the phenomenon of mixed-criticality scheduling, and seeking
to explain why it is so difficult to schedule mixed-criticality systems efficiently. We separate
out two distinct sources of intractability in mixed-criticality scheduling: (i) mixed-criticality
scheduling is inherently an on-line problem, in which information needed to make good
scheduling decisions is only revealed gradually during run-time; and (2) even ignoring this on-
line nature, some basic mixed-criticality scheduling problems are computationally intractable.
(For instance, it is known [5, Theorem 1] that determining whether a given collection of
independent mixed-criticality jobs is schedulable is NP-hard in the strong sense.)

Now these two sources of intractability – being an on-line problem and being computation-
ally intractable – have traditionally been considered separately in the theoretical computer
science community:
1. The competitive ratio/ factor metric is used to quantify the sub-optimality of an on-line

algorithm vis-à-vis an optimal clairvoyant one that is assumed to have complete knowledge
about run-time behavior prior to making any scheduling decisions.
For example, it is known that given a cache memory of k pages, the Least-Recently Used
(LRU) paging algorithm is k-competitive [12] – upon some sequences of page requests it
may experience up to k times as many page-faults as on optimal clairvoyant algorithm
would.

2. In contrast, the approximation ratio/ factor metric quantifies the performance degrada-
tion resulting from using a polynomial-time algorithm for solving an NP-hard problem
approximately.
It is known, for example, that while the problem of scheduling a directed acyclic graph on a
multiprocessor platform to minimize the makespan is NP-hard in the strong sense [14], List
Scheduling [8] is a 2-approximation algorithm for this problem that runs in polynomial
time: if a given directed acyclic graph can be scheduled optimally upon a specified
multiprocessor platform to have makespan M , then List Scheduling will schedule it to
have a makespan < 2M .

It is widely recognized in the theoretical computer science community that these two sources
of intractability are fundamentally different from one another; however in the mixed-criticality
scheduling theory literature a single metric – the speedup factor – tends to be used to quantify
the effectiveness of mixed-criticality scheduling algorithms in dealing with both sources of
intractability. As used in the mixed-criticality scheduling literature, the speedup factor metric
of an algorithm A is the minimum multiplicative factor by which the speed of a computing
platform must be increased in order that A be able to schedule any problem instance that is
schedulable by some optimal clairvoyant scheduler. Used in this manner, it is particularly
appropriate for quantifying the penalty arising from the on-line nature of mixed-criticality
scheduling, but what about the penalty that may arise from computational intractability
issues? This fundamental question motivated some lively discussions during a 2017 Dagstuhl
Seminar on mixed-criticality systems,3 regarding the benefits and drawbacks of using speedup
factor as a quantitative metric to evaluate mixed-criticality scheduling algorithms. The
opinion was expressed that since it compares algorithm A to an optimal clairvoyant scheduler,

3 Dagstuhl Seminar 17131: Mixed Criticality on Multicore/ Manycore Platforms, March 26–31, 2017.
http://www.dagstuhl.de/17131.

http://www.dagstuhl.de/17131
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speedup factor is not very useful in comparing different on-line (non-clairvoyant) algorithms;
a meaningful metric would not empower the adversary against whom each algorithm is being
compared with as extreme a power as clairvoyance. The opposing opinion was that speedup
factors as used in the mixed-criticality scheduling literature are merely an instantiation of the
concept of the competitive factor metric [12], that has long been considered the gold standard
for quantifying on-line algorithms – as a specific example, competitive factors continue to
be widely used for justifying the choice of paging algorithms, despite the non-existence of
clairvoyant paging algorithms. (Some other limitations of speedup factor as a metric for
scheduling algorithms have been elaborated upon in [7]; rather than elaborate upon these
limitations here we encourage the interested reader to peruse [7] since a discussion of these
limitations is somewhat orthogonal to our prime objective here of niggling out the different
effects of non-clairvoyance and computational complexity.)

This research. In this research, we attempt to obtain a better understanding of the role that
speedup factor plays in characterizing mixed-criticality scheduling algorithms. We focus upon
three widely-studied uniprocessor mixed-criticality scheduling problems that have previously
been quantified with speedup factors: (i) scheduling of collections of independent dual-
criticality jobs; (ii) scheduling of collections of independent dual-criticality implicit-deadline
periodic tasks; and (iii) scheduling of collections of independent dual-criticality implicit-
deadline sporadic tasks. For each problem, we consider three forms of schedulability:
1. Clairvoyant schedulability: Given a dual-criticality instance I, can I be scheduled

correctly4 by a clairvoyant scheduling algorithm?
2. MC schedulability: Given a dual-criticality instance I, can I be scheduled correctly

by an on-line (non-clairvoyant) scheduling algorithm?
3. A-schedulability (for some specified scheduling algorithm A): Given a dual-criticality

instance I, can I be scheduled correctly by the scheduling algorithm A?
In this work, the specific algorithms A that we consider are OCBP [4] for the job-scheduling
problem, and EDF-VD [3] for the periodic and sporadic task-scheduling problems.

Computational complexity. The computational (in)tractability status of each of these
schedulability problems is known to be as follows

For each of the three problems that we study it is known (or can be easily deduced from
prior results) that clairvoyant schedulability, as well as the respective A-schedulabilities
(i.e., OCBP-schedulability for jobs; EDF-VD-schedulability for periodic and sporadic
tasks) can be determined efficiently in polynomial time.
What about MC-schedulability? The state of knowledge here is rather more sparse:

It has previously [5] been shown that determining MC-schedulability for a collection
of independent dual-criticality jobs is NP-hard in the strong sense.
To our knowledge, no non-trivial prior results are known regarding MC-scedulability
of dual-criticality periodic or sporadic implicit-deadline task systems. As one of the
major contributions of this paper, we show that determining MC-schedulability for
collections of independent dual-criticality periodic and sporadic implicit-deadline tasks
is also NP-hard in the strong sense.
The significance of this result for our purposes cannot be over-stated: as is the case for
OCBP and the scheduling of independent jobs, it follows that EDF-VD, too, is dealing

4 Precise definitions of what it means to schedule a dual-criticality system correctly are provided in
Section 2.
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Figure 1 Summarizing the current state of our knowledge regarding speedup bounds for MC-
scheduling of dual-criticality independent jobs (left figure) and dual-criticality implicit-deadline
periodic & sporadic tasks (right figure). Each figure depicts previously-known lower and upper
speedup bounds on the two sources of intractability: the on-line nature of MC-scheduling (given
by speedup ratio), and the computational tractability of MC-schedulability analysis (given by
approximation ratio).

with both the intractability arising from its non-clairvoyance and the intractability
arising from having to solve an NP-complete problem in polynomial time. Hence its
sub-optimality (as quantified by its speedup factor), too, can be attributed to two
distinct sources.

Non-clairvoyance. The inherent intractability arising from the on-line nature of mixed-
criticality scheduling problems has also been studied, and is fairly well understood for our
three problems of interest:

For collections of independent dual-criticality jobs, it was shown [4] that there are
clairvoyant-schedulable instances that are not MC-schedulable without speedup < Φ,
where Φ = (

√
5 + 1)/2 ≈ 1.618 denotes the Golden Ratio:

Φ =
√

5 + 1
2 ≈ 1.618 (1)

For collections of independent dual-criticality implicit-deadline sporadic tasks, it was
shown [3] that there are clairvoyant-schedulable instances that are not MC-schedulable
without speedup < 4/3.
The proof in [3] is easily adapted from sporadic to periodic tasks, to show that there are
clairvoyant-schedulable instances of independent dual-criticality implicit-deadline periodic
tasks that are not MC-schedulable without speedup < 4/3.

The intractability results described above – computational intractability and loss of
performance vis-à-vis clairvoyant schedulability – unfortunately do not fit in neatly with
known results concerning specific scheduling algorithms. It is known, for instance, that
the polynomial-time algorithm OCBP [4] is able to schedule any clairvoyant-schedulable
collection of independent dual-criticality jobs with a speedup Φ. This implies that the
speedup ratio Φ that is so widely used to characterize the effectiveness of OCBP as a mixed-
criticality scheduling algorithm, is accounted for entirely by the fact that OCBP is solving a
problem for which there is a lower bound of Φ on the speedup factor of any non-clairvoyant
scheduling algorithm. This result is somewhat paradoxical: the approximation ratio of OCBP
vis-à-vis MC-schedulability, arising from the fact that OCBP is only solving this problem
approximately (which it inevitably is, since OCBP is a polynomial-time algorithm while
determining MC-schedulability for collections of independent dual-criticality jobs is NP-hard
in the strong sense) is not accounted for at all – see the left diagram in Figure 1. Similarly,
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it is known that EDF-VD can schedule any clairvoyant-schedulable collection of independent
dual-criticality implicit-deadline periodic or sporadic tasks with a speedup 4/3’rds – this
is depicted in the right diagram in Figure 1; this again fails to account for the fact that
EDF-VD is solving, in polynomial time, the MC-schedulablity problem for implicit-deadline
periodic and sporadic tasks despite our showing, in this paper, that this problem is NP-hard
in the strong sense.

One of our major results here is a proof that the approximation ratio of OCBP – i.e., its
degradation in performance vis-à-vis MC-schedulability – is also quantified by a speedup
factor equal to Φ. We show this by synthesizing an independent dual-criticality job instance
that is MC-schedulable, but that can only be scheduled by OCBP upon a platform that is Φ
times as fast. This immediately yields the interesting conclusion that the speedup factors
quantifying (i) the intractability arising from the on-line nature of mixed-criticality scheduling
, and (ii) the intractability arising from the computational complexity (NP-hardness) of
recognizing MC-schedulability, do not “compose” in any meaningful sense: while each is
equal to Φ in this case, the speedup factor of OCBP-schedulability vis-à-vis clairvoyant
schedulability is also equal to Φ:

Clairvoyant 
Schedulability

MC 
Schedulability

OCBP 
Schedulability

Competitive ratio
speedup ≥ 	Φ (lower bound)

This paper: 
approximation ratio = 	Φ

Competitive ratio 
speedup = 	Φ

Organization. The remainder of this paper is organized as follows. In Section 2 we briefly
describe the mixed-criticality workload models we will be using, and define some relevant
concepts. In Section 3 we study the problem of scheduling collections of independent dual-
criticality jobs. In Section 4 we present our results concerning the scheduling of collections of
dual-criticality implicit-deadline recurrent (periodic and sporadic) task systems. We conclude
in Section 5 with an enumeration of some interesting open issues and questions.

2 Model and Background

A mixed-criticality (MC) implicit-deadline recurrent (i.e., periodic or sporadic) task system τ

consists of a finite specified collection of MC implicit-deadline recurrent tasks, each of which
may generate an unbounded number of MC jobs.

MC jobs. As stated in Section 1 above, we will, for the most part, restrict our attention
here to dual-criticality systems: systems with two distinct criticality levels. A dual-criticality
job Ji is characterized by a tuple of parameters: Ji = (χi, ai, [cLi , cHi ], di), where

χi ∈ {L,H} denotes the criticality of the job;
ai ∈ R+ is the release time;
cLi and cHi denote low-criticality and high-criticality estimates of the job’s worst-case
execution time (WCET) parameter; and
di ∈ R+ is the deadline.
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11:6 Intractability Issues in Mixed-Criticality Scheduling

System behavior. The MC job model has the following semantics. Job Ji is released at
time ai, has a deadline at di, and needs to execute for some amount of time γi. The value of
γi is not known beforehand, but only becomes revealed by actually executing the job until it
signals that it has completed execution. These values of γi for a given run of the system
defines the kind of behavior exhibited by the system during that run. If each Ji signals
completion without exceeding cLi units of execution, we say that the system has exhibited
lo-criticality behavior ; if even one job Ji signals completion after executing for more than cLi
but no more than cHi units of execution, we say that the system has exhibited hi-criticality
behavior. If any job Ji does not signal completion despite having executed for cHi units, we
say that the system has exhibited erroneous behavior.

Clairvoyance. Before scheduling a collection of jobs, a clairvoyant scheduling algorithm
knows, for each job Ji in the collection, the precise duration γi for which the job will need to
execute prior to signaling completion. (Note that clairvoyant scheduling algorithms represent
a hypothetical ideal that are not in general implementable in actual systems.). By contrast,
an on-line scheduling algorithm does not know the values of γi beforehand; the value of γi is
only revealed by executing Ji for a duration γi, at which instant it signals completion.

The notions of clairvoyant and on-line scheduling algorithms extend in the obvious manner
to the scheduling of recurrent tasks (discussed next).

MC implicit-deadline recurrent tasks. Analogously to traditional (non-MC) implicit-
deadline recurrent tasks, an MC implicit-deadline recurrent (periodic or sporadic) task
τk is characterized by a four-tuple (χk, CLk , CHk , Tk), with the following interpretation. Task
τk generates an unbounded sequence of jobs, with successive jobs being released exactly Tk
time units apart if the task is periodic, and at least Tk time units apart if it is sporadic.
Each such job has a deadline that is Tk time units after its release. The criticality of each
such job is χk, and it has lo-criticality and hi-criticality WCET’s of CLk and CHk respectively;
we assume that CLk ≤ CHk for all tasks τk.

An MC implicit-deadline periodic/ sporadic task system is specified by specifying a
finite number of such periodic/ sporadic tasks. As with traditional (non-MC) systems, a
MC sporadic task system can potentially generate infinitely many different MC instances
(collections of jobs), each instance being obtained by taking the union of one sequence of
jobs generated by each task.

Correctness criteria. We define an MC scheduling algorithm to be correct if it is able to
schedule any system such that

During all lo-criticality behaviors of the system, all jobs receive enough execution between
their release time and deadline to be able to signal completion; and

During all hi-criticality behaviors of the system, all hi-criticality jobs receive enough
execution between their release time and deadline to be able to signal completion.

As defined in Section 1, a dual-criticality instance is said to be clairvoyant schedulable if it
can be scheduled correctly by some clairvoyant scheduling algorithm, MC-schedulable if it
can be scheduled correctly by some (non-clairvoyant) on-line algorithm; and A-schedulable
for some specified scheduling algorithm A if it can be scheduled correctly by the algorithm A.
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3 Scheduling Mixed-Criticality Jobs

In this section we look at a very simple mixed-criticality scheduling problem: that of
scheduling instances that are collections of independent dual-criticality jobs upon a single
preemptive processor. To our knowledge, this problem was first studied in [4], where an
algorithm called OCBP was proposed for solving it; OCBP were further studied in [5, 10].
Recall that an instance is defined to be clairvoyant-schedulable if it is scheduled correctly
by an optimal clairvoyant algorithm; MC-schedulable if it is scheduled correctly by some
(non-clairvoyant) on-line algorithm; and OCBP-schedulable if it is scheduled correctly by
OCBP. The following results were proved in [5, 10] (again, Φ denotes the golden ratio).

R1 There are clairvoyant-schedulable instances that are not MC-schedulable with speedup
< Φ.

R2 Determining MC-schedulability is NP-hard in the strong sense (even if all jobs in the
instance have equal release dates).

R3 If an instance is clairvoyant schedulable, then it is OCBP-schedulable with speedup Φ.

Results R1 and R2 above reveal that the “difficulty” in the problem being solved by
OCBP arises from two sources: R1 tells us that no on-line algorithm, regardless of its run-
time computational complexity, can solve it optimally, while from R2 it appears unlikely that
the polynomial-time OCBP is able to even solve the on-line problem exactly. Result R1 above
tells us that no (non-clairvoyant) on-line algorithm can have a competitive factor smaller
than Φ. Analogously to the competitive factor metric for quantifying on-line algorithms,
the effectiveness of polynomial-time algorithms for solving NP-hard problems approximately
is commonly quantified using the approximation ratio metric. The result R3 is therefore
somewhat paradoxical, and reveals one of the shortcomings of speedup factor as a metric for
mixed-criticality scheduling algorithms: the fact that OCBP is only approximately solving
an NP-hard problem is not revealed in its speedup factor (which takes on the optimal value
of Φ).

In this section we consider OCBP from the perspectives of comparing its performance
to both a clairvoyant algorithm (here we look at its competitive factor) and an optimal
non-clairvoyant algorithm (here, we examine its approximation ratio). Both metrics provide
different perspectives on its “distance” from optimal behavior – its competitive factor is a
measure of its distance from optimality due to its non-clairvoyance (its not knowing the
future) while its approximation ratio is due to its computational limitations – it is solving an
NP-hard problem in polynomial time.

3.1 Current State of the Art
The OCBP algorithm is known to be speedup-optimal for scheduling dual-criticality collections
of independent jobs. Given such a dual-criticality instance I, OCBP aims to derive offline
(i.e., prior to run-time) a total priority ordering of the jobs of I such that scheduling the jobs
according to this priority ordering guarantees a correct schedule, where scheduling according
to priority means that at each moment in time the highest-priority available job is executed.

The priority list is constructed recursively using the approach commonly referred to in
the real-time scheduling literature as the “Audsley approach” [1, 2]. OCBP first identifies a
lowest priority job: Job Ji may be assigned lowest priority if

it is a low-criticality job (i.e., χi = L) and there is at least cLi time between its release
time and its deadline available if every other job Jj has higher priority and is executed
for CLj time units; or
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it is a high-criticality job (i.e., χi = H) and there is at least cHi time between its release
time and its deadline available if every other job Jj has higher priority and is executed
for CHj time units.

The above procedure is repeated on the set of jobs excluding the lowest priority job, until
all jobs are ordered, or at some iteration no lowest priority job is identified (if this happens
OCBP declares failure and exits: it is unable to schedule this instance).

The results R1–R3 listed above permit us to draw the following conclusions about the
effectiveness of OCBP:
1. From R1 and R3, we conclude that OCBP has the optimal competitive ratio from the

perspective of speedup-versus-clairvoyance.
2. But that leaves unanswered the question of how far OCBP is from on-line optimal-

ity (as indicated by MC-schedulability). In contrast to R2, OCBP-schedulability can
be determined in polynomial time – what is the approximation ratio of OCBP in
comparison to an optimal on-line scheduler?

3.2 Additional Insights
We now describe some of our new findings that allow us to better characterize the effectiveness
with which the polynomial-time OCBP algorithm approximates solutions to the NP-hard
problem of MC-schedulability. We first show, in Section 3.2.1, that OCBP is in fact optimal
for scheduling MC-schedulable instances comprising just two jobs. (Although this result
may at first seem trivial, we point out that the proof of result R1 was obtained using 2-job
instances; hence the result proving optimality of OCBP vis-à-vis MC-schedulability serves to
separate the intractability arising from non-clairvoyance from the intractability arising from
computational intractability issues). This positive result contrasts with a negative result in
Section 3.2.2, where we show that in general, however, OCBP’s approximation ratio is at
least Φ: there exist MC-schedulable instances that are not OCBP-schedulable with speedup
< Φ.

3.2.1 Instances with at most two jobs
We now show that OCBP is able to optimally schedule any instance comprising at most two
jobs. The cases when the instance comprises zero or one jobs is trivial; let us therefore focus
on two-job instances. Consider first the case when both jobs have the same release date
(without loss of generality, assumed equal to zero). If both jobs have the same criticality, or
if the high-criticality job has an earlier deadline, OCBP will find the EDF-schedule for the
jobs, and this is the optimal schedule. Consider, therefore, the case when the earlier-deadline
job has lower criticality. Consider the following instance:

{J1 = (L, 0, [cL1 ,−], d1), J2 = (H, 0, [cL2 , cH2 ], d2)}

with d1 < d2.
We claim that this instance is MC-schedulable if and only if (in addition to each job being

“well-formed” – i.e., cLi ≤ cHi – and individually feasible) the following condition is satisfied:((
cL1 + cL2 ≤ d1

)∨(
cL1 + cH2 ≤ d2

))
(2)

The reason why this is a necessary and sufficient condition for MC-schedulability is as follows:
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Table 1 Example job instance depicting the non-optimality of OCBP vis-à-vis MC-schedulability.
(Here ε denotes a positive constant < 1, and y > 1.)

criticality release date wcets deadline
J1 high 0 [ε, 1] 1
J2 low 0 [1 − ε, 1 − ε] 1
J3 high 0 [y − 1, y − 1] y

If the first disjunct is satisfied, we start out executing J2.
This is clearly a correct scheduling strategy, since in any lo-criticality behavior both
jobs will complete before the earlier deadline d1 while in any hi-criticality behavior the
hi-criticality job gets to execute to completion and hence (since each job is assumed to
be individually feasible) meets its deadline.
If the second disjunct is satisfied, we start out executing J1.
This, too, is clearly correct: the lo-criticality job executes first and therefore (since it is
assumed individually feasible) receives up to cL1 units of execution by its deadline. It does
not receive more than cL1 units of execution regardless of whether it signals completion or
not; hence, the disjunct ensures that the hi-criticality job always gets up to cH@ units of
execution prior to its deadline.
If neither disjunct is satisfied, then consider any schedule over the interval [0, d1]:

If job J1 has executed for < cL1 units, then the instance reveals low-criticality behavior
Else job J1 has executed for cL1 units (in which case job J2 could not have executed for
cL2 units to reveal high-criticality behavior), and the instance reveals high-criticality
behavior.

Now observe that if Condition 2 is satisfied, then OCBP would successfully schedule the
system – if the first disjunct is true then J1 can be assigned lower priority while if the second
disjunct is true then J2 could be assigned lower priority, by OCBP.

Now to generalize to the case where the two jobs may not have equal release dates, observe
that any work-conserving algorithm would schedule the job that is released throughout the
interval between its release and the release date of the second job (or to completion –
whichever occurs first). And once the second job arrives, we are back to the case of two jobs
with equal release dates, with the WCETs of the job that was released first appropriately
modified to reflect the execution that has already occurred.

3.2.2 General Instances
We have seen that OCBP is optimal vis-à-vis MC-schedulability for dual-criticality instances
with two or fewer jobs. Unfortunately, this optimality property does not hold for > 2 jobs;
we show this by constructing a 3-job instance shown in Table 1. It is easy to show that this
instance is MC-schedulable: an optimal on-line algorithm would execute J1 to completion. If
this occurs within ε time-units, then the optimal algorithm executes J2 and then J3; if not,
it simply discards J2 and executes J3 to completion.

However, this instance is not OCBP-schedulable; we prove this by showing that none of
the three jobs can be assigned lowest priority by OCBP (and hence OCBP would report
failure at the very beginning – it is unable to assign any job lowest priority):
1. For J1 to be lowest-priority, we would need(

1 + (1− ε) + (y − 1) ≤ 1
)
⇔
(

1 + y − ε ≤ 1
)

which is impossible since ε < 1 and y > 1.
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2. For J2 to be lowest-priority, we would need(
ε+ (1− ε) + (y − 1) ≤ 1

)
⇔
(
y ≤ 1

)
which is impossible since y > 1.

3. For J3 to be lowest-priority, we would need(
1 + (1− ε) + (y − 1) ≤ y

)
⇔
(

1− ε+ y ≤ y
)

which is impossible since ε < 1.

We saw above that the 3-job instance depicted in Table 1 is not OCBP-schedulable; we
now compute the minimum speedup needed in order that this instance be OCBP-schedulable
upon the faster platform. Since the instance is MC-schedulable this speedup value would
represent a lower bound on the approximation ratio of OCBP (vis-à-vis MC-schedulability).

Note that OCBP must assign some job lowest priority. We consider each of the three
jobs as potential candidate lowest-priority jobs:
1. For J1 to get lowest priority, the processor would to complete (1 + y− ε) units of work by

time-instant 1, in order that J1 complete by its deadline at time-instant 1. The needed
speedup is therefore

(1 + y − ε) (3)

2. For J2 to get lowest priority, the processor would to complete y units of work by time-
instant 1, in order that J2 complete by its deadline, also at time-instant 1. The needed
speedup is therefore

y (4)

3. For J3 to get lowest priority, the processor would to complete (1 + y− ε) units of work by
time-instant y, in order that J3 complete by its deadline at time-instant y. The needed
speedup is therefore

1 + y − ε
y

= 1 + 1− ε
y

(5)

Since y > ε, Expression (4) < Expression (3) and hence J2 requires a lower speedup than J1
to be a viable lowest-priority job. Which of J2 or J3 needs a lower speedup to be a viable
lowest-priority job depends upon the exact values of ε and y. Since the speedup needed for
J2 to be a viable lowest-priority job increases, while the speedup needed for J3 to be a viable
lowest-priority job decreases, with increasing y, the largest speedup needed occurs when the
two values are equal:

y = 1 + 1− ε
y

⇔ y2 − y − (1− ε) = 0

As ε → 0, the solution to the quadratic equation above approaches the golden ratio Φ =
(
√

5 + 1)/2, and the speedup needed is equal to this value of y.
We have therefore just shown that this is at least one MC-schedulable instance – the one

depicted in Table 1 – for which OCBP needs a speedup of Φ. It has previously been shown
that any clairvoyant-schedulable instance is OCBP schedulable with speedup Φ (this is the
result R3 referenced above), from which it follows that any MC-schedulable instance is also
OCBP schedulable with speedup at most Φ. We therefore conclude that the approximation
ratio of OCBP is equal to Φ, yielding the situation depicted in Section 1.
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4 Sporadic Task Schedulability

We focus our attention in this section on dual-criticality implicit-deadline recurrent – sporadic
and periodic – task systems. Our main contribution here is a proof that the mixed-criticality
scheduling problem is NP-hard for such systems; this stands in sharp contrast to the
analogous problem for single-criticality systems, where a simple linear-time utilization-based
schedulability test is known [11]. This computational complexity result serves to establish that
determining MC-schedulability is computationally intractable for dual-criticality recurrent
task systems, and hence demonstrates that EDF-VD (like OCBP) is dealing with two sources
of intractability: non-clairvoyance and computational complexity. This opens up the need for
separating out the effects of the two sources of intractability, and also highlights the need for
metrics that are able to separately quantify the approximation-ratio effect (i.e., comparison
with MC-optimality) and the competitive-ratio effect (i.e., the sub-optimality arising from
the lack of clairvoyance) of EDF-VD in scheduling recurrent sysems..

4.1 Task Set Construction
Recall that, dual criticality mixed criticality job scheduling is NP-complete in the strong
sense [5, Theorem 1]. We will use that proof as a starting point for our proof to show how
a similar reduction can also be used for both periodic and sporadic tasks. The reduction
in [5, Theorem 1] is from an instance I of 3-PARTITION. The 3-PARTITION problem is
the following: we are given a set S of 3m positive integers s0, s1, s2, ..., s3m−1 and a positive
integer B such that B/4 < si < B for each i, and

∑3m−1
i=0 si = mB. Instance I is said to

have a feasible solution if S can be partitioned into m disjoint sets, S0, S1, ..., Sm−1 each of
which sum to B.

Hardness construction for mixed-criticality jobs from [5, Theorem 1]. In [5, Theorem 1],
the authors showed that dual-criticality job schedulability is solvable in polynomial time iff
3-PARTITION is solvable in polynomial time. Given an instance I of 3-PARTITION, they
defined a polynomial-time procedure for generating a set XI of dual-criticality jobs such that
XI can be scheduled correctly by an online scheduler iff I has a feasible solution.5

From I, the dual-criticality jobs set XI is generated as follows:
3m hi-criticality jobs (χi = H) each with release time 0, deadline 2mB, CLi = si and
CHi = 2si.
m lo-criticality jobs (χi = L) each with release time iB for 0 ≤ i ≤ (m− 1) and deadline
2B after its release and CLi = CHi = B.

The derivation in [5, Theorem 1] shows that this job system XI is schedulable in an
MC-correct manner iff I has a valid 3-partition. We will not recall the details of the proof
that shows that if Xi is schedulable, then I is feasible since those details are not important
for our proof here. We will briefly recall the direction that shows that if I is feasible then XI

is schedulable. To do so, given a feasible 3-PARTITION for I, we must provide a schedule
for XI such that all jobs are scheduled correctly.

Given a feasible partition S0, S1, S2, ..., Sm−1, the feasible scheduling policy is as follows.
Look at m chunks of time, each of size (i.e., duration) 2B. In the first B time of chunk j, we
execute the tasks in Sj – since the lo-criticality execution time of all jobs in Sj sums to B,

5 To prove NP-completeness, one must also reduce from a set of jobs to an instance of 3-PARTITION;
however, we are only concerned with NP-hardness in this paper.
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this interval is sufficient to finish these jobs if the system stays in lo-criticality mode. In the
second chuck of time, we execute the lo-criticality job. Therefore, all jobs are schedulable in
lo-criticality behavior.

We now argue about hi-criticality behavior. Consider a job τi in set Sj . Say this job
exceeds its lo-criticality execution time. Then the system will discover this by time (2j+1)B
since all jobs of set Sj will have completed their lo-criticality execution by then. At this
point, the system will transition to hi-criticality mode and all lo-criticality jobs will be
discarded. Therefore, the schedule has (2m− 2j − 1)B time to finish the hi-criticality jobs’
remaining computation before their deadline. At this point, all jobs in sets S0, S1, ..., Sj−1
have already signalled completion and the jobs in set Sj have completed B units of work.
Therefore, even if all jobs in sets Sj+1, ..., Sm−1 execute for their hi-criticality execution time
of 2si, we have total of (2m − 2j − 1)B total remaining hi-criticality work which can be
completed by the deadline.

Translating the construction to dual-criticality tasks. The construction in [5, Theorem 1]
described above applies to dual-criticality jobs; now we will show how we can use a similar
construction for dual-criticality tasks. Given a feasible instance of 3-PARTITION I, we
construct a mixed-criticality job system YI as follows:

3m hi-criticality tasks (χi = H) each with period 2mB, CLi = si and CHi = 2si.
1 lo-criticality task (χi = L) with period 2B and CLi = CHi = B.

Note that if the system is periodic with the first release of all jobs at time 0, then YI
generates an instance of dual-criticality jobs XI in each hyper-period of 2mB. Therefore,
the following lemma about periodic jobs is obvious.

I Lemma 1. If tasks are periodic, then this task set YI is schedulable iff the job system XI was
schedulable. Therefore, determining schedulability of periodic implicit deadline dual-criticality
task systems is NP-hard in the strong sense.6

It is not so straightforward, however, to argue that sporadic schedulability is NP-hard in
the strong sense. We will now prove the following theorem in the rest of this section.

I Theorem 2. A sporadic task system generated by YI is schedulable iff I has a feasible solu-
tion, that is, if the corresponding periodic task system is schedulable. Therefore, determining
schedulability of sporadic implicit deadline dual-criticality task systems is NP-hard in the
strong sense.

It is clear that if the sporadic task system is schedulable, then the periodic one is also
schedulable since periodic releases are just an instance of sporadic releases. The rest of this
section will show that if the periodic task system is schedulable, then the sporadic one is
also schedulable.

Note that we are not making a general claim about all task systems. It is sufficient
to show the following: If an instance I of 3-PARTITION (set S of 3m positive integers
s0, s1, s2, ..., s3m−1 and a positive integer B such that B/4 < si < B) is feasible (we can find
m sets S0, S1, ..., Sm−1 where each set sums to B), then the corresponding dual-criticality
sporadic task system YI is schedulable. We will do so by designing a particular scheduler for
this type of task set.

6 Again, we are concerned only with NP-hardness; therefore, we needn’t show a reduction from periodic
task instances to 3-PARTITION instances.
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4.2 Scheduling a Sporadic Instance of YI

Here, we wish to design a schedule that can correctly schedule the sporadic task set if the
periodic task set is schedulable. In other words, given a feasible instance of I, this scheduler
will always meet all deadlines if no job exceeds its lo-criticality WCET and will meet all
hi-criticality deadlines if some job exceeds its lo-criticality WCET, but does not exceed its
hi-criticality WCET. Intuitively, this scheduler tries to mimic the periodic schedule.

LO-criticality mode scheduling algorithm. The run-time scheduling algorithm is an almost-
fixed-priority scheduler when in lo-criticality mode. In particular, each high-criticality task
is assigned a priority and higher-priority high-criticality tasks take precedence over lower-
priority high-criticality tasks. Priority assignment to the 3m hi-criticality tasks is determined
according to the set they are in for the solution of I. Tasks in set S0 have priority 0, tasks in
S1 have priority 1 and so on – here, lower numbers denote greater scheduling priority.

However, scheduling decisions for low-criticality jobs are a little different. Each hi-
criticality task τi in set Sj maintains an auxiliary variable called slack `i ← jB – this is
the amount of time the lo-criticality task is allowed to execute after τi is released before τi
becomes “higher priority” than the lo-criticality task.

The schedule is a work-conserving schedule with the following properties. A hi-criticality
job always yields to all higher priority hi-criticality jobs. That is, a job generated by task
τi in set Sj will yield to all jobs generated by tasks in sets S0, S1, .., Sj−1. There are three
tasks at each priority level and the scheduler can arbitrarily pick between jobs of these tasks.
In addition, each job of hi-criticality task τi keeps track of how much lo-criticality work has
executed since its release. While this work is smaller than `i, it yields to lo-criticality jobs.
After this work is equal to `i, it never yields to lo-criticality jobs.

HI-criticality mode scheduling algorithm. The system transitions to hi-criticality mode
at time Tr if any hi-criticality job executes for CLi time without signalling completion. After
Tr, the jobs generated by lo-criticality task are never given any execution time and the
hi-criticality jobs just run with earliest deadline first scheduling.

4.3 Proof of Schedulability
We must now show that this task system is always schedulable using the scheduling algorithm
described above. The basic idea is that the scheduler tries to mimic the periodic schedule.

Recall that, in the periodic schedule in lo-criticality mode, jobs generated by tasks in S0
never experience any interference since they are executed as soon as they are released. In
general, jobs of tasks of sets S0, S1, ..., Sj−1 execute before jobs of tasks in Sj ; in addition
jB jobs of the lo-criticality task can execute before tasks in Sj . Therefore, tasks in Sj are
guaranteed to complete by time (2j + 1)B in the periodic schedule. The scheduler described
above is specifically designed to ensure that a job of τi in set Sj never experiences more
interference in the sporadic schedule than it experiences in the periodic schedule; therefore,
the response time of each hi-criticality task in lo-criticality behavior is at most its response
time in the strictly periodic scheduler. This leads to two good properties. First, and more
obviously, all hi-criticality tasks meet their deadlines in lo-criticality mode. Second, and less
obviously, since the response time of all hi-criticality jobs in lo-criticality mode is bounded
by their response time in the periodic schedule, the transition point occurs “early enough.”
That is, if a hi-criticality job exceeds its lo-criticality WCET and the system transitions
into hi-criticality behavior, then all pending jobs still have enough time to complete their
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hi-criticality work CLi . In addition, we must argue that while the system remains in lo-
criticality mode, all lo-criticality tasks also meet their deadlines. This is possibly the most
counter-intuitive part of the argument; here we argue that the slack condition ensure that at
most a total of B hi-criticality work reaches slack 0 and preempts any single lo-criticality
job during its execution.

We will first argue that all jobs (from both hi-criticality and lo-criticality tasks) meet
their deadlines while the system remains in lo-criticality behavior and then we will argue
that hi-criticality jobs meet their deadlines if the system transitions to hi-criticality behavior.

4.3.1 Correctness Proof for LO-Criticality Behavior
We will first argue that all hi-criticality tasks meet their deadlines in lo-criticality behavior.
This is relatively straightforward. We first prove a simple lemma about idle instant – that is,
an instant such that all pending work has completed. In particular, at the idle instant, all
the jobs that were released before this instant has completed.

I Lemma 3. While the system remains in lo-criticality behavior, in any interval of size
2mB, there is at least one idle instant.

Proof. We start at an idle instant t and argue that the next idle instant is within 2mB time.
Look at the interval from t to t+ 2mB. During this interval, at most mB lo-criticality work
is released and at most mB hi-criticality work is released. If this interval stays busy, then
all this work is done by the end of this interval; therefore, there is an idle instant at time
t+ 2mB if there is not one before. J

The following corollary follows from Lemma 3 and the fact that the inter-arrival time
between consecutive jobs of the same hi-criticality task in our task system is at least 2mB.

I Corollary 4. While the system remains in lo-criticality mode, between any two consecutive
job releases of the same hi-criticality task, there is an idle instant.

We can now use this corollary to show that all hi-criticality tasks meet their deadlines in
lo-criticality mode.

I Lemma 5. The response time of a job of task τi in set Sj is bounded by (2j + 1)B in
lo-criticality mode. Therefore, all hi-criticality tasks meet their deadlines in lo-criticality
mode.

Proof. Due to Corollary 4, no job can suffer interference from two jobs of the same task
since there is an idle instant between consecutive releases. A hi-criticality task τi in set Sj
has priority j and only tasks in sets S0, S1, ..., Sj can interfere with it. Therefore, the total
lo-criticality WCET of higher priority tasks including its own priority, is exactly (j + 1)B.
In addition, the total interference it can experience from lo-criticality tasks is at most jB
(by enforcement of the slack scheduling policy). Therefore, the job has a response time of at
most (2j + 1)B. J

We now prove the more interesting result that all jobs generated by the lo-criticality task
also meet their deadlines in the lo-criticality mode. This argument depends on the slacks.
In general, one might worry that if there are many hi-criticality jobs with small remaining
slack, then a lo-criticality job may starve and not be able to get enough computation time
by its deadline. We will now argue that this cannot happen.

Intuitively, this is easiest to see in a strictly periodic schedule starting at time 0. The
jobs of tasks in S0 have no slack since for all these tasks `i = 0 – therefore, they execute
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first taking up the first B time steps. After this, however, the first lo-criticality job gets
to execute and meets its deadline. At this point, jobs in S1 have exhausted their slack and
they execute next. The jobs in S2 started with slack of 2B and have B slack remaining, so
the second lo-criticality job executes before them. Therefore, the lo-criticality job gets B
execution in the interval from its release time to its deadline every time and meets all its
deadlines. We will do an induction argument to see this. In order to do this induction, we
need two additional definitions.

We define w(τi, t) as the remaining work of task τi at time t. At an idle instant,
w(τi, t) = CLi . If no job of a task τi has been released since the last idle instant or a job
has been released, but has not yet done any execution, then w(τi, t) = CLi . As a job of a
task executes, its w decreases. In particular, if a job of the task τi has done work w since
the last idle instant, then w(τi, t) = CLi − w. If the job (released since last idle period) has
completed, then w(τ, t) = 0.

We will define a quantity running slack r`i for each task τi. At the beginning of the
execution and at any idle instant, the running slack r`i is set to the task slack `i – that
is, tasks in set Sj get a slack of jB. This running slack remains unchanged until a job of
this task τi is released. Once a job Ji of a task τi is released, r`i decreases every time step
that a job of the lo-criticality task executes – this corresponds to keeping track of how
much lo-criticality work has executed since job Ji arrived. By the scheduler definition, once
r`i = 0 the job Ji stops yielding to lo-criticality jobs and no lo-criticality job can execute
until Ji finishes executing. Note that it is sufficient to reset r`i values at each idle instant
since by Corollary 4, there is an idle instant between consecutive arrivals of any hi-criticality
task; therefore, the running slack r`i is always reset to `i between consecutive job arrivals of
the same task. (Note that since we have a work-conserving scheduler, hi-criticality jobs with
slack larger than 0 can run if there is no lo-criticality pending job.)

Recall that we must argue that if a lo-criticality job arrives at time t, at most B hi-
criticality work can preempt it – this would ensure that the lo-criticality job gets enough
execution time within its release time to deadline scheduling window of [t, t+2B] to complete
its own execution requirement of B. We define a quantity that generalizes this notion: we
define Ł(K, t) as the total work with slack at most K after time step t. In other words,
Ł(K, t) =

∑
r`i≤K w(τi, t). If Ł(K, t) = W , then W hi-criticality work has slack smaller than

K at time t. At any time instant t, some hi-criticality job can preempt a lo-criticality job
only if its work is in Ł(0, t).

At a high level, the function Ł(K, t) can be looked upon as a measure of how much work
is urgent (and to what extent). Consider the platform at time rJ when a lo-criticality job J
arrives. All the work in Ł(0, rJ ) has no slack (its r`i value is 0) and will execute before this
lo-criticality job J can start execution. After this the lo-criticality job J can start, but all
tasks that have pending jobs in the system will reduce their r`i values – therefore, when J
has completed 1 unit of work at time rJ + t1, the pending work that was in Ł(1, rJ) (had
running slack r`i smaller than 1 at time t ) will now be in Ł(0, rJ + t1) and will preempt
this lo-criticality job. In general, if J has completed b work by time rJ + tb, then the work
that was in Ł(b, rJ) may now be in Ł(0, Jr + tb) and can preempt this lo-criticality job at
time rJ + tb. However, note that any work that was not in Ł(B − 1, rJ) cannot become
urgent before J completes since its slack can only reduce by B and therefore, cannot become
0 before J completes.

We can divide this Ł function into two components: Łf and Łp. Łf contains the work
of all the tasks where no job of this task has yet arrived into the system since the last idle
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instant. Therefore,

Łf (K, t) =
∑

r`i≤K,τinot pending
w(τi, t) =

∑
r`i≤K,τinot pending

CLi .

Łp contains the work of all the jobs that are pending. For all tasks whose jobs have finished
executing since the previous idle instant, their corresponding w is 0. Therefore, for all
parameters, Łf and Łp sum up to Ł.

We first prove an invariant on Łf .

I Lemma 6. At any time t, Łf (jB − 1, t) ≤ jB for all 1 ≤ j ≤ m.

Proof. At an idle instant, at time 0, before any jobs arrive, all running slacks reset. Therefore,
by definitions of `i, the tasks in set Sj have r`i = jB. Therefore, there is B total work
with slack 0, B work with slack B, and so on. Therefore, the total work with slack B − 1 is
Łf (B − 1, 0) = B, the total work with slack 2B − 1 is Łf (2B − 1, 0) = 2B and, in general,
the total work with slack at most jB − 1 is Łf (jB − 1, 0) = jB. Since the total pending
hi-criticality work at any time is at most mB and nothing has slack more than (m− 1)B,
we have Łf ((m− 1)B, t) = Łf (mB − 1) ≤ mB. Łf is maximum at an idle instant, since Łp
is 0 for all values. After this point, Łf only reduces as jobs arrive in the system. J

We will now prove an invariant on the function Ł which will let us prove that the
lo-criticality task is schedulable.

I Lemma 7. When a lo-criticality job J arrives at time rJ , we have Ł(jB − 1, rJ) ≤ jB
for all 1 ≤ j ≤ m.

Proof. We will prove a stronger statement by induction.7 Without loss of generality, we
reset time to 0 at an idle instant. Say an lo-criticality job arrives at time rJ . After the
arrival of this lo-criticality job and until its completion or until an idle instant (whichever is
sooner), we have to prove the following: Say at time rJ + b+ c, the lo-criticality job has
executed for b time steps and some hi-criticality jobs have executed for c time steps. Then,
we have Ł(jB − 1− b, rJ + b+ c) ≤ jB − c. If we prove this statement, then we obviously
get the lemma by substituting b = c = 0.

At an idle instant, at time 0, all running slacks reset and all L is in Łf . Therefore,
Lemma 6 gives us the base case.

We now induct on time steps. Say a lo-criticality job J was released at time step rJ and
has a deadline of dJ . Lets say that at in interval [rJ , rJ + b + c], the schedule has done c
hi-criticality work and b work on this lo-criticality job. By the inductive hypothesis, we
have Ł(jB − 1− b, rJ + b+ c) ≤ jB − c.

Case 1: On the next step, say we do 1 unit of lo-criticality work. Then at time step
rJ + b+ c+ 1, we have done b+ 1 lo-criticality work and c hi-criticality work. We must show
that Ł(jB−1−b−1, rJ+b+c+1) ≤ jB−c. Now the slack of all jobs that have arrived by time
rJ+b+c, but not completed reduces by 1. Therefore, we have Łp(iB−1−b−1, rJ+b+c+1) =
Łp(iB−1−b, rJ +b+c). In addition, Łf (iB−1−b−1, rJ +b+c) = Łf (iB−1−b, rJ +b+c)
since b ≤ B and Łf only changes at discrete intervals of size B. Therefore, we have
Ł(iB−1−b−1, rJ+b+c+1) = Łp(iB−1−b−1, rJ+b+c+1)+Łf (iB−1−b−1, rJ+b+c+1) =

7 Without loss of generality, we are assuming discrete time for ease in induction. One can imagine that
each time step takes as long as a machine instruction. One can also do this induction based on events;
but it gets more complicated.
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Łp(iB − 1− b, rJ + b+ c) + Łf (iB − 1− b, rJ + b+ c) ≤ jB − c. If a job is released at time
step rJ + b+ c+ 1, this moves its work from Łf to Łp, but does not change the overall sum
in Ł.

Case 2: On the next step, we do one unit of work on some hi-criticality job Ji from task τi
in set Sj . The only way we can do this while job J is still pending is because r`i has become 0.
Therefore, w(τi) is part of Ł(0, rJ+b+c). Since Ł function is cumulative, this work is also part
of all Ł(K, rJ +b+c) for all K > 0. Therefore, when this work is executed, all Ł’s reduce by 1
on this time step. Therefore, Ł(jB−1−b, rJ+b+c+1) = Ł(jb−1−b, rJ+b+c)−1 ≤ jB−c−1.

The deadline of the lo-criticality job is 2B time steps after its release time. Say we
did W ≤ B lo-criticality work by the deadline and 2B −W hi-criticality work. Therefore,
we have Ł(iB − 1 −W,Jd) ≤ iB − 2B + W . Since W ≤ B, we have Ł(iB − 1 − B, Jd) ≤
iB − 2B + W ≤ iB − B. Since this invariant is true for all 0 ≤ i ≤ m − 1, we have,
Ł(iB − 1, Jd) ≤ iB. If the next job is immediately released, we have satisfied the invariant.
If the next job is not immediately released, then some hi-criticality job executes and the
Ł(iB − 1, t) for current time instant t only decreases, therefore, the invariant remains true
when the next lo-criticality job is released. J

We can now argue that all lo-criticality jobs meet their deadlines if the system remains
in lo-criticality mode. Recall that we argued that any work that was not in Ł(B− 1, t) when
a lo-criticality job J arrives at time t cannot become urgent before J completes since its
slack cannot become 0 before J completes.

I Lemma 8. lo-criticality jobs finish by their deadlines in lo-criticality mode.

Proof. From Lemma 7, we know that when a lo-criticality job arrives at time t, Ł(B−1, t) ≤
B. Therefore, at most B work has slack smaller than B when this job arrives. As this job
executes, slack of all jobs reduces, but only the work that already has slack smaller than
B can get to 0 before this job finishes. Therefore, only this B work can interfere with this
lo-criticality job. Therefore, the lo-criticality job gets to execute for B time units within
its scheduling window of 2B and hence does not miss its deadline. J

4.3.2 Correctness for HI-Criticality Behavior
We now have to show that all jobs can meet their deadlines in hi-criticality mode. In
particular, we will say that a transition occurs at Tr when some hi-criticality job executes
for CLi time steps, but does not signal completion. The lo-criticality task does not get any
further execution after time Tr. For all jobs that are pending at time Tr or arrive after Tr,
we must argue that they can complete by their deadlines even if they execute for hi-criticality
WCET CHi .

The intuition behind this proof relies on the periodic schedule. Recall that in the periodic
schedule’s schedulability relies on the following fact: if a job J from task τi in set Sj is released
at time rJ (with deadline dJ = rJ +2m), then it is guaranteed to finish its lo-criticality work
by time rJ + (2j + 1)B. Therefore, if this job were going to cause a mode-transition, then it
would happen before this time, implying Tr = rJ + (2j+ 1)B (or earlier). In addition, by this
time there are no pending jobs from any set in S1, S2, ..., Sj−1. Therefore, we can only have
pending jobs from tasks in sets Sj , Sj+1, ..., Sm−1. The total hi-criticality WCET for all jobs
in this set is 2(m− j)B and we have already done B work from set Sj . Therefore, the total
pending work is (2m− 2j − 1)B. Since all hi-criticality jobs have the same release time and
deadline in the periodic schedule, all this work can be completed by the deadline. Staring
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from the next hyper-period, we have an implicit deadline task system with on hi-criticality
tasks which have total utilization of 1; therefore, they are schedulable.

In the sporadic schedule, we no longer have the nice property that all pending hi-criticality
jobs have the same deadline. However, we can still argue the crucial point that the total
pending work at the transition time Tr is bounded. In particular, just like the periodic
schedule, if a job from task τi from set Sj causes the transition, then no job from sets
S0, S1, ..., Sj−1 can be pending. Therefore, the total amount of pending work is bounded.

We will say that there is carry-over work for task τi if a job J of task τi has been released
by the transition time Tr, but has not completed. We denote the set of carryover jobs by C.
We say that each task τi has completed di work by transition time Tr if the latest release of
this job has done di work by time Tr. This quantity di is defined for both carryover jobs and
non-carryover jobs.

We now prove a generalization of Lemma 5.

I Lemma 9. Consider a job Ji of task τi in set Sj with release time rJi < Tr which has not
completed by time Tr. We have Tr ≤ rJi + 2jB +

∑
τk∈Sj

dk. Therefore, the deadline for job
Ji is dJi ≥ Tr + 2mB − 2jB −

∑
τk∈Sj

dk.

Proof. After rJi , only tasks of higher priority than τi (those belonging to Sp where p < j)
tasks in Sj and lo-criticality tasks can execute before. Since the system remains in lo-
criticality mode until time Tr, no job has previously exceeded its lo-criticality WCET. There
is only jB work with higher priority and due to the slack condition, only jB lo-criticality
work can execute. Finally,

∑
τk∈Sj

dk work was done for tasks in set Sj . Since the system
stays busy between rJi and Tr, we get the condition on release time. The condition on dJi is
obtained by adding 2mB (the relative deadlines of all hi-criticality tasks) to rJi . J

Lemma 9 provides us a crucial condition that no pending job’s deadline is too close to
the transition point. Even more crucially, the higher the priority of the pending job (the
smaller the j value), the farther in the future its deadline is guaranteed to be. This is due to
the following. Either this job just completed its lo-criticality WCET CLi at time Tr and did
not signal completion (causing the mode transition) or this job has not yet completed its
lo-criticality WCET CLi . (If it had completed its CLi earlier, it cannot still be pending since
it would either complete or cause a transition earlier.) But we know that higher priority
jobs have a smaller response time in lo-criticality mode. Therefore, if higher-priority jobs
were going to exceed their lo-criticality WCET, causing a transition, then they cause this
transition sooner after their release compared to lower priority jobs.

This condition helps us prove completion of carryover jobs using a reverse-priority
scheduler. This scheduler only looks at carry-over jobs (it ignores all jobs that arrive after
Tr) and schedules jobs in reverse order of priorities. That is, carryover jobs from tasks in set
Sp where p > j are scheduled before carryover jobs from set Sj for all j.

I Lemma 10. All jobs with carry-over work complete by their deadlines using the reverse-
priority scheduler.

Proof. As we mentioned earlier, Lemma 9 implies that if we look at all the pending jobs at
transition time Tr, the higher the priority of the job, the farther in the future the deadline of
the job is guaranteed to be. This does not mean that all deadlines are ordered by priorities –
it only means that the higher priority jobs cannot have deadlines that are too soon after Tr.

It is easy to see that with the reverse priority scheduler, that carry-over jobs with priority j
will finish by time Tr+

∑
τk∈Sj ,Sj+1,...,Sm−1

(CHk −dk) ≤ Tr+2(m−j)B−
∑
τk∈Sj ,Sj+1,...,Sm−1

dk
time using the reverse priority scheduler. Since the deadline of any job Ji with priority j is
dJi ≥ Tr + 2(m− j)B −

∑
τk∈Sj

dk (Lemma 9), the job meets its deadline. J
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I Corollary 11. All jobs with carry-over work complete by their deadlines using EDF.

Proof. Since all carry-over jobs were released before Tr, EDF will always schedule them
before scheduling any jobs released after Tr. Therefore, just like the reverse-priority scheduler,
EDF ignores all non-carryover jobs until the carryover work is done. We know that EDF is an
optimal scheduler and if any scheduler can schedule a set of jobs, EDF can. Therefore, since
reverse-carryover scheduler and EDF consider the same set of carryover jobs, and reverse-carry
over scheduler meets all deadlines (Lemma 10), then EDF also meets all deadlines. J

We must now prove that all jobs that are released after transition time Tr can meet their
deadlines. These jobs are easier to reason about since after Tr, we do not have to worry
about mixed-criticality execution any more – we simply have a simple implicit deadline task
system where all tasks have the same period and deadlines.

I Lemma 12. All hi-criticality jobs meet their deadlines in hi-criticality mode when scheduled
with EDF.

Proof. Corollary 11 indicates that all carryover jobs meet their deadlines. So we need only
worry about jobs that are released after time Tr. Since all jobs have the same relative
deadline and we schedule using EDF, no job can interfere with a job that is released after
itself. Therefore, no job can suffer interference from 2 jobs of the same task. Since the total
hi-criticality WCET of all hi-criticality tasks collectively is 2mB and the relative deadline is
2mB, there is enough time to execute one job of all tasks after a job’s release time and still
meet its deadline. J

Lemmas 5, 8 and 12, and Theorem 2 collectively allow us to conclude that given an
instance I of 3-PARTITION, we can generate a sporadic task system that is schedulable if
and only if I has a solution. Therefore, a dual-criticality schedulability for sporadic task
systems is NP-hard in the strong sense – this completes the proof of the main result in this
section.

5 Conclusions and Discussion

Designing efficient mixed-criticality scheduling algorithms is a very challenging problem. In
this paper we have described our efforts at approach this problem by breaking it out into
two constituent components, seeking to separate the difficulties that arise from the on-line
nature of mixed-criticality scheduling – the fact that much important information is simply
not known prior to run-time – and those arising from computational complexity issues. As a
major step to doing so, we first needed to establish that determining MC-schedulability for
recurrent (periodic or sporadic) implicit-deadline task systems is NP-hard in the strong sense;
in this manner, we showed that all three mixed-criticality scheduling problems considered –
scheduling collections of jobs, of periodic tasks, and sporadic tasks – have to deal with both
sources of intractability.

With regards to the scheduling of collections of independent jobs, we established, for the
first time, an approximation ratio for OCBP vis-à-vis MC-schedulability, thereby quantifying
OCBP’s deviation from optimal behavior due to computational complexity issues (as opposed
to its sub-optimality due to non-clairvoyance). This result gave rise to several interesting
issues and questions:
1. A somewhat odd aspect of this result is that OCBP’s approximation ratio and its

competitive ratio (ie., its performance hit vis-à-vis a clairvoyant scheduler) are both equal
to the same constant (Φ,≈ 1.618); we do not have an understanding as to why this should
be so.
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2. We observed that speedup factor, when used as a metric for both competitive ratio and
approximation ratio, does not appear to compose in any meaningful manner: while the
competitive ratio of any MC-scheduling job algorithm is ≥ Φ and OCBP’s approximation
ratio for solving the MC-scheduling problem is Φ, the speedup factor of OCBP vis-à-vis
clairvoyant schedulability is also Φ (rather than, say, 2Φ or Φ2).

3. It would be interesting to seek to characterize other algorithms that have been proposed
for scheduling dual-criticality job instances (such as MC-EDF [13] and LE-EDF [9, page
29]) by approximation ratios. These algorithms have been experimentally observed to
perform better than OCBP on randomly-generated data; perhaps their superiority can
be quantified by showing that they have a smaller approximation ratio than Φ?

With regards to EDF-VD and the scheduling of recurrent task systems, the non-optimality
of EDF-VD vis-à-vis MC-schedulability had not, to our knowledge, been explored previously.
By showing that MC-schedulability for dual-criticality recurrent task systems is NP-hard
in the strong sense, we have provided some justification for the use of these non-optimal
algorithms. There are several open issues concerning the analysis of EDF-VD – we would, in
essence, like to eventually have as complete an understanding of EDF-VD’s effectiveness as
we have currently been able to obtain for OCBP. This includes determining whether EDF-VD
is optimal (vis-à-vis MC-schedulability – it is known to not be optimal vis-à-vis clairvoyant
schedulability) for certain classes of task systems, determining approximation ratios, etc.
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Abstract
This paper presents federated scheduling algorithm, called MCFQ, for a set of parallel mixed-
criticality tasks on multiprocessors. The main feature of MCFQ algorithm is that different altern-
atives to assign each high-utilization, high-critical task to the processors are computed. Given
the different alternatives, we carefully select one alternative for each such task so that all the
other tasks can be successfully assigned on the remaining processors. Such flexibility in choosing
the right alternative has two benefits. First, it has higher likelihood to satisfy the total resource
requirement of all the tasks while ensuring schedulability. Second, computational slack becomes
available by intelligently selecting the alternative such that the total resource requirement of all
the tasks is minimized. Such slack then can be used to improve the QoS of the system (i.e.,
never discard some low-critical tasks). Our experimental results using randomly-generated paral-
lel mixed-critical tasksets show that MCFQ can schedule much higher number of tasksets and can
improve the QoS of the system significantly in comparison to the state of the art.
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1 Introduction

Multicore processors offer high computing power to meet the increasing demand of more
advanced functions in many real-time systems like automotive and avionics. Multicores also
provide the opportunity to integrate multiple functions having different levels of criticality on
the same platform. The real-time tasks of such mixed-critical (MC) systems require different
levels of assurance in meeting their deadlines. A relatively high-critical task requires a higher
level of assurance in meeting its deadline because such a task is often safety-critical and its
correctness under very pessimistic assumptions needs to be approved by the certification
authority (CA). On the other hand, the system designers’ objective is to ensure the correctness
of both high- and low-critical tasks but under relatively less pessimistic assumptions. The
different concerns and pessimism between the CA and system designer makes it challenging
to develop a real-time multiprocessor scheduling strategy for MC system.

Parallel programming paradigm allows both inter- and intra-task parallelism to effectively
exploit the processing capacity of a parallel multicore architecture: each real-time task can be
implemented using a task-based parallel programming model such as OpenMP4.0 [33], where
the dependencies between sequential chunks of computation (called, subtasks) are specified
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by programmers. Thus, each parallel task can be viewed as a direct acyclic graph (DAG),
where the nodes are subtasks and edges are dependencies (called, precedence constraints)
between the subtasks. This paper presents a scheduling algorithm and its analysis for a
collection of dual-criticality sporadic DAG tasks on multiprocessors where each task is either
a high-critical (HI) task or a low-critical (LO) task.

Several works on scheduling (non-MC) sporadic DAG tasks on multiprocessors [25, 31]
abstract the complex internal structure of each DAG task using only two parameters: total
work and critical-path length. The total work of a task τi is the sum of the worst-case
execution times (WCETs) of all the subtasks of task τi. The critical-path length of task τi is
the maximum sum of the WCETs of the subtasks that belong to any source-to-sink path of
task τi. Li et al. [27] proposed mixed-critical DAG task model by associating a nominal and
an overload value for the total work and critical-path length for each DAG task. The nominal
and overload total work of a DAG task τi are respectively denoted by CNi and COi such that
CNi ≤ COi . Similarly, the nominal and overload critical-path length are respectively denoted
by LNi and LOi where LNi ≤ LOi . Li et al. [26] recently (September, 2017) proposed federated
scheduling of implicit-deadline MC sporadic DAG tasks, called MCFS-Improve, which is an
improvement of their original work in [27].

The basic idea of federated scheduling is the following. Each MC task τi with overload
utilization larger than 1 is assigned to a set of dedicated processors and all the low-utilization
tasks are assigned on the remaining processors. Each task is also assigned a virtual deadline
[4] such that the task meets its deadline if it does not overrun its nominal total work and
critical-path length. The runtime system has two states: typical and critical. Each task
initially starts in typical state. The state of the system is switched from typical to the
critical state when some job does not signal completion by its virtual deadline. During the
critical state, the LO-critical tasks may need to be discarded to allocate additional computing
resource to the HI-critical tasks so that each HI-critical task meets its deadlines during the
critical state. Li et al. [27, 26] proposed a very interesting algorithm to assign a collection of
MC sporadic DAG tasks to a given number of processors and apply a schedulability test to
determine whether the assignment guarantees the MC-correctness of the system or not (the
formal definition of MC-correctness will be presented shortly).

By carefully analyzing the task-assignment algorithm in [26], we observed that the number
of dedicated processors required for individual high-utilization task does not take into account
how many processors are required for the other tasks. Consequently, the task assignment in
MCFS-Improve [26] may declare failure due to not having enough number of processors for
all the tasks even if there exists another way of allocating dedicated processors to individual
high-utilization task. Our second observation is that the task assignment algorithm in
MCFS-Improve does not explicitly consider to maximize the number of LO-critical tasks that
do not need to be discarded in the critical state. Maximizing the number of LO-critical tasks
that are never discarded is important to improve the QoS of the system.

The task assignment algorithm is very crucial for guaranteeing the MC-correctness for
federated scheduling on multiprocessors. Since the problem of assigning tasks to the processors
(even for sequential tasks) is NP-hard in the strong sense, designing an effective task
assignment algorithm for federated scheduling is not only important but also more challenging
for parallel tasks in comparison to sequential tasks. To this end, we propose a new task
assignment algorithm for federated scheduling, called Mixed-Criticality Federated Scheduling
with QoS (MCFQ), and empirically show that the performance is significantly better in terms
of both schedulability and improving the QoS of the system in comparison to MCFS-Improve.
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The main feature of MCFQ algorithm is that it finds different alternative ways to assign
individual high-utilization task to different number of dedicated processors based on a new
schedulability test. After all the different alternatives to assign each high-utilization task
are computed, we carefully select one particular alternative for each high-utilization task
such that all the tasks can be successfully assigned to the available number of processors.
In contrast to the task-assignment algorithm in [27, 26] that makes “local” decision about
task assignment when analyzing each individual high-utilization task separately, we make a
“global” decision by taking into account how processors can be intelligently allocated to the
tasks so that there are enough processors for all the tasks. The main contributions of this
paper are the following:

A new federated scheduling algorithm MCFQ for a set of implicit-deadline MC sporadic DAG
tasks on M processors is proposed. A new schedulability analysis for the high-utilization
and HI-critical tasks is proposed. The main outcome of the analysis is a polynomial-time
schedulability test that can be used to determine different alternatives for allocating
such tasks to dedicated processors. Based on the different alternatives for assigning
the high-utilization and HI-critical tasks, we ultimately find different alternatives to
assign all the tasks to the processors such that MC-correctness for each such alternative is
guaranteed.
We select the alternative to assign all the tasks that minimizes the total number of
processors required during the critical state, which maximizes the number of unused
processor during the critical state. The unused processors during the critical state are
used to meet the demand of additional computing capacity of the HI-critical tasks rather
than discarding some or all the LO-critical tasks. We apply Integer Linear Programming
(ILP) to maximize the number of such non-discarding LO-critical tasks.
Empirical investigation using randomly-generated tasksets shows that both the number
of schedulable tasksets and the QoS of the system using MCFQ algorithm are significantly
higher than the state-of-the-art MCFS-Improve algorithm.

The remainder of this paper is organized as follows. Section 2 presents the system model
and useful definitions that are used in this paper. An overview of the MCFQ algorithm is
presented in Section 3. The detailed schedulability analysis of the MCFQ algorithm is presented
in Section 4. Empirical investigation is presented in Section 5. Finally, related works are
presented in Section 6 before concluding in Section 7.

2 System Model and Useful Definitions

We consider scheduling a set Γ = {τ1, . . . τn} of n implicit-deadline MC sporadic DAG tasks
on M identical processors such that each processor has a (normalized) speed of one. Each
task τi is characterized by the tuple (Zi, Ti, Di, C

N
i , C

O
i , L

N
i , L

O
i ) where

Zi ∈ {HI, LO} is the criticality of the task: LO and HI specifies that task τi is a low-critical
task and a high-critical task, respectively;
Ti ∈ R+ is the minimum inter-arrival time of the jobs (i.e., called the period) of the task;
Di ∈ R+ is the relative deadline the task such that Di = Ti;
CNi and COi are the maximum nominal and maximum overload total work for any job of
task τi where CNi ≤ COi for Zi = HI and COi = CNi for Zi = LO; and
LNi and LOi are the maximum nominal and maximum overload critical-path length for
any job of task τi where LNi ≤ LOi for Zi = HI and LOi = LNi for Zi = LO.

If a job of task τi is released at time r, then it must complete its execution by time (r+Di).
The nominal and overload utilizations of task τi are respectively denoted by uNi and uOi such
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that uNi = CNi /Di and uOi = COi /Di. If uOi > 1, then task τi is a high-utilization task;
otherwise, it is a low-utilization task. Based on the overload utilization and the criticality,
the tasks in set Γ are categorized in four disjoint subsets ΓHH, ΓHL, ΓLH, and ΓLL as follows:

ΓHH = {τi | uOi > 1 and Zi = HI} ΓLH = {τi | uOi > 1 and Zi = LO}
ΓHL = {τi | uOi ≤ 1 and Zi = HI} ΓLL = {τi | uOi ≤ 1 and Zi = LO}

Note that Γ = ΓHH ∪ ΓLH ∪ ΓHL ∪ ΓLL. We will use the following lemmas later in this paper.

I Lemma 1. Consider a MC DAG task τi. The following property is satisfied:

(COi − CNi ) ≥ (LOi − LNi ) (1)

Proof. By the definition of total work and critical-path length, it is evident that the total
work includes the work on the critical path. Therefore, the difference between the overload and
nominal total work is larger than or equal to the difference between the overload critical-path
length and nominal critical-path length. Therefore, (COi − CNi ) ≥ (LOi − LNi ). J

I Lemma 2. Consider a job J of a DAG task τ that is released at time r and executes on
m dedicated processors using a work-conserving algorithm1 where m ≥ 1. If the remaining
total work and the remaining length of the critical path at time (r + t) are respectively C and
L where t ≥ 0, then job J completes its execution no later than at time (r +R) such that

R ≤ t+ L+ C − L
m

(2)

Proof. Since (r +R) is the time at which the job completes its execution, there is at least
one processor busy executing the nodes of job J in the interval [r + t, r +R]. Let ` is the
cumulative length of intervals in [r + t, r + R] during which at least one processor is idle
where ` ≥ 0. Therefore, all the m processors are simultaneously busy for a cumulative length
of intervals equal to (R− t− `) in the interval [r + t, r +R].

Since the remaining length of the critical path decreases when there is at least one
processor idle, we have 0 ≤ ` ≤ L. Therefore, the total work completed during the interval
[r + t, r +R] is at least `+m · (R− t− `). Since the the maximum remaining total work at
time (r + t) is C, we have

`+m · (R− t− `) ≤ C
(since m ≥ 1 and ` ≤ L)

⇒ L+m · (R− t− L) ≤ C

⇔ R ≤ t+ L+ C − L
m

J

Our proposed MCFQ scheduling algorithm assigns a virtual deadline, denoted by Dv
i , to

each task τi. As will be evident later, the virtual deadline for each task is assigned such that
each job of task τi is guaranteed to meet its deadline by it virtual deadline if the total work
and critical-path length does not exceed their nominal values CNi and LNi , respectively.

1 A work conserving algorithm is any scheduling algorithm that never idles a processor if there is a node
waiting for execution.
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States. The system operates either in typical or critical state. The system starts in typical
state. If each job of each task τi signals completion by its virtual deadline Dv

i , then the
system remains in the typical state. If any job does not complete by its virtual deadline (i.e.,
either the total work or critical-path length exceeds the nominal value), then the system is
said to switch from typical to critical state. Once the system switches to the critical state,
jobs of the LO-critical tasks may be discarded. The system remains in the critical state if
each job of the HI-critical task signals completion without overrunning its overload total
work COi and overload critical-path length LOi . All other states are erroneous.

Correctness. We define an algorithm for scheduling a set of MC tasks to be correct if the
following properties are satisfied:

During the typical state, all the jobs of each task meet their deadlines.
During the critical state, all the jobs of each HI-critical task meets their deadlines.

It is evident from the definition of correctness that if the state of the system is changed from
typical to critical, then the runtime scheduler can discard the execution of such LO-critical
tasks during its critical state in order to provide additional computing resource to ensure the
correctness of the HI-critical tasks. The system can switch back from critical to typical state
based on the approach proposed by Li et al. [26, p. 794].

3 An Overview of the MCFQ Algorithm

The MCFQ scheduling works in two phases: an offline task assignment phase and an online
runtime scheduling phase. In this section, we present an overview of the task-assignment phase
and the runtime scheduler of MCFQ. In Section 4, we present the details of the task-assignment
phase, present the schedulability analysis, and prove the correctness of MCFQ.

Task Assignment Phase. This phase determines the mapping of the tasks to the processors
and also computes a virtual deadline Dv

i for each task τi. The idea of virtual deadline,
originally proposed for EDV-VD scheduling of sequential tasks [4], is also used by Li et al.
[27, 26] for MCFS-Improve algorithm. The virtual deadline of each task τi is used by the
runtime scheduler to determine whether the system needs to switch from typical to critical
state or not. The method to compute the virtual deadline will be presented shortly.

The MCFQ scheduling algorithm assigns each task to the processors based on whether
it is a high- or low-utilization task. It assigns each high-utilization (i.e., uOi > 1) task
τi ∈ (ΓHH ∪ ΓLH) to a set of dedicated processors. We denote πNi and πOi the number of
dedicated processors assigned to a high-utilization task τi for the typical and critical states,
respectively. The number of dedicated processors assigned to each HH task τi ∈ ΓHH for the
typical and critical states satisfies πNi ≤ πOi . A HH task τi is assigned additional (πOi − πNi )
processors to guarantee its correctness only if τi does not complete by its virtual deadline.

For each LH task τi, the task-assignment only determines the number of dedicated
processors πNi for the typical state. A LH task τi may need to provide its πNi processors (by
discarding τi) to some HI-critical task τk during the critical state. Therefore, πOi =0 for each
LH task τi if such a task is dropped; otherwise, πOi =πNi to specify that τi is never dropped.

We assign the low-utilization tasks in set ΓHL ∪ ΓLL. Since uOi ≤ 1 for each task τi ∈
(ΓHL ∪ ΓLL), we have CNi ≤ COi ≤ Di. Therefore, such a low-utilization task τi can execute
sequentially and does not necessarily require parallelism to meet its deadline. Similar to
[27, 26], the MCFQ algorithm also assigns all the low-utilization tasks using the MC-Partition-
0.75 algorithm proposed in [6]. By applying MC-Partition-0.75 algorithm [6] on all the
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low-utilization tasks, we determine the minimum number of processors required to ensure the
correctness of these low-utilization tasks. Note that MC-Partition-0.75 algorithm allocates
for all the low-utilization tasks the same number of processors for both the typical and
critical states. Let ΠLU is the minimum number of processors (computed by applying MC-
Partition-0.75 algorithm) required for the correctness of all the low-utilization tasks during
the typical and critical states. The minimum can be found by applying a bisection search.

After the number of processors determined for each high-utilization task and for all the
low-utilization tasks for the typical and critical states is determined, we apply the capacity
constraint: if the total number of processors required by all the tasks during each individual
state is not more than M (i.e., number of available processors), then the task-assignment
phase declares success; otherwise, it declares failure.

Before the task assignment phase starts, we assume that all the LH tasks may need to
be dropped (i.e., we assume πOi = 0 for each τi ∈ ΓLH). After the MCFQ algorithm finds a
successful assignment for all the tasks by assuming that all LH tasks are dropped, it may
be the case that the total number of processors required during the critical state for all the
tasks is smaller than M . In other words, there may be (unused) processors that have no
task assigned during the critical state. If the number of such unused processors during the
critical state is more than πNi for some LH task τi, then we set πOi =πNi to specify that such
a LO-critical task is never dropped. Such adjustment will not compromise the schedulability
of the HH task τk because the additional (πOk − πNk ) processors to the HH task τk during
the critical state can be assigned from the set of idle processors rather than discarding the
LH task τi during the critical state.

Run-Time Scheduler. The runtime scheduler of MCFQ algorithm works as follows:
The system starts in typical state. During the typical state,

the nodes of each high-utilization task τi are scheduled using any work conserving
scheduling algorithm on πNi number of dedicated processors; and
the nodes of all the low-utilization tasks are scheduled on ΠLU processors on which
they are assigned by the MC-Partition-0.75 algorithm.

If any HI-critical task τi does not signal completion by its virtual deadline Dv
i , then the

system switches from typical to the critical state, and
If uOi > 1, then one by one active (i.e., not dropped yet) LH task τk for which πOk = 0
is dropped until additional (πOi − πNi ) processors to the HH task τi are assigned. The
nodes of the HH task τi are now scheduled using a work conserving scheduling algorithm
on πOi dedicated processors.
If uOi ≤ 1, the all the LL tasks are dropped and the HL tasks are scheduled on the
ΠLU processors on which they are assigned by the MC-Partition-0.75 algorithm.

Note that if some HL task τi (i.e., uOi ≤ 1) triggers the switching of system’s state from
typical to critical, then all the LL tasks are dropped (no LH task is dropped) since all the
HL tasks (according to [6]) still meets their deadline on ΠLU processors during the critical
state. If some HH task τi (i.e., uOi > 1) triggers the switching of system’s state from typical
to critical, then adequate number of LH tasks are dropped to assign the HH task τi additional
(πOi − πNi ) processors. The remaining (not yet dropped) LH tasks may continue execution
until some other HH task does not complete by its virtual deadline. Therefore, the system
may degrade gracefully as is pointed by Li et al.in [27, 26].

Practicality of Federated Scheduling. The practical consideration of federated scheduling
of parallel DAG tasks is discussed in [25] by pointing out that there is no preemption on any
high-utilization task since each such task has a dedicated number of processors. Note that
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a low priority parallel task in global scheduling (all processors are shared) or partitioned
scheduling (more than one task may share a dedicated subset of the processors) may suffer
from preemption. Li et al. in [26] also developed a reference system written in OpenMP
by implementing the MCFS-Improve scheduling in Linux using the RT_PREEMPT patch
as the underlying RTOS. It has been experimentally shown in [26] that the overhead of
real implementation of federated scheduling for parallel MC tasks is low. Since the runtime
scheduling of MCFS-Improve and our proposed MCFQ algorithms are fundamentally the same,
the MCFQ algorithm can also be implemented the same way as in [26] and is also expected to
have very low implementation overhead.

4 Schedulability Analysis and Task Assignment of MCFQ Algorithm

This section presents the task assignment strategy of MCFQ algorithm. The schedulability
analysis of the tasks in sets ΓLH and ΓHH are presented in subsections 4.1 and 4.2, respectively.
Recall that the MC-Partition-0.75 is used to determine the minimum number of processors
ΠLU to correctly schedule the tasks in set (HL ∪ LL). The total number of processors required
to guarantee the correctness for all the tasks in Γ is determined in subsection 4.3.

4.1 Task Assignment: LH tasks
In this section, the number of processors πNi required to ensure the correctness of LH task
τi is determined. The virtual deadline for each LH task τi is Dv

i = Di. For the time being,
we assume πOi =0 for each LH task τi (such a task is dropped during the critical state). In
subsection 4.4, we will determine which LH tasks do not need to be dropped and we reset
πOi = πNi for such LH tasks.

I Lemma 3. The execution of each LH task τi ∈ ΓLH is correct using the runtime scheduler
of MCFQ algorithm if task τi is assigned πNi dedicated processors during the typical state where

πNi = d(CNi − LNi )/(Di − LNi )e (3)

Proof. The proof is same as the proof in [26, (Lemma 2, p. 771)]. J

4.2 Task Assignment: HH Tasks
In this subsection, the schedulability analysis of each HH task τi in order to determine the
number of processors required to ensure its correctness during the typical and critical states
is presented. Each HH task τi is also assigned a virtual deadline Dv

i .
The outcome of the analysis is a schedulability test, denoted by SCHH(τi, µNi , µOi ), where

µNi and µOi are respectively the number of dedicated processors assigned to task τi during the
typical and critical states such that 1 ≤ µNi ≤ µOi . If the schedulability test SCHH(τi, µNi , µOi )
is satisfied, then it is guaranteed that task τi meets its deadline where µNi and µOi are the
number of dedicated processors for τi during the typical and critical state, respectively.

Since there are M processors on the multiprocessor platform, we apply SCHH(τi, µNi , µOi )
for all possible pairs of (µNi , µOi ) where µNi = 1, 2, . . .M and µOi = µNi , µ

N
i + 1, . . .M to

determine the valid pairs of (µNi , µOi ) for which HH task τi meets its deadline during the
typical and critical states. From all the valid pairs (µNi , µOi ) for each HH task τi ∈ ΓHH, we
select one pair for each HH task τi as the final values of πNi and πOi . The opportunity to select
the values of πNi and πOi from the different possible pairs has higher likelihood of satisfying
the capacity constraints of the platform, which is demonstrated using the following example.
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I Example 4. Consider a multiprocessor platform M = 16 and a taskset with three high-
utilization MC tasks. There is one LH task τa and two HH tasks τb and τc. The specific
values of the total work and critical-path length of these tasks are not needed to understand
this example. Assume that πNa = 5 for the LH task τa and πOa = 0. Also assume that the
SCHH(τb, µNb , µOb ) test is satisfied for only one pair (µNb , µOb ) = (4, 9) for task τb. Since there
is only one pair (µNb , µOb ) = (4, 9) for HH task τb, we have only one option for selecting the
final values of πNb and πOb such that πNb = µNb = 4 and πOb = µOb = 9.

Finally, consider that SCHH(τc, µNc , µOc ) is satisfied for two different pairs (µNc , µOc ) = (5, 8)
and (µNc , µOc ) = (6, 7) for task τc. Since there are two possible pairs of (µNc , µOc ) for task τc,
there are two possible ways to select the final values of πNc and πOc for task τc.

If we select (πNc , πOc ) = (µNc , µOc ) = (5, 8) for task τc, the total number of processors for
the three tasks τa, τb and τc during the typical state is (5 + 4 + 5) = 14, which is not larger
than M = 16. The total number of processors for the three tasks τa, τb and τcduring the
critical state is (0 + 9 + 8) = 17, which is larger than M = 16. Consequently, the capacity
constraint is not satisfied and the overall task allocation phase declares failure.

If we select (πNc , πOc ) = (µNc , µOc ) = (6, 7) for task τc, the total number of processors for
the three tasks τa, τb and τc during the typical state is (5 + 4 + 6) = 15, which is not larger
than M = 16. The total number of processors for all the three tasks during the critical state
is (0 + 9 + 7) = 16, which is not larger than M = 16. Consequently, the capacity constraint
is satisfied for both states and the overall task allocation phase declares success. J

Example 4 demonstrates that the selection of the final values of πNi and πOi for each
of the HH tasks τi from the different alternative pairs of (µNi , µOi ) is crucial to the overall
success of the task assignment algorithm of MCFQ. Before we present the schedulability test
SCHH(τi, µNi , µOi ) in Lemma 5, we present how virtual deadline Dv

i is assigned to τi.

Virtual Deadline Assignment. Consider that the number of dedicated processors for HH task
τi during the typical and critical states are µNi and µOi , respectively. The virtual deadline
Dv
i for HH task τi is assigned as follows:

Dv
i = LNi + (CNi − LNi )/µNi (4)

I Lemma 5 (Schedulability test SCHH(τi, µNi , µOi )). Consider a pair (µNi , µOi ) such that the
HH task τi is assigned µNi and µOi dedicated processors respectively for the typical and critical
states where 1 ≤ µNi ≤ µOi . Each job of task τi meets its deadline in all the correct states if
the following equation is satisfied:

Di ≥
CNi − LNi

µNi
+ ωi
µOi

+ LOi +min{LNi ,
ωi
µNi
} · (1− µNi

µOi
) (5)

where ωi = (COi − CNi )− (LOi − LNi ).

Proof. Since (COi −CNi )− (LOi −LNi ) ≥ 0 from Eq. (1), we have ωi ≥ 0. Moreover, LNi ≥ 0
and µNi ≥ 1. It follows that min{LNi , ωi/µNi } ≥ 0. Because µOi ≥ µNi , we also have
(1− µNi /µOi ) ≥ 0. Therefore, min{LNi , ωi/µNi } · (1− µNi /µOi ) ≥ 0 and from Eq (5) we have

Di ≥
CNi − LNi

µNi
+ ωi
µOi

+ LOi (6)

Consider a generic job Ji of task τi. Without loss of generality assume that the job is released
at time 0. The entire execution of job Ji happens in any of the three possible scenarios: (i)
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stable typical state, (ii) stable critical state, and (iii) during the transition from typical to
critical state. A stable state refers to the situation when there is no switching of states during
the execution of job Ji. This lemma is proved by showing that job Ji meets its deadline
for all these three scenarios if Eq (5) is satisfied. Since we are considering implicit-deadline
tasks, if the generic job Ji meets its deadline by time Di, then each other job of τi will also
meet its deadline.

Stable typical state. During the stable typical state, the subtasks of task τi are executed
using any work-conserving scheduling algorithm on µNi dedicated processors. Since job Ji
executes entirely in stable typical state, it signals completion at or before its virtual deadline
Dv
i . We will show that Dv

i ≤ Di, which shows job Ji meets its deadline during the stable
typical state. Since LOi ≥ LNi , from Eq. (6) we have Di ≥ CN

i −L
N
i

µN
i

+ ωi

µO
i

+LNi . Since ωi

µO
i

≥ 0

and Dv
i = CN

i −L
N
i

µN
i

+ LNi from Eq. (4), it follows that Di ≥ CN
i −L

N
i

µN
i

+ LNi = Dv
i .

Stable critical state. During the stable critical state, the subtasks of task τi are executed
using any work-conserving scheduling algorithm on µOi dedicated processors. The total
work and the critical-path length of any job of task τi during the critical state is at most
COi and LOi , respectively. Based on Lemma 2, the maximum time job Ji takes to finish its
execution starting from its release at time 0 is LOi + (COi − LOi )/µOi . We will show that
LOi + (COi − LOi )/µOi ≤ Di, which implies that job Ji meets its deadline during the stable
critical state. Since ωi = (COi − CNi )− (LOi − LNi ), from Eq. (6) we have

Di ≥
CNi − LNi

µNi
+ (COi − CNi )− (LOi − LNi )

µOi
+ LOi

⇔ Di ≥
COi − LOi

µOi
+ (CNi − LNi ) · ( 1

µNi
− 1
µOi

) + LOi

(Since CNi ≥ LNi because total work includes the work on the critical
path and µOi ≥ µNi , we have (CNi − LNi ) · (1/µNi − 1/µOi ) ≥ 0)

⇒ Di ≥
COi − LOi

µOi
+ LOi

State Switching. For this case, the job Ji does not complete execution by its virtual
deadline Dv

i and it switches from typical to critical state at time Dv
i . The subtasks of job Ji

execute on µNi processors during the interval [0, Dv
i ) and on µOi processors after time Dv

i .
Let ` be the cumulative length of intervals in [0, Dv

i ) during which at least one of the
µNi dedicated processors assigned to job Ji of task τi is idle such that 0 ≤ ` ≤ Dv

i . Since Ji
is not finished by time Dv

i and because at least one processor is idle for a duration of ` time
units in [0, Dv

i ), the length of the critical path by time Dv
i is decreased by at least ` time

units. The remaining length of the critical path at time Dv
i , denoted by Lremain, is at most

Lremain = (LOi − `) (7)

where LOi is the overload critical-path length of τi. The cumulative length of intervals in
[0, Dv

i ) during which all the µNi processors are simultaneously busy is (Dv
i −`). Therefore, the

amount of work done before the task τi switches its state at timeDv
i is at least [`+µNi ·(Dv

i −`)].
The remaining amount of total work at time Dv

i , denoted by Cremain, is at most

Cremain = COi − [`+ µNi · (Dv
i − `)] = COi − `− µNi · (Dv

i − `) (8)
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where COi is the overload total work of task τi. Since the total remaining work includes the
remaining work of the critical path, we have

Lremain ≤ Cremain(
From Eq. (7) and Eq. (8)

)
⇔ LOi − ` ≤ COi − `− µNi · (Dv

i − `)(
Since Dv

i = CNi − LNi
µNi

+ LNi from Eq. (4)
)

⇔ LOi − ` ≤ COi − `− µNi · (LNi + CNi − LNi
µNi

− `)

⇔ µNi · LNi + LOi − COi + CNi − LNi ≤ µNi · `

⇔ LNi −
(COi − CNi )− (LOi − LNi )

µNi
≤ `

(Since 0 ≤ `)

⇒ max

{
0, LNi −

(COi − CNi )− (LOi − LNi )
µNi

}
≤ `

⇔ LNi −max
{

0, LNi −
(COi − CNi )− (LOi − LNi )

µNi

}
≥ LNi − `

⇔ min

{
LNi ,

(COi − CNi )− (LOi − LNi )
µNi

}
≥ LNi − `(

Since ωi = (COi − CNi )− (LOi − LNi )
)

⇔ min

{
LNi ,

ωi
µNi

}
≥ LNi − ` (9)

Since µOi processors are assigned to job Ji from time Dv
i , the job Ji completes its execution

no later than time Dv
i + Lremain + Cremain−Lremain

µO
i

according to Lemma 2. We will show
that Dv

i + Lremain + Cremain−Lremain

µO
i

≤ Di, which implies that Ji completes at or before its
deadline. We have to prove that the following holds:

Dv
i + Lremain + Cremain − Lremain

µOi
≤ Di

(From Eq. (7) and Eq. (8))

⇔ Dv
i + LOi − `+ [COi − `− µNi · (Dv

i − `)]− (LOi − `)
µOi

≤ Di

⇔ Dv
i + LOi − `+ COi − µNi · (Dv

i − `)− LOi
µOi

≤ Di

(Since Dv
i = CNi − LNi

µNi
+ LNi from Eq. (4)

⇔ LNi + CNi − LNi
µNi

+ LOi − `+
COi − µNi ·

(
LNi + CN

i −LN
i

µN
i

)
+ µNi · `− LOi

µOi
≤ Di

⇔ LNi + CNi − LNi
µNi

+ LOi − `+ (COi − CNi )− (LOi − LNi )
µOi

− µNi · (LNi − `)
µOi

≤ Di

(Since ωi = (COi − CNi )− (LOi − LNi ))

⇔ CNi − LNi
µNi

+ ωi
µOi

+ LOi + (LNi − `) · (1−
µNi
µOi

) ≤ Di
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(From Eq. (9), min
{
LNi ,

ωi
µNi

}
≥ (LNi − `))

⇐ CNi − LNi
µNi

+ ωi
µOi

+ LOi +min

{
LNi ,

ωi
µNi

}
· (1− µNi

µOi
) ≤ Di

⇔ Eq. (5)

Therefore, the generic job Ji of HH task τi meets its deadline in all the three scenarios. J

For each HH task τi, we can apply the schedulability test SCHH(τi, µNi , µOi ) in Eq. (5) to
determine whether the HH task τi meets its deadline in all correct states if µNi and µOi number
of dedicated processors are assigned during the typical and critical states, respectively. We
say that SCHH(τi, µNi , µOi )=TRUE if Eq. (5) is satisfied; otherwise SCHH(τi, µNi , µOi )=FALSE.
The salient feature of the schedulability test SCHH(τi, µNi , µOi ) is that the set of all possible
pairs (µNi , µOi ) where 1 ≤ µNi ≤ µOi ≤M for which HH task τi is deemed schedulable in all
the correct states can be determined. The elements in each such pair are potential final
values of πNi and πOi for task τi. To this end, we define Ω(τi) the set of all such valid pairs
(µNi , µOi ) for which the HH task τi is schedulable in any state as follows:

Ω(τi) =
{

(µNi , µOi ) | SCHH(τi, µNi , µOi ) = TRUE; µNi = 1, 2 . . .M ; µOi = µNi . . .M
}

(10)

We now filter some of the unnecessary elements from set Ω(τi) to limit the number of valid
pairs. Consider that SCHH(τi, 1, 1)=FALSE, SCHH(τi, 1, 2)=TRUE and SCHH(τi, 1, 3)=TRUE for
some HH task τi. Based on Eq. (10), we have (1, 1) /∈ Ω(τi) and {(1, 2), (1, 3)} ⊆ Ω(τi).
However, we may discard the element (1, 3) from set Ω(τi) since when µNi =1 it is unnecessary
(wastage of resource) to consider µOi =3 because µOi =2 processors are enough to guarantee
the correctness of task τi during the critical state. Therefore, we only need to consider such
pair (µNi , µOi ) ∈ Ω(τi) where SCHH(τi, µNi , µOi − 1)=FALSE. To this end, we define Ω(τi) the
set of pairs (µNi , µOi ) from set Ω(τi) for which SCHH(τi, µNi , µOi − 1)=FALSE as follows:

Ω(τi) =
{

(µNi , µOi ) | (µNi , µOi ) ∈ Ω(τi); SCHH(τi, µNi , µOi − 1) = FALSE} (11)

Note that Eq. (5) can be tested in constant time for the given values of CNi , LNi , COi ,
LOi , µNi and µOi for HH task τi. The set Ω(τi) in Eq. (10) can be computed for task τi by
applying test SCHH(τi, µNi , µOi ) at most M(M + 1)/2 times since 1 ≤ µNi ≤ µOi ≤ M .
Therefore, the time complexity to compute the set Ω(τi) for one HH task τi is O(M2). Since
1 ≤ µNi ≤ µOi ≤M , the number of elements in Ω(τi) is O(M2). For all the O(M2) elements
in set Ω(τi), we can test SCHH(τi, µNi , µOi − 1) = FALSE is Eq. (11) is time O(M2). Therefore,
set Ω(τi) can be computed in time O(M2). Since for each element (µNi , µOi ) ∈ Ω(τi) we have
SCHH(τi, µNi , µOi − 1)=FALSE, it follows that the number of elements in set Ω(τi) is O(M)
and the set Ω(τi) can be computed in time O(M2).

I Lemma 6. If (µNi , µOi ) ∈ Ω(τi), then the HH task τi meets all its deadlines if the number
of dedicated processors during the typical and critical states are µNi and µOi , respectively.

Proof. Since (µNi , µOi ) ∈ Ω(τi) only if (µNi , µOi ) ∈ Ω(τi) based on Eq. (11). Moreover, if
(µNi , µOi ) ∈ Ω(τi), then SCHH(τi, µNi , µOi ) = TRUE based on Eq. (10). Therefore, task τi meets
all its deadlines based on Lemma 5 if the number of dedicated processors during the typical
and critical states are µNi and µOi , respectively. J

I Example 7. Consider the two HH tasks in Table 1 and M=8. We only list few elements of
set Ω(τi) in Table 1 for simplicity of presentation. The values in Table 1 will be used later.
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Table 1 Example of two HH tasks and some elements (µNi ,µOi ) in Ω(τi) computed using Eq. (11)

.
Task CNi LNi COi LOi Di Some elements in Ω(τi)

τ1 9 4 52 20 45 {(1,2), (2,2), (3,3)}
τ2 11 4 80 42 54 {(2,6),(3,4)}

Given the set Ω(τi) for each task τi ∈ ΓHH, we now determine the total number of processors
required for correctly scheduling all the HH tasks in each state. Our objective is to find different
alternatives to assign all the HH tasks to the processors using the different alternatives in
Ω(τi) for each HH task τi.

Without loss of generality assume that there are Q number of HH tasks in set Γ such
that Q = |ΓHH| and the indices of the HH tasks in set ΓHH ranges from 1 to Q such that
ΓHH = {τ1, τ2, . . . τQ}. We also define sequence SpHH =< τ1, τ2, . . . τp > that includes the
HH tasks with indices from 1 to p, for p = 1, 2, . . . Q. Note that the sequence SQHH includes all
the tasks in ΓHH. Given the sequence of p tasks in SpHH, we denote ξ(SpHH) as the set where

each element in set ξ(SpHH) is a pair of sequences such that for each such pair of sequences
each sequence has p numbers;
the ith element in the first sequence is the number of processors required to meet the
deadline of the ith HH task in sequence SpHH during the typical state, and
the ith element in the second sequence is the number of processors required to meet
the deadline of the ith HH task in sequence SpHH during the critical state.

For example, consider ξ(S3
HH) ={(<1,2,3>,<4,5,6>), (<2,2,4>, <3,5,5>)} for the three tasks

in sequence S3
HH =< τ1, τ2, τ3 >. The interpretation of set ξ(S3

HH) ={(<1,2,3>,<4,5,6>),
(<2,2,4>, <3,5,5>)} is the following:

There are two elements in set ξ(S3
HH). Each of the two elements (< 1, 2, 3 >,< 4, 5, 6 >)

and (< 2, 2, 4 >,< 3, 5, 4 >) is a pair of sequences, where each sequence in a pair has
p = 3 numbers.
The pair (< 1, 2, 3 >,< 4, 5, 6 >) specifies that the number of dedicated processors
required for task τ1 ( which is the 1st task in sequence S3

HH) during the typical and critical
states are 1 and 4, respectively. Similarly, the number of dedicated processors required for
task τ3 in sequence S3

HH for the typical and critical states are 3 and 6, respectively. The
total number of processors for all the three tasks in set S3

HH for the typical and critical
state are (1 + 2 + 3) = 6 and (4 + 5 + 6) = 15, respectively.

Each element in set SQHH specifies a particular alternative to assign all the HH tasks from
sequence SQHH to the processors so that the deadlines for all the HH tasks during the typical
and critical states are met. After the set ξ(SQHH ) is computed, we select one alternative from
set ξ(SQHH ) so that the capacity constraint for all the tasks in Γ is satisfied. Next we present
how to compute set ξ(SQHH ).

4.2.1 Computing ξ(SQ
HH )

We apply dynamic programming to find set ξ(SQHH). The sum of the p numbers in the first
sequence and the sum of the p numbers in the second sequence for any element in ξ(SpHH) are
respectively the total number of processors required during the typical and critical states for
the HH tasks in SpHH. Since the number of processors of the platform is M , the total number of
processors required for any state must not be larger than M in order to satisfy the capacity
constraint. Based on this observation, the set ξ(SQHH) is recursively computed by considering
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one-by-one HH task from the sequence SQHH. In other words, we first compute ξ(S1
HH), then we

compute ξ(S2
HH), and continuing in this fashion, we finally compute ξ(SQHH).

The set ξ(SpHH) for p = 1 is computed as follows:

ξ(S1
HH) = ξ(< τ1 >) = {(< a >,< b >) | (a, b) ∈ Ω(τ1) } (12)

where Ω(τ1) is given in Eq (11). By assuming that the set ξ(Sp−1
HH ) is already computed, the

set ξ(SpHH) is recursively computed for p = 2, 3, . . . Q as follows:

ξ(SpHH) =
{(

< a1, . . . ap−1, ap >,< b1, . . . bp−1, bp >
)
| COND1 ∧ COND2 ∧ COND3 ∧ COND4} (13)

where
COND1: (< a1, . . . ap−1 >,< b1, . . . bp−1 >) ∈ ξ(Sp−1

HH )
COND2: (ap, bp) ∈ Ω(τp)
COND3: (a1 + . . .+ ap−1 + ap) ≤M and (b1 + . . .+ bp−1 + bp) ≤M
COND4: If (a1 + . . .+ap) 6= (c1 + . . .+ cp) for some (< c1, . . . cp >,< d1, . . . dp >) ∈ ξ(SpHH),

then add (< a1, . . . ap >,< b1, . . . bp >) in set ξ(SpHH); otherwise, if (a1 + . . . + ap) =
(c1 + . . . + cp) and (b1 + . . . + bp) < (d1 + . . . + dp) for some (< c1, . . . cp >,< d1, . . . dp >

) ∈ ξ(SpHH), then add (< a1, . . . ap−1, ap >,< b1, . . . bp−1, bp >) in set ξ(SpHH) and remove
(< c1, . . . cp >,< d1, . . . dp >) from set ξ(SpHH).

Discussion. The set ξ(SpHH) in Eq. (13) is computed by selecting each element
(< a1, . . . , ap−1 >,< b1, . . . bp−1 >) from ξ(Sp−1

HH ) due to COND1 and each element (ap, bp)
from Ω(τp) due to COND2 such that (a1 + . . .+ap−1 +ap) ≤M and (b1 + . . .+ bp−1 + bp) ≤M
due to COND3. A new element (< a1, . . . ap−1, ap >,< b1, . . . bp−1, bp >) is added to set ξ(SpHH)
only if COND4 is true, i.e., there is no other element (< c1, . . . cp−1, cp >,< d1, . . . dp−1, dp >)
that is already in set ξ(SpHH) such that (a1 + . . . + ap−1 + ap) = (c1 + . . . + cp−1 + cp) and
(b1 + . . .+ bp−1 + bp) ≥ (d1 + . . .+ dp−1 + dp).

The COND4 ensures that for any two elements (< a1, . . . ap−1 >,< b1, . . . bp−1 >) and
(< c1, . . . cp−1, cp >,< d1, . . . dp−1, dp >) where (a1 + . . .+ap−1 +ap) = (c1 + . . .+ cp−1 + cp),
the element with smaller total number of processors for the critical state is included in
set ξ(SpHH) while the other element is not included in set ξ(SpHH) (i.e., removed if included
previously). Consequently, for a given total number of processors required for the tasks in
sequence SpHH for the typical state, there is at most one element in set ξ(SpHH). Since COND3
is satisfied, there are at most M different possibilities for the total number of processors
required for the tasks for the typical state. Therefore, the number of elements in set ξ(SpHH)
is at most O(M). We have the following Lemma 8.

I Lemma 8. If (< a1, a2, . . . aQ >,< b1, b2, . . . bQ >) ∈ ξ(SQHH), then the pth HH task τp in
sequence SQHH meets the deadline in typical and critical states if ap and bp dedicated processors
are assigned to τp respectively during the typical and critical states for p = 1, 2, . . . Q.

Proof. If (< a1, a2, . . . aQ >,< b1, b2, . . . bQ >) ∈ ξ(SQHH), then the pair (ap, bp) ∈ Ω(τp) due
to COND2 for p = 1, 2, . . . Q. Based on Lemma 6, it holds for each (ap, bp) ∈ Ω(τp) that task
τp meets its deadline during the typical and critical state if ap and bp dedicated processors
are allocated to τp during the typical and critical state, respectively. J

Time Complexity to find ξ(SQ
HH ). The time complexity to compute ξ(SQHH) is O(n · (n +

M) ·M2). Recall that there are O(M) elements in Ω(τi) for each τi in SQHH (discussed after
Eq. (11)). Therefore, the base in Eq. (12) can be computed for task τ1 in time O(M) since
each element (a1, b1) ∈ Ω(τi) is stored in set ξ(S1

HH)=ξ(< τ1 >) as (< a >,< b >).
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The COND4 guarantees that there are at most O(M) elements in set ξ(SkHH) for k = 1, . . . Q.
During each step of the recursion the set ξ(SpHH) is computed by considering one element from
ξ(Sp−1

HH ) and one element from Ω(τp). Since there are at most O(M) elements in each set
ξ(Sp−1

HH ) and Ω(τp), the time-complexity to select all the possible ways to select one element
from each set ξ(Sp−1

HH ) and Ω(τp) (i.e., applying COND1 and COND2) is O(M2). And, there
are O(M2) possible choices to select one element from each set ξ(Sp−1

HH ) and Ω(τp).
For each of these O(M2) selections, we apply COND3 and COND4. Given a selection

(< a1, . . . ap−1 >,< b1, . . . bp−1 >) ∈ ξ(Sp−1
HH ) and (ap, bp) ∈ Ω(τp) , we can apply COND3 in

time O(n) since there are 2(p−1) = O(n) additions to evaluate COND3. We then apply COND4
in time O(M) since there can be at most O(M) elements already included in ξ(SpHH) and the
sums in COND4 are already computed during this step of the recursion. Consequently, for all
the O(M2) ways to select one element from each set ξ(Sp−1

HH ) and Ω(τp), the set ξ(SpHH) is
computed in time O((n+M) ·M2) during the pth recursive step. Since there are at most
Q=O(n) tasks in sequence SQHH, the set ξ(SQHH) can be computed in time O(n · (n+M) ·M2).

I Example 9. Consider two HH tasks in Table 1 and M=8 where Ω(τ1) ={(1,2), (2,2), (3,3)}
and Ω(τ2) ={(2,6), (3,4)} for S2

HH =< τ1, τ2 >.
Based on Eq (12), we have ξ(< τ1 >)={(<1>,<2>), (<2>,<2>), (<3>,<3>)}. We

will now show how to find ξ(< τ1, τ2 >) based on Eq. (13). There are total 3× 2 = 6 ways
to select one element from each set ξ(< τ1 >) and Ω(τ2) by applying COND1 and COND2.
Therefore, set ξ(< τ1, τ2 >) without applying COND3 and COND4 is

ξ(< τ1, τ2 >) = {(< 1, 2 >,< 2, 6 >), (< 1, 3 >,< 2, 4 >), (< 2, 2 >,< 2, 6 >),
(< 2, 3 >,< 2, 4 >), (< 3, 2 >,< 3, 6 >), (< 3, 3 >,< 3, 4 >)}

After applying COND3, the element (< 3, 2 >,< 3, 6 >) is not included in set ξ(< τ1, τ2 >)
since (3 + 6) > M = 8. After applying COND4, the element (< 2, 2 >,< 2, 6 >) is not
included in set ξ(< τ1, τ2 >) since there is another element (< 1, 3 >,< 2, 4 >) such that
(2 + 2) = (1 + 3) and (2 + 6) > (2 + 4). Therefore, we have

ξ(< τ1, τ2 >) = {(< 1, 2 >,< 2, 6 >), (< 1, 3 >,< 2, 4 >),
(< 2, 3 >,< 2, 4 >), (< 3, 3 >,< 3, 4 >)}

4.3 Overall Task Assignment: Capacity Constraint
In this subsection, we determine whether there is an assignment of all the tasks to the
processors such that the total number of processors required during each of the two states is
not larger than M . We will now determine a set, denoted by Π, which is a subset of ξ(SQHH)
using which it can be verified whether the capacity constraint at each state for all the tasks
is satisfied or not. The set Π is defined as follows:

Π =
{
∅ if Q > 0 and ξ(SQHH) = ∅
{(< a1, . . . aQ >,< b1, . . . bQ >) | COND5 ∧ COND6} otherwise

(14)

where
COND5: (< a1, . . . aQ >,< b1, . . . bQ >) ∈ ξ(SQHH)
COND6: (a1 + . . .+ aQ +

∑
τi∈ΓLH

πNi + ΠLU) ≤M and (b1 + . . .+ bQ + ΠLU) ≤M .

I Theorem 10. The MCFQ scheduling algorithm correctly schedules all the tasks in set Γ if
Π 6= ∅.
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Proof. Since Π 6= ∅, we have at least one pair (< a1, . . . aQ >,< b1, . . . bQ >) ∈ Π such that
COND5 and COND6 are satisfied. Since (< a1, . . . aQ >,< b1, . . . bQ >) ∈ ξ(ΓHH) according to
COND5, each HH task τi meets its deadline in both typical and critical state if it is assigned ai
and bi processors according to Lemma 8.

Each LH task τi requires πNi dedicated processors to ensure its correctness according
to Eq. (3) of Lemma 3. Therefore, the total number of dedicated processors for all the
LH tasks to ensure their correctness is

∑
τi∈ΓLH

πNi . The total number of processors required
for scheduling all the low-utilization tasks during typical and critical state is ΠLU, where
ΠLU is the minimum number of processors required by the MC-Partition-0.75 to schedule all
the low-utilization tasks in set (ΓHL ∪ ΓLL).

Therefore, the total number of processors for all the tasks is (a1 + . . .+aQ+
∑
τi∈ΓLH

πNi +
ΠLU) and (b1 + . . .+ bQ + ΠLU) respectively for the typical and critical state. Since (a1 + . . .+
aQ +

∑
τi∈ΓLH

πNi + ΠLU) ≤M and (b1 + . . .+ bQ + ΠLU) ≤M based on COND6, the capacity
constraint at each state is met, the task assignment declares success, and the system correctly
schedules all the tasks based on MCFQ algorithm. J

4.4 Improving the QoS of LH Tasks
The set Π in Eq. (14) provides different alternatives to assign all the tasks to the processors by
assuming that all the LH tasks are dropped during critical state. However, if there are unused
processors during the critical state, then such unused processors may be allocated to the
HH tasks rather than dropping the LH tasks during critical state. Based on this observation,
we propose a scheme to maximize the number of LH tasks that are never dropped.

We select the alternative from set Π that minimizes the total number of processors
required during the critical state for all the HH tasks. Let (< a1, . . . aQ >,< b1, . . . bQ >) ∈ Π
is the alternative that minimizes the total number of processors required during the critical
state for all the HH tasks. The number of unused processors during the critical state, denoted
by Πidle, is computed as Πidle = M − (

∑Q
i=1 bi + ΠLU).

The unused processors can be allocated to the HH task τi when it does not complete by
its virtual deadline and requires additional (πOi − πNi ) processors to ensure its correctness.
By allocating the unused processors to the HH tasks, we may not need to drop some or any
of the LH tasks. Given that there are Πidle unused processors during the critical state, we
formulate an ILP to maximum the number of LH tasks that are never dropped.

Let xi ∈ {0, 1} denote a decision variable whether the LH task τi may need to be dropped
or not. If xi = 1, then the LH task τi is never dropped and will be assigned πOi = πNi
dedicated processors also during the critical state. If xi = 0, then the LH task τi may need to
be dropped and we set πOi = 0. The value of decision variable xi for τi ∈ ΓLH is determined
using the following ILP to maximum the number of LH tasks that are never dropped:

maximize
xi

∑
τi∈ΓLH

xi

subject to
∑

τi∈ΓLH

πNi · xi ≤ Πidle and (xi = 0 or xi = 1)
(15)

Given the values of xi for all the LH tasks, the fraction of the total number of LH tasks
that are never dropped is (

∑
τi∈ΓLH

xi)/|ΓLH| and is the measure of the QoS for a given taskset
under MCFQ algorithm. We can also improve the QoS of the LL tasks by allocating them to
such idle processors based on partitioned EDF scheduling for sequential tasks (not addressed
in this paper).
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5 Empirical Investigation

The recent work by Li et al. [26] proposed the MCFS-Improve schedulability test for federated
scheduling of MC parallel tasks. In this section, we present the effectiveness of our proposed
schedulability test in Theorem 10 (denoted by Our-MCFQ) in guaranteeing the schedulability
and improving the QoS of randomly generated MC parallel tasks in comparison to the state-
of-the-art MCFS-Improve test in [26]. Before we present our results, we present the taskset
generation algorithm.

5.1 Taskset Generation Algorithm
Since both Our-MCFQ and MCFS-Improve tests depend only on the total work and the critical-
path length of each parallel task, we will directly generate these two parameters for each
parallel task. We denote UN and UO respectively the total nominal utilization of all the
tasks and total overload utilization of all the HI-critical tasks in a randomly generated taskset
Γ such that UN =

∑
τi∈Γ u

N
i and UO =

∑
τi∈(ΓHH∪ΓHL) u

O
i . Let UB = max{UN/M,UO/M}

denotes the upper bound on normalized total system utilization. Note that UB ≤ 1 is a
necessary condition for schedulability of taskset Γ on M processors.

The following experimental parameters are used for generating a random MC sporadic
DAG taskset with normalized total system utilization UB for M processors:

The proportion of high-utilization tasks in a taskset is controlled using probability phu.
The overload utilization of each high-utilization task is controlled using umax.
The ratio of the period and overload critical-path length of task τi is controlled using a
parameter Pmax such that 1 ≤ Ti/LOi ≤ Pmax.
The proportion of HI-critical tasks is controlled using probability phc.
The ratio of overload and nominal utilizations of task τi is controlled using a parameter
Rmax such that 1 ≤ uOi /uNi ≤ Rmax.

The following values of the experimental parameters are used:
Number of processors: M ∈ {16, 32, 48, 64, 80, 96, 112, 128, 144, 160}.
Normalized utilization bound: UB ∈ {0.05, 0.1, . . . 1.0}.
Probability of a task to be a high-utilization task: phu ∈ {0.1, 0.2, . . . 1.0}.
Upper bound on overload utilization of a high-utilization task: umax ∈ {2.0, 4.0, . . . 16.0}.
The maximum ratio of period and overload critical-path length: Pmax ∈ {2.0, 2.25 . . . 4.0}.
Probability of a task to be a HI-critical task: phc ∈ {0.1, 0.2, . . . 1.0}.
The maximum ratio of overload and nominal utilizations: Rmax ∈ {2.0, 2.25 . . . 4.0}.

We consider a total of 12,960,000 different combinations of the above parameters to
generate the tasksets. For each combination, we generate 1000 parallel MC tasksets where
each taskset is generated as follows (each parameter is selected from an uniform distribution):

Task period Di = Ti is drawn from the range [10, 1000].
A real number pui is drawn from the range [0, 1]. If pui ≤ phu, then τi is a high-utilization
task and its overload utilization uOi is drawn in the range [1.02, umax]; otherwise, τi is a
low-utilization task and its overload utilization uOi is drawn in the range [0.02, 1]. The
overload total work of τi is COi = uOi × Ti.
A real number Pi is drawn from the range [1, Pmax] and the overload critical-path length
is LOi = Ti/Pi.
A real number pci is drawn from the range [0, 1]. If pci ≤ phc, then Zi = HI; otherwise
Zi = LO.
If Zi = HI, then a real number Ri is drawn from the range [1, Rmax]; otherwise Ri = 1.
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(a) M = 16
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(b) M = 32
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(c) M = 64
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(d) M = 128

Figure 1 Comparison of acceptance ratios for different number of processors for phu = 0.5,
umax = 2.0, Pmax = 2.0, phc = 0.5, and Rmax = 2.0.

The nominal total work and critical-path length are CNi = COi /Ri and LNi = LOi /Ri,
respectively.
Repeat the above steps as long as max{UO/m,UN/m} ≤ UB. Once the condition is
violated, discard the task that was generated the last.
If the resulting taskset satisfies the condition max{UO/m,UN/m} > UB − 0.05, then
accept the taskset and stop the procedure. Otherwise, discard the taskset and the repeat
the above steps.

The above taskset generation procedure ensures that each taskset has a total normalized
utilization within the range UB−0.05 and UB . This is reasonable because in our experiments
we consider values of UB that are incremented in step of 0.05.

5.2 Results: Schedulability Tests
We compare the effectiveness of Our-MCFQ test in terms of guaranteeing the schedulability of
randomly generated parallel MC tasksets in comparison to the MCFS-Improve test in [26].

For a given schedulability test and values of M , UB , phu, umax, Pmax, phc and Rmax, let
the acceptance ratio denotes the fraction of tasksets out of 1000 tasksets that are deemed
schedulable by the test at normalized utilization bound UB. The acceptance ratios for
M = 16, 32, 64, 128 are presented in Figure 1 for phu = 0.5, umax = 2.0, Pmax = 2.0,
phc = 0.5, and Rmax = 2.0 where the x-axis is the normalized utilization bound UB and the
y-axis is the acceptance ratio.

The acceptance ratios of both tests decreases as the normalized utilization bound UB
increases. Such decreasing trend in acceptance ratio for larger UB is expected because
tasksets with a relatively larger utilization are generally difficult to schedule.

The acceptance ratio of Our-MCFQ test is significantly better than the acceptance ra-
tio of MCFS-Improve test for M = 16, 32, 64, 128. For example, the acceptance ratio in
Figure 1b at UB = 0.4 for M = 32 is around 70% for Our-MCFQ test and less than 10%
for MCFS-Improve test. For M = 128 in Figure 1d, the acceptance ratio at UB = 0.2 is
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(e) Varying phc
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(f) Varying Rmax

Figure 2 Weighted acceptance ratios for varying values of M , phu, umax, Pmax, phc, and Rmax.

around 90% for Our-MCFQ test and 0% for MCFS-Improve test. The acceptance ratio of the
MCFS-Improve test decreases to zero very rapidly with increasing UB for higher number of
processors in comparison to the Our-MCFQ test.

The relatively higher acceptance ratio of the Our-MCFQ test is due to our proposed task
assignment algorithm for the HH tasks. The MCFQ algorithm determines an assignment of the
HH tasks to the processors by choosing from different alternatives by taking in to account
the number of processors required for other tasks during the typical and critical states. On
the other hand, the task assignment of the MCFS-Improve test is restrictive in terms of
the number of different alternatives for assigning the HH tasks to the processors. It can be
analytically shown that if we plugin the alternative for assigning processors to the HH tasks
computed based on the MCFS-Improve test into the proposed schedulability test in Eq. (5),
then the test in Eq. (5) is also satisfied, which implies that the capacity augmentation bound
of the MCFS-Improve test also applies to our proposed test. However, such an analysis is
omitted in this paper due to space constraint.

The results presented in [26] show quite high acceptance ratio in comparison to the results
presented in this paper for the MCFS-Improve test. The reason is that we do not use the
task set generation algorithm from [26] because some of the assumptions were not explicitly
described in [26]. For example, it is not described in [26] how random numbers with log
normal distribution with mean (1 +

√
m/3) was generated without knowing the mean (µ)

and standard deviation (σ) of the associated normal distribution.
For comparison of the acceptance ratios of Our-MCFQ test and MCFS-Improve test for

varying values of M , phu, umax, Pmax, phc, and Rmax, we also computed the weighted
acceptance ratios and presented in Figure 2. The weighted acceptance ratio denotes the
fraction of schedulable tasksets weighted by the normalized utilization bound UB . If AR(UB)
denotes the acceptance ratio of a schedulability test for normalized utilization bound UB for
some given values of M , phu, umax, Pmax, phc, and Rmax, then the weighted acceptance ratio
for a set S of UB values is given as follows: W (S) =

(∑
UB∈S(AR(UB)× UB)

)
/
∑
UB∈S UB .
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(b) M = 32

Figure 3 Average fraction of LH tasks that are never dropped for phu = 0.5, umax = 2.0,
Pmax = 2.0, phc = 0.5, and Rmax = 2.0.

When computing the weighted acceptance ratio by varying one parameter, the other
five parameters are kept fixed. The fixed values of the parameters are M = 64, phu = 0.5,
umax = 2.0, Pmax = 2.0, phc = 0.5 and Rmax = 2.0. The significantly higher weighted
acceptance ratio of Our-MCFQ test in comparison to MCFS-Improve test is evident in Figure 2a-
2f respectively for the variation of the parameters M , phu, umax, Pmax, phc, and Rmax. The
acceptance ratio of Our-MCFQ is much higher because the task assignment algorithm is
successful in finding an allocation of the tasks to the processors such that the system is
correct while the task assignment of the MCFS-Improve test fails in many cases to find such
an assignment.

5.3 Results: Quality of Service
In this subsection, we compare the effectiveness of Our-MCFQ test with MCFS-Improve test
in improving the QoS of the system in terms of average fraction of the number of LH tasks
that are not dropped regardless of the state of the system. Note that Our-MCFQ test can
significantly schedule more tasksets than the MCFS-Improve test (Figure 1). For fairness, we
compare the QoS for only those tasksets that are deemed schedulable by both tests.

For each taskset that is deemed schedulable using both the Our-MCFQ test and the
MCFS-Improve test, (i) we apply the ILP in Eq. (15) to determine the fraction of the number
of LH tasks that are never dropped under the MCFQ algorithm, and (ii) we also determine
the fraction of the number of LH tasks that are never dropped based on the implementation
in [26]. The average fraction of the number of LH tasks that are never dropped (over all
the tasksets that are schedulable by both test) at each normalized utilization bound UB is
computed for each test and presented for M = 32 and M = 64 in Figure 3 where phu = 0.5,
umax = 2.0, Pmax = 2.0, phc = 0.5, and Rmax = 2.0.

It is evident that Our-MCFQ test is able to schedule all the LH tasks for normalized
utilization UB ≤ 0.4 while MCFS-Improve is never successful in allocating all the LH tasks for
any UB. For UB > 0.4, the Our-MCFQ test can also schedule large fraction of the LH tasks
without ever dropping them in comparison to MCFS-Improve. Therefore, the QoS of the
system using Our-MCFQ test is much higher than that of under MCFS-Improve.

6 Related Work

There have been several works on real-time scheduling of parallel non-MC tasks on multipro-
cessors based on fork-join model [22, 1], synchronous parallel task model [35, 32, 15], and
the dag task model [10, 12, 28, 3, 31]. Many of these works proposed resource-augmentation
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bounds and schedulability tests for global scheduling where the nodes of the tasks are allowed
to migrate from one processor to another. There are two other mechanisms to schedule
parallel DAG tasks: federated scheduling [25] and decomposition-based scheduling [21]. In
decomposition-based scheduling, a DAG task is transferred into a set of independent sporadic
task by inserting artificial release time and artificial deadline. The decomposed subtasks of
all the DAG tasks are scheduled based on GEDF scheduling policy in [21].

There are many works on scheduling MC systems since the seminal work by Vestal who
first proposed the MC sequential task model and its analysis based on fixed-priority scheduling
algorithm on uniprocessor platform [38]. Building upon Vestal’s seminal work [38], there
have been several approaches [9, 16, 11, 8, 24, 19, 4, 17, 23, 7, 5, 34] to design certification-
cognizant scheduling of MC system for both uni- and multiprocessor. The work in [14] presents
a recent survey on real-time scheduling of MC sequential tasks. To improve the quality of
service for the LO-critical tasks, there are also works that consider that the LO-critical tasks
are not dropped but provide delayed results, for example, by executing them less frequently
after the system switches to the critical state (e.g., weakly hard MC task model [18], elastic
MC task model [37, 36, 20]) or provides imprecise results [29, 13, 5, 34].

There are very few works on scheduling MC parallel tasks. Some works considers time-
table based scheduling [2] or partitioned MC scheduling based on decomposition strategy [30].
However, such scheduling algorithms are not applicable to DAG tasks for which the internal
structure is only known during runtime. The work in [27] and its extension in [26] consider
federated scheduling of MC sporadic DAG tasks. The authors in [27, 26] also derived capacity
augmentation bound of 3.67 for dual-critical tasks. It is also shown that the schedulability test
based on the capacity augmentation bound in [27, 26] does not perform well in comparison
to the schedulability test MCFS-Improve that is based on actual assignment of the tasks to
the processors. However, the task assignment for each HH task in MCFS-Improve algorithm is
not aware of how the other tasks are assigned to the processors and may fail to assign all the
tasks to the processors even if there is another way to successfully assign the tasks. On the
other hand, our proposed MCFQ algorithm does not finalize the assignment when analyzing
each HH task rather finalize the assignment when analyzing the overall task assignment for
all the tasks.

7 Conclusion

This paper presents a new schedulability analysis for federated scheduling of MC sporadic DAG
tasks on multiprocessors. The salient feature of this analysis is that different alternatives
to allocate each of the HH tasks to the processors during the typical and critical states
of the system are considered. The particular alternative to allocate a HH task is selected
such that all the tasks can be correctly scheduled on a given number of processors. The
MCFQ algorithm also tries to maximize the fraction of the number of LH tasks that are never
dropped. Experimental results show that the proposed schedulability test for MCFQ algorithm
not only can schedule much larger number of random tasksets but also can improve the
QoS of the system significantly in comparison to the state of the art. Investigating the
schedulability of MC parallel tasks where more than one high-utilization tasks are scheduled
on a set of dedicated processors is an interesting future work.
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Abstract
Commercial of the shelf multicore processors suffer from timing interferences between cores which
complicates applying them in hard real-time systems like avionic applications. This paper pro-
poses a virtual timing isolation of one main application running on one core from all other cores.
The proposed technique is based on hardware external to the multicore processor and completely
transparent to the main application i.e., no modifications of the software including the operat-
ing system are necessary. The basic idea is to apply a single-core execution based Worst Case
Execution Time analysis and to accept a predefined slowdown during multicore execution. If
the slowdown exceeds the acceptable bounds, interferences will be reduced by controlling the
behavior of low-critical cores to keep the main application’s progress inside the given bounds.
Apart from the main goal of isolating the timing of the critical application a subgoal is also to
efficiently use the other cores. For that purpose, three different mechanisms for controlling the
non-critical cores are compared regarding efficient usage of the complete processor.

Measuring the progress of the main application is performed by tracking the application’s
Fingerprint. This technology quantifies online any slowdown of execution compared to a given
baseline (single-core execution). Several countermeasures to compensate unacceptable slowdowns
are proposed and evaluated in this paper, together with an accuracy evaluation of the Finger-
printing. Our evaluations using the TACLeBench benchmark suite show that we can meet a
given acceptable timing bound of 4 percent slowdown with a resulting real slowdown of only 3.27
percent in case of a pulse width modulated control and of 4.44 percent in the case of a frequency
scaling control.
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1 Introduction

Several companies are seeking a new generation of autonomously piloted aircrafts for future
mobility concepts. Vehicles like Vahana, Pop-up, CityAirbus [4], or Lilium Jet [18] will be
ultra light-weight electrical helicopter-style vehicles providing a novel autonomous urban
transportation concept. The avionic systems for this kind of aircraft need to implement most
functionality available in current aircrafts while providing additional complex functionality
for autonomous flying. Furthermore, the electronic systems must be optimized for weight
and space in order to fit into this new generation of aircrafts.

A possible solution that enables the necessary integration of multiple avionic applications
into less avionic computers is the use of (massive) multicore processors comprising eight or
even more cores. Avionic systems show special requirements with respect to system reliability
and availability because of their safety-critical nature.

Even though first ideas of the regulations on how to apply multicore systems in avionics
are presented in the CAST-32 position paper and its follow-up CAST-32a [7], both authored
from the Certification Authorities Software Team (CAST), concrete design details are still
open. One of the major challenges in this context is the interference between applications
since theoretically one application can compromise another one, at least in the timing domain.
Accordingly, an essential requirement for certification is a clear and reliable isolation of
safety-critical applications that needs to be demonstrated to the certification authorities.

One of the most important issues is the contention on the memory (sub-)system resulting
from different applications on the cores since it has a major impact on the actual execution
time of an application. This is based not only on queued accesses to the memory and
interconnection systems but also on contention on shared caches.

For multicore systems, an approach to support execution of highly critical avionic (legacy)
applications is the Fingerprinting technology presented in [11]. Fingerprinting continuously
tracks the progress of an application by comparing the current state of execution to a virtual
single-core execution of the same application. Unacceptable timing deviations caused by
inter-core interferences can be mitigated by controlling the behavior of the non-critical cores.
Furthermore, the approach used for slowing down the cores shall allow the most efficient
possible usage of the other cores.

The contributions of this paper are
an evaluation of the Fingerprinting’s accuracy,
an analysis of the Fingerprinting’s (non-)intrusiveness on the main application,
three possible approaches to influence the behavior of the low priority cores for interference
reduction of the critical core,
a complete external closed control loop (CCL) that guarantees virtual timing isolation
between one main application and any other application running on a multicore system.

The remainder of this paper is organized as follows. The environment in which the
approach applies as well as the relevant hardware configurations are presented in Section 2.
Section 3 provides an overview of mature techniques and related work. The fingerprint
technology is described in Section 4 while the actuators are presented in Section 5. Section 6
introduces the complete control loop. Sections 4 to 6 comprise individual evaluations. The
paper concludes with Section 7 including an outlook on future work.

2 Setting the Scene

The avionic domain is a very defensive domain regarding novel technologies, mainly caused
by possible safety issues. Hence, we focus on the use of multicores with only a single-
core executing highly (safety) critical application (referred to as main application in the



J. Freitag, S. Uhrig, and T. Ungerer 13:3

following) while the others run applications with lower criticality. With respect to the timing
requirements examined in this paper, this means the first core is executing applications
with hard deadlines which must never be missed while the other cores run weakly hard [6],
soft, or non real-time applications. Accordingly, we are proposing a technique that enables
performance and timing guarantees for one core on the cost of the other cores’ performance.

In this approach we focus on critical applications that are executed periodically which
is typically the case for avionic applications. An example is an application which in every
loop reads data as input, processes the data and creates an output while the complete
procedure happens in a cycle of 5ms to 100ms. Any type of algorithm can be computed
and the execution of different code depending on the input is possible in every loop. A
lightweight operating system can schedule multiple applications with fixed time slicing (e.g.
as in integrated modular avionics (IMA)). However, the critical application shall not exchange
data with the low priority applications. The aforementioned restrictions do not apply for the
low non-critical applications running on the other cores. However, no timing guaranties can
be provided for these applications and it must be possible to change the timing behavior
arbitrarily without crashing neither the high-critical nor the low-critical application.

In order to reuse legacy software, guaranteeing a required performance shall be non-
intrusive. Moreover, modifications to an operating system (if any) shall be restricted to
a minimum to not increase system complexity too much. As appropriate standards and
best-practices propose extra circuits external to the processor system to increase system
reliability and safety (e.g. mentioned in [7]), we target at using such an external device for
guaranteeing performance and timing. In the optimal case, this timing isolation shall be
done in addition to the original tasks of a watchdog system.

2.1 Basic Idea

Our virtual timing isolation approach tracks the main application’s progress on the basis of
characterized behavior of hardware event counters integrated inside the core of a multicore.
Examples for suitable events are the number of executed instructions, cache misses, and
executed floating point operations based on a given time period. Periodically reading and
resetting such counters results in a curve that is characteristic for an executed application,
more specifically, for the progress of that application. When comparing a recorded reference
curve to the performance counter values measured online, the current progress with respect
to the reference execution can be measured.

In case the performance drops down, our timing isolation system is able to thwart the
other cores to reduce interferences. An integrated closed loop controller is responsible for
this task.

The hardware setup consisting of a main multicore processor and the timing isolation
system is shown in Figure 1. In our demonstrator system, a Xilinx FPGA is used for
the timing isolation system and implements all functionality required for measuring and
influencing the performance of the main application running on one core of the multicore.
The two systems are connected by the trace channels of the multicore (high speed serial
link) which need to be a bidirectional connection. The available Aurora interface fulfills this
requirement and provides access to the internal debug unit. Hence, the FPGA can read the
performance counters via the debug unit and any action for controlling the cores can also be
performed by this debug unit.
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Figure 1 Hardware setup with a multicore processor under observation by the timing isolation
system implemented in an FPGA.

Table 1 Different cache configurations used in the evaluations.

Realistic Max. Interferences Max. Traffic
L1 on L1 off L1 off
L2 off L2 off L2 off
L3 off L3 off L3 int. SRAM
Memory ext. SDRAM Memory ext. SDRAM Memory int. SRAM

2.2 Hardware Configuration

The system under observation is a NXP P4080 which is an eight-core multicore processor
based on the PowerPC architecture (see Figure 1). All cores are configured to run at a
nominal frequency of 1.5 GHz. The processor comprises three caching levels where the L1
(separated instruction and data) and L2 (shared instruction and data) caches are private
to each core while the 2 MB L3 cache is shared between all cores [23]. Furthermore, the
processor provides two memory controllers from which only one is used for the evaluations.
Cache coherency as well as cache stashing is disabled for isolation of the cores.

For our evaluations we used different configurations of the caches (see Table 1) to
demonstrate the different technologies under appropriate conditions. In all configurations
the private L2 cache is disabled because enabling it increases core-local caches and reduces
interferences between cores (due to lower miss-rates). Moreover, L3 is never used as shared
cache since this would complicate a possible WCET analysis. The Realistic configuration uses
the local L1 instruction and data caches and the external SDRAM as main memory. Max.
Interference also disables both L1 caches to generate the maximum accesses from the cores to
the interconnect. Since all accesses target the external SDRAM, they show a comparatively
long latency. The Max. Traffic configuration is similar to Max. Interference but uses an
internal SRAM (L3 used as SRAM) instead of the external SDRAM. This configuration
generates the highest traffic on the interconnect due to the low latencies of accesses.

The timing isolation processor is implemented as a soft-core micro-controller (Xilinx
MicroBlaze) running at 125 MHz inside a Xilinx Virtex-7 FPGA (see Figure 1). The FPGA
is attached to the debug unit of the P4080 via a high speed serial Aurora link (2.5 GBit/s).
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Thus, the FPGA is able to extract information from the multicore processor without stopping
the cores, trigger frequency scaling and halt and continue cores. Since messages from and
to the debug interface are wrapped into the NEXUS protocol [1], we developed a Nexus IP
block to speed up the process of extracting data in the FPGA. The software for monitoring
and controlling the main applications progress is executed by the MicroBlaze.

2.3 Benchmarks
For the evaluation of the approach two different benchmarks are used to demonstrate the
effectiveness in a worst case interference scenario (read/write opponent) and a more realistic
scenario (TACLeBench benchmark suite).

2.3.1 Read/Write Opponent
In order to create a worst case interference scenario benchmark, as much data has to be
stored/loaded to and from memory as possible. In the presence of caches, every access to the
data should be a cache miss in the private caches in order to create interferences. Therefore,
the distance between two consecutive memory accesses has to be at least the size of a cache
line. In the case of the P4080 this is 64 Bytes in the L1 and L2. This technique is described
in more detail in [21]. For the evaluation, an assembler program was developed that consists
of a loop that only executes either load or store instructions with a distance of 64 Bytes.
Thus, the code fits into the instruction cache but not in the data cache.

2.3.2 TACLeBench
TACLeBench [10] is a benchmark suite comprising five packages of algorithms which are
commonly used in embedded systems. In this paper only 19 algorithms from the TACLeBench
(version 1.9) sequential package are used because these algorithms do not fit completely in the
private caches like the other benchmark packages. Examples of the sequential algorithms are
encrypting, sorting, dijkstra, H.264 block decoding and image recognition. These programs
can be compiled independent of standard libraries and operating systems which makes them
easy to adapt to our test system. The code size of the individual algorithms ranges from 117
to 2710 SLOCs.

Similar to a real avionic application we executed the 19 benchmark algorithms successively
in a loop. In order to simulate a program that acts different for different input parameters
the order of the algorithms can be defined to be random for each run.

3 Related Work

Multicore systems in avionic applications are still not wide spread. One reason is the
difficulty to obtain suitable Worst Case Execution Time (WCET) estimates since application
performance can drop significantly if multiple cores (i.e. applications) are sharing bus and
memory [20]. Furthermore, it is not possible to identify all interference channels on COTS
multicore processors [2]. Therefore, a WCET analysis on possible worst case scenarios leads
to a high WCET overestimation (estimated WCET compared to unknown realistic WCET)
for current COTS MPSoCs. Hence, the performance gain of the multicore is neglected.

Predictability by processor design is studied for example in [25], [15], and [27]. Fur-
thermore, there exist several approaches to limit or even control the interferences between
high and low critical tasks on multicore systems in software to relax the worst case scenario
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and, hence, improve WCET analysis results. These solutions focus on task or even thread
granularity and are integrated into the scheduling of the system. The main idea of these
approaches is counting e.g. bus accesses and limiting them by suspending the corresponding
thread. Examples of such approaches are presented in [17], [21], [5], [26], [16], and [3]. An
overview of these and other approaches is given in [14].

Even though these approaches are very interesting for newly developed applications, they
are not suitable for combing multiple legacy single-core avionic applications on a multicore
processor because the legacy applications or the underlying operating system would either
have to be modified, which leads to a high effort in certification (because of increased system
complexity), or restrict the applications in a way that the performance gain of the multicore
is neglected.

A previous approach for characterizing an application’s execution is presented in [9]. It
is used in high performance systems to predict an application’s future behavior and needs
for adjusting architectural parameters for performance optimizations. It is not related to
embedded real-time systems but successfully uses a similar, but intrusive, technology for
tracking application’s performance.

The use of feedback controllers in combination with real-time systems is not new. For
example, a closed loop controller is used in [19] for dynamic resource allocation and power
optimization of multicore processors. An example for closed loop control in a real-time
scheduler is presented in [24] and [8] while a controller for thermal control of a multicore
processor is introduced in [13]. However, all of these methods require intrusive measurements
and no non-intrusive approach for controlling the interferences between cores by an external
device has been presented in the past.

4 Progress Measurement using Fingerprints

Implementing a closed control loop requires a controlled system, a sensor, an actuator, and
a control algorithm. The controlled system is the main application running on one core.
As sensor element, we developed a Fingerprinting system that tracks the progress of an
application transparently. The Fingerprinting is described in this section while the actuator
and control elements are presented in Sections 5 and 6, respectively.

4.1 Fingerprinting
During the execution of an application a flow of instructions is executed. This flow is not
homogeneous in terms of type of instructions (e.g. arithmetic, floating point, branch), source
of the instructions (e.g. cache, internal scratchpad, external memory), and execution time
of instructions (e.g. simple arithmetic, complex arithmetic, memory access). Accordingly,
measuring for example the number of executed floating point instructions per time unit will
lead to a characteristic curve of an application or a part of the application. If the application
(or the relevant part of it) is executed several times the measured curves are very similar.
For tracking the progress of a known application, its measured curve can be compared to the
recorded reference curve of executed floating point instructions at any time.

In case an application executed on a multicore processor suffers from interferences with
other applications on the shared memory hierarchy, its progress is slowed down. Slowing
down the application will result in a stretched (in time) but shrunk (in the value range)
curve. When comparing such a mutated measured curve with the original reference curve,
the actual slowdown can not only be identified but also be quantified at any time during
execution.
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Figure 2 Measured curves of the four event counters: Instructions completed on top curve,
Instructions fetched second, Branches completed third, and Stores completed in lowest curve when
executing the sequential benchmarks of the TACLeBench benchmark suite.

Many current MPSoC (e.g. based on ARM, PowerPC) include performance counters
implemented in hardware which can be configured to increment every time a given event is
raised. While the amount of events which can be configured is usually more than 100, the
amount of counters that can be incremented simultaneously is small (around four to six) [22].
Therefore, the events that are suitable for tracking have to be selected.

Figure 2 presents event counter curves of the TACLeBench sequential benchmarks (see
Section 2.3.2) for the four event types Instructions completed, Instructions fetched, Branches
completed, and Stores completed. These event types were used throughout the whole paper.
For the fingerprints it is not relevant which event types are selected as long as it produces a
continues stream of measurement data (which is for example not the case for floating point
instructions) and the selected event types result in different curves. The displayed curves
originate from a bare metal execution on a NXP P4080. The characteristics origin from
the following algorithms within the TACLeBench in the following order: adpcm, anagram,
audiobeam, cjpeg_transupp, cjpeg_wrbmp, epic, fmref, g723, gsm, h264, huff, ndes, petrinet,
rijndael, statemate. These algorithms for example include jpeg transformations (7th to 12th
ms), h264 decodings (21th to 28th ms) and AES decryption (32rd to 38th ms). In the figure
it is visible that the characteristics are different for the type of algorithms executed as well
as the monitored events for the same algorithm.

4.2 Creation of a Fingerprint Model
The Fingerprint model is obtained by executing the main application several (thousand)
times. The performance counter values of the selected events are recorded with the frequency
defined by the algorithm running on the timing isolation processor (100µs period in this
case which is identical to the tracking frequency). Afterward, the recorded characteristics
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Figure 3 Generation process of the Fingerprint model. The raw data (left) is clustered by a
k-means algorithm and is reduced to the median curve to build up the Fingerprint model.

are clustered using a bisecting k-means algorithm applying the distance function1

d(x,y) =
n∑

i=1
[|xi − yi| > δmax] (1)

with runtime measurement vector x, centroid vector y, length n of the pattern and the
maximum difference between two data points δmax. This distance function does not sum
up the differences between each measurement point but it counts the number of samples
with an error higher than the given δmax. In comparison to the standard distance function
this function is not sensitive to drops in the curve as displayed in Figure 3 on the left. In
case of two curves where these drops are slightly shifted, the overall distance in the standard
function would be big even though the rest of the curve fits perfectly. With the given distance
function, errors bigger than δmax are taken equally into account which better clusters the
main streams within the recorded data.

The bisecting k-means algorithm was chosen because no predefined number of clusters has
to be given. Instead, the number of clusters is resulting from a defined maximum distance
dmax. Thus, only fingerprints with a distance d ≤ dmax to each other are in one cluster. The
centroid is defined randomly for the first iteration of the bisecting k-means algorithm and
refined in the subsequent iterations until the clusters reach their final states. The medians
of the resulting cluster centroids are combined into a tree model, the Fingerprint. Figure 3
shows an example process flow of the Fingerprint generation. In the first step an overlay
of the recorded curves is displayed which are clustered in the second step. Afterwards, the
medians of the clusters are computed and the original curves are discarded. Finally, the tree
model is created.

The Fingerprint is represented by a graph as shown in Figure 4. The root node is
the starting point of the application2. A node describes a sequence of counter values
characterizing a part of the applications execution. One node consists of at least the number
of simultaneously compared samples during tracking (4 samples in the current implementation)
and depending on the application, all the samples until to the end of the period of the

1 Please note the Iverson brackets: [P ] =
{ 1 if P is true;

0 otherwise.
2 Note that the application must be a typical embedded application that is executed periodically.
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Figure 4 Example of a Fingerprint tree model.

application or the next branch. Each node has at least one successor node, except for the
last node representing the end of execution in one iteration. In case of multiple successor
nodes they represent (at least) two different paths of following characteristics. The split
into multiple paths can be caused by different execution paths of the application or by
different environmental conditions e.g., the first execution can have a different path than
the following executions due to cold caches and warmed-up caches. It can also happen that
different execution paths are not explicitly visible in the Fingerprint if these paths show
similar characteristics as others.

4.3 Tracking the Progress of Applications in Real-Time
During actual execution time, the timing isolation system again reads the performance
counter values. In this case, the values are compared to the stored Fingerprint model and
the actual path along the tree is tracked. In contrast to the generation of the Fingerprint
model which can be created off-line on a powerful compute node, timing is crucial for the
tracking phase. The comparison between the measurements and the stored characteristic
sequences has to be performed in real-time. Furthermore, it has to be done with the limited
performance of a micro-controller as it would economically not make sense to observe the
multicore with a high power single-core processor or even a multicore processor. In our
setup the tracking is performed by a Microblaze which is a soft core micro-controller. For
performance reasons the similarity is determined with a simple distance function

d(t) =
t∑

i=t−n

(xi − Fi)2 (2)

with x runtime measurement vector, F Fingerprint vector, t discrete sampling time step from
the beginning of the current period and n number of samples to compare. In the current
implementation, in every iteration the recent four samples are compared. Comparison of only
four samples is sufficient because the resulting similarity is accumulated over time. Thus,
the decision whether the complete application run fits to the Fingerprint is not only based
on the most recent comparison but on all the measurements.

Since measurements and Fingerprint never match exactly because of different execution
environments (cache state, concurrent bus and memory accesses) or just because of jitter at

ECRTS 2018



13:10 Virtual Timing Isolation for Mixed-Criticality Systems

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

S
lo

w
d

ow
n 

[%
]

Time [ms]

Slowdown real
Slowdown measured

Standalone real
Standalone measured

Figure 5 Quality of the quantification over the runtime of the TACLeBench suite in standalone
and with seven opponent cores (Slowdown) using the Realistic cache configuration (L1 cache is
enabled). The plotted dots represent the mean values while the bars reflect the minimum and
maximum value measured.

the measuring points, the tracking algorithm is based on similarities, not on exact equality.
This is of special importance at the nodes of the Fingerprint model because here the algorithm
has to decide which path to continue.

Because the selection of the future path is based on similarity, there is an uncertainty at
the decision point. To make the tracking robust despite of this uncertainty, our Fingerprinting
implementation is able to track multiple different paths in parallel. In case of further branches
in the tree, the most probable paths are followed and less probable paths are dropped. This
decision is based on the matching of the runtime values with the path until the decision
point is reached. In the current implementation four paths can be tacked simultaneously.

When determining the similarity of an actual measurement sequence to the model, the
actual values are compared to the original model. Furthermore, a slowed down version of the
model is computed by shifting the original model which is also compared to the measured
values. In case of a better fit of the slowed down version the delay of the actual execution
is determined. For the following comparisons the complete model is shifted in order to fit
to the measurements. This enables the algorithm to track the application also in case of
a delayed execution, e.g. by bus and/or memory contention. A slowdown can not only be
detected, it can also be quantified during the execution.

4.4 Precision of the Interference Quantification over Time
For the evaluation of the precision of the quantification algorithm we instrumented the
TACLeBench suite. The instrumentation is inserted at the start and after every benchmark.
Thus, 20 milestones are inserted into the 19 algorithms of the TACLeBench suite subsequently.
Each instrumentation consists of a time measurement within the multicore processor, which
is stored in the RAM of the P4080 for later readout, and a special trace message which is
sent to the quantification FPGA. Therefore, the time measurements can be used to calculate
the actual slowdown which can be compared to the interference quantification values at the
time these messages are received.

For the comparison, the TACLeBench was first executed standalone in order to record
the time measurements without slowdown as shown in Figure 5 “Standalone real”. All the
different measurements are performed 100 times and the mean values are plotted. The
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bars are indicating the minimum and maximum values. The cache configuration in this
experiment is Realistic (L1 cache is enabled). At the same time the slowdown was measured
by the FPGA displayed in the “Standalone measured” curve. Here it is visible that there is
a slight overestimation in the interference quantification of around 1% in some cases.

In the second step, the benchmark was executed with seven write opponents causing
an average total slowdown of around 8%. However, the slowdown over time varies as it is
depending on the different algorithms and their memory access behavior. The actual slowdown
is shown in Figure 5 “Slowdown real” while the slowdown detected by the interference
quantification with fingerprints is labeled as “Slowdown measured”. Overall, the real and
the measured slowdown are matching very well. For example the final (at 52ms) actual
average slowdown value is 8.0% compared to a measured slowdown of 7.1%. In the case
of the “Standalone” execution, the final average overestimation of the slowdown is only
0.5%. In total, the average deviation of the average value of less than 1%. However, in the
beginning of the run (first millisecond) the values do not match. This is due to the fact that
the quantification algorithm takes a small start period of around 1 ms to align the measured
curve with the curves in the model. However, once this alignment is fixed the matching
is very responsive as can be seen in the figure. An evaluation on which slowdowns can be
reliably detected and how fast these can be detected is presented in [11].

4.5 Non-intrusiveness of the Read-Out Process
In order not to create any further interference on the critical application, the read-out
overhead of the progress tracking should be as small as possible (non-intrusive). However,
as the Fingerprinting approach relies on the performance counter values (see Section 4.1)
which reside inside the cores these values have to be accessed from outside the SoC. The
extraction process including the possible interference channels are displayed in Figure 6.
Every extraction is triggered by an external signal sent by the external timing isolation
system.

Once an external signal is received, the first step (1 in Figure 6) inside the SoC is the
transfer of the performance counter values to the memory-mapped Performance Monitor
Counter Capture Registers as the performance counter registers inside the cores are not
accessible by the debug interface. This transfer is triggered by a signal from the debug
interface to the respective core. In the manual of the e500mc cores [22] it is not specified
where the Performance Monitor Counter Capture Registers are located and how the transfer
is implemented. However, measurements showed that this happens in a non intrusive way as
no delay of a program executed on the core could be observed.

In the second step (2 in Figure 6) the Performance Monitor Counter Capture Registers
are accessed by the Triggered memory-mapped access unit of the debug interface. This is
implemented as a usual memory mapped access. Therefore, the interconnect is used to
transport the data to the debug interface. This is a possible interference channel as the
interconnect is also used by the cores when these access the memory, the shared cache or the
I/O interfaces.

For a reliable tracking four 32bit performance counter values per core need to be extracted
as mentioned in Section 4.1. Depending on the read out frequency the bandwidth needed
on the interconnect varies. For an example extraction frequency of 1 MHz (1 µs period) a
bandwidth of 128 Mbit/s per observed core is needed. However, if the performance counters
of all cores shall be extracted in parallel at this frequency the resulting bandwidth is 1 Gbit/s.
Even though NXP claims that the P4080 provides 0.8 Tbps coherent read bandwidth [23],
interference is measurable even if only one core is observed.
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Figure 6 Possible interference channels on the example of an NXP P4080 SoC with eight cores.
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to the on-chip SRAM (L3 cache configured as
SRAM) while the L1 and L2 caches are disabled.

The interference measured for the execution of the sequential TACLeBench benchmarks
on one core while the remaining cores are idle is shown in Figure 7. The slowdown s is
defined as

s(p) =
(

x(p)
xunobserved

− 1
)
∗ 100 (3)

with the access period p, the execution time without observation xunobserved and the execution
time for a given period for reading out the PMC capture registers x(p).

The bars are the respective observed min/max values. At some points the bars are below
zero. This results from the fact that the execution time is varying even without disturbance
from the read out process. These slight variations are a result of cache, interconnect and
memory mechanisms.

It can be recognized that the slowdown is very small (around 0.09%) even at access
frequencies of 10 Mhz. For access periods larger than 20 µs the interference is not measurable.
The result is identical for the case that the performance values are extracted from the core
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executing the benchmark as well as from any core that is in idle mode. Even though the
interference is decreasing with a higher access period there are two measurements that are
lower than expected (around 0.4 µs). We assume this is because of a synchronization of
the memory accesses of the TACLeBench with the memory mapped accesses of the debug
interface.

The intrusiveness analysis using the TACLeBench benchmarks shows the potential impact
on a real application. However, in order to determine the worst case interference of the
read out process an application was developed that almost only performs memory accesses.
Furthermore, the subsequent memory accesses read/write data from/to addresses with 64
byte distance which is the size of one cache line. Additionally, the L1 and L2 caches are
disabled while the L3 cache is used as SRAM memory (Maximum Traffic cache configuration).
Therefore, every load instruction initiates a transaction in the interconnect which is considered
as the worst case.

The slowdown of this application is displayed in Figure 8 for three configurations. In the
first configuration the application runs on one core while the remaining cores are idle. In the
second and third configuration the application is executed on all eight cores simultaneously.
The extraction process is performed on one core or all the cores. The slowdown is determined
similar to the TACLeBench analysis with Equation 3 but normalized to the eight core
execution without reading the counter registers. Thus, the slowdown resulting from the
inter-core interference is eliminated.

The measured slowdown is not significantly higher compared to the TACLeBench analysis
for the one core execution. However, when all the eight cores are used for execution, the
slowdown is around six times higher in case only one core is observed which is still a very low
slowdown. The higher interference for the eight core execution results from the utilization of
the interconnect from the cores. For access periods larger than 20 µs (50 kHz) the interference
is again not measurable. In case all the cores are observed simultaneously the interference
is much higher. As expected, the interference is around eight times higher compared to
the case where only one core was monitored. The slowdown reaches a maximum at around
1.02 µs and the slowdown is not increasing with decreasing access periods. At this point the
maximum speed of the triggered memory mapped access of the debug interface is reached.
However, for extraction periods above 50 µs the interference is also not measurable.

5 Performance Control by Interference Reduction

The presented Fingerprinting is used as the sensor element of the closed control loop. In
this section the actuator which influences the performance of the other cores and, hence, the
interferences is explained. A simple technique for reducing the interferences with the main
application is halting and resuming the opponent cores based on a threshold. For example,
whenever the slowdown of the main application rises over 5% the other cores are halted
and continued once the slowdown drops under 5%. This actuator is effective and stops the
interferences of the opponent cores but it is heavily intrusive for the tasks running on the
other cores and might have severe effects depending on the executed application. Apart from
the main goal of isolating the timing of the critical application a subgoal is also to efficiently
use the other cores. Therefore, two more advanced and less intrusive actuators are presented
in this section. These actuators are pulse width modulated interferences and frequency scaling.
We present an extended evaluation of pulse width modulated interferences[12] and the new
approach using a frequency scaling methodology.
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5.1 Pulse Width Modulated Interferences
Modern multicore systems like the P4080 provide means to halt and continue cores individually.
Whenever a core is halted, the clocks are still running, but the core is not fetching or executing
instructions [22]. Thus, no accesses to the memory are performed and the interference is
stopped. Both actions can be triggered by messages on the back channel of the trace interface,
i.e. by writing to control registers. This means that the timing isolation processor (see
Figure 1) is able to control the activity of the cores individually from an external device.

To provide not only a binary (on/off) way of setting the performance of the cores, we
implemented a (software-based) Pulse Width Modulated (PWM) enabling/disabling of the
individual cores, according to the signals from the closed loop controller in short time ranges.
We have chosen a PWM period of 1ms which is equal to 10 times the 100µs required to
track the application performance. Hence, we can reduce the performance of cores competing
with our main core in steps of 10%. During the duty cycle all the opponent cores are active,
while for the rest of the period the cores are stopped.

5.2 Frequency Scaling
A slowdown of an interfering low priority core can also be done by a frequency downscaling.
This is highly depending on the processor architecture. For example, the number of different
clocks and the divider steps are varying between processors. In the case of the P4080 only
four possible configurations can be selected: Two different clock sources and to each clock
source a divider (divide by two) can be applied. However, in order to have a maximum
frequency range, the highest frequency selectable clock frequency is 1.5GHz while the lowest
frequency is 800MHz. Therefore, the possible frequencies are 400MHz, 750MHz, 800MHz
and 1.5GHz which can be configured for each core individually. This configuration is also
possible during runtime from an external device via the debug interface. Since, it is possible
to scale down the frequency of an individual core the execution on that core can be slowed
down and thus, the interferences with the main core is reduced.

5.3 Evaluation of PWM and Frequency Scaling
For the evaluation of the effectiveness of both the PWM and the frequency scaling approach
we used the TACLeBench and the read/write algorithm in three different scenarios:
1. Read with seven read opponents (Figure 9): shows the worst case interference scenario,
2. TACLeBench with seven write opponents (Figure 10): shows a realistic application (this

benchmark is application oriented and generates realistic traffic on the shared interconnect
and memory and profits from local data caches) with worst case opponents,

3. TACLeBench with seven TACLeBench opponents (Figure 11): shows a realistic application
on core 0 with realistic opponents.

All the scenarios were evaluated in two different cache configurations: Realistic (L1 is
enabled) and Maximum Interferences (no caches enabled).

For the evaluation of the frequency scaling the performance of the applications was
measured without frequency scaling of the opponent cores in the first step. All cores were
running with 1.5GHz which is labeled in the figures as Without control. In scenario one
and three the performance is identical for all applications on all core as the applications are
identical. In scenario two the Without control performance is depicted individually. In a
second step the opponent cores are set to 400MHz which is the minimum configurable speed
for the P4080 when the maximum speed is configured to 1.5 GHz. The performance of core 0
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Figure 9 Frequency Scaling and PWM efficiency with the read algorithm (see chapter 2.3.1) on
core 0 as well as read opponents on the other seven cores. These measurements were conducted
with the Maximum interference cache configuration (all caches disabled). A separate analysis (not
shown here) indicated that the curves are very similar for enabled local caches as the read algorithm
is designed to cause maximum stress on the interconnect and does not take advantage of caches.

as well as the performance of the other cores was measured. As expected, it is visible that the
performance of the other cores drops while the performance of core 0 is increased. However,
the amount is highly depending on the scenario and cache configuration. The measurements
were taken for a varying number of opponent cores. For example, in case of Number of cores
is four, core 0 is running with 1.5GHz, cores 1 to 3 are running with 400MHz and cores 5 to 8
are idle in the controlled case. In the case of only one core, there is obviously no data plotted
for Core 0 and Other cores but this data point was used to normalize the measurements.

During the evaluation of the PWM approach all eight cores are utilized while the duty
cycle of all seven opponent cores is varying from 0 to 100% in steps of 10%. As result, the
execution time for the main application as well as the opponent applications is measured.

The results for scenario one with the read algorithm on the main core and up to seven
read opponents is shown in Figure 9. It can be observed that the frequency scaling is not able
to reduce the interferences from the opponent core enough to keep core 0 at a performance
level higher than 90%. The increase of performance in comparison to the uncontrolled case
is only around 4% for one opponent core (number of cores equal to two) and is completely
negligible for seven opponent cores (number of cores equal to eight). This effect is the same
for both cache configurations and can be explained by the cache behavior of the algorithm.
Even though the opponent cores are executing instructions with one fourth of the speed, the
memory interface is still jammed by the opponents because the memory is even slower. In
contrast to that, the results for the PWM approach shown in Figure 9b reveals that even in
the case of running seven opponents in parallel, the performance of the main application can
be fully recovered. This shows that in the worst case the frequency scaling is not sufficient
but the PWM approach can control the performance of the main application at the cost of
heavily slowing down the opponents.

The more realistic scenario of TACLeBench with seven write opponents is shown in
Figure 10. In contrast to the other scenarios there are four curves displayed for the frequency
scaling instead of three. This is because there are different applications running on core
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Figure 10 Frequency scaling and PWM efficiency with TACLe on core 0 and write opponents on
the other cores. For Figure a and b the Maximum interference cache configuration applies while for
Figure c and d the Realistic cache configuration (L1 cache enabled) was used.
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Figure 11 Frequency scaling and PWM efficiency with TACLe on core 0 and TACLe opponents on
the other cores. The measurements were taken with the Maximum interference cache configuration.
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0 and the other cores which are evaluated separately. In the case of no caches the results
are similar to the results in the read/read scenario. However, if the L1 cache is enabled the
performance of the TACLeBench does not drop below 90% even with seven write opponents.
The effect of the frequency scaling is not significant because of the cache behavior of the
write algorithm like in the read/read scenario.

For the scenario of TACLeBench with seven TACLeBench opponents the results are
displayed in Figure 11. It is visible that the frequency scaling has a significant effect on the
performance of the application on core 0. Especially in the case of one and two opponents
(two and three cores in Figure 11a) the frequency scaling increases the performance to
over 90%. However, even though a performance increase of around 15% compared to the
uncontrolled case is visible in the eight core case, frequency scaling is not sufficient for
advancing the performance to a level of over 90%. Additional measurements (not shown in
the figure) show that in the case of the Realistic cache configuration the loss in performance
of the TACLe benchmark on core 0 is negligible and the performance of core 0 with seven
opponents is still 99%.

Concluding this evaluation, frequency scaling is less efficient for improving performance of
core 0 compared to PWM. On the other hand, frequency scaling affects applications running
in parallel to core 0 less than PWM.

6 Closed Control Loop

We used two algorithms as control element, a simple threshold-based one and a proportional
controller. Both techniques affect all concurrent cores synchronously. The threshold-based
algorithm disables the concurrent cores when the slowdown of the main application exceeds a
given threshold and enables the cores again when the slowdown falls below the same threshold
again. The second technique uses a proportional controller with an actuator based on the
PWM activity control and the frequency scaling, respectively, as described in the previous
section.

As mentioned in Section 5.1, it is possible to control the cores individually which allows
for idling only the low priority cores which create a high traffic on the shared resources. In
order to detect the individual core interference, one performance counter in every low priority
core has to be read periodically in addition to the performance counters in the critical core.
This performance counter is configured with the event bus interface unit accesses. Thus, it
counts the actual number of L2 cache misses which creates contention. The non-critical cores
with the highest number of bus interface unit accesses can than individually be slowed down
by one of the proposed techniques.

However, for this evaluation of the effectiveness of the control loop we used the TACLe
benchmarks as main application and the aforementioned Write algorithm as opponents
running on seven cores in parallel. We set a maximum slowdown of 4% as target performance
of the main application compared to the standalone execution. Individual core interference
detection is irrelevant in that case as all opponent cores are running the same application
(worst case interference). Therefore, the low priority cores are equally slowed down while the
critical application is untouched.

The results of the evaluation are shown in Figure 12, 13 and 14. In the figures, the
progress of the TACLeBench over time is displayed in the upper part and the measured
slowdown over time in the lower part. The upper part presents the number of executed
instruction per µs. For comparison, the standalone (no opponent applications) and the
uncontrolled (seven opponent applications without control) executions are displayed. The
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Figure 12 TACLeBench performance over time without control and with applied simple threshold
controller.
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Figure 13 TACLe performance over time without control and with applied PWM controller.
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Figure 14 TACLe performance over time without control and with applied frequency scaling
controller.

uncontrolled execution takes about 8% longer than the standalone run. The diagrams in the
lower part of the figures represent the slowdown of the main application as tracked by the
Fingerprinting. Since the tracking of progress is based on discrete steps, the performance
reductions are manifested in sharp steps. The following phases of smooth performance
increases are caused by relative distribution of a slowdown over a longer time, i.e. a one-time
delay at the start of the application of 5% is reduced over the total execution time to a much
lower slowdown.

In Figure 12 the results of the threshold controller are displayed. The dotted line represents
the threshold (4%) i.e. the maximum target slowdown of the main application. The gray
shaded boxes identify the times when the other seven cores are active. No grey shading
means that the other cores are disabled by the control mechanism. It is visible that the
opponent cores are disabled whenever the measured slowdown is higher than the threshold
value which keeps the total slowdown in the end at a measured slowdown of 3.59%. The
actual total slowdown is 4.44% (measured by comparing the times it took for executing
the benchmark in the standalone and controlled case) which means an underestimation of
the slowdown by the Fingerprinting and an exceedance of the threshold by less than 0.5%.
During the total run of one TACLeBench benchmark the opponents are executed for 67%
and halted for 33% of the time.

The behavior of the PWM controller is shown in Figure 13. The duty cycles of the
competing cores are set according to the measured slowdown. A slowdown of less than
2% allows full performance for all cores, a slowdown above 7% leads to complete disabled
competing cores. Between 7% and 2%, the duty cycles are adjusted in 10% steps from 10%
to 90% (one step per half percent of slowdown). The grey shaded areas represent the duty
cycles of the PWM core activation signal. As can be observed, the 4% target slowdown of
the main application is reached after completion (3.23% measured while the actual slowdown
was 3.27%). Moreover, the active phases of the competing cores are much longer in time but
less intensive. Since we are using a PWM signal, this means that the cores are active for
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many but smaller periods. With this PWM control, the seven bad guys get 74% of the cores’
performance while the main application still meets the performance requirements which is
an advantage of 7% over the threshold based actuator. Moreover, actual slowdown of the
main application is better than the targeted acceptable threshold of 4%.

The frequency scaling approach is displayed in Figure 14. The possible frequencies of
the opponent cores are 400MHz, 800MHz and 1.5GHz. Furthermore, the core can be halted.
Similar to the PWM approach a slowdown of less than 2% allows full performance for all
cores, a slowdown above 7% leads to completely disabled competing cores. Between 7% and
2%, the frequencies are adjusted in linear intervals. The grey shaded areas represent the
frequencies of the opponent cores. The slowdown of the main application is reduced with a
total measured value of 3.60% (real slowdown: 4.44%). However, this was not possible by
only scaling down the cores. During the period of high interference in the beginning of the
execution the opponent cores had to be halted for a sufficient reduction of the interferences.
An assessment of the cores processing time compared to the aforementioned approaches does
not make sense in this case. The frequency scaling of a core cannot be compared with halting
and continuing a core because the performance of a scaled down core is highly dependent on
the instructions executed.

The scenarios one and three show slight violations in actual slowdown compared to the
target threshold. This is because of an underestimation of the slowdown by the Fingerprinting
caused by the technologies latency. Adding a safety margin when defining the acceptable
bounds could help here.

7 Conclusion and Future Work

This paper presents a virtual timing isolation of one main application running on one core
from all other cores of a multicore processor. The proposed technique is based on hardware
external to the multicore and completely transparent to the main application. The basic
idea is to apply a single-core execution based Worst Case Execution Time analysis and to
accept a predefined slowdown during multicore execution. If the slowdown exceeds predefined
acceptable bounds, interferences will be reduced by thwarting other cores to keep the main
application’s progress inside the bounds.

We evaluated the accuracy of the transparent tracking of the application’s progress
(Fingerprinting), the effectiveness of different thwarting techniques, and the performance of a
complete closed control loop using a simple P-controller. The latter shows that it is possible
to transparently enable an application staying within given timing bounds even though there
are a maximum of seven opponents flooding the shared interconnect with traffic. Evaluations
indicated a slight underestimation of the application’s slowdown which could be compensated
by adding a safety margin. Determining a suitable range for this safety margin is part of
future work.

It is planned to extend the thwarting in order to affect only cores driving high traffic
on the interconnect instead of all competing cores. This can be reached by evaluating the
interconnect accesses of the other cores to identify cores with high influence. Moreover,
a combination of frequency scaling and PWM driven thwarting would be interesting for
more effective and fine-grained interference control. Also using a more complex control
algorithm like a full PID controller could be useful to increase performance of competing
cores. The target of future research will be enabling more than one core running hard
real-time applications.
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Abstract
A system is said to be resilient if slight deviations from expected behavior during run-time
does not lead to catastrophic degradation of performance: minor deviations should result in no
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1 Introduction

There is an increasing trend in embedded systems towards implementing multiple function-
alities upon a shared platform. It may be the case that all these functionalities are not
equally important to the overall correctness of the embedded system; one widely-studied
model for representing timing requirements in such systems was proposed by Vestal in a
seminal paper [33]. Vestal observed that “In many applications, the consequences of missing
a deadline vary in severity from task to task. In RTCA DO 178B, for example, system
safety analysis assigns to each task a criticality level (ranging from A to D), where erroneous
behavior by a level A task might cause loss of aircraft but erroneous behavior by a level
D task might at worst cause inconvenient or suboptimal behavior.”1 Vestal went on to
conjecture that “the higher the degree of assurance required that actual task execution times
will never exceed the WCET parameters used for analysis, the larger and more conservative
the latter values become in practice.” (This conjecture appears reasonable. Very conservative
WCET-estimation tools have been developed, typically based upon static analysis of code,
that yield WCET bounds that may be very large, but that we can trust to a very high level of
assurance. Less conservative WCET-estimation tools, which are typically measurement based,
tend to obtain smaller estimates, but these estimates may be trust-worthy to lower levels of
assurance since the worst-case behaviors of the system may not have become revealed during
the measurements.) The “Vestal model” for representing, and validating the correctness of,
mixed-criticality systems is based upon this conjecture. In this model,

§1. A fixed number of distinct criticality levels are defined throughout the system. In
this paper, we will assume that there are two such criticality levels, designated lo and hi,
with the interpretation that functionalities designated as being of the lo criticality level
need to have their correctness validated to a lower level of assurance than functionalities
designated as being of the hi criticality level.

§2. Each piece of code in the system is characterized as being of one of the criticality levels
lo or hi, and by two WCET parameter estimates. One WCET estimate is determined
using tools and techniques consistent with the lower criticality level lo, while the other
estimate is determined using tools and techniques consistent with the higher criticality
level hi.

§3. Prior to run-time, the correct timing behavior (e.g., meeting deadlines) of all the
functionalities are validated under the assumption that each piece of code will execute
for a duration not exceeding its lo-criticality WCET estimate; in addition, the correct
timing behavior of the hi-criticality functionalities (but not the lo-criticality ones) are
validated under the assumption that each piece of code may execute for a duration up to
its hi-criticality WCET estimate.

1 RTCA DO 178B is a guideline dealing with the safety of safety-critical software used in certain avionics
systems. Although the term “criticality” typically has a precise technical meaning in most safety
standards documents, its use in [33], and subsequent use in much of the mixed-criticality scheduling
theory literature, appears to be in a rather general sense as a designation of the level of assurance
against failure that is desired. In this paper we are using the term in this more general sense, in keeping
with prior literature in mixed-criticality scheduling.
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1.1 Verification versus resilience
The Vestal approach to modeling and analysis of mixed-criticality systems, as originally
proposed [33], is concerned solely with verification – determining, prior to run-time, whether
a system will behave correctly during run-time if its run-time behavior is compliant with the
models used to represent it. Clearly, such pre-runtime verification is desirable in safety-critical
systems. There is an additional aspect of correctness that is also desirable: the system’s
run-time behavior should be resilient or robust in the event that run-time behavior does not
conform to the models that were assumed during verification; if this happens, a robust system
design ensures that performance degrades gracefully, if at all. It is this run-time resilience
aspect of system behavior that is the primary focus of this paper. (While the precise semantics
of graceful degradation should be for a particular system may depend upon the characteristics
of the system, some general principles are applicable; for example, less important aspects of
system functionalities should be compromised before more important ones.)

The Vestal model of [33] and its derivatives and generalizations have formed the basis of
a large body of research: schedulability tests, scheduling algorithms, etc. – see, e.g., [5, 6]
for a survey. Much of this research is focused upon the pre-runtime verification aspect
of correctness rather than the run-time resilience. For instance, many mixed-criticality
scheduling algorithms allow for lo-criticality pieces of code to be aborted if any piece of code
executes beyond its lo-criticality WCET estimate. Such a scheduling algorithm may still
pass the pre-runtime verification test (since such tests are only concerned with the correctness
of the hi-criticality functionalities under such circumstances), but would not be considered
resilient. Some recent research has attempted to provide some resilience to lo-criticality
pieces of code in the event of some piece of code executing beyond its lo-criticality WCET
estimate; these approaches are reviewed in Section 7.

1.2 This research
In this paper, we explore the use of control-theoretic principles to achieve resilience in mixed-
criticality systems. We consider over-runs of hi-criticality pieces of code (in the sense of them
executing for more than their lo-criticality WCET estimates) to be rare events that are best
coped with by run-time adaptability. Some over-runs can be masked by under-runs by other
hi-criticality pieces of code; others will require system-wide adaptation. These adaptations
should be commensurate with the scale of the over-run – dropping all lo-criticality pieces
of code because a single hi-criticality piece of code has executed for slightly more than
its lo-criticality WCET is clearly an over-reaction. A resilient system should cope with
uncertainty in a measured way.

Some recent advances in real-time control (see, e.g., [22] and the references therein)
have motivated us to explore whether the desired resilience can be achieved using a control-
theoretic approach. The scheduling strategy we propose has the hi-criticality workload
executing within an execution-time server that is provisioned with a budget sufficient to
satisfy the lo-criticality WCET requirements of this hi-criticality workload; another, similar,
server is used to encapsulate the execution requirements of the lo-criticality workload. At
run-time if the hi-criticality server’s budget proves inadequate for meeting the execution
requirements of the hi-criticality workload (due to some hi-criticality pieces of code executing
for more than their lo-criticality WCET estimates) then the system is deemed to have
suffered a disturbance or perturbation. We employ a control feedback mechanism to govern
budget allocations going forward from the disturbance. This control-theoretic feedback
approach allows a number of questions to be answered concerning the run-time behavior of
the scheduling strategy, such as

ECRTS 2018



14:4 AdaptMC: Control Theory for Mixed-Criticality Systems

How long following a disturbance will it take the system to return to a non-perturbed
state?
What guaranteed level of service can be obtained for the lo-criticality workload?
What is the maximum magnitude of disturbance that can be accommodated allowing for
stable control and for the hi-criticality workload to remain schedulable?

1.3 Organization
The remainder of this paper is organized as follows. Section 2 presents the background for
this work, while Section 3 presents AdaptMC, the proposed approach, in detail. Section 4
discusses how AdaptMC is designed and tuned, while Section 5 presents how hard real-time
guarantees can be provided, by means of the calculation of the supply bound function.
Section 6 presents a numerical evaluation of AdaptMC. Section 7 reviews the related work,
while Section 8 concludes the paper.

2 Background

The use of feedback control to allocate resources has traditionally been applied to time-
varying workloads [28, 7, 1], and the kinds of offered guarantees have been probabilistic or
soft real-time. Recently, however, a control scheme called the Self-Adaptive Server (SAS) has
been proposed [22], that provides both good average behavior and hard real-time guarantees.
Such a guarantee is given by computing the supply bound function [21, 18, 27, 2] of a periodic
resource supply controlled by feedback [17].

The main idea behind SAS is as follows. Each server in the system is assigned a budget
of time to execute. The server is allowed execute more or less than the budget, but at the
next round it will be assigned a budget that is corrected with a term that is proportional to
the over- or under-run of the server. In [22] this simple, yet effective, control structure is
analyzed under the assumption that the maximum over- or under-run are bounded. The
designed controller is proven to effectively adapt the budget at run-time, while the supply
bound function associated with the controller can be computed offline.

3 The Proposed Approach

We are concerned with mixed-criticality systems in which the lo-criticality WCET values
represent typical or common-case behavior: executions rarely exceed these WCET values
and when they do, it is typically by small amounts. We seek to devise resilient scheduling
strategies for such mixed-criticality systems. As briefly stated in Section 1, our proposed
scheduling strategy uses two servers, one each for servicing the hi-criticality and lo-criticality
workloads.2 In dimensioning these servers’ budgets, our objective will be to modestly over-
allocate the hi-criticality server in the sense that “most of the time” we would expect the
entire provisioned budget to not be needed. If an occasional modest over-run occurs in

2 For the kinds of application systems that we are interested in, work (in the form of “jobs”) is typically
generated by recurrent – periodic and sporadic – tasks; determining appropriate budget and period
parameters for servers capable of accommodating the computational requirements of such recurrent tasks
is an important issue that has been widely studied in the real-time scheduling community [18, 27, 2].
However, the issue of dimensioning such servers is orthogonal to the focus of this paper and we will not
discuss it further, instead assuming that some appropriate scheme is used to determine appropriate
server parameters such that if all jobs execute at their lo-criticality WCET estimates, then each server
is able to correctly execute those jobs for which it is responsible.
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Figure 1 Server schedule over time.

the amount of execution required by the hi-criticality server (say, by an amount x over
the budgeted amount), our run-time scheduling strategy is to allow the hi-criticality server
to over-execute by this entire amount x, and then reduce the budget for the lo-criticality
server by an amount somewhat smaller than x. Informally speaking, the hope is that after
dealing with this one-time over-run, the hi-criticality server will not need to use its entire
budgeted amount for some duration, and hence can compensate the lo-criticality server over
this duration. However, (as we will see) our control-based scheduling strategy is robust to
scenarios in which the hi-criticality server over-runs for an extended duration as well; if this
happens, the lo-criticality server ends up getting under-served over an extended duration.

In order to develop a control-based strategy capable of achieving these goals, we needed
to extend and adapt SAS (Self-Adaptive Server) [22] in several directions. The feedback
mechanism derived in this paper is an extension of SAS to the mixed-criticality context that
enables:
1. the adjustment of server budgets based on disturbances at both hi-criticality and lo-

criticality servers (achieved by cross gains of the controller), and
2. the exploitation of the asymmetric nature of disturbances that are permitted for the

lo-criticality server (which may occasionally be under-served but never receives more
than its budgeted amount) to provide less conservative supply bound functions.

The presence of these two characteristics, needed in the mixed-criticality context, renders
the results in [22] inapplicable directly; hence the extensions reported here. Section 3.1
below describes the adaptive scheduling strategy we have developed; the control algorithm
underpinning this strategy is described in Section 3.2

3.1 Run-Time Scheduling Strategy
We propose a 2-levels hierarchical scheduler with two schedulers at the top level, one for
servicing lo-criticality work and the other, for servicing hi-criticality work (see Figure 1).
Let Q̄H and Q̄L denote the target budgets for the two servers, and P̄ = Q̄H + Q̄L the target
period. We will describe later the manner in which values are assigned to these target
budget parameters; intuitively speaking, we would assign them values such that under
normal circumstances (i.e., all jobs completing within their lo-criticality WCET estimates)
a periodic schedule with period P̄ in which the hi-criticality server executing for a duration
Q̄H is followed by the lo-criticality server executing for a duration Q̄L, would meet all timing
requirements for all the hi-criticality and the lo-criticality workload.

During run-time these two servers are repeatedly scheduled alternately. Let us refer to
the k’th time that both servers are scheduled as the k’th round. Let QH(k) and QL(k) denote
the tentative budgets that the control algorithm computes at the end of the k’th round, for
allocating to the two servers for the (k + 1)’th round. Initially, we have QH(0) = Q̄H and
QL(0) = Q̄L; i.e., for the first round the tentative budgets are set to be equal to the target
budgets.

Now suppose that during the (k+1)’th round for some k, the hi-criticality server needs to
execute for a duration greater than this tentative budget QH(k) in order to ensure the correct
execution of all hi-criticality jobs (budget overrun). We allow it to do so, and let SH(k + 1)
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denote the duration for which it executes – SH(k + 1) is called the actual budget assigned
to the hi-criticality server during the (k + 1)’th round, and εH(k) =

(
SH(k + 1)−QH(k)

)
is

called the disturbance experienced by the hi-criticality server, i.e., the discrepancy between
the target and actual budget. In response to such a disturbance, our control algorithm
modifies the tentative budgets QH(k + 1) and QL(k + 1) computed for both servers for the
next round, to compensate for the budget overrun and preserve the bandwidth.

3.2 The Control Algorithm

As stated earlier, our control-based scheduler is designed under the assumption that jobs
executing beyond their lo-criticality WCET estimates will be rare events. The target budget
Q̄H for the hi-criticality server should be chosen to somewhat exceed the minimum needed in
order to accommodate the lo-criticality WCET requirements for all the hi-criticality jobs;
hence, if only one or a few jobs over-run their lo-criticality WCETs during a round, such
over-runs are often masked by the excess budget and by under-runs of other hi-criticality
jobs. It should only rarely be the case that such over-runs during any round get expressed as
disturbances (i.e., as an εH(k) value for some k); in the rare events when this does happen,
our control algorithm requires that it be of magnitude that is bounded by an a priori known
constant ε̄H: |εH(k)| ≤ ε̄H.

In order to accommodate these disturbances in the hi-criticality servers, our control
algorithm will occasionally under-schedule the lo-criticality server, providing it a supply
SL(k + 1) that is strictly less than the tentative budget QL(k) that had been computed
for it – when this happens, the lo-criticality server is said to experience a disturbance
εL(k) =

(
SL(k + 1)−QL(k)

)
. We assume that such a disturbance will also be of magnitude

that is bounded by another a priori known constant ε̄L, i.e., maximum budget over-run of
the lo-criticality server.

Analogously, our run-time scheduler also bounds the “negative” disturbance to the hi-
criticality server: the amount by which the actual amount of execution supplied during a
round is less than the tentative budget, to have a magnitude no greater than ε̄H. Summarizing
the above discussion on disturbances, we obtain the following bounds on the magnitudes of
the disturbances that could be experienced by both the servers:

−ε̄H ≤ εH(k) ≤ ε̄H, −ε̄L ≤ εL(k) ≤ 0. (1)

As we had stated earlier, the actual budgets SH(k + 1) and SL(k + 1) assigned to the servers
may be expressed as being equal to the computed tentative budgets QH(k) and QL(k), plus
the disturbances εH(k) and εL(k).

SH(k + 1) = QH(k) + εH(k)
SL(k + 1) = QL(k) + εL(k)

The tentative budgets QH(k + 1) and QL(k + 1) that are computed by the control algorithm
may similarly be expressed as the sum of tentative budgets computed for the previous round
and a corrective term (called the “control signal”) denoted uH(k) and uL(k), that is computed
by the control algorithm at the end of each round:

QH(k + 1) = QH(k) + uH(k)
QL(k + 1) = QL(k) + uL(k)
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Letting

x(k) =


SH(k)
SL(k)
QH(k)
QL(k)

 , u(k) =
[
uH(k)
uL(k)

]
, ε(k) =

[
εH(k)
εL(k)

]
,

one can express the control system dynamics – the change in values of the actual and tentative
budgets across rounds that we have discussed above – in a more compact form, as follows:

x(k + 1) =

A︷ ︸︸ ︷
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

x(k) +

Bu︷ ︸︸ ︷
0 0
0 0
1 0
0 1

u(k) +

Bε︷ ︸︸ ︷
1 0
0 1
0 0
0 0

 ε(k). (2)

We now discuss how the control signals are computed by the control algorithm (this
computation is commonly referred to as the control strategy). In designing the controller, we
assign values to four real-valued gain parameters KHH,KHL,KLH, and KLL – the parameter
design is discussed in Section 4 – and compute the control signals as follows:

uH(k) = KHH

(
Q̄H − SH(k)

)
+ KHL/γ

(
Q̄L − SL(k)

)
,

uL(k) = γKLH

(
Q̄H − SH(k + 1)

)
+KLL

(
Q̄L − SL(k)

)
.

(3)

The parameters KHH,KHL,KLH, and KLL weigh the discrepancy between the target and
actual budgets; the values assigned to these parameters reflect the effect each discrepancy
has on the control signal. (Observe that in computing the control signal uL(k) that will be
applied to the lo-criticality server, we are able to exploit the fact that the value of SH(k+ 1)
is already known when the lo-criticality server is scheduled during the (k + 1)’th round; we
therefore choose to exploit this fact to compute a “better” values for uL(k).)

By substituting the control strategy as represented by Eqn (3) into Eqn (2), rearranging
terms, and letting γ denote the ratio of the target budgets, i.e., γ = Q̄L/Q̄H, the closed-loop
system dynamics may be represented as follows:

SH(k + 1) = QH(k) + εH(k) (4)
SL(k + 1) = QL(k) + εL(k) (5)
QH(k + 1) = QH(k) +KHH(Q̄H − SH(k)) + KHL/γ(Q̄L − SL(k)) (6)
QL(k + 1) = QL(k) +KLL(Q̄L − SL(k)) +KLHγ(Q̄H − SH(k + 1)) (7)

or, in a more compact way:

x(k + 1) = ACL x(k) + BQ Q̄ + Bε,CL ε(k) (8)

with

ACL =


0 0 1 0
0 0 0 1

−KHH −KHL
γ 1 0

0 −KLL −γKLH 1

 , BQ =


0 0
0 0

KHH
KHL
γ

γKLH KLL

 ,

Q̄ =
[
Q̄H

Q̄L

]
, Bε,CL =


1 0
0 1
0 0

−γKLH 0

 .
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The eigenvalues of ACL determine the convergence time towards the value x for the system
state. These can be obtained from the characteristic polynomial of ACL:

p(z) = z4 − 2z3 + (KHH +KLL + 1) z2 − (KHH +KLL +KHLKLH)z +KHHKLL. (9)

Since the considered system is linear, we can use the superposition principle3, and consider
separately the effect of Q̄ and ε on the evolution of x. The z-transform of (8) is:

X(z) = (zI −ACL)−1 (x(0) + BQQ̄ + Bε,CLE(z)
)

(10)

Evaluating the transfer function from the error ε to the state x for z = 1 computes, in control
theoretical terms, the asymptotic effect of the unitary constant disturbance ε on the state x;
in the considered case, evaluating (zI −ACL)−1Bε,CL for z = 1 yields:

(I −ACL)−1Bε,CL =


0 0
0 0
−1 0

0 −1


that proves that the effect of ε on S (the first two rows) vanishes asymptotically to zero
independently of the values assigned to the gain parameters. The effect of a unitary constant
disturbance on the budgets Q, on the other hand, is to compensate ε by reducing the budget
of exactly a unity so that value of S will compensate perfectly the disturbance ε.

4 Designing the Control Algorithm

In Section 3 we described how the control logic can be used to adjust the resource budgets
allocated to hi and lo-criticality servers. In this section, we are going to explore the
assignment of values to the control gain parameters KHH, KHL, KLH, and KLL such that the
resulting budget dynamics are guaranteed to possess the desirable control-theoretic properties
of compensation and stability.

I Definition 1 (Compensation property). A single disturbance ε(k) on the hi/lo-criticality
server results in an opposite or null effect on the value of S(k+ 1) (i.e., the actual budget) of
the lo/hi-criticality server, i.e.,

∃n > 0 : εi(k) = −α(k + n)uj(k + n), α(k + n) ≥ 0, i, j ∈ {H,L}, and i 6= j.

The intuition of the compensation property is that whenever the hi-criticality server exceeds
its budget (SH(k+ 1) > QH(k)), the lo-criticality server compensates for this disturbance by
temporarily reducing its budget. On the other hand, when the lo-criticality server requires
less time for its execution (SL(k + 1) < QL(k)), then the hi-criticality server will be allowed
to temporarily increase its budget. Finally, when the hi-criticality server executes for less
time (SH(k + 1) < QH(k)), then the lo-criticality server can temporarily increase its budget.

The overall objective is to both preserve the bandwidth of the two servers, and to reach
the target period P̄ = Q̄H + Q̄L.

3 The superposition principle for linear systems states that the net response caused by multiple stimuli
upon such a system is equal to the sum of the responses that would have been caused by each individual
stimulus.
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I Theorem 2. If

KHH > 0, KHL ≥ 0, KLH ≥ 0, KLL > 0, (11)

then the system (8) exhibits the compensation property.

Proof. First, let us consider the case when Kii > 0, KHL = KLH = 0, i ∈ {H,L} makes the hi-
and lo-criticality systems completely decoupled. It is trivial to show that the compensation
property holds, since εH has no effect on the lo-criticality server, and εL has no effect on the
hi-criticality server.

Therefore, we focus on the case Kij > 0, i, j ∈ {H,L}. Since we are dealing with a
linear system, we can consider the effect of the disturbances separately, and then use the
superposition principle. Without loss of generality, let us consider a positive disturbance
εH > 0, and an initial condition Si(0) = Qi(0) = Q̄i, i ∈ {H,L}. First, consider the case
when Kij > 0, i, j ∈ {H,L}. εH has the effect of increasing the value of SH, according to (4),
without affecting immediately the value of SL, according to (5). If Kij > 0, i, j ∈ {H,L}, an
increasing value of SH will make decrease both the tentative budgets, as per (6), and (7).
Therefore, in the next step, the tentative budget allocated to the two servers is decreased,
with the effect that SH is above the desired budget Q̄H, while SL is below the desired budget
Q̄L.

Analogous considerations can be done for the respective negative case. This concludes
the proof. J

Notice that the compensation property of the control scheme of (8) relates to the transient
behavior caused by the occurrence of a disturbance – it does not guarantee that the effect
of a disturbance will eventually vanish. Hence a second essential property of the control
scheme of (8) is stability. If stability is not guaranteed, then it is not possible to preserve the
bandwidth, and not even to preserve the target period P̄ . We want the effect of transient
perturbations to be transient, and desire that the actual server budgets tend towards the
specified target budget values. Theorem 2 guarantees some properties on the initial transient,
but it does not guarantee the convergence of the system behavior towards the desired budget;
guaranteeing such convergence is equivalent, in control theory terminology, to requiring
stability of the controlled system.

Stability of discrete-time systems, such as the one specified by Expression (8), is guaranteed
if and only if the roots of the characteristic polynomial p(z) of (9) are within the unit circle
over the complex plane C. That is

p(z) = 0 ⇒ |z| < 1.

Such a condition on the polynomial p(z) can be translated into a condition over the coefficients
of the polynomial and, in turn, into a condition over the control gains KHH, KHL, KLH, and
KLL. Jury’s stability criterion (see, for example, [23, Sec 3.15.2]) offers a necessary and
sufficient condition for the stability of a discrete-time system in the form of a set of inequalities
which are functions of the coefficients of the characteristic polynomial. By applying Jury’s
criterion to the polynomial p(z) of (9), one can obtain four analytic conditions on the values
of the parameters Kij, i, j ∈ {H,L} that guarantee stability. We do not present these
conditions here since they are quite lengthy and complex, but point out that they can be
computed through a symbolic manipulation tool4 from the expression of p(z).

4 We used the Matlab function available at https://se.mathworks.com/matlabcentral/fileexchange/
13904-jury in combination with the Matlab symbolic toolbox.
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Figure 2 Region of feasible control gains. The illustrated regions correspond to the values of
Ki ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.35}, respectively from the larger region to the smaller one.
Black dots represent the gains of the controllers selected for the examples illustrated in Section 6.

The intersection of the inequalities (11) with the stability conditions that are obtained
with the Jury criterion describes the region of the feasible controller gains that guarantee both
the compensation property and the stability of the controller. Figure 2 shows the contour
plot of the stability regions for the parameters KHH, KLL, for different values of Ki = KHLKLH

(identified in the figure with different colors). Notice that the region is symmetric with
respect to the plane KHH = KLL, and that for increasing Ki the stability region shrinks.
Moreover, for Ki = 0, the stability region is 0 < KHH < 1, and 0 < KLL < 1.

5 Bounding the Resource Supply

Feedback control for real-time resource allocation was initially used for tracking time-varying
workloads [28, 7, 1]. Because of the unpredictable nature of variations, the type of offered
guarantees are probabilistic or soft real-time. Recently, however, it was shown that a control
scheme can provide both a good average behavior and hard-real-time guarantees [22]. Such a
guarantee was given by computing the “supply bound function” of a periodic resource supply
controlled by a feedback loop such as the one described by Expression (8).

Bounds to supply functions are a commonly used abstraction for modeling the minimum
amount of a computing resource that is available over time [21, 18, 27, 2]. They have
demonstrated their applicability to realistic use cases (e.g., avionics [12]) and there exist
measurement-based tools to determine them from actual system execution traces [20]. Let
us briefly recall the main concepts. Let s(t) be the indicator function of the availability of a
resource:

s(t) =
{

1 the resource is available at time t
0 the resource is not available at time t,

(12)
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Figure 3 Active intervals interleaved with idle intervals.

Then the supply bound function sbf(t) is such that it is

∀t0, t, sbf(t) ≤
∫ t0+t

t0

s(τ) dτ. (13)

Clearly, from (13), the bound sbf(t) may not be unique. The aim of much of the research in
this area is to find valid bounds sbf(t) fulfilling (13), which are as high as possible.

In [22], the resource availability schedule is modeled as a sequence of active intervals
of duration S(k) in which the resource is provided, alternating with intervals of idle time
of duration Z(k). An example of such a schedule and the corresponding representation by
means of the sequences S(k) and Z(k) is illustrated in Figure 3. Such a model offers some
advantages over the traditional model by the indicator function of a schedule (as in Eq. 12).
In fact, it was proved (Lemma 1 in [22]) that the supply function lower bound sbf(t) can
be written as a function of the sequences of active and idle intervals. Specifically, it was
shown that if the resource offered by a schedule is modeled by a sequence of supply intervals
of length {S(k)}k=1,2,... interleaved by a sequence of idle intervals of length {Z(k)}k=1,2,...,
then the following constitutes a valid supply bound function for this resource availability:

sbf(t) = min {t− σZ(n), σS(n)} , t ∈ In, n ∈ N (14)

with the sequence of intervals {In}n∈N defined as

In =
{[

0, σZ(1)
)

n = 0[
σZ(n) + σS(n− 1), σZ(n+ 1) + σS(n)

)
n ≥ 1

(15)

and with

σS(n) = inf
n0

n0+n−1∑
k=n0

S(k), σZ(n) = sup
n0

n0+n−1∑
k=n0

Z(k), (16)

properly extended at n = 0 with σS(0) = σZ(0) = 0. The worst-case nature of the bound is
condensed in σS(n) that is the smallest sum of the lengths of n consecutive active intervals
(respectively, σZ(n) is the largest sum of the length of n consecutive idle intervals). Figure 4
illustrates an example of supply function sbf(t). In the figure, we also draw on top the extent
of the intervals In.

5.1 Characterizing the Server Supply Functions
One criticism of many mixed-criticality scheduling algorithms that have been proposed is
that the lo-criticality workload is severely penalized (e.g., dropped entirely) in the event of
the mixed-criticality system behavior exceeding its lo-criticality specifications. As stated
earlier, this violates the principle of resilience or robustness, which requires that slight
deviations from lo-criticality specifications should result in slight degradation of performance
(in mixed-criticality settings, to only the lo-criticality workload). In this section, we discuss
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Figure 4 An example of supply bound function sbf(t) for a resource supply described by sequences
S(k) and Z(k) of active and idle intervals.

how an appropriate assignment of values to the gains of the controller KHH,KHL,KLH, and
KLL enables such resilience by guaranteeing some resource supply to the lo-criticality server.

Our overall approach is inspired by, and based upon, the analysis proposed by Papadopou-
los et al. [22]. However, there are several differences in the server requirements/assumptions
between our model and the model in [22], that renders the main result (Theorem 1 of [22,
page 231]) inapplicable for our purposes.

First, while disturbances were assumed in [22] to have symmetric bounds, in this paper the
lo-criticality server may only experience a a negative disturbance, as in (1); equivalently,
the lo-criticality server is never allowed to execute beyond the tentative budget that is
computed for it by the control strategy.
Second, in our mixed-criticality run-time algorithm, the servers assigning the computing
resource are coupled by cross gains KHL and KLH: letting i, j ∈ {H,L}, it is possible to
correct the server budget Si(k + 1) based on any disturbance εj(k). This enables a more
prompt compensation.

The following theorem characterizes the relationship between the run-time behavior of the
two servers, and enables us to determine the supply function of both the hi-criticality and
lo-criticality servers. In the theorem we use the notation hij(k), gij(k), and rij(k) to denote
the impulse, step, and ramp responses, respectively, of the system with input εj(k) and
output Si(k), with i, j ∈ {H,L} (see Appendix A for the definitions of the considered input
signals).

I Theorem 3. Consider a pair of hi-criticality and lo-criticality servers, whose budgets SH(k)
and SL(k) are subject to disturbances εH(k) and εL(k) respectively, with closed-loop system
dynamics as specified by Equation (8). If the disturbances are bounded as specified by (1),
then the supply function sbfH(t) of the hi-criticality server is as specified in Equation (14)
with

σS(n) = nQ̄H − ε̄HNHH(n)− ε̄L

2
(
IHL(n) +NHL(n)

)
,

σZ(n) = nQ̄L + ε̄HNLH(n) + ε̄L

2
(
JLL(n) +NLL(n)

)
,

(17)

and the supply function sbfL(t) of the lo-criticality server is as specified in Equation (14)
with

σS(n) = nQ̄L − ε̄HNLH(n)− ε̄L

2
(
ILL(n) +NLL(n)

)
,

σZ(n) = nQ̄H + ε̄HNHH(n) + ε̄L

2
(
JHL(n) +NHL(n)

)
.

(18)
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The coefficients Nij(n), IiL(n), and JiL(n) used in the equations above are set as

Nij(n) =
∞∑
k=0

∣∣gij(k)− gij(k − n)
∣∣

IiL(n) = sup
k

{
riL(k)− riL(k − n)

}
JiL(n) = sup

k

{
riL(k − n)− riL(k)

} (19)

with i, j ∈ {H,L} corresponding to the lo-criticality and hi-criticality servers, respectively.

Proof. In the appendix (Appendix A). J

Theorem 3 enables us to determine the supply function of both the hi-criticality and lo-
criticality servers. In the next section, several design choices for the control gain parameters
are illustrated and discussed; it is shown how different desired behaviors can be achieved by
an appropriate choice of gain parameters.

6 Evaluation via Simulation

By characterizing the run-time dynamics of both the hi-criticality and the lo-criticality
server, Equation (8) and Theorem 3 allow us to estimate the system response to different
kinds of transient deviations from the expected “common-case” behavior, as characterized
by the lo-criticality WCET estimates. We now explore, via some simulation experiments,
(i) the manner in which the choice of gain parameter values influences the precise nature of
resilience exhibited by the run-time scheduler, and (ii) how our proposed scheme compares
with a simpler alternative strategy that is not based on the application of control-theoretic
principles.

6.1 The Influence of Parameter Values
A closed-form solution of the dynamics of the system (8) may be obtained with the Lagrange
formula for the solution of a set of linear difference equations (see, e.g., [23, Section 12.3.5,
Eq. (12.3-34a)] for a text-book discussion). We consider the following set of parameters that
are expressed as Ki = {KHH,KHL,KLH,KLL}:

K1 = {0.4, 0.1, 0.1, 0.35}, K2 = {0.15, 0.1, 0.1, 0.15}, K3 = {0.25, 0.1, 0.1, 0.25},
K4 = {0.5, 0.1, 0.1, 0.5}, K5 = {0.75, 0.1, 0.1, 0.75}

Notice that all the selected sets of parameters satisfy the stability conditions, and the
compensation property conditions, and therefore lie in the region as depicted in Figure 2.

We considered the case of the following target budgets: Q̄H = 10, Q̄L = 8, i.e., γ = 0.8,
and εH = 1, εL = 1. The resulting supply functions are presented in Figure 5. One can see
that the supply function associated with K1 is higher than the others.

If keeping with common practice in control theory, we also analyzed the controller
response to a constant disturbance. Figure 6 shows the effect of the disturbance while
varying the values of Kij, i, j ∈ {H,L}. From Figure 6 we conclude that the best value for
the parameters is K1, since it provides a faster convergence to the target budget, and with
negligible oscillations.
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Figure 5 Supply functions for the considered set of control parameters.
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Figure 6 Effect of constant disturbances with various selection of Kij , i, j ∈ {H, L}.

6.2 Comparison with an Alternative Scheme
We now compare the presented approach with a Period-Preserving Approach (PPA), described
next. Based upon the findings described in Section 6.1 above, in these experiments we have
selected the parameter values K1 for AdaptMC.

In the PPA the hi-criticality and lo-criticality servers execute in sequence and periodically,
with a fixed period P (equal to the target period for AdaptMC). Within each period, the
hi-criticality server executes as much as it needs, allowing for any overrun, and the remaining
budget of the period is allocated to the lo-criticality server. Formally, with the introduced
notation:

SH(k + 1) = QH(k) + εH(k)
SL(k) = P − SH(k + 1)

where P now is a fixed value. PPA represents the simplest and most intuitive way to
compensate for non-ideal executions of the hi-criticality server.



A.V. Papadopoulos, E. Bini, S. Baruah, and A. Burns 14:15

0

2

ε

AdaptMC

εH εL

PPA

εH εL

6
8

10
12
14

S

SH SL SH SL

0 20 40 60 80 100

0.4

0.6

0.8

k

S
L

/
S

H

0 20 40 60 80 100
k

Figure 7 Comparison between AdaptMC and PPA.

In order to present the main differences between AdaptMC and PPA, we consider a
scenario in which three types of disturbances occur in the system: impulse, constant, and
linearly increasing. (In a well-designed mixed-criticality system, the most common form
of deviation from expected behavior should be of the kind best modeled as an impulse
disturbance – an overload that lasts for just one round and occurs rarely enough that the
effect of one such overload will have completely dissipated by the time the next one occurs.)

The system is initialized as SH(0) = QH(0) = Q̄H = 10, and SL(0) = QL(0) = Q̄L = 8,
P = 18 and no disturbance ε is present. An impulse overrun occurs at round 10, a constant
overrun occurs between rounds 30 and 50, and a linearly increasing disturbance begins at
round 65, and increases until it becomes of magnitude ε̄H. Figure 7 summarizes the obtained
numerical results. The graphs in the first row show the time evolution of the hi-criticality
server overruns: this is the disturbance, and is the same for the AdaptMC and PPA. The
graphs in the second row compares the actual time executed by the two servers with the
two methods. AdaptMC reacts to the disturbances by trying to preserve the target budgets,
and making minor adjustments to the tentative budgets. PPA, on the other hand, favors
the overruns of the hi-criticality server, while the execution of the lo-criticality server is
severely affected. Finally, the last row of Figure 7 shows the ratio between the bandwidth
allocated for the lo-criticality server, i.e., SL/P , and the actual bandwidth allocated for the
hi-criticality server, i.e., SH/P . We call this, the bandwidth ratio, and it is defined as: SL/SH.
The target bandwidth is Q̄L/P = 8/18, and Q̄H/P = 10/18, i.e., the target bandwidth ratio
is Q̄L/Q̄H = 8/10. The average bandwidth ratio allocated with AdaptMC is much closer
to the target bandwidth ratio than with PPA , and even the maximum deviation from the
target bandwidth is minimized by AdaptMC thanks to the feedback scheme.
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7 Related Work

The key property of the control-theoretic approach to budget control described in this paper
is the dynamic manner in which it modifies budgets to deal with different sizes and types of
task overruns; this stands in sharp contrast to the approach adopted in most other scheduling
schemes for mixed-criticality systems. In these schemes during run-time the system is defined
to be in one of two modes of behaviors. In the lo-criticality or “normal” mode all tasks
are executing within their lo-criticality WCET estimates and all deadlines (of both hi- and
lo-criticality tasks) are being met. As soon as any hi-criticality task executes for more
than its lo-criticality WCET estimate then there is a system-wide mode change to the
hi-criticality mode. In this new mode the behavior of the system is quite different. The
change to the hi-criticality mode occurs even if a single hi-criticality task executes for a
miniscule amount more than its lo-criticality WCET estimate or, at the other extreme, if
all hi-criticality tasks execute at their hi-criticality WCET estimate. The system responds
in the same way: there is no attempt to define behaviors that are commensurate with the
magnitude of the overrun (the disturbance or perturbation as defined in this paper).

Following a criticality mode change there are a number of approaches that have been
developed to define the degraded behavior of the system in the hi-criticality mode. The most
extreme is to just implement the assumptions made during the verification of the system.
Here, in the hi-criticality mode, only the hi-criticality tasks are guaranteed; hence all the
lo-criticality tasks can be abandoned (aborted). This is clearly an unacceptable approach as
no attempt is made to survive the overrun; there is no resilience in the run-time behavior of
the system. Forms of resilience that have been developed include:

1. Reduce priorities of the lo-criticality tasks [3], or similar with EDF scheduling [13].
2. Increase the periods and deadlines of lo-criticality jobs [32, 31, 15, 30, 29, 25], called

task stretching, the elastic task model or multi-rate.
3. Impose only a weakly-hard constraint on the lo-criticality jobs [9].
4. Decrease the computation times of some or all of the lo-criticality tasks [4], perhaps by

utilizing an imprecise mixed-criticality (IMC) model [19, 24] or budget control [10].
5. Abandon lo-criticality work in a disciplined sequence [8, 14, 11, 26, 16].

A flexible scheme utilizing hierarchical scheduling is proposed by Gu et al. [10]. They
differentiate between minor violations of lo-criticality execution time which can be dealt
with within a component (an internal mode change) and more extensive violations that
requires a system-wide external mode change.

By removing entirely the notion of a mode change (and hence a single perhaps quite
severe change in system behavior), the approach proposed in this paper results in more
gradual and measured responses to rare temporal glitches, such responses being automatically
delivered by the developed feedback scheme.

8 Conclusions and Future Work

In this paper we have shown how a control-theoretic approach based upon servers can be
used to manage the budgets allocated to dual-criticality workloads. The control strategy
developed automatically responds to minor perturbations in the needs of the hi-criticality
server with minimum and bounded degradation in the service provided to the lo-criticality
server. The controller is defined by four “gain” parameters whose values must be constrained
in order to ensure stable and appropriate (compensated) control; nevertheless there remains
considerable freedom for the designer to tune the behavior of the controller. This has been
demonstrated by some simple examples.
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This initial study has been limited to just two criticality levels and two servers (one
per level). Future work will first look to increase the number of levels supported, and to
investigate if there is any benefit to be gained from having more than one hi-criticality server
(and more than one lo-criticality server).
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A Proof of Theorem 3

Before entering the details of the proofs, we remind that a linear time-invariant (LTI) system
can be uniquely characterized by its impulse response h(k) that is the output y(k) when the
system is stimulated with an impulsive input u(k)

u(k) =
{

1 k = 0
0 otherwise.

In next lemmas, we are also using the step response

g(k) =
k∑
i=0

h(k), (20)

and the ramp response

r(k) =
k∑
i=0

g(i) (21)

of a LTI system.
Thanks to the linear and time-invariance of the system, the output y(k) to any input

u(k) is given by the convolution of the impulse response h(k) and the input u(k), that is

y(k) = h(k)⊗ u(k) =
k∑
i=0

u(i)h(k − i).

With these basic notions recalled, next we state a technical lemma that bounds the output
y(k) of a LTI system when the input u(k) belongs to a bounded interval [ũ− ε̄, ũ+ ε̄].

I Lemma 1. Given an asymptotically stable discrete-time LTI system with impulse response
h(k), step response g(k), input u(k), and output

y(k) = h(k)⊗ u(k).

If the input u(k) is bounded as follows

u(k) = ũ+ ε(k), ũ ∈ R, −ε̄ ≤ ε(k) ≤ ε̄,

then, the output y(k) is bounded by

|ũ| inf
k
{sign(ũ)g(k)} − ε̄ ‖h‖1 ≤ y(k) ≤ |ũ| sup

k
{sign(ũ)g(k)}+ ε̄ ‖h‖1, (22)

with the `1-norm of a signal defined as

‖h‖1 =
∞∑
k=0
|h(k)|.

Proof. By definition of y(k) as convolution of the impulse response h(k) with the input
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signal u(k), it follows

y(k) =
k∑
i=0

u(i)h(k − i) =
k∑
i=0

(ũ+ ε(i))h(k − i)

= ũ

k∑
i=0

h(k − i) +
k∑
i=0

ε(i)h(k − i)

= ũ g(k) +
k∑
i=0

ε(i)h(k − i)

≤ |ũ| sup
k
{sign(ũ)g(k)}+ ε̄ ‖h(k)‖1

with

‖h(k)‖1 =
∞∑
k=0
|h(k)|.

Analogously

y(k) ≥ |ũ| inf
k
{sign(ũ)g(k)} − ε̄ ‖h(k)‖1,

which concludes the proof. J

The next Corollary determines the upper and lower bounds to the sum of n consecutive
outputs, by exploiting Lemma 1.

I Corollary 1. Given an asymptotically stable discrete-time LTI system, if the input u(k)
bounded as follows

u(k) = ũ+ ε(k), ũ ∈ R, −ε̄ ≤ ε(k) ≤ ε̄.

Then, the sum of n consecutive outputs is bounded by

−
(
|ũ| I(n) + ε̄N (n)

)
≤
n0+n−1∑
k=n0

y(k) ≤ |ũ| J (n) + ε̄N (n), (23)

with

N (n) =
∞∑
k=0
|g(k)− g(k − n)|, (24)

I(n) = sup
k
{− sign(ũ)(r(k)− r(k − n))} (25)

J (n) = sup
k
{sign(ũ)(r(k)− r(k − n))} (26)

and g(k) and r(k) being the step and ramp response, respectively.

Proof. The output y(k) of a LTI system is the convolution of the impulse response h(g) and
the input u(k)

y(k) = h(k)⊗ u(k).

Because of the linearity of the convolution, the sum of n consecutive output is
k+n−1∑
i=k

y(i) =
(
k+n−1∑
i=k

h(i)
)
⊗ u(k) =

(
g(k)− g(k − n)

)
⊗ u(k).

Finally, by applying Equation (22) of Lemma 1, Equation (23) of the Corollary follows. J
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Proof of Theorem 3. Let us first determine the supply function sbfH(t) of the hi-criticality
server. We aim at modeling the resource supplied to the hi-criticality server as a sequence of
active intervals of lengths S(k), interleaved by a sequence of idle intervals of lengths Z(k)
that corresponds to the schedule of the lo-criticality server. Formally,

S(k) = SH(k), Z(k) = SL(k). (27)

In fact, by doing so, Lemma 1 of [22] can give us the supply function of (14) through the
proper value of σS(n) and σZ(n), as defined in (16).

First of all, the system of (8) that determines the dynamics of SH(k) is linear. Hence, by
the superposition principle the output SH(k) is equal to the sum of three components:
1. the output Q̄H when εH(k) = 0 and εL(k) = 0,
2. the output yHH(k) when Q̄H = 0 and εL(k) = 0, and
3. the output yHL(k) when Q̄H = 0 and εH(k) = 0,
that is

SH(k) = Q̄H + hHH(k)⊗ εH(k)︸ ︷︷ ︸
yHH(k)

+hHL(k)⊗ εL(k)︸ ︷︷ ︸
yHL(k)

(28)

and hHi(k) is the response of SH(k) to an impulse on the input εi(k), with i ∈ {L,H}.
Let us now compute σS(n) that is, from (16), a lower bound to the sum of the length of

n consecutive budgets SH(k)

σS(n) = inf
n0

n0+n−1∑
k=n0

S(k) = inf
n0

n0+n−1∑
k=n0

SH(k) = nQ̄H + inf
n0

n0+n−1∑
k=n0

(
yHH(k) + yHL(k)

)
. (29)

To bound the sum of n consecutive values of yHH(k) and yHL(k), we can invoke Corollary 1.
Let us start with

yHH(k) = hHH(k)⊗ εH(k).

From the hypothesis of (1), εH(k) is bounded by

−ε̄H ≤ εH(k) ≤ ε̄H

and then Eq. (23) of Corollary (1) states that

−ε̄HNHH(n) ≤
n0+n−1∑
k=n0

yHH(k),

with NHH(n) as in (19). Similarly, from the asymmetric bound to εL(k) of (1), from (23) it
follows that

− ε̄L

2 (IHL(n) +NHL(n)) ≤
n0+n−1∑
k=n0

yHL(k),

from which the expression of σS(n) of (17) follows.
The expression of σZ(n) of (17) can be found by following similar steps:

1. by setting the sequence of idle intervals Z(k) equal to the sequence of the lo-criticality
budgets SL(k), as in (27);
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2. by writing the sequence SL(k) as the sum of Q̄L and the sequences yLH(k) and yLL(k) that
corresponds to the responses to the disturbances εL(k) and εL(k) on SL(k) (similarly as
in (28); and

3. by exploiting Corollary 1 to bound yLH(k) and yLL(k).

The expressions of σS(n) and σZ(n) give the expression of the sbfH(t).
Analogously, by setting

S(k) = SL(k), Z(k) = SH(k),

and following the same steps illustrated above, it is possible to determine the proper values
of σS(n) and σZ(n) of (18) and then the supply function sbfL(t) of the lo-criticality server.
This concludes the proof. J



Verifying Weakly-Hard Real-Time Properties of
Traffic Streams in Switched Networks
Leonie Ahrendts
Institute for Network and Computer Engineering, TU Braunschweig, Braunschweig, Germany
ahrendts@ida.ing.tu-bs.de

Sophie Quinton
Inria Grenoble Rhône-Alpes, Montbonnot, France
sophie.quinton@inria.fr

Thomas Boroske
Institute for Network and Computer Engineering, TU Braunschweig, Braunschweig, Germany
thomasb@ida.ing.tu-bs.de

Rolf Ernst
Institute for Network and Computer Engineering, TU Braunschweig, Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract
In this paper, we introduce the first verification method which is able to provide weakly-hard
real-time guarantees for tasks and task chains in systems with multiple resources under parti-
tioned scheduling with fixed priorities. Existing weakly-hard real-time verification techniques are
restricted today to systems with a single resource. A weakly-hard real-time guarantee specifies
an upper bound on the maximum number m of deadline misses of a task in a sequence of k
consecutive executions. Such a guarantee is useful if a task can experience a bounded number of
deadline misses without impacting the system mission. We present our verification method in the
context of switched networks with traffic streams between nodes, and demonstrate its practical
applicability in an automotive case study.
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1 Introduction

Modern embedded systems often have a distributed hardware platform, where the individual
processing resources are linked by data buses or switched networks. A software application,
which is mapped to such a platform, consists of a set of communicating tasks and has often
to provide results within a limited response time. Timely communication between sender
and receiver tasks is therefore a critical aspect in design and verification. In this paper, we
concentrate on the timing behavior of traffic streams in switched networks like Switched
Ethernet. By traffic stream we understand an infinite sequence of data transmissions between
a sender and a receiver node of the network.
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15:2 Verifying Weakly-Hard Real-Time Properties of Traffic Streams

If the classical hard real-time paradigm is applied to a traffic stream, then the duration of
a data transmission over the network must not violate a given end-to-end deadline. However,
with increasing functionality and growing bandwidth demand of data transmission in modern
embedded systems in the automotive or industrial domain, it becomes more and more difficult
to fulfill the end-to-end deadlines of all traffic streams in unfavorable scheduling scenarios. A
promising option is the shift to the weakly-hard real-time paradigm [1] which relaxes these
timing requirements. Here a traffic stream is feasible from a timing perspective, if it does
not exceed a certain budget of end-to-end deadline misses. For instance, a traffic stream may
not miss more than m end-to-end deadlines in any k consecutive transmissions. The traffic
stream is said to be (m, k)-constrained.

The practical justification of weakly-hard real-time paradigm in the context of communic-
ation builds on the observed robustness of many real-time software systems. In the field of
image processing, a late transmission may result in a skipped frame. Given that the number
and distribution of frame skips is appropriately bounded, it will not be noticeable to the
human eye. In the field of control, an end-to-end deadline miss may cause the calculation of
the control law to fail at time instant k so that no new control input is sent to the actuator
at this instant. Several works could show that under given (m, k)-constraints the required
control performance could be maintained [15] [9] [8] . Blind et al. [2] could show stability
in the classical sense of Lyapunov for a networked control system, where the network is
unreliable in the (m,k)-sense.

So far, verification techniques have been developed which allow to derive (m, k)-guarantees
for tasks which are executed on a system with a single service-providing resource. A switched
network, however, comprises several service-providing resources as detailed in Section 2.
In this paper, we therefore provide a compositional verification method which is able to
provide (m,k)-guarantees for multi-resource problems. The main challenge in extending an
existing (m,k)-verification method to the multi-resource setting is to deal with inter-resource
dependencies. Our approach builds on both
1. Compositional Performance Analysis (CPA). CPA [11] is a compositional framework to

verify classical hard real-time properties, e.g., worst case response times. It deals with
inter-resource dependencies by the formulation of a fixed-point problem.

2. Typical Worst Case Analysis (TWCA) TWCA [21] is one of the existing (m,k)-verification
techniques for single resource systems.

We adapt and extend CPA and TWCA, calling the resulting procedure TypicalCPA. The
paper is structured as follows. We begin by defining our system model, and then introduce
the CPA approach. We continue by explaining the basic principle of TWCA, and reason how
CPA and TWCA can be coupled. Finally, we perform and discuss experiments. An overview
of related work is given before the conclusion.

2 Network Model

The system model represents a real-time network setting with unicast, multicast and broadcast
streams and is depicted in Figure 1. The scope of the model includes, for instance, Switched
Ethernet but is not limited to it. The main components of the network model are switches
and nodes. A pair of nodes may communicate by sending frames over the network which
are forwarded by the switches using appropriate output ports. The service of output ports
for frame transmission is scarce and has to be arbitrated according to a static priority
non-preemptive (SPNP) scheduling policy. The output ports therefore represent the service-
providing resources Rk in the system [6].
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An infinite sequence of frames between a source node and 1 [a subset of resp. all]
destination node(s) is called a unicast [multicast resp. broadcast] stream. A unicast [multicast
resp. broadcast] stream si is modeled as a linear [forked] chain of N tasks, where each task
represents a hop in the route and is mapped to the output port of the respective switch. We
call the set of N tasks contained in the stream si Tsi

= {τi,1, τi,2, . . . τi,N} and define the
respective precedence constraints, e.g. for a unicast stream as τi,1 ≺ τi,2 ≺ . . . ≺ τi,N . The
first task in the stream si, is activated by an external event source. All successor tasks are
activated by the termination events of their respective predecessor task in the chain. Each
task τi,j in stream si has a non-unique priority pi. The best case execution time (BCET)
resp. worst case execution time (WCET) of task τi,j , denoted as C−i,j resp. C

+
i,j , represents

the minimum resp. maximum frame delay in the switch plus the constant wire transmission
time, and is independent of other traffic in the network. Dynamic delays resulting from
contention at the switch output ports are considered in the response time computation of
tasks. The maximum response time of a task τi,j is constrained by the relative deadline
di,j , while the maximum network traversal time w.r.t. a stream si should not exceed the
end-to-end deadline Di =

∑
j di,j .

We describe the occurrence of activation events over time w.r.t. a task τi,j by the concept
of event flows as well as by minimum and maximum event models.

I Definition 1 (Event flow). An event flow ei,j(t) is a function which returns the number of
events which activate task τi,j within the time interval [0, t) in a given execution run.

I Definition 2 (Event model). The minimum and maximum event models η−i,j(∆t) and
η+
i,j(∆t) indicate a lower and upper bound, respectively, on the number of activation events
for task τi,j in any time interval [t, t + ∆t). Any event flow ei,j(t) of task τi,j is therefore
constrained by

∀t1, t2 : t1 ≤ t2 : η−i,j(t2 − t1) ≤ ei,j(t2)− ei,j(t1) ≤ η+
i,j(t2 − t1).

If convenient, we also use the pseudo-inverses of event models, i.e., the event distance
functions. The event distance function δ−i,j(n) [δ+

i,j(n)] is the pseudo-inverse of event model
η+
i,j(∆t) [η−i,j(∆t)].

I Definition 3 (Event distance functions). The minimum and maximum distance functions
δ−i,j(n) and δ+

i,j(n) indicate a lower and upper bound, respectively, on the temporal distance
between the first and the last event of a sequence of n activation events for task τi,j . For the
special case n ∈ {0, 1}, the definition δ−i,j(n) = δ+

i,j(n) = 0 applies.

3 Compositional Performance Analysis

CPA [11] is a verification framework which derives lower and upper bounds on the timing
properties of distributed real-time software systems with partitioned scheduling. Computed
timing properties include in particular the best case response times (BCRTs) and worst case
response times (WCRTs) of tasks. CPA is implemented in Python as pyCPA [4], the basic
libraries of pyCPA are available on-line [5]. The CPA method breaks the verification problem
down into a set of local, i.e. resource-related, analysis problems. A subsequent analysis step
then relates the local verification problems such that inter-resource dependencies are taken
into account and a global fixed point problem is formulated.

I Definition 4 (Attributes local & global). The attribute «local» refers to parameters,
properties etc. of a specific resource Rk and the associated (mapped) task set TRk

.
The attribute «global» refers, on the contrary, to parameters, properties etc. of the processing
platform P =

⋃
k Rk and the entire task set T =

⋃
k TRk

.
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 Node
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Node
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Port E

Port N

Port E

Port SPort S

Port W Port W

Port N

Switch 1 Switch 2

Stream 2
Stream 1

Stream 3

Stream 4
Node

Figure 1 Network model. The figure illustrates a network with six nodes and two switches. The
output ports of a switch are named after the points of the compass. Four exemplary unicast streams
are represented.

3.1 Local Analysis
The local analysis focuses on the isolated resource Rk and derives the timing properties of
the associated task set TRk

. The analysis objective is in particular to compute (a) the BCRT
and WCRT for each task τi,j ∈ TRk

, and (b) the output event model of each task τi,j ∈ TRk
.

Port E
scope of local analysis

input event models: output event models:

Figure 2 Scope and interface of the local CPA. The figure shows as an example the output port
E of switch 1 with mapped tasks.

3.1.1 Computation of Response Times
In the following, we very briefly sketch the response time analysis for a task τi,j which is
mapped to an SPNP-scheduled resource Rk. For a detailed presentation, please refer to [7].
To find the WCRT of task τi,j , a scheduling scenario has to be known which induces the
longest response time of task τi,j . This worst case scenario is often called the maximum
level-τi,j busy period. It is known to start if τi,j ∪hsp(τi,j)1are activated synchronously and a

1 We use hsp(τi,j) to denote the set of tasks which have higher or same priority than task τi,j ∈ TRk

and are mapped to the same resource Rk. Likewise we write lp(τi,j) to denote the set of tasks which



L. Ahrendts, S. Quinton, T. Boroske, and R. Ernst 15:5

task in lp(τi,j), which has just been activated before, causes the maximum blocking delay [3].
It closes as soon as the resource becomes idle w.r.t. τi,j and hsp(τi,j)-tasks. The processing
behavior of task τi,j within the maximum level-τi,j busy period can be described by the so
called multiple event busy times B+

i,j(q).

I Definition 5. The maximum q-event busy time B+
i,j(q) indicates the processing time of q

consecutive activation events of task τi,j within the maximum level-τi,j busy period. B+
i,j(q)

always starts with the beginning of the maximum level-τi,j busy period [17].

The busy times B+
i,j(q) depend on the input event models and WCETs of the tasks TRk

. It
has been shown that the WCRT R+

i,j of task τi,j is among its response times in the maximum
level-τi,j busy period, such that we can write

R+
i,j = max

1≤q≤Ki,j

{
B+
i,j(q)− δ

−
i,j(q)

}
(1)

where Ki,j is the maximum number of jobs of task τi,j contained in the maximum level-τi,j
busy period. The BCRT of task τi,j can be approximated by its BCET R−i,j = C−i,j .

3.1.2 Computation of Output Event Distance Functions and Output
Event Models

The local analysis problems are linked because precedence relations extend over tasks on
different resources as illustrated in Figure 1. According to the synchronous task chain
semantics, a termination event of a task τi,j is interpreted as an activation event by the
successor task τi,j+1. This interaction between tasks τi,j and τi,j+1 can be quantified by
the distance functions δ+

i,j+1(n) resp. δ−i,j+1(n) indicating the maximum resp. minimum
number of distance between any n consecutive termination events of task τi,j or, equivalently,
activation events of task τi,j+1. Firstly, let us present safe, easy-to-interpret bounds for the
distance functions with n ≥ 2 using the jitter method [16]

δ−i,j+1(n) ≥ max
{

(n− 1) · C−i,j , δ
−
i,j(n)− J+

i,j

}
(2)

δ+
i,j+1(n) ≤ δ+

i,j(n) + J+
i,j (3)

Eq. 2 expresses that, in the worst case, n termination events at the output of task τi,j are
closer by the maximum response time jitter J+

i,j = R+
i,j − R

−
i,j than n activation events at

the input of the same task. Also, the density of activation events increases with every stage
of the task chain due to the accumulation of response jitter. Eq. 3 describes that, in the
best case, the distance of n termination events grows with every stage of a task chain by the
jitter J+

i,j . Secondly, we introduce more accurate but less intuitive bounds which have been
derived in [18] (busy window method)

δ−i,j+1(n) ≥max{B−i,j(n− 1), min
1≤q≤q+

i,j

{
δ−i,j(n+ q − 1)−B+

i,j(q)
}

+B−i,j(1)} (4)

δ+
i,j+1(n) ≤ max

1≤q≤q+
i

{
δ+
i,j(n− q + 1) +B+

i,j(q)
}
−B−i,j(1)}. (5)

According to the rules of network calculus [12], the event distance function δ−i,j+1(n) resp.
δ+
i,j+1(n) can even be more improved in accuracy if replaced by its superadditive closure

have lower priority than task τi,j ∈ TRk
and are mapped to the same resource Rk.
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δ̄−i,j+1(n) resp. subadditive closure δ̄+
i,j+1(n). In the following, we continue to write δ−i,j+1(n)

resp. δ+
i,j+1(n) (without bar) stating explicitly when we make use of the superadditivity

property (δ−i,j+1(m+ n) ≥ δ−i,j+1(m) + δ−i,j+1(n)) or subadditivity property (δ+
i,j+1(m+ n) ≤

δ+
i,j+1(m) + δ+

i,j+1(n)). Note again that the output event models η+
i,j+1(∆t), η−i,j+1(∆t) can

be obtained from the output event distance functions by pseudo-inversion.

It is desirable for efficiency reasons to have a finite representation of event distance
functions, meaning that it is possible to construct the event distance functions for every n
on the basis of a limited number of l known points. This can be achieved by approximat-
ing δ−i,j+1(n), δ+

i,j+1(n) by bounds with a repetitive behavior. The approximation is very
acceptable with regard to accuracy, if the repetition period is chosen large enough. In the
particular context of this paper, repetitive bounds restrict the value range that needs to be
processed by the algorithm given in Theorem 23. We concentrate in the following on δ−(n)
and its pseudo-inverse η+(∆), but analogous rules can be applied to δ+(n) and η−(∆).

I Lemma 6 (Repetitive extension of an event distance function). Given the superadditive event
distance function δ−(n) for 1 ≤ n ≤ l, an l-repetitive extension δ̂−(n) is defined by

δ̂−(n) =
{

0 for 0 ≤ n ≤ 1⌊
n−2
l

⌋
· δ−(l) + δ−(n−

⌊
n−2
l

⌋
· l) for n ≥ 2.

.

The l-repetitive extension δ̂−(n) is a lower bound for δ−(n), s.t. ∀n : δ̂−(n) ≤ δ−(n).

Proof. We have δ̂−(n) = δ−(n) = 0 for n ∈ {0, 1}, and δ̂−(n) = δ−(n) for 2 ≤ n ≤ l + 2.
For n > l + 2, we make use of the superadditivity property δ−(n1) + δ−(n2) ≤ δ−(n1 + n2)
and set x =

⌊
n−2
l

⌋
: δ̂−(n) = x · δ−(l) + δ−(n− x · l) ≤ δ−(x · l) + δ−(n− x · l) ≤ δ−(n). J

I Lemma 7 (Repetitive extension of an event model). Given the subadditive event model
function η+(∆t), a T -repetitive extension η̂+

l (∆t) is defined by

η̂+
l (∆t) =

⌊
∆t
T

⌋
· η+(T ) + η+(∆t−

⌊
∆t
T

⌋
· T ).

If δ̂−(n) is l-repetitive, then its pseudo-inverse η̂+
l (∆t) must be T = δ̂−(l)-repetitive.

Proof. This results from the symmetry of function inversion. J

3.2 Global Analysis
The global analysis now couples the local analysis problems according to the following iterative
procedure, which is also depicted in Figure 3 (box entitled “original CPA”). Firstly, each
header task of a stream τi,1 has a known activation behavior bounded by η−i,1(∆t), η+

i,1(∆t)
and imposed by external event sources. Since initially no event models are available for
successor tasks in the stream, i.e. for τi,j with j > 1, they are initialized with the event model
assigned to the header task τi,1. The local analysis is then performed for each resource, such
that response time bounds and output event models are obtained. The computed output
event models are then propagated to the direct successor tasks, where they are interpreted as
input event models. The local analysis is then repeated with the updated event models. If
all propagated event models are identical to the event models used in the previous analysis
run, a global fixed point is reached and the analysis terminates.
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Derive initial input event models
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 converged event models

Perform 
local
TWCA

Perform 
local
TWCA

Perform 
local
TWCA

Perform local analysis
Perform local analysis

original CPA

TWCA

typicalCPA

Derive initial typical input event models

Perform local analysis

Compare computed output event 
models with those from the 
previous iteration. Convergence? 

Propagate
Output Event Models

yes

no

Output final analysis results:
 typical BCRT and WCRT
 converged typical event models

Perform local analysis
Perform local analysis

CPA

Perform 
local
TWCA

Perform 
local
TWCA

Derive 
overload 
event 
models

extended CPA

Figure 3 TypicalCPA. The extended CPA also derives typical and overload event models as
detailed in Section 5, which are then processed by a TWCA for each component. New or adapted
elements of CPA and TWCA are marked in red.

4 Typical Worst Case Analysis

Typical Worst Case Analysis (TWCA) models and analyzes systems with a single service-
providing resource Rk under transient overload conditions. It provides weakly-hard real-time
guarantees for tasks TRk

. In this section, we firstly present which extensions to the CPA
system model presented in Section 2 are necessary to apply TWCA. Then the TWCA
procedure is introduced together with a needed generalization of a schedulability criterion.

4.1 Extended System Model

The system model of CPA presented in Section 2 is a subset of the TWCA system model.
The important extension of the CPA model by TWCA is that each task τi,j may be activated
by events of two distinct classes, namely by typical and overload events. The idea is that
in the exclusive presence of typical events, the task set TRk

is schedulable. In contrast, the
supplementary overload events are a potential cause for transient overload.
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Port E
scope of TWCA

input event models: output event models:

Figure 4 Scope and interface of TWCA.

I Definition 8 (Local typical worst case). If every task τi,j ∈ TRk
is only activated by typical

events, then the task set TRk
is schedulable even in the most unfavorable scheduling scenario

(local typical worst case).

I Definition 9 (Local worst case). If every task τi,j ∈ TRk
is activated by both typical and

overload events, then in the most unfavorable scheduling scenario (local worst case) the task
set TRk

is possibly unschedulable.

The occurrence of typical or overload activation events over time w.r.t. a task τi,j is also
modeled by the concept of event flows, while the minimum and maximum frequency of typical
and overload event arrival is described by event models. The corresponding definitions are
given below, while Figure 4 shows the extended system model with the additional event
models.

I Definition 10 (Typical and overload event flows). A typical event flow e
(t)
i,j (t), resp. overload

event flow e
(o)
i,j (t), is a function which returns the number of typical, resp. overload, events

which activate task τi,j within the time interval [0, t) in a given execution run.

I Definition 11 (Typical and overload event models). The event models η−,(t)i,j (∆t), η+,(t)
i,j (∆t),

resp. η−,(o)i,j (∆t), η+,(o)
i,j (∆t), indicate a lower and an upper bound on the number of typical,

resp. overload, events which activate task τi,j within ∆t.

I Definition 12 (Decomposition). Any observed event flow of task τi,j which satisfies the
lower and upper bounds η−i,j(∆t), η

+
i,j(∆t) can be partitioned in

(1) an event flow of typical events satisfying η−,(t)i,j (∆t), η+,(t)
i,j (∆t) and

(2) an event flow of overload events satisfying η−,(o)i,j (∆t), η+,(o)
i,j (∆t).

This implies that the maximum event model η+
i,j(∆t) is decomposable, s.t. η+

i,j(∆t) ≤
η

+,(t)
i,j (∆t) + η

+,(o)
i,j (∆t). If η+

i,j(∆t) = η
+,(t)
i,j (∆t) + η

+,(o)
i,j (∆t) holds, then the maximum event

model is said to be exactly decomposable. Please refer for illustration to Figure 5c.

The intuition related to the system model is that a computing platform may be designed
to provide sufficient processing service for a typical workload. For instance, if all tasks have
a periodic (= typical) activation pattern, then the task set is schedulable. If, however, some
tasks experience additional sporadic (= overload) activations, then the task set may become
unschedulable in unfavorable scheduling scenarios.
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4.2 Basic Procedure
The objective of TWCA is to determine weakly-hard real-time guarantees for all tasks in the
task set. More precisely, a deadline miss model (DMM) is obtained for every task τi,j ∈ TRk

.

I Definition 13 (Deadline miss model). A deadline miss model for a task τi,j is a function
dmmi,j : N→ N with the property that out of any k consecutive jobs of task τi,j , at most
dmmi,j(k) might miss their deadline di,j .

To compute dmmi,j(k) under SPNP scheduling, TWCA quantifies the impact of overload
activations. We summarize the procedure in the following steps.
1. Firstly TWCA derives the maximum impact which a single overload activation of a task

τm,n ∈ hsp(τi,j) can have on the task τi,j . The impact is counted by the maximum
number jobs of task τi,j which can miss their deadline due to this overload activation,
and is denoted as Ni,j .

2. It is computed how many overload activations of task τm,n can at most influence the
k-sequence of task τi,j . This number is given by η+,(o)

m,n (∆T i,jk ), where ∆T i,jk describes the
maximum time interval during which a k-sequence of task τi,j is sensitive to overload
events.

3. The overall impact of task τm,n is then derived as the product Ni,j · η+,(o)
m,n (∆T i,jk ).

4. Finally, the impact of all τm,n tasks which may interfere with task τi,j is summed.
Interfering tasks have higher or same priority (hsp) than task τi,j .

Thus we have

dmmi,j(k) =
∑

τm,n∈hsp(τi,j)

Ni,j · η+,(o)
m,n (∆T i,jk ) (6)

where
Ni,j = #

{
q ∈ N+|1 ≤ q ≤ Ki,j ∧ di,j < R+

i,j(q)
}

(7)

∆T i,jk ≤ B
+
i,j(Ki,j) + δ+

i,j(k) + (R+
i,j − C

+
i,j) (8)

Please refer for a detailed explanation to [10].

4.3 Improved Procedure
The presented basic TWCA assumes that every isolated overload activation of a task τm,n
which interferes with task τi,j causes at most Ni,j deadline misses. The approach presented
in [21] improves over the basic TWCA by considering that often actually the combined effect
of overload from several interferer tasks is required to cause a deadline miss of task τi,j . We
introduce therefore the following definitions.

I Definition 14 (Combination). A local combination C ⊆ TRk
is a set of tasks which may

experience both typical as well as overload activation events, whereas the tasks of the
complementary set, TRk

\ C, experience only typical activation events.

I Definition 15 (Unschedulable combinations). R+,C
i,j denotes the longest response time of

task τi,j ∈ TR, assuming that only tasks in C experience overload activations. A combination
C is said to be schedulable w.r.t. to task τi,j , if R+,C

i,j ≤ di,j , otherwise it is unschedulable.
The set of unschedulable combinations w.r.t. to task τi,j is called Ui,j .

ECRTS 2018
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Note that special local combinations are C = ∅ and C = TRk
. In this context, R+,TRk

i,j is the
usual worst case response time and R+,∅

i,j is called typical worst case response time.
The improved TWCA [21] is now based on the fact that the sensitivity interval ∆T i,jk of

the k-sequence of task τi,j can be divided into a sequence of busy periods [13]. The timing
behavior of busy periods is mutually independent, because of the idle times which separate
them. Within in any such busy period, an unschedulable combination is necessary to cause
at most Ni,j deadline misses of task τi,j within this interval. A single task τm,n can be part
of unschedulable combinations at most Ωm,n = η

+,(o)
m,n (∆T i,jk ) times, which corresponds to

the maximum number of overload activations in ∆T i,jk .
Let xC ∈ N count the number of busy periods in ∆T i,jk , which suffer from an unschedulable

combination C ∈ Ui,j . Then the DMM can be obtained by solving the following optimization
problem

dmmi,j(k) = max Ni,j
∑

C: C∈Ui,j

xC (9)

s.t.
∑

C,(m,n)

xC ≤ Ωm,n (10)

with C, (m,n) : (τm,n ∈ hsp(τi,j) ∪ τi,j) ∧ (τm,n ∈ C) ∧ (C ∈ Ui,j)

To determine whether a combination C is schedulable or not, a fast schedulability criterion
is required. We rely on the criterion presented in [21], but generalize it for (1) non-unique
priorities, and (2) the general relation where the maximum event models are not exactly
decomposable. The generalization is presented in Theorem 16; notation and explanations of
the theorem contents are given in the corresponding proof and Figure 5.

I Theorem 16 (Generalized schedulability criterion). Equation 11 formulates a schedulability
criterion for task τi,j under a given combination C.

∀l ∈ Ki,j :
∑

∀τm,n:τm,n∈hsp(τi,j)∪τi,j∧τm,n /∈C

wl(m,n),l
over ≥ Λli,j − Γli,j . (11)

The following abbreviations are used

Λli,j = B+
i,j(l)− δ

−
i,j(l)− di,j

Γli,j =
∑

τm,n∈hp(τi,j)

C+
m,n · [η+

m,n(B+
i,j(l)− C

+
i,j)− η

+
m,n(∆tli,j)]

∆tli,j = δ−i,j(l) + di,j − C+
i,j

wl(m,n),l
over =

C
+
m,n ·

(
η+
m,n(∆tli,j)− η

+,(t)
m,n (∆tli,j)

)
for τm,n ∈ hp(τi,j)

C+
m,n ·

(
η

+]
m,n(δ−i,j(l))− η

+],(t)
m,n (δ−i,j(l))

)
for τm,n ∈ sp(τi,j) ∪ τi,j

Proof. Let us verify the schedulability of task τi,j under a given combination C, i.e. we verify
whether R+,C

i,j ≤ di,j is true. We start from the unschedulable local worst case with C ′ = TRk
,

which is represented by the maximum level-τi,j busy period which contains Ki,j jobs of task
τi,j (cf. Figure 5a). If the task τi,j is schedulable in the local worst case, then it schedulable
for every combination and the problem is solved. If, however, task τi,j is unschedulable in
the local worst case, then some of the Ki,j jobs of task τi,j miss their deadline. The lth job
of τi,j exceeds its deadline in the local worst case by (cf. also Figure 5)

Λli,j = R+
i,j(l)− di,j = B+

i,j(l)− δ
−
i,j(l)− di,j .
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If its deadline is enforced by removing overload, an amount of workload Γli,j will disappear
automatically. Namely the workload from interfering activations which occur after the
deadline but before the non-preemptive execution of the lth job. Jobs of tasks with the same
priority (sp) as τi,j do not contribute to Γli,j , because they influence the response time of the
lth job only if they have arrived earlier than or simultaneously with this job.

Γli,j =
∑

τm,n∈hp(τi,j)

C+
m,n · [η+

m,n(B+
i,j(l)− C

+
i,j)− η

+
m,n(δ−i,j(l) + di,j − C+

i,j)]

The RHS of inequality 11 describes the smallest amount of overload of interfering tasks that
needs removed for sufficient schedulability of the lth job of τi,j in the maximum busy period.
The LHS of Eq. 11 describes how much overload is removed compared to the local worst
case, if we assume combination C (cf. Figure 5b for C = ∅). Under combination C, all tasks
τm,n /∈ C experience only typical activations and their overload is not present. In other
words, the tasks τm,n /∈ C follow their event model η+,(t)

m,n (∆t). In particular, an amount of
overload per task τm,n

wl(m,n),l
over =

C
+
i,j ·

(
η+
m,n(∆tli,j)− η

+,(t)
m,n (∆tli,j)

)
for τm,n ∈ hp(τi,j)

C+
i,j ·

(
η

+]
m,n(δ−i (l))− η+],(t)

m,n (δ−i (l))
)

for τm,n ∈ sp(τi,j) ∪ τi,j

is removed which impacts the response time of the lth job of task τi,j . Namely, the interfering
overload of hp(τi,j)-tasks until the timely nonpreemptive execution of job τi,j(l) is absent.
Likewise, the overload of all sp(τi,j)-jobs and overload jobs of τi,j are absent, which interfere
if they arrive before or simultaneously with job τi,j(l).2 J

5 Typical Compositional Performance Analysis

The new framework TypicalCPA, which we develop in this paper, combines CPA and TWCA
such that weakly-hard real-time guarantees can be given for tasks in a multi-resource system.
More concretely, the local analysis method TWCA will performed for each component after
an extended CPA has terminated. This is illustrated in Figure 3. To apply TWCA as a
local analysis method, for each task minimum and maximum event models together with
the corresponding minimum and maximum typical and overload event models have to be
provided. The state-of-the-art CPA, however, computes as a result, besides BCRT and
WCRT, so far only the converged minimum and maximum event models of each task (not
their typical and overload variants) and thus has to be extended.

In the following we assume that the complete set of event models – (η−i,1(∆t), η+
i,1(∆t)),

(η−,(t)i,1 (∆t), η+,(t)
i,1 (∆t)) and (η−,(o)i,1 (∆t), η+,(o)

i,1 (∆t)) – is given for the header tasks τi,1, since
they are activated by external event sources. The problem to be addressed is how to derive
these event models for all successor tasks in the context of CPA such that they can be used
for the subsequent TWCA.

5.1 Basic Definitions
We begin by introducing the concept of a global combination describing the activation behavior
of each task τi,j contained in the global task set T . Due to the existing precedence constraints
in a stream si, the activation behavior of any task τi,j with j > 1 is fully determined by

2 The notation η+](∆t) expresses that the maximum event model refers to the closed time interval [0, t].
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(a) Local worst case busy window with C = Tk,
Ki,j = 1.

(b) Local typical worst case busy window with
C = ∅.

(c) Exemplary decomposition of the maximum event model η+
m,n(∆t) in the maximum overload event

model η+,(o)
m,n (∆t) and the maximum typical event model η+,(t)

m,n (∆t) for task τm,n.

Figure 5 Theorem 16: Generalized schedulability criterion.

the respective predecessor task and therefore in the end by the header task τi,1. It is thus
sufficient to include the activation behavior of the header tasks in the definition of a global
combination.

I Definition 17 (Global combination). A global combination Cg ⊆ {τi,1| ∀i : τi,1 ∈ T } is a
set of header tasks which may experience both typical as well as overload activations. All
other header tasks follow their typical event model.

Special global combinations are the global typical combination with Cg = ∅, and the global
worst case combination with Cg = {τi,1| ∀i : τi,1 ∈ T }.

I Definition 18 (Schedulability of a global combination). We say a global combination Cg is
schedulable if and only if under all possible scheduling scenarios (1) all streams can satisfy
their end-to-end deadlines Di,j and (2) every task meets its local deadline di,j .

We require that the given event models of the header tasks are such that the following
schedulability constraints are respected.

I Definition 19 (Global typical worst case). If the system behaves according to the global
typical combination, then the task set T is schedulable even in the most unfavorable scenario
(global typical worst case).

I Definition 20 (Global worst case). If the system behaves according to the global worst
case combination, the task set T is possibly unschedulable in the most unfavorable scenario
(global worst case).

We would like to mention that for computing weakly-hard real-time guarantees, naturally
only systems which are unschedulable in the global worst case are of interest.
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5.2 Computation of Minimum and Maximum Event Models
While for the header tasks the minimum and maximum event model η−i,j(∆t), η

+
i,j(∆t) is

given by the system specification, it has to be derived for successor tasks τi,j with j > 1.
The classical CPA is capable of deriving these event models for all successor tasks from
the original CPA input model as defined in Section 2. Thus CPA explores here the most
favorable and the most unfavorable behavior of the global worst case combination.

5.3 Computation of Minimum and Maximum Typical Event Models
The minimum and maximum typical event model η−,(t)i,j (∆t), η+,(t)

i,j (∆t) have also to be
computed for the successor tasks τi,j with j > 1. Our claim is that CPA can also be used
for this purpose, given that in the input model the worst case bounds η−i,1(∆t), η+

i,1(∆t) are
replaced by the typical event models η−,(t)i,1 (∆t), η+,(t)

i,1 (∆t). In other words, CPA is now
applied for the best case and worst case scenario where all header tasks see only typical
events (global typical combination). CPA, which is agnostic of event types, computes the
converged minimum and maximum event models for all stream tasks. We assume in this
paper that all typical events that are injected at the head of a stream keep their typical
nature while propagating through the system. Knowing that only typical events have served
for stream activation, we can interpret the CPA-derived event models as typical and have
thus η−,(t)i,j (∆t) and η+,(t)

i,j (∆t) for all stream tasks.

5.4 Computation of Minimum and Maximum Overload Event Models
Finally, our intention is to obtain the minimum and maximum overload event models for
each successor task τi,j with j > 1. We begin by describing how an arbitrary event flow
ei,j(t) can be decomposed in a typical event flow e

(t)
i,j (t) and an overload event flow e

(o)
i,j (t).

In this context, we use the concept of a sliding window function which returns a maximum
event model for a specific event flow.

I Definition 21 (Sliding window function). A sliding window function fslw takes a specific
event flow ei,j(t) of task τi,j defined on 0 ≤ t ≤ T as an input, and returns a maximum event
model for ei,j(t), denoted as η+

ei,j ,T
(∆t) for any interval size 0 ≤ ∆t ≤ T . This maximum

event model η+
ei,j ,T

(∆t) is derived by passing a window of size ∆t over the event flow ei,j(t)
of length T and noting down the maximum number events contained in any position of the
window ∆t such that

η+
ei,j ,T

(∆t) = max
t1,t2 : 0≤t1≤t2≤T∧t2−t1=∆t

{ei,j(t2)− ei,j(t1)} .

I Theorem 22 (Decomposition of an event flow). Let ei,j(t) be an arbitrary event flow of
length T belonging to task τi,j. Known bounds for the activation frequency of task τi,j are
i.a. η+

ei,j ,t(∆t) for all (sub)lengths of the event flow with 0 ≤ t ≤ T and the maximum typical
event model η+,(t)

i,j (∆t). A valid decomposition of ei,j(t) in a typical and overload event flow
is given by

e
(o)
i,j (t) = max

0≤∆t≤t

{
0, η+

ei,j , t(∆t)− η
+,(t)
i,j (∆t)

}
e

(t)
i,j (t) = ei,j(t)− e(o)

i,j (t). (12)

Proof. The event flow ei,j(t) cannot contain more than η
+,(t)
i,j (∆t) typical events in the

observed interval [0, t) by Def. 11, where ∆t = t− 0 . All events that occur additionally to
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the maximum number of typical events η+,(t)
i,j (∆t) in [0, t) are a potential source of overload

in the system and can therefore be safely interpreted as overload events.
To determine the number overload events in ei,j(t), we (1) apply the sliding window

function to ei,j(t) within [0, t) which results in η+
ei,j , t(∆t), and then (2) compare point-

wise η+
ei,j , t(∆t) with η+,(t)

i,j (∆t). Pointwise comparison is done chronologically by increas-
ing continuously the size of ∆t with 0 ≤ ∆t ≤ t. The largest nonnegative difference
max

0≤∆t≤t

{
0, η+

ei,j , t(∆t)− η
+,(t)
i,j (∆t)

}
, is the number of overload events in ei,j(t).

Why is it not sufficient to compute max
{

0, η+
ei,j , t(∆t)− η

+,(t)
i,j (∆t)

}
for ∆t = t? Let ∆t′

be the first interval, where the maximum budget of typical events is exceeded by the event
flow such that η+

ei,j , t(∆t
′)− η+,(t)

i,j (∆t′) > 0. This information should not be contradicted
by a later smaller value of overload events derived at ∆t′′ > ∆t′. This, however, may
happen due to the cumulative representation of event arrival within ∆t by event models,
where information on the alignment of events gets lost with increasing interval size. The
alignment information is however important to distinguish overload from typical events. The
formulation e(o)

i,j (t) = max
0≤∆t∗≤t

{
0, η+

ei,j , t(∆t
∗)− η+,(t)

i,j (∆t∗)
}

preserves the information on

the maximum number of overload events once gained at ∆t∗. Also, e(o)
i,j (t) is a wide-sense

increasing function which accumulates the number of occurred overload events over time, and
therefore satisfies Def. 10 of an event flow. Furthermore, we have e(t)

i,j (t) = ei,j(t)− e(o)
i,j (t)

since an event in an event flow can either be overload or typical. J

In the following Theorem 23, we state how to compute a maximum overload event model. We
would like to note that the minimum overload event model is the zero function η+,(o)

i,j (∆t) = 0
since overload events can be completely absent cf. global typical combination.

I Theorem 23 (Obtaining an overload event model). A maximum overload event model is

η
+,(o)
i,j (∆t) = fslw

(
max

0≤∆t∗≤∆t

{
η+
i,j(∆t

∗)− η+,(t)
i,j (∆t∗)

})
where fslw is a sliding window function.

Proof. An upper bound for all event flow-specific maximum event models η+
ei,j , T

(∆t) of task
τi,j is the maximum event model η+

i,j(∆t) by Def. 2. Thus we have

max
0≤∆t∗≤t

{
0, η+

ei,j , t(∆t
∗)− η+,(t)

i,j (∆t∗)
}
≤ max

0≤∆t∗≤∆t

{
η+
i,j(∆t

∗)− η+,(t)
i,j (∆t∗)

}
.

In other words, the overload event flow ẽ
(o)
i,j (t) = max

0≤∆t∗≤t

{
η+
i,j(∆t∗)− η

+,(t)
i,j (∆t∗)

}
is always

larger than any other arbitrary overload event flow e
(o)
i,j (t). To derive from the largest overload

event flow ẽ
(o)
i,j (t) the corresponding maximum overload event model, we apply once again the

sliding window function such that ẽ(o)
i,j (t2)− ẽ(o)

i,j (t1) ≤ η+,(o)
i,j (t2 − t1) = fslw

(
ẽ

(o)
i,j (t2 − t1)

)
.

The computation of the overload event model η+,(o)
i,j (∆t) is illustrated in Figure 6. J

Calculating a maximum overload event model according to Theorem 23 requires a high
computational effort since the sliding window approach has to be applied to the infinitely
long event flow ẽ

(o)
i,j (t) = max

0≤∆t∗≤t

{
η+
i,j(∆t∗)− η

+,(t)
i,j (∆t∗)

}
. Fortunately most event flows

have a repetitive behavior or can be approximated by repetitive functions, so that the effort
to derive overload event models is significantly reduced. In the following, we discuss special
and practically relevant cases for the computation of overload event models.
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Δt
1

Figure 6 Computing a maximum overload event model.

I Case 1 (Zero typical event model). In this trivial but important case, the task τi,j has a
zero typical event model η+,(t)

i,j (∆t) = 0. Obviously, we have η+,(o)
i,j (∆t) = η+

i,j(∆t). This case
is relevant for header tasks, which have the character of a sporadic interferer.

I Case 2 (Zero overload event model). In a second trivial but important case, the maximum
and maximum typical event model of task τi,j are identical such that η+

i,j(∆t) = η
+,(t)
i,j (∆t).

Consequently, we have a zero overload event model η+,(o)
i,j (∆t) = 0. Header tasks with a

periodic activation have often this behavior.

I Case 3 (Repetitive overload event flow). If the overload event flow ẽ
(o)
i,j (t) is T -repetitive

possibly with an offset (cf. Lemma 7), then applying the sliding window algorithm can be
restricted to the interval [0, 2T ) to construct the maximum overload event model. In the
following Theorem 24, we show that a T -repetitive overload event flow is obtained if the event
model η+

i,j(∆t) and the typical event model η+,(t)
i,j (∆t) are both T -repetitive extensions (which

can be achieved by appropriate output model computation described Section 3.1.2).

I Theorem 24 (Repetitive overload event flow). If the event model η+(∆t) and the typical
event model η+,(t)(∆t) are both T -repetitive extensions, then the resulting overload event flow
ẽ

(o)
i,j (t) is likewise T -repetitive, such that

ẽ
(o)
i,j (t) = max

0≤∆t∗≤t
{
⌊

∆t∗

T

⌋
·
(
η+(T )− η+,(t)(T )

)
+ η+(∆t∗ −

⌊
∆t∗

T

⌋
T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
T )}.

Proof.

max
0≤∆t∗≤∆t

{η+(∆t∗)− η+,(t)(∆t∗)} = max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
· η+(T ) + η+(∆t∗ −

⌊
∆t∗

T

⌋
· T )

−
⌊

∆t∗

T

⌋
· η+,(t)(T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
· T )} = max

0≤∆t∗≤∆t
{
⌊

∆t∗

T

⌋
·

(η+(T )− η+,(t)(T )) + η+(∆t∗ −
⌊

∆t∗

T

⌋
T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
T )}

ηdiff (∆t)=η+(∆t)−η+,(t)(∆t)= max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
· ηdiff (T ) + ηdiff (∆t∗ −

⌊
∆t∗

T

⌋
T )} J
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Figure 7 Network topologies. Thin lines represent links at 100 Mbit/s, while thick lines represent
links at 1 Gbit/s. A maximum wire length of 10 m is assumed, which translates to a maximum wire
propagation delay of 33 ns.

6 Experiments

The presented experiments focus on computing end-to-end (m, k)-guarantees for traffic
streams in realistic network settings, while exploring how a varying amount of overload
impacts the timing behavior of the investigated system.

6.1 System Generation
The case study presented in Thiele et al. [20] provides characteristics of future automotive
backbone networks by Daimler. Based on this data, we have randomly generated a set of
automotive switched Ethernet networks with mapped traffic streams. Firstly, let us present
the data used from the case study. Figure 7 illustrates three possible network topologies. The
topologies vary in the number of switches (SWs) which interconnect 8 electronic control units
(ECUs). Links operate at 100 Mbit/s, only ECU0 and ECU7 are equipped with 1Gbit/s
links due to high load. Stream characteristics are described statistically by [20], they are
summarized in Table 1a. There are 50 periodic control streams of highest priority and 4
periodic camera streams of lower priority. Control streams have relatively small payloads and
rather long periods, while camera streams have large payloads and shorter periods. Some of
the streams are unicast, others are multicast or broadcast. A periodically sent Ethernet frame
is mapped to exactly one stream. Information on the frame payload as well as on periods is
given by [20] only in form of minimum and maximum values, averages, and quartiles for the
purpose of data anonymization. In case of camera traffic, the number of streams is too small
for quantifying quartiles. IPv4/UDP is used at the network/transport layer, which adds
28 bytes of protocol overhead (not shown in Table 1a). Furthermore, the communication
matrix in Table 1b is given by [20] indicating the number of control and camera streams sent
between a tuple of nodes. We use a parser to translate the network described in terms of
topology and streams into a CPA/TWCA system model as defined in Sections 2 and 4.1.

Secondly, we describe the random generation of systems which conform to the presented
properties. The generation process is designed to produce a configurable number of systems
and consists of several runs. A single generation run first creates the set of 54 streams with
their respective source and destination ECUs, and then the streams are mapped to each of
the three topologies. A run thus creates 3 systems at once. However, this set of 3 systems is
discarded if at least one is not schedulable to enable meaningful comparisons between the
different topologies.

Generation of control streams. Periods and payloads of control streams are only described
by statistic figures. Therefore, we used fitting to find distributions which come closest
the indicated average and quartiles. For the periods, we opted for a Weibull distribution
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Table 1 Traffic properties as given in Thiele et al. [20].

control camera

streams
# total 50 4
# unicast 26 3
# 2-cast 13 1
# 3-cast 4 0
# 4-cast 1 0
# broad- 6 0
cast

frame payload in bytes
[min, max] [1, 250] B [875,

1400] B
average 54 B 1231 B
quartiles q0.25 = 8 B

q0.50 = 25 B
q0.75 = 74 B

period
[min, max] [5ms, 1s] [100us

1ms]
average 182ms 440us
quartiles q0.25 = 10ms

q0.50 = 40ms
q0.75

= 175ms
(a) Stream characteristics.
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(b) Communication matrix indicating the number
of control streams (black number, 1st entry) and
camera streams (blue number, 2nd entry) between
a pair of ECUs.

with the parameters shape = 0.54 and scale = 88.09. For the payload, an exponential
distribution with λ = 0.02 was used.
Generation of camera streams. The few, i.e. 4, camera streams scam,i are assigned
the same payloads and periods in each system generation run: scam,0 7→ (100µs, 875B);
scam,1 7→ (1ms, 1400B); scam,2 7→ (330µs, 1325B); scam,3 7→ (330µs, 1325B).
Generation of stream sources & destinations and topology mapping. The given communic-
ation matrix defines constraints on pairs of source-destination ECUs and on the number
of streams sent between them. Stream sources & destinations are generated randomly
respecting these constraints. The traffic is then mapped to each of the 3 topologies,
creating 3 different systems with identical streams.
Schedulability test. For control streams, local deadlines are set to the stream period and
the end-to-end deadline is the sum of the local deadlines. For camera streams, we choose
arbitrarily an end-to-end deadline of 2ms (scam,0, scam,2, scam,3) or 4ms (scam,1), such
that – without any overload in the system – worst case stream latencys (WCSLs) of
camera streams are already close to their end-to-end deadlines.3 Local camera deadlines

3 The worst case stream latency (WCSL) for a unicast stream is computed by summing the WCRTs of
tasks included in the stream. For multi- or broadcast streams, the WCSLs are computed separately for
each path from the source to a destination.
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are derived by uniform distribution of the end-to-end deadline. Based on these timing
constraints, the generated systems are filtered such that they are all schedulable as
mentioned above.

After a generation run, we dispose of a set of 3 systems in which no overload is present. We
then add sporadic control streams to each system as transient overload. We see this as a
realistic extension of the system description, representing event-triggered communication.
A sporadic control stream s′ is a duplicate of a randomly chosen control stream s from the
original stream set but with modified activation behavior. The typical activation behavior
of s′ is zero, while the nonzero overload activation behavior is modeled as sporadically
bursty [16]: A burst of b events with a minimum distance Tin is repeated after an outer

period Tout such that η+,(o)(∆t) =
⌊

∆t
Tout

⌋
· b+ min

{⌈
∆t−b ∆t

Tout
c·Tout

Tin

⌉
, b

}
. While the burst

length b is used as a variable parameter in the experiments, fixed parameters are Tin = 100µs
and Tout is 10-times the period of the original stream s.

6.2 Experimental Results
In the experiments, we investigate the impact of overload on the timing behavior of the
generated systems. For each presented overload configuration, we randomly generated 50
systems of the same topology. We first present worst case stream latencys (WCSLs), and
then discuss the DMMs computed for streams. The results in this section are presented
in box plots as, for instance, in Figure 8a. This is done to summarize results (WCSLs or
DMMs) over all streams from a set of similar systems. A single box plot indicates the average
(red square) and the quartiles q0.25, q0.50, q0.75 of the results. The 1st and 3rd quartiles q0.25
and q0.75 are the top and the bottom of the blue framed box, while the red band inside the
box is the 2nd quartile (median). The whiskers indicate results outside the quartiles.

Worst Case Stream Latencies. The WCSLs depend both on the system characteristics as
well as on the amount of introduced overload. Figure 8 shows that the double star topology
has the shortest WCSLs, compared to to the tree topology with intermediate WCSLs and
the quadruple star topology with even higher WCSLs. This behavior is due to the varying
number and extent of contention points in the different topologies. Moreover, Figure 8
confirms the intuition that WCSLs increase with the amount of overload in the system, which
is controlled by the number of overload streams in the system and the number of burst events
b of each overload stream.

Deadline Miss Models of Streams. While the control streams satisfy their end-to-end
deadlines even in the presence of overload, camera streams suffer from occasional deadline
misses in particular in case of the quadruple star topology. A deadline miss in the context of
a camera stream can be interpreted as a frame loss which impacts then video quality. We
therefore focus on the DMMs of the camera streams. Figure 9 illustrates the DMMs for all
camera streams of generated systems with quadruple star topology. Overload is varied by
the number of overload streams and the burst length. We compute the DMM of a unicast
stream as the sum of the task DMMs included in the stream. In the case that one or more
local deadlines are violated but the global deadline is satisfied, the stream DMM is set to
zero. Multicast and broadcast streams are decomposed into unicast streams in order to
compute the DMMs according to the above rule. Figure 9a indicates DMMs for camera
streams in the presence of 5 sporadic overload streams, while Figure 9b shows DMMs for
an increased number of 10 sporadic overload streams. Table 2 lists the nonzero DMMs
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(a) Double star topology.
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(b) Tree topology.
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(c) Quadruple star topology.

Figure 8 Worst case latencies of control and camera streams under varying topologies and
overload. Each single box plot is based on the streams of 50 randomly generated systems with the
indicated properties (num. of bursts, num. of overload streams).
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(b) 10 overload streams.

Figure 9 DMMs for camera streams under varying overload for the quadruple star topology.
Results evaluate camera streams in 50 systems. For a multicast camera stream with n destinations,
there are n end-to-end DMMs computed.

results for k = 100 to get a more detailed impression of the individual weakly-hard real-time
guarantees. The number of deadline misses grows as expected with the number of overload
streams. Furthermore, the m-k-ratio is improving for growing k.

For 5 overload streams many camera streams are schedulable for any burst length. Few
systems have camera streams that are not schedulable. Among these systems with late
camera streams, most of them have a very acceptable (m, k) behavior – in particular for
b ∈ {2, 3}.

For 10 overload streams more camera streams experience occasional deadline misses. For
b ∈ {2, 3}, the maximum number of deadline misses m in k executions is acceptable
for many camera streams depending on system requirements. For b ≥ 4 many of the
investigated systems are clearly overloaded.

A note on run times: On a PC with an Intel i5-4210M processor at 2.6 GHz and 8GB RAM,
the analysis of a single system is in the order of 15-30 seconds.
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Table 2 Details on nonzero DMM results for camera streams for k = 100.

bursts nonzero dmm(100) results with number of occurrence n in brackets (n)

5 overload streams
b = 2 2(6), 3(5), 4(15), 6(2)
b = 3 2(6), 3(5), 4(22), 5(1), 6(1), 7(6), 9(1), 13(1), 15(1)
b = 4 2(2), 3(3), 4(19), 5(4), 6(1), 7(1), 8(2), 9(1), 10(3), 11(2), 12(1), 13(1), 14(1), 16(1),

18(1), 30(1), 100(3)
10 overload streams
b = 2 2(2), 3(2), 4(31), 5(1), 6(6), 11(2), 12(1), 14(1), 16(1), 19(1), 100(3)
b = 3 4(15), 5(5), 7(2), 8(1), 9(1), 10(2), 12(5), 14(2), 15(4), 16(2), 100(23)
b = 4 4(2), 5(1), 8(1), 9(3), 10(1), 13(2), 14(10), 16(1), 20(2), 21(2), 30(1), 100(51)

7 Related Work

The seminal paper by Bernat et al. [1] has presented the principles of weakly-hard real-time
systems. It summarizes existing work in a similar direction, introduces (m,k)-constraints,
and derives (m,k)-guarantees for periodic task sets with known offsets under fixed priority
scheduling. More powerful verification techniques for weakly-hard real-time systems have
been subsequently developed. In particular, Quinton et al. [14] has introduced a method
called TWCA, which can handle more comprehensive system models covering, e.g., arbitrary
activation event models. The initial work [14] has been extended and refined in a sequence of
publications; the latest analysis version is presented in [21]. A new and recent development
is the verification technique for weakly-hard real-time systems presented by Sun et al. [19].
The work by Sun et al. [19] has only a limited focus on systems with fully periodic tasks with
unknown offsets under fixed priority scheduling, but it has a higher accuracy than TWCA
since it provides exact results. However, all of the verification techniques are restricted to
systems with a single service-providing resource. In this paper, we lift this restriction by
integrating TWCA as local analysis technique in the context of the CPA framework [11].
CPA is an established compositional analysis framework, which uses for each component
a dedicated scheduling analysis and specifies the coupling of the component-based results.
The advantage of using a compositional analysis framework is that large and heterogeneous
systems can be analyzed. The choice of the combination (TWCA, CPA) is due to the
similarities in the system models and interface definitions, which reduces the number of
compatibility issues.

8 Conclusion

In this paper, we presented TypicalCPA which is the first verification method for weakly-hard
real-time systems with multiple resources and we evaluated it in a network context with traffic
streams. Previous verification techniques providing weakly-hard real-time guarantees have
aimed at systems with only a single service-providing resource. The method builds on (1)
CPA, a compositional performance verification framework for hard real-time guarantees, and
(2) TWCA, an analysis method which derives weakly-hard real-time guarantees for systems
with a single resource. CPA allows to use different local scheduling analysis techniques for
each component in the investigated system, and defines a coupling mechanism between the
results provided by each component analysis. We have interpreted TWCA as such a local
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scheduling analysis technique, but we had to extend (1) elements of TWCA as well as (2) the
existing coupling mechanism to achieve compatibility of both CPA and TWCA. In particular,
the computation and propagation of typical and overload event models between tasks on
different resources has been introduced. In an industrial case study, focusing on automotive
switched Ethernet networks, we demonstrated the applicability of TypicalCPA to realistic
problems. In the future, we intend to work on improved accuracy of our results.
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Abstract
In time-sensitive, safety-critical systems that must be fail-operational, active replication is com-
monly used to mitigate transient faults that arise due to electromagnetic interference (EMI).
However, designing an effective and well-performing active replication scheme is challenging since
replication conflicts with the size, weight, power, and cost constraints of embedded applications.
To enable a systematic and rigorous exploration of the resulting tradeoffs, we present an analy-
sis to quantify the resiliency of fail-operational networked control systems against EMI-induced
memory corruption, host crashes, and retransmission delays. Since control systems are typically
robust to a few failed iterations, e.g., one missed actuation does not crash an inverted pendulum,
traditional solutions based on hard real-time assumptions are often too pessimistic. Our analysis
reduces this pessimism by modeling a control system’s inherent robustness as an (m, k)-firm spec-
ification. A case study with an active suspension workload indicates that the analytical bounds
closely predict the failure rate estimates obtained through simulation, thereby enabling a mean-
ingful design-space exploration, and also demonstrates the utility of the analysis in identifying
non-trivial and non-obvious reliability tradeoffs.
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1 Introduction

Networked control systems (NCSs) – where sensors, controllers, and actuators belonging
to one or more control loops are connected by a shared network – are widely deployed in
contemporary cyber-physical systems as they offer many practical advantages over dedicated
wiring solutions, not the least of which are cost and weight savings [26].
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Like other embedded systems, NCSs are susceptible to both internal and external sources
of electromagnetic interference (EMI), e.g., spark plugs, TV towers, etc. [47]. In fact, the
likelihood of soft errors due to EMI across a fleet of devices should not be underestimated.
For example, Mancuso [41] observed that, assuming one soft error per bit in a 1MB SRAM
every 1012 hours of operation, and a worldwide population of 0.5 billion cars with an average
daily operation time of 5%, about 5,000 vehicles per day are affected by a soft error.

Since unmitigated soft errors can result in potentially catastrophic system failures, EMI-
induced error scenarios are anticipated in the design of safety-critical systems, and commonly
mitigated by means of either active or passive replication. In the context of high-frequency
control applications specifically, passive replication, i.e., the use of hot/cold standbys, is
insufficient if the failure detection and view-change latencies exceed the control frequency.
System engineers thus devise active replication (or static redundancy) schemes to ensure
that safety-critical NCSs are fail-operational (e.g., see [22, 15, 29]).

However, coming up with a good active replication scheme is no easy task. Engineers face
many questions, such as which components, if made more or less resilient (e.g., by adding
an extra replica, or shielding), will most impact the overall reliability? Alternatively, which
components could be replaced with cheaper consumer-grade parts with the least effect on
system reliability? Would dual modular redundancy suffice if the control logic is robust to,
say, 10% message loss or would triple modular redundancy be needed? In general, such
questions (and many more like them) do not have obvious answers, and particularly not if
size, weight, and power (SWaP) as well as cost constraints must be taken into account, too.

The challenge is further exacerbated by the fact that commercially-used controllers are
typically safeguarded against disturbances and noise using appropriate limiting or clamping
mechanisms, and most well-designed control systems are inherently robust to a few failed
iterations, e.g., one missed actuation does not crash an inverted pendulum. That is, requiring
that all control loop iterations must be correct and timely – i.e., completely unaffected by
soft errors – forces excessively pessimistic answers relative to the “true” needs of the workload,
and consequently results in under-utilized, cost-inefficient systems. Thus, to appropriately
dimension a fail-operational real-time NCS, a robustness-aware reliability analysis is required.

In this paper, we present a sound reliability analysis that evaluates a given configuration
of an actively replicated NCS and quantifies its resiliency to EMI-induced transient errors,
including message omission errors due to host crashes, incorrect computation errors due to
memory corruption, and deadline violations due to retransmission delays. The objective
is to provide system engineers with a sound method to evaluate (i.e., safely bound) the
reliability of an active replication scheme (i.e., for a given number of replicas for each task
in the NCS) assuming peak failure rates are known from empirical measurements and/or
environmental modeling. We consider NCSs that are networked using a broadcast medium
such as CAN (or Ethernet with a reliable broadcast primitive implemented on top) and
evaluate them at the granularity of message exchanges between the distributed components.

Unlike traditional solutions based on hard real-time assumptions, our analysis leverages
the robustness of well-designed control systems: since robust control loops tolerate a limited
number of transient failures (which result in degraded control performance, but not an
unrecoverable plant state), we characterize control loops with (m, k)-firm specifications,
where out of every k consecutive control loop iterations, at least m must be “correct and
timely” [27]. Blind and Allgöwer [9] have shown that the (m, k)-firm model is strictly stronger
than the classical asymptotic requirement for control robustness (e.g., as recently studied by
Saha et al. [52]), which mandates that, as the number of control loop iterations approaches
infinity, the failure rate should not exceed a given threshold. We thus use this model to bound
the failures in time (FIT) of an NCS, i.e., the expected number of control failures in one
billion operating hours, where control failure denotes a violation of the (m, k)-firm constraint.
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Figure 1 An FT-SISO control loop. Solid boxes denote hosts. Each dashed box denotes a task
replica set or a set of message streams transmitted by a task replica set. Dashed arrows denote message
streams broadcasted over the shared network N , e.g., X1 and X2 are received by all tasks in C.

The proposed analysis consists of three steps. Given a model of a fault-tolerant single-
input single-output (FT-SISO) control loop with active replication of its critical tasks (§2), the
program-visible effects of EMI are first classified as crashes (resulting in message omissions),
memory corruption (resulting in incorrect messages), and message retransmissions (resulting
in deadline violations), and each of these errors is modeled probabilistically (§3). Second,
an intermediate analysis (§4) then relates the probability of individual message errors to
that of a failed iteration of a control loop, i.e., where the controlled plant is not actuated
as expected in an error-free iteration.2 Finally, a reliability analysis upper-bounds the FIT
of an NCS, which may consist of one or more FT-SISO control loops, as a function of the
control loops’ respective (m, k)-firm specifications.

We have evaluated the proposed analysis with a case study exploring replication options for
a CAN-based active suspension workload (§5). Our results show that analysis and simulation
results closely track each other when configuration parameters are varied. We also demonstrate
how the analysis can help in identifying non-obvious reliability tradeoffs, and identify the
underlying timing analysis of the CAN bus [16] as the single greatest individual source of
pessimism in our analysis due to its reliance on a critical instant that occurs only rarely.

2 System Model

We consider an FT-SISO networked control loop L deployed on hosts H = {H1, H2, . . .}
connected by a broadcast medium N , which is shared with other traffic as well, e.g., other
control loops, the clock synchronization protocol, etc. A block diagram is shown in Fig. 1.

The sensor task replicas S = {S1, S2, . . .} periodically generate sensor output and
broadcast it over N . As a convention, we let superscripts denote replica IDs. We let Xi

denote the message stream carrying the sensor values of the ith replica of the sensor task,
and let X = {X1, X2, . . .} denote the set of all such message streams.

The controller task replicas C = {C1, C2, . . .}, upon periodic activation, read the latest
received sensor messages, compute a new control command for the plant, update their local
states (e.g., in a PID controller, the integrator), and broadcast the control command. They
are assigned appropriate offsets to ensure that, in an error-free execution, the sensor messages
are available before any controller task replicas are activated. The message streams carrying
control commands are denoted U = {U1, U2, . . .}.

2 Note the difference between a failed iteration of a control loop and control failure. A failed iteration
is simply a deviation from an ideal, error-free scenario. Multiple failed iterations may lead to control
failure if they violate the control loop’s (m, k)-firm specification.
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Algorithm 1 Voting procedure before the ith activation of any controller task. The voting
procedure for the actuator task is defined similarly by replacing the input set Xi with Ui.
1: procedure PeriodicControllerTaskActivation
2: Latesti ← ∅ . start voting protocol
3: for all Xk

i ∈ Xi do
4: if Xk

i not received by its deadline then
5: continue . also accounts for omissions
6: Latesti ← Latesti ∪Xk

i

7: if Latesti = ∅ then return . omit output
8: resulti ← SimpleMajority(Latesti) . break ties based on message IDs
9: . . . . main logic of the task starts

The actuator task A is directly connected to the plant. Upon periodic activation, it reads
the latest received control commands and actuates the plant accordingly. Like the controller
tasks, A is also assigned an appropriate offset to ensure that, in an error-free execution, all
control commands are received before its activation. Unlike the sensor and controller tasks,
the actuator task A is not replicated since it requires special hardware in the plant actuator
to handle redundant inputs [29]. We revisit this issue in §7.

All tasks and messages in the control loop have a period of T time units. The ith runtime
activations or jobs of sensor task replicas in S = {S1, S2, . . . } and controller task replicas in
C = {C1, C2, . . . } are denoted Si = {S1

i , S
2
i , . . . } and Ci = {C1

i , C
2
i , . . . }, respectively; and

the ith job of actuator task A is denoted Ai. Similarly, the ith messages in sensor message
streams X = {X1, X2, . . . } and controller message streams U = {U1, U2, . . . } are denoted
Xi = {X1

i , X
2
i , . . . } and Ui = {U1

i , U
2
i , . . . }, respectively.

Finally, we let Ui denote the actuator command applied to the physical plant in the ith
iteration, i.e., output of job Ai, and let U = {U1,U2, . . . } denote the ordered set of such
commands applied to the physical plant across all iterations.

Assumptions. We assume that tasks resolve redundant inputs at the start of every iteration
through voting (Algorithm 1). We let Vi = {V 1

i , V
2
i , . . . } denote the set of voter instances

that resolve the redundant inputs for controller jobs Ci = {C1
i , C

2
i , . . . }, respectively, and

let V Ai denote the voter instance that resolves the redundant inputs for the actuator job Ai.
Since all inputs are available before the task is activated in an error-free scenario, message
streams that are delayed or omitted due to transmission or crash errors are ignored during
voting (Line 5 of Algorithm 1). In the worst case, if no input is available on time to the
voter due to errors, the task’s activation is skipped, i.e., the task’s output for that iteration
is omitted (Line 7). While computing the simple majority (Line 8), any ties in quorum size
are broken deterministically using message IDs.

We (pessimistically) assume that corrupted message replicas are identical because it is a
worst-case scenario w.r.t. the voting protocol. In particular, if the number of corrupted mes-
sages exceeds the number of correct messages, then assuming identically corrupted messages
implies that the voting outcome is corrupted, while in the case of non-identically corrupted
messages there is a high likelihood that correct messages still form the largest quorum.
In practice though, whether or not corrupted messages are likely to be identical is highly
system- and application-specific. Random EMI normally does not cause identically corrupted
patterns and many systems use end-to-end checksums; the likelihood of identically corrupted
messages is thus small. In contrast, if the application payload is of boolean type or encoded
using only a few bits, the likelihood of identically corrupted messages is non-negligible.
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Furthermore, we assume that NCS hosts are synchronized using a clock synchronization
protocol (such as the Precision Time Protocol [1]), and that task and message offsets have been
chosen to account for the maximum clock synchronization error. Without this assumption, it is
much more challenging to ensure replica determinism (e.g., simply assigning appropriate offsets
to tasks and messages is insufficient) [48]. We also require that all NCS tasks are deterministic.
Thus, given identical inputs and identical states, any two sensor (controller) task replicas
produce identical sensor (control) messages, unless one is affected by memory corruption.

3 Fault Model

To lay the foundation for our analysis, we first give a precise fault model.
We model the EMI-induced raw transient faults, i.e., bit-flips on the network and in

host memory, as random events following a Poisson distribution. Let P(x, δ, λ) denote the
probability mass function of the Poisson distribution, i.e., the probability that x independent
events occur in an interval of length δ when the arrival rate is λ. Let τ and λi denote the
peak rate of raw transient faults affecting the network and each host Hi ∈ H, respectively.
We define the probability that x raw transient faults affect the network (respectively, host
Hi) in any interval of length δ as P(x, δ, τ) (respectively, P(x, δ, λi)).

In practice, the peak fault rates are empirically determined with measurements or derived
from environmental modeling assuming worst-possible operating conditions, and typically
include safety margins as deemed appropriate by reliability engineers or domain experts. As
a result, a Poisson process is a good approximation of the worst-case scenario, as previously
discussed by Broster et al. [13]. For instance, in the case of network faults, τ is likely to
exceed any transient actual fault rate τactual experienced in practice, which also varies over
time and/or based on a system’s current surroundings. Thus, as per the Poisson model, while
the actual probability that the network experiences at least one transient fault in any interval
of length δ is given by

∑
x>0 P(x, δ, τactual), we upper-bound this probability in our analysis

by
∑
x>0 P(x, δ, τ). That is, if τ > τactual , then

∑
x>0 P(x, δ, τ) >

∑
x>0 P(x, δ, τactual).3

Raw transient faults may manifest as program-visible retransmission, crash, and incorrect
computation errors [8, 6], which are also modeled probabilistically, as described below.

Networking protocols incorporate explicit mechanisms to mitigate the effects of transient
faults on the wire, e.g., error detection and correction in CAN [44]. Thus, we assume that
network message corruptions are always detected, but may result in retransmission errors
which may eventually lead to deadline violations. As in [12], we make the simplifying (but
safe) assumption that every transient fault on the network causes a retransmission. Thus,
we define the retransmission rate as τ , and the probability that x retransmissions occur in
any interval of length δ as P(x, δ, τ). Given this, an upper bound on the probability that a
message misses its deadline can be derived using prior work [13, 56].

In this work, we assume that an upper bound on the worst-case deadline-miss probability
of any message instance belonging to any sensor message stream Xx or any control message
stream Ux is known and denote this bound as B(Xx) or B(Ux), respectively.

Crash errors occur if the system suffers an EMI-induced corruption that causes an
exception to be raised and the system to be rebooted, or that induces an unbounded hang
that causes the system’s watchdog timer to trigger a reboot, e.g., see [43]. A crashed system
remains unavailable for some time while it reboots and thus causes an interval in which

3 This basic fact can be proved by representing the cumulative density function of the Poisson distribution
in the form of an upper incomplete gamma function [5].
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messages are continuously omitted. We assume that the recovery interval on each host Hi is
upper-bounded by Ri, which we assume also includes any delays that arise due to the need
to resynchronize any application state after a crash.

Prior studies have shown that a large fraction of transient faults have no negative
effects [60, 7, 3]. We thus assume a derating factor that accounts for masked transient faults,
which can be determined empirically [42]. Let fi denote the derating factor for crash errors
on host Hi; the peak rate of crash errors on host Hi is then given by ρi = fiλi. Using
the peak crash error rate, we model crash errors like raw transient faults as random events
following a Poisson distribution. Thus, we define the probability that x crash errors occur
on host Hi in any interval of length δ as P(x, δ, ρi).

Incorrect computation errors may occur if a message is corrupted before transmission
(during preparation), before the network controller computes a checksum for subsequent
error detection. Like crash errors, assuming a host-specific derating factor f ′i for incorrect
computation errors, the average error rate on host Hi is given by κi = f ′iλi and the probability
that x errors occur in any interval of length δ is given by P(x, δ, κi).4 Our notion of incorrect
computation errors does not refer to software bugs or Byzantine errors.

We refer to the interval during which a message is at risk of corruption as its exposure
interval. For stateful tasks such as a PID controller, the message computation relies on both
the current input and the application state, and the latter could be affected by latent faults
(i.e., state corruptions that have not yet been detected). Thus, the exposure interval of a
message depends on the mechanisms in place to tolerate (or avoid) latent faults.

If the hardware platform uses Error-Correcting Code (ECC) memory and processors with
lockstep execution (common in safety-critical systems), then the built-in protections suppress
latent faults, and it suffices to consider the scheduling window of a message (i.e., the duration
from the message’s creation to its deadline) as its exposure interval. If no such architectural
support is available, then any relevant state can be protected with a data integrity checker
task that periodically verifies the checksums of all relevant data structures (and that reboots
the system in the case of any mismatch). The exposure interval of a message then includes
its scheduling window and (in the worst case) an entire period of the data integrity checker.

We assume that the worst-case exposure interval for each message in Xx, Uy, and U is
known in advance and denote it using E(Xx), E(Uy), and E(U), respectively.

Assumptions. Based on the stochastic nature of physical EMI processes, we consider
EMI-induced transient faults, and hence basic message errors, to be independent. We do
however account explicitly for correlated errors that arise from the system architecture,
e.g., deterministic replicas will produce the same wrong output if given the same wrong input.

We also implicitly account for correlated surges in error rates across all components since
we analyze peak rates for all components. For example, if a UAV with an FT-SISO control
loop is flying through a strong radar beam, all replicas of the control loop simultaneously
experience increased rates of EMI. The proposed analysis is able to handle this correlation
because the derived upper bound on the failure rate is monotonic in all fault rates and
applied assuming peak fault rates, which in turn are determined such that they exceed the
fault rates expected in practice, especially during such high interference scenarios.

4 The choice of Poisson distribution for modeling both crash and incorrect computation errors is reasonable
since real-time tasks are repeated, short workloads; thus, any generated message is equally likely to
be affected by an error, and a host is equally likely to be crashed during any iteration of the task
(see [37] for a mathematical basis for this argument).
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While evaluating the EMI-induced errors discussed above, we assume that other system
components are reliable, even though the NCS subsystem being analyzed may directly depend
on them, e.g., the power sources, the physical sensors and the actuators, the controlled
physical plant, or the clock synchronization mechanism. This assumption does not imply
that the proposed analysis is not useful if a dependent component fails, rather it provides a
FIT rate for one subsystem, which can then be composed with the FITs of other dependent,
dependee, or unrelated subsystems, e.g., using a fault tree analysis. This is a common way
of decomposing the reliability analysis of the whole system into manageable components.

We also assume that the network protocol guarantees atomic broadcast, i.e., messages
are received consistently by either all hosts, or none. While Byzantine error scenarios violate
this assumption, e.g., [39], they occur with such low likelihood that they are best modeled as
a separate, additive failure source and accounted for using a separate FIT analysis.

Finally, recall from §2 that tasks are assigned appropriate offsets to ensure sequentiality,
e.g., to ensure that sensor values are always available (in an error-free execution) before
any control task replica is activated. In this work, we assume that processor scheduling on
each host is statically checked and thus task offsets are correctly enforced. Alternatively,
processor scheduling delays due to transient faults could be explicitly taken into account as an
additional source of failed control loop iterations, e.g., when upper-bounding the probability
of a message omission (see Definition 1 in §4).

4 Probabilistic Analysis

We analyze the probability that the nth iteration of the control loop fails, for any n.
As mentioned in §2, due to clock synchronization and the atomic broadcast assumption,

message replicas are identical in an error-free scenario, i.e., the messages in Xn carry identical
sensor values and the messages in Un carry identical control commands. However, due to
incorrect computation errors, one or more messages in Xn may be corrupted. If the voters
Vn choose a corrupted sensor value, then all messages Un carrying the control commands are
also corrupted. Messages in Xn could also be delayed or omitted due to transmission and
crash failures, in which case the voters Vn work with fewer inputs. But if all the messages in
Xn are either delayed or omitted, the controller jobs Cn have no inputs to work with, hence
the messages Un are not prepared. Similarly, the controller to actuator information flow may
also be affected by errors, resulting in An’s output Un being corrupted or omitted. These
dependencies are illustrated using an example in Fig. 2.

Based on this intuition, we next bound the probability that the final output Un is cor-
rupted or omitted, in a bottom-up fashion and in small steps of a few lemmas each. We use
P (·) to denote exact probabilities and Q(·) to denote upper bounds on the exact probabilities.

In particular, we first define the analysis as a function of the following exact (but
unknown) probabilities for each message m:

I Definition 1. P (m omitted) denotes the exact probability of an omission. P (m delayed)
denotes the exact probability of a deadline violation. P (m corrupted) denotes the exact
probability of an incorrect computation.

In addition, since the effect of message corruption on Algorithm 1’s output also depends on
the application-specific message payload, the analysis initially also assumes the following
exact (but unknown) probability.

I Definition 2. P (Majority incorrect | I, C) denotes the exact probability that, given a
set of incorrect inputs I and correct inputs C, the SimpleMajority(I ∪ C) procedure in
Algorithm 1 (Line 8) outputs an incorrect value.
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Figure 2 Error probabilities at different stages of a CAN-based wheel control loop (see §5 for
details). Arrows denote dependencies among error probabilities of the different control loop stages.
The error rates (per ms) are τ = 10−4 for the CAN bus, ρi = 10−12 and κi = 10−12 for each Hi
hosting sensor and controller tasks, and ρa = 10−24 and κa = 10−24 for the actuator task’s host Ha.

In each step of the analysis, we ensure that the derived probability is either independent
of, or increasing in, these exact error probabilities. Thus, when instantiating the analysis
using upper bounds on the exact probabilities, we implicitly guarantee that the derived
iteration failure probability upper-bounds the actual iteration failure probability. Due to
space constraints, we do not give a proof of monotonicity in this paper. We revisit the issue at
relevant places where we explicitly add some pessimism to the analysis to ensure monotonicity.

Step 1. Analyzing the correctness of V y
n ’s output. We evaluate the probability that a

controller voter instance V yn outputs an incorrect value because of corrupted inputs.
Recall from §2 that Xn denotes the set of all sensor message replicas that are inputs to

V yn . Let Tn = 〈On,Dn, In, Cn,Zn〉 denote a 5-tuple constrained by the following definition.

I Definition 3. Tn = 〈On,Dn, In, Cn,Zn〉 is valid if On, Dn, In, Cn, and Zn partition
set Xn: messages in On are omitted; messages in Dn are not omitted, but delayed due to
retransmissions; messages in In are neither omitted nor delayed, but are incorrectly computed;
messages in Cn are neither omitted, delayed, nor incorrectly computed; and messages in Zn
may be omitted, delayed, or corrupted.

In general, Zn denotes the messages whose fate is undecided, or in other words, each
message Xy

n ∈ Zn may still be omitted with probability P (Xy
n omitted), delayed with

probability P (Xy
n delayed), and incorrectly computed with probability P (Xy

n corrupted).
Thus, if message Xy

n ∈ Xn is guaranteed to be omitted due to host crashes, then Xy
n ∈ On.

Similarly, if Xy
n is guaranteed to be transmitted on time and without being incorrectly

computed due to host corruptions, then Xy
n ∈ Cn.

Based on Definitions 1–3, we use the following recursive expression to compute the
probability that V yn outputs an incorrect value because the majority of its inputs is corrupted.

P

(
V yn output
incorrect

∣∣∣ 〈On,Dn, In,Cn,Zn〉

)
=

{
P (Majority incorrect

∣∣ In, Cn) Zn = ∅
Γ(〈On,Dn, In, Cn,Zn〉) Zn 6= ∅

(1)

where Γ(〈On,Dn, In, Cn,Zn〉) =(
P (Xs

n omitted)
× P (V yn output incorrect | 〈On ∪ {Xs

n},Dn, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× P (Xs

n delayed)
× P (V yn output incorrect | 〈On,Dn ∪ {Xs

n}, In, Cn,Zn \ {Xs
n}〉)

)
+
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(
(1− P (Xs

n omitted))× (1− P (Xs
n delayed))× P (Xs

n corrupted)
× P (V yn output incorrect | 〈On,Dn, In ∪ {Xs

n}, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× (1− P (Xs
n corrupted))

× P (V yn output incorrect | 〈On,Dn, In, Cn ∪ {Xs
n},Zn \ {Xs

n}〉)

)
and Xs

n denotes the message with the smallest ID in Zn (if Zn 6= ∅).

In each step of the recursion, a single message Xs
n ∈ Zn is either (i) omitted with

probability P (Xy
n omitted) and inserted into set On; (ii) not omitted but delayed with

probability (1 − P (Xy
n omitted)) · P (Xy

n delayed) and inserted into set Dn; (iii) transmit-
ted on time, i.e., neither omitted nor delayed, but is incorrectly computed with prob-
ability (1 − P (Xy

n omitted)) · (1 − P (Xy
n delayed)) · P (Xy

n corrupted) and inserted into
set In; or (iv) transmitted on time and without any corruptions with probability (1 −
P (Xy

n omitted)) · (1 − P (Xy
n delayed)) · (1 − P (Xy

n corrupted)), and thus inserted into set
Cn. The recursion terminates when all cases have been exhaustively enumerated, i.e., when
Zn = ∅ and On ∪ Dn ∪ In ∪ Cn = Xn.

Therefore, P (V yn output incorrect | 〈∅, ∅, ∅, ∅, Xn〉), as defined in Eq. 1, computes the
exact probability that controller voter instance V yn outputs an incorrect value.

However, Eq. 1 is not monotonically increasing in the omission and delay probabil-
ities, as required. Its monotonicity in P (Xs

n omitted) and P (Xs
n delayed) depends on

P (Xs
n corrupted). This is because the overall failure probability could be reduced by simply

delaying or omitting a message, if that message is likely to be incorrectly computed and thus
has the potential to tilt the voting outcome in favor of an incorrect quorum.

To remove this dependency on P (Xs
n corrupted), we replace Γ(〈On,Dn, In, Cn,Zn〉) in

Eq. 1 with a slightly pessimistic term Γπ(〈On,Dn, In, Cn,Zn〉) (notice the fifth term in the
definition of Γπ(〈On,Dn, In, Cn,Zn〉)), and define an upper bound (stated below) on the
probability that controller voter instance V yn outputs an incorrect value.5

Q

(
V yn output
incorrect

∣∣∣∣ 〈On,Dn, In,Cn,Zn〉

)
=

{
P (Majority incorrect

∣∣ In, Cn) Zn = ∅
Γπ(〈On,Dn, In, Cn,Zn〉) Zn 6= ∅

(2)

where Γπ(〈On,Dn, In, Cn,Zn〉) =

(
P (Xs

n omitted)
× Q(V yn output incorrect | 〈On ∪ {Xs

n},Dn, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× P (Xs

n delayed)
× Q(V yn output incorrect | 〈On,Dn ∪ {Xs

n}, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× P (Xs
n corrupted)

× Q(V yn output incorrect | 〈On,Dn, In ∪ {Xs
n}, Cn,Zn \ {Xs

n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× (1− P (Xs
n corrupted))

× Q(V yn output incorrect | 〈On,Dn, In, Cn ∪ {Xs
n},Zn \ {Xs

n}〉)

)
+ (

(1− P (Xs
n omitted))× P (Xs

n delayed)× P (Xs
n corrupted) +

P (Xs
n omitted)× P (Xs

n corrupted)

)
× Q(V yn output incorrect | 〈On,Dn, In ∪ {Xs

n}, Cn,Zn \ {Xs
n}〉)

 +


and Xs

n denotes the message with the smallest ID in Zn (if Zn 6= ∅).

Q(V yn output incorrect | 〈∅, ∅, ∅, ∅, Xn〉) thus yields an upper bound on the probability that
voter instance V yn outputs an incorrect value. For convenience, we let Q(V yn output incorrect)
= Q(V yn output incorrect | 〈∅, ∅, ∅, ∅, Xn〉) in the following.

5 See the appendix in the extended version of the paper [25] for a proof of monotonicity of Eq. 2.

ECRTS 2018



16:10 Quantifying the Resiliency of Fail-Operational Real-Time NCS

Step 2. Analyzing whether V y
n omits its output. We evaluate the probability that a

controller voter instance V yn omits its output because all its inputs were either delayed or
omitted, i.e., the special case in Algorithm 1 (Line 7). Once again, we state a recursive
expression to compute the probability, similar to the one used in Step 1.

P

(
V yn output
omitted

∣∣∣∣ 〈On,Dn, In,Cn,Zn

)
=


Λ
(
〈On,Dn, In, Cn,Zn〉

)
Zn 6= ∅

1 In ∪ Cn = ∅
0 In ∪ Cn 6= ∅

(3)

where Λ(〈On,Dn, In, Cn,Zn〉) =

(
P (Xs

n omitted)
× P (V yn output omitted | 〈On ∪ {Xs

n},Dn, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× P (Xs

n delayed)
× P (V yn output omitted | 〈On,Dn ∪ {Xs

n}, In, Cn,Zn \ {Xs
n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× P (Xs
n corrupted)

× P (V yn output omitted | 〈On,Dn, In ∪ {Xs
n}, Cn,Zn \ {Xs

n}〉)

)
+(

(1− P (Xs
n omitted))× (1− P (Xs

n delayed))× (1− P (Xs
n corrupted))

× P (V yn output omitted | 〈On,Dn, In, Cn ∪ {Xs
n},Zn \ {Xs

n}〉)

)


and Xs

n denotes the message with the smallest ID in Zn (if Zn 6= ∅).

P (V yn output omitted | 〈∅, ∅, ∅, ∅,Xn〉) thus yields the exact probability that voter in-
stance V yn omits its output. Note that Eq. 3 does not depend on the correctness of V yn ’s
inputs, but only on the timeliness of its inputs, unlike the simple majority procedure in
Eq. 1. Hence, Eq. 3’s monotonicity in P (Xs

n omitted) and P (Xs
n delayed) does not de-

pend on P (Xs
n corrupted), unlike Eq. 1. As a result, the use of a pessimistic term such as

Γπ(〈On,Dn, In, Cn,Zn〉) in Eq. 2 is not required in this case.
For convenience, we let P (V yn output omitted) = P (V yn output omitted | 〈∅, ∅, ∅, ∅,Xn〉).

Step 3: Analyzing the actuator voter instance V A
n . We bound the probability that V An

outputs an incorrect value, because the majority of its inputs is corrupted, or that it does
not choose anything, because all its inputs are either omitted or delayed.

Since all controller voter instances Vn operate on the same input values, if a correct voter
instance V yn outputs an incorrect value because of wrong inputs, it implies that all correct
voter instances in Vn output incorrect values. In such a scenario, the actuator voter V An is
guaranteed to get only incorrect control messages, since all of the control messages will be
prepared using the corrupted sensor values.

A similar property holds for the controller voter output omission. Proper deadline and
offset assignment guarantees that, in an error-free scenario, messages in Xn are transmitted
before the voter instances in Vn are activated. Thus, each voter instance can decide locally
whether a message was received past its deadline (in which case it is discarded, recall
Algorithm 1). As a result, if a controller voter instance V yn does not choose any value because
all its inputs are delayed or omitted, then all controller voter instances in Vn do not choose
any values, either. Thus, no output is generated by the controller task replicas and the
actuator voter omits its output, too, which results in a skipped actuation.

Let Q(V An output incorrect) denote an upper bound on the probability that voter instance
V An ’s outputs an incorrect value, conditioned on the assumption that the sensor inputs
of the controller voter instances Vn did not result in a corrupted output. Similarly, let
P (V An output omitted) denote the probability that voter instance V An ’s output is omitted,
conditioned on the assumption that the sensor inputs of the controller voter instances Vn did
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not result in an omitted output. Both Q(V An output incorrect) and P (V An output omitted)
can be derived using the recursive procedures discussed in Steps 1 and 2, respectively, by
replacing the set of voter inputs Xn with Un (recall from §2 that Un denotes the set of all
inputs to V An ). The case that the sensor inputs of the controller voter instances Vn result in
a corrupted or omitted output is accounted for in Step 5.

Step 4: Analyzing the final output Un. We first bound the probability that the actuation
during the nth control loop iteration is incorrect (Lemma 4), followed by the probability that it
is omitted (Lemma 5), and finally the joint probability of both events (Lemma 6). For brevity,
we let φ1 = Q(V yn output incorrect), φ2a = Q(V An output incorrect), φ2b = P (Un corrupted),
ω1 = P (V yn output omitted), ω2a = P (V An output omitted), and ω2b = P (Un omitted).

I Lemma 4. The probability that the actuation during the nth control loop iteration is
incorrect is at most φ1 (1 + φ2aφ2b) + φ2a + φ2b.

Proof. We consider two cases based on whether the sensor inputs to any voter instance V yn
results in corruption of the controller voter outputs (case 1) or not (case 2). The probability
that case 1 occurs is φcase1 = P (V yn output incorrect). For this case, since the sensor inputs
to voter instance V yn results in corruption of its output, voter instances in all controller tasks
choose an incorrect output. Thus, all control commands transmitted were incorrect, thus it
is guaranteed that the actuation during the nth control loop iteration is incorrect. Thus, the
conditional probability in this case is φcond1 = 1.

The probability that case 2 occurs is φcase2 = 1− φcase1 . For this case, the conditional
probability that the actuation during the nth control loop iteration is incorrect depends
on two sources: (a) voter instance V An ’s output can be incorrect, and (b) A’s host can
be affected by incorrect computation errors. The probability for case (a) is φcase2a =
P (V An output incorrect). The probability for case (b) is φcase2b = P (Un corrupted). Cases
(a) and (b) are independent: (a) occurs because inputs to V An were corrupted due to
incorrect computation errors on the controller tasks’ hosts, whereas (b) occurs due to
incorrect computation errors on the actuator task’s host. Thus, using theorem P (A1 ∪A2) =
P (A1)+P (A2)−P (A1) ·P (A2) for independent events A1 and A2, the conditional probability
for case 2 is φcond2 = φcase2a + φcase2b − φcase2a φcase2b.

By the law of total probability, the probability that the actuation during the nth control
loop iteration is incorrect is given by φcase1 φcond1 + φcase2 φcond2 . Upon expanding φcond1 ,
φcond2 , and φcase2 , and then rearranging the resulting expression w.r.t. φcase1 , we get

φcase1 φcond1 + φcase2 φcond2 =
(
φcase1 × (1− φcase2a − φcase2b + φcase2a · φcase2b)
+ φcase2a + φcase2b − φcase2a · φcase2b

)
.

Further, upon dropping any negative terms for monotonicity, and since φcase1 ≤ φ1 , φcase2a ≤
φ2a, and φcase2b = φ2b, we have the following upper bound:

φcase1 φcond1 + φcase2 φcond2 ≤ φ1 × (1 + φ2a · φ2b) + φ2a + φ2b. J

I Lemma 5. The probability that the actuation during the nth control loop iteration is delayed
or omitted is at most ω1 (1 + ω2aω2b) + ω2a + ω2b.

The proof of Lemma 5 is analogous to that of Lemma 4 and is thus omitted. In Lemma 6,
we compose the probabilities derived in Lemmas 4 and 5 to derive the probability that the
nth control loop iteration fails, i.e., that the actuation during this iteration is either incorrect
or delayed (or omitted). We do not assume that the probabilities derived in Lemmas 4 and 5
are independent, since it is possible that an omitted control message tilted the majority in
favor of the correct quorum, thereby reducing the probability that the actuation is incorrect.
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I Lemma 6. The probability that the nth control loop iteration fails is at most

Q
(
nth control loop iteration fails

)
=
(
φ1 (1 + φ2aφ2b) + φ2a + φ2b +
ω1 (1 + ω2aω2b) + ω2a + ω2b

)
. (4)

Proof. Follows from Lemmas 4 and 5. J

In summary, Steps 1–4 account for all direct and indirect dependencies between the
individual message error events and the final actuation of the controlled plant, and the
derived Q

(
nth control loop iteration fails

)
automates propagation of the failure probability

along this dependency tree. Although the analysis has exponential time complexity in the
number of sensor message streams |Xn| and the number of controller message streams |Un|
(due to the branching recursions in Eqs. 2 and 3), since the number of replicas of any task is
likely small, i.e., typically under ten, the analysis can be quickly performed.

Upper-bounding the failure probability. Since exact message error probabilities are impos-
sible to obtain, we instantiate the above analysis with upper bounds on the exact probabilities.
The analysis is monotonically increasing in the message error probabilities, and thus remains
sound despite the use of these upper bounds. We next define upper bounds on the message
error probabilities for any sensor message Xy

n. The bounds for any control message Uyn and
actuator task’s output message Un are analogously defined.

The probability that any sensor message Xy
n is delayed beyond its deadline is bounded

by P (Xy
n delayed) ≤ B(Xy) (as defined in §3). Let the host on which Xy

n’s sender task
is deployed be denoted Ha. Regarding message omission, suppose Xy

n is expected to be
scheduled for transmission at the earliest by time t and at the latest by time t+ J (where
J denotes the maximum release jitter of the message). Since Ra is the maximum time to
recover from a crash error on host Ha, if there is at least one crash error during the interval
[t−Ra, t+J), Xy

n’s arrival may be skipped. Thus, P (Xy
n omitted) ≤

∑
x>0 P(x, Ra+J, ρa).

Regarding message corruptions due to incorrect computation errors, recall from §2 that
the exposure interval for sensor message Xy

n is upper-bounded by E(Xy). Thus, Xy
n may

be corrupted if there is at least one incorrect computation error in this interval. Thus,
P (Xy

n corrupted) ≤
∑
x>0 P(x, E(Xy), κa).

The probability P (SimpleMajority incorrect | I, C) is upper-bounded by making the
worst-case assumption that incorrect inputs in I are identically faulty. Recall from Defi-
nition 2 that C and I denote the sets of correct and incorrect inputs, respectively, to the
SimpleMajority(I ∪ C) procedure in Algorithm 1. Assuming nc = |C|, ni = |I|, and that
s0 ∈ C ∪ I denotes the message in C ∪ I with the smallest ID, we obtain the following bound.

Q

(
SimpleMajority

incorrect

∣∣∣∣ I, C) =


1 (ni > nc) ∨ (ni = nc 6= 0 ∧ s0 ∈ I)
0 ni = nc 6= 0 ∧ s0 ∈ C
0 ni < nc ∨ ni = nc = 0

(5)

I Lemma 7. Eq. 5 upper-bounds the probability that procedure SimpleMajority(I ∪ C)’s
output in Algorithm 1 (Line 8) is incorrect.
Proof. If ni > nc, the largest-sized quorum belongs to incorrect messages, and Algorithm 1’s
output is incorrect with probability 1. If ni = nc 6= 0, there are two largest-sized quorums. If
message s0 with the smallest ID is incorrect (s0 ∈ I), Algorithm 1 chooses an incorrect output
with probability 1. Otherwise (s0 ∈ C), it chooses an incorrect output with probability 0. If
ni < nc, the largest-sized quorum belongs to correct messages, and Algorithm 1’s output is
correct, i.e., incorrect with probability 0. If ni = nc = 0, the voter has received no inputs, so
the probability of choosing an incorrect output is 0. J
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The IID property. Since each of the upper bounds defined above is independent of n, Eq. 4
can be iteratively unfolded until it consists only of terms that are independent of n. The
bound is thus identical for any control loop iteration. In addition, the upper bounds are
derived under worst-case assumptions with respect to interference from other messages on the
network [13, 16]; and failure of the nth control loop iteration, defined as a deviation from an
error-free execution of that iteration, is independent of whether past iterations encountered
any failures or not. Thus, the bounds obtained using Eq. 4 for any two iterations n1 and
n2 are mutually independent as well. As a result, when Q(nth control loop iteration fails),
which is monotonic in the error rates, is instantiated with the aforementioned upper bounds
on the error rates, it satisfies the IID property with respect to n.

FIT analysis. We use the probability of a failed control loop iteration, i.e., the result of
Lemma 6, to derive the NCS’s FIT rate. First, we derive a lower bound on the mean time to
failure (MTTF) of the control loop. Recall from §1 that a control failure occurs if the control
loop violates its (m, k) specification. We model this problem in the form of a well-studied
a-within-consecutive-b-out-of-c:F system model [32], and leverage existing results [54] (which
depend on the IID property of the iteration failure probability) on the reliability analysis of
this system model to safely lower-bound the MTTF. Given an MTTF lower bound MTTFLB
in hours, the FIT rate is computed as 109/MTTFLB [57]. The full derivation and evaluation
of the FIT analysis is available online [24].

5 Evaluation

The objective of the evaluation is threefold. First, in order to understand the accuracy
of our approach, we compare the proposed analysis with simulations (§5.1). Second, we
demonstrate the ability of our analysis to reveal and quantify non-obvious differences in the
reliability of workloads with different (m, k) requirements and subject to error rates (§5.2).
And third, we illustrate the utility of our analysis in a design-space exploration context by
comparing FITs of different replication schemes (§5.3).

To implement the analysis, we extended the SchedCAT [10] library to support our system
model for CAN-based NCSs, and implemented the proposed analysis on top. All computations
related to the analysis were carried out at a precision of 200 decimal places using the mpmath
Python library for arbitrary precision arithmetic [31]. As the underlying timing analysis of
the network, we used Broster et al.’s probabilistic response-time analysis for CAN [12]. We
also implemented a simulation of a CAN-based NCS that mimics the system model described
in §2 along with CAN’s network transmission protocol (see [44] for a detailed description).

We use an active suspension workload for our experiments since it plays an important role
in ensuring the stability of a vehicle, and since robustness of such control systems under faults
has been thoroughly investigated in the past. For example, Li in his thesis [36] discusses
related work in the context of actuator delays and faults, and proposes a fault-tolerant
controller design for guaranteeing asymptotic stability. We base our experiments on the
CAN-based active suspension workload studied by Anta and Tabuada [4], since it nicely
matches our SISO NCS model. However, while Anta and Tabuada assume hard constraints
and vary the control loop periodicity for improved bandwidth allocation, our objective is to
explore the reliability of the control loop when assigned different (m, k)-firm configurations
(synthetically chosen in this paper) and for different fault parameters.

The workload consists of four control loops (L1, L2, L3, and L4) corresponding to the
control of four wheels (W1, W2, W3, and W4) with magnetic suspensions (period 1.75ms),
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two hard real-time messages that report the current in the power line cable (period 4ms) and
the internal temperature of the coils (period 10ms). In addition, we assumed the presence
of a clock synchronization message with a period of 50ms [21] and a soft real-time message
responsible for logging with a period of 100ms. The logging messages carried payloads
of eight bytes each, the control loop messages carried payloads of three bytes each, and
the remaining messages carried one-byte payloads. Considering a bus rate of 1mbit/s, the
workload resulted in a total bus utilization of 40%. The clock synchronization message
stream had the highest priority, followed by the current and temperature monitoring message
streams, the control message streams, and last, the logging message stream.

The recovery time from a crash was set to Rh = 1 s for each hostHh ∈ H, and the exposure
interval of each message stream was set to ten times its period to reflect the possibility
of latent errors. The error rates and the (m, k) specifications used in each experiment are
mentioned in the corresponding graphs. All error rates in the following are reported as the
mean number of errors per ms. For context, Ferreira et al. [20] and Rufino et al. [51] reported
peak transmission error rates range from 10−4 in aggressive environments to 10−10 in lab
conditions, and as per Hazucha and Svensson [28], a 4 Mbit SRAM chip has a fault rate of
approximately 10−12. The error rates used in the following experiments have similar orders
of magnitudes. Since the actuator task is not replicated, its host was assumed to be heavily
shielded and thus assigned negligibly low crash and incorrect computation error rates.

5.1 Experiment 1: Simulation vs. Analysis
To assess the accuracy of the proposed analysis, we compared the analytically-derived iteration-
failure probability bound (§4) with an estimate of the mean iteration failure probability
obtained through simulation. The pessimism incurred by the FIT analysis was already
evaluated in prior work [24] and found to be acceptably small, and is not considered here.

Recall from §4 that: (1) the analysis first upper-bounds the control loop iteration failure
probability as a monotonic function of the exact message error probabilities; and (2) since it
is impossible to determine the exact message error probabilities, a safe upper bound on the
iteration failure probability is then obtained by instantiating the monotonic function from
(1) with upper bounds on the exact message error probabilities (derived using the Poisson
fault model in §3). To separately evaluate the pessimism incurred in steps (1) and (2), we
used two different simulator versions Sim-v1 and Sim-v2 in this experiment.

In the simple version (Sim-v1), for each sensor message (and similarly for each control
message), the message error probabilities were known to the simulator. Thus, each time any
message is activated, the simulator draws a number uniformly at random from the range [0, 1],
compares it with the respective message error probabilities to decide whether the message is
affected by that error type, and if the message is affected, simulates the corresponding error
scenario. Thus, Sim-v1 does not actually simulate Poisson processes, nor does it simulate
the CAN protocol, but it helps to isolate the pessimism incurred in step (1).

Sim-v2 is more complex than Sim-v1, and simulates the entire NCS along with the CAN
transmission protocol. Separate Poisson processes are used to generate the respective fault
events on each host and on the network. These fault events may manifest as message errors
if they coincide with the message’s lifetime, e.g., as an incorrect computation error if they
coincide with the message’s exposure interval and a retransmission error if they coincide
with the message’s network transmission interval. Sim-v2 evaluates the pessimism incurred
when upper-bounding the message error probabilities as a function of the raw transient fault
rates using the Poisson model, e.g., when using the Poisson-based CAN timing analysis [13]
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Figure 3 Comparing the iteration failure probability bound derived from the analysis with the
estimates derived from simulation versions Sim-v1 and Sim-v2. The vertical errors bars along with
the simulation estimates denote 99% confidence intervals. Insets (a), (b), (c), and (d) illustrate the
variation in the iteration failure probability when the number of sensor and controller task replicas
of L1 are increased from one to five, for different sets of error rates. Insets (e) and (f) illustrate the
impact of increasing CAN bus utilization and reboot times, respectively, for three replicas.

to determine bounds on deadline violation probabilities. It also evaluates whether this
pessimism significantly impacts the overall iteration failure probability bound.

Both Sim-v1 and Sim-v2 make the worst-case assumption that any two faulty message
copies are identical, as in the analysis.

We compared the analysis, Sim-v1, and Sim-v2 for four different sets of error rates and
replication factors. We used higher error rates for this experiment than can be realistically
expected (and much higher than those used in the later experiments) as otherwise the
simulations would be extremely time-consuming. To understand the effects of individual
error types, we first compared three scenarios in which respectively only one of the three
error types was assigned a significant rate, i.e., ρi = 10−4, κi = 10−4, and τ = 3, respec-
tively, whereas the others were assigned negligible values, i.e. ≈ 10−20. Additionally, we
evaluated a fourth scenario where all three error types have significant rates, i.e., ρi = 10−5,
κi = 10−5, and τ = 3× 10−1. Finally, to understand the effects of bus utilization and reboot
time on the analysis, we compared the analysis, Sim-v1, and Sim-v2 for different CAN bus
utilizations (by assuming increased message payload sizes) and for different reboot times
(100ms-2000ms), with a replication factor of three. The results are shown in Figs. 3a–3f.

Several trends can be clearly seen. First, in all evaluated scenarios, the analysis results
always track Sim-v1 extremely closely, which indicates that any pessimism introduced in
step (2) to ensure monotonicity of the model with respect to the error rates is negligible.
The results shown in Figs. 3a, 3b, and 3d further show that the analysis tracks Sim-v2 quite
closely, too, provided that the underlying CAN timing analysis is not the bottleneck (i.e., if
message delays are not the dominant source of failures). Specifically, we observe that the full
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analysis, including step (1), results in less than an order of magnitude difference between
the predicted and observed failure probabilities if crash or incorrect computation errors
are non-negligible. This confirms the overall accuracy of the approach for the intended use
cases: the proposed analysis closely tracks and soundly bounds the actual iteration failure
probabilities in the presence of crashes, retransmissions, and message corruptions.

However, as is evident from Figs. 3a, 3b, and 3d, there exist cases where the analysis
diverges significantly from Sim-v2. The common factor in these scenarios is that the
underlying CAN analysis is the dominating factor. Most prominently, this is visible in Fig. 3c,
which focuses exclusively on transmission faults: while the analytical failure bound is initially
large and then decreases gradually with increasing replication factor, the observed failure
probability is several orders of magnitude smaller than the analytical bound and actually
indicates the opposite trend – the analysis is not at all a good predictor of actual failure rates
in this scenario. Fig. 3e indicates that the gap between Sim-v2 and the analysis increases
with CAN bus utilization. And even in Fig. 3a, when the replication factor is increased to
five (resulting in high network contention), Sim-v2 begins to deviate from the analysis.

We attribute the pessimism caused by the timing analysis to the fact that not every
message instance experiences worst-case interference during transmission (i.e., not every
message is released at a critical instant), and consequently, the derived deadline violation
probability is extremely pessimistic for most message instances.

We conclude that the pessimism incurred by the current CAN timing analysis is significant,
however, this has a measurable effect only in cases where the network becomes the dominant
reliability bottleneck. As we will show with the next experiment, this is rather unlikely in the
case of realistic fault rates (in contrast to the extremely high rates assumed in this experiment
for the sake of simulation speed, which exaggerate the impact of the CAN analysis).

Finally, Fig. 3f indicates that the pessimism incurred by step (1) also increases with the
reboot time, which is also an exaggerated trend due to the extremely high rate of crash
failures in this scenario (i.e., ρi = 10−4 per millisecond, which means a reboot is expected
every 10 seconds on average). As a result, with increasing reboot times, it becomes more
likely that a crash fault affects an already-crashed host while it is rebooting – which “masks”
in part the effects of the prior crash, which our analysis does not exploit. For more realistic
crash rates, the effect is negligible, and even in this exaggerated setup, the analysis stays
within an order of magnitude of the observed failure rate (note the y-axis scale in Fig. 3f).

In summary, we conclude from the overall small gap to the Sim-v2 baseline that the
incurred pessimism is not significant in cases where the crash and incorrect computation error
rates are non-negligible, and where network congestion is not the sole dominating bottleneck.

5.2 Experiment 2: FIT for Different Parameters
To evaluate the impact of different replication factors, (m, k) requirements, and environmental
conditions, we next evaluated control loop L1’s FIT while varying the number of sensor and
controller task replicas. Figs. 4a–4d present the results.

In Fig. 4a, m and k were varied as follows: 1 ≤ m ≤ 5, and k = 5 or k = 2m; and in
Fig. 4b, m/k is 90%, 95%, 99%, or 100% (while minimizing m and k).

A hard specification, i.e., where m = k, yields a much higher FIT rate compared to all
other specifications with m < k, even the ones with m/k ≥ 0.9, which highlights the need
for a robustness-aware reliability analysis. For example, in Fig. 4b, if the desired reliability
threshold is 10 FIT, a hard real-time analysis (i.e., requiring a 100% iteration success rate)
requires the use of three replicas, whereas if a 90% success rate is sufficient, then our analysis
indicates that no replication is required. Fig. 4a shows that increasing both m and k while
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Figure 4 (a, b) Parameters m and k are varied. (c, d) Failure rates τ , κi, and ρi are varied.
(e, f) Replication factors of the different control loops are varied.

keeping m/k constant reduces the FIT rate, which shows that an asymptotic specification
that relies only on the ratio m/k (and where k can hence be chosen to be arbitrarily large)
can be easily supported by our analysis. Interestingly, different (m, k) specifications can
result in very similar FIT rates, e.g., the curves of (3, 5) and (2, 4) in Fig. 4a overlap.

Next, we varied the transmission error rate τ across 10−4, 10−6, 10−8, and 10−10. The
crash and incorrect computation error rates were set to ρi = κi = τ × 10−6. The results are
illustrated in Fig. 4c. As expected, the FIT rates decrease as the error rates are lowered. The
FIT rates also decrease with increasing replication, but this decrease is significant only up to
three replicas. Confirming earlier observations [23], active replication in real-time systems
results in diminishing returns or becomes counterproductive after some point, as it reduces
the slack available for fault-induced retransmissions and results in increased FIT rates. In
general, graphs such as these can help engineers identify the maximum reliability that they
can extract out of a system by increasing its replication factor, or conversely, the minimum
number of replicas needed to achieve a desired level of reliability.

To better understand the effects of individual error types, we computed FIT values for
three different scenarios. In each scenario, only one of the three error types was assigned a
significant rate, i.e., ρi = 10−12, κi = 10−12, and τ = 10−2, respectively, whereas the others
were assigned negligible values, i.e., 10−48. As apparent in Fig. 4d, the FIT rates are higher
for crash and incorrect computation errors, but very low for transmission errors, despite a
relatively high retransmission rate and even at high utilization (five replicas). This indicates
the relative importance of tolerating host errors, at least when hard timeliness is not required,
and also puts in perspective the pessimism observed in §5.1 – while the CAN analysis is the
single biggest source of pessimism, its overall contribution to the overall failure probability is
relatively minor for realistic retransmission rates.

Fig. 4d also shows that active replication helps tolerate incorrect computation errors only
if the number of replicas is odd (i.e., the curve for κi = 10−12 does not improve when going
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from 1 to 2, or 3 to 4, replicas), in contrast to crash errors, which become less relevant already
with the first added replica (until a point of diminishing returns is reached at 3 replicas).
This is expected, e.g., with two replicas, the voting algorithm is unable to distinguish between
a correct and an incorrect input, which is significant if the messages are frequently corrupted.

In summary, Experiment 2 demonstrates that the analysis allows engineers to quantify
and explore an NCS’s reliability under various environmental conditions (i.e., for varying
peak error rates) and for different levels of robustness (by varying (m, k) specifications).

5.3 Experiment 3: FIT for Different Replication Schemes
To demonstrate that the analysis is useful for identifying reliability bottlenecks with respect
to resource constraints, and for identifying opportunities to significantly increase a system’s
reliability at modest costs, we conducted a case study in which we analyzed different
replication schemes of the workload. Our objective was to identify a replication scheme with
a FIT rate under 10. That is, if such an active suspension workload is deployed in, say, 100
million cars, then as per Mancuso’s calculations (discussed in §1), no more than about one
vehicle per day will experience a failure in its active suspension NCS.

We considered the following error rates: τ = 10−4, ρi = 10−8, and κi = 10−12. To model
practical design constraints, we assumed that the rear wheels W1 and W2 were close to many
electromechanical parts, and assigned the hosts of the respective sensor tasks an order of
magnitude higher crash and incorrect computation error rates. The different configurations
are summarized in Table 1 and the their FIT bounds are illustrated in Figs. 4e and 4f.

Given a period of 1.75ms and an (m, k)-firm specification of (9, 10) for each control loop,
the bound on the total FIT rate without any replication is greater than 1010. Can we find a
replication scheme with a FIT rate under 10 and with as few replicas as possible?

To answer the question, we conducted an exhaustive search over all possible replication
schemes, varying the replication factor of each task from one to five, ignoring any scheme that
did not result in a schedulable system. While we do not report the results of this exhaustive
search due to space constraints, we observed that all feasible replication schemes can be
partitioned into a few groups, where each group corresponds to schemes that result in FIT
rate bounds of roughly the same order of magnitude. Thus, for each group, we report only
the scheme with the minimum number of replicas, as given by Configurations 1–4 in Table 1
and Fig. 4e (configurations 5-8 and the corresponding Fig. 4f are discussed below).

Unfortunately, none of the feasible replication schemes yields a FIT rate under 10.
Configuration 1 contains two copies of the sensor and controller tasks for L1 and L2, which
helps reduce their respective FIT rate to under 102, but the system’s total FIT rate still
remains high (≈ 108) owing to L3 and L4’s high individual FIT rates. Adding an extra
replica of the sensor task for L3 and L4 (Configuration 2) does not help reduce this difference,
but adding an extra copy of both sensor and controller tasks for L3 and L4 (Configuration 3)
reduces the total FIT to around 102. In fact, while L3 and L4 are the bottleneck in
Configuration 1 and Configuration 2, the bottleneck in Configuration 3 is L1 and L2. At this
point, it seems that adding another pair of replicas for the rear wheel sensors (Configuration 4)
to tolerate the relatively higher fault rates might be sufficient to bring down the total FIT
rate under 10. However, this does not yield any significant benefit, and since we have maxed
out the bus utilization, we cannot add any more replicas. This shows that with the current
set of parameters, we cannot guarantee a FIT of under 10, which would have been difficult
to realize without the proposed analysis.

Can we instead relax the parameters of the control loops at the cost of slightly affecting
their instantaneous quality-of-control [4]? For example, does (i) a shorter period of 1.25ms
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Table 1 Different replication schemes. Parameters xS and yC denote that x and y replicas were
provisioned for the sensor and the controller task of the respective wheel control loops.

Config. Wheel 1 Wheel 2 Wheel 3 Wheel 4 Period (m,k) Util.
1 2S, 2C 2S, 2C 1S, 1C 1S, 1C 1.75ms (9, 10) 59%
2 2S, 2C 2S, 2C 2S, 1C 2S, 1C 1.75ms (9, 10) 68%
3 2S, 2C 2S, 2C 2S, 2C 2S, 2C 1.75ms (9, 10) 77%
4 4S, 2C 4S, 2C 2S, 2C 2S, 2C 1.75ms (9, 10) 96%
5 2S, 1C 2S, 1C 1S, 1C 1S, 1C 1.25ms (3, 5) 68%
6 2S, 2C 2S, 2C 2S, 2C 2S, 2C 2.50ms (19, 20) 55%
7 3S, 2C 3S, 2C 2S, 2C 2S, 2C 2.50ms (19, 20) 61%
8 3S, 3C 3S, 3C 3S, 3C 3S, 3C 2.50ms (19, 20) 81%

with a relaxed (m, k)-firm specification of (3, 5), or alternatively, (ii) a relaxed period of
2.5ms with a stricter (m, k)-firm specification of (19, 20) allow designing the system with
the desired levels of reliability, i.e., with a FIT rate of 10 or less? To answer this question,
we once again exhaustively generated FIT bounds for all schedulable replication schemes
and report four representative cases here (see Configurations 5–8 in Table 1 and Fig. 4f).

For case (i), the best possible FIT bound (≈ 103) is obtained when two copies of the
L1 and L2 sensor tasks are provisioned (Configuration 5). While we could add a few more
replicas to Configuration 5 without saturating the bus, this does not help to reduce the FIT
bound any further. Case (ii), however, allows us to add many more replicas (Configurations 6–
8) because of the relaxed period, yielding much better FIT bounds despite the stricter
(m, k)-firm specification. In particular, Configuration 7 yields a total FIT bound under 1 and
Configuration 8 yields a total FIT bound of around 10−5. Thus, while case (i) is not a useful
alternative, case (ii) shows clear reliability benefits. In fact, the substantial FIT reduction
in case (ii) makes it a worthwhile tradeoff, despite the slightly degraded control quality [4],
whereas case (i) would give up control quality for no appreciable gain in reliability.

In general, this case study highlights the importance of quantifying system reliability for
design-space exploration and for identifying and strengthening the weakest link of a system
(e.g., in this study, L3 and L4 in Configurations 1–2, and L1 and L2 in Configuration 3), and
that the proposed analysis is an effective aid in this process.

6 Related Work

The (m, k)-firm model was first studied in the context of real-time streams and control
applications [27, 50]. Since then, many analyses and system designs have been proposed
for applications with (m, k)-firm specifications, mainly focussing on their temporal aspects
(e.g., see [11]). We use (m, k)-firm specifications to model control system robustness, where the
specification is a function of control loop iteration failures in both the time and value domains.

With regard to real-time networks, several reliability analyses have been proposed to date,
particularly of the CAN bus under EMI-induced retransmission errors, e.g., [59, 49, 45, 12, 16].
For example, Punnekkat et al. [49] and Broster et al. [12] proposed analyses to bound the
response time of CAN messages assuming a sporadic and a Poisson model of EMI, respectively,
and recently, Sebastian et al. [53] proposed the use of hidden Markov models in this context.
Our prior work [23] proposed an analysis to bound the probability of successful transmission
of a single logical message stream over CAN assuming host failures. In this work, like some
of the prior work, we use the Poisson model of EMI, but unlike all aforementioned analyses,
we evaluate the reliability of an end-to-end NCS system model.
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Related work in the NCS domain has focussed on evaluating the criteria for control stability
and performance, i.e., to what extent a control system can deviate from ideal operating
conditions without jeopardizing its functionality in the wake of various network failures,
e.g., [14, 38, 46, 30]. In contrast, we abstract the control specifics and solve the related, but
orthogonal problem of determining when and how frequently such robustness criteria are not
met, i.e., how likely it is that an inherently robust control system deviates from ideal operating
conditions to such a degree that its controlled plant may enter an unrecoverable state.

In related work targeting overall system reliability, Dugan and Van Buren [18] evaluated
the reliability of a specific system, namely a fly-by-wire systems with passive replication
(hot standbys), using Markov models to evaluate the state transition probabilities when a
system component fails, and fault trees to evaluate the reliability of each of the individual
states. It is possible to extend our analysis for systems with passive replication in a similar
manner. Sinha [55] proposed a reliability analysis of a fail-operational brake-by-wire system
networked with CAN and FlexRay buses. Sinha’s approach differs substantially from ours
since it is not defined at the granularity of individual messages. In contrast to these works
that focus on specific systems, our analysis targets broadcast-based NCSs in general.

An alternative approach for quantifying the reliability of NCSs faced with transient
component failures is the use of probabilistic model checkers such as PRISM [34] and
Storm [17]. This approach has been adopted in a number of works for reliability analysis
of simple networked systems [33, 19, 58, 2, 40, 35]. While such model-checking approaches
are very general, their weak spot is generally the question of scalability. In contrast, our
analysis is specific to the presented NCS model, but in return does not suffer from state-space
explosion issues. We plan to carry out a comparison of the two approaches in future work.

7 Conclusion

We have proposed the first analysis to safely bound the FIT rate of CAN-based SISO NCSs
that employ active replication to mitigate transient errors. Our analysis accounts for failures
in both the time and value domains, and exposes the inherent robustness of NCSs in the
form of (m, k)-firm constraints.

There is plenty of scope for future work, especially on more complex system models. To
tolerate failures in the actuator task, it could be replicated like the sensor and controller
tasks. Assuming that the physical actuator has some mechanism for redundancy suppression
(e.g., a hardware voter), such a system can be analyzed similarly to the presented analysis.

A fault-tolerant multi-input single-output (FT-MISO) control loop can be analyzed by
modifying Steps 1 and 2 in §4 to account for all replicas of the distinct sensor tasks in the sys-
tem. In contrast, a fault-tolerant multi-input multi-output system can be analyzed as multiple
independent FT-MISO systems, if an (m, k)-firm specification is given for each actuator.

For adaptive systems that allow dynamic reconfiguration of task replication factors based
on runtime monitoring of the error rates, our analysis can be used to evaluate the reliability
of different system modes. Similarly, in systems using passive replication or subject to
permanent failures, our analysis yields a FIT rate for each state in the system’s lifetime,
i.e., given a set of alive/dead replicas for that state, as in [18].
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1 Introduction

In the modern interconnected world, multiple devices share access to networking resources,
such as transmission bandwidth. For some of these devices — e.g., video surveillance cameras
connected to a monitoring station [21] — access to networking resources is often more critical
than access to computing resources [27–29]. Scheduling network access is therefore crucial
for the satisfaction of real-time requirements [1, 18, 25, 26], like the timely transmission of
surveillance videos from different cameras [22].
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A typical video surveillance system comprises of multiple cameras disseminated over an
area. These cameras continuously record a specific scene, it being an office space, a parking
lot, a road, or any other alternative. The recorded scenes are of course different from one
another, but their characteristics do not evolve significantly over time. A camera that is
installed outdoor in a parking lot will record similar scenes, mostly involving cars and people,
in different light conditions. At the same time, a camera that is pointing to a highway lane
will (most likely) record either an empty road, or the passage of cars. A common challenge
in the video surveillance industry is to tailor the entire infrastructure of the surveillance
system to achieve a certain level of quality, while keeping the cost as limited as possible.
Today, the video industry is mainly focused on using IP cameras, which stream videos that
are compressed using the H.264 standard. In order to tailor the infrastructure, one must
be able to anticipate how much data each camera in the system is expected to produce,
given its unique set of internal characteristics and settings — e.g., position, placement,
surrounding environment, etc. Such an estimate can be conservative, assuming that video
frames are not compressed. Currently, conservative techniques are adopted for practical
applications [1, 18, 22, 29]. However, conservativeness greatly increases infrastructure cost
and limits the network usage. Non-conservative estimates have the potential of reducing
the operational cost of video-surveillance systems. The challenge explored in this paper is
therefore the estimation of the amount of data produced by each camera in the surveillance
system.

We motivate our investigation by drawing a parallel between network scheduling for
video surveillance camera systems and CPU scheduling. Using the periodic task model, a set
T = {τ1, . . . , τp} of p tasks execute on a given hardware platform. Each τi = {Ei, Pi, Di}
is activated at precise time instants, determined by the period Pi, and must meet a given
deadline Di. For scheduling policies to be effective at ensuring the satisfaction of deadline
constraints in complex systems, schedulers use information about the Worst-Case Execution
Time (WCET) Ei of a task τi on the given hardware.

Similarly, a set C = {c1, . . . , cp} of p surveillance cameras transmits video streams to
a monitoring station. Each camera ci has a given frame rate fi, denoting the number of
frames that the camera captures in a second. The frame rate has a direct implication on
the transmission requirements of the camera, its inverse 1/fi being equal to the activation
period. For simplicity, we can assume that the deadline to transmit the currently captured
frame is equal to the period. Hence, in this setting, reusing well-known CPU scheduling
algorithms for network access depends on determining the Worst-Case Transmission Time
(WCTT) for video frames. From the theoretical perspective, the task set model is not as
simple as a set of periodic tasks, and can be described using a multiframe model [16], as
will be shown in the following. Also, video encoders are very complex and the frame size
depends heavily on the encoded scene. We therefore cannot compute precise upper bounds —
e.g., using static analysis or formal methods — that guarantee that the given size is never
exceeded. We therefore limit ourselves to the computation of quasi Worst-Case Transmission
Times (qWCTT). We have experimentally verified that our estimate of the upper bound is
valid in most cases and we have not encountered any case in which a frame exceeding our
estimated upper bound is not a result of software bugs.

This paper contributes to the state of the art of real-time systems (and real-time surveil-
lance video streaming) by:

Determining a combination of measurable parameters that can accurately predict the
expected H.264 frame sizes;
Computing reasonable estimates of upper bounds for the qWCTT of frames of different
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Table 1 Nomenclature: Acronyms.

Acronym Brief Explanation

GOP Group of Pictures: Set of one I-frame and multiple P- and B-frames. The
number also represents the amount of frames between two consecutive I-frames

HDR High Dynamic Range: Technique used to enhance video, that typically allows
frames to include more details and be sharper

IDR Instantaneous Decoding Refresh: I-frame that imposes a refresh, i.e., fol-
lowing frames must not need any information from frames prior to the IDR
I-frame

QP Quantization Parameter: Compression parameter defined in the H.264 stan-
dard, higher numbers indicate more information loss

SAO Size of Average Object: Reflects the expected distance to an object in an
image, determined by factors like the zoom level, field of view, and lens type, as
well as placement of the camera

WCET Worst-Case Execution Time: Upper bound on the time it takes for a task
to execute on a given hardware platform

WCTT Worst-Case Transmission Time: Indicates the maximum time it takes to
transmit a frame of the video using the available network bandwidth

qWCTT quasi Worst-Case Transmission Time: Indicates a non-exact upper bound
for the transmission time of a frame using the available network bandwidth

types over a network, casting the problem of scheduling switched Ethernet network access
into a multiframe non-preemptive scheduling problem;
Conducting a thorough experimental campaign to validate our findings and the given
models, providing parameters for different camera models and circumstances and allowing
researchers to use the derived models to verify real-time properties on the network
transmission time.

From the industrial perspective, the relevance of this paper is in enabling infrastructure
tailoring for a video surveillance system and selecting quantities like the total required
network bandwidth to guarantee a given video stream quality.

In the following, we review the H.264 standard and terminology in Section 2. Section 3
then discusses our models; enumerating the parameters, explaining how to measure them
when needed, and showing the equations used to determine the frame sizes. Section 4 presents
related efforts and Section 5 shows experimental results obtained with 6 different cameras in
a laboratory environment and 24 different real-life surveillance scenarios. We finally conclude
the paper in Section 6.

2 Background on Video Encoding

This section provides a brief overview of H.264, also called MPEG-4 part 10 AVC, which
currently is the de facto standard for video encoding and decoding1. Table 1 presents a recap
of the acronyms used in the paper.

1 The first official version H.264 version was approved in March 2003 [17,30] and has since evolved over
time. The standard now includes more features and modes, the latest version being approved in April
2017 [11]. The MPEG LA organization administers most of the licenses for patents applying to this
standard.

ECRTS 2018
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I1 B2 B3 P4 B5 B6 P7 B8 B9 I10

encoded referencing I-frame

encoded referencing P-frame
encoded referencing P-frame

Group of Pictures (GOP)

Figure 1 H.264 frame sequence: I-frames, P-frames, B-frames, and Group of Pictures.

H.264 is a video compression standard that defines how a video should be decoded.
The implementation of the encoding is left to the manufacturer’s discretion. The standard
describes a block based hybric codec, i.e., a video is decomposed in blocks of data for encoding.
To allow for video compression, H.264 uses motion-compensated encoding, i.e., it describes
a frame by referencing parts of other frames, thus capturing the motion of objects across
different frames [30]. A stream encoded with H.264 contains a sequence of frames, these
frames are not necessarily encoded following the display order or time they were captured.
Based on the frame encoding, it is possible to distinguish between three different types of
frames: Intra frames (I-frames), Predicted frames (P-frames), and Bi-directional predicted
frames (B-frames).

I-frames are (usually2) self-contained. An I-frame contains the full image and does not
need additional information in the decoding process. In terms of encoding, these are fast
and easier to encode, as all the information should be present in the resulting frame and
no extra buffer containing other frames are necessary. In terms of size, on the contrary,
these are the most space-consuming type of frames.
P-frames are encoded using information contained in the current frame and in previous
ones (up to the last self-contained I-frame). In the encoding of a P-frame, part of the image
can be encoded using references to previous ones with extra information to reproduce the
difference, instead of repeating the information. This allows the encoder to compress the
frame, reducing its size, at the cost of additional computation and buffering.
B-frames are encoded using both information from previous frames and information from
following frames. In a B-frame, the encoder can introduce references to frames that come
next, in display order, with respect to the current one being encoded. B-frames require
the most computational capacity for the encoding, but are usually the lightest in terms
of space consumption.

Figure 1 shows a sequence of 10 frames. The first nine frames in the example denote a
Group of Pictures (GOP). A GOP consists of an I-frame followed by a sequence of B-frames
and P-frames. The I-frame can be marked as an Instantaneous Decoding Refresh (IDR),
meaning that the following frames do not need information from frames prior to that one in
the sequence. If all the I-frames are marked as IDR points, the decoding of each GOP is
independent, otherwise it is not. The sequence of frame types is determined and fixed by a
high-level controller before the frame encoding starts.

2 If an I-frame is marked as an Instantaneous Decoding Refresh (IDR), its encoding is self-contained.
In most cases, this is true, but there are certain conditions in which this does not hold. Since we are
interested in estimating the upper bounds, we can safely assume that the upper bound of an I-frame is
self-contained.
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Figure 2 Basic coding structure of a H.264 frame.

For the sequence shown in Figure 1, the first and the last frame are encoded as I-frames.
The fourth and the seventh are encoded as P-frames. The remaining ones are encoded as
B-frames. The red arrows in the Figure indicate areas of the third and seventh frames
– respectively a B-frame and a P-frame – that are encoded as references to the previous
I-frame. The blue arrow shows an area of the third B-frame that is encoded as reference
to the following P-frame. The green arrow shows an area of the seventh P-frame that is
encoded as a reference to the previous P-frame. These arrows are only examples and do not
represent the full set of references of the encoding.

The given “areas” are composed of macroblocks. To be more precise, a generic H.264 frame
is split into multiple 16×16 squares of pixels, each of them being a macroblock. Macroblocks
are encoded/decoded separately from one another, and can be split into sub-blocks down to
a block size of 4×4 pixels. Macroblocks are also assigned a type from the set {I, P, B}. I
frames can contain only I-blocks. P-frames can contain both P-block and I-blocks. B-frames
can contain all types of blocks.

Figure 2 shows an overview of the encoding process. The input frame is divided into
macroblocks, each of them is passed to a Coder Control and to a Motion Estimation function.
The Motion Estimation function uses some previously encoded and buffered frames, the
number of them being determined by the Coder Control. These previous frames are used to
choose if the current block should be encoded:

as a new block, containing the full information (Intra-Frame Prediction, I-block),
by referring to a previously encoded block in the same frame, containing a positional
vector and the residual information (Intra-Frame Prediction, I-block),
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by referring to a block in a previous frame, containing a positional vector, the frame
reference, and the residual information (Motion Compensation, P-block), or
by referring to block in a previous or future frame, containing a positional vector, the
frame reference, and the residual information (Motion Compensation, B-block).

The Motion Estimation function determines the cost for the four choices and selects the most
appropriate one for the current macroblock.

The residual information is then Transformed, Scaled, and Quantized according to a
Quantization Parameter (QP) to reduce its size. This is the only step where there is
information loss and the higher the QP value, the higher the loss of information. The scaling,
inverse transform and the deblocking filter allow the encoder to reconstruct the output
frame and buffer it for future encoding. The entropy coding function uses lossless statistical
compression to produce the final output frame.

3 Frame Size Estimation

The aim of this paper is to estimate an upper bound for the size of encoded video frames, to aid
a potential external network manager towards a better scheduling of network capacity. The
largest improvement is given when information-rich frames (I-frames) are treated separately
from frames that can contain references to previous and future frames (P- and B-frames).
The small difference in size of P- and B-frames and the similarity in the methods used for
their construction justify the use of the same upper bound estimate for the two frame types.
We therefore devise two models: an Intra Frame model for I-frames and an Inter Frame
model for P- and B-frames. In Section 3.1 we explain what are the implication for network
access scheduling. In Section 3.2 we describe the model we use for the estimation of the
upper bound of the size of I-frames. In Section 3.3 we describe how to derive upper bounds
estimates for P-frames and B-frames. In the following, we use ∝ to indicate proportionality.

3.1 Scheduling implications
Assume it is possible to compute an upper bound estimate for the size of I-frames, denoted
with I∗ and an upper bound estimate for the size of P- and B-frames, denoted with P ∗.
Knowing the network speed N , e.g., 100Mbps, one can then translate these bounds into
knowledge of the WCTT for the two types of frames in the network. The GOP parameter
specifies how many “dynamic” (P- and B-) frames there are in between two “static” (I-)
frames.

In fact, when a set C = {c1, . . . , cp} of p surveillance cameras share the same network,
one can say that the i-th camera behaves according to the multiframe task model [16]. The
camera has a vector of execution times [E0, E1, . . . EGOP−1] and a single period and deadline,
equal to the inverse of the frame rate 1/fi. E0 is then equal to the upper bound estimate on
the transmission time of the I-frame I∗/N and all the other execution times [E1, . . . EGOP−1]
are equal to the upper bound estimates on the transmission time of the P-frame, i.e., P ∗/N .
This allows us to reuse theoretical results developed for the specific model [5, 10, 15, 32]
or for its generalizations [4, 7, 9, 14, 19, 24, 31]. In particular, once we have determined the
WCTTs for the different frame types, we can use the analysis on non-preemptive scheduling
of multiframe tasks [3,6] to determine schedulability properties for a set of video-surveillance
cameras communicating over switched Ethernet [2].

As video encoders are very complex software elements, we cannot really compute an
upper bound with static analysis or formal methods, that would guarantee that the size will
never exceed the one predicted. However, we can compute an approximation (estimate) of
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such upper bound, that is proven conservative in most cases. We believe that the very few
circumstances in which the size of frames exceeds the computed values are due to problems
and bugs of the execution of video-surveillance software. Therefore, we refer to I∗/N and
P ∗/N using the term quasi Worst-Case Transmission Times (qWCTT).

3.2 Intra Frame Model – I-frames
To determine the upper bound estimate I∗ for the size of I-frames, we isolate the principal
components that influence the amount of information included in the frame. Many acronyms
and symbols are defined in the rest of the section. Table 2 contains a summary of the terms
and constants that are needed for the estimation. The second column of the table contains
a letter explaining how the value is obtained: [C] for computed, [K] for known, [M] for
measured. Section 3.4 contains details on how to measure the [M]-parameters given a scene
and a camera model.

Three different components influence the size of the frame: (i) the resolution of the video
r, (ii) the compression level Ic, (iii) the actual camera and scene parameters Ia. There are
many alternatives to write an expression of how each of these factors influences the size of
the resulting frame. We decided to express Ic and Ia as scaling factors with respect to the
resolution of the frame, therefore writing I∗ as the product of the three terms,

I∗ = {r · Ic · Ia} . (1)

We now provide details for each of these terms separately.
Resolution r. The frame resolution r is the number of pixels in the frame. Its value
is equal to the product of the height h and the width w of the frame, r = w · h. The
resolution is linked to the number of macroblocks in the frame, therefore it influences its
size directly.
Compression level Ic. We denote with Ic the influence of the compression, I∗ ∝ Ic.
The compression level QP determines the loss of information in each macroblock. From
the H.264 standard, we infer that “an increase of 1 in QP corresponds to an increase of
the quantization step size by approximately 12%” [30] (an increase of 6 means an increase
of the quantization step size by a factor of 2).
In order to properly capture this relationship, we define a reference QP, denoted with
QPref, and express Ic as a function of the difference between the current value and the
reference value, ∆QP = QP−QPref. We select QPref = 28 as the baseline. This choice
is arbitrary, but represents a commonly used value, and does not affect the generality
of the approach. ∆QP is used to scale the frame sizes between two compression levels,
according to the relationship Ic = 2− ∆QP

6 . The expression in Equation (1) thus becomes

I∗ = {r · Ic · Ia} =
{
r · 2− ∆QP

6 · Ia
}
. (2)

Actual camera and scene parameters Ia. The last component that influences the
size of an I-frame includes a mix of camera and scene parameters, that we denote with Ia
for “actual”. Ia includes two different terms, Ia = Id +nc,`. The first one, Id, is related to
how many details the scene has and how well the camera is able to retain that information.
The second one, nc,` is related to the amount of noise generated in the camera. I∗ then
becomes

I∗ = {r · Ic · Ia} =
{
r · 2− ∆QP

6 · Ia
}

=
{
r · 2− ∆QP

6 · (Id + nc,`)
}
. (3)
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The detail influence Id, captures how the scene details and their perception at the camera
level affect the size of the frame. These can be separated into two categories: (i) scene-
dependent parameters (each camera reacts differently to them, but they are a property
of the scene), (ii) camera-dependent parameters. Parameters in the first category should
be measured, while parameters in the second category are either measured or known, e.g.,
available from the camera manufacturer.

In the first category, we include the scene illumination `, the scene detail level ds, and
the nature parameter n. In the second category, we include the camera detail level dc, the
enhancing factor e induced by features like High Dynamic Range (HDR), and the Size of the
Average Object (SAO) in the scene, which depends for example on the zoom level enforced
by the camera. The resulting Id is the product of all these factors. In fact, the factors are
known or measured as the relative difference that they produce in the I-frame size.

The frame size is greatly influenced by the illumination of the surroundings `, given that
more light allows the camera to capture the scene better while the absence of light hides
details in the image. The value of ` represents the ratio between the current illumination
level and a reference one, it is is measured in a controlled environment with predetermined
light levels. The result of the measurement is a value ` ∈ R+ | 0.25 ≤ ` ≤ 1. We consider
three different light levels: low, medium, and high. A low light scenario is a scene recorded
at night time, without any major light sources. A medium illumination scene is a night
time scenario, with some light source illuminating the scene. A high illumination scene is
a daylight scene, or a well lit indoor environment such as an office or a store. The high
illumination scenario used as basis for scaling the remaining ones. This means that each
camera at high light level has ` = 1, and values for middle and low level are scaling factor
that decrease the size of the frame. Given a camera model, these values can be determined
experimentally as described in Section 3.4.

Directly connected with the light factor, is the level of details in the scene ds. The scene
detail level represents how many details there are in a scene, and can be measured in the field
based on the different scenes. The resulting value is a number ds ∈ R+ | 500 ≤ ds ≤ 2000
expressed in millibits per pixel. Section 3.4 describes how to conduct field measurements.

We have experimentally found that the detail influence is also highly correlated to the
amount of nature in the scene—lawns, bushes, trees, and similar. These features increase the
difficulty of the encoding process, forcing the encoder to include more details in the resulting
image, especially in the presence of wind. A high level description of the scene (e.g., a road,
a garden, an office) allows one to provide an estimate of the amount of nature present in the
frames. The nature factor n is expressed as the portion of the scene that includes natural
elements, n ∈ R+ | 0 ≤ n ≤ 1. It can be easily measured on the field by taking a frame and
computing a rough estimate. Typically, indoor scenes have a nature factor n = 0, while
forest scenes have a nature factor n = 1. Common values for an outdoor parking lot are
between 0.5 and 1. The factor included in the computation is (1 + n), as the presence of
nature only adds complexity to the scene, compared to the baseline.

The camera properties should be taken into account when computing the detail influence.
The factor dc is used to scale the frame size taking into account factors like the sensor types,
lenses properties, etc. The constant value dc represents how well the camera captures the
details in the scene and how sharp they are. A measure of dc can be obtained with respect
to a standard camera. The camera detail level dc can be measured for a given camera as
detailed in Section 3.4.

The dynamic range of the scene, together with the camera’s ability of capturing it through
various image enhancement techniques such as HDR is modelled using the enhancement factor,
e. If one assumes that the different light ranges have the same bitrate characteristics and that
the camera auto-exposure will select the range filling the most pixels then e ∈ R+ | 1 ≤ e ≤ 2.
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Table 2 Terms and Constants used in the Estimation of the upper bound for the I-frame size.

Acronym Brief Range or
or Symbol Explanation Typical Values

dc [M] Camera detail level: camera specific
constant that reflects the camera ca-
pacity to retain scene details

dc ∈ R+ | 0.1 ≤ dc ≤ 10

ds [M] Scene detail level: indicates the total
amount of details in the scene

ds ∈ R+ | 500 ≤ ds ≤ 2000

e [M] Enhancement factor, indicates the ef-
fectiveness of High Dynamic Range
(HDR) or similar technology

e ∈ R+ | 1 ≤ e ≤ 1.35

h [K] Height of a frame in pixels ~200–4320
I∗ [C] Upper bound on the size of I-frames
Ia [C] Influence of camera and scene
Ic [C] Influence of the compression level QP
Id [C] Influence of the detail level
` [M] Scene illumination: it indicates the

luminance (amount of light) in the
scene, lower values indicate less light

` ∈ R+ | 0.25 ≤ ` ≤ 1

n [M] Nature factor: amount of nature
(trees, bushes, etc) in the scene

n ∈ R+ | 0 ≤ n ≤ 1

nc,` [M] Noise level: camera specific constant
indicating the amount of noise in the
camera, capturing characteristics like
sensor size and type; lower values in-
dicate indoor high light and higher
values low-light environments

nc,` ∈ R+ | 1 ≤ nc,` ≤ 500

QP [K] Quantization Parameter: reflects the
frame compression, higher numbers
indicate more information loss

QP ∈ N+ | 1 ≤ QP ≤ 51

QPref [K] Reference value used in measurements
for the Quantization Parameter QP

28

∆QP [K] QP−QPref

r [K] Frame resolution (number of pixels in
the frame)

~64000–35389440

SAO [M] Size of Average Object: reflects the
expected distance of an object in an
image, determined by factors like the
zoom level, field of view, and lens type,
and placement of the camera

SAO ∈ R+ | 0.5 ≤ SAO ≤ 1.5

w [K] Width of a frame in pixels ~320–8192

There are two corner cases, 1 and 2. e = 1 describes a scene with no additional dynamic
range to capture, such as an indoor scene or a foggy day scene. e = 2 describes a scene where
half the the frame is low dynamic and the other half is high dynamic, such as an indoor
scene with large windows. An average value for all real world scenarios lays in between the
two. The cameras that we tested had on average a 35% larger I-frame size when HDR was
enabled, inducing e ∈ R+ | 1 ≤ e ≤ 1.35.
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Figure 3 Measured I-frame sizes and calculated ones for different videos, varying QP.

Another important factor affecting the I-frame size via Id is the size of typical objects
and details in the scene, denoted with the term SAO. This parameter can be approximated
based on a combination of the distance to the scene, the zoom level and the field of view.
The effect of this is to reduce the I-frame size for scenes where the objects are large, since
the amount of details in a typical object usually does not scale with resolution. Section 3.4
provides an explanation of how to estimate this parameter.

The last parameter that we need to include is nc,`, which captures the influence of noise
generated in the camera (which in the end influences the size of the I-frame). We assume
that the camera is the only source of noise, but the parameter value varies with the amount
of light `. In fact, the amount of noise is in direct relation to the scene noise level. The
more light there is, the more sensor saturation, the more photons the sensor receives, and
the less noticeable the camera noise becomes. The noise level is heavily camera dependent,
and related to both hardware (optics and sensor) and software (exposure strategies, noise
filtering technologies, and image settings). Depending on the different light conditions `,
the noise level can be measured. Values are nc,` ∈ R+ | 1 ≤ nc,` ≤ 500. The procedure to
measure nc,` is described in Section 3.4.

Considering all the contributions to the upper bound estimate I∗, and substituting Id
and nc,` in Equation (3), we can finally write

I∗ = · · · =
{
r · 2− ∆QP

6 · (` · ds · (1 + n) · dc · e · SAO + nc,`)
}
, (4)

obtaining our desired expression for the I-frame size upper bound estimate.
Figure 3 illustrates the results that we obtain using Equation (4) with a default camera.

The figure represents data obtained with three different 1080p videos: v1, v2, and v3. The
videos were encoded using different QP values in a standard setup where we know lighting
conditions, detail level of both the scene and the camera, the size of objects, the enhancement
features and the noise. We record I-frame sizes during the encoding with varying QP
values, shown as dots in the Figure. The three lines represent the estimation obtained with
Equation (4), which upper bounds the dot in almost every case.

3.3 Inter Frame Model – P-frames and B-frames
The same reasoning we used to estimate the upper bound of I-frames can be used to estimate
the upper bound of the size of frames that can be encoded referencing macroblocks in
other frames. The three components that provide contributions to the size of a P- and
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Table 3 Additional Terms and Constants used in the upper bound for the P-frame size.

Acronym Brief Range or
or Symbol Explanation Typical Values

finf [K] Inferior frame rate limit 2
fsup [K] Superior frame rate limit 120
f ref

s [K] Reference frame rate used for the mo-
tion level measurement

30

fs [K] Number of frames per second in the
video (saturated)

fs ∈ [finf, fsup]; ~20–40

P ∗ [C] Upper bound on the size of P-frames
Pa [C] Influence of camera and scene
Pc [C] Influence of the compression level QP
Pd [C] Influence of the detail level
Pm [C] Influence of motion
µs [C] Motion level: fraction of the image

that is expected to be moving
µs ∈ R+ | 0 ≤ µs ≤ 1

µx [M] Motion encoder efficiency: reflects the
ability of efficiently encode moving
object, an encoder with a large motion
search window will have a low motion
cost

µx ∈ R+ | 0 ≤ µx ≤ 1

B-frame are the same. We use P-frames as our basis, as we expect the encoder to be slightly
more successful in encoding B-frames, therefore P-frames should represent an upper bound
estimates for B-frames too. Table 3 summarizes the additional terms that are defined in this
Section.

Using scaling factors with respect to the resolution (as we did for the I-frame), we define

P ∗ = {r · Pc · Pa} . (5)

The first element contributing to the size of the frame is the resolution of the image r. The
second and third components respectively are related to compression (Pc) and to the actual
parameters of the camera and scene (Pa).

P-frames are highly correlated with neighboring frames, due to the compression algorithm.
This makes the compression factor for P-frames larger than the one for I-frames and Pc < Ic.
The relation between the compression parameter (QP) and frame size that we used for
I-frames does not apply for P-frames due to this correlation. We introduce this by changing
the compression term (the base 5 experimentally achieved through curve fitting):

Pc = 5− ∆QP
6 . (6)

Pa can again be split into two parts, one part relative to the influence of the detail level
Pd and the noise nc,`, which is the same term used for the I-frames, Pa = Pd + nc,`. The
difference between Id and Pd, on the contrary, lies in the motion detected in the image.
The encoding algorithm tries to find motion, starting from the same macroblock position in
buffered images. We therefore encode Pd = Pm · Id, defining Pm as a multiplicative gain that
explains the effect of motion on the resulting frame size, refining Equation (5) into

P ∗ = {r · Pc · Pa} =
{
r · 5− ∆QP

6 · (Pm · Id + nc,`)
}
. (7)
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Figure 4 Measured P- and B-frame sizes and calculated ones for different videos, varying QP.

The influence of motion on the P-frame size Pm is affected by three factors: (i) the frame
rate fs, (ii) the scene motion level µs, and (iii) a camera motion cost, which reflects how
well the H.264 encoder captures encoding of moving objects, which we call motion encoder
efficiency µx.

Saturated frame rate fs: Pm is directly linked to the frame rate of the video: the
lower the frame rate, the more difference there will be between consecutive frames, the
larger the motion step will be and the more objects would have moved. This larger gap
will translates into higher chances of a motion miss by the encoder, and leads to higher
bandwidth consumption. At extremely high frequencies or extremely low frequencies, the
frame rate effect saturates. We therefore impose thresholds on the frame rate, forcing
it to belong to the interval [finf, fsup]. We have experimentally determined good values
for finf and fsup and respectively set them to 2 and 120. Using experimental data, we
have determined that Pm is proportional to the inverse square of the video frame rate
Pm ∝

√
fs

−1.

Scene motion level µs: The motion level of a scene is a measurable quantity at a
certain reference frame rate f refs , in our case equal to 30. This means that Pm ∝ µs ·

√
f refs .

The motion level determines the portion of the image that has moved from one frame to
the next. If accurately known, µs can be uniquely used and varied per frame. However,
since the primary use case of our upper bound is to estimate the required bandwidth
there is a strong added benefit in simplifying the analysis. For simplification, we only use
a generic set of possible motion levels: high, medium, and low. For high motion scenes,
µs is typically around 0.15. For medium motion scenes, its value is around 0.07, and for
low motion scenes 0.01.

Motion encoder efficiency µx: The motion encoder efficiency is a measurable quantity
per camera. The camera encoding capabilities are often dependent on the encoder
capabilities and efficiency. The motion encoder efficiency can be measured, as explained
in Section 3.4.
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Including all the terms specified above, one can write Pm = µs · µx ·
√
f refs /fs, and therefore,

substituting Pm in Equation (7), we obtain our upper bound estimate

P ∗ = · · · =
{
r · 5− ∆QP

6 ·
(
µs · µx ·

√
f refs /fs · Id + nc,`

)}
. (8)

Figure 4 illustrates the results that we obtain using Equation (8) with a default camera
with known parameters. The figure represents data obtained with three different 1080p
videos, v1, v2, and v3. The lines represent the estimation obtained with Equation (8), which
upper bounds the measured values, plotted with dots. We also report the measured size of
I-frames for the same videos with asterisks.

3.4 Model Calibration
As indicated above, different constants need to be measured for the various cameras and
scenes, in order to be able to extract meaningful numbers for Equations (4) and (8). These
characteristics can be grouped in different sets: (i) platform-related, (ii) camera-related, and
(iii) scene-related.

Platform-related characteristics. The motion encoder efficiency µx is related to
the platform (mostly the encoder) that is being used. In principle, the scene is also
important in this case, but a scene-independent approximation can be computed. For
each encoder generation and brand, the estimation of µx is done by isolating the encoder,
or an equivalent encoder model, with a series of predetermined video sequences, encoded
using varying compression.
Camera-related characteristics. The three characteristics that we need to measure
among the camera-related ones are dc, nc,`, and e. They are respectively: (dc) the ability
of the camera to retain scene details, (nc,`) the amount of noise that the camera generates
in specific light conditions, and (e) the enhancement factor added by technology like HDR.
These are constants that summarize many different physical elements like the sensor size
and quality.
Scene-related characteristics. Four scene-related characteristics should be measured:
the scene level detail ds, the amount of nature n, the Size of the Average Object in the
scene, SAO, and the amount of light `.

Measurements should be collected in a reproducible environment. In our case, we collected
the data in a dedicated laboratory. The main idea is to be able to reproduce certain scene
conditions. The environment must contain different levels of details. It should be possible
to shoot videos of areas with few or no details, as well as others with many details. It
should also be possible to control the amount of light, at least to reproduce three different
light conditions — high, medium, and low. Finally, there should be some reproducible
source of motion, e.g., a fan or a toy train. The position of the camera with respect to the
scene should be fixed in advance and should be reproducible as well. Figure 5 shows the
laboratory in which the tests to compute the above mentioned parameters were conducted.
Most measurements are conducted using a reference camera, and then for a new camera
some additional data is collected to compare the camera to the reference one.

To determine the parameters we follow a specific procedure, both for the reference camera
and for the model that we are trying to profile: (i) we record (repeatable) scenes with no
motion, motion, no details, details, in three different light levels; using the compression level
QPref; (ii) we extract the frame sizes for all the I-frames and P-frames in the video; and (iii)
we compute statistics for the videos, the average and maximum size of I- and P-frames.
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Figure 5 Image laboratory used to determine characteristics related to the camera and the scene.

For the camera detail level dc, we compute the average frame size (for all the set of
recorded videos), including both I-frames and P-frames and compare them with the values
obtained with the reference camera. Denoting with Savg the average frame size of the camera
under test and with Sref

avg the one of the reference camera, dc = Savg/S
ref
avg. We repeat the

same considering only low light conditions, and compute nc,` exactly using the same formula.
The value of e for a given camera is determined by computing the ratio of the average frame
sizes with HDR activated and deactivated.

To compute scene-level measurements, there are two alternatives. The first one is to
physically record videos from the location where the camera should be installed, and the
second one is to film similar scenes multiple times, and re-use the average measured parameter
for similar scene types. We denote with SI,avg the average size of I-frames measured in bits
for these measurements. We also want to collect videos done with the zoom level set to 50%
for this case. The average size of the I-frames for this zoom level is indicated with SI,50%,avg.

The reference camera is used to measure the scene detail level ds. Using the set of videos
recorded from similar or the same scene, ds is computed as the average size of I-frames
expressed in millibits per pixel, ds = SI,avg · 1000/r. The scene illumination ` is measured
by comparing the laboratory result with the scene results using the actual camera to be
used. From the laboratory results, we take videos recorded in high illumination scenes and
compute the average size of I-frames for these videos as SI,`=1,avg. We then compute ` as
` = SI,`=1,avg/SI,avg. The amount of nature n is computed by looking at how many pixels
in a frame are covered by nature.

Finally, we need to measure the size of the average object SAO. SAO is determined as
SI,50%,avg/SI,avg. The SAO levels can be, for simplicity, divided into three levels: large,
medium, and small. As a general rule of thumb, one can determine the SAO level for 1080p
video such as: (i) Large SAO: Objects taking up more than 1% of the pixels. An example
is a licence plate camera, commonly setup to capture mainly a car with sufficient margin
around it. (ii) Medium SAO: Objects are between 1% and 0.01% of the pixels. This is the
most common case. (iii) Small SAO: Objects are very small, less than 0.01% of the pixels.
This is sufficient only for scene awareness, i.e. knowing what happened in the scene, but does
not permit to identify objects.
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4 Related Work

The ultimate goal of this paper is to enable scheduling of network bandwidth in a video-
surveillance system, utilizing the available bandwidth as much as possible. This goal can be
achieved in many different ways.

One alternative to better utilize network resources is to reduce the amount of sent
information by exploiting better compression and enhanced encoding. A lot of research has
been devoted to adapting video stream quality to fit network channels [1,12,13,20,21,23]. For
example, adaptive strategies have been developed for MJPEG encoding [1,23], MPEG-2 [12],
and MPEG-4 [13]. Another alternative offer variable network channels [22, 29]. In this work,
we investigate estimation of the WCTT for frames over a network, which is related to these
works, but takes a different route. The aim of this paper is to devise a reasonably accurate
model to aid scheduling decisions, without introducing adaptation.

To the best of our knowledge, there are two known alternative methods to estimate the
frame size, and in turn the expected video bandwidth needed for the video transmission.
These methods are based on other encoding methods (respectively MJPEG and MPEG-4)
and aim to provide an estimate of the expected frame sizes. To the best of our knowledge,
we propose the first frame size estimation for MPEG-4 part 10 AVC (H.264).

We denote the MJPEG method with LIN. This method only considers the compression
parameter (QP for H.264 videos), and scales the frame size linearly according to such a
parameter that we name ql. Given a maximum size, identified with the term smax, the frame
size s(ql) is computed as s(ql) = ql · smax. The parameter ql indicates the quality of the
encoding, and relates, as indicated previously, to the Quantization Parameter QP. The scale
and logic used are different and in MJPEG ql ∈ [0.01, 1.0], 1 being the lowest compression
and 0.1 the highest, therefore ql = 1.01− (QP/51). In the case of a 1080p YCbCr color video
with 8 bits per pixel, smax = 1920 · 1080 · 8 · 3 = 49766400 [bits per frame]. This model
is used for example in [22, 23] to devise a control strategy to determine the quality to be
applied given a target bandwidth consumption.

We call the MPEG-4 model RQM. This model is used in [1] and described in [8]. It uses
curve fitting to determine the parameters of a rate-distortion curve, modeled with a Gaussian
random variable. Denoting with α a constant accounting for overhead bits, with β a constant
that varies with the resolution and amount of motion in the video, with qr the compression
level for MPEG-4 (qr ∈ [1, 31]), and with γ a constant that varies depending on the frame
type (paper [8] providing recommended bounds of γ ∈ [0.5, 1] for I-frames and γ ∈ [0.5, 1.5]
for P-frames), the size of the frame can be written as s(qr) = α+ β · 1/qrγ .

Notice that neither LIN, nor RQM compute proper upper bounds. They rather compute
estimates of the frame size. We therefore do not expect them to be suitable for upper
bounding the size of frames and obtaining WCTTs.

5 Experimental Results

In this section we present our experimental evaluation. We conducted many tests with
different cameras and in different scenarios to validate the upper bounds estimates computed
with our technique. We present two different categories of tests. Section 5.1 shows the results
obtained for a controlled environment and a repeatable video, comparing our estimation
strategy with state-of-the-art techniques. Section 5.2 presents a stress-test where we report
the aggregate results of a large experimental campaign.

To conduct a comprehensive evaluation, we used 6 different camera models, and deployed
them in 24 real-life (surveillance) scenarios. We refer to the different camera models using
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Table 4 Measured camera-related parameters.

Model dc nc,l (high `) nc,l (medium `) nc,l (low `) µx

A 1.00 2.50 02.75 022.2 0.450
B 0.98 0.25 02.75 230.0 0.450
C 1.23 0.35 01.10 102.0 0.450
D 0.54 0.75 04.05 005.6 0.400
E 0.81 1.25 12.00 035.0 0.400
F 1.03 2.25 02.7 119.0 0.425

letters from A to F. Camera A was used as reference camera for the parameter estimation
discussed in Section 3.4. To show the versatility of the model we use different parameters,
resolutions, etc. Also, Camera C is a thermal camera. Table 4 contains the camera-related
parameters that do not change with the scenario. Parameters that change with the scenario
will be discussed in the corresponding sections.

5.1 Frame-by-Frame Evaluation

We present here a first validation experiment done with our reference Camera A. We recorded
two videos of the same scene in our laboratory. The scene has a lot of details. The laboratory
allows us to move the camera with predictable motion and control the amount of movement
introduced in the image. Our aim is to show a frame-by-frame comparison between our
frame size estimation and the state-of-the-art techniques discussed in Section 4.

The two videos differ in the amount of motion that is introduced3. A toy, present in the
scene, allows us to introduce very limited but non-zero motion in both cases. In the first
video, we also sharply changed the position of the camera. This simulates a fast movement
for a video-surveillance camera. In the second video we kept the camera still, thus the only
movement comes from the toy. The first video is characterized by a large amount of motion
µs, while the second video has a very low µs.

The Camera A parameters for the two videos are: camera level detail dc = 1, enhancement
factor e = 1.35 (HDR), width w = 1920 [pixels], height h = 1080 [pixels], frame rate
fs = 25 [frames per second], QP = 29, noise level nc,` = 2.5, motion encoder efficiency
µx = 0.45, GOP = 64. The scene parameters are: no nature, n = 0, very good illumination,
` = 1, scene detail ds = 780 [millibit per pixel], and size of the average object SAO = 1.

Figure 6 shows the results we obtained for the two videos. Each plot represents 200
frames of one video, the top one being the high-motion one and the bottom one being the
low-motion case. The black bars represent the real frame sizes measured after the encoding.
The circles represent the estimated upper bound on the frame sizes provided by the algorithm
presented in this paper. The squares show the estimate produced by the LIN model, which
does not take into account the difference between I, P, and B frames. Finally, the squares
represent the estimate produced by the RQM model.

3 The two videos are available online: https://www.youtube.com/watch?v=614BbbhD56M (high-motion),
and https://www.youtube.com/watch?v=q4j3LlVrOls (low-motion). We have manipulated them to
also visually show the motion vectors detected for both the original videos: https://www.youtube.
com/watch?v=5YrxlGhadsY (high-motion), and https://www.youtube.com/watch?v=cfrO8CZQa-E (low-
motion)

https://www.youtube.com/watch?v=614BbbhD56M
https://www.youtube.com/watch?v=q4j3LlVrOls
https://www.youtube.com/watch?v=5YrxlGhadsY
https://www.youtube.com/watch?v=5YrxlGhadsY
https://www.youtube.com/watch?v=cfrO8CZQa-E
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Figure 6 Results of the comparison experiment with the high- and low-motion video.

For the RQM model, we used to the low-motion video to tune the parameters α, β, and γ,
as recommended in [1]. The tuning resulted in α = 0.55 and β = 1.7. As γ changes depending
on the frame type, we fit γI = 0.5 and γP = 4 separately. The RQM tuning resulted in average
errors on I-frames and P-frames respectively of 1.80% and 1.38%, which indicate very good
performance for the low motion video. The square points in the lower plot of Figure 6 are
therefore a posteriori estimations, and are clearly a very good fit for the video, despite the
presence of a few outliers. The RQM model neglects motion — i.e., the β parameter is not
sufficient to take motion into account. In fact, when the parameters determined with the
low-motion video are used for a priori estimating the size of the frames in the high-motion
video, the estimate frame size greatly underestimates the real value. The RQM approximation
is therefore not a good fit to upper bound the size of the frames.

On the contrary, the LIN model gives very conservative results for both the high- and
low-motion video, as its only parameter is a translation of the encoding quality QP. These
are too conservative to be used in any practical setting, since the estimates are roughly 30
times as large as the real values. The LIN approximation is therefore also not a good upper
bound for the size of the frames.

In the case of our upper bound estimates I∗ and P ∗, the circles represent for both
plots a priori estimates based on the parameters that we have selected and on a standard
computation of the motion level µs based on the percentage of pixels that differ from one
image to the next (which could be determined before the encoding step). Roughly, the
computed upper bound estimates are twice as large as the real values. While this could be
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Table 5 Parameters and results of the experiments conducted with 6 cameras in 24 real-life
surveillance scenarios.

fs QP GOP µs ` ds SAO br b̂r

1a (A) 25 28 62 ≈ 1% 1 780 1.00 1040 1275
1b (A) 25 28 62 ≈ 3% 1 780 1.00 1600 1806
1c (A) 25 28 62 ≈ 9% 1 780 1.00 3200 3398
1d (A) 12 32 32 ≈ 1% 1 780 1.00 544 600
1e (A) 12 32 32 ≈ 3% 1 780 1.00 720 723
1f (A) 12 32 32 ≈ 11% 1 780 1.00 1200 1219
2a (B) 15 28 62 ≈ {2, 3}% {1, 0.8} 810 1.00 794 991
2b (B) 15 28 62 ≈ 0% 1 710 0.45 78 208
2c (C) 15 28 62 ≈ 1% 0.8 820 0.45 243 287
2d (A) 15 28 62 ≈ {3, 5}% {1, 0.8} 990 0.45 669 765
2e (C) 15 28 62 ≈ 1% 1 810 1.00 513 761
2f (C) 15 28 62 ≈ 1% {1, 0.8} 1400 1.00 333 490
2g (C) 15 28 62 ≈ 5% 1 920 0.45 409 456
2h (F) 15 28 62 ≈ 0% 0.8 710 0.45 45 96
2i (A) 15 28 62 ≈ 0% {1, 0.5} 780 1.10 722 793
2j (F) 15 28 62 ≈ 4% 0.8 780 1.00 139 144

2k (A) 15 28 62 ≈ {4, 3}% {1, 0.5} 780 1.00 194 220
3a (A) 25 28 32 ≈ 21% 1 1200 1.00 10000 10051
3b (A) 25 28 32 ≈ 4% 1 1200 1.00 2800 3116
4a (C) 30 18 32 ≈ 6% 1 660 1.00 4215 4551
4b (C) 30 18 32 ≈ 2% 0.5 780 1.00 4966 5321

5 (D) 25 24 4 ≈ 2% 1 990 1.00 42500 46529
6 (E) 25 32 32 ≈ 4% 0.5 660 1.00 2837 2878
7 (A) 15 36 30 ≈ 20% 1 1050 1.00 620 681

reduced with a more conservative setup of parameters, we believe that there could be a risk
of cases in which the real frame size exceeds the upper bound estimate. In the full length
of the two videos (low-motion 751 frames, high-motion 376 frames) this never happens for
the low-motion case, and happens five times for the high-motion case. Inspecting these five
occurrences prompted us to suspect some capturing error or some encoding miss, possibly
due to the sharp movement.

5.2 Stress test

The purpose of the stress test is to verify that we obtain a reasonably good estimate of the
bandwidth consumed by cameras to transmit their frame streams to a base station. We
deployed our cameras in real-life surveillance scenarios and collected video streams for a time
up to five days. We then measured the expected bandwidth consumption using estimates of
the parameters (e.g., instead of computing precisely the motion level µs, we guessed it based
on the type of recorded scene). We compared the measure expected bandwidth with the real
bandwidth requirements — the videos’ bitrates. The characteristics of the tested scenarios
and the obtained results are summarized in Table 5, where br represents the bitrate, and b̂r
its estimate.
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The scene in scenarios 1a–1f is a highly illuminated parking lot, recorded with camera A
(e = 1.35, w = 1920, h = 1080). Scenarios 2a–2k are videos from the surveillance system of a
hotel complex. Camera B (w = 1920, h = 1080) in scenario 2a points at the reception entrance.
In scenario 2b, Camera B (w = 1920, h = 1080) captures the emergency exit. Camera C
(w = 1920, h = 1080) in scenario 2c films the control room. Camera A (w = 1920, h = 1080)
in 2d is directed to the parking entrance. Camera C (w = 1920, h = 1080) in 2e films the
reception. Camera C (w = 1280, h = 720) in 2f captures the corridor with shops. In 2g,
Camera C (w = 1280, h = 720) is directed towards the elevator. Camera F in 2h films
the staircase. Camera A (w = 1280, h = 720) in 2i streams a parking lot with nature
n = 0.5. Camera F (w = 704, h = 480) in 2j and Camera A (w = 704, h = 480) in 2k
film parking lots without nature. When the table contains two numbers for the motion
level µs and for the light `, this means that in the estimation the numbers are adjusted
for day and night capture. The set includes first the day and then the night value. The
value of e is set to 1 for 2b, 2c, 2e, 2f, 2h, 2j, which means HDR is turned off. In the other
scenarios, HDR is turned on with a contribution of e = 1.35. The two instances of Camera
A (e = 1.35, w = 1920, h = 1080) used in scenario 3a and 3b are placed in bridges on the
highway and monitor car traffic. The two instances of Camera C (e = 1) of scenario 4a and
4b monitor a perimeter of a parking lot and the parking lot itself. In 4a the resolution is
set to w = 640, h = 480, while in 4b the resolution is set to w = 384, h = 288. In scenario
5, Camera D (e = 1, w = 3840, h = 2160) streams a 4k video of the corner of a city street.
Camera E (e = 1.35, w = 3072, h = 1728) in scenario 6 is filming a shipyard loading dock.
Finally, in scenario 7 Camera A (e = 1.35, w = 1280, h = 720) is facing a city intersection.

Despite the high variety of scenes, the varying light conditions, the different cameras, and
the different motion levels, the estimated bitrate b̂r (upper bound estimate) is always higher
than the measured bitrate br. In most cases, the two values are very similar to one another
(see for example scenario 1e or 3a). In a few cases, like 2b and 2h, it is possible to see that
the upper bound overestimates the video bitrate (respectively 2.65 and 2.13 times as large).
However, we believe these numbers provide a reasonable upper bound estimate and permit
to correctly dimension the network bandwidth, aiding scheduling decisions.

6 Conclusion and Future Work

In this paper we presented a practical contribution on how to derive upper bounds estimates
for the size of video frames in a streaming system. We have discussed which characteristics
influence the bandwidth requirements of different cameras, derived models for the upper
bound estimates of the size of I-, P-, and B-frames. We have also systematized the knowledge
on the involved quantities and parameters. We divided such quantities into parameters that
are known, characteristics that are measurable, and values that are computable. We have
then taken the measurable characteristics and discussed how to conduct field tests to obtain
reasonable values for them, and — when possible — how to guess based on the environmental
conditions. Some parameters can be more or less easily estimated online (motion, light level,
noise level, scene type...). Estimating these parameters on the source could lead to a more
accurate and less pessimistic short term prediction. More frame by frame tests as well as
highly challenging scenarios will also be ran in order to enhance the model.

The derivation of reasonable upper bounds estimates for the WCTT allows us to precisely
formulate the problem of allocating network bandwidth to a set of cameras in a switched
Ethernet network environment and to reuse well-known scheduling results. We have shown
with a thorough experimental campaign that our estimated upper bounds are more reliable,
and closer to the real frame sizes than state-of-the-art estimation techniques.
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A proper estimation of the frame sizes is the key to properly dimension network infras-
tructures for real-time video-surveillance systems. Our results demonstrated that we can
dimension the network infrastructure, being able to accurately predict the bitrate consump-
tion of video streams. Our findings have a significant industrial relevance, as they permit to
reduce the infrastructure cost and allows us to reuse known scheduling results.
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Abstract
Industrial embedded platforms are often used to execute stream-processing applications, from
which the results are used by actuators. On average, these stream-processing applications should
at least meet the required throughput of their actuators, which poses a real-time requirement on
the system. To avoid extra costs and delays, it is desired to estimate during the early design phase
if a combination of an embedded platform and a stream-processing application can achieve the
required throughput. The throughput of a stream-processing application executed on different
embedded platforms can be predicted by modeling them using static or measurement based
analysis. However, during the early design phase it can be desirable to have a model that allows
a large set of embedded platforms to be considered, where embedded platforms with predictive
instructions are supported.

This paper presents a gray-box approach applicable during the early design phase to perform
cross-platform throughput predictions for industrial stream-processing applications and their em-
bedded platforms. A three step regression-based approach is presented, which uses an expression
based on Amdahl’s law for the discrete scaling of workload over cores and a large database with
CPU performance scores to perform cross-platform throughput predictions. Validation, with a
limited set of platforms, showed the usability of the approach. The pragmatic approach is based
on a prototype industrial digital image processing application for a printer from Océ, which is
also used to present the approach.
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1 Introduction

Industrial embedded platforms typically execute applications that process streams of in-
formation, from which the results are used by an actuator. Variations in processing time
can often be absorbed by a small buffer between the stream-processing application and the
actuator. However, the stream-processing application should at least achieve the required
throughput, such that outputs are available at a fixed rate for the actuator. This throughput
puts a real-time requirement on the system, where not meeting the deadline a few times
in a row results in an empty buffer towards the actuator. It is necessary to know if an
embedded platform in combination with a stream-processing application can achieve its
throughput and real-time requirements, as early as possible during the design time of such
industrial systems. Not achieving the required throughput either influences the specifications
of the industrial system, or causes quality loss for the industrial system. An alternative is to
over-dimension the embedded platform, which increases production costs and thereby harms
the competitiveness of the industrial system.

A trend is the constant increase of actuation speed and quality for stream-processing
applications, thereby requiring more complex processing and a higher throughput. Often
architecture or design patterns [4] are applied for stream-processing applications to manage
their complexity and achieve scalability. The Master Slave pattern is often applied for
scalability, as it allows data parallelism to be exploited by using more slave threads, as
suggested by Amdahl’s law [2]. The Pipes and Filter pattern manages complexity by
clustering parts of the stream-processing application as filters, thereby allowing function
parallelism to be exploited. Stream-processing applications using these patterns are applied
throughout industry. Applying these patterns, manages the complexity and enables scalability
of the throughput for these stream-processing applications. However, in addition to enabling
scalability, knowledge of the achievable throughput for target embedded platforms is desirable.
Having the knowledge of achievable performance on different embedded platforms during the
early design phase enables Design Space Exploration (DSE), such that a trade-off between
achievable throughput and costs can be made.

The throughput of a stream-processing application executed on different embedded
platforms can be predicted by modeling their combinations using static analysis or by using
measurement based analysis [26]. However, using static analysis for throughput prediction
requires worst-case execution times [26], which can be hard to derive for CPUs of embedded
platforms that use techniques like caching and predictive instructions. Measurement based
analysis requires measurements on considered target CPUs to predict execution times, such
that only physically available target CPUs and platforms can be considered. During the early
design phase a light-weight analytical model [17, 13] for the performance of the combined
application and embedded platform can be desirable, to be able to easily consider a large
set of combinations. Preferably gray-box application and platform knowledge is sufficient
to create such a model, where measurements on a reference platform suffice to predict the
throughput for a large set of target platforms.

This paper presents a gray-box approach applicable during the early design phase to
perform cross-platform throughput predictions for industrial stream-processing applications
and their embedded platforms. This pragmatic approach is based on the early design phase
of a real prototype Océ digital image processing application for a printer with real-time
requirements, which is also used as running example. For stream-processing applications
that implement the Master Slave design pattern, a three step regression-based approach
is presented. The prediction uses an extended expression based on Amdahl’s law that
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considers the discrete scaling of workload over slaves, which is to the best of our knowledge a
novel contribution. A database with CPU performance scores is used for the cross-platform
throughput prediction, enabling predictions for a very large set of CPUs and embedded
platforms. Suitability of the approach has been validated, by using measurements for a
limited set of platforms. Additionally, DSE can be performed to select a cost-effective
embedded platform that delivers the required throughput. For its performance, the digital
image processing application requires predictive instructions and caching, such that x86
instruction set based CPUs are considered.

The outline of this paper is as follows. In Section 2 related work is presented, followed by
an overview of the throughput-prediction approach in Section 3. Following, the single-core
execution time prediction is explained in Section 4. Section 5 presents the throughput
prediction for multiple cores in an embedded platform. Next, the cross-platform throughput
predictions are presented in Section 6 and validated in Section 7. A design space exploration
is presented in Section 8. Finally, conclusions and future-work are discussed in Section 9.

2 Related Work

Typically, a model is used to predict the throughput of a stream-processing application,
allowing predictions for different embedded platform configurations and input streams.
The model to perform throughput predictions should be chosen depending on the internal
application structure and the development phase. The gut feeling of the designer and back-
of-the-envelope models are straightforward and suitable during the early design phase, for
applications with a clear relation between the execution time and the features of their input
stream. A small amount of time is needed to create and use such models, however, their
accuracies vary. Detailed static analysis models, like data-flow models [25] or discrete-event
simulation [13, 12] can capture complex interactions and perform accurate predictions for
an application. However, creating such models requires a fair amount of time and worst-
case execution times, which make them less suitable for the early design phase in which
the application can change a lot. In [24], detailed modeling of applications in a real-time
system and their contention during the early design phase is discussed. This approach
focuses on detailed models of applications on a single platform and their contention to ease
integration, rather than to predict performance. The approach presented in [11] models
an application as a process network with worst-case and best-case execution times for the
tasks together with the scheduling policy for the considered platform. This requires detailed
knowledge of the underlying platform and does not allow predictions for other platforms
without constructing a dedicated model for it. An alternative to detailed behavioral models
are predictive models, as used in the SPORE approach proposed by [15], where code is
instrumented to measure the impact of features from the input stream on the execution
times of parts of the application, resulting in a simple expression to predict execution times.
This approach considers predictions for a single platform using an elaborate tool flow for
automated instrumentation and feature selection. In [20], a performance modeling approach
using probability distributions for the execution times of an application together with a
platform is presented. The modeled CPU is restricted to not contain caches or predictive
instructions, which are typically present in commercially available CPUs and beneficial for
the execution time of stream-processing applications. Furthermore, extensive overviews of
software performance-prediction approaches are provided by both [3] and [27], including
approaches based on queuing networks, stochastic process algebra, stochastic Petrinets,
and stochastic processes. However, the discussed approaches do not address models of the
underlying platform or CPUs that support predictive instructions and mostly contain detailed
application models that may be time consuming to create.
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Our approach performs regression for applications based on the Master Slave pattern [4]
executed by a reference embedded platform, followed by a DSE according to the Y-chart
approach [11] to identify cost-effective alternatives. The Y-chart approach describes multiple
iterations of evaluating a mapping of an application to a target platform, where based
on evaluation result the mapping, application, or platform is optimized. To predict the
throughput when using multiple cores in a CPU, regression is performed using an extension
of Amdahl’s law [2] that considers the discrete partitioning and distribution of objects from
the input stream. Other approaches predicted throughputs using a support vector machine,
a neural network, or machine learning, as presented in [1] and [10]. However, in [1] the focus
is on the time used in a production system rather than different embedded platforms and
in [10] database queries for a fixed platform are considered. Extensions of Amdahl’s law
are proposed for multi-core and cloud computing systems [28, 23, 8, 14]. However, these do
not consider the discrete scaling of workload over slave processes and cores. An approach
applying DSE for heterogeneous system performance is presented in [18], searching mappings
of tasks from an application among cores in CPUs, considering latency and energy for which
back-of-the-envelope predictive models are used. Where this approach considers mappings
for modeled platforms, our approach performs DSE for a large set of CPUs using information
obtained from a performance database. Our approach targets the early design phase using
gray-box knowledge of applications, such that an expression for throughput prediction is
easily obtained and updated during the development of the application.

3 Overview of Throughput-Prediction Approach

This section presents an overview of the piecewise linear expression for the throughput
prediction, which is obtained in three steps: a single-core, a multi-core, and a cross-platform
prediction step. Also, a description is given of the industrial stream-processing applications
that are targeted by this approach.

The proposed throughput-prediction approach predicts the throughput for Master Slave
based stream-processing applications, for different input streams and embedded platforms.
A piecewise linear expression is employed because of its simplicity and adaptability during
the early design phase. The approach uses a piecewise linear expression obtained by the
following three steps:
1. Single-core execution time prediction: translate the features of the input stream into a

single-core execution time. For the running example, translate the (input) compressed
bitmap size to an execution time on a single processing core. To derive this expression,
execution times of the test-set processed by the application at a single processing core
are used.

2. Multi-core throughput prediction: translate the single-core execution time to a multi-
core execution time, from which the throughput can be derived. For the digital image
processing application, this involves considering the distribution of data over the slaves.
To derive this expression, execution times of the digital image processing application for
the test-set while it is executed at one, two, and three processing cores are used.

3. Cross-platform translations: translate the performance to other platforms, using available
performance scores. For the digital image processing application the scores from the
PassMark [21] performance database are used.

Execution times can be obtained, by using an early version of an application mapped to a
reference platform. The preceding three steps will be detailed in sections 4, 5, and 6.
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Figure 1 Digital image processing application structure, applying the Master Slave pattern.

The throughput-prediction approach targets industrial stream-processing applications
that apply the Master Slave pattern [4]. Additionally, the MapReduce pattern [7] introduced
by Google has a structure similar to the Master Slave pattern, such that the predictions may
even be applicable for computing clusters. Typically, stream-processing applications have a
tight throughput requirement, which means that the output has to be available at a fixed
rate for an actuator. A small buffer is often used for the output of the stream-processing
application, such that the throughput requirement can be averaged over the number of
outputs in this buffer. The input stream consists of a stream of objects that the application
should process, where the objects can be sub-divided into parts that can be distributed
among the slaves for processing.

We use a prototype of an Océ digital image processing application for a printer as running
example. The application has a tight throughput requirement, because converted bitmaps
have to be available at a fixed rate to actuate the print head at the moment the paper passes
it. A buffer for a few bitmaps can be used towards the print head, because buffering too
many bitmaps hampers the ability to correct the print head for detected failures. This puts
a firm real-time requirement on the system [5, 25], where it is undesirable that a deadline is
missed but the system can continue afterward. Not meeting the deadline a few times in a
row results in an empty buffer towards the print head, such that one or possibly multiple
pages get lost in the case of duplex printing.

An overview of the digital image processing application is given in Figure 1. The input
stream consists of compressed Continuous Tone (CT) bitmaps that are partitioned into 8
bands each for this example, where each band covers a fixed number of lines from a bitmap.
The master has two function blocks, annotated with a white diagonal pattern. First, it
receives a CT input bitmap from which the bands are dispatched to slaves. Next, it assembles
the results of the slaves to return a Half Toned (HT) output bitmap. Note that a slave
may have to process multiple bands. Internally slaves apply the Pipes and Filter pattern
to process the bands, in such a way that typically the available cache memory is sufficient,
thereby avoiding interference due to memory access between slaves. At initialization time,
the number of slaves, which each will be assigned to a core or hyper-thread of a core, can
be configured. For a processor that supports hyper-threading, typically a physical core can
be seen as two logical cores, where the logical cores share the execution resources of the
physical core. For the performance required by the digital image processing application, x86
instruction set based CPUs are considered that typically support hyper-threading, predictive
instructions, and caching. To benchmark the application, a test-set with 455 bitmaps is used
that represents the typical load of the prototype Océ digital image processing application,
because the test-set includes simple, typical, and complex bitmaps.
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4 Single-Core Execution Time Predictions

A linear expression is used to predict the single-core execution time for stream-processing
applications. Typical features of the input stream, like size or resolution, relate to required
processing time. The relation between one or more features from an input stream and the
single-core execution time is captured using regression.

Gray-box knowledge of the stream-processing application can be used to identify features
from the input stream that determine, or have a strong influence on, the execution time.
Using a linear expression to relate these features and the execution time results in a simple
and easy adaptable model, thereby making it especially suitable during the early design
phase when many design decision still have to be made. For a good relation between the
identified features and the execution time, an application designed for predictable temporal
behavior is desirable, thus it should avoid large and abrupt changes in execution time for
minor feature changes.

For the digital image processing application, the compressed size of a bitmap and the
size of the bands in this compressed bitmap influence the execution time, as illustrated in
Figure 2. The execution times to process bands or compressed bitmaps have been measured
on a reference Intel Core i7 platform, where execution times were determined by timestamps
at the beginning and end of the processing. Both a) and b) plot the compressed size of the
CT bitmap versus the execution time of the slave to process all bands of the 455 bitmaps
from the test set using a single core or hyper-thread of a core of the embedded platform. In
a) and c) a single core is used, and in b) and d) a single hyper-thread of a core is used while
the other hyper-thread is performing computations for another slave process. In Figure 2
c) and d) the compressed size of a band is plotted versus the execution time of the slave
to process this band, where all bands of the 455 bitmaps have been processed. Note that
Figure 2 c) and d) have significantly more measurements than a) and b), which is because c)
and d) plot the relation for each of the 8 bands of the 455 bitmaps.

Figure 2 shows a relation between the execution time of the slaves of the digital image
processing application and the compressed size of the bitmaps or bands, because the execution
time increases when the bitmap or band size increases. The figure suggests a linear relation
between bitmap or band size and image processing time, because most points are located
around a line. This linear relation can be captured by Equation (1), with a coefficient c0
that is multiplied with the size of the band or bitmap b to which a constant c1 is added to
obtain the execution time for a single core Ts(b):

Ts(b) = c0b+ c1 (1)

Note that the equation relates one feature, b in this case, to the execution time, but more
features can be added if they are present and identified in the input stream.

Linear regression can be applied [19] using a tool box like StatsModels [22] to derive
values for c0 and c1. Using the so-called ordinary least squares for the errors of the linear
regression [19, 6], minimizes the sum of the squares of the differences between the measured
execution times and those predicted by Ts(b) via Equation (1). In Table 1, the coefficients
c0 and constants c1 found by applying regression for Equation (1) for the four considered
cases are given.

Additionally, Table 1 provides the R2 and P (F ) values for the quality of the regression.
The coefficient of determination, the R2 value, gives the explained variation divided over the
total variation for the regression. For the hyper-threading bitmap size regression, the R2

value of 0.94 indicates that 6 percent of the variation is unaccounted for. The four cases for
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a) Single core bitmap processing. b) Hyper-threaded bitmap processing.

c) Single core band processing. d) Hyper-threaded band processing.

Figure 2 Execution times of digital image processing application (µs) given the compressed
bitmap size or compressed band size, for a processor using a single core or a core with a single
hyper-thread.

Table 1 Regression results for execution time using a single or hyper-threaded core with bitmap
or band size.
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c0 0.0021 0.0037 0.0022 0.0039
c1 31,730 46,740 3883 5680
R2 0.93 0.94 0.93 0.94
P (F ) 0.0 0.0 0.0 0.0

which regression is performed leave only 6 or 7 percent of the variation in the execution time
unaccounted for, which is acceptable. The P (F ) values indicate whether the regression has
significant predictive capability; the P (F ) values should be smaller than the significance level
of 0.05. For all four regressions the P (F ) values are 0.0, indicating that the regression is
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a) Single core bitmap processing. b) Hyper-threaded bitmap processing.

c) Single core band processing. d) Hyper-threaded band processing.

Figure 3 Residuals for linear relation from Equation (1) using variables from Table 1.

significant. All coefficients c0 and constants c1 also had a P-value of 0.0, indicating that it is
very unlikely that they deviate significantly from the obtained values. Finally, residual plots
of the differences between the measured and predicted execution times are given in Figure 3.
These plots show no relation between the band or bitmap size and the difference between
the measured and predicted execution times, indicating that it is captured by the regression.

5 Multi-Core Throughput Predictions

A piecewise linear expression for the speedup of the single-core execution time, when using
multiple slaves that each process a part of the input stream, is discussed in this section.
An expression based on Amdahl’s law [2] is used that accounts for the workload of the
input stream which is typically partitioned into a number of discrete parts. The multi-
core throughput prediction is performed using the single-core execution times based on the
compressed bitmap and band size, where using the compressed bitmap size results in the
best predictions. The multi-core throughput prediction enables the different mappings of an
application and platform to be evaluated, as suggested by the Y-chart approach [11].

An expression that expresses the speedup by using multiple cores or hyper-threaded cores
to execute the slaves in the embedded platform, should express the scaling of the single-core
execution time. Amdahl [2] gave an expression, where the execution time scales continuously
with the number of additional cores that can be used. Amdahl’s law assumes that a workload
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can be continuously distributed over the number of parallel resources, slaves when the Master
Slave pattern is applied, which is given in the following equation:

Ta(s, b) = (1− p)Ts(b) + p(1
s

)Ts(b) (2)

where Ts(b) is the execution time when using a single core or hyper-thread for a workload b,
p is the fraction of the execution time that benefits from additional parallel resources, and s
is the number of parallel cores or hyper-threaded cores. Our observation is that typically an
input stream consists of objects that have a discrete partitioning in a number of elements
that each require processing. When considering continuous scaling to process a bitmap with
8 bands, going from 4 to 5, 6, or 7 slaves would speedup the throughput. However, due to
the discrete partitioning of a bitmap in 8 bands no speedup is realized, because at least one
of the slaves has to process two parts and thereby determines the throughput. Therefore, an
extension of Amdahl’s law is proposed that considers the discrete scaling of the workload.
The discrete scaling expression for Amdahl’s law Td(d, s, b) that returns an execution time,
considers that a workload b has d discrete parts that are to be distributed over s parallel
resources and is expressed as follows:

Td(d, s, b) = (1− p)Ts(b) + p(
dd

s e
d

)Ts(b) (3)

where the ceiling dd
s e determines the largest integer number of the discrete parts in the

input stream that a slave has to process and this is divided by d to determine the speed up
compared to the single-core execution time Ts(b).

By adding coefficients and a constant, regression can be performed using the discrete
scaling expression of Amdahl’s law to express the execution time dependent on the number
of used cores. For the digital image processing application, regression is performed using the
following expression:

Td(d, s, b) = Ts(b)c2 + (
dd

s e
d

)Ts(b)c3 + c4 (4)

where Ts(b) gives the single-core execution time for one bitmap from the input stream of the
digital image processing application which has d discrete parts, which are processed by s
slave processes that each run on their own core or hyper-thread of a core. Each part of the
expression has a coefficient, c2 and c3, and a constant c4 is added, which are determined by
performing regression. Note that compared to Equation (3), Equation (4) does not contain p
to represent the sequential fraction. The variable p is left out because regression captures it
in the coefficients c2, c3, and c4.

Regression for the digital image processing application is performed using Equation (4),
where for the single-core execution time prediction Ts(b) the regression results from Table 1
are used. The single-core execution time prediction for the bitmap size returns the total
execution time for all slaves and can directly be used for Ts(b). The single-core execution
time prediction for the band size returns the execution time of the slave for the specific
band, but the execution time for all bands of a bitmap is required. The average size of the n
bands of a bitmap can be used to compute the single-core execution time, by multiplying the
execution time for the average band size by n. However, the predicted execution times for
the average band sizes are nearly similar to the predicted execution times for the bitmap
sizes. Alternatively, the maximum band size can be used by taking the size of the largest
band of a bitmap, computing its execution time, and multiply it by n, to get a pessimistic
estimation of the execution time. Because execution times predicted for maximum band
sizes differ from execution times predicted for bitmaps sizes, below multi-core throughput
predictions based on both single-core execution time predictions will be compared.
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Table 2 Regression results for the execution time at one or more single or hyper-threaded cores,
using the bitmap or band size to determine Ts(b).

Si
ng

le
co
re

bi
tm

ap
pr
oc
es
si
ng

H
yp

er
-t
hr
ea
di
ng

bi
tm

ap
pr
oc
es
si
ng

Si
ng

le
co
re

ba
nd

pr
oc
es
si
ng

H
yp

er
-t
hr
ea
di
ng

ba
nd

pr
oc
es
si
ng

c2 0.0300 0.0151 -0.0369 -0.0146
c3 0.9903 0.9661 0.8500 0.8131
c4 1971.4 2795.0 5641.8 5420.5
R2 0.98 0.95 0.95 0.91
P (F ) 0.0 0.0 0.0 0.0

Table 2 gives the regression results for Equation (4) when using the single or hyper-
threaded core execution time predictions from Table 1. Regression was performed using
measured execution times for the test-set when using 1, 2, or 3 single or hyper-threaded
cores in the platform. The R2 indicates that between 2 and 9 percent of the variation
is unaccounted for, which indicates a good result. Note that when using the band size
for Equation (4), the obtained value for c2 is negative. Together, the value of c2 and the
constant c4 relate to the execution time of the master, where the rather small negative
c2 indicates that with increasing band sizes the execution time for the master decreases
slightly. Furthermore, the P (f) value being smaller than 0.05 indicates significant predictive
capability of the regression. Also for this regression, each coefficient and constant had a
P-value of 0.0, indicating that it is unlikely that the found values deviate significantly from
the actual values.

Figure 4 shows measured execution times given the compressed bitmap size or the
maximum band size on single or hyper-threaded cores, lines for the relations obtained for
Equation (4), and corresponding residual plots. In a), b), e), and f) the execution times
when using a single core or a hyper-threaded core are plotted versus the compressed bitmap
size or the maximum band size. Additionally, for 1, 2, and 3 cores the line resulting from
Equation (4) is plotted, where in e) and f) only two lines are visible because the lines for
4 and 6 hyper-threads overlap. The residual plots in c), d), g), and h) show that there is
no remaining relation between the compressed bitmap size or maximum band size and the
differences between the predicted and measured execution times. These plots show that
the line of the piecewise linear equation relates to the measurements and that there is no
remaining relation between the execution time and the compressed bitmap size.

We choose to use the bitmap size to predict the single-core execution time, because the
regressions in Table 1 and 2 that use the bitmap size show a slightly better R2, compared
to when the maximum band size is used. When using three cores with hyper-threading for
the digital image processing application for a bitmap with a size of 7,255,824, which has
1,316,317 as corresponding maximum band size, an execution time of 20.23 ms is measured,
where the bitmap size based expression predicts 21.68 ms and the band size based expression
21.74 ms. The slightly better R2 indicates that the regression results using the bitmap size
cover the variance in the execution times a little bit better compared to the regression using
the maximum band size. Additionally, obtaining the size of the bitmap is more convenient
compared to identifying the maximum size among the bands in a bitmap.
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a) Single core bitmap processing. b) Single core band processing.

c) Residuals single core bitmap processing. d) Residuals single core band processing.

e) Hyper-threaded bitmap processing. f) Hyper-threaded band processing.

g) Residuals hyper-threaded bitmap processing. h) Residuals hyper-threaded band processing.

Figure 4 Execution time for the digital image processing application using multiple cores given
the compressed bitmap or band size, including lines for Equation (4), and residual plots.
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The discrete scaling Amdahl’s law expression Td(d, s, b) returns an execution time in
µs, where for the digital image processing application a throughput value is desired. The
worst-case or average throughput can be determined by taking the reciprocal of the execution
time for a large or average bitmap which is multiplied by 1 · 106, resulting in the Bitmaps Per
Second (BPS) that can be processed by the digital image processing application. A buffer of
n output bitmaps is used at the output of the digital image processing application to average
the variations in execution times. Because the execution time is linearly related to the CT
bitmap size, the average size of the n CT bitmaps that can fill the buffer determines the
throughput. The average bitmap size of the test-set, being 7,255,824, is used as average size
for these n bitmaps that determine the throughput. Note that typically, one would choose a
bitmap size slightly larger than the average size that fits in the buffer, to include a margin
on the throughput.

6 Cross-Platform Throughput Predictions

Cross-platform throughput prediction can be achieved by combining the multi-core throughput
prediction with performance numbers of a reference and a target platform. During the early
design phase, such performance numbers allow predicting the potential throughput of an
application on considered platforms, before investing the effort of porting the application to
the platform.

To translate the throughput from a reference to a target platform, performance numbers
of both platforms are required to determine a ratio that represents the relative throughput
increase or decrease. It is preferable to base the performance number on a benchmark that
performs similar operations, also in similar proportions, as the considered stream-processing
application. Accurate performance numbers can be realized by creating a representative
benchmark to obtain performance numbers for both platforms. Creating such a benchmark
is costly. Furthermore, only physically available platforms can be used for such benchmarks,
which can limit the number of platforms that can be considered. An alternative is to use a
database with performance numbers, like FutureMark [9] or PassMark [21], which provide
performance numbers for server and desktop CPUs and mobile platforms. Note that a
drawback of such a database is that the performance numbers may be less accurate in
representing the performance of the considered application.

We use the PassMark CPU performance database [21], because it contains thousands of
x86 instruction set based platforms, thereby enabling DSE for all these candidate platforms.
For a broad range of CPUs, PassMark provides a Full CPU score that rates the overall
performance of the CPU and a Single-Threaded CPU score that rates the performance of
a single core or a core with hyper-threading. Users run benchmarks on their CPUs and
submit their scores to the PassMark database, such that the score for common CPUs is
typically averaged over thousands of benchmark results. The Full CPU score is based on a
benchmark with nine tests, where the Single-Threaded CPU score is based on three tests
from this benchmark. Both tests use weighting factors for the contribution of test results
to the score, where compression, floating point math, and string sorting tests have a high
impact. These tests are representative for the type of operations performed by the digital
image processing application. Note that the PassMark database for mobile platforms might
be interesting, however using these scores requires measured execution times for the digital
image processing application at a mobile platform from this database, which we currently do
not have.
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The Full and Single-Threaded CPU scores can be used for the relative performance of
platforms, such that a factor can be derived to translate the throughput to a target platform.
Using the available multi-core throughput regression results from a number of platforms
available in the PassMark database, we derive factors using the PassMark scores. Note that
with multi-core regression results for a sufficiently large number of CPUs in the database,
regression could be applied for an even better relation between the Passmark scores and the
multi-core throughput regression results.

The factor to perform a cross-platform translation for the single-core execution time (Cs),
between a reference and target platform is given by the following expression:

Cs(pr
s, p

t
s) =

pr
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sr
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/
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t

(5)

using pr
s = (sr

t , p
r
f ) and pt

s = (st
t, p

t
f ) to keep the parameter list concise, where pr

f and pt
f

represent the Full CPU scores and sr
t and st

t the number of cores, for the reference and the
target platform, respectively. Note that this equation uses the Full CPU scores rather than
the Single-Threaded CPU scores, since attempts using the Full CPU scores resulted in a
more accurate prediction, probably because the tests for the PassMark Full CPU score have
a better match with the digital image processing application.

The factor (Cm) to perform a cross-platform translation for the throughput, considering
the number of used cores, between a reference and target platform is given by the following
expression:
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using pr
m = (sr

t , p
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s) and pt

m = (st
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f , p

t
s) to keep the parameter list concise, where pr

f

and pt
f represent the Full CPU scores, pr

s and pt
s the Single-Threaded CPU scores, and sr

t

and st
t the number of cores in the reference and target platform, respectively. For both the

reference and target platform, this equation translates the Full CPU score to a score for
a single core and divides it over the Single-Threaded CPU score, which results in a factor
that indicates how much more multi-core performance is obtained compared to st times the
Single-Threaded performance.

The factor Cs to translate the execution time from a reference to a target platform is
included in the single-core execution time expressions from Equation (1) as follows:

Tsc(b, pr
s, p

t
s) = (c0b+ c1)Cs(pr

s, p
t
s) (7)

where pr
f and pt

f represent the Full CPU scores and sr
t and st

t the number of cores present,
of the reference and target platform, respectively.

The factor Cm to consider the scaling of the multi-core performance and Tsc for the
cross-platform single-core execution time is included in the multi-core throughput prediction
from Equation (4) as follows:

Tdc(d, s, b, pr
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)Tsc(b)c3Cm(pr
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t
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m, p
t
m) (8)

where Ts is replaced by Tsc and both c3 and c4, which relate to the amount of used parallelism,
are multiplied by Cm.
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Table 3 CPU information of benchmark platforms.

CPU Launch Cores(st) Speed (GHz) pf ps

Reference Core i7 2015 4/8 10,040 2,159
Core i7 4770 Q2’13 4/8 3.4 9,797 2,226
Core i7 860 Q3’09 4/8 2.8 5,060 1,226
Xeon E5 2650 Q1’12 8/16 2.0 10,262 1,310
Atom x5 Z8500 Q1’15 4/4 1.44 1,697 503
Atom C2758 Q3’13 8/8 2.4 3,162 512

7 Throughput Prediction Validation

The cross-platform throughput prediction is validated by comparing its predictions based
on a reference platform with multi-core predictions for a limited set of platforms, by using
execution times measured on these platforms. Differences between 13% and -8% are found,
which is acceptable for a light-weight execution time prediction that guides decisions during
the early design phase.

The CPUs of the platforms used for the validation are shown in Table 3, where the
first row shows the reference platform with an Intel Core i7 from the Skylake generation.
The names of the CPUs are given in the first column and the launch dates in the second
column. These names and launch dates indicate that high-end and low-end CPUs with
varying introduction years will be used for the validation. In the column cores, the number
of cores and hyper-threads is given. The Full CPU score (pf ) and Single-Threaded score (ps)
from the PassMark database, sampled in May 2017, are given in the last two columns. The
platforms contain a varying amount of memory with different speeds, however the slaves of
the digital image processing application can typically prefetch the data in the cache, such
that the memory has limited influence on the execution time.

To validate the accuracy of the cross-platform prediction, execution times have been
measured for the digital image processing application for the platforms from Table 3 and
regression has been performed for these measurements. For each of these platforms, for the
different number of cores or hyper-threads that could be used, the execution times for the 455
bitmaps from the test-set were measured. Regression was performed for the measurements to
obtain compact models from which results can be compared. Table 4, provides the coefficients
c0, c1, c2, c3, and c4 for the platforms from Table 3. The i7 and Xeon CPUs have two rows
with coefficients, one for using them with single-cores (sc) and one for using their cores with
hyper-threading (ht), as indicated in the second column. The last column gives the R2 value
of the regression for the multi-core expression from Equation (4), where the values above
0.92 indicate that good relations have been found.

Table 5 provides the relative differences between measured and predicted execution times
for the platforms, for the case where four cores or four hyper-threads are used. Differences
between results from the expressions are compared, rather than comparing the slopes and
constants for the expression. Comparing slopes and constants between the expression for the
multi-core and cross-platform throughput predictions showed to be impractical, because the
performed regressions for the five coefficients has multiple solutions. The differences shown in
Table 5 are given for three bitmap sizes, the average bitmap size in the test set, and a small
and a large bitmap size. The large and small bitmap size are determined by subtracting
and adding the standard deviation among the bitmap sizes in the test set, respectively.
Considering the differences given in Table 5, for the average size bitmap the multi-core and
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Table 4 Regression results for the digital image processing application executed at the platforms
from Table 3.

c0 c1 c2 c3 c4 R2

Reference sc 0.0021 31,730 0.0300 0.9903 1971 0.98
Core i7 ht 0.0037 46,740 0.0151 0.9661 2795 0.95
Core sc 0.0024 35,860 0.0147 1.0063 1919 0.97
i7 4770 ht 0.0040 56,160 0.0026 0.9995 3058 0.97
Core sc 0.0047 60,380 0.1059 0.9170 2140 0.96
i7 860 ht 0.0075 105,400 0.0020 0.9972 4285 0.96
Xeon sc 0.0041 66,310 0.0141 1.0075 3365 0.97
E5 2650 ht 0.0062 95,580 0.0419 0.9239 4542 0.97
Atom x5 Z8500 sc 0.0105 137,400 0.0035 1.0192 6085 0.97
Atom C2758 sc 0.0126 157,800 -0.0603 1.0868 5425 0.92

Table 5 Difference between measurement and prediction for the digital image processing applica-
tion, using 4 cores.

Bitmap small average large
size 1,450,148 7,255,824 13,061,500

Intel sc 0.01 0.00 0.00
i7 4770 ht -0.07 -0.05 -0.04
Intel sc -0.05 -0.08 -0.10
i7 860 ht -0.02 0.01 0.04
Intel sc 0.08 0.10 0.11
Xeon E5 2650 ht 0.03 0.09 0.13
Atom x5 z8500 sc -0.06 -0.07 -0.07
Atom C2758 sc 0.10 0.08 0.06

cross-platform predictions differ between 10% and -8% and for all bitmaps between 13%
and -8%. Similar numbers are obtained using a different number of cores and cores with
hyper-threads. These differences do not seem to relate to platform generations nor cores with
or without hyper-threads. Given that it is a light-weight model to guide decisions during the
early design phase, we find this error acceptable.

8 Design Space Exploration using Throughput Predictions

Cross-platform throughput predictions enable exploration of suitable and cost-effective
embedded platforms. First, cost-effective embedded platforms are compared, followed by an
exploration of effective combinations of platforms.

Often costs and performance are Key Performance Indicators (KPI) for stream-processing
applications. However, cost is a KPI that can be refined in platform purchase costs, develop-
ment costs, and life-cycle costs. Note that quantifying development and life-cycle costs is
difficult and that they are likely larger than the platform purchase cost. By quantifying the
throughput of a stream-processing application for a large list of embedded platforms, the most
cost-effective platform can be selected. However, among products, the development costs
can be reduced by selecting a cost-effective low, medium, and high-performance embedded
platform for which development and updates will be performed. For the life-cycle, it would
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be even nicer to be able to combine a number of these low, medium, and high-performance
embedded platforms to be able to scale the throughput by adding an embedded platform.
Note that this requires an adapted stream-processing application that distributes scaled
bands to the slaves at the different platforms and balances the load, as described by the
MapReduce pattern for computing cluster.

Combining the cross-platform throughput prediction with an extensive and detailed list
of Intel CPUs [16], a motherboard list, a list with memory modules, and a PassMark score
list, the design space can be explored for cost-effective embedded platforms and embedded
platform combinations. Intel provides extensive lists of their CPUs with details like sockets,
supported memory types, and the CPU name, which allows linking the CPU information
with compatible motherboards, memory modules, and PassMark scores, respectively. In
the performed exploration 44 motherboards were considered and 20 different DDR memory
modules, with varying technologies and sizes, for which the information and costs were
obtained via supplier information. The list of Intel contained 2504 CPUs from which 987 were
selected as relevant and the PassMark list contained 2253 entries with 1424 relevant entries.
Combining the Intel and PassMark list resulted in a list with detailed CPU information, with
amongst others the CPU costs, for 754 CPUs. The combination of this list with detailed
CPU information and the list with motherboards and memory modules, resulted in 1838
different combinations that each represent an embedded platform to be considered.

In the list with embedded platforms, for each platform the throughput was added for the
digital image processing application, the costs of the platform, and cost per one BPS. For
each embedded platform, the throughput in BPS was calculated, using Equation (7) and (8)
and the PassMark score. To calculate the throughput, a large bitmap of size 13,061,500 is
considered, similar to the large bitmap used in Table 5. Additionally, the number of cores
or cores with hyper-threads is decreased by one or two, respectively, to allow room for the
master and other processing.

Table 6 provides a low, medium and high-performance platform, obtained from the list
of embedded platforms that may be cost-effective alternatives to the reference platforms to
reduce development costs. To compare the costs, throughput in BPS, and costs per BPS
of these platforms, values relative to the Intel i7 Skylake reference platform are provided.
The first column indicates the performance category of the platform and the second column
gives the name of the CPU. The relative increase or decrease in cost, predicted throughput,
and costs per BPS, are given in the third, fourth, and fifth column, respectively. The final
two columns give the PassMark scores, pf and ps, of the CPU. The table illustrates that
the high-performance platform with an Intel i7 5820k CPU reduces the cost per BPS by a
fraction of 0.375, where the low-performance platform costs 1.44 times as much, compared
to the reference platform. Still, the low or medium-performance platforms are interesting as
cost-effective solutions for products in which the predicted throughput would be sufficient,
because their platform costs are a fraction compared to the high-performance platform costs.
Note that for industrial systems, the platform selection also considers the period for which
CPUs and components will be long-term available for production, which we did not include
here.

Figure 5 plots the relative costs to the reference platform, when using one or multiple
embedded platforms to realize a required throughput, suggesting that considering multiple
embedded platforms results in smoother increasing platform costs. Note that size and power
are not considered in this comparison, but that they are an important element in the trade-off
for the platform selection. Using the list with embedded platforms, for a throughput of
220 until 280 BPS, the most cost-effective solutions are searched to realize the required
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Table 6 CPUs for high, medium, and low-performance embedded platforms.

Performance CPU Relative Relative Relative pf ps

category name costs BPS costs/BPS
High i7 5820k 1.29 3.35 0.375 12,994 2,016
Medium i7 6700te 1.00 1.10 0.875 10,514 2,113
Low i5 6402p 0.80 0.55 1.44 7,750 2,081

Figure 5 Cost comparison for platform combinations and single platforms to realize a desired
BPS.

throughput, either by only using one embedded platform or by allowing multiple embedded
platforms to be used. Multiple platforms can be used that each process a part of a bitmap,
where partitioning the bitmap requires no additional effort and the effort for combining the
parts is negligible. In case multiple embedded platforms are considered, an exhaustive search
is performed that considers all platform combinations to realize the required throughput. The
speed of communicating bitmaps plays a role, if we compare solutions with one or multiple
embedded platforms. Therefore, network interfaces, with their speed and costs, were added
to the platforms and the search accounts for the achievable BPS via the network interface. It
is sufficient to consider the number of BPS that can be communicated via a network interface,
because communicating a next bitmap can overlap with processing the current. Performing
the searches requires less than 30 seconds on a single core, making it a scalable approach.
An interesting result is that for a throughput of 230 until 270 BPS, the usage of multiple
embedded platforms is more cost-effective and also results in a smoother increasing platform
cost.

Table 7 provides details for the selected platforms, which are plotted in Figure 5, with
costs relative to the costs of the Intel Core i7 reference platform. In the case of multiple
embedded platforms, cost-effective Core i7 and i5 CPUs can be combined until a throughput
of 270 BPS. In contrast, for a throughput of 230 BPS, a single embedded platform with two
powerful Xeon CPUs at one motherboard is selected. For a throughput between 230 and 270
BPS the platform cost for multiple embedded platforms is up to 17% lower compared to a
single platform. The cost difference is because cost-effective Core i7 and i5 CPUs can be
combined, rather than using two the same Xeon CPUs on a motherboard.
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Table 7 Comparison between multiple and single embedded platforms selected to realize a desired
number of BPS.

Multiple embedded platforms Single embedded platform
BPS CPUs BPS Costs CPU BPS Costs
220 Core i7 6800K 220 1.37 Core i7 6800K 220 1.37
230 Core i7 5820K 230 1.84 Xeon E5 2620 349 2.22

Atom x7 Z8700 Xeon E5 2620
Atom x5 Z8550

240 Core i7 6800K 241 1.95 Xeon E5 2620 349 2.22
Core i3 4170 Xeon E5 2620

250 Core i7 6800K 251 2.07 Xeon E5 2620 349 2.22
Core i5 4590 Xeon E5 2620

260 Core i7 5820K 272 2.14 Xeon E5 2620 349 2.22
Xeon E3 1231 v3 Xeon E5 2620

270 Core i7 5820K 272 2.14 Xeon E5 2620 349 2.22
Xeon E3 1231 v3 Xeon E5 2620

280 Xeon E5 2620 349 2.22 Xeon E5 2620 349 2.22
Xeon E5 2620 Xeon E5 2620

9 Conclusion

A throughput-prediction approach for stream-processing applications and their embedded
platforms has been presented in this paper. A real prototype industrial Océ digital image
processing application for a printer, for which this approach was applied, has been used to
demonstrate the approach. For this application, a design space exploration was performed,
where the piecewise linear expression for the throughput prediction made it possible to
consider combinations of more than 1800 different embedded platforms with the digital image
processing application to realize desired throughputs.

The throughput prediction targets stream-processing applications that apply the Master
Slave or possibly the MapReduce pattern, during the early design phase. A piecewise linear
expression is related to features in the input stream, such that only gray-box knowledge
of the application is necessary and updating the expression is easy. First, the execution
time when using a single core is related to one or more features from the input stream.
The second step scales the single-core execution time for the multiple cores or cores with
hyper-threading that are used in the embedded platform. This step uses an expression for
the discrete scaling of workload over slaves, which is a novel extension of Amdahl’s law. The
third step uses performance scores from a performance database to translate the performance
from a reference platform to target platforms. To demonstrate the applicability of the
approach, it was applied to an Océ digital image processing application for a printer. The
obtained piecewise linear expression allowed throughput predictions during the early design
phase and exploring a large set of embedded platforms. Validation of the cross-platform
throughput prediction, using the digital image processing application and a limited set of
platforms, showed an acceptable error and thereby its usability. An interesting extension of
this throughput-prediction approach would be the inclusion of key configuration parameters of
the application, like the output bitmap resolution, to enable predictions for next generations
of the system.
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Abstract
Integrated CPU-GPU architecture provides excellent acceleration capabilities for data parallel
applications on embedded platforms while meeting the size, weight and power (SWaP) require-
ments. However, sharing of main memory between CPU applications and GPU kernels can
severely affect the execution of GPU kernels and diminish the performance gain provided by
GPU. For example, in the NVIDIA Jetson TX2 platform, an integrated CPU-GPU architecture,
we observed that, in the worst case, the GPU kernels can suffer as much as 3X slowdown in
the presence of co-running memory intensive CPU applications. In this paper, we propose a
software mechanism, which we call BWLOCK++, to protect the performance of GPU kernels
from co-scheduled memory intensive CPU applications.
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1 Introduction

Graphic Processing Units (GPUs) are increasingly important computing resources to accel-
erate a growing number of data parallel applications. In recent years, GPUs have become
a key requirement for intelligent and timely processing of large amount of sensor data in
many robotics applications, such as UAVs and autonomous cars. These intelligent robots
are, however, resource constrained real-time embedded systems that not only require high
computing performance but also must satisfy a variety of constraints such as size, weight,
power consumption (SWaP) and cost. This makes integrated CPU-GPU architecture based
computing platforms, which integrate CPU and GPU in a single chip (e.g., NVIDIA’s Jet-
son [5] series), an appealing solution for such robotics applications because of their high
performance and efficiency [15].
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Figure 1 Performance of histo benchmark on NVIDIA Jetson TX2 with CPU corunners.

Designing critical real-time applications on integrated CPU-GPU architectures is, however,
challenging because contention in the shared hardware resources (e.g., memory bandwidth)
can significantly alter the applications’ timing characteristics. On an integrated CPU-GPU
platform, such as NVIDIA Jetson TX2, the CPU cores and the GPU typically share a single
main memory subsystem. This allows memory intensive batch jobs running on the CPU cores
to significantly interfere with the execution of critical real-time GPU tasks (e.g., vision based
navigation and obstacle detection) running in parallel due to memory bandwidth contention.

To illustrate the significance of the problem stated above, we evaluate the effect of
co-scheduling memory bandwidth intensive synthetic CPU benchmarks on the performance
of a GPU benchmark histo from the parboil benchmark suite [18] on a NVIDIA Jetson TX2
platform (See Table 3 in Section 6 for the detailed time breakdown of histo.) We first run
the benchmark alone and record the solo execution statistics. We then repeat the experiment
with an increasing number of interfering memory intensive benchmarks on the idle CPU
cores to observe their impact on the performance of the histo benchmark with and without
the BWLOCK++ framework, which we propose in this paper. Figure 1 shows the results
of this experiment. As can be seen in ‘Without BWLOCK++’, co-scheduling the memory
intensive tasks on the idle CPU cores significantly increase the execution time of the GPU
benchmark—a 3.3X increase—despite the fact that the benchmark has exclusive access to
the GPU. The main cause of the problem is that, in the Jetson TX2 platform, both CPU and
GPU share the main memory and its limited memory bandwidth becomes a bottleneck. As
a result, even though the platform offers plenty of raw performance, no real-time execution
guarantees can be provided if the system is left unmanaged. In ‘With BWLOCK++’, on
the other hand, performance of the GPU benchmark remains close to its solo performance
measured in isolation.

BWLOCK++ is a software framework designed to mitigate the memory bandwidth
contention problem in integrated CPU-GPU architectures. More specifically, we focus on
protecting real-time GPU tasks from the interference of non-critical but memory intensive
CPU tasks. BWLOCK++ dynamically instruments GPU tasks at run-time and inserts a
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memory bandwidth lock while critical GPU kernels are being executed on the GPU. When the
bandwidth lock is being held by the GPU, the OS throttles the maximum memory bandwidth
usage of the CPU cores to a certain threshold value to protect the GPU kernels. The threshold
value is determined on a per GPU task basis and may vary depending on the GPU task’s
sensitivity to memory bandwidth contention. Throttling CPU cores inevitably negatively
affects the CPU throughput. To minimize the throughput impact, we propose a throttling-
aware CPU scheduling algorithm, which we call Throttle Fair Scheduler (TFS). TFS favors
CPU intensive tasks over memory intensive ones while the GPU is busy executing critical
GPU tasks in order to minimize CPU throttling. Our evaluation shows that BWLOCK++
can provide good performance isolation for bandwidth intensive GPU tasks in the presence of
memory intensive CPU tasks. Furthermore, the TFS scheduling algorithm reduces the CPU
throughput loss by up to 75%. Finally, we show how BLWOCK++ can be incorporated in
existing CPU focused real-time analysis frameworks to analyze schedulability of real-time
tasksets, utilizing both CPU and GPU.

In this paper, we make the following contributions:
We apply memory bandwidth throttling to the problem of protecting GPU accelerated
real-time tasks from memory intensive CPU tasks on integrated CPU-GPU architecture
We identify a negative feedback effect of memory bandwidth throttling when used with
Linux’s CFS [13] scheduler. We propose a throttling-aware CPU scheduling algorithm,
which we call Throttle Fair Scheduler (TFS), to mitigate the problem
We introduce an automatic GPU kernel instrumentation method that eliminates the need
of manual programmer intervention to protect GPU kernels
We implement the proposed framework, which we call BWLOCK++, on a real platform,
NVIDIA Jetson TX2, and present detailed evaluation results showing practical benefits
of the framework 1

We show how the proposed framework can be integrated into the existing CPU focused
real-time schedulability analysis framework

The remainder of this paper is organized as follows. We present necessary background
and discuss related work in Section 2. In Section 3, we present our system model. Section 4
describes the design of our software framework BWLOCK++ and Section 5 presents imple-
mentation details. In Section 6, we describe our evaluation platform and present evaluation
results using a set of GPU benchmarks. In Section 7, we present the analysis framework of
BWLOCK++ based real-time systems. We discuss limitations of our approach in Section 8
and conclude in Section 9.

2 Background and Related Work

In this section, we provide necessary background and discuss related work.
GPU is an accelerator that executes some specific functions requested by a master CPU

program. Requests to the GPU can be made by using GPU programming frameworks such
as CUDA that offer standard APIs. A request to GPU is typically composed of the following
four predictable steps:

Copy data from host memory to device (GPU) memory
Launch the function—called kernel—to be executed on the GPU
Wait until the kernel finishes
Copy the output from device memory to host memory

1 The source code of BWLOCK++ is publicly available at: https://github.com/wali-ku/BWLOCK-GPU
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In the real-time systems community, GPUs have been studied actively in recent years
because of their potential benefits in accelerating demanding data-parallel real-time applica-
tions [11]. As observed in [1], GPU kernels typically demand high memory bandwidth to
achieve high data parallelism and, if the memory bandwidth required by GPU kernels is
not satisfied, it can result in significant performance reduction. For discrete GPUs, which
have dedicated graphic memories, researchers have focused on addressing interference among
the co-scheduled GPU tasks. Many real-time GPU resource management frameworks adopt
scheduling based approaches, similar to real-time CPU scheduling, that provide priority or
server based scheduling of GPU tasks [9, 10, 23]. Elliot et al., formulate the GPU resource
management problem as a synchronization problem and propose the GPUSync framework
that uses real-time locking protocols to deterministically handle GPU access requests [6].
Here, at any given time, one GPU kernel is allowed to utilize the GPU to eliminate the
unpredictability caused by co-scheduled GPU kernels. In [12], instead of using a real-time
locking protocol that suffers from busy-waiting at the CPU side, the authors propose a GPU
server mechanism which centralizes access to the GPU and allows CPU suspension (thus
eliminating the CPU busy-waiting). All the aforementioned frameworks primarily work for
discrete GPUs, which have dedicated graphic memory, but they do not guarantee predictable
GPU timing on integrated CPU-GPU based platforms because they do not consider the
problem of the shared memory bandwidth contention between the CPU and the GPU.

Integrated GPU based platforms have recently gained much attention in the real-time
systems community. In [15, 14], the authors investigate the suitability of NVIDIA’s Tegra X1
platform for use in safety critical real-time systems. With careful reverse engineering, they
have identified undisclosed scheduling policies that determine how concurrent GPU kernels
are scheduled on the platform. In SiGAMMA [4], the authors present a novel mechanism
to preempt the GPU kernel using a high-priority spinning GPU kernel to protect critical
real-time CPU applications. Their work is orthogonal to ours as it solves the problem of
protecting CPU tasks from GPU tasks while our work solves the problem of protecting GPU
tasks from CPU tasks.

More recently, GPUGuard [7] provides a mechanism for deterministically arbitrating
memory access requests between CPU cores and GPU in heterogeneous platforms containing
integrated GPUs. They extend the PREM execution model [16], in which a (CPU) task is
assumed to have distinct computation and memory phases, to model GPU tasks. GPUGuard
provides deterministic memory access by ensuring that only a single PREM memory phase is
in execution at any given time. Although GPUGuard can provide strong isolation guarantees,
the drawback is that it may require significant restructuring of application source code to be
compatible with the PREM model.

In this paper, we favor a less intrusive approach that requires minimal or no programmer
intervention. Our approach is rooted on a kernel-level memory bandwidth throttling mechan-
ism called MemGuard [22], which utilizes hardware performance counters of the CPU cores
to limit memory bandwidth consumption of the individual cores for a fixed time interval on
homogeneous multicore architectures. MemGuard enables a system designer—not individual
application programmers—to partition memory bandwidth among the CPU cores. However,
MemGuard suffers from system-level throughput reduction due to its coarse-grain bandwidth
control (per-core-level control). In contrast, [21] is also based on a memory bandwidth
throttling mechanism on homogeneous multicore architectures but it requires a certain degree
of programmer intervention for fine-grain bandwidth control by exposing a simple lock-like
API to applications. The API can enable/disable memory bandwidth control in a fine-grain
manner within the application source code. However, this means that the application source
code must be modified to leverage the feature.
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Our work is based on memory bandwidth throttling, but, unlike prior throttling based
approaches, focuses on the problem of protecting GPU accelerated real-time tasks on
integrated CPU-GPU architectures and does not require any programmer intervention.
Furthermore, we identify a previously unknown negative side-effect of memory bandwidth
throttling when used with Linux’s CFS scheduler, which we mitigate in this work. In
the following, we start by defining the system model, followed by detailed design and
implementation of the proposed system.

3 System Model

We assume an integrated CPU-GPU architecture based platform, which is composed of
multiple CPU cores and a single GPU that share the same main memory subsystem. We
consider independent periodic real-time tasks with implicit deadlines and best-effort tasks
with no real-time constraints.

Task Model. Each task is composed of at least one CPU execution segment and zero or
more GPU execution segments. We assume that GPU execution is non-preemptible and we
do not allow concurrent execution of multiple GPU kernels from different tasks at the same
time. Simultaneously co-scheduling multiple kernels is called GPU co-scheduling, which has
been avoided in most prior real-time GPU management approaches [10, 6, 12] as well due to
unpredictable timing. According to [15], preventing GPU co-scheduling does not necessarily
hurt—if not improve—performance because concurrent GPU kernels from different tasks are
executed in a time-multiplexed manner rather than being executed in parallel. 2

Executing GPU kernels typically requires copying considerable amount of data between
the CPU and the GPU. In particular, synchronous copy directly contributes to the task’s
execution time, while asynchronous copy can overlap with GPU kernel execution. Therefore,
we model synchronous copy separately. Lastly, we assume that a task is single-threaded with
respect to the CPU. Then, we can model a real-time task as follows:

τi := (Ci, G
m
i , G

e
i , Pi)

where:
Ci is the cumulative WCET of CPU-only execution
Gm

i is the cumulative WCET of synchronous memory operations between CPU and GPU
Ge

i is the cumulative WCET of GPU kernels
Pi is the period

Note that the goal of BWLOCK++ is to reduce Gm
i and Ge

i under the presence of memory
intensive best-effort tasks running in parallel.

CPU Scheduling. We assume a fixed-priority preemptive real-time scheduler is used for
scheduling real-time tasks and a virtual run-time based fair sharing scheduler (e.g., Linux’s
Completely Fair Scheduler [13]) is used for best-effort tasks. For simplicity, we assume a
single dedicated real-time core schedules all real-time tasks, while any core can schedule
best-effort tasks. Because GPU kernels are executed serially on the GPU, as mentioned

2 Another recent study [2] finds that GPU kernels can only be executed in parallel if they are submitted
from a single address space. In this work, we assume that a task has its own address space, whose GPU
kernels are thus time-multiplexed with other tasks’ GPU kernels at the GPU-level.
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Figure 2 BWLOCK++ System Architecture.

above, for GPU intensive real-time tasks, which we focus on in this work, this assumption
does not significantly under-utilize the system, especially when there are enough co-scheduled
best-effort tasks, while it enables simpler analysis.

4 BWLOCK++

In this section, we provide an overview of BWLOCK++ and discuss its design details.

4.1 Overview
BWLOCK++ is a software framework to protect GPU applications on integrated CPU-GPU
architecture based SoC platforms. We focus on the problem of the shared memory bandwidth
contention between GPU kernels and CPU tasks in integrated CPU-GPU architectures. More
specifically, we focus on protecting GPU execution intervals of real-time GPU tasks from the
interference of non-critical but memory intensive CPU tasks.

In BWLOCK++, we exploit the fact that each GPU kernel is executed via explicit
programming interfaces from a corresponding host CPU program. In other words, we can
precisely determine when the GPU kernel starts and finishes by instrumenting these functions.

To avoid memory bandwidth contention from the CPU, we notify the OS before a
GPU application launches a GPU kernel and after the kernel completes with the help of a
system call. Apart from acquiring the bandwidth lock on the task’s behalf, this system call
also implements the priority ceiling protocol [17] to prevent preemption of the GPU using
task. While the bandwidth lock is being held by the GPU task, the OS regulates memory
bandwidth consumption of the best-effort CPU cores to minimize bandwidth contention with
the GPU kernel. Concretely, each best-effort core is periodically given a certain amount of
memory bandwidth budget. If the core uses up its given budget for the specified period,
the (non-RT) CPU tasks running on that core are throttled. In this way, the GPU kernel
suffers minimal memory bandwidth interference from the best-effort CPU cores. However,
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throttling CPU cores can significantly lower the overall system throughput. To minimize the
negative throughput impact, we propose a new CPU scheduling algorithm, which we call the
Throttle Fair Scheduler (TFS), to minimize the duration of CPU throttling without affecting
memory bandwidth guarantees for real-time GPU applications.

Figure 2 shows the overall architecture of the BWLOCK++ framework on an integrated
CPU-GPU architecture (NVIDIA Jetson TX2 platform). BWLOCK++ is comprised of three
major components: (1) Dynamic run-time library for instrumenting GPU applications; (2)
the Throttle Fair Scheduler; (3) Per-core B/W regulator. Working together, they protect
real-time GPU kernels and minimize CPU throughput reduction. We will explain each
component in the following sub-sections.

4.2 Automatic Instrumentation of GPU Applications

To eliminate manual programming efforts, we automatically instrument the program binary
at the dynamic linker level. We exploit the fact that the execution of a GPU application
using a GPU runtime library such as NVIDIA CUDA typically follows fairly predictable
patterns. Figure 3 shows the execution timeline of a typical synchronous GPU application
that uses the CUDA API.

In order to protect the runtime performance of a GPU application from co-running memory
intensive CPU applications, we need to ensure that the GPU application automatically holds
the memory bandwidth lock while a GPU kernel is executing on the GPU or performing a
memory copy operation between CPU and GPU. Upon the completion of the execution of
the kernel or memory copy operation, the GPU application again shall automatically release
the bandwidth lock. This is done by instrumenting a small subset of CUDA API functions
that are invoked when launching or synchronizing with a GPU kernel or while performing a
memory copy operation. These APIs are documented in Table 1. More specifically, we write
wrappers for these functions of interest which request/release bandwidth lock on behalf of
the GPU application before calling the actual CUDA library functions. We compile these
functions as a shared library and use Linux’ LD_PRELOAD mechanism [8] to force the GPU
application to use those wrapper functions whenever the CUDA functions are called. In this
way, we automatically throttle CPU cores’ bandwidth usage whenever real-time GPU kernels
are being executed so that the GPU kernels’ memory bandwidth can be guaranteed.

ECRTS 2018
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Table 1 CUDA APIs instrumented via LD_PRELOAD for BWLOCK++.

API Action Description

cudaConfigureCall Update active streams Specify the launch parameters for
the CUDA kernel

cudaMemcpy Acquire BWLOCK++ (Before)
Release BWLOCK++ (After)

Perform synchronous memory copy
between CPU and GPU

cudaMemcpyAsync Acquire BWLOCK++ and up-
date active streams

Perform asynchronous memory
copy between CPU and GPU

cudaLaunch Acquire BWLOCK++ Launch a GPU kernel
cudaDeviceSynchronize Release BWLOCK++ and clear

active streams
Block the calling CPU thread until
all the previously requested tasks
in a specific GPU device have com-
pleted

cudaThreadSynchronize Release BWLOCK++ and clear
active streams

Deprecated version of cudaDevice-
Synchronize

cudaStreamSynchronize Update active streams and re-
lease BWLOCK++ if there are
no active streams

Block the calling CPU thread until
all the previously requested tasks
in a specific CUDA stream have
completed

A complication to the automatic GPU kernel instrumentation arises when the application
uses CUDA streams to launch multiple GPU kernels in succession in multiple streams and
then waits for those kernels to complete. In this case, the bandwidth lock acquired by a GPU
kernel launched in one stream can potentially be released when synchronizing with a kernel
launched in another stream. In our framework, this situation is averted by keeping track of
active streams and associating bandwidth lock with individual streams instead of the entire
application whenever stream based CUDA APIs are invoked. A stream is considered active
if:

A kernel or memory copy operation is launched in that stream
The stream has not been explicitly (using cudaStreamSynchronize) or implicitly (using
cudaDeviceSynchronize or cudaThreadSynchronize) synchronized with

Our framework ensures that a GPU application continues holding the bandwidth lock as
long as it has one or more active streams.

The obvious drawback of throttling CPU cores is that the CPU throughput may be
affected especially if some of the tasks on the CPU cores are memory bandwidth intensive.
In the following sub-section, we discuss the impact of throttling on CPU throughput and
present a new CPU scheduling algorithm that minimizes throughput reduction.

4.3 Throttle Fair CPU Scheduler
As described earlier in this section, BWLOCK++ uses a throttling based approach to enforce
memory bandwidth limit of CPU cores at a regular interval. Although effective in protecting
critical GPU applications in the presence of memory intensive CPU applications, this approach
runs into the risk of severely under-utilizing the system’s CPU capacity; especially in cases
when there are multiple best-effort CPU applications with different memory characteristics
running on the best-effort CPU cores. In the throttling based design, once a core exceeds its
memory bandwidth quota and gets throttled, that core cannot be used for the remainder of
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the period. Let us denote the regulation period as T (i.e., T = 1ms) and the time instant
at which an offending core exceeds its bandwidth budget as t. Then the wasted time due
to throttling can be described as δ = T − t and the smaller the value of t (i.e., throttled
earlier in the period) the larger the penalty to the overall system throughput. The value
of t depends on the rate at which a core consumes its allocated memory budget and that
in turn depends on the memory characteristics of the application executing on that core.
To maximize the overall system throughput, the value of δ should be minimized—that is if
throttling never occurs, t ≥ T ⇒ δ = 0, or occurs late in the period, throughput reduction
will be less.

4.3.1 Negative Feedback Effect of Throttling on CFS
One way to reduce CPU throttling is to schedule less memory bandwidth demanding tasks
on the best-effort CPU cores while the GPU is holding the bandwidth lock. Assuming that
each best-effort CPU core has a mix of memory bandwidth intensive and CPU intensive
tasks, then scheduling the CPU intensive tasks while the GPU is holding the lock would
reduce CPU throttling or at least delay the instant at which throttling occurs, which in turn
would improve CPU throughput. Unfortunately, Linux’s default scheduler CFS [13] actually
aggravates the possibility of early and frequent throttling when used with BWLOCK++’s
throttling mechanism.

The CFS algorithm tries to allocate fair amount of CPU time among tasks by using
each task’s weighted virtual runtime (i.e., weighted execution time) as the scheduling metric.
Concretely, a task τi’s virtual runtime Vi is defined as

Vi = Ei

Wi
(1)

where Ei is the actual runtime and Wi is the weight of the task. The CFS scheduler simply
picks the task with the smallest virtual runtime.

The problem with memory bandwidth throttling under CFS arises because the virtual
run-time of a memory intensive task, which gets frequently throttled, increases more slowly
than the virtual run-time of a compute intensive task which does not get throttled. Due to
this, the virtual runtime based arbitration of CFS tends to schedule the memory intensive
tasks more than the CPU intensive tasks while bandwidth regulation is in place.

4.3.2 TFS Approach
In order to reduce the throttling overhead while keeping the undesirable scheduling of memory
intensive tasks quantifiable, TFS modifies the throttled task’s virtual runtime to take the
task’s throttled duration into account. Specifically, at each regulation period, if there exists
a throttled task, we scale the throttled duration of the task by a factor, which we call TFS
punishment factor, and add it to its virtual runtime.

Under TFS, a throttled task τi’s virtual runtime V new
i at the end of jth regulation period

is expressed as:

V new
i = V old

i + δj
i × ρ (2)

where δj
i is the throttled duration of τi in the jth sampling period, and ρ is the TFS

punishment factor.
The more memory intensive a task is, the more likely the task get throttled in each

regulation period for a longer duration of time (i.e., higher δi). By adding the throttled time
back to the task’s virtual runtime, we make sure that the memory intensive tasks are not

ECRTS 2018
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Table 2 Taskset for Example.

Task Compute Time (C) Period (P) Description

τRT 4 15 Real-time task
τMEM 4 N/A Memory intensive best-effort task
τCP U 4 N/A CPU intensive best-effort task

favored by the scheduler. Furthermore, by adjusting the TFS punishment factor ρ, we can
further penalize memory intensive tasks in favor of CPU intensive ones. This in turn reduces
the amount of throttled time and improves overall CPU utilization. On the other hand, the
memory intensive tasks will still be scheduled (albeit less frequently so) according to the
adjusted virtual runtime. Thus, no tasks will suffer starvation.

Scheduling of tasks under TFS is fair with respect to the adjusted virtual runtime metric
but it can be considered unfair with respect to the CFS’s original virtual runtime metric. A
task τi’s “lost” virtual runtime ∆T F S

i (due to TFS’s inflation) over J regulation periods can
be quantified as follows:

∆T F S
i =

J∑
j=0

δj
i × ρ. (3)

4.3.3 Illustrative Example
We elaborate the problem of CFS and the benefit of our TFS extension with a concrete
illustrative example.

Let us consider a small integrated CPU-GPU system, which consists of two CPU cores
and a GPU. We further assume, following our system model, that Core-1 is a real-time core,
which may use the GPU, and Core-2 is a best-effort core, which doesn’t use the GPU.

Table 2 shows a taskset to be scheduled on the system. The taskset is composed of a
GPU using real-time task, which needs to be protected by our framework for the entire
duration of its execution; and two best-effort tasks (of equal CFS priority), one of which is
CPU intensive and the other is memory intensive.

Figure 4a shows how the scheduling would work when CFS is used to schedule best-effort
tasks τCP U and τMEM on the best-effort core with its memory bandwidth is throttled by
our kernel-level bandwidth regulator. Note that in this example, both OS scheduler tick
timer interval and the bandwidth regulator interval are assumed to be 1ms. At time 0, τCP U

is first scheduled. Because τCP U is CPU bound, it doesn’t suffer throttling. At time 1,
the CFS schedules τMEM as its virtual runtime 0 is smaller than τCP U ’s virtual runtime 1.
Shortly after the τMEM is scheduled, however, it gets throttled at time 1.33 as it has used
the best-effort core’s allowed memory bandwidth budget for the regulation interval. When
the budget is replenished at time 2, at the beginning of the new regulation interval, the
τMEM ’s virtual runtime is 0.33 while τCP U is 1. So, the CFS picks the τMEM (smaller of
the two) again, which gets throttled again. This pattern continues until the τMEM ’s virtual
runtime finally catches up with τCP U at time 4 by which point the best-effort core has been
throttled 66% of time between time 1 and 4. As can be seen in this example, CFS favors
memory intensive tasks as their virtual runtimes increase more slowly than CPU intensive
ones when memory bandwidth throttling is used.

Figure 4b shows a hypothetical schedule in which the execution of τMEM is delayed in
favor of the τCP U while τRT is running (thus, memory bandwidth regulation is in place.)
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Figure 4 Example schedules under different scheduling schemes.
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Figure 5 Virtual runtime progress of the two synthetic tasks. One is cpu-intensive and the other
is memory-intensive.

In this case, because τCP U never exhausts the memory bandwidth budget, it never gets
throttled. As a result, the best-effort core never experiences throttling and thus is able to
achieve high throughput. While this is ideal behavior from the perspective of throughput, it
may not be ideal for the τMEM as it can suffer starvation.

Figure 4c shows the schedule under the TFS (with a TFS punishment factor ρ = 3). The
TFS works identical to CFS until at time 2, when the BWLOCK++’s periodic timer is called.
At this point, the τMEM ’s virtual runtime (V MEM ) is 0.33ms. However, because it has been
throttled for 0.67ms during the regulation period (δ = 0.67), according to Equation 2, TFS
increases the task’s virtual runtime to 2.34 (V MEM +δ×ρ = 0.33+0.67×3 = 2.34). Because
of the increased virtual runtime, the TFS scheduler then picks τCP U as its virtual runtime is
now smaller than that of τMEM (1 < 2.34). Later, when the τCP U ’s virtual runtime becomes
3 at time 4, the TFS scheduler can finally re-schedule the τMEM . In this manner, TFS
favors CPU intensive tasks over memory-intensive ones, while preventing starvation of the
latter. Note that TFS works at each regulation period (i.e., 1ms) independently and thus
automatically adapts to the task’s changing behavior. For example, if a task is memory
intensive only for a brief period of time, the task will be throttled only for the memory
intensive duration, and the throttled time will be added back to the task’s virtual runtime at
each 1ms regulation period. Furthermore, even for a period when a task is throttled, the task
always makes small progress as allowed by the memory bandwidth budget for the period.
Therefore, no task suffers complete starvation for an extended period of time.

4.3.4 Effects of TFS using Synthetic Tasks

We experimentally validate the effect of TFS in scheduling best-effort tasks on a real system.
In this experiment, we use two synthetic tasks: one is CPU intensive and the other is
memory-intensive. We use Bandwidth benchmark for both of these tasks. In order to make
Bandwidth memory intensive, we configure its working-set size to be twice the size of LLC on
our platform. Similarly, to make Bandwidth compute (CPU) intensive, we make its working
set size one half the size of L1 data cache in our platform. We assign these two best-effort
tasks on the same best-effort core, which is bandwidth regulated with a 100 MB/s memory
bandwidth budget.
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Figure 6 The number of periods during which the two tasks are scheduled. ’Intense’ refers to the
memory-intensive task. ’Mild’ refers to the CPU-intensive task.

Figure 5 shows the virtual runtime progression over 1000 sampling periods of the two
tasks under three scheduler configurations: CFS, TFS (ρ = 1), and TFS-3X (ρ = 3). In
CFS, the memory intensive process gets preferred by the CFS scheduler at each scheduling
instance, because its virtual run-time progresses more slowly. In TFS and TFS-3X, however,
as memory-intensive task’s virtual runtime is increased, CPU-intensive task is scheduled
more frequently.

This can be seen more clearly in Figure 6, which shows the number of periods utilized by
each task on the CPU core, over the course of one thousand sampling periods. Under CFS,
out of all the sampling periods, 75% are utilized by the memory intensive process and only
25% are utilized by the compute intensive process. With TFS, the two tasks get to run in
roughly the same number of sampling periods whereas in TFS-3x, the CPU intensive task
gets to run more than the memory intensive task.

5 Implementation

In this section, we describe the implementation details of BWLOCK++.

5.1 BWLOCK++ System Call
We add a new system call sys_bwlock in Linux kernel 4.4.38. The system call serves two
purposes. 1) It acquires or releases the memory bandwidth lock on behalf of the currently
running task on the real-time core; and 2) it implements a priority-ceiling protocol, which
boosts the calling task’s priority to the system’s ceiling priority, to prevent preemption. We
introduce two new integer fields, bwlock_val, bw_old_priority, in the task control block:
bwlock_val stores the current status of the memory bandwidth lock and bw_old_priority
keeps track of the original real-time priority of the task while it is holding the bandwidth
lock.

Algorithm 1 shows the implementation of the system call. To acquire the memory
bandwidth lock, the system call must be invoked from the real-time system core and the
task currently scheduled on the real-time core must have a real-time priority (line 2 ). At the
time of acquisition of bandwidth lock, the priority of the calling task, which is tracked by
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Algorithm 1: BWLOCK++ System Call.
1 syscall sys_bwlock(bw_val)
2 if smp_processor_id () == RT_CORE_ID ∧ rt_task (current) then
3 rt_core_data := get_rt_core_data ()
4 rt_core_data → current_task := current
5 if bw_val ≥ 1 then
6 current → bwlock_val := 1
7 current → bw_old_priority := current → rt_priority
8 current → rt_priority := MAX_USER_RT_PRIO - 1
9 else

10 current → bwlock_val := 0
11 current → rt_priority := current → bw_old_priority
12 end
13 end
14 return;

the globally accessible current pointer in Linux kernel, is raised to the maximum allowed
real-time priority value (the ceiling priority) for any user-space task to prevent preemption
(line 7 ). The real-time priority value of the the task is restored to its original priority value
when the bandwidth lock is released (line 10 ). In this manner, the system call updates
the state of the currently scheduled real-time task on the real-time system core, which is
then used by the memory bandwidth regulator on best-effort cores to enforce memory usage
thresholds, as explained in the following subsection.

5.2 Per-Core Memory Bandwidth Regulator

The per-core memory bandwidth regulator is composed of a periodic timer interrupt handler
and a performance monitoring counter (PMC) overflow interrupt handler. Algorithm 2 shows
the implementation of the memory bandwidth regulator.

The periodic timer interrupt handler is invoked at a periodic interval (currently every 1
msec) using a high resolution timer in each best-effort core. The timer handler begins a new
bandwidth lock regulation period and performs the following operations:

Unthrottle the core if it was throttled in the last regulation period (line 3 )

Scale the virtual runtime of the task currently scheduled on the core based on the
throttling time in the last period and the TFS punishment factor (line 4-5 )

Determine the new memory usage budget based on the bandwidth lock status of the task
currently scheduled on the real-time system core (line 7-12 )

Program the performance monitoring counter on the core based on the new memory usage
budget for the current regulation period (line 13 ). We use the L2D_CACHE_REFILL
event for measuring the memory bandwidth traffic in ARM Cortex-A57 processor core

The PMC overflow interrupt occurs when the core at hand exceeds its memory usage
budget in the current regulation period. The interrupt handler prevents further memory
transactions from this core by scheduling a high priority idle kernel thread on it for the
remainder of the regulation period (line 17 ).
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Algorithm 2: Memory Bandwidth Regulator.
1 procedure periodic_interrupt_handler(core_data)
2 if core_is_throttled (core_data → core_id) == TRUE then
3 unthrottle_core (core_data → core_id)
4 record_throttling_end_time (core_data → current_task)
5 scale_virtual_runtime (core_data → current_task)
6 end
7 rt_core_data := get_rt_core_data ()
8 if rt_core_data → current_task → bwlock_val == 1 then
9 core_data → new_budget := rt_core_data → throttle_budget

10 else
11 core_data → new_budget := MAX_BANDWIDTH_BUDGET
12 end
13 program_pmc (core_data → new_budget)
14 return;

15 procedure pmc_overflow_handler(core_data)
16 record_throttling_start_time (core_data → current_task)
17 throttle_core (core_data → core_id)
18 return;

6 Evaluation

In this section, we present the experimental evaluation results of BWLOCK++.

6.1 Setup

We evaluate BWLOCK++ on NVIDIA Jetson TX2 platform. We use the Linux kernel
version 4.4.38, which is patched with the changes required to support BWLOCK++. The
CUDA runtime library version installed on the platform is 8.0, which is the latest version
available for Jetson TX2 at the time of writing. In all our experiments, we place the platform
in maximum performance mode by maximizing GPU and memory clock frequencies and
disabling the dynamic frequency scaling of CPU cores. We also shutdown the graphical user
interface and disable the network manager to avoid run to run variation in the experiments.
As per our system model, we designate the Core-0 in our system as real-time core. The
remaining cores execute best-effort tasks only. All the tasks are statically assigned to their
respective cores during the experiment. While NVIDIA Jetson TX2 platform contains two
CPU islands, a quad-core Cortex-A57 and a dual-core Denver, we only use the Cortex-A57
island for our evaluation and leave the Denver island off because we were unable to find
publicly available documentation regarding the Denver cores’ hardware performance counters,
which is needed to implement throttling. In order to evaluate BWLOCK++, we use six
benchmarks from parboil suite which are listed as memory bandwidth sensitive in [18].
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Table 3 GPU execution time breakdown of selected benchmarks.

Benchmark Dataset Copy Timing Breakdown (msec)
(KBytes) Kernel (Ge) Copy (Gm) Compute (C) Total (E)

histo Large 5226 83409 18 0 83428
sad Large 709655 152 654 53 861
bfs 1M 62453 174 72 0 246
spmv Large 30138 69 51 10 131
stencil Default 196608 749 129 9 888
lbm Long 379200 43717 358 2004 46080
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Figure 7 Slowdown of the total execution time of GPU benchmarks due to three Bandwidth
corunners.

6.2 Effect of Memory Bandwidth Contention

In this experiment, we investigate the effect of memory bandwidth contention due to co-
scheduled memory intensive CPU applications on the evaluated GPU kernels.

First, we measure the execution time of each GPU benchmark in isolation. From this
experiment, we record the GPU kernel execution time (Ge), memory copy time for GPU
kernels (Gm) and CPU compute time (C) for each benchmark. The data collected is shown
in Table 3. We then repeat the experiment after co-scheduling three instances of a memory
intensive CPU application as co-runners. We use the Bandwidth benchmark from the
IsolBench suite [19] as the memory intensive CPU benchmark, which updates a big 1-D
array sequentially. The sequential write access pattern of the benchmark is known to cause
worst-case interference on several multicore platforms [20].

The results of this experiment are shown in Figure 7 and they demonstrate how much
the total execution time of GPU benchmarks (E = Ge + Gm + C) suffers from memory
bandwidth contention due to the co-scheduled CPU applications.
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Figure 8 Effect of corun bandwidth threshold on the execution time of histo benchmark.

From Figure 7, it can be seen that the worst case slowdown, in case of histo benchmark,
is more than 250%. Similarly, for SAD benchmark, the worst case slowdown is more than
150%. For all other benchmarks, the slowdown is non-zero and can be significant in affecting
the real-time performance. These results clearly show the danger of uncontrolled memory
bandwidth sharing in an integrated CPU-GPU architecture as GPU kernels may potentially
suffer severe interference from co-scheduled CPU applications. In the following experiment,
we investigate how this problem can be addressed by using BWLOCK++.

6.3 Determining Memory Bandwidth Threshold
In order to apply BWLOCK++, we first need to determine safe memory budget that can
be given to the best-effort CPU cores in the presence of GPU applications. However, an
appropriate threshold value may vary depending on the characteristics of individual GPU
applications. If the threshold value is set too high, then it may not be able to protect the
performance of the GPU application. On the other hand, if the threshold value is set too low,
then the CPU applications will be throttled more often and that would result in significant
CPU capacity loss.

We calculate the safe memory budget for best-effort CPU cores by observing the trend
of slowdown of the total execution time of GPU application as the allowed memory usage
threshold of CPU co-runners is varied. We start with a threshold value of 1-GB/s for each
best-effort CPU core. We then continue reducing the threshold value for best-effort cores by
half and measure the impact of this reduction on the slowdown of execution time (E) of the
benchmark.

Figure 8 shows this trend for the execution time of histo benchmark from the parboil
suite. From the figure, it can be seen that after 64-MBps threshold value for best-effort CPU
cores, further reduction of threshold value does not yield significant improvement in reducing
the slowdown of benchmark. Hence, for histo benchmark, we select 64-MBps as the threshold
value for the best-effort CPU cores. In a similar fashion, we plot this trend for all the selected
benchmarks and determine the value of corun threshold for the best-effort CPU cores.
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Figure 9 BWLOCK++ Evaluation Results.

6.4 Effect of BWLOCK++
In this experiment, we evaluate the performance of BWLOCK++. Specifically, we record the
corun execution of GPU benchmarks with the automatic instrumentation of BWLOCK++.
We call this scenario BW-Locked-Auto. We compare the performance under BW-Locked-Auto
against the Solo and Corun execution of the GPU benchmarks which represent the measured
execution times in isolation and together with three co-scheduled memory intensive CPU
applications, respectively.

To get the data-points for BW-Locked-Auto, we configure BWLOCK++ according to the
allowed memory usage threshold of the benchmark at hand and use our dynamic GPU kernel
instrumentation mechanism to launch the benchmark in the presence of three Bandwidth
benchmark instances (write memory access pattern) as CPU co-runners. The results of this
experiment are plotted in Figure 9. In Figure 9, we plot the total execution time of each
benchmark for the above mentioned scenarios. All the time values are normalized with respect
to the total execution time (Esolo = Csolo + Ge

solo + Gm
solo) of the benchmark in isolation.

As can be seen from this figure, execution under BW-Locked-Auto incurs significantly less
slowdown of the total execution time of GPU benchmarks due to reduction of both GPU
kernel execution time and memory copy operation time.

6.5 Throughput improvement with TFS
As explained in Section 4.3, throttling under CFS results in significant system throughput
reduction. In order to illustrate this, we conduct an experiment in which the GPU benchmarks
are executed with six CPU co-runners. Each CPU core, apart from the one executing the
GPU benchmark, has a memory intensive application and a compute intensive application
scheduled on it. For both of these applications, we use the Bandwidth benchmark with
different working set sizes. In order to make Bandwidth memory intensive, we configure
its working set size to be twice the size of LLC on our evaluation platform. Similarly for
compute intensive case, we configure the working set size of Bandwidth to be half of the
L1-data cache size. We record the total system throttle time statistics with BWLOCK++ for
all the GPU benchmarks. The total system throttle time is the sum of throttle time across
all system cores. We then repeat the experiment with our Throttle Fair Scheduling scheme.
In TFS-1, we configure the TFS punishment factor as one for the memory intensive threads
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Figure 10 Comparison of total system throttle time under different scheduling schemes.

and in TFS-3, we set this factor to three. We plot the normalized total system throttle time
for all the scheduling schemes and present them in Figure 10. It can be seen that TFS results
in significantly less system throttling (On average, 39% with TFS-1 and 62% with TFS-3 )
as compared to CFS.

6.6 Overhead due to BWLOCK++
The overhead incurred by real-time GPU applications due to BWLOCK++ comes from the
following sources:

LD_PRELOAD overhead for CUDA API instrumentation
Overhead due to BWLOCK++ system call

The overhead due to LD_PRELOAD is negligible since we cache CUDA API symbols for
all the instrumented functions inside our shared library; after searching for them only once
through the dynamic linker. We calculate the overhead incurred due to BWLOCK++ system
call by executing the system call one million times and taking the average value. In NVIDIA
Jetson TX2, the average overhead due to each BWLOCK++ system call is 1.84usec. Finally,
we experimentally determine the overhead value for all the evaluated benchmarks by running
the benchmark in isolation with and without BWLOCK++. Our experiment shows that for
all the evaluated benchmarks, the total overhead due to BWLOCK++ is less than 1% of the
total solo execution time of the benchmark.

7 Schedulability Analysis

As we limit the scheduling of real-time tasks on a single real-time core, our system can
be analyzed using the classical unicore based response time analysis for preemptive fixed
priority scheduling with blocking [3], because we model each GPU execution segment as
a critical section, which is protected by acquiring and releasing the bandwidth lock. The
bandwidth lock serializes GPU execution and regulates memory bandwidth consumption of
co-scheduled best-effort CPU tasks. The bandwidth lock implements the standard priority
ceiling protocol [17], which boosts the priority of the lock holding task (i.e., the task executing
a GPU kernel) to the ceiling priority of the lock, which is the highest real-time priority of
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the system, so as to prevent preemption. With this constraint, a real-time task τi’s response
time is expressed as:

Rn+1
i = Ei +Bi +

∑
∀j∈hp(i)

⌈
Rn

i

Pj

⌉
Ej (4)

where hp(i) represents the set of higher priority tasks than τi and Bi is the longest GPU
kernel or copy duration—protected by the memory bandwidth lock—of one of the lower
priority tasks.

The benefit of BWLOCK++ lies in the reduction of worst-case GPU kernel execution
or GPU memory copy interval of real-time tasks (which would in turn reduce Ei and Bi

terms in Equation 4). As shown in Section 6.2, without BWLOCK++, GPU execution of
a task can suffer severe slowdown (up to 230% slowdown in our evaluation), which would
result in pessimistic WCET estimation for GPU kernel and copy execution times, hampering
schedulability of the system. BWLOCK++ helps reduce pessimism of GPU execution time
estimation and thus improves schedulability.

8 Discussion

Our approach has following limitations. First, we assume that all real-time tasks are scheduled
on a single dedicated real-time core while the rest of the cores only schedule best-effort
tasks. In addition, we assume only real-time tasks can utilize the GPU while best-effort
tasks cannot. While restrictive, recall that scheduling multiple GPU using real-time tasks
on a single dedicated real-time core does not necessarily reduce GPU utilization because
multiple GPU kernels from different tasks (processes) are serialized at the GPU hardware
anyway [15] as we already discussed in Section 3. Also, due to the capacity limitation of
embedded GPUs, it is expected that a few GPU using real-time task can easily achieve high
GPU utilization in practice. We claim that our approach is practically useful for situations
where a small number of GPU accelerated tasks are critical, for example, a vision-based
automatic braking system.

Second, we assume that GPU applications are given a priori and they can be profiled
in advance so that we can determine proper memory bandwidth threshold values. If this
assumption cannot be satisfied, an alternative solution is to use a single threshold value for
all GPU applications, which eliminates the need of profiling. But the downside is that it may
lower the CPU throughput because the memory bandwidth threshold must be conservatively
set to cover all types of GPU applications.

9 Conclusion

In this paper, we presented BWLOCK++, a software based mechanism for protecting the
performance of GPU kernels on platforms with integrated CPU-GPU architectures.

BWLOCK++ automatically instruments GPU applications at run-time and inserts a
memory bandwidth lock, which throttles memory bandwidth usage of the CPU cores to
protect performance of GPU kernels. We identified a side effect of memory bandwidth
throttling on the performance of Linux default scheduler CFS, which results in the reduction
of overall system throughput. In order to solve the problem, we proposed a modification to
CFS, which we call Throttle Fair Scheduling (TFS) algorithm. Our evaluation results have
shown that BWLOCK++ effectively protects the performance of GPU kernels from memory
intensive CPU co-runners. Also, the results showed that TFS improves system throughput,
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compared to CFS, while protecting critical GPU kernels. In the future, we plan to evaluate
BWLOCK++ on other integrated CPU-GPU architecture based platforms. We also plan
to extend BWLOCK++ not only to protect critical GPU tasks but also to protect critical
CPU tasks.
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NVIDIA’s CUDA API has enabled GPUs to be used as computing accelerators across a wide
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1 Introduction

A fundamental shift is reshaping how real-time analysis is applied in all forms of autonomous
systems (e.g., UAVs, robotics, and, especially, self-driving automobiles). These systems are in-
creasingly dependent on escalating computational requirements for various applications based
on machine learning (ML). Examples include computer-vision applications that recognize
people and objects in high-bit-rate streams from multiple video cameras, and applications
that process 3-D models of the surrounding environment from high-volume streams of LIDAR
data. These and other ML applications in autonomous vehicles have prompted the adoption
of specialized computing accelerators to match computational demands. Graphics processing
units (GPUs) are among the most prominent and accessible of these specialized accelerators
because of their high-throughput performance. While high throughput is necessary for ML
applications based on multiple streams of sensor inputs, it alone is not sufficient. Safe
operation of autonomous vehicles also requires temporal correctness from GPU-using tasks –
this is where real-time analysis becomes essential for autonomous systems.

Why there is a problem. Unfortunately, GPUs present many challenges, so modeling,
analyzing, and certifying a safety-critical autonomous system using GPUs is currently
beyond the state-of-the-art. One reason is that GPUs are fundamentally different from
CPUs. Real-time analysis is based on well-understood scheduling algorithms that allocate
CPU capacity. In contrast, GPU hardware and software together implement GPU-specific
scheduling algorithms that are proprietary, opaque, and can change without notice. Modeling
and analysis efforts under these conditions are subject to many pitfalls when applied to
real-time safety-critical workloads in GPU-using autonomous systems.

Focus of this paper. Our motivation for this work is to provide guidance, recommendations,
and warnings about numerous pitfalls to both research and implementation practitioners.
We have found that writing programs for real-time tasks that combine CPU and GPU
computations is harder than we first thought. Based on several years of study, experimentation,
and experience with GPU programming, we are presenting here a compendium of specific
issues that are essential background for developing task systems where real-time design meets
GPUs.

Choice of GPU platforms. We base our findings on our experiences with NVIDIA GPUs for
a number of reasons. The most salient reason is that NVIDIA GPUs are in cars on the road
today. Further, NVIDIA has positioned itself as a market leader in automotive applications.
For example, NVIDIA’s “Jetson” line of embedded platforms specifically targets autonomous
systems, and is marketed as “the embedded platform for autonomous everything” [21]. Three
generations of the Jetson series of embedded single-board computers have been produced
by NVIDIA; the TK1, TX1, and TX2. NVIDIA also markets a higher-performance line of
embedded platforms, the “Drive PX” series, which includes multiple models such as the
Drive PX2, Drive PX Xavier, and Drive PX Pegasus.

NVIDIA GPUs serve as an exemplar of the push for throughput over predictability in
GPUs . Recent developments in the NVIDIA GPU ecosystem are focused on improving ML
applications, especially those for autonomous driving. Most of these improvements center
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around increasing throughput or reducing execution latency, but little, if any, attention has
been paid to requirements of the real-time tasks used in autonomous systems. This lack of
attention is evident in the sparse efforts by NVIDIA to improve or document GPU scheduling
behavior or improve the predictability of GPU execution times.

1.1 Contributions
The major contribution of this paper lies in discussing pitfalls for real-time GPU usage of
relevance to both those conducting research on autonomous systems and those who design
and build them. These pitfalls fall within three categories:

Synchronization and blocking. In any task consisting of a combination of CPU and GPU
computations, there are necessary synchronization points (e.g., a CPU program needs to
wait until a GPU has produced a result). Synchronization inherently leads to blocking terms
in scheduling analysis. Unfortunately, we have learned that why and when synchronization
blocking occurs in a GPU-using task is not straightforward to determine. Further, some
forms of synchronization can lead to significant capacity loss on both CPUs and GPUs.
We have constructed experiments that expose these synchronization effects and carefully
describe them along with a list of specific pitfalls the unwary programmer may encounter.
This contribution is fully presented in Sec. 3.

GPU concurrency. We have realized that there is a fundamental trade-off that exists for
designing real-time tasks that use a GPU. A conventional choice is to write and execute
the task program as an operating system (OS) process in its own non-shared address space.
This provides cross-task memory isolation. If this choice is used, however, the NVIDIA GPU
programming environment (described in Sec. 2) does not permit any concurrent computations
on the GPU even if sufficient GPU resources are available. Depending on how GPU programs
are organized and written, this can lead to capacity loss on the GPU. The alternate choice
is to write and execute a task as a schedulable thread that shares a process address space
with other task threads. Cross-task memory isolation is lost, but the GPU programming
environment provides mechanisms that allow concurrent computations on the GPU. NVIDIA
provides a third option with a middleware environment that is claimed to provide the best
of both choices – memory isolation with concurrency enabled. We have performed a case
study using algorithms that are exemplars for computer-vision tasks in autonomous vehicles
to evaluate these trade-off options. The results and guidelines are fully presented in Sec. 4.

CUDA programming perils. Our research has necessarily involved constructing many
thousands of lines of GPU programming for performing experiments. This experience has
been especially enlightening about the perils one can encounter in programming for NVIDIA
GPUs. The perils span a spectrum of pain ranging from simple documentation errors to
functions that default in strange ways, to programming “gotchas.” We present a list of perils
with descriptions and examples of the ones most likely to cause problems in Sec. 5.

Value for autonomous systems. We believe that this paper will help bridge the gap between
research and implementation in autonomous systems. For example, real-time researchers
may not be familiar with GPU programming for applications of ML and other forms of
AI used in real-time tasks. Likewise, programmers responsible for implementations are
given little guidance about creating GPU-using task systems amenable to real-time analysis.

ECRTS 2018
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We provide the necessary understanding required to apply GPUs in real-time tasks while
avoiding numerous hidden pitfalls. We also expose GPU-related issues that must be mitigated
for real-time guarantees to be possible in autonomous systems. We further believe that
the fundamental issues presented herein are relevant to any real-time application using
computational accelerators, and likely hold for other manufacturers’ GPUs, digital signal
processors (DSPs), or FPGAs.

1.2 Related Work

Treating GPUs as non-shared devices has been a consistent theme in much of the prior
research on GPU scheduling for real-time systems. More predictable execution times result
from restricting access to the entire GPU (or its independent execution and data movement
components) to a single task at a time [11, 15, 16, 28, 29, 27, 31].

Other prior research takes a slightly different approach and improves schedulability
by simulating preemptive execution [3, 15, 17, 33]. These designs typically split GPU
computations into smaller fragments, which can be individually scheduled and preempted.
One of these frameworks, called Kernelet [32], even allows GPU sharing as a means to
improve utilization, but interference effects caused by sharing are not addressed.

The decision to treat GPUs as non-shared devices is largely motivated by a perceived need
to work with a greatly simplified model of GPU execution (resulting, we believe, primarily
from a lack of information from GPU manufacturers). If GPU scheduling behavior is an
opaque “black box,” it is a rational conclusion that sharing must be avoided because execution
ordering and interference effects cannot be known. Our research is motivated, however, by
an observation that GPU sharing will become essential for effectively utilizing less-capable
embedded GPUs. Our research goal is to enable the modeling and analysis of a combined
CPU+GPU scheduling framework that allows real-time tasks to share multicore CPUs and
one or more GPUs.

We began our research by experimentally investigating the impacts of GPU sharing on
the NVIDIA Jetson TK1 [24] and TX1 [25]. In these studies, we focused on GPU sharing
by CPU processes (tasks) that have separate address spaces. We found that sharing in this
context happens only through round-robin time-sliced multiplexing of GPU computations
onto the GPU execution hardware. This multiplexing form of scheduling presents many
challenges for modeling and analysis. In later work, we experimentally investigated GPU
sharing by CPU tasks that share an address space (threads) on both the TX1 [26] and the
more-capable TX2 [1]. In these studies, we found that truly concurrent sharing can indeed
occur and deduced rules the GPU uses to schedule execution.

The work summarized so far was all directed at scheduling real-time tasks that use a
GPU for parts of their executions. Other work has focused on timing analysis for GPU
workloads [4, 5, 6, 7, 8], techniques for remedying performance bottlenecks [13], direct I/O
communication [2], and techniques for managing or evaluating GPU hardware resources,
including the cache and DRAM [9, 10, 12, 14, 18, 19, 30].

2 Background

In this section, we provide background information on the NVIDIA GPUs used in this
research. The CUDA programming framework is described, and a simple example of a CUDA
program is explained.
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Figure 1 Jetson TX2 Architecture (left) and GeForce GTX 1070 Architecture (right).

2.1 CUDA-Enabled Devices

The work presented here refers to the Kepler, Maxwell, Pascal, and Volta architectures of
NVIDIA GPUs. NVIDIA introduced these four different generations of GPU architectures,
in that order, within a time span of about five years (2012 - 2017) – a pace of change more
rapid than normally seen in CPU generations. GPUs are programmed using the CUDA API,
which is an NVIDIA-provided set of libraries and language extensions for C/C++.

We consider both discrete GPUs and integrated GPUs. An integrated GPU, such as
the NVIDIA Jetson TX2 shown on the left in Fig. 1, is part of a System-On-Chip (SoC)
implementation combined with conventional multicore CPUs. The SoC is packaged along
with DRAM and external connectors as a small (approximately 7 inches square) single-board
computer. The integrated GPU shares hardware resources, such as DRAM, with CPU cores.
The TX2 runs the Linux operating system, with additional support from closed-source binary
drivers provided by NVIDIA. The TX2’s low size, weight, and power (SWaP) requirements
and low price tag make it a good exemplar of GPU-enabled platforms intended for embedding
in autonomous systems.

Fig. 1 (left) shows the high-level architecture of the TX2. The TX2 contains a six-core
heterogeneous ARMv8 CPU, 8GB of DRAM, and an integrated Pascal GPU. The TX2’s
GPU consists of two streaming multiproccessors (SMs), each comprised of 128 GPU cores.
The SMs together can be logically viewed as an execution engine (EE). Additionally, there
is a hardware copy engine (CE) that can copy data between memory regions allocated for
CPU use and those allocated for GPU use. The integrated GPU has fewer GPU cores than
found in typical high-end GPUs used for graphics, gaming, and high-performance computing
applications. We are interested in exploiting any potential for sharing the TX2’s GPU by
multiple tasks so that its computing capacity is not unnecessarily wasted.

Shown on the right in Fig. 1 is the architecture of the GTX 1070, an example of a discrete
GPU. Discrete GPUs consist only of the SMs and local device memory, typically packaged
on an adapter card for mounting in a PCIe expansion slot on a computer motherboard. Like
all discrete GPUs, the GTX 1070 does not share memory with the host CPU, instead using
the PCIe bus to copy data to and from host memory. This GPU features many more SMs
than the TX2, increasing the potential benefit attainable if shared among multiple tasks. It
also has two CEs, and a larger cache.

ECRTS 2018
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Algorithm 1 Vector Addition Pseudocode.
1: kernel vecAdd(A ptr to int, B: ptr to int, C: ptr to int)

. Calculate index based on built-in thread and block information
2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure main
. (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d_A)
7: . . .

. (ii) Copy data from CPU to GPU memory for arrays A and B
8: cudaMemcpy(d_A, h_A)
9: . . .

. (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(d_A, d_B, d_C)

. (iv) Copy results from GPU to CPU array C
11: cudaMemcpy(h_C, d_C)

. (v) Free GPU memory for arrays A, B, and C
12: cudaFree(d_A)
13: . . .

2.2 Relevant CUDA Programming Fundamentals
A CUDA program runs as a task (process or thread) on a CPU and relies on a GPU for some
part of its computational requirements.1 The general structure of a CUDA program when it
needs to interact with the GPU is as follows: (i) allocate memory for GPU use; (ii) copy
input data from CPU memory to GPU memory; (iii) launch execution of a GPU program
called a kernel2 to process the data; (iv) copy the results from the GPU memory back to
the CPU memory; (v) free unneeded memory.

CUDA kernels are written from the perspective of a single GPU thread. As an example,
consider the CUDA program expressed in pseudocode in Algorithm 1. It uses the kernel
vecAdd to add a single pair of elements per GPU thread, storing the sum in a corresponding
location in an output array. Line 2 demonstrates the use of special global system-defined
variables to determine the array element on which to operate. When the kernel executes,
threads will run in lock-step with each thread performing the same operation simultaneously
on different data. To avoid confusion with GPU threads, we will henceforth refer to CPU
threads as CPU tasks (or just tasks).

A kernel is run on the GPU as a set of thread blocks that can be executed in any order.
These thread blocks, or simply blocks, are each comprised of a number of threads. As seen in
Line 10 of Algorithm 1, the number of blocks and threads per block are programmer-specified
and can be set at runtime when a kernel is launched. The GPU scheduler uses these values
to assign work to the SMs. Blocks are the schedulable entities on the GPU. All threads in a
block are always executed on the same SM, and run non-preemptively until completion. A
kernel completes when all threads in all blocks have exited.

We refer to kernels and memory-copy operations collectively as GPU operations. GPU
operations are submitted to a GPU in CUDA streams. Operations within a stream are
executed in FIFO order. By default, the NULL stream is used, but users can submit operations
to multiple user-defined streams.3 Kernels from different streams can run concurrently by

1 Note that both CPU and GPU computations are specified in the same CUDA program.
2 Unfortunate terminology, not to be confused with an OS kernel.
3 CUDA documentation only guarantees that operations within a stream are executed in FIFO order, but
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sharing the GPU’s cores if sufficient internal resources are available. Copy operations are
handled by the GPU’s CE and can be concurrent with kernel executions on the EE.

CUDA API calls can be synchronous or asynchronous; for many calls, a variant of
both is available. For example, cudaMemcpy and cudaMemcpyAsync both copy data between
regions of CPU memory and GPU memory, or between two regions of GPU memory, but
cudaMemcpyAsync can return control to the calling CPU task before the copy is completed,
whereas cudaMemcpy blocks the CPU task until the memory copy completes.

Kernel launches are always supposed to be asynchronous. The CUDA documentation4 [23],
however, uses a narrow definition of “asynchronous” that can be misleading. According to
the documentation, “asynchronous library functions that return control to the host thread
before the device completes the requested task.” Notably, this definition does not imply
that asynchronous API calls are nonblocking to the CPU. As noted in Sec. 3, we have found
situations in which kernel launches still cause CPU blocking even if the API call returns
before the requested kernel completes.

3 Synchronization and Blocking

CPU scheduling has been studied and well-understood for decades; in particular, real-time
scheduling analysis of task systems is based on predictable scheduler and task behaviors. A
worst-case execution time (WCET) for each task can be determined using clear specifications
of the machine’s architecture including the cache, bus, and DRAM operations. Incorporating
GPUs into real-time analysis (as with all coprocessors), requires different models with new
sets of issues to be considered. In this section, we discuss one set of issues that lead to a
surprising number of pitfalls when CUDA GPUs are used: synchronization.

In prior work, we investigated the scheduling rules for kernels and copy operations in
CUDA programs [1]. However, this investigation focused on a limited context where few
CUDA operations beyond kernel launches and memory copies were used. In most real-world
CUDA software, programmers will likely encounter (both intentionally and unintentionally)
the need for synchronization between CPU and GPU operations. The added complexity of
synchronization can result in utilization loss, potentially leading to unbounded response times
in task sets with high utilization. In this section, we explore various forms of CPU-GPU
synchronization and the resulting implications for real-time systems. We limit attention for
now to CPU tasks that share a single Linux address space and create user-defined streams.
As covered in detail in Sec. 4, this setup allows potential concurrency among operations on
the GPU.

3.1 Overview of GPU Synchronization

Most developers are familiar with the concepts of synchronization in a CPU-only context
where two or more tasks must communicate or coordinate their actions. Synchronization
becomes more complicated when a CPU task must coordinate with programs executed on
the GPU. The common case is that the CPU task must determine when data in GPU
memory is safe to access (e.g., copy back to CPU memory). This is accomplished using GPU
synchronization, where the GPU must complete outstanding work and reach a synchronization

does not describe how operations from different streams are ordered.
4 Specifically, Section 3.2.5.1 of the Programming Guide for CUDA version 9.1.85.
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Figure 2 Explicit synchronization requested before K3, observed on the Jetson TX2.

point: a point in time when data access can safely occur. There are also other, less common,
cases when GPU synchronization is necessary.

In CUDA there are multiple ways to achieve GPU synchronization. They fall into
two broad categories: explicit synchronization, which is always programmer-requested, and
implicit synchronization, which can occur as a side effect of CUDA API functions intended for
purposes other than synchronization. We have uncovered in our research some unfortunate
pitfalls relating to actual GPU synchronization behavior, especially with respect to blocking.
So, while these may not be pitfalls for non-safety-critical applications, ignoring the effects of
certain specific mechanisms for achieving synchronization would be perilous in a safety-critical
system where blocking must be anticipated and accounted for in analysis.

3.1.1 Explicit Synchronization
Explicit synchronization refers to synchronization points that the CUDA programmer expli-
citly requests using the CUDA API. Explicit synchronization is typically used after a program
has launched one or more asynchronous CUDA kernels or memory-transfer operations and
must wait for computations to complete. In contrast to implicit synchronization, the sole
purpose of explicit-synchronization functions is to block the calling CPU task until the GPU
reaches a synchronization point.

The CUDA documentation5 states that explicit synchronization will block the calling
task until “all preceding commands” have completed. For example, if the API function
cudaDeviceSynchronize is invoked, “preceding commands” may encompass all commands
issued to the device from all CPU tasks. Other explicit-synchronization options, including
cudaStreamSynchronize, will only block until preceding commands from a specified stream
have completed.

We carried out experiments using our open-source framework6 to investigate the specific
behaviors of GPU synchronization on real GPU hardware. Fig. 2 shows the behavior of

5 Section 3.2.5.5.3 of the Programming Guide for CUDA version 9.1.85.
6 Available at https://github.com/yalue/cuda_scheduling_examiner_mirror.

https://github.com/yalue/cuda_scheduling_examiner_mirror
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explicit synchronization observed in one such experiment. In Fig. 2 (also in Figs. 3 and 4),
each shaded rectangle corresponds to a separate thread block. The left and right endpoints of
each rectangle correspond to the times at which the block started and completed execution,
as measured on the GPU. Each rectangle’s height represents its size in CUDA threads.
Additionally, the vertical axis is subdivided by SM. The particular experiments presented in
Figs. 2-4 were performed using the Jetson TX2, which features two SMs. Up to 2,048 CUDA
threads can be assigned to a single SM at once.

The CUDA program executed to produce Fig. 2 consists of four CPU tasks all sharing a
single address space. Each CPU task launched one kernel in a separate user-defined stream.
Kernel launches were separated by a small amount of time. Each kernel consisted of two
blocks of 512 threads, and the figure shows that one block from each kernel was scheduled
on each SM. Each thread performed a busy-loop for a set amount of time.

An explicit-synchronization command, cudaDeviceSynchronize, was issued at time (a)
by the CPU task responsible for launching kernel K3. This caused K3’s CPU task to be
blocked until the prior commands, the execution of kernels K1 and K2, had both completed
at time (c). This behavior is exactly what one would expect, given the description of explicit
synchronization from official documentation. However, our experiments also uncovered Pitfall
1 for the unwary:

I Pitfall 1. Explicit synchronization does not block future commands issued by other tasks.

The fact that the launch of K4 by its CPU task was not blocked at time (b) is an example
of this pitfall. Implicit synchronization, which we cover next, presents even more serious
pitfalls.

3.1.2 Implicit Synchronization
Implicit synchronization occurs as a side effect of CUDA API calls that are otherwise
unrelated to synchronization. For example, implicit GPU synchronization may occur due to
freeing GPU memory or launching a kernel to the default stream. Presumably, this is because
some modifications to GPU device state can only occur while no kernels are executing. The
CUDA documentation about implicit synchronization7 states that “two commands from
different streams cannot run concurrently if any one of the following operations is issued
in-between them by the host thread:
1. A page-locked host memory allocation
2. A device memory allocation
3. A device memory set
4. A memory copy between two addresses to the same device memory
5. Any CUDA command to the NULL stream”
Unlike the relatively straightforward documentation about explicit synchronization, our
experiments revealed that this list includes several operations that do not necessarily cause
implicit synchronization, and fails to include some functions that do. We consider this
particularly problematic for real-time systems, where the ability to accurately model blocking
is critical.

I Pitfall 2. Documented sources of implicit synchronization may not occur.

7 Section 3.2.5.5.4 of the Programming Guide for CUDA version 9.1.85.
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Figure 3 Implicit synchronization caused by launching kernel K3 in the NULL stream.

Pitfall 2 became apparent to us when, in all of our experiments, we never observed
implicit synchronization as a result of a device-memory operation (allocation, set, or copy)
or a page-locked host memory allocation. Our experiments covered the two most recent
CUDA versions, 8.0 and 9.0, and the three most recent NVIDIA GPU architectures, Maxwell,
Pascal, and Volta. This, of course, does not prove that implicit synchronization can never
happen under such circumstances, but it does indicate that the documentation’s statement
that “two commands cannot run concurrently” is not a reliable rule. The only case (from
this list) in which we did observe implicit synchronization was launching GPU operations in
the NULL stream.

Fig. 3 shows a similar scenario to the one in Fig. 2, with one key difference: the CPU task
for K3 did not call cudaDeviceSynchronize before K3 was launched, but instead launched
K3 in the NULL stream. The implicit synchronization, and resulting loss of concurrency, is
clearly visible in the figure. Execution of K3 must wait for the first two kernels to complete,
and, in contrast to explicit synchronization, K4 is also prevented from running concurrently.
Even though this loss of concurrency may be striking, it is notably explicitly documented,
and can be used (or avoided) in a careful design for a real-time task.

We found, however, a different source of implicit synchronization that is a far more
problematic pitfall, and is not even listed in the documentation on synchronization: freeing
device memory.

I Pitfall 3. The CUDA documentation neglects to list some functions that cause implicit
synchronization.

I Pitfall 4. Some CUDA API functions will block future, unrelated, CUDA tasks on the
CPU.

Fig. 4 shows the results of an experiment identical to the one in Fig. 2, but this time the
call to cudaDeviceSynchronize at time (a) was replaced with a call to cudaFree, which
was used to de-allocate memory on the GPU. Pitfalls 3 and 4 can be observed in this plot.
The fact that this blocked the calling CPU thread until all prior GPU work had completed
at time (c) indicates that cudaFree created implicit synchronization. Similar to the NULL-
stream behavior, implicit synchronization also prevented subsequent kernels from starting to
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Figure 4 Implicit synchronization causing additional CPU blocking due to cudaFree.

execute until cudaFree completed at time (c). We speculate that this behavior by cudaFree
is necessary because alterations to memory-mapping state requires a quiescent execution
environment. However, the most surprising effect was not that K4 was blocked, but that
K4’s task was blocked on the CPU until time (c), even though it issued an “asynchronous”
kernel launch. This reveals a pitfall that can harm real-time analysis that does not consider
the fact that CPU tasks can experience blocking from GPU operations that are launched
from unrelated tasks.

3.2 Overcoming Synchronization-Related Pitfalls

GPU synchronization has two problematic effects – introducing indeterminate amounts of
blocking and reducing GPU concurrency. This means that programmers who develop real-time
systems must understand the pitfalls inherent in explicit and implicit synchronization. This
is especially true if the schedulability of a real-time task system relies on minimizing blocking
or high GPU utilization. Avoiding pitfalls can be accomplished through careful construction
of CUDA programs to, for example, avoid using the NULL stream or freeing memory outside
of certain time intervals. A more robust method would be to adopt middleware that handles
such problems transparently.

Our experiments indicate that GPU synchronization does not extend across GPU-using
tasks that are isolated in separate address spaces. If synchronization is the dominant limiting
factor on schedulability, it may be desirable to place each task in a separate address space
(OS process). As explained in the next section, this organization means that that CUDA
kernels from different tasks can no longer execute concurrently, but it may still be beneficial
overall if synchronization-related blocking is a greater limiting factor.

It turns out that NVIDIA may be aware of this issue. Even though it is not currently
available for embedded platforms such as the TX2, NVIDIA does provide useful middleware
for discrete GPUs: the CUDA Multi-Process Service (MPS). MPS allows kernels from multiple
processes to execute concurrently on a single GPU, while maintaining the desirable property
that GPU synchronization from one process will not affect other processes. We explore the
benefits of MPS further in Sec. 4.
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4 Concurrency and Performance

In prior work, we investigated different GPU scheduling behavior when running GPU-using
real-time task systems in two contexts: (i) each task has its own distinct address space, i.e.,
it runs as an OS process, and (ii) all tasks belong to the same address space, i.e., each task
runs as a schedulable thread within a process. We refer to these two contexts as process-based
and thread-based tasks, respectively.

While process-based tasks have the advantage of memory protection, they do not actually
execute on the GPU concurrently; instead, GPU operations are multiprogrammed in a way
that makes predictable scheduling of GPU-related resources difficult if not impossible to
achieve [1]. When operations are multiprogrammed on a GPU, their execution times depend
on contention for shared GPU resources, making it hard to bound a task’s overall execution
time. Additionally, concurrency among GPU operations may be important in order to avoid
wasting GPU processing cycles, especially when a single kernel cannot fully utilize the GPU’s
resources. Although this may be avoided by running tasks with user-defined streams in
a shared address space, a shared address space may actually reduce concurrency in task
systems where tasks regularly interfere with each other via implicit synchronization (Sec. 3).
Fortunately, NVIDIA provides a third option: middleware called the Multi-Process Service
(MPS) [20].

4.1 Multi-Process Service (MPS)
MPS enables concurrent execution of GPU operations launched by independent CPU address
spaces. It has the potential to combine the advantages of both thread- and process-based
tasks. Programs written using the CUDA API require no changes to use MPS – if MPS
is running, CUDA programs transparently issue requests to MPS rather than directly to a
GPU. Official documentation reports that MPS operates as a server process with its own
CUDA context, and that CUDA API requests are redirected from client processes to the MPS
server. Because the server’s CUDA context is effectively shared, GPU operations launched
by separate processes can execute concurrently on a shared GPU, providing the benefits of
thread-based tasks. However, MPS also continues to preserve the advantage of process-based
tasks: separate processes will not block each other with implicit or explicit synchronization.

It is not clear from available documentation how MPS actually schedules GPU operations
and whether the GPU scheduling rules revealed in prior work [1] are followed under MPS.
For example, the documentation for MPS only mentions possible overlap between kernels
and copy operations.8 Given the documentation flaws discussed in Secs. 3 and 5.2, one could
be skeptical of the veracity of this claim, so we verified experimentally that those scheduling
rules are also followed under MPS. We omit from this paper the experimental methods used
for verifying the scheduling rules; readers can refer to [1].

Maximizing the utilization of GPU resources using streams in thread-based tasks is
suggested by NVIDIA’s “Best Practices Guide” [22]. However, it would be unwise to simply
take this recommendation at face value when choosing between MPS or a process- or thread-
based task organization in a safety-critical system. Additionally, MPS is not yet supported
on embedded ARM platforms like the Jetson TX2, so the other management systems
are still necessary on some systems. Therefore, we conducted a case study on computer-vision
software, demonstrating the performance differences among the available configurations.

8 “MPS allows kernel and memory copy operations from different processes to overlap on the GPU,
achieving higher utilization and shorter running times” [20].
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Table 1 Abbreviations used for our four experimental scenarios.

Multiple Process-based Tasks Multiple Thread-based Tasks
Without MPS MP MT
With MPS MP(MPS) MT(MPS)

4.2 Case Study of Computer-Vision Tasks
Our motivation primarily remains autonomous driving, so we chose to study algorithms
for computer-vision tasks that provide functions commonly used for autonomous driving.
In evaluating the results from this case study, we consider that the real-time tasks that
use GPUs for autonomous driving may have multiple levels of criticality. Some may be
safety-critical with hard deadlines and be provisioned for worst-case execution plus a margin
for safety. Others may have only bounded tardiness requirements, or even be background
work that can be provisioned for average-case execution.

We focus here on five programs from NVIDIA’s provided sample code for VisionWorks:
Video Stabilization. Smooths shaky video content. This is often a preprocessing step
for a computer-vision pipeline.
Feature Tracking. Tracks features between consecutive frames. This algorithm is used
to track the positions of objects in a scene.
Motion Estimation. Estimates the direction of moving pixels, which is fundamental
to calculating trajectories of moving objects, e.g., pedestrians and other vehicles.
Hough Transform. (Hough) A feature-extraction algorithm; the provided sample
detects circles and lines in images.
Stereo Matching. Uses input from two cameras to generate depth information by
matching features in both frames.

Methodology. We adapted NVIDIA’s VisionWorks samples to be compatible with our open-
source experimental framework.9 These samples generally only use a single CUDA stream.
We ran four instances of the same sample program in each experiment. We configured each
instance to process 1,000 frames from a video sequence while recording per-frame response
times. Our framework allows running each program instance in a shared address space
(multiple thread-based tasks, MT) or in independent address spaces (multiple process-based
tasks, MP), both with and without the MPS server active. This produces experiments for
each algorithm in four different scenarios as summarized in Tbl. 1. Experimental results
under MT(MPS) were always similar to MT with slight overheads caused by MPS, so we omit
it in all of our results for clarity. We conducted these experiments on a Maxwell-architecture
discrete GPU with CUDA 9.0. We briefly summarize results on other devices and different
CUDA versions later.

Results. We show cumulative distribution function (CDF) and kernel density estimation
(KDE)10 plots of Hough and feature tracker as representatives in Figs. 5–8. The KDE curve
was produced using the Python package scipy.stats.gaussian_kde. In both the CDF and
KDE plots, each curve represents the recorded response-time data in an experimental scenario.

9 Again, https://github.com/yalue/cuda_scheduling_examiner_mirror.
10KDE is a statistical method for estimating a continuous probability density function (PDF) from a set

of discrete sample values.
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Table 2 Per-frame response time data (in milliseconds) of VisionWorks samples. The fastest
scenario for each time metric is indicated by bold text.

VisionWorks Samples Scenarios Max 99th% 90th% Mean Median

Video Stabilization
MP 17.55 12.88 5.43 3.31 2.69
MP (MPS) 36.73 11.12 5.37 2.81 2.06
MT 17.0 13.87 8.94 4.72 3.63

Feature Tracking
MP 5.64 3.87 1.45 1.08 0.96
MP (MPS) 14.73 6.04 1.51 1.31 1.09
MT 31.11 20.86 11.51 4.68 2.68

Motion Estimation
MP 28.64 21.25 17.33 16.75 17.24
MP (MPS) 33.05 22.66 15.75 14.3 14.89
MT 42.86 26.12 16.53 15.07 15.14

Hough Transform
MP 13.56 11.61 7.28 5.68 5.7
MP (MPS) 18.35 11.66 6.44 3.74 3.18
MT 58.65 22.64 15.82 9.12 8.94

Stereo Matching
MP 75.13 50.54 30.42 24.14 24.77
MP (MPS) 59.73 45.05 26.87 22.59 24.41
MT 125.96 58.82 34.36 20.75 18.95

For example, the curves labeled “x4 MP” in Figs. 5 and 6 represent the per-frame response
time distributions where each of four Hough instances is run in a separate process. Result
data for all five algorithms is summarized in Tbl. 2, which lists the maximum, 99th-percentile,
90th-percentile, mean, and median frame times for each scenario and algorithm.

I Observation 1. MP(MPS) exhibits good average-case performance.

Obs. 1 is supported by the data in Tbl. 2. 90th-percentile, mean, and median performance
under configuration MP(MPS) were consistently good with the top performance for three
of the five algorithms. For Feature Tracking, MP was best in all metrics, and for Stereo
Matching, MT had better mean and median performance. The results for average-case
performance indicate that using MP(MPS) would likely be an attractive option for soft-real-
time systems, e.g., systems that can occasionally drop a video frame without compromising
safety. We conjecture that the average-case performance advantage of MP(MPS) over MP in
most cases is due to improved concurrency and lower GPU context-switching overheads.

Feature Tracking was the most notable exception to Obs. 1. In this case, MP was only
slightly better than MP(MPS) when comparing the 90th-percentile, mean, and median
performance. We conducted additional experiments using NVIDIA’s CUDA-profiling tool,
nvprof, to gain some insight into this behavior. We found that Feature Tracking’s overall
execution time is heavily influenced by a large number of memory transfers, rather than
CUDA kernel executions. This likely means that MPS only provides limited GPU concurrency
benefits to Feature Tracking, which failed to outweigh other MPS-related overheads.

I Observation 2. Worst-case and 99th-percentile runtimes were typically better under MP.

While MP(MPS) largely resulted in average-case improvements, Tbl. 2 shows three of
our five applications (Feature Tracking, Motion Estimation, and Hough Transform) showed
the smallest worst-case and 99th-percentile execution times under MP. This indicates that
MP may be a better option for certain task systems where worst-case performance is more
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Figure 5 Per-frame response time CDFs for
Hough.
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Figure 7 Per-frame response time CDFs for
Feature Tracking.
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Figure 8 Per-frame response time KDEs for
Feature Tracking.

important than average-case. Our results illustrate why the trade-offs between process-based
and thread-based designs for tasks must be evaluated for individual algorithms.

I Observation 3. MP and MP(MPS) exhibit more predictable execution times than MT.

Obs. 3 is supported by Figs. 6 and 8, where the KDE shows a tight unimodal distribution
for MP and MP(MPS) but not MT. A unimodal distribution function with little dispersion
indicates that the response times exhibit low variance. MT, in contrast, shows both bimodal
(in Fig. 6) and unimodal (in Fig. 8) distributions with significant dispersions (indicating high
variance). Even if specific “spikes” are more difficult to observe in the corresponding CDF
plots, the difference in response-time ranges are also apparent from the endpoints of the
CDF curves in Figs. 5 and 7.

I Observation 4. The MT configuration generally performed poorly.

Obs. 4 is supported by Tbl. 2 and the plots. The only metrics where MT outperformed
the other scenarios were the mean and median times for Stereo Matching, and worst-case
response time for Video Stabilization (where MT was only slightly better than MP).

Other Results. In addition to the results presented above, we also conducted this case study
using CUDA 8.0 on a Maxwell discrete GPU (GTX 860M) and CUDA 9.0 on Pascal discrete

ECRTS 2018



20:16 Avoiding Pitfalls when Using NVIDIA GPUs for Real-Time Tasks in Autonomous Sys.

Listing 1 Causes implicit synchronization.
if (! CheckCUDAError ( cudaMemsetAsync (

state -> device_block_smids , 0,
data_size ))) {
return 0;

}

GPUs (GTX 1050 and GTX 1070). Even though we chose to omit tables of results from
the other GPUs and CUDA versions in this paper, we made similar observations excepting
that the performance of all configurations was better on a Pascal GPU. Additionally, the
experimental results with CUDA 8.0 on the same Maxwell GPU stayed nearly identical to
those using CUDA 9.0.

Summary. Our case study compared the impact of different GPU-sharing approaches on
the performance of computer-vision algorithms. The results we obtained for these algorithms
ran contrary to some of our observations regarding GPU concurrency from prior work [1, 26].

I Pitfall 5. The suggestion from NVIDIA’s documentation to exploit concurrency through
user-defined streams may be of limited use for improving performance in thread-based tasks.

We assumed that enabling concurrent GPU execution was of significant importance for
limiting capacity loss in real-time workloads on embedded systems, and therefore fell victim
to Pitfall 5. Instead, our results show that MT rarely outperforms tasks running as multiple
processes, even without MPS. Additionally, any performance improvement via fine-tuned
stream organization for MT can also be achieved with MP(MPS). That being said, even
though enabling concurrency using MP(MPS) is generally beneficial, it unfortunately is not
an option on ARM-based embedded platforms like the Jetson TX2. We would encourage
NVIDIA to consider this shortcoming in hope that one day it may be addressed.

5 Perils of CUDA Programming for Real-Time Tasks

In the previous sections we presented several specific pitfalls in correctly designing and running
CUDA programs for real-time tasks. Elements of both CUDA’s design and documentation
contribute to this ensemble of perils to avoid. In this section, we discuss some of the broader
categories of pitfalls.

5.1 Synchronous Defaults
As hinted in Sec. 3, one of the primary pitfalls when designing a real-time task system
that uses a GPU is that all possible blocking must be accounted for in analysis. Therefore,
reducing the amount of blocking on both the CPU and GPU is essential. On the GPU, this
requires issuing all CUDA operations to user-defined (non-NULL) streams, and carefully
controlling the use of other API functions, like cudaFree, that cause blocking via implicit
synchronization.

Even though it may seem like an easy task for a programmer to just specify a user-defined
stream as opposed to the NULL stream, we note that simple mistakes in doing so may be
easy to miss. This is particularly true when using the Async versions of CUDA API functions,
such as cudaMemsetAsync. For example, consider the code snippets in Listings 1 and 2,
which present a particular example of Pitfall 6 below.
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Listing 2 Correctly asynchronous.
if (! CheckCUDAError ( cudaMemsetAsync (

state -> device_block_smids , 0,
data_size , state -> stream ))) {
return 0;

}

I Pitfall 6. Async CUDA functions use the GPU-synchronous NULL stream by default.

Listing 1’s call to cudaMemsetAsync is missing a final argument specifying a user-defined
stream, which causes the NULL stream to be used by default. As pointed out in Sec. 3.1.2,
NULL-stream usage causes implicit synchronization and hence blocking. This mistake is
corrected in Listing 2. This specific mistake actually led to months of mystifyingly inconsistent
results in our own experiments – despite our relatively deep experience examining the
subtleties of CUDA behavior (note that these code snippets are parts of much larger listings).
Would an ML application developer catch such a mistake or appreciate its impact? Note that
NVIDIA’s CUDA compiler does not catch this mistake because the compiler is based on the
C++ programming language, which allows default arguments to functions.

Even though the examples in Listings 1 and 2 only use cudaMemsetAsync, Pitfall 6 applies
to other CUDA API functions as well, such as cudaMemcpyAsync. The fact that the CUDA
documentation indicates that these functions cause implicit synchronization, as discussed in
Sec. 3 and Sec. 5.2, makes potential programmer errors even harder to notice in cases where
synchronization is due to NULL-stream usage rather than memory operations.

To summarize this discussion, CUDA provides a brittle programming environment:
difficult-to-spot mistakes can have profound consequences for real-time tasks.

5.2 Flawed Documentation
Another substantial danger stems from the inaccurate official documentation provided by
NVIDIA. While function signatures and data structures seem to receive accurate (but often
sparse) official documentation, scheduling and synchronization remain under-discussed. Our
group’s past work includes demystifying some scheduling rules [1]. In our work to demystify
implicit synchronization (see definition in Sec. 3.1.2), however, we came across not only
missing documentation, but incorrect documentation.

I Pitfall 7. Observed CUDA behavior often diverges from what the documentation states or
implies.

Consider Tbl. 3. In all but one of the cases we investigated, the documentation claims
implicit synchronization will occur when it does not. While this absence of synchronization
may positively benefit performance, it also may cause incorrect timing analysis. Furthermore,
program logic may be broken in the (albeit unlikely) case that the program relies on a
function like cudaMemsetAsync to trigger GPU synchronization.

Unfortunately, the documentation also contains less-benign flaws. Take cudaFree and
cudaFreeHost as an example. Our experiments in Sec. 3 found these functions to not only
cause implicit synchronization, but block other CPU tasks from proceeding while cudaFree
waits on the GPU. Much to our surprise, the documentation mentions neither of these side
effects, leaving the reader to assume that these functions behave similarly to other CUDA
functions and have no side effects.
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Table 3 Observed vs. documented synchronization sources in CUDA. For cudaMemcpyAsync we
distinguish the direction of copy between device and host: (D-D) internal to GPU memory; (D-H)
GPU memory to CPU memory; (H-D) CPU memory to GPU memory. *The documentation is
contradictory for these instances, but the more detailed option indicates that these functions only
cause synchronization if host memory is not page-locked. We were unable to observe this regardless
of whether host memory was page-locked or not.

Observed Behavior Documented Behavior

Source
Blocks Other
CPU Tasks

Implicit Sync.
(Sec. 3.1.2)

Caller Must
Wait for GPU

Implicit Sync.
(Sec. 3.1.2)

Caller Must
Wait for GPU

cudaDeviceSynchronize No No Yes No Yes
cudaFree Yes Yes Yes No (undoc.) No (impl.)

cudaFreeHost Yes Yes Yes No (undoc.) No (impl.)
cudaMalloc ? No No Yes No (impl.)

cudaMallocHost ? No No Yes No (impl.)
cudaMemcpyAsync D-D No No No Yes No
cudaMemcpyAsync D-H No No No Yes* No
cudaMemcpyAsync H-D No No No Yes* No
cudaMemset (sync.) No Yes No Yes No

cudaMemsetAsync No No No Yes No
cudaStreamSynchronize No No Yes No Yes

Our experiments also revealed that cudaMalloc and cudaMallocHost may also cause
cross-task CPU blocking in a similar manner to cudaFree in certain situations, even though
these functions do not trigger implicit synchronization. As we have not yet determined the
specific causes for this behavior, this property is indicated by an entry of ‘?’ in certain cells
in Tbl. 3. In any case, we failed to find any mention of this variant of CPU blocking in the
CUDA documentation, and investigating these functions remains an open topic that we plan
to explore in future work.

An especially worrying pitfall is the following:

I Pitfall 8. CUDA documentation can be contradictory.

In one case, namely cudaMemcpyAsync, we discovered that the CUDA documentation
actively contradicts itself. Section 3.2.5.1 of the CUDA Programming Guide states “The
following device operations are asynchronous with respect to the host: . . . Memory copies
performed by functions that are suffixed with Async,” but Section 2 of the CUDA Runtime
API documentation states “For transfers from device memory to pageable host memory,
[cudaMemcpyAsync] will return only once the copy has completed.” This raises further doubts
about the correctness of other parts of the CUDA documentation.

We note that the CUDA API contains 146 non-deprecated or compatibility-related
functions, and we have only tested a small fraction of these in depth. Therefore, it is likely
that our findings with Pitfalls 7 and 8 apply to other portions of the documentation that we
have yet to observe.

5.3 Unknown Future
All of the pitfalls discussed in this paper, as well as the need to compare the alternatives
considered in Sec. 4 empirically, can be attributed to a single overarching problem: the
black-box nature of current GPU-enabled platforms means that developers do not have a
reliable model of GPU behavior. Much of our group’s prior work has focused on developing
such a model. However, this highlights what is perhaps the most important pitfall:
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I Pitfall 9. What we learn about current black-box GPUs may not apply in the future.

Despite the fact that we validated our experimental results on several of the most recent
CUDA versions and GPU architectures, there is no guarantee that our results will hold after
future GPU-architecture or CUDA-version updates. This applies not only to rules about
scheduling or blocking, but also may apply to performance characteristics like memory-access
times, as we found in prior work [26].

Even though other safety-critical hardware inevitably undergoes changes and updates,
future-proof programs can still be developed against a stable specification. Likewise, the
only way to truly mitigate Pitfall 9 is for GPU manufacturers to release stable, accurate
documentation about their GPU platforms, along, preferably, with giving developers greater
control over GPU scheduling and synchronization. Only then we can have a reliable GPU
model upon which to base real-time analysis and certification. We hope that work such as
ours signals to manufacturers like NVIDIA that greater openness is a desirable feature when
marketing in safety-critical domains.

Unfortunately, there is little indication that NVIDIA plans to move towards open hardware
or software in the immediate future. In the meantime, one of our continuing objectives is
to produce tools, such as our experimental framework, that can be quickly adapted to new
GPU hardware. So far, our tools have allowed us to quickly re-validate our prior results
every time NVIDIA updates its black-box hardware or software.

6 Conclusion

Vehicles on the road today are already running highly complex GPU-accelerated applications.
We anticipate a future where safety-critical autonomous vehicles must be certified, but
this will require a change in the GPU-programming paradigm. Currently, computer-vision
applications are developed with little guidance about how to achieve temporal safety. Even
if a single programmer or application avoids some mistakes, it is increasingly difficult to
avoid all of them, especially as applications and task systems grow in complexity. This
necessitates work such as ours, which seeks to reduce the gap between computer-vision
application developers and those responsible for certifying new systems’ real-time safety.

With little openness in NVIDIA’s hardware and software ecosystem, this paper contributes
a list of potential pitfalls when developing CUDA applications for real-time systems. Reasons
for these pitfalls include GPU synchronization, application performance, and problems with
documentation. We uncovered these pitfalls via microbenchmark experiments, examining the
performance of real-world computer-vision applications, and a careful reading of official GPU
documentation. While there is no guarantee of stability in our observations as NVIDIA’s
hardware and software continues to evolve, we hope that our open-source experimental
system will at least make it apparent when changes do occur.

This paper is part of an ongoing project with the aim of developing an abstract model of
GPU execution. In the future, we plan to continue this investigation and eventually develop
middleware capable of intercepting and reordering or delaying GPU operations. Our hope is
that the control afforded by such middleware will enable us to produce reasonable analytical
bounds on blocking and response times, while maintaining high GPU utilization wherever
possible. However, even with better management, certifiable safety in the face of GPU
sharing requires a guarantee that pitfalls including blocking due to GPU synchronization
are controlled, which is only possible if developers of GPU-using software are aware of the
consequences and how to avoid them. Fortunately, the best practices we have laid out herein
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should alleviate much of the strain on application developers on their first foray into real-time
systems.

In addition to NVIDIA’s GPU, we will also investigate other GPU implementations,
e.g., AMD’s open-source GPU runtime and driver stack. Given the chances of modifying
AMD’s open-source implementation, we are interested in improving the real-time guarantees
of AMD’s GPUs and comparing them with NVIDIA’s GPUs.
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Abstract
Artificial Software Diversity is a well-established method to increase security of computer sys-
tems by thwarting code-reuse attacks, which is particularly beneficial in safety-critical real-time
systems. However, static worst-case execution time (WCET) analysis on complex hardware in-
volving caches only delivers sound results for single versions of the program, as it relies on absolute
addresses for all instructions. To overcome this problem, we present an abstract interpretation
based instruction cache analysis that provides a safe yet precise upper bound for the execution of
all variants of a program. We achieve this by integrating uncertainties in the absolute and relative
positioning of code fragments when updating the abstract cache state during the analysis. We
demonstrate the effectiveness of our approach in an in-depth evaluation and provide an overview
of the impact of different diversity techniques on the WCET estimations.

2012 ACM Subject Classification Software and its engineering → Real-time systems software

Keywords and phrases WCET, static analysis, abstract interpretation, artificial diversity, cache
analysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.21

1 Introduction

Cyber-Physical Systems (CPS) have an ever increasing impact on our life as more systems are
controlled by computers, which are highly interconnected and even connected to the internet.
Among these systems are hard real-time systems such as airbag or ABS controllers, where
missing a deadline is considered a system failure. If such a functionality is safety-critical,
e.g. the ignition of an airbag, the developer is required to provide guarantees on safety and
timing properties. To provide timing guarantees for given system, the worst-case execution
time (WCET) needs to be determined. Static WCET analyses deliver a safe upper bound of
the execution time of a task. In contrast, dynamic analyses under-approximate the execution
time and are thus not feasible to be used in safety-critical systems.

When safety-critical systems are exposed to potential attackers, assuring safety implies
also dealing with security issues. In particular, control-flow attacks are a threat to CPS
because approximately 82% of the systems are developed in unsafe languages [12]. Also,
CPS are often deployed in hostile environments. Existing run-time countermeasures cannot
be applied due to limited resources or limited operating system support. Recent events
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demonstrate that even in safety-critical applications, where strict regulations are in place,
attacks are successfully mounted [28,33].

Formal methods to statically prove the absence of vulnerabilities (e.g. Astrée [29] or
CPAChecker [3]) often impose high usage effort and cost or considerable limitations in
language and development possibilities, which keep them from being widely adapted in areas
where it is not enforced by regulations. Also, defensive techniques that specifically target
known attacks and vulnerabilities are often circumvented by new kinds of attacks.

Artificial software diversity [17, 23, 32] is an established way to enhance security in
general purpose computing systems by thwarting code-reuse attacks such as return-oriented
programming [6, 35]. The basic idea is to hide the memory layout from the attacker by
compiling or loading semantically equivalent versions of the program with varying memory
layout. Without detailed knowledge of the memory layout, it is considerably harder to
mount a successful attack using existing code. Hiding the memory layout does not prevent
attacks entirely, but it can lower the probability of success so that the attack becomes
infeasible. Diversity also copes very well with new kinds of attack, provided the attack
relies on knowledge of the memory layout, and, once introduced into the tool chain, does
not require additional actions by the developer. In addition, diversity enables redundant
systems, where independent replicas show the same intended behavior, but react differently
to code-reuse attacks. As long as an attack on a replica does not interfere with the timing of
other replicas, the system can tolerate a subset of the replicas to be compromised.

A WCET of a task in a diverse system has to be an upper bound for all variants of the
program because the timing guarantees are only sound if they are guaranteed for any variant
at any time. Existing static WCET analyses that incorporate instruction caches perform a
detailed micro-architectural analysis that relies on absolute fixed instruction addresses. Using
the diversification techniques we consider, the code is split into a fixed set of code parts,
whose order is varied among the variants (we refer to these parts as fragments). Thereby,
the absolute positions of fragments and their relative distances are unknown to the WCET
analysis. So far, due to this contradiction, state-of-the-art static WCET cache analysis is not
applicable to diverse systems, as it cannot guarantee an upper bound for all variants.

To overcome this problem, we introduce an instruction cache analysis, which is based
on the abstract interpretation-based approach originally proposed by Ferdinand [15], and
later improved by Ballabriga [1]. Our key idea is as follows: To ensure soundness, we assume
that all instructions are possibly located in any location in a cache block, and we apply the
worst-case cache behavior to all sets of blocks with unknown relative distance to the current
basic block. Together, this ensures that our analysis neither relies on absolute instruction
addresses nor on their relative distances, which both may be changed by diversification. To
still be able to calculate tight upper bounds on the WCET, we retain all relative positioning
within a fragment, we consider all possible absolute addresses of a fragment and we tightly
limit the impact of cache accesses for cache contents of other fragments to the worst-case
cache access.

Our approach universally supports all regular instruction cache architectures. In our exper-
iments with small caches, the WCET estimates are tight, with an average over-approximation
of 8.6%, compared to the highest WCET obtained by the non-diverse analysis applied to a
number of variants. The estimates are a considerable improvement over an analysis without
caches (assuming all miss for every memory access). Our benchmark results average at only
39.8% of the WCET without considering a cache.

The rest of this paper is structured as follows: In Section 2, we give an overview of
artificial diversity techniques, and we introduce the basic concepts of current instruction
cache analyses. We introduce our approach in three steps: First, in Section 3, we discuss the
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impact of changes in absolute and relative position of code fragments on the cache behavior
and analysis. Second, in Section 4, we present our analysis approach. Third, we introduce
our worst-case cache hit classification in Section 5. Section 6 contains a detailed evaluation of
our approach using well-known WCET benchmark programs. Section 7 contains a discussion
of related work. And, finally, in Section 8, we conclude with a discussion of our findings and
future work.

2 Background

In this section, we first briefly introduce artificial diversity, which serves as a basis for
the different types of diversity we use in our evaluation. Then, we introduce the WCET
instruction cache analyses our work is based on in Section 2.2.

2.1 Artificial Diversity
Artificial software diversity techniques [17, 23] are run-time countermeasures against control-
flow attacks that are based on hiding information from the attacker by automatically creating
many variants of the same program. The concept is based on the fact that the attacker
needs information such as the detailed layout of parts of the memory to mount certain
attacks successfully. Diversity is most useful against code-reuse attacks [4, 7, 34] on systems,
where code injection is prevented using data execution prevention (DEP). The diversification
can be introduced into every stage of the software development life cycle. Comprehensive
overviews of control flow attacks and their countermeasures can be found in [35,38]. It was
demonstrated (e.g., [6]) that code-reuse attacks are a threat to CPS, many of which are
safety-critical real-time systems.

The most prominent example of artificial diversity is address space layout randomization
(ASLR) [5, 32]. In ASLR, the base addresses of some or all segments of the virtual memory
of a process are randomized. ASLR is part of standard desktop operating systems such as
Windows and Linux.

In addition to the segment-level diversity of ASLR, many other variations have been
proposed, such as the substitution of instructions or small sequences with equivalent ones,
garbage code insertion, function and function variable reordering, basic block level code
shuffling, instruction-level diversity [23]. In earlier work [14], we have proposed a way to
apply block-level diversity to safety-critical real-time systems.

In this paper, we concentrate on diversity techniques whose transformations are limited
to relocating and reordering fragments of the code without changes in the control flow, code
size, and instructions. These can be applied to the entire instruction memory, and enable us
to precisely predict the WCET of all tasks of the executable. More specifically, we support
the following kinds of diversity:

Segment-level diversity: Similarly to ASLR, the entire text segment is relocated to
a random position in memory, assuming a (virtual) memory space that is considerably
larger than the program. In contrast to ASLR, segment-level diversity does not have to
be aligned to memory pages. The segment (only one fragment segment-level diversity)
can be located at any address, which includes addresses that are mapped to any offset in
a cache line.
Function-level diversity [22]: Just as the compiler is free to choose the order of
functions and global data in the final executable, a variant can contain the functions
in random order without any semantic difference to other variants. This enables a
much larger number of possible variants than in segment-level diversity. The number of
fragments equals the number of functions in the code.

ECRTS 2018
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Block-level diversity [14]: The code is split into movable instruction sequences (MIS),
which form the fragments, whose last instruction is an unconditional jump (e.g. jmp,
ret). These fragments contain at least one basic block (BB) of the control flow graph
(CFG).

The diversity techniques we consider can - for instruction cache analysis - be characterized
by the diversity alignment and the fragmentation. We define the diversity alignment as the
set of offsets O = {o1, ..., oK} within a cache line an instruction can be located at. The
number of offsets is equal to the cache line size divided by the alignment. For example, if a
cache line has 16 Bytes, and the placement of code fragments is aligned to 4-Byte instructions
(e.g. in ARM binaries), there are K = 4 different offsets a basic block can have relative to
a cache line. If the alignment is greater or equal to the cache lines (e.g. 4 kByte pages in
ASLR), there is only one offset K = 1. The number of fragments N , or, more specifically,
the mapping of instructions and basic blocks to fragments depends on the diversification
techniques mentioned above. We assume this information is given during our analysis using
a function frag: I → F , where I is the set of instructions the program consists of and
F = {f1, ..., fN} the set of fragments.

2.2 Worst-Case Execution Time Analysis

Static WCET analyses typically consist of three parts: First, control flow and data flow
analyses are used to create a model of the program in form of a control flow graph, flow
facts such as loop bounds, and variable assignments or ranges. In a second phase, the
micro-architectural analysis determines local timings, taking into account the actual timing
behavior of the processor. Finally, the execution time is maximized over all control-flow
paths, usually by representing the findings of the other phases as constraints in a linear
program that can be solved by a linear program solver. This technique is called implicit
path enumeration technique (IPET) [36]. While phase one and three are independent of
the actual memory layout of the program on the target machine, phase two depends on the
actual hardware and on the granularity of the analysis.

Instruction caches exploit the spatial and temporal proximity of executed instructions in
the memory [27]. They are constructed so that instructions that are located close to each
other are not conflicting. Therefore, the behavior of caches directly depends on the absolute
position of each instruction (or basic block) and on the relative distance of code fragments
that are executed on the same path. Any change in the program location or the order of
code fragments will directly affect the WCET analysis result.

2.3 Instruction Cache Analysis

The state-of-the-art technique to represent caches in WCET analyses is based on Ferdinand et.
al. [16]. There, an abstract interpretation based [8] separate cache analysis was introduced,
which classifies memory accesses before the global WCET maximization phase. In this
section, we briefly introduce the non-diverse analysis. Note that, while non-diverse analyses
typically map a cache state from cache to memory, we define it the other way around. This
helps in defining our analysis in a more compact way in Section 4.
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2.3.1 Cache Definition
Caches are small buffer memories with shorter access times than the main memory. They
are used to avoid long waiting times when accessing memory locations multiple times. They
are mainly defined by the following values: The line size SL defines the number of bytes that
is cached together (cache block), i.e. the size of the portion of main memory that is loaded
on a cache miss. The associativity A characterizes the number of locations, into which a
memory block can be loaded. The capacity SC is the total number of bytes in the cache,
with n = SC

SL
blocks in the cache. A set consists of all memory locations that can be loaded

into a cache line, and the number of different sets equals n
A . A cache with A = 1 is called

direct-mapped, and a cache with A = n is called a fully-associative cache.
As a replacement strategy, we focus on the least recently used (LRU) as it is most

predictable, and we leave the investigation of other replacement strategies to future work.
As we are using instruction caches and we assume that no write accesses can be made, write
strategies are of no importance to our analysis.

2.3.2 Concrete Cache State
The cache itself is constructed as follows: A cache set is a sequence of cache lines
sx = {lx1 , ...., lxA

}, with x denoting the index of the set. Note that the order of the lines
does not correspond to their location in memory. Instead, the index depicts the age of the
line content in the LRU replacement, with 1 being the youngest. The whole cache is the
union of all sets, C =

⋃
{s1, ...., s n

A
}. We also assume a special cache line {l⊥}, denoting the

cache line that all memory blocks map to that are not currently in cache. The main memory
is defined as a sequence of cache blocks in memory M = {m1, ...., mk}, with k ∗ SL as the
total program size. A cache state c is a function of each cache block to a cache line:

c : M → C ∪ {l⊥}

The set of all cache states is denoted Ĉ.
A concrete cache state (CCS) fulfills the property that at most one cache block can be

mapped to each cache line:

c(m1) = c(m2)→ (m1 = m2 ∨ c(m1) = c(m2) = l⊥) (1)

We use auxiliary functions: set(m) : M → N maps cache blocks to cache set indices. And
age : Ĉ ×M → N delivers the age of a cache block in the cache, or ∞ if not cached.

age(c, m) =
{
∞ |c(m) = l⊥
i |c(m) = lsi

We define the empty cache as a function that maps all cache blocks to l⊥:

c⊥(m) = l⊥

An update of the cache state c at a memory reference m using the LRU replacement
strategy is described by an update function: U : Ĉ ×M → Ĉ that updates the mapping of
all cache blocks m′ in a cache state c, resulting in a new cache state. The currently accessed
cache block m is in the first line of its set, ls1 , as it is (most recently) accessed or loaded. If
it was not in cache, all cache blocks m′ 6= m move one cache line “down" in age (degrade
from lsa′ to ls(a′+1)), with the oldest one (with a′ = A) being evicted (degraded from their
previous cache line lsa′ to l⊥). If the access to m is a hit, only the cache blocks of the same
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Figure 1 Must analysis example.

set, which were cached more recently (a > a′), are degraded. In any case, cache blocks of
other sets are not affected.

U(c, m) = Uh(c, m, set(m), age(c, m))

Uh(c, m, s, a)(m′) =


ls1 |m′ = m

ls(a′+1) |m′ 6= m ∧ c(m′) = lsa′ ∧ a′ < A ∧ a > a′

l⊥ |m′ 6= m ∧ c(m′) = lsa′ ∧ (a′ = A ∧ a =∞)
c(m′) |otherwise

The concrete cache state after executing a path that contains a sequence of memory
references P = 〈m1, ..., my〉 is given as cP = U(...U(U(c⊥, m1), m2)..., my).

Note that we define the cache states for the whole cache at once, although the behavior
of the different sets is independent. This makes it easier for us to explain our own analysis
later on.
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2.3.3 Must Analysis
In an abstract cache state (ACS), more than one cache block can be mapped to a cache
line, i.e. property (1) may not hold. From the cache perspective, each cache line can be
associated with a set of cache blocks. With these abstract cache states, cache information
of all program paths leading to the basic block can be accumulated. Using the theory of
abstract interpretation and data flow analysis [9], the abstract cache states of the complete
control flow graph are determined using a fix point algorithm.

The LRU must analysis is used to identify which cache blocks are all hit (AH), i.e. cache
blocks which never generate a cache penalty. The must analysis creates abstract cache states,
where each memory block maps to the cache line that corresponds to its oldest possible age
in the cache at the given program point.

An update of a cache block m of an ACS in the must analysis Umust is the same as
the update U of a CCS: Cached blocks of younger age are degraded, and blocks of age
A are evicted if there was a miss. An important difference to the CCS is that the ACS
might contain cache blocks of the same age as m. These are not degraded, because the
ACS holds the oldest possible age, so those blocks are in fact either younger than m, where
degradation would lead to an age not older than m’s age, or older, and therefore do not
need to be degraded. Given the incoming ACS, the cache behavior of the basic block is
independent of the path that is currently executed. The relevant change is the introduction
of the join-function that is used to merge two abstract cache states at program points where
different paths join, i.e. at the start of basic blocks with at least two incoming edges. Here,
for each memory block, the most pessimistic cache line is chosen, i.e. the line with the oldest
associated age or l⊥ if the memory block is not in the cache in at least one of the outgoing
ACS of the basic blocks at the source of the incoming edges.

Umust(c, m) = Uh(c, m, set(m), age(c, m))

Jmust(c1, c2)(m) =


l⊥ |c1(m) = l⊥ ∨ c2(m) = l⊥
c2(m) |age(c1, m) < age(c2, m) ∧ c1(m) 6= l⊥
c1(m) |age(c1, m) ≥ age(c2, m) ∧ c2(m) 6= l⊥

Figure 1 gives an example of the results of the must analysis. It contains a CFG of a
short example program, and the corresponding ACS after the fix point of the analysis was
reached (assuming bb0 is the entry node and the cache is empty at start). The cache that
is used here is a 2-way associative cache with four sets and the block size SL is set so that
it contains two fixed-size instructions. The boxes with rounded corners are basic blocks,
and they are split horizontally into one part per instruction. The first number depicted in
each instruction is the cache block it belongs to and the second is its corresponding cache
set. For example, the first two instructions of bb1 are in cache block 1, which belongs to
cache set 1. Along the edges of the CFG there are the ACS. The ACS tables contain a row
for each age of cache contents with the youngest on top. The cache contents are arranged
by set, starting at set 1 from the left. This way conflicting cache blocks are in the same
column (e.g. cache blocks 1, 5 and 9 are conflicting in set 1). When a basic block is executed,
the update function Umust is applied to the incoming ACS, resulting in the ACS depicted
at the outgoing edges. For example, in bb3 the cache blocks 6 and 7 are accessed, which
corresponds to changes in sets 2 and 3. After the update, cache blocks 6 and 7 are in the
ACS at age 1. The conflicting cache blocks 2 and 3 are degraded from age 1 to age 2, and
cache block 10 is evicted because it was already at age 2. The entry ACS of bb4 shows an
example application of the Jmust: The oldest age of cache block 1 is age=2, therefore this is
its resulting age. Cache block 7 is only cached after bb3, and not after bb2, therefore it does
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not appear in the resulting ACS. The check mark marks the memory block access that is
identified as a hit by the must analysis of this example.

2.3.4 May and persistence analysis

The may analysis is used to classify cache blocks as all miss (AM). It is similar to the must
analysis, with the difference that it associates each memory block with the cache line of the
youngest age the memory block may have. Another important analysis is the persistence
analysis to classify cache blocks as first miss (FM) [30], causing a cache penalty exactly
once in a specific scope. The first abstract interpretation based analysis by Ferdinand [16]
uses a converted may analysis, whose ACS contains the oldest possible age of a cache block
up to age A + 1. Any block that cannot have reached age A + 1 at a program point is
persistent. This analysis does not perform well on nested loops. Ballabriga [1] proposed
multi-level persistence: A persistence level is determined for each loop block m is part of.
This is achieved using a stack of persistence ACS, where a new empty element is pushed on
loop entry. Using this loop context information, the outermost loop in which the block is
persistent can be determined.

Cache blocks that cannot be identified by any of the analyses are classified as non-classified
(NC ), which, in a WCET analysis, is equal to AM.

3 Impact of Diversity on Caches

Instruction caches exploit the temporal and spatial proximity of the instructions executed
alongside a path. Artificial diversity (relocating and reordering) impairs spatial proximity.
Therefore, a negative impact on caching behavior and thus on the average performance can
be expected. Moreover, static instruction cache analysis depends on absolute and relative
addresses. Diversity worsens the predictability of the cache behavior because for every
uncertainty, the worst case has to be assumed.

To clarify what the impact on the instruction cache analysis is, we discuss illustrating
examples. Figure 2a and 2b show examples of the different caching behavior of the same
basic blocks with different absolute positions. Figure 2a shows a basic block that in version
1 covers two cache blocks (m2, m3) and can therefore cause at worst two cache misses. In
version 2, the same basic block is moved to another position where it covers 3 cache blocks
(m3, m4, m5). Similar to that, Figure 2b shows a loop that just fits into the cache. Moving
it by half a cache line, as in version 2, creates a conflict between the first and the last
block. These examples show that the impact of absolute address changes of a basic block
corresponds to different offsets of its instructions in the cache line. This is the case for every
cache associativity.

Figure 2c shows two basic blocks whose relative distance differs in the two versions. Now
the number of cache blocks per basic block is the same, but the two basic blocks cover
conflicting cache blocks. In combination with the different possible offsets this means that
every instruction of a basic block in fragment f1 can be in conflict with every instruction in
fragment f2, located at every possible offset. The impact on relative addressing is a concern
for caches with A < n, because changing distances of cache blocks might also change their
set associativity.



J. Fellmuth, T. Göthel, and S. Glesner 21:9

version 1 cache version 2
m1
m1
m2
m2
m3
m3
m4
m4
m5
m5
m6
m6

l1
l2
l3
l4

m1
m1
m2
m2
m3
m3
m4
m4
m5
m5
m6
m6

0x00

...

0x00

...
m2
m2
m3
m3 m3

m4
m4
m5

2 misses

3 misses

(a) Absolute addressing of single basic block.
version 1 cache version 2

m1
m1
m2
m2
m3
m3
m4
m4
m5
m5
m6
m6

l1
l2
l3
l4

m1
m1
m2
m2
m3
m3
m4
m4
m5
m5
m6
m6

0x00

...

0x00

...
m2
m2
m3
m3
m4
m4
m5
m5

m2
m3
m3
m4
m4
m5
m5
m6

loop: no
conflicts m2 �m6

(b) Absolute addressing of loop.
version 1 cache version 2

m1
m1
m2
m2
m3
m3
m4
m4
m5
m5
m6
m6

l1
l2
l3
l4

m1
m1
m2
m2
m3
m3
m4
m4
m5
m5
m6
m6

0x00

...

0x00

...
m2
m2
m3
m3
m4
m4
m5
m5

m1
m1
m2
m2

m5
m5
m6
m6

no conflicts
m1 �m5
m2 �m6

f1
f2

(c) Relative distance of two basic blocks.

Figure 2 Impact of basic block addresses on cache behavior.

The resulting insights of the impact of diversity are:
Cache sets cannot be treated independently because every instruction of f1 may affect
f2.
Fragments can be located at different offsets relative to a cache line. As this may affect
cache sets as well, the offsets cannot be handled separately as well.
The number of cache blocks covered by a single basic block and the mapping of instructions
to cache blocks differ in different versions. Therefore, a classification of cache blocks into
the classes AH, AM, FH and NC is not feasible anymore.

4 Instruction Cache Analysis for Diversified Programs

Our instruction cache analysis is based on abstract interpretation similar to the analyses
described in Section 2.3. We use the insights of Section 3 to define an ACS and its update
and join functions so that we can cope with diversity. The key idea is as follows:

For every fragment in F , we assume an own virtual memory in our ACS. This way
we achieve independence of the fragments and the cache sets within and we get rid of
overlapping cache blocks in adjacent basic blocks of different fragments. Note that the
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size of the memory representation is similar to the memory before, because of the smaller
size of the fragments.
We create an ACS for every possible offset within cache lines a fragment can start at.
That way, we can find the worst-case timing for a basic block.
At the transition of control flow from one fragment to another, every relative distance of
addresses is possible. To address this uncertainty, the worst case (that depends on the
analysis) is applied to ACS for all offsets of cache blocks of other fragments. That way,
we do not have to create a tree of ACS in combination of all possible fragment offsets
along a path.

These features allow us to adapt to diversity and at the same time to keep and use all
the information available during updates in the abstract interpretation fix point algorithm:
Relative positioning within a fragment is fully available. Relative intra-fragment positioning
information and absolute positioning information are reduced to the worst case of spatial
locality, which still allows us to exploit the temporal locality of instructions.

Our abstract cache model for the must analysis is as follows: The cache C is characterized
as a set of cache lines (see Section 2.3). The memory model consist of N different virtual
memories M consisting of cache blocks m, one for each fragment in F . To also represent
all possibilities in absolute addressing (K offsets), the memory representation results in
O × F ×M . Our abstract cache state function is adjusted accordingly to map every cache
block of the new memory representation to a cache line:

c̃ : O × F ×M → C ∪ {l⊥}

C̃ is the set of all cache states, and c̃⊥ with c̃⊥(o, f, m) = l⊥ represents the empty
cache state. As described in Section 3, there is no direct affiliation of an instruction with a
cache block in our abstract model, as it depends on an offset. In addition to the function
frag : I → F , we assume the function block : O × I →M , which delivers the cache block m

of an instruction i within its fragment, given that it starts at an offset o. Given the premise
that all cache blocks of a fragment f1 are potentially in conflict with the cache blocks of
another fragment f2, the notion of cache sets is only valid within a fragment. Also, as only
the conflicts between blocks (the distance) are of importance and not the actual set (the
absolute set number or address), we set the start of all fragments to the current offset o,
starting in the first set.

We use the following auxiliary functions, to deliver the set number and the age of a cache
block in a cache state analogous to Section 2.3, along with a shorthand notation for the age
of an instruction i at offset o fetched from cache:

s̃et(o, f, m) : M → N
˜age : C̃ ×O × F ×M → N

˜ageinst : C̃ ×O × I → N
˜ageinst(c̃, o, i) = ˜age(c̃, o, frag(i), block(o, i))

For better readability of the following definition of our must analysis, we define two
additional functions: deg : C ×N→ C is used to update (degrade) a cache block mapping in
a cache state. It selects a new cache line of the same set according to a given age a.

deg(l, a) =


l⊥ |l = l⊥ ∨ (a =∞∧ l = lsA

)
ls(a′+1) |l = lsa′ ∧ a > a′ ∧ a′ < A

lsa′ |l = lsa′ ∧ (a ≥ 0 ∧ a ≤ a′)
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loadwc : C̃ × P (I)→ N determines the oldest age of a hit over a set of instructions and
all offsets, or a miss if any instruction misses at any offset. This resembles the worst-case
cache degradation of cache blocks whose relative distance to the instructions in i is unknown.

loadwc(c̃, 〈i1, ....ix〉) = max
i∈{i1,...,ix}

o∈O

( ˜ageinst(c̃, o, i))

Our update function ŨmustBB
is applied at basic block level in two steps: First, we perform

the update of cache block mappings in the ACS that belong to the same fragment as the
basic block (Ũmust), and in a second step we degrade the cache blocks of the other fragments
by the worst-case D̃must.

ŨmustBB
(〈i1, ..., ix〉, c̃) = D̃must(Ũmust(...(Ũmust(c̃, i1), ..., ix), 〈i1, ..., ix〉)

As stated earlier, our update function Ũmust has to be applied to instructions rather than
cache block references, because the mapping between those differs with different offsets. The
update is therefore performed per instruction i, which together define the virtual memory
space O×F ×M . Cache block mappings for each offset o′ in the same fragment are updated
in the same way as in the regular must analysis: If they are in another set, they stay
unchanged. Otherwise, they get degraded according to the previous cache state of i and o.

Ũmust(c̃, i)(o′, f ′, m′) =


deg(c̃(o′, f ′, m′), a) |f = frag(i) ∧m = block(i, o′)

∧f ′ = f ∧ c̃(o′, f, m) = lsa

∧set(o′, f, m) = set(o′, f ′, m′)
c̃(o′, f ′, m′) |otherwise

All cache blocks of other fragments get degraded in D̃must by the worst-case cache access
(oldest cache hit or eviction loadwc) that any of the instructions of that basic block may suffer
at any offset, as they potentially conflict with that worst-case instruction. This pessimistic
way to cope with the uncertainty in relative distances enables us to keep the analyses and the
ACS local, combining all possible paths in the original CFG and all possible combinations of
offsets of fragments in a memory model that does not grow exponentially with the number
of fragments.

Note that this definition of the worst-case cache access assumes that no cache conflicts
can occur during the execution of a basic blocks, as the worst case access is a single miss.
This can be achieved by limiting the size of a basic block to SC

A −
SL

2 in the preceding
CFG construction. The definition uses the implicit property of the diversification that all
instructions of a basic block are part of the same fragment.

D̃must(c̃, 〈i1, ..., ix〉)(o′, f ′, m′) =
{

deg(c̃(o′, f ′, m′), loadwc(c̃, 〈i1, ..., ix〉) |f ′ 6= frag(i1)
c̃(o′, f ′, m′) |otherwise

The join function is adjusted to the new memory model in the ACS. No additional
pessimism is required at this point, because the worst-case cache behavior is already applied
during the updates.

J̃must(c̃1, c̃2)(o′, f,′m′) =


l⊥ |c̃1(o′, f ′, m′) = l⊥ ∨ c̃2(o′, f ′, m′) = l⊥
c̃2(o′, f ′, m′) | ˜age(c̃1, o′, f ′, m′) < ˜age(c̃2, o′, f ′, m′)

∧c̃1(o′, f ′, m′) 6= l⊥
c̃1(o′, f ′, m′) | ˜age(c̃1, o′, f ′, m′) ≥ ˜age(c̃2, o′, f ′, m′)

∧c̃2(o′, f ′, m′) 6= l⊥
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Figure 3 illustrates the must analysis for diverse software. It contains the same program
and cache setting as Figure 1. The cache blocks for each instruction i are named f.m, where f

refers to the fragment and m is the cache block index within this fragment. The instructions
in the basic blocks (rounded rectangles) now contain the cache block every instruction maps
to at the two different offsets, separated by slashes. The three dimensions of the ACS are
displayed as tables with a column for each offset, and where the rows represent the worst-case
cache ages for each cache block in cache, with the youngest at the top. In the update of bb2,
we can see the regular must analysis within a fragment: In the offset 0 ACS, cache blocks
1.0 and 1.1 are degraded because they conflict with 1.4 and 1.5. Cache block 1.2 stays in
the same line because it gets accessed again. In the offset 0 ACS, 1.2 stays in the top line
because there is no conflict with any of accessed blocks, whereas 1.0 and 1.1 are in conflict
here as well. The update of the ACS of the different offsets is entirely independent. In bb3
and bb4, we can see how a cache access in one fragment leads to updates of other fragments:
the worst-case access to fragment 2 is a cache miss in both cases, and thus all cache blocks
of fragment 1 get degraded once in bb3 and bb4 each.

The proposed analysis terminates because firstly, the number of memory blocks in the
program and the number of blocks in the abstract cache state are both finite and secondly,
the update and join functions are monotonous. We refrain from presenting a formal proof and
a formal closure of the abstract interpretation, because our analysis differs from Ferdinand’s
must analysis only in the way the memory blocks are organized and in additional pessimism,
resulting in faster evictions of cache blocks. The offsets enhance the ACS by another
dimension, which increases the calculation effort, but does not affect the monotony.

4.1 May and Persistence Analysis
The may analysis and persistence analysis can be defined analogously to the must analysis.
For space reasons, we keep our description brief and without the formal details, but refer the
reader to Ferdinand [16] and Ballabriga [1].

In the may analysis, the cache states are updated so that cache blocks of other fragments
are degraded using the youngest age of any cache access within the basic block, and the join
function selects the youngest age for each cache block in O × F ×M out of the cache states.

Ballabriga [1] uses an optimization of the update function for efficiency: The persistence
analysis is combined with the must analysis. If a block is accessed, that is not in the must
ACS, the age of all other cache blocks is reduced.

Our persistence analysis applies the principles described for the must analysis to Ferdin-
and’s and Ballabriga’s persistence analysis: The memory is split into virtual memories M that
represent the fragments, and duplicated for each offset in O. The cache model is extended
by an additional cache line of age A + 1, which is reached if a cache block, once loaded, may
have been evicted. The update and join functions resemble a reversed may analysis, where
each cache block in the ACS maps to the oldest age that may have been reached (which is
A + 1 if the block may have been evicted). Ballabriga [1] uses an optimization of the update
function for efficiency, which we adapt: The persistence analysis is combined with the must
analysis. If a block is accessed, that is not in the must ACS, the age of all other cache blocks
is reduced. Just as in our new must analysis, the update function is applied as usual to all
blocks within the same fragment as the current basic block. The age of all other blocks is
degraded by the worst possible eviction of all accesses in the basic block (up to A + 1).

In our multi-level persistence, analogously to Ballabriga, an stack of the ACS described
above is created, where each entry represents loop nesting level. The stack is initialized with
a regular persistence analysis at the highest level outside any loop. With every loop entry, an
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2.3 / 2.3
2.3 / 2.4
2.4 / 2.4

2.3,2.4 2.3,2.4

1.0 / 1.0
1.0 / 1.1
1.1 / 1.1
1.1 / 1.2
1.2 / 1.2

1.0,1.1,1.2
2.3,2.4

1.0,1.1,1.2
2.3,2.4

2.0 / 2.0
2.0 / 2.1
2.1 / 2.1

2.0,2.1
1.0,1.1,1.2,2.3

2.0,2.1
1.0,1.1,1.2,2.3

1.2 / 1.3
1.3 / 1.3
1.3 / 1.4
1.4 / 1.4
1.4 / 1.5
1.5 / 1.5

1.2,1.3,1.4,1.5
1.0,1.1

1.2,1.3,1.4,1.5
1.0,1.1

2.1 / 2.2
2.2 / 2.2
2.2 / 2.3

1.0,1.1,1.2 1.0,1.1,1.2

2.1,2.2 2.2,2.3

2.4 / 2.5
2.5 / 2.5
2.5 / 2.6

2.3,2.4,2.5 2.3,2.4,2.5,2.6

offset 0: offset 1:

bb0:

bb5:

bb6:

bb1:

bb2:

bb3:

bb4:

Figure 3 CFG with ACS (must analysis at fix point) of example program using diversity: Two
different offsets and fragments.

empty ACS is pushed onto the stack. The entries in this ACS that are in the same fragment
as the accessed block can only be replaced by cache blocks, which are accessed within the
loop. A cache block that is persistent with respect to a loop is executed as often as the loop
is entered, at the worst. In the update function of the multi-level persistence, the cache
blocks belonging to other fragments are degraded by the worst case access of the current
basic block over all ACS and all offsets.

With our must and persistence analyses, we have established an abstract representation
of all possible cache states before and after the execution of a basic block. To extract a
worst-case timing of the execution of the block, we cannot use a direct mapping between
instructions and cache accesses. Instead, we accumulate the overall block timing using a
classification algorithm, described in the next section.
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5 Classification

Our memory model in the ACS causes every instruction to be represented K times, once for
every offset, with possibly different cache classifications. These different representations need
to be merged in order to be able to deduce a worst-case timing for the basic block. As stated
in Section 3, the number of cache blocks may differ over different offsets, and instructions
may belong to different cache blocks. Therefore, simply classifying the cache blocks is not
feasible. Instead, we determine a worst-case number for each class at basic block level. We
nevertheless use the term classification, analogously to previous publications [10,39].

Finding the worst-case of cache misses AM after applying only the must analysis is
straightforward: For each offset o ∈ O, we count the referenced cache blocks that are not
classified as a hit (c(o, f, m) 6= l⊥), and use their maximum to calculate the worst-case cache
penalty. This penalty is added to the WCET as often as the block is executed.

In the multi-level persistence analysis, the cache block references are additionally classified
as persistent, with respect to the outermost loop it is persistent in, adding the classes
P (L0), P (L1).... The cache penalty of a cache block classified as P (Lx) is added as often
as the outermost loop it is persistent in is executed. The worst-case classification over all
offsets is more complicated than maximizing the blocks for each persistence level separately.
We use Figure 3 as an example. Basic block bb3 contains three instructions, hence two cache
blocks in each offset. With offset 0, cache block 2.0 is a miss, because after being loaded,
it could be evicted by bb1 and bb5 (and possibly bb2) in the second iteration before being
accessed the next time. 2.1, however, is loaded in bb4. In loop iterations other than the
first, bb3, 2.1 was only degraded once by bb1, and is therefore persistent (P(L0)). When
located at offset 1, 2.1 is not accessed in bb4, and therefore both cache blocks cause a miss.
To sum it up, at offset 0, cache accesses are classified as AM = 1, P (L0) = 1 and at offset
1, AM = 2, P (L0) = 0. To determine how many cache loads are necessary at worst for
bb3, we have to combine the results of all offsets. Now assuming the loop is executed three
times, simply counting the worst case of each class, AM = 2 and P (L0) = 1 would result
in 3 ∗AM + P (L0) = 7 times the cache penalty, whereas the true worst case is two misses,
causing six loads in total. This example did not make use of the fact that the second AM at
offset 1, which is included in the combined worst-case, already covers the P (L0) access at
offset 0. We solve this by finding the worst case of all accesses for all offsets, instead of a
separate worst case of each class.

Assuming a reducible CFG, the execution count of an inner loop is a multiple of the loop
entry’s execution count. Therefore, we can sort the classes, according to the loop nesting
depth, by descending execution count: AM,...,P(L1),P(L0). Our classification works as
follows (we denote c0 for the maximal number of misses and ci, (i > 0) as the maximal
number of persistent blocks of each persistence level starting at c1 as the persistence level of
the inner loop where the block resides. aio

are the numbers of misses and persistent blocks
in offset o):

ci =

 max
o=1..K

(a0o
) |i = 0

max
o=1..K

(aio
−
∑i−1

k=1 (ck − ako
)) |i > 0

We find the access counts of each class in the worst case by reducing the count of cache
blocks per offset that are in that class by the number of blocks already covered by classes with
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higher execution counts. In the following example, max(P (L2)) is 1 instead of 2, because in
offset 1, one cache block is already covered by an extra miss that was identified for offset 0.

Offset Miss P(L2) P(L1) P(L0)
0 2 1 1 1
1 1 2 2 0
max 2 1 2 0

Our classification does not contain the classes NC and AH. The above maximum results
for misses and persistence already contain a worst case for the timing behavior of the basic
block, and thereby include the blocks before classified as NC. Note that we assume that the
processor does not exhibit timing anomalies. We leave that investigation to future work.

The blocks classified as AH would resemble the "rest" of cache blocks, which are not
included in the other classes. This differs between the offsets and its maximum does not
represent useful information to the WCET analysis. If we assumed that hits also consume
time, we would have to include the hits as an extra class of the above classification algorithm.

Using the preceding analyses and our classification we can generate additional ILP
constraints for each class per basic block. These worst-case execution counts that represent
a safe upper bound for the execution of all variants of the diverse program. In the following
section, we present the evaluation we performed on our approach.

6 Evaluation

To evaluate our instruction cache analysis for diversified software, we implemented it in
OTAWA, an open research framework for static WCET analysis, [2], and compared its original
analyses [1] with our results. We implemented the must, may and multi-level persistence
analysis as described in Section 4.

Our experiments were performed using the Malärdalen benchmark suite [18]. This set of
small example programs is widely used for evaluating static WCET analyses, and therefore
enables transparent evaluation results. Out of the Malärdalen benchmarks, nine programs
were supported by OTAWA in the publicly available form, when applied to our ARM processor
setup including cache analysis. Most of the other benchmarks were dismissed by OTAWA
mainly because the ARM processor does not support floating point arithmetic, the flow facts
(loop bounds, indirect branches) could not be deduced automatically, or external library
functions were used, e.g. to emulate a division operation. In addition, OTAWA’s original
cache analysis, which we use to compare our results, does not support programs with basic
blocks that are too large for the cache size we selected (basic blocks containing conflicting
cache blocks cause unnecessary misses).

To increase the number of benchmarks, we slightly modified seven programs by inserting
missing compiler functions, simplifying loop bounds and splitting the large basic blocks
so that they fit the cache sets without conflict. There were no such fixes available for the
remaining benchmark programs. However, the language features being exploited in the
benchmarks is not the focus of this evaluation, as we are interested in the binary level.
Also, we do not expect the additional pessimism of our analysis compared to state-of-the-art
analyses to increase considerably in larger benchmarks, because larger code sections mostly
introduce more independent sections with greater temporal distance, less relevant to caching.

The final set of benchmarks we used for this evaluation is summarized in Table 1. In
addition to the benchmark name and its size in bytes, the table contains the number
of fragments in function-level diversification (Functions) and in block-level diversification
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Table 1 Evaluated Malärdalen benchmarks. (*) marks benchmarks with minor changes.

Benchmark Size(B) Functions MIS W CETAM

bs 256 3 6 2445
bsort100 492 3 8 7411365
cnt 676 7 12 111195
crc 1092 4 11 889455
edn* 4104 10 29 2208345
expint* 1332 6 19 6660570
fac 192 2 4 5550
fdct* 2796 3 15 81795
fir* 1152 4 14 25809855
fibcall 192 2 3 8370
insertsort 324 2 4 25815
jfdctint* 2792 3 16 105675
matmult 676 6 11 5122410
ndes 3180 6 27 1440465
nsichneu* 30316 1 2 227130
ud* 2320 5 22 839430

(Movable instruction sequences - MIS). At last, the table shows the WCETAM that has
to be assumed without our analysis, where every access is a miss (AM ). The benchmark
programs, which had to be modified for being supported are marked with an asterisk.

For our experiments, we used a simple 5-stage architecture, where each instruction
consumes five cycles and where cache miss adds a latency of ten cycles. We selected a cache
size so that the small benchmark programs do not fit entirely and caching effects are visible:
The line size SL is 16 Bytes, i.e. four instructions in the ARM instruction set. The diversity
is aligned at the instruction size, resulting in four offsets. The number of sets (rows) is 16,
and the associativity varies in the experiments. For our experiments, we created different
variants of the benchmark programs using different offsets and random order of fragments:
30 for block-level diversity and 10 for function and segment level, respectively. To include the
full range of possible offsets for all fragments, we added a random number of NOP instructions
before the start of the program. The variants were created using the diversification program
similar to the one we in introduced in [14].

Using the given setup, we analyzed each benchmark version using different cache dimen-
sions. To obtain a comprehensive insight into the timing effects of our cache analysis, we
needed to measure both the absolute timing improvements - compared to a system without
caches - and the relative effect - compared to the cache analysis without diversity. We can
measure the absolute effect by comparing to the WCET of a system without caches (all miss
assumption) WCETAM, as depicted in Table 1. The relative comparison is done using the
WCET obtained by the original analysis without diversity, as implemented in the publicly
available version of OTAWA. We calculated this value for each variant of each benchmark,
together with the result of our analysis. We define WCETmax the highest WCET obtained
by that original analysis across all variants of a benchmark using the same cache setup.
WCETmin, accordingly, is defined as the lowest WCET across such variants. Average values
across all benchmarks are given as arithmetic mean. OTAWA also offers the possibility of
using loop unrolling. We disabled that option in all our experiments.

One particularly interesting cache architecture for our evaluation is a cache with only
one line (an instruction buffer). Diversity generally impacts spatial locality, because the
execution order of the instructions remains intact and therefore subsequent executions of
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Figure 4 Diverse WCET pessimism with different associativity A with 16 Bytes per line and 16
sets.

instructions have the same temporal distance. In the case of subsequent instructions the
temporal locality of the cache block of an instruction is impacted as well, because, depending
on the current offset, two instructions may or may not cause a cache line to be accessed twice
in a row. To evaluate the performance effect of subsequent accesses to the same cache line,
we calculate WCETbuf, using our analysis on a one-line cache with four instructions (16B).

A necessary requirement for our analysis is that it delivers a safe upper bound that is
the same for all versions of a program given a cache size. This requirement was fulfilled in
all our experiments: The estimates were always "worse" than those of the original analysis
(WCETdiv > WCETmax), and they were equal across all versions in the same experiment.

Figure 4 shows the tightness of the estimates using different associativities A and block-
level diversity. The WCET estimates WCETdiv are depicted relative to the corresponding
WCETmax. The results show that the tightness of our analysis greatly depends on the
associativity. The over-approximation is the highest for direct-mapped caches, and gets
considerably tighter with A > 2. The average factor by which our analysis over-approximated
in all experiments was 11.6% for basic-block level diversity, 4.3% for function-level, and 1.1%
for segment-level diversity, which gives a total of 5.7%.

Figure 5 compares the results of our analysis with the range of non-diverse WCET
estimates for all versions of a benchmark, using associativity A = 2 and basic block shuffling.
There, WCETmax and WCETmin are depicted alongside the result of our analysis WCETdiv.
All results are shown relative to WCETAM , the WCET using the all miss assumption that is
the only choice for a static WCET analysis of diverse programs using the existing approaches.
The results show that our analysis is a drastic improvement over assuming all miss: The
estimates are on average at 44.8% of WCETAM . Averaging the results of all experiments
with all diversity types and associativities yields 40.8%. Furthermore, the diagram shows
the impact of diversity on the cache analysis: WCETmax is in average 5.3% higher than
WCETmin. The diagram also shows WCETbuf , demonstrating the impact of immediate
temporal locality. As expected, this effect is responsible for the bulk of the WCET gains, and
in some benchmarks (such as bs) WCETbuf is almost equal to WCETdiv. However, this is
not the case for most benchmarks, so that WCETbuf averages at only 56% of WCETAM .

Figure 6 shows the impact of fragmentation on the analysis result. The WCET estimates
for associativity A = 2 are depicted for all diversity types, again with WCETdiv relative
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Figure 5 Comparison of WCET estimates using 2-associative cache with 16 Bytes per line and
16 sets.

to WCETmax . The results show that basic-block diversity produces the highest estimates
(avg. 13.8%), while the segment-level diversity causes very low additional pessimism (avg.
1.2%). Function-level diversity averages at 6.0%.

Figure 7 shows the computation time compared to that of the original analysis. We
measured the total execution time of each of the above experiments. The diagram shows
the average factor by which the computation time exceeds that of the original analysis,
in dependence of associativity A and the diversity type. We have expected an increase of
computation time, as the ACS is a multiple of the size of the original analysis, because it
contains a memory representation per offset. However, to deliver a sound upper bound,
the original analysis would have to be executed for each possible version, which would take
considerably longer depending on the number of fragments. The results for A = 1 show a
factor eight in consumed time, while the number of offsets is K = 4. The time also increases
with associativity A, but not proportionally. We have observed that it took more iterations
for the fixpoint algorithm to terminate, and this increased with higher associativity. It can
partly be explained with the fact that the cache sets are not independent in our analysis.
The comparison of execution times of different diversity types delivers somewhat surprising
results: The analysis time increase for segment-level diversity is the highest, while function
level diversity performs best.

Note that in theory the performance analysis of OTAWA still has the bug referenced
by Cullmann [10], which causes restrictions on the use of indirect branches. Our approach
does not fix that, however, we think the demonstration of our approach using the proposed
persistence analysis is representative as the error has a low impact, in particular on instruction
caches. However, we plan to apply our solution to other persistence analyses as well.

To summarize our results, we can conclude that diversity is not prohibitive for WCET
cache analysis. On the contrary, in many experiments our analysis results are very tight,
and in all experiments they were far lower than the WCET without analyzing the cache.
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7 Related Work

To our knowledge, there is no approach of static WCET cache analysis that supports artificial
software diversity. However, many of the existing approaches serve as a basis for our approach
or may be complemented with our ideas.

7.1 WCET Analysis
Our approach is based on Ferdinand’s abstract interpretation-based analyses [15, 16], as well
as Ballabriga’s extension, the multi-level persistence [1]. Other approaches improved the
persistence analysis as well. Cullmann [10] proposed two analyses, one based on conflict
counting and one that combines a regular may analysis with one that collects the oldest age.
Huynh [21] collects a set of conflicting blocks that may be younger than a block m at its
execution. If there are less than A blocks in this set, m is persistent. These analyses are
based on abstract interpretation, thus we believe that our ideas are applicable there as well.

Apart from abstract interpretation there are other static cache analysis techniques,
comprehensively surveyed in [27]. [24] introduces cache conflict graphs, explicitly modeling
all concrete cache states. [26] uses model checking, which also, implicitly, analyzes all cache
states. These approaches suffer from scalability issues, which would be worsened considerably
by extending the state space with the uncertainty of diversity.

In [19] also investigates relative addressing of cache contents. However, they concentrate
on data flow analyses for data caches, rather than implicit relations between instructions.
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WCET-aware compiler optimizations such as code positioning [13] [25] are used to improve
the WCET by varying compiler decisions similar to diversity. However, these approaches are
based on heuristics and are not able to find a guaranteed upper or lower bound.

7.2 Artificial Diversity

Out of the many artificial software diversity approaches [23], we chose those that limit their
transformations to reordering and relocating of fragments, for the reason that we need to
be able to predict the WCET of all possible versions. This would be possible as well for
narrow-scope in-place code transformations [31]. However, it would require a more detailed
analysis of the instruction semantics and would further complicate the ACS construction.

There are also basic-block level approaches that propose splitting the code dynamically
into blocks at random positions [11,37] for each variant. This is not supported as they change
the CFG and thus the WCET impact over all variants would be unpredictable statically.

Instruction level diversity [20] uses higher fragmentation than block-level diversity. We
expect its caching behavior to be very bad, and the analysis is futile as the relative distances
of all instructions are unknown.

8 Conclusion

The instruction cache analysis we propose fills an important gap in the research of static
WCET analysis, as it is the first to support artificially diversified programs. The key idea
is to precisely represent the uncertainties in relative and absolute positioning, which are
introduced by diversity, in the analysis, while still exploiting all relative information that is
still available. Our analysis supports all artificial diversity approaches where diversification
is achieved by reordering and relocation of code fragments. We have discussed that diversity
has an impact on caching and its analysis, which is confirmed by our experimental results.

Our evaluation shows that our analysis delivers a safe upper bound for all versions, and
that it is a major improvement over assuming all miss for the worst case, or not enabling the
cache at all. In many cases, the estimations are even very close to the highest WCET that
the non-diverse analysis may find. As we chose very small caches for being able to better
observe the different effects, we can even expect better results for more common cache sizes.

In addition to systems using artificial software diversity, the analysis is also applicable
to other areas, where code fragment positions are, at least partially, unavailable, such as
dynamic libraries, or resources linked together from independent teams or vendors.

There are interesting aspects of the approach that deserve further attention. Applying the
worst case of cache accesses per basic block is pessimistic considering that several successive
basic blocks of the same fragment might not contain any conflicts. We will look into extending
this scope to larger regions or sub-paths. We did also not investigate the actual structure of
the code, with aspects of fragmented loops, sub-functions within loops and such. Note that
we have also presented a WCET aware diversification approach in [14]. We plan to use our
cache analysis to optimize fragmentation in this approach with respect to caching behavior.
We also plan to consider other hardware features, such as certain kinds of branch prediction,
multi-core, multi-level caches etc.

By enabling diversity in the instruction cache analysis of static WCET analysis, our
approach delivers an important contribution to make artificial software diversity applicable
to more systems. Thus, a critical group of CPS can be protected against code-reuse-attacks,
making the systems they are controlling considerably more secure.
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Abstract
Much effort has been put into improving the predictability of real-time systems, especially in
safety-critical environments, which provides designers with a rich set of methods and tools to at-
test safety in situations with no or a limited number of accidental faults. However, with increasing
connectivity of real-time systems and a wide availability of increasingly sophisticated exploits,
security and, in particular, the consequences of predictability on security become concerns of
equal importance. Time-triggered scheduling with offline constructed tables provides determin-
ism and simplifies timing inference, however, at the same time, time-triggered scheduling creates
vulnerabilities by allowing attackers to target their attacks to specific, deterministically scheduled
and possibly safety-critical tasks. In this paper, we analyze the severity of these vulnerabilities
by assuming successful compromise of a subset of the tasks running in a real-time system and
by investigating the attack potential that attackers gain from them. Moreover, we discuss two
ways to mitigate direct attacks: slot-level online randomization of schedules, and offline schedule-
diversification. We evaluate these mitigation strategies with a real-world case study to show their
practicability for mitigating not only accidentally malicious behavior, but also malicious behavior
triggered by attackers on purpose.
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1 Introduction

Real-time systems used to be closed systems running on specialized hardware. Consequently,
security had been given little thought, as no access from the outside to these systems
was assumed. However, recent trends show the reuse of more and more components for
real-time systems, e.g. the shift from federated avionics architectures to IMA (Integrated
Modular Avionics) [24], a growing need for connectivity, especially in the area of IoT and
networked systems, and a shift from single to multi- and manycore architectures. These
trends lead to an increase in the complexity of real-time systems in general and in particular
at the real-time application level. This increased complexity implies that real-time systems
cannot be considered closed and inaccessible anymore but instead demands anticipating more
vulnerabilities and in turn an increased risk of compromise. Security has to be considered
during system design and deployment to prevent unauthorized information disclosure and
exploitation of vulnerabilities by a potentially malicious, safety-threatening attacker [22].
This is especially true for systems in safety-critical environments, where real-time time-
triggered systems are often used. Research on security in the real-time domain, especially for
time-triggered systems, however, is still in its infancy [23].

Time-triggered real-time systems [12] provide highly predictable scheduling behavior to
meet strict timing constraints. While real-time online scheduling provides predictability,
i.e, guarantees that deadlines will be met, but not exact times of execution, time-triggered
systems provide determinism, i.e., given schedule and time, the task executing is known.
However, the very properties of determinism, periodicity, and timeliness can be exploited by
an attacker. Reusing complex components in a networked environment inherits all classical
security concerns and requires appropriate countermeasures. However, in addition, real-
time systems enable a class of attacks specifically targeting the timing of applications and
thereby the safety to which these tasks contribute. Security is therefore of high concern for
safety-critical real-time time-triggered systems.

Having compromised a large enough set of co-scheduled non real-time or low safety-critical
tasks, an attacker can make use of leaked scheduling-related information to fine-tune the
compromised tasks’ behavior such that they generate maximum interference on subsequently
executing victim tasks. In order to stay undetected, an attacker could continue normal
operation of the compromised tasks up to the point in time when one of the tasks is executed
immediately before a safety-critical task. At this time, the compromised task exploits
all of its accessible resources to create an access pattern that maximizes interference on
the safety-critical task. For example, writing all accessible memory instead of just the
locations accessed when executing as analyzed may result in a cache and/ or DRAM access
pattern that maximizes cache-related delays of the subsequently executed safety-critical task.
Alternatively, on a multicore system, the compromised task could issue the maximum number
of allowed memory requests. If memory requests are not handled properly, this may lead to
a deadline miss on another core competing for memory access.

Tools analyzing only the legitimate task behavior to determine, e.g., cache-related
preemption delays, are not aware of such malicious behavior. Unless the system designer
anticipates maximum preemption delays for all tasks, real-time schedules remain susceptible
to such attacks. Furthermore, due to its predictability, time-triggered scheduling is inherently



K. Krüger, M. Völp, and G. Fohler 22:3

vulnerable to timing inference based attacks [25]. In this paper, we analyze inference-based
vulnerabilities of time-triggered systems and investigate strategies to mitigate attacks based on
exploiting these vulnerabilities without violating the very properties that make time-triggered
systems attractive to system designers: timeliness and determinism.

Related Work. In literature, several security solutions for real-time systems exist. For
example, Völp et al. [21] prevent timing leaks in fixed-priority schedulers by exploiting the
idle task to mask early stops or blocks of a high priority task such that a low priority task
always has the same view of the high priority task. Naturally, time-triggered systems do not
require this modification since no two tasks coexist in the same time window on the same
processor. In [16], Mohan et al. focus on the problem of information leakage over shared
resources. They define security levels for tasks and prevent undesirable information flow
between tasks of different security levels by flushing the resource. Further, they discuss the
integration of security constraints into the design of fixed-priority schedulers. In contrast to
[21] and [16], we do not focus on preventing timing channels or information leakage. In fact,
we assume timing information may be infered.

Yoon et al. [25] introduce a schedule randomization protocol for task sets scheduled under
Rate Monotonic which provides obfuscation against timing inference attacks. As long as
deadline constraints are not violated, the next task is picked randomly from the ready queue.
Each task has a defined budget of tolerated priority inversions which do not violate the tasks
deadline constraints. In Section 3, we follow a similar approach for time-triggered systems.

Two examples for state-of-the-art research deal with security for time-triggered communic-
ation. In [19], Skopik et al. introduce a security architecture for time-triggered communication
which adds device authentication, secure clock synchronization and application level security.
Wasicek et al. [22] investigate the security of time-triggered transmission channels and shows
how an authentication protocol secures these channels without violating timeliness proper-
ties. In our work, we do not consider intended communication channels for infering timing
information, but instead focus on covert or side channels and the implication of attackers
learning timing information to coordinate their attacks.

Wasicek [23] further presents a threat model for real-time systems, explores security and
dependability in the Time-Triggered Architecture (TTA) in great depth and investigates how
to enhance TTA for security. In contrast, we do not focus on a specific architecture for time-
triggered systems. More precisely, we show how to mitigate directed attacks by randomizing
or changing the schedule without violating the timing constraints of time-triggered schedules.

Contributions.
We analyze vulnerabilities of time-triggered systems with regard to timing inference and
malicious behaviour, and show possible attacks which exploit these vulnerabilities.
We present two practical mitigation strategies for timing inference based attacks with
low implementation complexity: an online job randomization algorithm which is able to
preserve the timeliness and predictability properties of time-triggered systems, and offline
schedule-diversification.
We evaluate these mitigation strategies with a real-world case study to show that they
have low runtime overhead and are practical.

Paper Structure. The remainder of this paper is organized as follows: In Section 2, we
present the vulnerability analysis of time-triggered systems against directed timing inference
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based attacks. In Section 3, we explore mitigation strategies for directed timing attacks, and
evaluate them in Section 4 with a real-world case study.

2 Threat Model and Vulnerabilities

In this section, we first describe our threat and system model, highlighting in particular the
assumptions we make on the attacker and how he or she is constrained by time-triggered
systems. After that, we analyze the vulnerabilities present in time-triggered systems.

2.1 Threat and System Model
For our vulnerability analysis we assume a time-triggered real-time system running on a
single core or a single partition with an offline constructed schedule, e.g. in the form of a
table. We assume the schedule has been validated and precautions (such as authenticated
boot) are in place to ensure that the validated schedule is correctly deployed to the real-time
system.

We assume attackers are able to successfully infiltrate the system through undetected
vulnerabilities and will eventually exploit infiltrated outposts to attack further parts of the
system. Less stringent evaluation requirements make non real-time tasks and low safety-
critical tasks primary targets, but we also do not preclude penetrations of higher-critical tasks.
Our concern is that attackers exploit these infiltration points to collect timing information
about the system and to coordinate subsequent directed attacks against critical, replicated
tasks. In particular, we assume that most critical tasks are sufficiently shielded against
direct attacks to require attackers to find a pathway through less critical tasks. Firewalls
and gateways in autonomous vehicles and planes support this assumption.

Even though we assume intrusion detection, hardening mechanisms and other defenses
against the common attack vectors (e.g., DoS attacks) are in place, we acknowledge that
these techniques are imperfect and compromises may go undetected. Of particular concern to
us are stealthy attackers that continue normal operation of the compromised tasks until these
tasks are executed in a manner where a directed attack is most effective, e.g., immediately
before a safety-critical victim task is run. Possible targets of such attacks in time-triggered
systems are the low-level control loops. Destabilizing these components (e.g., by increasing
the dead time or by introducing jitter in the control cycle) may provoke critical failure modes
and thus result in a continuing denial of service [23], or worse, unsafe control decisions.

The timing information required for coordinating such a stealthy attack can be infered
via side channels constructed using shared resources like cache or memory, or through covert
timing channels, such as the scheduling-covert-channel described by Boucher et al. [1].

While there exist mitigation strategies for closing side channels (for example in the real-
time context, the works of Völp et al. [21] or Mohan et al. [16] on fixed-priority schedulers),
they are incomplete. Additionally, systematically closing all side channels typically entails
significant performance overheads, e.g. when flushing caches prior to scheduling a lower
classified task [8]. Meltdown [15] and Spectre [10] are recent examples demonstrating
the difficulty of identifying and closing such channels in sufficiently complex architectures.
Exploiting non-architectural channels (cache allocation) as communication medium, Meltdown
and Spectre extract confidential information from speculative processor state, breaking
security on most Intel and many high-end ARM and AMD processors. While real-time
systems traditionally avoid such complex hardware, we cannot exclude an integration of
cores of this complexity in a real-time system on chip, e.g. for meeting the extended demand
of autonomous driving functionalities. Fixing the security flaws of Meltdown and Spectre
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results in up to 21 percent performance decrease for Intel client systems [3] and up 25 percent
for Intel data center systems [2].

We assume the real-time system features isolation mechanisms for enforcing the schedule
of tasks and for limiting direct access to the memory of other tasks. Real-time operating
systems (RTOS) that feature memory isolation support this assumption unless attackers
are able to penetrate the operating system. For the purpose of this paper, we assume the
deployed RTOS excludes this possibility.

One immediate consequence of this isolation assumption is that when the attacker has
infiltrated the system, he or she is inherently constrained by properties of the system and
its architecture for subsequent attacks on more critical tasks. In time-triggered systems,
table-driven scheduling prevents influencing other tasks by manipulating the execution time
of a compromised task. That is, in contrast to event-triggered scheduling, each task is
confined to its execution window and thus the actual task execution time has no influence
on subsequent tasks. Time-triggered systems therefore provide temporal isolation of CPU
time irrespective of the actual behavior of tasks and without having to revert to timing leak
transformations as described for example by Völp et al. [21]. Additionally, messages are only
accepted during a certain time window, i.e., if they are timely.

Operating system enforced schedules combined with the assumed impenetrability of the
OS ensure that the attacker can neither directly influence the scheduler nor can he read
the offline defined scheduling tables. Instead, the attacker has to infer the current schedule
from observations he or she makes about the system behavior. As we show in Section 2.2,
schedules typically carry too little information to remain secure over extended periods of
time even if this information is leaked only over low bandwidth channels. Furthermore, we
assume that the global clock remains under exclusive control of the operating system and
that it cannot be affected by the attacker.

Even though time-triggered systems eliminate CPU time as shared resource over which
information can be leaked and through which other tasks may be influenced, other resources
remain through which attackers may gain information and through which they can impact
the timing behavior of other tasks. One prominent example of such a resource is the processor
cache, which healthy tasks leave behind in a predictable state but which compromised tasks
can put into a state that may not be anticipated when computing the worst-case execution
time of subsequent tasks.

The use of time-triggered systems imposes further limitation on attackers. For example,
side channels and covert channels can only be constructed over explicitly or implicitly shared
resources, most of which time-triggered systems already multiplex with the table driven
schedule in a manner that is agnostic to the behaviour of executing tasks. Access controls
and partitioning techniques like cache [14] or bank coloring [26] further constrain the attacker.
However, each such countermeasure negatively impacts system performance. Moreover, as
we show in greater detail in Section 2.2, mitigating attacks may require cancelling tempting
optimizations such as bounding the delay a task can impose through the cache by evaluating
their execution patterns. Designers may be tempted to implement optimizations for the sake
of increasing performance while neglecting security.

2.2 Vulnerabilities
One of the main vulnerabilities of a time-triggered system lies in its deterministic behaviour.
The schedule is the same offline constructed schedule for every hyperperiod. For each point
in time, the task executing is known. An attacker who listens to the schedule over a side
channel is able to reconstruct the schedule in reasonable time even when the channel has
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low bandwidth. The schedule comprises only a few bytes of information, thus even with a
very low channel bandwidth of, for example, 1 byte per second the schedule is found out in
a matter of a few minutes. As we show in Section 4.4, an offline schedule of a real-world
system can consist of just 52 bytes. Through the aforementioned channel, the attacker would
know the schedule after one minute. Therefore, we reason that timing information can be
infered and focus on mitigating directed attacks under this assumption.

Another vulnerability of real-time systems in general is that worst case execution time
(WCET) derivation does not take malicious behaviour into account. WCET estimated
through simulation of the expected behaviour of the system does not account for malicious
behaviour. If a task is infiltrated at runtime and, for example, starts accessing the cache
to create maximum interference for the next task execution, the tasks simulated worst case
does not account for this malicious behaviour if this behaviour is not encountered during
uncompromised execution. Prior research on abstract interpretation WCET derivation claims
the assumption of cold caches is too pessimistic for a real system and shows methods to
achieve tighter and less pessimistic WCET bounds [9], [5]. The assumption of cold caches
would nullify the described attack of delaying a task through cache misses. We have to
choose WCET estimates in a way that they also account for malicious behaviour and we
have to check the impact of performance optimizations on security.

In the next section, we show mitigation strategies for directed attacks which prevent an
attacker from exploiting the vulnerability that results if malicious behaviour has not been
taken into account.

3 Mitigation Strategies

An attacker’s goal is to predict as precisely as possible when a victim task gets scheduled
immediately after a compromised task to then mount a directed attack. Our primary
mitigation strategy is therefore to impede predictions about the point in time when the
victim is executed. While we do not prevent timing inference, i.e. we assume the attacker
may gain information about the schedule, we are able to counter predictions by changing
the points in time when tasks are executed at runtime. For this purpose, we present two
strategies to mitigate directed attacks in this section. The first strategy takes an offline
constructed time-triggered schedule as input and randomizes the schedule online at job-level
while maintaining deadline constraints. This approach is an extended version of the work
presented in [13]. The second strategy comprises a set of offline precomputed schedules one
of which is randomly chosen at the end of each hyperperiod.

3.1 Slot-level Online Randomization
This mitigation strategy impedes the ability of an attacker to make predictions by randomizing
job execution in a time-triggered system at runtime. Schedules for time-triggered systems
are typically constructed offline [4], where real-time constraints are resolved and represented
in a scheduling table. If not handled properly, online randomization may violate deadline
constraints. Therefore, our approach analyzes the scheduling table offline and maps timing
constraints of jobs onto execution windows. Execution windows are time intervals defined by
the earliest start time of a job and its deadline. Proper handling and, possibly, modification
of execution windows solves precedence constraints. Additionally, if one of the goals of the
system is to achieve low jitter, we can reduce the size of execution windows accordingly.

During runtime, we randomize job execution within their respective execution windows.
While we confine jobs to their execution windows, they still share the same processor so we
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Figure 1 Job set and capacity intervals derived from offline schedule.

also have to guarantee that their execution does not lead to a deadline miss of other jobs.
Slot shifting is a scheduling algorithm which introduces the concept of spare capacities to
ensure timely execution [6]. We adopt this concept to guarantee task execution within their
respective execution windows even though the scheduling decision is randomized.

3.1.1 Background
Slot shifting uses a discrete time model [11], where the time interval which separates two
successive events (i.e. the granularity of the system) is called a slot [18]. We analyze the
time-triggered schedule and its task set offline to determine available leeway and unused
resources in the schedule for subsequent online adjustment. In order to track the available
leeway of jobs in each execution window, a capacity interval is created for each distinct
deadline in the system. Jobs with the same deadline belong to the same capacity interval.
The start of a capacity interval Ij , start(Ij), is defined as the maximum of the earliest start
time est(Ij) of jobs τi in this interval and of the end of the previous capacity interval:

start(Ij) = max(end(Ij−1), est(Ij)) , with est(Ij) = min(est(τi)) ∀τi ∈ Ij (1)

The end of the capacity interval is determined by the common deadline of all τi ∈ Ij .
If needed, empty capacity intervals without assigned jobs are created to fill gaps between
capacity intervals with assigned jobs. Figure 1 shows an example job set derived from an
offline schedule with earliest start times esti, worst case execution times Ci and deadlines di.
We derive the presented schedule in Section 3.1.3. In the schedule on the left side of Figure 1,
i denotes the idle task.

Three distinct deadlines exist for that job set, thus at least three capacity intervals have
to be created. The first interval I1 starts at 0 and ends at the deadline of its assigned set of
jobs {τ1}, which is 4. The job assigned to next interval, τ2, shares the earliest start time of
τ1, but according to Equation 1, a capacity interval is not allowed to start before the end of
the previous interval. Note that capacity intervals do not overlap, while execution windows
may. Thus, I2 starts at 4 and ends at the deadline of its assigned set of jobs {τ2}, which is 7.
We create interval I3 accordingly. We show the resulting capacity intervals together with an
exemplary schedule in Figure 1.

The spare capacity sc(Ij) of a capacity interval Ij is equal to the amount of free slots in
Ij . sc(Ij) is defined as the interval length minus the sum of worst case execution times Ci of
all its jobs τi minus slots borrowed from the succeeding interval (denoted as negative spare
capacity), see Equation 2 below.

sc(Ij) = |Ij | −
∑
τi∈Ij

Ci +min(sc(Ij+1), 0) (2)

Spare capacities are calculated starting from the latest capacity interval in the hyperperiod
to the earliest. Borrowing occurs in those cases where the current capacity interval provides
insufficient slots to accommodate all its jobs, which results in a negative spare capacity (I3
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in Figure 2). Capacity intervals with a negative spare capacity borrow the needed amount
of slots from the preceding interval. Negative spare capacities do not necessarily imply
infeasibility in the scheduling sense. Spare capacities are a means to track “free” slots in a
capacity interval. We show the resulting offline calculated spare capacities (for time t=0) in
Figure 2 of Section 3.1.3, where we present the spare capacity calculation.

If we have calculated all spare capacities, the first capacity interval has a non-negative
spare capacity provided the task set is feasible, i.e. its utilization is equal to or less than one
since we consider single core systems. Positive spare capacities represent the amount of unused
resources and leeway [6] of an interval which can be given to other tasks with overlapping
execution windows to adjust the schedule. Such adjustments may require updating spare
capacities. At runtime, we update the spare capacities after each slot to reflect the impact of
scheduling decisions on the availability of “free” slots.

We consider three different cases for spare capacity updates:
1. No job executes in a given slot. In this case we have to decrease the spare capacity of the

current capacity interval by one.
2. A job executes which belongs to the current capacity interval. In this case the spare

capacity of the current interval does not change because the WCET of this job is already
considered.

3. A job executes which belongs to a later capacity interval. In this case the current interval’s
spare capacity needs to be decreased by one, but executing the job ahead of time frees
resources in its assigned interval. We can therefore increase the spare capacity of the
job’s interval by one. If this capacity increase happened on a negative spare capacity
(i.e., the job’s interval is borrowing from another capacity interval), we also increase the
spare capacity from the interval from which it borrows, as it needs to lend one slot less.
Cascaded borrows are resolved recursively in a similar fashion.

The original slot shifting algorithm in [6] and [18] further integrates aperiodic tasks into
a time-triggered schedule. In this paper, we only adopt the concept of capacity intervals and
spare capacities to guarantee timely execution of periodic jobs within their execution windows
without violating constraints of other jobs. Thus, our offline algorithm needs to create only
one table with execution windows and a second one with intervals and their respective spare
capacities. For our online randomizing scheduler, we update the spare capacities at runtime
to keep track of scheduling decisions.

3.1.2 Slot-Level Randomization of Jobs
Our first attack mitigation strategy is to randomize job execution at runtime. Therefore,
at the beginning of each slot, we invoke the online scheduler to select the next job from
all tasks in the ready queue at random. We consider the idle task to be part of the ready
queue in order to allow for more permutations of the schedule. Even though we select tasks
randomly, we have to guarantee that no scheduled job violates the deadline constraints of
other jobs. Thus, before taking a scheduling decision, we check if the spare capacity of
the current capacity interval is greater than zero. If this condition is fulfilled, any job is
allowed to run, as sufficient time remains in the current and later intervals such that no job
misses its deadline. In other words, as long as the schedule has leeway, each ready job has
the same probability of getting selected for a slot. Otherwise, if the spare capacity of the
current interval drops to zero, there is no more leeway to schedule arbitrary jobs. However,
because we have already considered jobs of the current capacity interval in the spare capacity
computation and because all such jobs share the same deadline, we can still randomize their
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Figure 2 Left: Spare Capacities of I1, I2 and I3 over time, Right: Randomized Schedule.

execution. That is, in the case of zero leeway, the online scheduler randomly selects among
the jobs of the current capacity interval. After running a job, we update spare capacities as
shown in Section 3.1.1.

Combining time-triggered scheduling with our slot-level randomization impedes online
predictions about the schedule. Since the scheduler randomly selects the next job at runtime,
predictions about which job runs next are not possible as long as execution windows allow
for leeway. Furthermore, time-triggered scheduling inherently confines application-level
leakage to shared resources which are held across slots [20]. An investigation of leakage
countermeasures for such resources is out of the scope of this paper. While our randomization
algorithm does not allow for slot-level determinism typical for time-triggered systems, it still
allows for execution window determinism [7].

3.1.3 Example

Let us illustrate the proposed scheduling algorithm for our example jobset depicted in
Figure 1. First, we have to calculate the initial spare capacities of the capacity intervals.
Starting at the last capacity interval, I3, its spare capacity is the difference between the
interval length of 1 and the worst case execution time of its assigned jobs, here only τ3, which
results in a spare capacity of: −1. I2 has an interval length of 3, from which we substract
the worst case execution time of τ2 (i.e., C2 = 1) and the slots borrowed by the preceding
interval I3 (by adding sc(I3) = −1), which results in a spare capacity of 1. We calculate the
spare capacity of I1 accordingly. Figure 2 shows the resulting spare capacities in the column
for time t = 0.

At time t = 0, the scheduler sees that the spare capacity of the current interval I1 is
positive and picks τ1 randomly for the first slot at t = 0 from the list of ready jobs τ1, τ2,
plus the idle job (i). As τ1 executes within its own interval, the current spare capacity does
not change and remains positive. The idle job i is selected to execute during the next slot
starting at t = 1, necessitating a decrease of the spare capacity by one. τ2 is randomly
selected for time t = 2. τ2 does not execute within its own capacity interval, therefore we
reduce sc(I1) by one and increase sc(I2) by one, since τ2 belongs to interval I2 and I2 does
not borrow from I1. sc(I1) = 0 at t = 3 constrains the online scheduler to select from the
set of jobs {τ1} that are assigned to I1. At time t = 4, τ3 becomes active and is selected
to execute at time t = 5 after picking the idle thread to t = 4. This is valid, as sc(I2) is
positive, and thus we reduce sc(I2) by one and increase the capacity interval of τ3, I3, by
one. However, at this time, I3 is still borrowing one slot from I2. τ3 executed prior to its
own capacity interval, thus I3 needs to borrow one slot less from I2 and therefore we increase
sc(I2) by one, resulting in no change of sc(I2). In summary, sc(I2) stays at 1 and sc(I3)
is increased by one. We show further exemplary scheduling decisions and spare capacity
updates in Figure 2.
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3.2 Offline Schedule-Diversification
The second mitigation strategy we investigate in this work constructs multiple offline precom-
puted schedules and switches between them at hyperperiod boundaries. Resolving scheduling
constraints offline ensures lower runtime overheads, but increases the chance of attackers
to guess the schedule and launch directed attacks. For example, repeating the same offline
computed schedule several times allows an attacker to deduce the schedule, as illustrated for
example in [16], and to coordinate directed attacks from compromised tasks scheduled later
in the same hyperperiod or in subsequent hyperperiods. To partially mitigate this threat
vector, we randomly switch schedules at the end of each hyperperiod. As a consequence, even
when the attacker is able to recognize different schedules and has enough memory available
to store them, the more schedules have been generated, the harder it is for the attacker
to recognize which schedule has been chosen for the current hyperperiod and the less time
remains to launch a directed attack. In particular, if the attacker is not able to identify
the current schedule in time for his attack, the attacker misses the opportunity to launch a
directed attack.

We show in Section 4.5 that computing and storing all possible, feasible schedules in
memory is impractical. However, in non-embedded systems (e.g., SCADA), we foresee
the continuing generation of schedules in a non real-time subsystem (e.g., in a sufficiently
protected external control station) and an update of the set of schedules downloaded to
the real-time device. This way, once a new set of schedules has been produced (possibly
by recombining precomputed and stored schedules), the real-time device can switch to
the new set at the end of the hyperperiod. Double buffering, signing and encryption of
schedules ensures that the current set of schedules remains valid while the system validates the
confidentiality and integrity of the new schedules (e.g., in a background task). Irrespective of
update possibilities, the selected subset of schedules out of the set of all feasible schedules for
a given task set should impede directed attacks as much as possible. We present two criteria
to select subsets that complicate directed attacks in addition to guaranteeing deadlines and
respecting task precedence constraints. Carefully created execution windows solve deadline
and precedence constraints.

Random Selection. For the sake of low implementation complexity, the subset can be
selected randomly. That is, schedules are created randomly and checked to meet all scheduling
constraints. The schedules fulfilling this requirement form the set of schedules for the system.
Schedule creation is stopped after a certain number of feasible schedules has been constructed.
We recommend this method for large subsets, when enough memory is provided to store
a large number of different schedules. If the subset is large enough, the random selection
process provides a set of schedules with a schedule entropy close to the set of all feasible
schedules. Other criteria impose more constraints on the selection process and therefore
increase its complexity.

Schedule Entropy. Another criterium for schedule selection is schedule entropy as presented
in [25]. This measure makes use of the Shannon entropy and is used to quantify the difference,
i.e. randomness, between schedules. A subset of feasible schedules is chosen in a way to
maximize the schedule entropy for the number of chosen schedules. However, Yoon et al. [25]
showed that calculating the schedule entropy has asymptotic exponential complexity because
it requires the enumeration of all possible schedules. They provide an approximation of the
schedule entropy over the sum of slot entropies called upper-approximated schedule entropy,
which is calculated using the probability mass function of a task appearing at a certain slot
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in the schedule. However, finding a subset with n schedules with the global maximal schedule
entropy for all subsets of size n also requires enumeration of all feasible schedules, which is
impractical. Therefore, we can apply heuristics for local maxima or select schedules such
that the entropy is above a tolerable threshold. For example, we first construct a subset of
randomly chosen, feasible schedules with size significantly greater than n, from which we
then select the smaller subset of size n with the highest entropy.

4 Evaluation

We evaluated our two directed attack mitigation strategies, which we presented in Section 3,
with the ROSACE case study [17]. ROSACE is a practical, real-world example of a real-time
system in a safety-critical environment: avionics. This section presents our results.

4.1 Case study: Flight Controller
Pagetti et al. [17] carried out a case study of a longitudinal flight controller of an aircraft.
The longitudinal flight controller helps the pilot to accurately track altitude, vertical speed
and airspeed of the aircraft. Pagetti et al. describe two control loops: the V a_control loop
handles airspeed control by maintaining the desired airspeed V a; the second control loop —
altitude control — combines altitude_hold and V z_control. First, altitude_hold translates
altitude commands to vertical speed commands. Then, V z_control tracks the vertical speed
V z of the aircraft. Both control loops are fed with filtered data: h, az and q for altitude,
vertical acceleration and pitch rate, respectively. Vertical V z and true airspeed V a are also
inputs to the control loops. We show the design of the controller in Figure 3.

According to Pagetti et al. [17], the closed-loop system with continuous-time controllers
can tolerate delays of up to roughly 1 second before destabilizing. To preserve stability as
well as to increase performance, Pagetti et al. chose lower sampling periods of 50 Hz for the
digitalization tasks of the three controller blocks and 100 Hz for the filter tasks which feed
the data to the controller. Pagetti et al. derived worst case execution times of all tasks using
a measurement-based approach by measuring the repeated execution of a task in isolation.
The granularity the authors chose for the measuring clock was 100µs, thus the worst case
execution times for the tasks shown are the same as they presumably finished execution in
that granule. Table 1 shows the task set with implicit deadlines for the longitudinal flight
controller. In this work, we do not consider environment simulation tasks as they are not
part of the controller but only of the test environment.
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Table 1 Flight controller task set[17].

Taskname Frequency WCET
Vz_control 50Hz 100µs
Va_control 50Hz 100µs
altitude_hold 50Hz 100µs
h_filter 100Hz 100µs
az_filter 100Hz 100µs
Vz_filter 100Hz 100µs
q_filter 100Hz 100µs
Va_filter 100Hz 100µs

Table 2 Execution windows.

Name Start End WCET
h_filter 0 50 1
az_filter 0 50 1
Vz_filter 0 50 1
q_filter 0 50 1
Va_filter 0 50 1
h_filter 50 100 1
az_filter 50 100 1
Vz_filter 50 100 1
q_filter 50 100 1
Va_filter 50 100 1
altitude_hold 0 100 1
Vz_control 0 100 1
Va_control 0 100 1

We construct the execution windows of all tasks from the task set in Table 1. Schorr [18]
suggests 200,000 clock cycles as slot shifting slot length. The processor cores in ROSACE
run at 1.2GHz, which results in 167 µs for 200,000 clock cycles. We choose 200 µs as slot
length to evenly divide the task periods into slots. Task execution is non-preemptive, as
the worst case execution times are smaller than the slot length. Table 2 shows the resulting
execution windows.

4.2 Runtime Overhead for Slot-Level Randomization
Our slot-level randomization algorithm is based on Schorr’s [18] slot shifting algorithm. Schorr
measured the runtime overhead of the unmodified slot shifting algorithm on a cycle-accurate
ARM quadcore simulator — MPARM — with ARM7 cores running at 200 Mhz, 8kB 4-way
set associative L1 cache, 8kB direct mapped L1 instruction cache, 1MB core-private memory
and 1MB shared memory. Schorr provided minimum and maximum runtimes of all parts of
the slot shifting algorithm for single core execution. Using the timing measurements of [18],
shown in Table 3, we approximate the runtime overhead of slot-level randomization, when
executed on the same processor.

Slot-level randomization invokes the same functions to update spare capacities and the
ready list. The cost of the function to update spare capacities increases with the number of
intervals due to cascaded borrowing in the worst case. However, according to the slot shifting
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Table 3 Minimum and maximum runtime overhead for single core execution in ns [18].

Function Min Max
update spare capacity (upsc) 2,655 10,145
update ready list (upready) 3,500 9,115
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

Table 4 Minimum and maximum runtime overhead for single core execution in ns [18].

Function Min Max
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

algorithm as explained in Section 3.1.1, only 2 intervals are created for the presented task
set. Hence, the costs of both functions remain the same. The interrupt service routine (ISR)
overhead is architectural and hence should not change for an implementation of slot-level
randomization in the same operating system. Randomization is not part of slot shifting and
as such not covered by the above measurements. As calculating random numbers for each
slot is independent of parameters like the number of tasks or intervals, we assume a constant
per slot overhead. Moreover, assuming an O(1) get_length implementation of the ready
list, pruning random values to a list index remains a constant operation.

We calculate the maximum runtime overhead as:

tov,rand,max = randmax + upsc,max + upready,max + selmax + ISRmax (3)

Accordingly, the minimum runtime overhead results in:

tov,rand,min = randmin + upsc,min + upready,min + selmin + ISRmin (4)

Using the measurements from Table 3 for equation 3 and assuming randmax = 5, 000ns,
the maximum runtime overhead results in tov,rand,max = 29, 730ns, which is around 3 percent
of the assigned slot size of 1ms in [18]. Keeping in mind that ROSACE uses 6 times faster
cores than [18] and that execution time does not scale exactly linear with processor speed,
we can approximate the runtime overhead for ROSACE. Therefore, we divide these values
by 5 for a core with 1.2 Ghz and approximate the maximum runtime overhead for ROSACE
to be tov,rand,max = 6, 000ns.

Under the assumption that randmin = 2, 000ns, the minimum runtime overhead results
in tov,rand,min = 12, 565ns, which is around 1.3 percent of the slot size in [18]. Dividing
these values by 5 as explained earlier, we approximate the minimum runtime overhead for
ROSACE to be tov,rand,min = 2, 500ns.

4.3 Runtime Overhead for Offline Precomputed Schedules
The runtime overhead for offline precomputed schedules is lower than that of scheduling
algorithms which have to take more complex decisions online, which we also prove in this
section. Again we can make use of the overhead measurements done in [18], which we show
in Table 4.

At runtime, the scheduler performs a table lookup to select the next job after each slot.
In constrast to the slot-level randomization scheduling algorithm, the overhead only consists
of the next job selection and the interrupt service routine. At the end of the hyperperiod, we
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Table 5 Exemplary precomputed time-triggered schedule for ROSACE.

ID Start End WCET
0 1 2 1
1 8 9 1
2 22 23 1
3 33 34 1
4 35 36 1
0 51 52 1
1 58 59 1
2 66 67 1
3 67 68 1
4 71 72 1
5 80 81 1
6 88 89 1
7 94 95 1

select the next offline precomputed schedule randomly. We calculate best and worst case
runtime overhead for selecting a precomputed schedule in MPARM as shown below.

tov,prec,max = randmax + selmax + ISRmax = 10470ns (5)

tov,prec,min = randmin + selmin + ISRmin = 6410ns (6)

Using the same estimation on the execution time of the randomization function for the
ROSACE case study as in Section 4.2, best and worst case approximated overhead results in
1300 ns and 2100 ns, respectively. Thus, around 1 percent of the chosen slot size is used for
scheduling for both ROSACE and on the ARM simulator MPARM.

4.4 Memory Cost for Offline Precomputed Schedules
Each precomputed schedule needs to be stored in memory. For ROSACE, we can build an
offline schedule in the same way as Table 2 suggests. Each task has its own task ID, an entry
for the start and end of the execution of its instance, and a fourth entry for its worst case
execution time. The difference between start and end time must be equal to its worst case
execution time and the execution windows for different jobs must not overlap. Table 5 shows
an example for a precomputed time-triggered schedule.

Assuming each entry has the size of 1 byte, a single schedule with this information needs
13 ∗ 4 = 52 bytes of memory.

4.5 Discussion
Slot-level randomization proves to be practical, as the approximated overhead in Section 4.2
shows. In the worst case, slot-level randomization uses less than 3 percent of the slot for
scheduling. Precomputing offline schedules can further reduce this overhead to roughly 1
percent of the slot size, but physical memory capacity limits the number of offline precomputed
schedules that can be stored in a system. It is possible to offload scheduling tables to secondary
storage by accepting an increase of scheduling overhead while loading the selected scheduling
table from this memory.
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Even for side channels with low bandwith as we mentioned in Section 2.2, an attacker
might identify a small number of schedules after several minutes or a few hours. In order to
show how many possible schedules slot-level randomization covers, we calculate the total
number of possible feasible schedules for the task set presented in Table 2. For each execution
window, the binomial coefficient

(
n
k

)
calculates the number of possibilities to execute the

task in different slots, where n is the window size and k the worst case execution time, both
quantified in slots. The binomial coefficients of neighbouring and overlapping execution
windows are multiplied with each other. If execution windows overlap, we subtract the worst
case execution time of tasks belonging to execution windows whose binomial coefficients are
already accounted for in the equation (“preceding” binomial coefficients) from the window
size. Thus, we calculate the number of possible feasible schedules for the presented task set
as shown below. On the left side of the equation, the binomial coefficients of the five tasks
with periods of 50 slots are calculated two times, because the hyperperiod results in 100
slots. Their combined worst case execution time of 10 slots is then substracted from the
execution window sizes of the tasks with a period of 100 slots.[(

50
1

)(
49
1

)(
48
1

)(
47
1

)(
46
1

)]2
×
(

90
1

)(
89
1

)(
88
1

)
= 4.56× 1022 (7)

4.56× 1022 schedules with 52 bytes require 281 bytes of storage, so we can safely conclude
that it is infeasible to track or store all possible schedules in terms of memory space and
computation time needed. Positive spare capacities, i.e. leeway in the schedule, are key for a
high number of distinct feasible schedules.

Even under the assumption that the attacker is able to store a huge number of schedules,
the higher the number of precomputed schedules, the longer it takes the attacker to be
sure which schedule is used. Updating the stored scheduling tables partially mitigates
the threat that the attacker might eventually identify the schedule in time. The threat is
fully mitigated with slot-level randomization, which we recommend in general, due to the
comparable overhead, and for systems with strict memory constraints.

5 Conclusion

In this paper we described vulnerabilities of time-triggered systems to timing inference based
directed attacks and presented two mitigation strategies. The deterministic behaviour of time-
triggered systems allows attackers to infer timing information over side channels and precisely
target victim tasks. Worst case execution time assumptions, on which schedules are based,
do not take malicious behaviour into account. As the schedule of a time-triggered system
comprises only a few bytes, it can be infered by an attacker. In order to prevent attackers
from predictions about the point in time when a certain task is executed, we presented two
mitigation strategies for directed attacks. First, we introduced slot-level randomization,
which impedes predictions about the schedule by selecting the next job at random. We
employ concepts of slot shifting to allow randomization of a time-triggered schedule without
violating deadlines. Secondly, we proposed online selection of offline precomputed schedules
for mitigation of directed attacks. At runtime, a schedule from a precomputed set of schedules
is randomly selected at the end of each hyperperiod. We evaluated both mitigation strategies
with respect to overhead and memory cost with a practical, real-world case study of a
safety-critical flight controller. Slot-level randomization has a runtime overhead of around 3
percent in the worst case, which makes it suitable for practical use. Scheduling precomputed
schedules reduces the worst case runtime overhead to around 1 percent of the slot size, but is
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more costly in terms of memory. A single schedule for the case study has a size of 52 bytes,
but the total number of feasible schedules lies in the magnitude of 1022. We proved both
mitigation strategies to be practical. An attacker could still try to launch undirected attacks,
but he or she will be easier to detect this way.

For future work, offline schedulers may be enhanced to consider entropy during schedule
creation. Moreover, imperfect randomization leaves a residual side channel. Therefore, we
are interested in a simulated attack measuring the influence a compromised task has against
its victim using our mitigation strategies and to further examine if there exist attack vectors
particularly effective against our approach. Lastly, we intend to integrate our approach into
a multicore system with partitioned scheduling.
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Abstract
Safety-critical real-time systems like modern automobiles with advanced driving-assist features
must employ redundancy for crucial software tasks to tolerate permanent crash faults. This
redundancy can be achieved by using techniques like active replication or the primary-backup
approach. In such systems, the recovery time which is the amount of time it takes for a redundant
task to take over execution on the failure of a primary task becomes a very important design para-
meter. The recovery time for a given task depends on various factors like task allocation, primary
and redundant task priorities, system load and the scheduling policy. Each task can also have a
different recovery time requirement (RTR). For example, in automobiles with automated driving
features, safety-critical tasks like perception and steering control have strict RTRs, whereas such
requirements are more relaxed in the case of tasks like heating control and mission planning. In
this paper, we analyze the recovery time for software tasks in a real-time system employing Rate-
Monotonic Scheduling (RMS). We derive bounds on the recovery times for different redundant
task options and propose techniques to determine the redundant-task type for a task to satisfy its
RTR. We also address the fault-tolerant task allocation problem, with the additional constraint
of satisfying the RTR of each task in the system. Given that the problem of assigning tasks to
processors is a well-known NP-hard bin-packing problem we propose computationally-efficient
heuristics to find a feasible allocation of tasks and their redundant copies. We also apply the
simulated annealing method to the fault-tolerant task allocation problem with RTR constraints
and compare against our heuristics.

2012 ACM Subject Classification Software and its engineering→ Software fault tolerance, Soft-
ware and its engineering→ Real-time systems software, Computer systems organization→ Real-
time systems

Keywords and phrases fault tolerance, real-time embedded systems, recovery time, real-time
schedulability
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1 Introduction

Advances in sensing, machine learning and semiconductor technology have resulted in a
dramatic increase in the amount and complexity of computational resources used in real-
time systems. Many of these systems, such as industrial control, aviation and automobiles
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[35], are also safety-critical. The increasing complexity of these computational aspects has
compounded the need for these systems to remain dependable [9]. For such systems, the
ability to tolerate permanent crash faults is integral to their dependable operation.

Conventionally, fault tolerance is achieved by replicating hardware and often using a
voting mechanism to determine the output [32]. Unfortunately, this approach is extremely
inefficient in terms of cost, weight, space and energy needs for many applications. This is
especially true for the automotive industry, where the system reliability requirements can
be diverse and the cost constraints are stringent. For example, consider self-driving cars.
Several levels of automation (1 to 5) have been defined in [31] to characterize the spectrum of
self-driving features. To put such systems in context with redundancy requirements, consider
a Level 2 system active on highways only. In such a system, although the driver is not in
direct control of the vehicle motion, the driver still plays a supervisory role: the driver will
be requested to take over control in case of any subsystem or component failure. In such
a system, perhaps only a small subset of all software tasks need redundancy (e.g., braking
and steering control, but not propulsion). Now, consider a Level-4 system active in the same
operational domain (highways), where the vehicle itself is responsible to bring the system
to a safe state in case of failures. Such high levels of automation impose more stringent
fault-tolerance requirements in terms of the number of task replicas (or backups).

Similarly, other diverse needs are also evident from the fact that different tasks running
in an automobile have different levels of safety criticality. For example, the braking control
task is far more safety-critical than (say) a music playback task. This motivates the need
for adaptive cost-optimized fault-tolerance solutions to reduce overall resource utilization.
Hence, software fault-tolerance techniques like active replication [37, 16] or the primary-
backup approach [6, 2] using hot and cold standbys are more applicable to systems like
automobiles [19, 4].

The diversity in the reliability requirements for tasks in a system using software fault
tolerance is captured by the recovery time requirement (RTR) of each task. The RTR
specifies the number of consecutive deadlines of the primary task that a redundant task
can afford to miss without the system being considered to have failed. The recovery time
requirement for a task varies depending on its safety criticality. Tasks that are safety-critical
have a strict (and very low) upper bound on RTR, while others can afford more relaxed
values. The recovery time is the time a redundant task takes to successfully take over
execution on primary task failure. It is influenced by a number of factors like redundant-task
type, redundant task priority and network delays. The goal of this paper is to analyze
the recovery times achieved by different types of redundant tasks (active/passive) used in
software fault-tolerance techniques for real-time systems. The major contributions of this
paper are as follows:
1. We derive the bounds on the recovery time of different types of redundancies, i.e, active

or passive, used in software fault-tolerance techniques for real-time systems.
2. We derive conditions to map the recovery time requirements of a task to a redundant-

task-type assignment.
3. We propose heuristics to determine redundant-task-type assignments and allocate these

tasks to different nodes satisfying the recovery time requirements of all tasks while
attempting to optimize resource utilization.

4. We apply the Simulated Annealing method to the fault-tolerant task allocation problem
and compare its performance to the heuristics proposed.

The rest of this paper is organized as follows. In Section 2, we describe related work.
In Section 3, we define our system model and fault model, and describe different types
of redundant tasks we consider for our analysis. In Section 4, we quantify recovery time
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and derive bounds on the recovery time for each redundancy type. In Section 5, we derive
conditions to assign a redundancy type to a task given its recovery-time requirements.
In Section 6, we present heuristics to assign tasks to nodes satisfying the recovery time
requirements of each task. We also apply the simulated annealing method to the fault-tolerant
task allocation problem and compare its performance against the proposed heuristics. We
summarize and conclude our findings in Section 8.

2 Related Work

The problem of supporting fault tolerance at the level of task scheduling has been widely
studied in the literature. A number of real-time task allocation algorithms in order to
tackle this problem in a distributed real-time system [8, 13, 27] have been described in the
literature. In [26], Oh et al. present an online allocation heuristic to assign replicas to a
minimum number of processors such that all replicas guarantee that task deadlines are met.
They also derive the bound on the number of processors required to feasibly schedule a
task set using their heuristic. These approaches focus only on active replication, where the
redundant software executes regardless of failure modes. The resource consumption of such
approaches is impractical for resource-constrained systems like cars, especially as the level of
automation increases and multiple failures need to be tolerated. In contrast, we also focus on
the primary-backup approach which enables fault-tolerance solutions with optimized resource
usage by activating some backups only when failures occur.

Fault-tolerant task allocation using a combination of active replication and the primary-
backup approach has been studied in [15] and [3]. Both techniques introduce phasing delays to
support backup overlapping and backup deallocation techniques. Neither technique leverages
the lower run-time utilization of different types of passive backups to optimize the number
of processors used for deployment. Also, all techniques mentioned so far attempt to meet
immediate recovery-time requirements. In this paper, we allow each task to specify its own
configurable recovery time requirement.

In our previous work [4, 19], we discussed the fault-tolerant task allocation problem which
states that no task should be placed on the same node as its primary or another redundant
task. We proposed the Tiered Placement Constrained Decreasing (TPCD) and TPCD
with cold standby (TPCDC) heuristics to produce allocations respecting this fault-tolerant
placement constraint. Both these heuristics assume the type of redundant task to be used
as inputs. In this paper, we attempt to determine this parameter given the recovery time
requirement of each task. To this end, we present a recovery-time analysis framework, along
with an extension to the TPCDC heuristic, TPCDC+R, and two new heuristics to produce
a fault-tolerant allocation satisfying the recovery-time requirement of each task.

3 System Model and Problem Definition

3.1 Computation Model
In this paper, we consider a distributed system consisting of N computational nodes, where
each node can communicate with every other node in the system by sending messages. We
assume a set of n tasks, (τ1, τ2, ..., τn), where each task is assigned a unique priority based
on the Rate-Monotonic Scheduling (RMS) [23] Policy. We assume that the tasks are ordered
in non-increasing order of priorities. We assume that a higher-priority task can immediately
preempt a lower-priority task. Each task τi is assumed to have a worst-case execution time
(WCET ) of Ci, a period of Ti and an implicit deadline Di = Ti. The analysis can be adapted
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to other scheduling policies and deadline models (e.g., D < T ), as long as a response-time
analysis is available. Each task τi may be blocked by lower-priority tasks for at most Bi

units of time as a result of the operation of a concurrency control protocol like the Priority
Ceiling Protocol [33]. We assume that the worst-case release jitter, the worst-case time a
task τi can spend waiting to be released after arrival, is Ji [36].

The schedulability of a task can be evaluated using the response-time analysis presented
in [36].

rn+1
i = Ci +Bi +

i−1∑
j=1
d(rn

i + Jj)/TjeCj

r0
i =

i∑
j=1

Cj

(1)

Equation (1) represents an iterative solution which starts at r0
i and terminates when

either Ri = rn+1
i = rn or rn+1

i > Di. We refer to Ri as the worst-case response time for task
τi. Ri is measured from the instant the task is released to its completion. The worst-case
time from arrival to completion of task i [36], also known as the worst-case completion time
(WCCT ), is given by,

WCCTi = ri + Ji (2)

A task is said to be schedulable if its WCCTi ≤ Di.

3.2 Fault Model
In our model, we are primarily concerned about permanent crash faults [9]. Hardware failures,
operating system crashes and process crashes are some examples of crash faults. We assume
that these crash faults are fail-silent [5]. In order to tolerate these crash faults, we employ
fault tolerance by replication [14]. We consider three types of redundancies:
1. Active Replica: In active replication, all redundant copies are identical and treated

uniformly. Each replica performs all operations, like accepting and processing application
inputs, performing state calculations, performing application calculations and producing
output. This implies that, under normal operation, the system needs to support duplicate
suppression to filter out duplicate outputs.

2. Hot Standby: A hot standby is based on the primary-backup approach. It performs all
the operations of the primary task except for producing outputs. On detection of primary
failure, the hot standby is promoted to become a primary and begins to produce outputs.
Unlike an active replica, a hot standby can run a degraded version of the primary to
optimize resource consumption.

3. Cold Standby: A cold standby is also based on the primary-backup approach. It can be
of two types depending on the type of application. If an application is stateless, the cold
standby does not perform any operations until it detects primary failure. For applications
with state, the cold standby accepts and logs application inputs but does not perform any
other operations. It regularly accepts the state from the primary to maintain consistency.
On detection of primary failure, the cold standby primes its state first and then begins to
produce outputs.

Transient and intermittent faults can be overcome by techniques like simple re-execution,
forward recovery [7], and recovery blocks [17]. The impact of these solutions can be accounted
for by modifying the analysis of task response times to include additional fault-induced
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processing requirements [7]. In this paper, we focus on permanent faults, though the analysis
for transient faults from [7] can be incorporated into our framework. Similar fault models
have also been used in the automotive sector [19] and [22].

In our model, a task and its replicas have the same period and a task can be assigned
one or more replicas based on the application requirements. The system designer can decide
which tasks are considered critical for the application and which are considered non-critical.
In this paper, we assume that non-critical tasks do not have replicas and can be terminated
in order to allow a cold standby to execute when a primary fails. For fault detection, we
assume that the replicas monitor the status and health of the primary, for example, by using
heartbeats and producing outputs when necessary [19, 4]. This is illustrated in Figure 1. We
assume that the underlying communication framework is reliable1, i.e., it guarantees that a
message will either be delivered within a fixed message delivery bound δ or not be delivered
at all. Common communications protocols like CAN/CAN-FD [10], FlexRay [28] and many
variants of real-time Ethernet [1, 34] can support these guarantees. The successful reception
of a heartbeat indicates to the replica that the primary is operational.

3.3 Problem Statement

I Definition 1. Recovery time (RT ) is the time elapsed from the instant of primary failure
to the instant when a redundant task is able to produce the desired output. This duration is
shown in Figure 2.

1 Safety-critical real-time systems must deal with communication failures. The communication layer can
utilize solutions like redundant CANbus links, dual FlexRay configurations with built-in support for
fault tolerance, and replicated ethernet switches. In the interests of brevity, we abstract away the details
of such solutions with our assumption of a reliable communication layer in this paper.
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The choice of the type of redundant task to be used has a major impact on a task’s
recovery time. For example, an active replica can virtually provide seamless recovery since
it runs alongside the primary. The hot and cold standbys, on the other hand, have to first
detect primary failure. In addition, the cold standby needs to then prime its state, which
results in an even longer recovery time.

The number of redundant copies assigned to each task is also an important design
parameter. Every task can be assigned m ( m ∈ N ) redundant copies. It is important to
note that different tasks can utilize different redundancy types (i.e., active, hot or cold).
The number of replicas and their types are system parameters which are application-specific.
Their choice determines the number of failures a given task can tolerate and how quickly a
task can recover from a failure. The former is a system designer’s choice and the latter can
be captured by specifying a recovery-time requirement for each task.

I Definition 2. Recovery time requirement (RTR) is the maximum number of consecutive
deadlines of the primary task that the system can afford to miss before the redundant task
must recover in accordance with Definition 1.

We first determine which type of redundant task is appropriate for a given task to meet
its recovery-time requirement. The benefit of using replicas is maximal when a task and
any of its redundant copies obey the placement constraint of not being co-located on the
same node. To this end in [20], Kim et al. defined the Fault-tolerant Partitioned Scheduling
problem as one of assigning independent tasks to nodes where every member of a group, i.e.,
a primary task and its copies, would not be co-located on the same node. This ensures that,
when nodes fail independently, they do not result in application failures. The bin-packing
problem [25] of allocating fault-tolerant tasks is known to be NP-hard [18], and heuristics
were proposed in [4] to address this problem. In this paper, we extend these heuristics to
ensure that the recovery-time requirements of tasks are also satisfied.

We assume that task I/O dependencies2 and ensuring input consistency between a primary
and its redundant copies are considered by the system designer in assigning the RTR of each
task in the system.

To summarize, the goals of this paper are as follows. Given N nodes, and a task
set τ = {T1, T2, . . . , Tn}, where every task has an application-dependent recovery-time
requirement RTRi,
1. derive bounds on the recovery time for each redundant-task type,
2. decide a redundant-task type, i.e., active, hot or cold, and
3. find an allocation where all tasks satisfy their recovery-time requirements while minimizing

the number of nodes used for allocation.

4 Recovery Time Analysis for Passive Backups

In the previous section, we saw that an active replica can be seamlessly recovered from, since
other replicas are running in parallel. In this section, we derive the recovery time bounds for
hot and cold standbys.

2 Detailed task models capturing I/O dependencies are certainly needed, and will be part of our future
work. For example, task I/O dependencies can be factored into our analysis by constructing composite
(virtual) tasks formed by combining tasks with I/O dependencies.
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Figure 3 Motivation for Backup following the Primary.

4.1 Backup Following the Primary
Previous work [4] has shown that the bounds on the recovery time for passive backups can
be reduced if the backup task execution follows the execution of the primary. The intuition
for this can be seen in Figures 3a and 3b. As seen in Figure 3a, if the backup can execute at
any time independent of its primary, it is possible for a backup to miss up to two heartbeats
without primary failure. Hence, the backup must wait for three consecutive missed heartbeats
to declare failure of the primary and initiate recovery, resulting in a longer recovery time. In
contrast, when the backup follows the execution of the primary, it needs only a single missed
heartbeat to detect primary failure.

For the backup to follow the primary, the following requirements must be satisfied:
1. Global Time Synchronization: To ensure that the backup follows the primary, the release

time of the backup w.r.t that of the primary must be explicitly controlled. Since fault-
tolerant task allocation requires primaries and replicas to run on distinct nodes, the nodes
must be time-synchronized. This constraint can be relaxed in a system which allows tasks
to be released with offsets at boot up and has negligible clock drift.

2. Network Schedulability Analysis: In order to calculate the optimal release instant for the
backup, network delays must be characterized. 3 The worst-case network response time
δm for message m can be represented as,

δm = wm +QJm + Cm (3)

where,
The queuing jitter QJm corresponds to the longest time between the initiating event
and the message being queued, ready to be transmitted on the network.
The queuing delay wm corresponds to the longest time that the message can remain
in the device queue, before commencing successful transmission on the network.
The transmission time Cm corresponds to the longest time that the message can take to
be transmitted. In the case of standbys, the transmission time depends on the standby
type. Cold standbys need to accept state, and normally require longer transmission
times than hot standbys.

4.2 Recovery Time Bounds for Hot Standbys
A hot standby produces an output immediately after it detects primary failure as described
in Section 3 and shown in Figure 4. Let WCCTpri be the WCCT for the primary. Let

3 Popular automotive network technologies, like CAN [10] and FlexRay [28], have response-time analyses
to bound the worst-case message delivery time.
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WCCThot be the completion time of the backup corresponding to the failure of the primary.
The total time from the release of the primary to the execution of the backup would be
WCCTpri + δhot +WCCThot. Hence, the recovery time is

RTHot = WCCTpri + δhot +WCCThot (4)

4.3 Recovery Time Bounds for Cold Standbys
A cold standby takes longer to recover from a failed primary as described in Section 3, since
it does not produce any state of its own, but instead receives regular state updates from
the primary. This is illustrated in Figure 5. It only logs application inputs which it uses to
prime state for future use. These logs can be cleared once a primary state is applied. Let p
denote the number of periods the cold standby needs to prime state and produce output. A
cold standby for a stateless application does not need to prime any state, and hence, in this
case, p = 0. For applications with state, the value of p depends on two factors:
1. The frequency of state transfer from the primary to the standby: The higher the frequency

of state transfer, the fresher is the state of the cold standby and hence lower is the number
of periods required for state priming (i.e., a lower value for p).

2. Priming state is highly application-dependent. Some applications may make temporal
corrections of the most recent state using appropriate extrapolations. Other applications
may iterate through all the logged inputs between the last received state and the time
instant the failure is detected, and, in each iteration, re-calculate the state to finally
produce output based on fresh state. In this paper, we assume that, for applications with
state, the value of p is provided by the application designer.
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Thus, for a cold standby to recover from a primary failure, the recovery time would be

RTCold = WCCTpri + δcold + pT +WCCTcold (5)

5 Redundant-Task Type Assignment To Tasks

In this section, we identify the types of redundant task assignments that can satisfy a given
RTR constraint. As described in Section 3.3 an active replica can be seamlessly recovered
from, since other replicas are running in parallel, hence it can satisfy any RTR requirement.

5.1 Hot standby
5.1.1 RT R = 0
For a hot standby to recover from primary failure and maintain RTR = 0, the recovery time,
RThot, should be less than or equal to T , i.e., the redundant task must recover before the
deadline of its primary. Hence, from Equation (4) we have,

RTHot ≤ T ⇒ WCCTpri + δhot +WCCThot ≤ T (6)

With the worst-case values for the terms in Equation (6),

T + δhot + T � T

Hence, with the worst-case values for WCCT , a hot standby cannot satisfy RTR = 0.

5.1.2 RT R > 0
Consider the case where RTR = n and n ∈ N>0, allowing the task to tolerate up to n missed
deadlines when the primary fails.

In the case of a hot standby, RTR = n can be satisfied if RTHot < (n+ 1)T .
From Equation (4),

WCCTpri + δhot +WCCThot ≤ (n+ 1)T (7)

Considering n ≥ 2 and the worst-case values for the terms in the above equation,

WCCTpri + δ +WCCTbkp ≤ 3T
T + δ + T ≤ 3T (8)

Assuming δ < T , a hot standby can meet RTR ≥ 2 (if it is schedulable).

5.2 Cold standby
5.2.1 RT R = 0
For a cold standby to satisfy RTR = 0, the recovery time should be less than or equal to T .
From Equation (5),

WCCTpri + δcold + pT +WCCTcold ≤ T (9)

Equation (9) must be satisfied for a cold standby to meet RTR = 0. However, if p 6= 0, a
cold standby cannot satisfy RTR = 0.

ECRTS 2018



23:10 Recovery Time Considerations for Software Fault Tolerance

Table 1 Conditions for Redundant Task Selection.

Standby Selection
RTR(n) Condition Standby Assignment
0 WCCTpri + δcold +WCCTcold ≤ T Cold (p = 0)
0 WCCTpri + δhot +WCCThot ≤ T Hot
0 WCCTpri + δhot +WCCThot > T Active
> 0 WCCTpri + δ +WCCTbkp + pT ≤ (n+ 1)T Cold
> 0 WCCTpri + δhot +WCCThot ≤ (n+ 1)T Hot
> 0 WCCTpri + δhot +WCCThot > (n+ 1)T Active

Time
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(a) Multi-Level Backups.
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Figure 6 Support for Multi-Level Backups.

5.2.2 RT R > 0

In the case of a cold standby, RTR = n can be satisfied if RTCold < (n+ 1)T in the worst
case.

From Equation (5),

WCCTpri + δ +WCCTbkp + pT ≤ (n+ 1)T (10)

Table 1 summarizes all the conditions above for standby selection. We see that, for certain
conditions, multiple options are available for redundant-task type assignment. We describe
our approach to redundant task selection in case of multiple available options in Section 6.

5.3 Multi-Level Backups

As shown in Figure 6a, a single primary can have more than one backup. Both backups in the
figure are released such that they follow the primary to satisfy the primary’s recovery-time
requirement. We assume that the order of promotion to primary is statically configured
(which in practice is easily achieved by the use of configuration parameters, or using node
IDs). Suppose that the first backup in Figure 6a is designated to take over execution first
after primary failure. On primary failure, it is not guaranteed that the current second backup
would always satisfy the recovery time requirements of the first which would now become
the new primary. In order for the second-level backup to now satisfy the RTR of the new
primary, the release time of the task needs to be corrected and this is shown in Figure
6b. Also, since we are delaying the release time of the task, and deadlines are therefore
correspondingly postponed, the deferred start does not affect the overall schedulability of
the task set [30].
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Algorithm 1 TPCDC+R.
1: procedure TPCDC+R (Γ = {τ0

0 , τ
1
0 , ....τ

0
1 ...τ

0
n, ...}) .

(τ i
j : j → TaskId, i→ TierOrder)

2: for each task τj in Γ do
3: Ψi ← τ i

j . Create tiers consisting of tasks with redundancies of the same order
4: for each tier Ψi in Ψ do
5: Sort tasks in descending order of their utilizations
6: for each task τi in Ψi do
7: Check recovery time to primary and assign redundant-task type
8: Task Assignment(α) ← BFD-P(τi)
9: Apply lower run-time utilizations for cold standbys
10: Allocate the tasks that do not have redundancies
11: return α . Return the task set assignment

6 Task partitioning with Recovery Time Constraints

In Section 3, we presented the fault-tolerant task allocation problem. We now extend
this problem to include the constraint that every backup task satisfies the recovery-time
requirement of the primary. Given our focus on resource-constrained environments, we
present heuristics to address this problem while trying to minimize the number of processors
used for allocation. Based on the recovery-time bounds of Section 4.2, we derived conditions
to determine the standby type in Section 5. In this section, we look at how the redundant-task
type assignment can be incorporated in the task allocation scheme to satisfy the recovery
time requirement of each primary.

The TPCD heuristic [4] produces an allocation satisfying the fault-tolerant placement
constraint while attempting to minimize the number of nodes used. TPCD breaks the task
set into tiers based on the backup order to place members of a replica group as far away from
each other in the task order as possible. This reduces the chances of a task facing a placement
conflict. In each tier, TPCD arranges tasks in descending order of utilization values, since,
members of larger groups have a greater probability of running into a placement conflict.
TPCD then allocates the tiers from the highest-order tier to the lowest-order tier. The
TPCDC heuristic extends TPCD to leverage lower cold-standby utilizations. Any non-critical
task can be terminated in order to allow a cold standby to execute when a primary fails.
TPCDC initially treats all standbys as hot standbys from a utilization standpoint.

6.1 The TPCDC+R Heuristic

We now extend TPCDC by introducing an explicit check for RTR. This TPCDC+R heuristic
is shown in Algorithm 1. Before assigning a task to a node, we ensure that every task (primary
or copy) on that node satisfies RTR constraints. In order to determine the recovery time
of a redundant task, we must first assign the redundant-task type using Table 1. Since
cold standbys at run-time have very low utilization values, it allows for an optimization
where non-safety critical tasks can be assigned to processors with cold standbys which can
be terminated in case the cold standby needs to take over primary execution. Hence, if
multiple redundant task options are available, we prioritize cold standbys over hot standbys
and active replicas because they are the most resource-efficient. Next, hot standbys do not
normally produce outputs. Hence, the overhead for duplicate suppression is avoided and hot
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Algorithm 2 TRTI.
1: procedure TRTI (Γ = {τ0

0 , τ
1
0 , ....τ

0
1 ...τ

0
n, ...}) . (τ i

j : j → TaskId, i→ TierOrder)
2: for each task τj in Γ do
3: Ψi ← τ i

j . Create tiers consisting of tasks with redundancies of the same order
4: for each tier Ψi in Ψ do
5: Sort tasks in ascending order of RTR constraints
6: for each task τi in Ψi do
7: Check recovery time to primary and assign redundant-task type
8: Task Assignment(α) ← BFD-P(τi)
9: Apply lower run-time utilizations for cold standbys

10: Allocate the tasks that do not have redundancies
11: return α . Return the task set assignment

Algorithm 3 RTT.
1: procedure RTT(Γ = {τ0

0 , τ
1
0 , ....τ

0
1 ...τ

0
n, ...})

2: for each task τj in Γ do
3: Ψi ← τ i

j . Create tiers consisting of tasks of same RTR
4: for each tier Ψi in Ψ do
5: TPCDC+R(Ψi)
6: return α . Return the task set assignment

standbys can potentially run a degraded version of the primary with lower utilization values.
However, they may have a scheduling penalty since they need to satisfy RTR constraints.
Therefore, the heuristic first checks if the hot standby satisfies the RTR constraint of the
task. If so, it assign a hot standby. Else, it chooses an active replica instead of opening a
new node for assignment.

It must be noted that the choices among three redundant-task types would be different if
the goal was different. For example, if communication bandwidth is constrained, the cold
standby overheads for state transfer need to be factored in.4

As stated before, we prioritize cold standbys over hot standbys or active replicas. Figure
8a shows the distribution of standby types produced by TPCDC+R. We plot the percentage
of active, hot or cold redundant task assignments against the number of primary tasks in
each task set. The results are averaged across 50,000 tasksets, where tasks are randomly
generated. Each task is randomly assigned 0,1 or 2 redundancies, an RTR constraint from 0
to 5, and a value for p (i.e., periods for cold standby priming) from 0 to 5.

TPCDC+R prioritizes tasks with higher utilization values by assigning them first in the
task allocation order for each tier. This introduces additional placement constraints for tasks
which have tight RTR requirements. An example occurs when a task with low utilization
with strict RTR requirements gets placed later in the allocation order. As a result, cold
standbys may become unschedulable forcing the use of active replicas, which in turn can
cause new nodes to be added.

4 We will consider this overall system resource optimization problem as part of our future work.
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Figure 7 Example: TPCDC-R+ vs RTT (Best Viewed In Color).
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(c) RTT: Standby Distribution
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(d) Comparative Evaluation

Figure 8 Evaluation: RTT vs TRTI vs TPCDC+R

To address this problem, we introduce two new heuristics based on TPCDC+R that
prioritize RTR constraints in the task allocation order.

1. In the first heuristic, we order tasks within each tier of TPCDC by their RTR requirements
instead of utilization values. We refer to this extension as the Tiered RTR constraint
Increasing (TRTI) heuristic. Algorithm 2 captures this TRTI heuristic.

2. In the second heuristic, we divide tasks into groups with different RTR requirements
and allocate each group using the TPCDC heuristic separately. We refer to this as the
RTR-tiered (RTT) heuristic. Algorithm 3 presents this heuristic.

Figure 7 depicts an example highlighting how prioritizing RTR constraints in the task
allocation order can improve resource utilization by comparing the outputs of the TPCDC+R
and the RTT heuristics for the input task set in Figure 7a. As shown in Figure 7b, TPCDC+R
breaks the critical tasks into tiers based on the number of backups and orders tasks within a
tier based on their utilization values. In contrast, RTT breaks the tasks into tiers based on
their RTR constraints. Figures 7e and 7d show that the RTT heuristic allocates a greater
number of cold standbys compared to the TPCDC-R heuristic. This, in turn, results in an
allocation with fewer nodes as seen in Figures 7f and 7e. Notice that, when allocating the
non-critical tasks, we consider the lower utilization values for the cold standbys.

Figures 8b and 8c show the standby distributions for TRTI and RTT heuristics. Both
the heuristics result in a larger number of cold standby allocations than for the TPCDC+R
heuristic.



A. Bhat, S. Samii, and R. Rajkumar 23:15

6.2 Evaluation and Discussion
In this section, we evaluate and compare the performance of the TPCDC+R, TRTI and
RTT heuristics. We also evaluate the impact of the increased cold standby allocation on the
number of nodes used for allocations using the new heuristics. We plot the percentage of task
sets for which a heuristic produces an allocation with fewer nodes, i.e., uses at least one node
less for allocation compared to the other two heuristics. Figure 8d presents the results for
50,000 randomly-generated tasksets generated using Stafford’s Randfixedsum algorithm [11]
for total utilization values ranging from 0.1 to number of primaries and random period values
ranging from 1 to 104. Each task is randomly assigned 0, 1 or 2 copies, an RTR constraint
from 0 to 5, and a value for p (i.e., periods for cold standby priming) from 0 to 5. As the
figure shows, RTT produces an allocation with fewer nodes on average when compared to the
TRTI and TPCDC+R. For task sets with 24 primaries, it produces an allocation with fewer
nodes than TRTI and TPCDC+R for almost 23% of the task sets. This is consistent with
the intuition that increasing the number of cold standbys reduces CPU resource utilization.
Also, as the number of primaries increase, this trend becomes more significant as we have
more cold standby assignments to leverage. Moreover, both heuristics that prioritize the
RTR constraints perform better than the TPCDC+R heuristic. It is important to note
that increasing the number of cold standbys will result in additional network latencies since
they need to have state information sent to them from their primaries. For the purpose of
these experiments, we assume that the delays incurred for state transfer are short. For a
network-constrained system, it may prove to be more advantageous to have a lower number
of cold standbys.

7 Applying Simulated Annealing to the Fault-Tolerant Task
Allocation Problem

In the previous section, we saw that the RTT heuristic on average produces a better solution
than TPCDC+R and TRTI. In this section, we look at further improving on the RTT
heuristic solution by utilizing the simulated annealing method to solve the fault-tolerant task
allocation problem instead.

Simulated annealing is a general-purpose combinatorial optimization technique first
proposed by Kirkpatrick et al. [21]. The fault-tolerant task assignment problem can be
stated as an optimization problem as follows,

Given n tasks (τ1, τ2, ..., τn), with utilization (u1, u2, ..., un), where ui ≤ 1, find the number
of nodes M of size 1 that are needed to pack all tasks such that a primary task and its
corresponding redundant copies obey the placement constraint of not being co-located on
the same node and optimizing the following cost function [12]

cf = Maximize
M∑

j=1
(
∑
i∈kj

ui)2 (11)

where, kj represents the set of tasks in bin j.
The simulated annealing algorithm for fault-tolerant task allocation is shown in Algorithm

4. The algorithm starts by using the RTT heuristic to create an initial allocation, α. We
use this as the initial state of the system. To obtain a new state α′ from the initial state
we randomly perform one of the two operations described in Section 7.1. While performing
either of these operations, we ensure that the placement constraints for all tasks remain
satisfied. We also ensure that the new allocation is schedulable. Here, we apply a greedy
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Algorithm 4 Simulated Annealing.
1: procedure anneal (Γ = {τ0

0 , τ
1
0 , ....τ

0
1 ...τ

0
n, ...})

2: Task Assignment(α) = RTT(Γ)
3: T ← T∞
4: while T > T0 do
5: repeat
6: α’ = randomlyModifyCurrentSolution(α)
7: ∆C = cf(α)− cf(α′) . From Eqn 11
8: η = RANDOM(0, 1)
9: P (∆C) = e(−∆C/T )

10: if ∆C < 0 or P (∆C) > η then
11: α = α′

12: until thermal equilibrium
13: T ← F (T )
14: return α . Return the task set assignment

optimization: if a valid operation results in an empty bin, we remove it from the allocation5.
The value of the objective function is calculated for this new state. Let ∆C represent the
change in the cost function, i.e, ∆C = cf(α)− cf(α′). This state is unconditionally accepted
if ∆C < 0. If not, the Metropolis condition [24] is applied and the state is accepted with a
probability according to the following acceptance function P = e(−∆C/T ). We start with a
large value for initial temperature T = T∞. When there is no appreciable change in the value
of the cost function across a few chains of computation or a maximum number of iterations
is reached, we lower the temperature. The annealing terminates when the temperature T
reaches a low-enough value, To and the current best α is returned as the solution. We derive
the values for T∞ and To for the fault-tolerant task allocation problem in Section 7.2.

7.1 Generating Random Solutions
In order to create random solutions from a given solution, we apply the following two
operations [29].

1. We randomly move a single task from a randomly-selected node k to another randomly
selected node l.
I Lemma 3. The maximum reduction ∆Cmax for the cost function in Equation 11, for
a system of two nodes, k and l, by moving a task from node k to l occurs when Uk = 1
and Ul = 0, where Uk and Ul are the total utilization values of the respective nodes.

Proof. Let ut represent the utilization of the task that is moved from bin k to l. Let
U ′k and U ′l be the transformed utilization values after a task is moved from node k to l.
Hence, U ′k = Uk − ut and U ′l = Ul + ut and ∆C for this operation can be represented as,

∆C = Uk
2 + Ul

2 − U ′k
2 − U ′l

2 = Uk
2 + Ul

2 − (Uk − ut)2 − (U ′l + ut)2

= 2 ∗ Uk ∗ ut − 2 ∗ Ul ∗ ut − 2 ∗ u2
t

(12)

5 In our experiments, we found no significant improvement in the quality of solutions obtained by retaining
an empty bin
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From Equation (12), ∆C is maximum when the positive terms are maximized and the
negative terms are minimized. Ul only appears in the second term which is negative, and
Uk appears only in the first term which is positive. Hence ∆C is maximized when Uk = 1
and Ul = 0 corresponding to their maximum and minimum possible values. J

For the fault-tolerant task allocation problem, moving a task from one bin to another
can result in a different redundant-task-type assignment resulting in different run-time
utilizations. Let the factor s capture this utilization change. The associated change in
the cost function for this operation is given by,

∆C =U2
k + U2

l − [(Uk − ut)2 + (Ul + s ∗ ut)2]
=2 ∗ Uk ∗ ut − u2

t − 2 ∗ Ul ∗ s ∗ ut − (s ∗ ut)2 (13)

From Lemma 3, the maximum value of ∆C, which represents the largest reduction in
the cost function, occurs when a task is moved from a completely-packed node to a
completely-empty node. Since we apply a greedy optimization of removing empty bins,
we consider Ul = ε. Hence,

∆Cmax1 u2 ∗ ut − u2
t − (s ∗ ut)2 (14)

2. We randomly select two tasks currently located in two different bins and swap them.
I Lemma 4. The maximum reduction ∆Cmax for the cost function in Equation 11, for
a system of two nodes, k and l, by swapping two tasks occurs when one of the nodes has
U = 1 and the other has U = ε.

Proof. Let Uk and Ul be the total utilization values of the respective nodes. Let ut1
represent the utilization of the task that is moved from bin k to l and ut2 represent the
utilization of the task that is moved from bin l to k. Let U ′k and U ′l be the transformed
utilization values after the tasks are swapped. Hence, U ′k = Uk − ut1 + ut2, U ′l =
Ul + ut1 − ut2 and ∆C for this operation can be represented as,

∆C = Uk
2 + Ul

2 − U ′k
2 − U ′l

2

= Uk
2 + Ul

2 − (Uk − ut1 + ut2)2 − (Ul + ut1 − ut2)2

= 2 ∗ Uk ∗ ut1 − 2 ∗ Uk ∗ ut2 + 2 ∗ ut1 ∗ ut2 − ut1
2 − ut2

2

+ 2 ∗ Ul ∗ ut2 − 2 ∗ Ul ∗ ut1 + 2 ∗ ut1 ∗ ut2 − ut1
2 − ut2

2

= 2 ∗ Uk ∗ (ut1 − ut2)− 2 ∗ Ul ∗ (ut1 − ut2)− 2 ∗ (ut1 − ut2)2

= 2 ∗ (Uk − Ul) ∗ (ut1 − ut2)− 2 ∗ (ut1 − ut2)2

(15)

From Equation (15), ∆C is maximum when Uk − Ul u 1, since 0 < Uk, Ul ≤ 1. Since we
are swapping tasks between two nodes, a node cannot be empty. Hence, ∆C is maximized
when one node has U = 1 and the other U = ε. J

For our fault-tolerant task allocation problem, let the factors st1 and st2 capture the
utilization changes after the swap. The associated change in the cost function for this
operation is given by,

∆C =U2
k + U2

l − [(Uk − ut1 + st2 ∗ ut2)2 + (Ul + st1 ∗ ut1 − ut2)2]
=2 ∗ Uk ∗ ut1 − 2 ∗ Uk ∗ st2 ∗ ut2 + 2 ∗ ut1 ∗ st2 ∗ ut2 − u2

t1 − (st2 ∗ ut2)2+
2 ∗ Ul ∗ ut2 − 2 ∗ Ul ∗ st1 ∗ ut1 + 2 ∗ ut2 ∗ st1 ∗ ut1 − u2

t2 − (st1 ∗ ut1)2
(16)
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From Lemma 4, the cost function is maximized when one bin has U = 1 and the other
has U = ε. Hence,

∆Cmax2 u2 ∗ ut1 − 2 ∗ st2 ∗ ut2 + 2 ∗ ut1 ∗ st2 ∗ ut2 − u2
t1 − (st2 ∗ ut2)2+

+ 2 ∗ ut2 ∗ st1 ∗ ut1 − u2
t2 − (st1 ∗ ut1)2 → Uk = 1, Ul = ε

(17)

Given a task set, the value of ∆Cmax = max(∆Cmax1,∆Cmax2) can be easily calculated
by substituting actual values into Equations (14) and (17) for all combinations of tasks.

7.2 Selecting an Annealing Schedule
The annealing schedule is described by quantitative choices for the three parameters: the
starting value of the temperature, T∞, the stopping value of the temperature To, and the
decrement function F (T ) which determines the profile of the temperature from the beginning
till the end of the annealing process.

The starting temperature, T∞, for a good annealing schedule, is usually determined by
monitoring the acceptance ratio at each temperature. The upper bound for acceptance ratio
ah (the fraction of generated states that are accepted), is arbitrarily fixed at some high
value such as 0.9 and the temperature is increased to a value where this acceptance ratio is
achieved [29]. Given that we can calculate ∆Cmax for a given task set, we can calculate the
value T∞, which can accommodate even the largest reduction in the cost function at high
temperatures, as follows.

ah = e(−∆Cmax/T∞) ⇒ ln(1/ah) = ∆Cmax/T∞ ⇒ T∞ = ∆Cmax/ln(1/ah) (18)

Similarly, To can be calculated for the lower bound of the acceptance ratio al.

To = ∆Cmax/ln(1/al) (19)

In our experiments, we also found that F (T ) = 0.9 ∗ T works well for the problem at
hand.

7.3 Evaluation
In this section, we compare the performance of the simulated annealing approach with that
of the RTT heuristic. We plot the execution time of the simulation annealing approach and
the RTT heuristic against the number of the primaries in the task set. Figure 9 presents the
results averaged across 5000 randomly-generated task sets. Each task is randomly assigned
0, 1 or 2 redundancies, an RTR constraint from 0 to 5, and a value for p (i.e., periods for
cold standby priming) from 0 to 5. Note that the Y-axis is in log scale. Our heuristics are
faster than the simulated annealing approach by more than 2 orders of magnitude. We also
plot the number of nodes utilized by each technique per iteration against the number of
primaries in the task set. Figure 10 presents the results for 5,000 randomly-generated tasksets
generated using Stafford’s Randfixedsum algorithm [11] for total utilization values ranging
from 0.1 to number of primaries and random period ranges from 1 to 104. As Figures 9 and
10 show, though the simulated annealing algorithm takes longer to complete, it produces an
allocation with fewer nodes on average when compared to RTT. This approach can be used
for generating offline static allocations and in other non-time-sensitive contexts. In contrast,
our heuristics can be used for run-time admission control and other environments that are
time-sensitive.
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Figure 9 Execution-Time Evaluation.

Figure 10 Resource Utilization Evaluation.

8 Concluding Remarks

In this paper, we considered software fault-tolerance techniques for safety-critical real-time
systems and derived the bounds on the recovery time of different types of redundant tasks:
active replication and primary backups with hot and cold standbys. We also derived
conditions to map the recovery time requirements (RTR) of a task to a specific assignment
of a redundant-task type. We extended the fault-tolerant task allocation problem to include
these RTR constraints, and proposed the TPCDC+R heuristic to satisfy these constraints.
Finding a core weakness in TPCDC+R, we then presented two additional heuristics called
Recovery-Time Tiered (RTT) and Tiered Recovery-Time Constraint Increasing (TRTI) which
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prioritize the RTR constraints in the task allocation sequence. These two heuristics on
average produce allocations with fewer nodes than the TPCDC+R heuristic because they
yield more assignments of resource-efficient cold standbys. Overall, the RTT heuristic, which
tiers tasks based on their RTR values to prioritize the allocation of tasks with strict RTR
requirements first, performs the best. Finally, we used the simulated annealing method to
solve the fault-tolerant task allocation optimization problem and showed that it produces
allocations utilizing fewer computing resources than the proposed heuristics, at the cost of
substantial run-time.
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Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors)
significantly contribute to the energy consumption of an embedded real-time system, their impact
on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken
into account. Most WCRE analysis techniques, for example, only focus on the processor and
therefore do not consider the energy consumption of other hardware units. Apart from that,
the typical approach for dealing with devices is to assume that all of them are always activated,
which leads to high WCRE overestimations in the general case where a system switches off the
devices that are currently not needed in order to minimize energy consumption.

In this paper, we present SysWCEC, an approach that addresses these problems by enabling
static WCRE analysis for entire real-time systems, including internal as well as external devices.
For this purpose, SysWCEC introduces a novel abstraction, the power-state–transition graph,
which contains information about the worst-case energy consumption of all possible execution
paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks
during which the set of active devices in the system does not change and is consequently able to
precisely handle devices being dynamically activated or deactivated.
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1 Introduction

Energy-constrained real-time systems must not only ensure that tasks meet their timing
deadlines, but also that there is enough energy to execute the tasks to completion [70, 72, 73].
Therefore, it is essential for energy-aware schedulers to consider both an upper bound for
the execution time of a task as well as its worst-case response energy consumption (WCRE),
that is, the maximum amount of energy required by the system to fully execute the task once
it has been started [26, 70]. For systems where a task can be interrupted or preempted by
other tasks with higher priorities, this means that a task’s WCRE covers both the worst-case
energy consumption (WCEC) of the task itself as well as the WCECs of all interrupt service
routines and tasks that might be executed while the task is running1.

Obtaining worst-case execution times can be regarded a solved problem for embedded,
single-threaded real-time systems [5, 74] with multiple timing-analysis tools being com-
mercially available [2, 53, 66]. Determining upper bounds for energy consumption, on the
other hand, is still an open issue for systems in which devices and peripherals contribute
to power consumption. Although energy profilers exist that are able to measure the energy
consumption of systems including devices [62], so far there is no analyzer that provides
reliable upper bounds for an entire system. Existing approaches to determine worst-case
energy consumptions so far are usually limited to an analysis of the influence of a system’s
processor [35, 71]. Unfortunately, this strategy provides only a partial view of the problem,
because in many embedded systems the processor is just one of several energy consumers
besides internal devices (e.g., memory, timers) and external devices (e.g., peripherals such
as WiFi transceivers, analog-to-digital converters, accelerometers, or LEDs). As illustrated
in Table 1 by example of the NXP KL46z platform [23, 24] (ARM Cortex-M0+), a typical
hardware for a small battery-operated real-time system, these devices in general significantly
contribute to the system’s overall power consumption. In some cases, for example, transceivers
or LEDs, the power consumption of the device even exceeds the power consumption of the
processor. Consequently, in order to obtain reliable results, it is crucial to take the impact of
devices into account when analyzing a system’s energy consumption.

The common approach to prevent WCRE underestimations for systems with devices is
to assume that all the devices are active the entire time [43] and to include their combined
power consumption into the analysis. Although this technique has the benefit of being sound,
it also comes with the major drawback of usually leading to significant overestimations.
These overestimations are caused by the fact that in many systems in practice devices and
peripherals are disabled most of the time in order to save energy, and only temporarily
switched on while their services are actually required, for example, to broadcast a message
via a transceiver. As a consequence, WCRE analyses that assume all the devices to be
always on often provide energy-consumption estimates that are much higher than the actual
WCECs, which possibly leads to systems stopping execution unnecessarily early or to the
system’s lifetime being greatly underestimated by the pessimism of the analysis.

1 We use the terms WCEC and WCRE analogous to timing analysis where the worst-case execution
time (WCET) refers to a task in isolation and the worst-case response time (WCRT) to the timespan
from the start of a task until its completion, including all possible interferences (e.g., preemptions).
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Table 1 Power consumers in energy-constrained systems [23, 25, 67].

Hardware Unit Power Consumption [@3.3V]

MCU (run mode) 5.6mA
MCU (low-power run mode) 0.7mA
MCU (stop mode) 0.3mA
Accelerometer 1.7mA
Analog–to-digital converter 0.4mA
External memory (FRAM) 0.2mA
LED 4.6mA
WiFi transceiver 87.6mA

The main reason why existing approaches deal with the impact of devices at a coarse-
grained level is that WCRE analysis is inherently difficult in the context of devices that
are dynamically switched on and off. Precisely determining the WCRE of a task requires
knowledge about the entire system, including the WCECs of interrupt service routines
and tasks with higher priorities. Additionally, the (de-)activation of devices, especially the
activation of timers for running the CPU at a higher frequency, causes significant latencies
that lead to energy-consumption penalties [8, 9]. In the absence of devices, obtaining the
necessary WCECs is straightforward as the individual WCECs of all relevant routines and
tasks can be analyzed in isolation from each other. However, in systems with devices this is
not possible because, as we will show in detail, the WCEC of a task not only depends on the
work performed by the task itself but also on the actions (i.e., device activations/deactivations)
taken by other tasks, in some cases even tasks with lower priorities.

This paper presents SysWCEC, a static analysis approach that addresses the problem
of determining WCREs in real-time systems with devices by taking the entire system into
account. For this analysis purpose, SysWCEC first constructs and then leverages a novel
data structure called the power-state–transition graph, which contains knowledge about the
worst-case energy consumption of the analyzed system for all possible execution paths.

To construct the power-state–transition graph, SysWCEC in a first step searches for
locations in the system code at which the power state of a device is changed and then logically
decomposes the code into blocks of instructions during which the power states of devices
remain constant. Next, SysWCEC identifies all possible interactions between the discovered
blocks and combines this knowledge with additional information about the blocks’ power
consumptions and worst-case execution times. In the last step, this enables SysWCEC to
determine all possible states the system might be in while it is running; in addition, for each
of these states, this allows SysWCEC to compute the maximum amount of energy the system
will consume while executing the instruction block associated with the state.

Decomposing the overall system into smaller blocks with constant device power states
offers the key benefit of allowing us to perform large parts of the WCRE analysis without
having to deal with varying power consumption while still being able to account for dynamic
device (de-)activations. Apart from that, the context-sensitive analysis of both synchronous
task interactions as well as asynchronous interrupts enables us to individually determine
the WCEC of each task even for systems in which a task’s WCEC cannot be analyzed in
isolation as it might depend on the behavior of other tasks.

The SysWCEC approach presented in this paper borrows ideas from previous work
on whole-system response-time analysis of fixed-priority real-time systems [19]. However,
although lessons learned from timing analysis are helpful for energy-consumption analysis, in
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general, it is not possible to directly reuse existing techniques due to substantial differences
between both domains. As we will show in this paper, energy-consumption analysis requires
a more extensive system analysis that considers tasks of all priorities, addresses device
(de-)activation penalties, and tracks power states of devices across all possible system states.
Solving these problems forced us to develop a new approach to structuring real-time systems
and their devices’ power consumption to determine safe and accurate WCREs.

In summary, this paper makes the following contributions: (1) It presents our whole-
system approach to WCRE analysis for real-time systems with internal and external devices
and provides details on SysWCEC ’s central data structure: the power-state–transition
graph. (2) It gives insights into the open-source SysWCEC prototype, which supports the
fully-automatic processing of OSEK-compliant (i.e., ECC1 [49]) real-time systems. (3) It
discusses our evaluation of two different hardware platforms, which shows that SysWCEC is
able to significantly reduce WCRE overestimations compared with the approach of assuming
all devices to be always active.

2 Problem Statement

In this section, we first provide details on SysWCEC ’s underlying system model and then
discuss two open challenges that so far remain with regard to WCRE analysis: (1) precisely
accounting for the fact that devices and peripherals in practical systems are dynamically
switched on and off, and (2) determining task WCECs that depend on overall system state.

2.1 Hard- & Software System Model
SysWCEC targets embedded real-time platforms for which energy is a scarce resource. In such
systems, the processor usually has a single processing core, a small predictable instruction
cache, no data cache, and few pipeline stages [3, 4]. Due to the limited complexity, determining
worst-case execution times based on the cycle costs of instructions in isolation is a feasible
approach and achieves low overestimations [61]. Typically, the software running on such
platforms consists of less than a dozen tasks that have fixed priorities and possibly depend
on each other. A task is either synchronously activated by another task or a periodic alarm,
or asynchronously activated as the result of a hardware interrupt. Interrupts always preempt
the task currently running and can be released with a minimum inter-arrival time pi, that is,
there is an upper bound for the frequency with which interrupts are triggered.

Apart from the processor, systems in the targeted domain typically have numerous internal
and external devices that significantly contribute to overall power consumption. While simple
devices can only assume two different power states (i.e., on and off), more complex devices
may comprise additional power modes, for example, to offer different tradeoffs between
performance and power consumption. In each power mode, a device has a (mode-specific)
maximum power consumption. Consequently, an upper energy bound E for an interference-
free code sequence can be determined based on the worst-case execution time WCET of the
code using E = WCET · Pmax, with Pmax being the total maximum power consumption of
all hardware components in their current power modes. How to create a sound worst-case
energy model to compute Pmax is outside the scope of this paper. In general, the necessary
information can be obtained from hardware analyses [50] and/or documentation [24].

In the targeted systems, transitions between power modes are initiated by the operating
system as the result of a system call invoked by a task or an interrupt service routine; in
this paper, we refer to such calls as device system calls, or device syscalls for short. Once
invoked, a device syscall only returns after the requested power-mode switch is complete. All
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Figure 1 Effect of a temporarily activated device on power consumption.

dynamic power management is explicitly controlled by the application via device system calls
and passes the operating-system kernel. That is, as it is common for embedded platforms,
the hardware does not initiate power-mode changes itself. To determine upper bounds for
energy consumption for the whole system, the analysis cannot be limited to the user level but
requires a whole-system view that includes both user application and the operating system.

2.2 Challenge #1: Modeling Temporarily Activated Devices

With devices being a decisive factor in an embedded system’s power consumption, energy-
constrained systems are usually designed to only keep a device active as long as its services
are actually required. While on the one hand, this approach enables such systems to greatly
extend their lifetimes, on the other hand, it also complicates static energy-consumption
analysis because the power consumption of the system no longer only depends on the
instructions executed but instead is also affected by the set of devices currently active.
Figure 1 illustrates this problem for a task consisting of three parts: a first part in which the
task performs some processing without using any devices (Part A ), a second portion in which
the task temporarily activates and accesses a device (Part B ), and a third part that continues
processing (Part C ). In the absence of devices, the worst-case energy consumption of a task
can be statically determined based on the energy costs of individual instructions [35, 71].
However, for the example task this is not possible because the system calls to activate
and deactivate the device, despite consuming only a small amount of energy themselves,
significantly change overall power consumption due to modifying system state. Consequently,
the energy consumption of the system for Part B to a large extent is not a result of the
processor executing certain instructions but of the fact that the device is active during this
period of time. Our example therefore shows that for systems with devices it is insufficient
to limit the energy-consumption analysis to the instructions executed and it explains why
techniques that focus on the processor [35, 71] usually underestimate the worst-case energy
consumption. Furthermore, many real-time scheduling approaches using DVFS disregard the
latencies to switch on the timer devices for running on a higher frequency [8], which can be
in the range of one millisecond [9].

In the context of worst-case energy-consumption analysis, the common approach to
deal with devices is to prevent underestimations by modeling all devices in a system to be
always on [43]. As our example in Figure 1 illustrates, this generally leads to significant
overestimations due to assuming an increased power consumption that most of the time (e.g.,
during Parts A and C ) is much higher than the consumption actually possible in practice.

Our Approach: To properly account for the energy consumption of internal and external
devices, we identify parts of the system code during which the set of active devices does not
change, starting a new part whenever a device is activated or deactivated. Performing our
analysis at this granularity level allows us to minimize analysis complexity without losing
the ability to model the impact of temporarily activated devices.
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Figure 2 A task’s WCEC may depend on another lower-priority task.

2.3 Challenge #2: System-State – dependent Task WCECs

While worst-case energy consumption (WCEC) analysis for systems with devices and periph-
erals is already challenging for a single task, the problem becomes even more difficult when
entire task sets are involved. To illustrate this, we extend the example of Section 2.2: As
depicted in Figure 2, we now assume that the task can be interrupted and that, as reaction
to an interrupt, the interrupt service routine (ISR) activates a task with a higher priority,
which executes a Part H . In the following, we focus on discussing the difficulties associated
with determining the WCEC of this higher-priority task.

As illustrated by the graphs in Figure 2, the power consumption of the high-priority task
depends on the point in time at which the interrupt is triggered. That is, if the interrupt
arrives while the system executes Part B of the low-priority task, the high-priority task
consumes much more power compared to the case in which the interrupt arrives during
Part A when the device is still inactive. However, in both cases the high-priority task
executes exactly the same instructions (i.e., Part H ), which shows that the WCEC of the
task does not only depend on the actions taken by the task itself but also on the state the
system is in when the task starts executing, which is a result of previous actions taken by
other tasks (i.e., device activations and deactivations). As shown by the example, this may
even include actions taken by other tasks with lower priorities.

The fact that in systems with devices the worst-case costs of a task may depend on other
tasks constitutes a major difference between timing analysis and energy-consumption analysis:
To determine the worst-case execution time of the high-priority task, it is sufficient to analyze
the task in isolation. Consequently, to compute an upper bound for the response time of a
task (i.e., WCET plus potential interferences), an analysis only needs to consider the task
itself as well as all interrupt handlers and tasks that might be executed while the task is
running [5, 68]. In contrast, an analysis of worst-case (response) energy consumptions requires
a comprehensive analysis of the entire task set, which means that existing timing-analysis
approaches cannot be directly applied to analyze energy consumption in systems with devices.

Our Approach: Using a context-sensitive analysis that covers both synchronous task
activations and asynchronous interrupts, we identify all possible states the analyzed system
might reach during execution. By also analyzing the transitions between these states, we are
able to determine the set of active devices for each of the states, which consequently allows
us to precisely compute the WCECs of individual tasks.

3 The SysWCEC Approach

In the following, we present SysWCEC, a whole-system analysis approach to worst-case
response energy consumption (WCRE). We tackle the challenges mentioned in Section 2 and
tighten WCRE estimates by eliminating infeasible combinations of system-wide execution
paths and energy states and thus abandon the all-always-on approach for external devices.
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Overview
In a nutshell, SysWCEC leverages knowledge about device usage and operating-system seman-
tics for a context-sensitive system-wide control-flow analysis that, in particular, incorporates
state-dependent power consumptions. Conceptually, SysWCEC is based on the inference of
the system’s possible dynamic behavior and consequently all states the system might take
during execution. By that, we mean the system state consisting of (a) active tasks and their
priorities, (b) interrupt masks, (c) resource occupancy and ceiling priorities, and (d) power
states of external devices. This knowledge allows for fine-grained modeling of extrinsic energy
costs that can neither be attributed to individual instructions nor tasks but must be assessed
in a system context, which is a fundamental advance of traditional techniques.

To infer the system states and thus disclose all energy-relevant interactions, our whole-
system static analysis requires the following three steps, which we briefly outline next before
immersing in further details in Sections 3.1 to 3.3.
1. Abstraction and Decomposition: In a first step, SysWCEC derives control-flow

graphs of the entire system from the source code. To keep this step feasible, we take
advantage of the fact that only system calls, or syscalls for short, can alter the system
state and thus the power state and set of active devices. Consequently, our approach is
to decompose the code into coarse-grained blocks that span between syscalls and thus
are atomic from a system-state perspective: this coarsening facilitates the subsequent
state enumeration and allows SysWCEC to perform large parts of the WCRE analysis
efficiently without losing precision of dynamic device activations and deactivations.

2. Power-Aware System-State Enumeration: In the second step, SysWCEC explicitly
enumerates all possible block-to-block transitions considering the priorities of tasks,
synchronous task activations, and asynchronous interrupts. The result of this symbolic
state enumeration is a state graph that incorporates the operating-system semantics and
thus the possible dynamic behavior of the system. This, in particular, links the code
blocks from the previous step with state-dependent power states and device activities.

3. ILP Formulation & WCRE Determination: In the last step, SysWCEC determines
the worst-case energy consumption of each state-graph node based on the worst-case
execution time of the associated code block and the respective power states of active
devices. Furthermore, it constructs an integer-linear program (ILP) to eventually derive
the WCRE.

3.1 Abstraction and Decomposition
Recalling our goal of a fine-grained, state-dependent modeling of energy consumption, we first
need a global control-flow graph that, in particular, incorporates inter-task dependencies as
well as the operating system. The canonical approach to this would be a full path analysis on
a basic-block level. This granularity is, however, too fine and infeasible for the vast number
of possible program paths through an entire system [10, 38].

Nevertheless, to determine the WCRE, besides scheduling events, we are only interested
in energy-relevant events, that is, spots in the control flow that have the potential to change
the power consumption. In other words, we can abstract from sequences of instructions that
share a particular power and system state if executed uninterrupted.

We consequently based SysWCEC ’s analysis on previous work on the concept of atomic
basic blocks (ABBs) [22, 55] to abstract from the code’s microstructure and decompose the
system. An ABB is a control-flow superstructure that subsumes one or more basic blocks
and conceptually spans between syscalls. Each ABB has exactly one entry and one exit
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Figure 3 Illustration of SysWCEC ’s first two analysis steps (decomposition & state enumeration).

block, which typically is the delimiting syscalls, forming a single-entry single-exit region. As
long as the result complies with this rule, ABBs may be split arbitrarily for optimization
reasons. These construction rules imply that an ABB executes atomically from a scheduling
perspective. Still, there is no correlation between ABBs and power states.

Building on this foundation, for WCRE analysis we therefore developed the concept
of power atomic basic blocks (PABBs) with the additional property that the set of active
devices and their power states does not change within a block. With the operating system
being the governor of power states and devices, this boils down to an extended analysis and
decomposition of the implementation: any device reconfiguration is considered as a dedicated
syscall, a device syscall (see Section 2.1). Consequently, a PABB is atomically executed from
both the scheduling and power perspective. In the resulting PABB graph (i.e., coarse-grained
global control-flow graph), changes in the system state (i.e., operating-system and power
states) are possible only at the edges between PABBs. Note that the PABB graph covers the
entire system implementation and all machine instructions. By that, SysWCEC inherently
considers overheads (e.g., context switch, syscall, and scheduling costs), which are often
neglected in real-time scheduling approaches [15].

Figure 3 illustrates the decomposition into PABBs using the example system from
Section 2.3. Following the construction rules, the low-priority task is split by the device
syscalls (on/off) into three PABBs, which account for the actual power states and the
utilization of the external device. Consequently, only PABBb is modeled with active power
state, while the computation in PABBa and PABBc is assigned the correct inactive power state.
Here, the state modification is associated with the edges between the three PABBs. Similarly,
the effect of scheduling-related syscalls is handled as inter-task constraints between PABBs.
For example, the activation of the high-priority task from the ISR (PABBd to PABBe). We
further discuss the handling of asynchronous interrupts in Section 3.2.

Overall the decomposition into PABBs on its own is already a significant improvement
over the all-always-on assumption. Our approach allows for an independent analysis of
implementation artifacts and states, which has three main advantages that highly benefit the
subsequent steps: First, it substantially reduces analysis complexity and allows SysWCEC to
examine an entire system by identifying all possible states, without the need of enumerating
all possible program paths. Second, the fact that the power consumption does not change
within a PABB greatly facilitates the problem of determining upper bounds for the block’s
energy consumption. Third, the single-entry single-exit property allows the reuse of previously
developed whole-system and timing analysis techniques [17, 18, 19].
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3.2 Power-Aware System-State Enumeration
So far, the PABB graph only captures a static view of the system structure as well as
the interactions between application, operating system, and external devices. Therefore,
SysWCEC leverages the PABB graph in a second analysis step to deduce the dynamic system
behavior by an explicit enumeration of all feasible system states and all transitions between
them. A key aspect of this step is to further enrich the analysis by a model of operating system
behavior (i.e., fixed-priority scheduling and resource protocols), the system configuration
(e.g., task priorities, minimal inter-arrival times, and deadlines), and an energy cost model of
the external devices. The resulting power-state–transition graph (PSTG) ultimately exposes
the aspired context-aware global execution paths, including synchronous and asynchronous
preemptions (i.e., task switches and interrupts). Thereby, we are subsequently able to identify
and eliminate infeasible combinations of system-wide execution paths and power states and
thus further refine the input for the final step in Section 3.3. Overall, the PSTG holds all
relevant information to safely formulate an ILP, whose solution yields the WCRE. In the
following, we detail the elements of the PSTG as well as its construction and show how to
incorporate the operating-system semantics and the energy costs of devices.

Basic Principle and Operating-System Semantics
We begin our elaboration of the PSTG with its underlying principles and the operating-
system–aware identification of possible execution paths. The basic construction rule is, as
mentioned, to enumerate all possible system states and all transitions between them. A system
state node is defined to hold the following information: (a) operating-system parameters,
including the set of tasks with their current status (i.e., ready, running, suspended), priority,
acquired resources, and resumption point as well as the ceiling priority. (b) Interrupt-related
information including their status (i.e., enabled, pending, acknowledged). Finally, each state
comprises (c) exactly one PABB and thread of execution, accordingly.

The construction algorithm starts with a dedicated entry state that is set up by the boot
code. From this initial state, the application logic, which is obtained from the PABB graph,
is simulated on a model of the operating system. At this point, the system configuration
comes into play, which is used to instantiate the model to fit the concrete implementation.
Subsequently, all reachable states are enumerated while the operating-system scheduling
semantics are employed to discover inter-thread transitions. For example, when multiple tasks
are runnable, the algorithm selects the task with the highest priority, and the follow-up state
node references the task’s entry PABB. Reconsidering the example system and its PSTG (see
right part of Figure 3), the only successor of the interrupt is the runnable high-priority
task. A transition to the low priority task is not possible in the fixed-priority scheduling
model within this context-sensitive PSTG node. Moreover, tasks do not necessarily have
their configured static priority due to shared resources and the employed priority-ceiling
protocol [7] with its priority inheritance. Thus, tasks can have a dynamic priority, which is
context-sensitively recorded in the task parameters of each PSTG node. Consequently, a
PABB can occur multiple times in the PSTG with varying system states.

Handling Interrupts
Although the scheduler treats PABBs as atomic units, asynchronous interrupts can be released
within a PABB’s execution. At runtime, the interrupt could occur after every instruction and
thus multiple times during the PABB execution. To handle such asynchronous preemptions,
the PSTG construction algorithm inserts transitions from interruptible PSTG nodes to the
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entry functions of the ISRs (see the transition from lower-priority task to ISR in Figure 3).
On the PSTG level, a single interrupt transition facilitates the state enumeration and is
sufficient to enable compliance with the construction rules. We show in Section 3.3.2 how to
bound the actual number of occurring interrupts in the final ILP formulation with help of
the interrupt’s minimum inter-arrival time and its response time from entry to return [19].

Power States and Energy-Consumption Costs

Finally, the PSTG’s most distinctive feature comes into play: the inference of the current
power state and the set of active devices. The associated power consumptions are taken from
the given energy cost model. This combined information is crucial for modeling the WCEC
of the individual system states during the ILP construction (see Section 3.3).

The power states are determined as part of the state enumeration: the construction
algorithms memorizes the last power state when following transitions and updates the
state (i.e., set of active devices) whenever it encounters a device syscall. Consequently, all
possible succeeding nodes obtain the updated power state. In the same way, energy penalties
(e.g., caused by mode changes) are incorporated at node transitions. Figure 3 illustrates
the resulting power states as state-dependent consumption data. In this example, the ISR
and the high-priority task are penalized with the additional power consumption caused by
the device activation in the low-priority task only if the interrupt occurs within the device’s
operation period (i.e., within PABBb). Note that, as with scheduling, the PSTG construction
only eliminates infeasible states. Still, it contains all feasible combinations of execution and
power state. Thus, WCEC estimation is the responsibility of the following ILP step.

Overall, the final PSTG incorporates by construction all possible execution paths of the
concrete system under consideration of operating-system locks, scheduling, and interrupts as
well as device usage and energy penalties. This modeling approach, like the PABB graph,
represents a genuine simplification since it allows for independent handling of the system
state and thus does not bloat the following ILP formulation unnecessarily. In Section 3.4, we
provide details on our analysis framework and on how the executable system is generated,
which behaves identically to the PSTG’s analysis model [16].

3.3 ILP Formulation & Determining the WCRE

In the following, we describe how SysWCEC formulates an ILP to determine the WCRE
of the overall system based on the entire PSTG. Analyzing the WCRE of a particular task
would require the same steps, but only consider a subgraph of the PSTG that spans from
the task’s release until its completion. Our approach is based on a sound extension [19] of
the well-known and proven implicit path-enumeration technique [42, 52], which we adapt
for whole-system worst-case energy-consumption analysis. Once formulated, the ILP can be
solved with a mathematical optimizer to eventually compute the WCRE.

3.3.1 Integer Linear Program

The main idea behind the ILP produced by SysWCEC is to determine for each PSTG node v
how often the system executes the node in the worst case and to connect this execution
frequency f(v) to the worst-case energy consumption E(v) of the machine code corresponding
to the node. For this purpose, we rely on the following objective function to maximize the
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Figure 4 The ILP formulation derived from the PSTG accounts for the interrupts and potential
switches to higher-priority tasks.

flow through the graph:

WCRE = max
(
(∑

v∈V

E(v) · f(v))︸ ︷︷ ︸
nodes

+ (∑
ε∈E

E(ε) · f(ε))︸ ︷︷ ︸
edges

)

Apart from nodes, the objective function also considers worst-case energy costs E(ε) for
edges ε ∈ E in the PSTG. This allows us to take energy costs into account that are caused
by transitions between different power modes of a device and are a result of the fact that
power-mode changes for some devices do not complete instantaneously.

To provide sound results, SysWCEC requires E(v) and E(ε) to be upper bounds of the
energy consumptions of the PABB associated to node v and of the power-mode transition
represented by edge ε, respectively. However, the SysWCEC approach does not make any
assumptions on how these worst-case values are obtained which enables the reuse of existing
WCEC analysis techniques [35, 50, 71]. One possibility to determine the WCEC for the PABB
of a PSTG node v, for example, is to multiply the block’s worst-case execution timeWCET (v)
by Pmax(v), the maximum amount of power the system and its devices consume while the
system is in the state represented by the PSTG node v; that is, E(v) = WCET (v) ·Pmax(v).
As explained in Section 3.2, such knowledge about the power state of the system is part of
the information maintained by SysWCEC in the PSTG and updated on each system-state
transition. We discuss further refinements of this model in Section 6.

In addition to the objective function presented above, the ILP formulated by SysWCEC
includes a set of constraints to specify dependencies between the execution frequencies f(v)
and f(ε) of nodes and edges: (1) The entry and exit edge of the PSTG are each assigned
a frequency of 1. (2) For each node v in the PSTG, the sum fin(v) of the execution
frequencies of all incoming edges must be equal to the node’s execution frequency f(v)
and must match the sum fout(v) of the execution frequencies of all outgoing edges; that is,
∀v ∈ V : f(v) = fin(v) = fout(v). This constraint preserves the flow through the graph.

3.3.2 Handling Interrupts in the ILP
If an interrupt can occur within the execution of a PSTG node’s PABB, the graph contains
a single corresponding interrupt-transition edge. However, as the interrupt may be triggered
more than once, in the ILP SysWCEC needs to consider the interrupt multiple times. Figure 4
illustrates this scenario for an example PSTG with three nodes: a node a depicting a low-
priority task, a node b representing the asynchronous interrupt, and a node c referring to
a high-priority task. With interrupts at most being released with a minimum inter-arrival
time pi (see Section 2.1), there is an upper bound N ∈ N0 for the number of interrupts that
can occur during the execution of a system. In our example N = 4, which also represents the
number of times the PABB of node a can be preempted and resumed. To bound N we use
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the following inequation based on T , the runtime of the system for the execution scenario in
which the system achieves its worst-case response energy consumption:

pi · (N − 1) ≤ T

In a nutshell, this constraint expresses the fact that the longer the system runs (i.e., the
larger T ), the more interrupts N may be triggered. In the worst case, the first interrupt is
released right at the start of system execution, with another interrupt following every pi. To
determine T , we combine the worst-case execution times WCET (v) and WCET (ε) of all
PSTG nodes and edges and combine them with the execution frequencies f(v) and f(ε) of
the ILP’s objective function presented in Section 3.3.1:

T = (∑
v∈V

WCET (v) · f(v)) + (∑
ε∈E

WCET (ε) · f(ε))

Relying on the same execution frequencies that are used to compute the WCRE ensures
that T actually represents the runtime of the scenario consuming the most energy.

Using the constraint presented above to bound the maximum number of interrupts,
a solver is able to determine the WCRE of a system with interrupts, but may provide
unnecessarily pessimistic results, as the following example based on Figure 4 shows: With
the execution frequency of the graph’s entry edge being f(ϑ) = 1, the PABB of node a
under any circumstance is only executed once; that is, f(a) = 1. However, applying the
flow-preserving constraint, without further action, a solver would compute an execution
frequency of f(a) = fin(a) = f(ϑ) + f(γ) = 1 + N = 5, accounting for the fact that the
interrupt may resume up to N times. To prevent such overestimations, we differentiate
between synchronous and asynchronous activations, which is knowledge that is already an
attribute of the PSTG’s transition edges (see Section 3.2). This approach allows us to
consider and subtract the number of completed suspend-resume cycles when determining the
execution frequency of a node v as follows: f(v) = fin,sync(v) + fin,async(v)− fout,IRQ(v),
with fin,sync(v) and fin,async(v) being the execution frequencies of all incoming synchronous
and asynchronous edges, respectively, and fout,IRQ(v) representing the execution frequency
of all outgoing interrupt edges of the node. For the example system, this optimization reduces
the execution frequency of node a to f(a) = f(ϑ) + f(γ)− f(α) = 1 +N −N = 1, and as
a consequence correctly reflects the actual execution frequency of this node. In a similar
way, SysWCEC is able to address interrupt preemptions that are not resumed, which can
happen if the start and end point of the WCRE analysis are in different tasks. Note that in
the example the described optimization only affects the execution frequency of node a. The
execution frequencies of both other nodes still take the effects of multiple interrupts into
account, resulting in frequencies of f(b) = 0 + f(α)− 0 = N and f(c) = f(β) + 0− 0 = N .

3.4 Implementation
As shown in Figure 5, the SysWCEC toolchain relies on two main components: a modified
version of the dOSEK framework [30] to construct the power-state–transition graph, and
the Platin analysis toolkit [29, 51] to formulate the integer linear program necessary to
determine the WCRE. Both the dOSEK system-analysis/-generation framework and the Platin
timing-analysis toolkit are fundamentally based on the LLVM compiler infrastructure [40].

Provided with the specification of a real-time system and the implementation of tasks and
interrupts, dOSEK is able to identify all possible system states and to automatically generate
an executable and OSEK-compliant (i.e., ECC1 [49]) operating-system implementation.
The conformance class ECC1 allows using prioritized, preemptible, self-suspending, and
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Figure 5 Workflow of the SysWCEC analyzer.

work-preserving tasks. Tasks can wait for specific events and can acquire resources, whereas
a stack-based priority-ceiling protocol (PCP) avoids unbounded priority inversion [6]. dOSEK
is able to perform the entire system-state enumeration considering also the dynamic priorities
due to the PCP. For SysWCEC, we made extensive enhancements to implement the concepts
of analysis, decomposition, and state enumeration described earlier. In particular, we
introduced the notion of device syscalls, added means to supply dOSEK with information
about the maximum power consumption of devices in different modes, and enabled the
framework to track the modes of devices across different system-state transitions. As a result
of our modifications, dOSEK now performs a whole-system state analysis that takes devices
into account and puts out the results in the form of the power-state–transition graph.

Providing Platin with the PSTG and the system implementation generated by dOSEK,
we can use the toolkit to determine the WCET of PABBs. This allows us to compute the
WCEC for each system state by multiplying the WCET of the associated block by the
power-mode–specific maximum power consumption of all the devices that are active in the
state. Based on this knowledge, Platin formulates the ILP for the WCRE bound that is
then solved by the mathematical optimizer Gurobi [28].

4 Evaluation

In this section, we experimentally evaluate the SysWCEC approach and its prototype. Our
focus in this context does not lie on proving that the WCRE values determined by SysWCEC
are actually upper bounds for response energy consumption. As discussed in Section 3.3.1,
due to relying on proven analysis techniques SysWCEC delivers sound results by construction,
provided that the worst-case energy model used for the analysis is accurate. Creating energy
models with such properties is feasible [50] but outside the scope of this paper, which is why
in our evaluation we concentrate on assessing the effectiveness of SysWCEC in comparison
to existing analysis techniques. To obtain meaningful results, for this purpose we require an
energy model that comprises realistic values for the power consumption of different hardware
units, including devices and peripherals, which we can then use as input for SysWCEC. In
Section 4.1 we describe how we compiled the energy model for our experiments. We do not
claim this model to contain guaranteed upper power-consumption limits. Nevertheless, due
to offering information on the characteristics of real-world hardware components, the model
allows us to evaluate SysWCEC’s ability to deal with temporarily active devices (Section 4.2),
its context-sensitive analysis (Section 4.3), as well as its scalability (Section 4.4).

4.1 Energy Model
In order to be able to evaluate SysWCEC with realistic power and energy consumption values
of devices, peripherals, and processors, our energy model combines knowledge from different
sources (e.g., manuals, measurements) and different hardware platforms.
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Figure 6 ARM Cortex-M4: Traces for CPU-bound (left) and memory-bound benchmarks (right).

Devices and Peripherals

Our first platform is an NXP FRDM KL46z evaluation board [23, 24] that features an ARM
Cortex-M0+ core [4] with 256 KB of flash memory, 32 KB of SRAM, and a small cache (i.e.,
4-way, 4-set program flash memory cache with a size of 64B). We set up the evaluation board
to run the execution pipeline at 48 MHz, the bus speed is 24 MHz. Apart from the processor,
the board comprises a rich set of different devices including two LEDs, an accelerometer,
a magnetometer, and an analog-to-digital converter. In addition, we attached an ESP8266
Wi-Fi module [67] as transceiver and an external ferroelectric RAM (FRAM) chip [25] as non-
volatile storage. For most devices and peripherals, detailed documentation on the maximum
power consumption is available (e.g., LEDs [46], accelerometer [48], magnetometer [47],
analog-to-digital converter [24]). In all other cases, we obtain realistic power-consumption
values by measurement relying on the source-measure unit Keithley 2612 [36], which is
able to measure minimum currents of 100 fA and minimum voltages down to 100 nV at a
temporal resolution of up to 20 µs. Using this source-measure unit circumvents the problem
of potentially noisy power supplies and the problem of influencing the system under test with
shunt-based measurement setups; both are known problems in the context of benchmarking
low-power applications [21]. The results for our first platform are presented in Table 1.

Processor Power Modes

With our first platform’s processor only offering a few power modes, we use a second platform
with a more complex processor (i.e., an EFM32 Giant Gecko evaluation board [63, 65]
with an ARM Cortex-M4) to examine the effects of different processor power modes. For
measurements, in this case we rely on the board’s integrated current-measurement circuitry,
which is able to quantify currents from 0.1 µA to 50 mA and allows us to measure the power
consumption of the microcontroller and correlate it to the code executed. As programs, we
select a CPU-bound benchmark performing a prime-number calculation and a memory-bound
benchmark repeatedly copying data, because these two categories represent the two ends
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Figure 7 Measurement results for phases with different sets of active devices.

of the spectrum with regard to power consumption [12, 75]. Figure 6 shows the results
and illustrates the impact of different processor power modes on execution time and power
consumption. SysWCEC addresses this issue by differentiating processor power modes when
analyzing a system, thereby modeling the processor in a conceptually similar way to devices.

Mode-Change Latencies
Hardware units not only consume energy while running in a certain power mode but also
during the switch from one power mode to another. SysWCEC takes this fact into account
by considering mode-change latencies and consequently attributing additional energy costs
to power-mode switches. For most devices and peripherals of our two evaluation platforms,
we found the associated mode-change overhead to be negligible, which is why in the following
we focus on measurement results for the processor of our second platform. On the ARM
Cortex-M4, switching from 28MHz to 48MHz, for example, takes 396 µs and comes with
an energy overhead of 8.71 µJ. For comparison, the CPU-bound benchmark computing
a 4-digit prime number on the same platform at 28MHz requires 2 ms and 25.5 µJ. This
shows that power-mode changes can have a significant impact on response time and energy
consumption, although many energy-aware real-time scheduling approaches do not consider
such overheads [8]. SysWCEC, on the other hand, includes time and energy costs for
power-mode switches when analyzing worst-case (response) energy consumption.

4.2 WCRE Analysis for Temporarily Activated Devices
Using the energy model obtained in Section 4.1, in our first experiment we evaluate SysWCEC
in the context of a system in which the set of active devices and peripherals constantly
changes, as it is the case in a practical system that only activates devices temporarily in order
to minimize energy consumption (see Section 2.2). The experiment runs on the Cortex-M0+
platform and, as shown in Figure 7, consists of phases with different sets of active devices,
which results in varying overall power consumption. In each phase, we first execute a specific
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Table 2 WCRE-estimate comparison between the all-always-on approach and SysWCEC.

Benchmark WCRE All-Always-On WCRE SysWCEC Improvement

#1 Transceiver (w/o resource) 4,389.10µJ 3,786.32 µJ 13.73%
#2 Transceiver (w/ resource) 4,473.91µJ 818.66 µJ 81.70%
#3 Synchronous activation 2,266.28µJ 1,236.15 µJ 45.45%
#4 Asynchronous IRQ 399.88 µJ 335.41 µJ 16.12%

event (e.g., a device activation) or a specific job (e.g., a computation) and subsequently delay
execution for 2 ms. When the system activates the transceiver at the beginning of Phase 3 ,
our results show power-consumption spikes that last for a short period of time. The spikes
are an artifact of our current prototype hardware and in a practical system can be prevented
by additional hardware circuitry [32]. In general, the power consumption within each phase
behaves almost linear, as also confirmed by the small standard deviations (see Figure 7).

The measurements on the hardware platform for the Phases 2 to 5 illustrate that
activating and deactivating devices has a considerable impact on the power consumption of
the whole system, especially in comparison to Phase 1 when all devices are still switched off.
This observation confirms that for an analysis of a system’s (worst-case) energy consumption
it is not sufficient to only take the processor into account, but crucial to consider all power
consumers in the system. Although the power consumption of the processor varies depending
on whether it executes a CPU-bound job (e.g., a prime-number calculation in Phase 8 ) or
a memory-bound job (e.g., copy operations in Phase 9 ), the overall impact of the work
performed by the processor is comparatively small.

Using the common approach to determine the WCRE for a system with devices, that
is, to assume that all devices are always on (see Section 2.2), for the evaluated scenario
results in a significant overestimation, as indicated by the red area in Figure 7. In contrast,
by decomposing the system into parts during which devices do not change power modes,
SysWCEC is able to provide much lower bounds, for example, due to being aware that the
transceiver is only operating in Phase 3 and definitely remains inactive the rest of the
time. For this experiment, the SysWCEC approach leads to a WCRE of 398.53mJ, which
is 79.25% lower than the value determined by the all-always-on approach, representing the
difference between the area under the green curve and the red area in Figure 7.

4.3 Exploiting Context-Sensitive Knowledge

In our next experiments, we focus on systems with multiple tasks and compare the WCRE
values provided by SysWCEC with the WCRE values determined with the all-always-on
approach. To obtain representative energy-consumption values, we combine the target
platform, in this case the PATMOS research processor [58, 59], with our energy model. We
configure the processor to run at 1MHz and a static power consumption (i.e., all devices
deactivated) of 10mA. As workload, we select a total of four benchmarks with different
characteristics to be able to evaluate a wide spectrum of scenarios. Table 2 presents and
compares the WCRE values determined by both methods evaluated. To compute the WCRE
estimate for the all-always-on approach, we multiply the exact worst-case response time of
the system by the amount of power the system consumes when all devices are switched on.
In the following, we discuss the results of each benchmark in detail.
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Benchmark#1 –Transceiver Benchmark
The structure of the first benchmark resembles the example in Figure 2: A low-priority task
activates a device, in this case a WiFi transceiver, for example, to log the system status.
During the execution of the task, an interrupt preempts the task and activates another higher-
priority task, which is then dispatched after the interrupt service routine has terminated.
For the worst-case scenario of the interrupt occurring while the transceiver is active, the low-
priority task spends about 8% of its overall response time before activating the device (i.e.,
Part A in Figure 2), about 83% of the time while the device is active (Part B ), and the
remaining about 9% of the time after having switched off the device (Part C ). Our results in
Table 2 show that for this benchmark, the WCRE value determined by SysWCEC is 13.73%
lower than the WCRE value obtained with the all-always-on approach. This improvement is
possible because due to its context-sensitive analysis of the system SysWCEC knows that it
is impossible for the transceiver to be active during Part A and Part C of the low-priority
task, which in combination represent about 17% of the task’s worst-case response time.

Benchmark#2 –Transceiver Benchmark with Resource
For our second benchmark, we modify the first benchmark and introduce a shared resource
between the low-priority task and the high-priority task. In OSEK, shared resources are
typically used to coordinate different tasks and can only be acquired by at most one task at
a time. In our benchmark, the low-priority task acquires the resource right before activating
the transceiver and releases it immediately after deactivating the transceiver. Applying the
stack-based priority ceiling protocol [6], which is mandated by the OSEK standard to solve
the problem of unbounded priority inversion, when the interrupt occurs while the low-priority
task holds the resource, the execution of the high-priority task is deferred until the resource
has been released. As a consequence, the high-priority task no longer has an influence on the
transceiver’s active time, independent of when the interrupt is actually triggered. In contrast
to the all-always-on approach, SysWCEC is able to exploit this knowledge and consequently
determines a 81.70% lower WCRE value, accounting for the fact that even in the worst case
the transceiver is only active during a small part of the low-priority task’s response time.

Benchmark#3 – Synchronous Task Activation
In the next benchmark, a low-priority task synchronously activates two tasks with higher
priorities, one prior to switching on a transceiver and the other one afterwards. As both
high-priority tasks take the same time to run and due to their execution times dominating
the response time of the low-priority task, the transceiver is activated about half way into
the experiment. This leads to SysWCEC being able to provide a WCRE estimate that is
45.45% lower than the all-always-on value.

Benchmark#4 –Asynchronous Events
The fourth benchmark consists of a task activating a transceiver and an interrupt service
routine deactivating it again. Such a setting represents a textbook example of why context-
sensitive WCRE analysis is conceptually different from worst-case response time analysis: To
determine the worst-case response time, an analysis must consider the scenario in which the
interrupt occurs as often as its minimum inter-arrival time allows; in this case, this results in
a response time of 1,377 cycles. In contrast, WCRE analysis must focus on the scenario with
the highest energy consumption, which for this benchmark is the interrupt being triggered
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Table 3 Analysis runtimes and statistics for different benchmarks.

Benchmark State Enumeration States Transitions ILP Solving

Transceiver (w/o resource) 54.05ms 63 71 534ms
Transceiver (w/ resource) 69.23ms 84 96 869ms
Synchronous activation 40.44ms 19 19 308ms
Asynchronous IRQ 42.88ms 35 40 136ms
Multiple devices (2 tasks) 73.63ms 119 135 0.91 s
Multiple devices (3 tasks) 535.22ms 1,356 1,580 10.41 s
Multiple devices (4 tasks) 1.4 s 6,231 7,359 54.17 s
Multiple devices (5 tasks) 2.62 s 39,711 47,215 33.17min

only once: at the very end of the task’s computation; for this scenario, the response time
is only 1,155 cycles. SysWCEC correctly identifies this scenario and determines a 16.12%
lower WCRE value than the all-always-on approach.

4.4 Scalability

In our last experiment, we evaluate the performance and scalability of the SysWCEC approach,
thereby focusing on the two steps that contribute to the overall analysis runtime: the symbolic
state enumeration performed by dOSEK and the solving of the ILP (see Section 3.3). All
analyses run on a server (Intel Xeon E5, 80 cores, 132GB RAM) and use Gurobi 7.5 for ILP
solving. To reduce durations for ILP solving, we explored parameter-tuning strategies [28]
and carried out optimizations in Gurobi, which eventually determines optimal bounds.

Apart from the results of the four benchmarks introduced in Section 4.3, we also present
measurements gained from four additional benchmarks that use multiple devices and all
share the following general structure: All of these benchmarks consist of a low-priority task
whose WCRE is to be determined. Apart from this task, the benchmarks comprise a set
of additional tasks that each possess a unique higher priority and are activated through
dedicated asynchronous interrupt service routines; the minimum inter-arrival time between
interrupts is 100 ms. All tasks in the system are assigned different devices. During execution,
a task first switches on its device, then performs a computation, deactivates the device again,
and finally terminates. To evaluate the impact of system complexity on analysis runtime,
we rely on four different benchmarks whose task-set sizes range between 2 and 5. Note that
due to the interfering interrupts and number of tasks, from a system-level perspective our
multi-device benchmark comprising 5 tasks plus 4 task-activating interrupts has a comparable
complexity as the real-world real-time benchmark DEBIE [31].

Table 3 compares the execution times for the two evaluated analysis steps and also
presents the number of system states and transitions identified by SysWCEC for each
benchmark. The results show that in general solving the integer linear program takes
significantly more time than enumerating all system states and that the runtime of both
analysis steps increases with the number of possible system states. In Section 6.2, we discuss
how to further improve the performance and scalability of SysWCEC and its exponential
state growth with increasingly complex systems. Nevertheless, even for systems with high
complexity such as the multi-device benchmark with 5 tasks, preemptions through interrupts,
and dependencies between tasks and interrupts, leading to 39,711 different system states and
47,215 transitions, SysWCEC can complete the entire analysis in around half an hour.
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5 Related Work

The development of SysWCEC benefited from lessons learned in our previous work on system-
wide timing analysis for fixed-priority real-time systems [19]. However, due to the substantial
differences in objectives and requirements between timing analysis and energy-consumption
analysis, we were not able to directly apply our existing analysis techniques to the problem
of determining WCREs. Instead, it became necessary to develop a new approach, SysWCEC,
that solves the specific problems associated with energy-consumption analysis. To the best
of our knowledge, SysWCEC is the first work that enables determining WCEC bounds in
peripheral-driven real-time systems that execute on various low-power modes.

Existing WCEC-analysis techniques [27, 35, 71] only consider the analysis of a single
thread with a fixed set of active peripherals. In analogy to WCET tools, these analyzers follow
the common approach of carrying out a hardware-independent path analysis that is combined
with a hardware-dependent cost analysis. In contrast to these existing techniques, SysWCEC
is able to analyze a whole embedded system with all attached or integrated power consumers.
In addition to the awareness of all power-consuming devices and peripherals, the SysWCEC
approach precisely addresses all non-hierarchical program flows such as synchronous task
activations and asynchronous interrupts.

The integration of transceivers is common in the area of wireless sensor networks to
estimate the overall lifetime of nodes [20, 39, 43]. Such lifetime-estimation tools are already
featured by integrated development environments for battery-constrained devices [64]. Their
basic principle is to multiply the maximum drawn power by the fixed duty cycle of periodically
receiving/transmitting applications. In distinction to these approaches, SysWCEC is capable
of modeling fixed-priority sporadic task sets with real-time constraints. An interleaved timing
analysis determines the duration of activated devices and these costs are integrated into an
overarching ILP formulation, which yields WCRE bounds.

Schneider pointed out that it is impossible to analyze timing constraints of applications
without considering the semantics of the operating system and vice versa [56]. To solve this
problem, he proposed to integrate fixed-priority scheduling semantics into timing analysis [57].
Following the idea of whole-system analysis, SysWCEC provides means to integrate multiple
devices to determine WCRE bounds between two arbitrary program points in the system.
The integration of operating-system standards [1, 49] into commercial, static analysis tools,
such as Astrée, indicates the relevance of system semantics in analyzers [44].

In the context of real-time scheduling, a system’s power consumption is often determined
based on the frequency-aware power model [14, 33, 77, 78], which is then exploited by DVFS.
This power model assumes that the system’s dynamic power consumption only depends
on the processor’s frequency. However, when considering systems that use devices, such as
sensors, this model is no longer applicable. SysWCEC addresses the integration of devices
with knowledge of global system paths and their set of active devices.

Furthermore, many scheduling approaches using DVFS to minimize energy consumption
while still guaranteeing timeliness neglect the overheads to switch the processor frequency [8].
As we found out for an ARM Cortex-M4 (EFM32), the latency to switch the frequency
can be up to 396 µs. Rusu et al. and Zhang et al. discovered even greater latencies for
the PowerPC 405LP [54] and a digital signal processor [76]. Since SysWCEC’s central data
structure, the PSTG, contains all executed instructions and all possible paths in the whole
system, it is inherently aware of these transition overheads.

In addition to the DVFS power model, a huge body of related work exists on energy-
cost models for the processor’s microarchitecture [13, 37, 41, 45, 50, 60, 61, 69]. However,
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considering the relations of power consumers in energy-constrained systems, processing
cores only take a minor portion of the whole-system consumption. SysWCEC focuses on
precisely integrating these consumers and determines WCRE bounds, but can profit from
these advances on more fine-grained energy-consumption models.

6 Discussion & Future Work

In this section, we first discuss both improvements of our energy-consumption model and the
scalability of the approach, and then outline our future work in the context of SysWCEC.

6.1 Improving Energy-Consumption Hardware Model
SysWCEC is a sound formulation of the path-analysis problem of whole-system WCRE
analyses. In the current implementation, we use the maximum power consumption of a
PSTG node and multiply it by its WCET to obtain an upper bound for the node’s en-
ergy consumption. Our measurements in Section 4.2 show only small variations in power
consumption within a power mode (i.e., around 5%). This is especially true when these
minor variations are put into relation with the orders of magnitude the whole system’s
power consumption varies when switching between power states. Consequently, we expect
our method for determining a node’s WCEC to result in only small overestimations. How-
ever, if necessary this model could be further improved with knowledge of the platform’s
microarchitecture [13, 37, 41, 45, 50, 60, 61, 69].

6.2 Further Improving Scalability
Although already providing reasonable analysis durations of around half an hour for larger
systems (see Section 4.4), the scalability of the approach can be further enhanced. In
particular, there are three directions for optimizing SysWCEC and mitigating the problem of
exponential state growth: (1) constructing a smaller PSTG that also reduces the ILP size,
(2) speeding up PSTG construction itself, and (3) improving ILP-solving times. First, it is
possible to group several PSTG nodes together into a larger super structure [18]. Although
this approach might sacrifice precision and lead to higher overestimations, it potentially
enables smaller ILP formulations and thus shorter solving times. Second, dOSEK’s current
state enumeration is implemented using a single thread. Consequently, the framework would
greatly benefit from parallel symbolic state enumeration [11] and the usage of multi-core
platforms. Third, although we applied heuristics to speed up ILP solving [28], the process
can be further enhanced by providing upper bounds for variables by exploiting traditional
WCRT analyses [5]. Thereby, search spaces can be narrowed and thus solving times reduced.

6.3 Trading Timeliness for Energy Consumption
Trading worst-case energy consumption for worst-case execution time and vice versa is an
upcoming research area [26, 34]. In the evaluation, Benchmark#2 demonstrated that blocking
the execution of a higher-priority task can be beneficial if it prevents the preemption of a
lower-priority task that has previously activated a device. This blocking leads to a prolonged
WCRT of the higher-priority task, but – depending on the deadlines, duration of the critical
section, and power consumptions – the overall benefit can be optimized. With SysWCEC,
we provide a framework that is capable of analyzing both WCRE and WCRT bounds along
critical program paths of entire systems. This comprehensive framework is beneficial to find
optimal solutions for peripheral-driven real-time systems in the time-vs-energy trade-off.
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7 Conclusion

Power consumption in energy-constrained real-time systems depends not only on the process-
ing unit but also on peripherals. Although these devices are often dynamically (de-)activated,
current WCEC analyses do not take this fine-grained structure into account and there-
fore yield overestimations. Furthermore, with the (de-)activation of devices, the energy
consumption of a single task can influence any other task (also tasks of higher priority).

The SysWCEC analyzer processes OSEK-compliant (i.e., ECC1) real-time systems and
determines WCRE bounds. For this, we present the power-state–transition graph, a device and
operating-system–aware data structure. Using this representation, we are able to enumerate
all possible system states of fixed-priority real-time systems using multiple devices. This
knowledge allows formulating an ILP, whose solution eventually yields the WCRE.

Source code of SysWCEC: https://gitlab.cs.fau.de/syswcec
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Abstract
During the past decade, parallelism-related issues have been at the forefront of real-time systems
research due to the advent of multicore technologies. In the coming years, such issues will loom
ever larger due to increasing core counts. Having more cores means a greater potential exists for
platform capacity loss when the available parallelism cannot be fully exploited. In this paper,
such capacity loss is considered in the context of real-time locking protocols. In this context,
lock nesting becomes a key concern as it can result in transitive blocking chains that force
tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine.
Contention-sensitive real-time locking protocols have been proposed as a means of “breaking”
transitive blocking chains, but such protocols tend to have high overhead due to more complicated
lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In
particular, four specific lock-server paradigms are proposed and many nuances concerning their
deployment are explored. Experiments are presented that show that, by executing cache hot,
lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make
contention-sensitive protocols a viable approach in practice.
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Figure 1 An illustration of transitive blocking.

1 Introduction

The evolution of multicore technologies over the past decade has shifted the focus of real-time
systems research by making parallelism a paramount concern. During this time, the extent
of parallelism available in commercially produced machines has steadily increased. Ten years
ago, a quad-core machine was considered large. Today, machines with core counts of dozens
or more are available. Looking forward, ever increasing core counts are likely to continue.
The implication for real-time systems research is that resource-allocation methods shown to
work well in the past may not scale as hardware platforms continue to evolve.

In this paper, we consider the issue of scale as it pertains to real-time locking protocols.
For such a protocol to scale to large core counts, it must address intricate challenges posed
by nested lock requests, which occur in a variety of applications [7, 13]. In particular,
such requests can cause transitive blocking chains that cause tasks to unnecessarily execute
sequentially. The potential for lost parallelism due to sequential execution increases with
higher core counts. For example, assuming non-preemptive locks, if such a chain were to
involve all cores of a quad-core machine, then 75% of the available processing capacity would
be lost until the task at the head of the chain releases its acquired resources. On a much
larger machine with, say, 32 cores, this percentage of loss would swell to nearly 97% if all
cores were involved. Even if nested requests occur much less often than non-nested ones, they
can still result in long blocking chains, particularly in the worst case, which would typically
be considered in real-time schedulability analysis. We illustrate this point with an example
chain of blocking that could occur, and thus must be accounted for in analysis.

I Example 1. Consider a set of 30 requests, some of which are shown in Fig. 1. Request R1
and requests R4 through R30 form a transitive blocking chain for the resources shown on the
horizontal axis. The vertical axis shows time, with different box heights representing different
critical-section lengths, and the placement along this axis representing when each request
will be satisfied. Most of the blocking shown in Fig. 1 is avoidable. For example, R8 could
move to position P1, and R30 into P2, greatly reducing their blocking. Note that moving R8
earlier reduces the blocking of later issued requests. Note also that even non-nested requests
(e.g., R6) can be transitively blocked.
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Contention-sensitive real-time locking protocols guarantee the blocking time of each
request is only proportional to the number of directly conflicting earlier requests by effectively
“breaking” transitive blocking chains [43, 55]. Referring back to Ex. 1, enqueuing R8 as
depicted is not contention sensitive as this queue ordering forces R8 to block on R1, R4,
R5, and R6, none of which directly conflicts with R8 (they access different resources). In
contrast, enqueuing R8 in position P1 would ensure contention-sensitive blocking for it.

Unfortunately, the complex lock/unlock logic required to enable contention-sensitive
enqueuings can result in higher overhead. To mitigate this issue, we explore herein the usage
of lock servers to lessen such overhead. A lock server is a special process that sequentially
performs all lock and unlock functions of a given protocol. The main advantage of using lock
servers is that they can run cache hot (which is explained in the context of our platform in
Sec. 3). The main disadvantage is the need to dedicate whole cores, or fractions of cores, to
performing synchronization functions. However, on machines with high core counts, this may
be a reasonable thing to do, as has been observed by others in other contexts [41, 50]. The
main focus of this paper is to experimentally document the extent of overhead reduction lock
servers enable when supporting contention-sensitive locking protocols. We show that such
reductions can be substantial. We also examine various tradeoffs that arise with respect to
how lock servers are deployed. We elaborate on these tradeoffs and our contributions below,
after first presenting an overview of prior work to provide context.

Related work. The literature on real-time multiprocessor locking protocols is quite large [1,
2, 3, 4, 6, 8, 9, 12, 11, 10, 14, 15, 16, 18, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34,
35, 36, 37, 42, 43, 48, 49, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 63, 67, 68, 71, 73]. Of
the just-cited papers, we comment on several that are particularly relevant to our work.

A number of server-based locking protocols have been proposed previously that employ
notions similar to a lock server but for a different purpose, namely, to ease the calculation
of bounds on priority-inversion blocking (pi-blocking).1 The first such protocol was the
distributed priority ceiling protocol (DPCP) [57, 58, 59], which statically binds resources to
cores and requires tasks to perform lock and unlock calls for a resource on the core assigned
to that resource. Subsequently, a number of server-based protocols were proposed that follow
a similar approach [21, 32, 33, 41, 42, 49, 73]. In contrast to these various server-based
protocols, our focus in this paper is to preserve the blocking bounds of a given protocol while
reducing its overhead. Also, our main concern is dealing with nested lock requests, which are
actually precluded in most prior server-based protocols.

Only a few real-time multiprocessor locking protocols have been proposed that support
nested lock requests. Among such protocols, only those in the real-time nested locking protocol
(RNLP) family provide asymptotically optimal pi-blocking bounds [43, 55, 62, 64, 65, 63].
The RNLP family also includes the only proposed real-time locking protocols shown to
be contention sensitive. We review these protocols in more detail later. Outside of the
RNLP family, two other protocols have been proposed that directly support lock nesting,
the multiprocessor bandwidth inheritance protocol [32, 33] and MrsP [21, 36, 73]. Neither is
optimal, but both use creative techniques, like migration, to lessen blocking times.

Our work was partially inspired by work on a concept called remote core locking (RCL),
which was directed at improving the performance of legacy non-real-time code when moving
it from a uniprocessor system to a multiprocessor one [50]. In particular, RCL seeks to avoid

1 Pi-blocking, which is more carefully considered in Sec. 2, is the primary basis on which different locking
protocols are compared.
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cache-line bouncing when a resource is accessed on different cores by requiring all resource
accesses to occur on a designated core. In these sense, RCL is similar to the DPCP and
related protocols, but the emphasis in work on RCL is to enable critical sections to run cache
hot. In contrast, we want lock and unlock routines to run cache hot.

Contributions. We present an in-depth study of lock servers as a means for providing
efficient implementations of contention-sensitive real-time locking protocols on large multicore
machines. We restrict attention to protocols that use spinning (i.e., busy waiting) to realize
task blocking. We take our particular test platform as an exemplar of a “large” machine;
this platform provides 36 cores split evenly across two sockets. We define lock servers in a
way that does not fundamentally alter the blocking analysis of the locking protocol being
supported. Thus, such analysis is not our major focus: overhead is.

We introduce lock servers by initially assuming a particular contention-sensitive locking
protocol is to be supported that was designed assuming that all critical sections are uniformly
of the same length. Using this protocol, we present four lock-server paradigms that are
defined by specifying servers as either static or floating and either global or local. A static
lock server is bound to a single core, while a floating one may migrate. A global lock server
handles requests from all cores, while a local one handles requests from only its socket. Our
test platform has two sockets, so in that context, the local case requires consideration of
two lock servers, which require further arbitration. We do this by letting these lock servers
alternate in phases, where the phase switching is controlled by a novel synchronization
mechanism introduced here for the first time called a phase-fair reader/reader lock. After
examining these various alternatives, we consider the ramifications of relaxing the uniformity
requirement and allowing critical sections to be of different lengths.

To assess the efficacy of using lock servers, we conducted an extensive experimental
evaluation on our test platform of all of the lock-server configurations mentioned above.
In these experiments, the use of lock servers often reduced overhead dramatically. When
supporting non-uniform critical sections, one of our lock-server paradigms reduced overhead
by up to 72%. When supporting uniform critical sections, this decrease was as high as 86%.

Organization. In the rest of this paper, we provide needed background (Sec. 2), introduce
static (Sec. 3) and floating (Sec. 4) lock servers assuming critical-section lengths are uniform,
eliminate this uniformity assumption (Sec. 5), present our experimental evaluation (Sec. 6),
and conclude (Sec. 7).

2 Background

In this section, we present relevant background material on task and resource models and
provide further details concerning the locking protocols most relevant to our work.

Task Model. We consider a sporadic task system Γ = {τ1, . . . , τn}. (We assume familiarity
with the sporadic model.) These n tasks are scheduled on m processors by a job-level
fixed-priority scheduler, such as one using earliest-deadline-first (EDF) priorities.

Resource Model. We focus on spin-based locking protocols invoked non-preemptively. We
assume a set of nr shared resources denoted L = {`1, . . . , `nr

}. When a job J requires access
to one or more of these resources, it issues a request. We index requests in the order they
are issued. An arbitrary request of J is denoted Ri, and the set of resources it requires is
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Figure 2 Important RNLP variants.

denoted Di. Ri is said to be satisfied when J holds all resources in Di. J then executes its
critical section for Li time units. When J releases all of the resources it held, Ri completes.
Ri is considered to be active from the time it is issued until the time it completes.

Real-time locking protocols must have proven bounds on priority-inversion blocking
(pi-blocking). Pi-blocking occurs when a job cannot execute because of lower-priority work.
In the context of non-preemptive spin-based protocols, a job is pi-blocked if it is spinning or
if it cannot execute because some lower-priority job is executing non-preemptively.

Allowing requests to be issued for multiple resources at once as specified above provides
a mechanism called a dynamic group lock (DGL) [63]. With DGLs, lock nesting is supported
by requiring a job to issue one request for all of its needed resources, instead of issuing a
separate request for each resource. The dynamic nature of DGLs allows groups of requested
resources to be determined as required at runtime. This is in contrast to static group locks [9],
which require resource groups to be determined offline and remain fixed.

We use DGLs to prevent deadlock. Another common approach is to define a resource
ordering and require that resources be requested in that order [29, 38]. If conditional code
exists, DGLs require the acquisition of resources that may not actually be needed. However,
the use of DGLs and the use of a resource ordering result in the same pi-blocking bounds [62].

In stating such bounds, we assume that the maximum critical-section length, Lmax, is
constant. Additionally, we refer to the contention ci experienced by a request Ri: ci is
defined to be the number of requests that are active while Ri is active and that require
one or more of the same resources as Ri. A non-preemptive spin-based locking protocol is
contention sensitive if it ensures a pi-blocking bound of O(min(m, ci)) per request.

In comparing different locking protocols, we care about overhead in addition to pi-blocking
bounds. If a request Ri is issued at time t, and t′ is the earliest time it either starts spinning
or is satisfied, then the lock overhead Ri experiences is t′ − t. Similarly, the unlock overhead
Ri experiences is the total time needed to release all of its acquired resources. When we use
the term overhead without qualification, we mean total lock plus unlock overhead.

The RNLP. The RNLP (real-time nested locking protocol) was the first real-time locking
protocol to support nested lock requests with asymptotically optimal worst-case pi-blocking
bounds [63]. The RNLP is actually a suite of protocols: both spin- and suspension-based
variants exist and deadlock avoidance can be achieved by using either resource orderings or
DGLs. We focus here on the spin-based DGL variant. At a high level, this variant is quite
simple. As shown in Fig. 2(a), per-resource FIFO spin queues are used, and when a request
for a set of resources is issued by some task, that resource is atomically enqueued onto the
queues of all requested resources. Note that this atomic enqueueing requires the usage of an
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Protocol Pi-blocking Overhead

RNLP O(m) moderate

C-RNLP O(min(m,c)) high

fast RNLP 
(with RNLP)

O(m) nested moderate (nested)

O(min(m,c)) non-nested low (non-nested)

fast RNLP 
(with C-RNLP)

O(min(m,c)) nested high (nested)

O(min(m,c)) non-nested low (non-nested)

Figure 3 Important RNLP variants.
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underlying mutex lock, which results in moderate lock overhead. Also, the RNLP provides
no mechanism for reducing transitive blocking. For example, all of the transitive blocking
shown in Fig. 1 can occur if requests are atomically enqueued as in the RNLP.

Contention-sensitive variants. The C-RNLP (contention-sensitive RNLP) was proposed
to eliminate the long transitive blocking chains that can occur under the RNLP [43]. It does
this by using a cutting ahead mechanism that enables contention-sensitive pi-blocking at the
expense of higher overhead. A fairly detailed overview of the C-RNLP is provided later in
Sec. 3 in discussing lock servers, so we refrain from providing further details now.

The fast RNLP2 was proposed to achieve contention sensitivity and low overhead for
non-nested requests, which are likely the common case in practice [55]. Nested requests can
be made either contention sensitive at the expense of relatively high overhead for them, or
non-contention sensitive, which entails much lower overhead. This functionality is achieved
by employing a modular structure, as shown in Fig. 2(b). Each non-nested request acquires
a simple ticket lock associated with its resource, while each nested request competes within
either the RNLP (if contention sensitivity is not provided for such requests) or the C-RNLP
(if it is). The RNLP* is a low-overhead version of the RNLP that must merely arbitrate
between at most one non-nested request and at most one nested request per resource.

The RNLP variants just overviewed are summarized in Table 3.

3 Static Lock Servers

In this section, we consider the use of static lock servers to implement the C-RNLP. The
C-RNLP is described in [43] in an abstract rule-based way. These rules can be realized in
different ways in an actual implementation. For ease of exposition, we limit attention for now
to the uniform implementation of the C-RNLP given in [43], which was designed assuming
that all critical sections are the same length. Later, in Sec. 5, we will relax this assumption.
In order to understand how to implement the uniform C-RNLP using lock servers, a basic
understanding of it is required.

2 Actually, the fast RNLP was proposed as the fast RW-RNLP because it provides reader/writer sharing.
For simplicity, we ignore read requests in this paper and focus only on mutex sharing.
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with and without a lock server.

Uniform C-RNLP. Under the uniform C-RNLP, denoted U-C-RNLP, each request Ri is
satisfied within min(m, (ci + 1))Lmax time units, which meets the definition of contention
sensitivity. This bound is realized by using a Table of possible satisfaction times. Each
row of Table stores one or more bit vectors and represents a single start time, with each
bit in that row representing one resource, as depicted in Fig. 4 with four requests. In the
simplest implementation on a 64-bit machine, one bit vector is used, allowing 64 resources to
be managed. The corresponding arrays Enabled and Blocked track which set of requests is
satisfied and how many requests are immediately blocking a row in Table, respectively. For
example, in Fig. 4, all requests in Row 0 of Table—here just request R1 for D1 = {`b, `c, `d}—
are currently satisfied, as indicated by Enabled[0] = 1. The requests in the other rows are not
currently satisfied. Requests in Row 1 are immediately waiting for one request, namely R1,
to complete, as recorded by Blocked[1] = 1. Requests in Row 2 are waiting for two requests
immediately preceding them to complete, as indicated by Blocked[2] = 2.

Platform description. In order to describe the lock-server paradigms considered in this
paper more concretely, we specifically focus on our particular test platform, which is a
dual-socket, 18-cores-per-socket Intel Xeon E5-2699. This platform provides significant
per-socket parallelism while allowing issues on a multi-socket machine to be explored. As
depicted in Fig. 5, each core has a 32KB L1 data cache and a 32KB L1 instruction cache.
Pairs of cores share a unified 256KB L2 cache, and all cores on a socket share a unified 45MB
L3 cache. We refer to lock state as cache hot if it maintains cache affinity in the lowest-level
cache shared among all cores on which the server may execute.

The problem. Before delving into some of the nuances of using lock servers, let us examine
the problem that they are intended to solve. Fig. 6 plots lock overhead as a function of core
count (and thus number of requests) for three possibilities: the U-C-RNLP as originally
presented in [43]; the same protocol but implemented using a single global lock server (denoted
U-C-RNLP + SGLS); and an implementation in which all resources are coalesced under one
lock using Mellor-Crummey and Scott’s queue lock (denoted MCS) [52]. We take the latter
as the gold standard for low overhead. We will carefully examine many such graphs in Sec. 6,
so we will not bother to describe this particular one in any more detail now. However, notice
the wide gap between the lock overhead for the U-C-RNLP compared to that for MCS. Our
objective in this paper is to narrow this gap, hopefully considerably.
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Figure 7 Three options: no lock servers (left), a single static global lock server (middle), and
two per-socket static local lock servers (right).

Algorithm 1 Static Global Lock Server.
1: procedure SGLS(core: array of ptr to core_data)
2: var k: unsigned int
3: while (TRUE):
4: if core[k]�service = LOCK_SERVICE:
5: ˆcore[k]�spin_location := LS-Lock(core[k]�requested)

. Non-blocking LS-Lock returns spin location
6: core[k]�service := NULL
7: else if core[k]�service = UNLOCK_SERVICE:
8: LS-Unlock(core[k]�requested)
9: core[k]�service := NULL
10: k := k + 1 mod NR_CPUS

Lock servers. Recall that our focus in this section is static lock servers that are pinned
to dedicated cores. We consider two variations of this idea: using a global lock server
that services requests from all cores, and using (on our platform) two local lock servers,
each servicing requests coming from one socket. Fig. 7 depicts these two possibilities in
comparison to a conventional locking protocol implementation that does not use lock servers.
The potential value of lock servers can be seen by comparing the curve for U-C-RNLP + SGLS
to the U-C-RNLP curve in Fig. 6. (Again, we consider graphs like this in detail later.)

3.1 A Static Global Lock Server
The simplest way to employ a lock server is to dedicate a single core to servicing all lock
requests. The server uses a special version of a given protocol’s Lock call, denoted LS-Lock,
that updates the lock state to add a given request and then, instead of waiting by spinning
to be satisfied, returns the location of a variable on which to spin. Similarly, a special version
of Unlock, denoted LS-Unlock, is used. Note that these routines require no underlying
mutex, as no task other than the lock server will ever access the lock state.

The behavior of the lock server is as specified in Alg. 1. It is continually active (Line 3),
looping through each core (Line 10). Because our focus is non-preemptive, spin-based
protocols, we know each core will have at most one active request at a given time. For a
specific core k, the server checks if there is an active request that needs lock service (Line 4).
If so, it uses LS-Lock to add the request to the lock state and determine the spin location
for it (Line 5). In the case of the U-C-RNLP, this is the entry in Enabled that corresponds
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Algorithm 2 New “Lock” and “Unlock” Submit Routines.
1: procedure Submit-Lock(c: ptr to core_data, D: set of resources)
2: c�requested := D
3: c�service := LOCK_SERVICE
4: await c�service = NULL
5: await c�spin_location = TRUE

6: procedure Submit-Unlock(c: ptr to core_data, D: set of resources)
7: c�requested := D
8: c�service := UNLOCK_SERVICE
9: await c�service = NULL
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Figure 8 R5 is added to Row 3 of Table.

to the row in Table to which the request was added. The server then indicates that this core
no longer requires service (Line 6). If instead, a request on core k requires unlock service
(Line 7), the server removes it from the lock state by calling LS-Unlock (Line 8). It then
updates the service variable indicating that core k no longer requires service (Line 9).

In the next example, we now turn our focus to the behavior of a requesting task.

I Example 2. Fig. 8 shows the result of processing a request R5 for D5 = {`a, `b} that is
issued after requests R1, R2, R3, and R4 shown in Fig. 4. With a single global lock server,
R5 executes Submit-Lock as shown in Alg. 2. It first sets Requested (Line 2) for its core
and then indicates that it is awaiting lock service by the server (Line 3). After it has been
serviced (Line 4), it spins on the location the server determined based on the other active
requests (Line 5). As implied by Fig. 8, R5 spins on Enabled[3].

Using a global lock server in this manner has no impact on blocking; it simply changes
the enqueuing and dequeuing portions of request processing in order to reduce overhead.

3.2 Static Local Lock Servers
In contrast to a global lock server, a local one is allowed to handle resource requests from
only one socket. Our test platform has two sockets, so two lock servers are required to handle
all requests; we denote them as LS1 and LS2. In this section, we assume that these lock
servers are static, which means that each lock server is pinned to a specific core on its socket.
The advantage of having two lock servers is that each must handle requests from only half
the cores, and thus should execute with lower overhead. The disadvantage is that some
arbitration mechanism is needed to mediate conflicting requests managed by the two servers.
We illustrate the nature of the needed mediation with an example.
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Algorithm 3 Static Local Lock Server.
1: procedure SLLS(core: array of ptr to core_data, s: socket identifier)
2: Service lock and unlock requests like in Alg. 1, but with the following changes:
3: Only requests from the local socket s are handled
4: Coordinate Phase with other lock server
5: Set spin_location := TRUE for requests that are eligible to be satisfied while Phase = s

I Example 2 (continued). Suppose that the requests in Fig. 8 were actually issued on
Socket 1. Suppose now a request R6 for D6 = {`a, `b} is issued on Socket 2. This results in
the two lock states shown in Fig. 9. Though R6 is the only request in LS2’s lock state, it
should not be satisfied, as it conflicts with request R1 for resource `b. Thus, it must wait.

To mediate requests from the two lock servers, we propose to let them alternate execution
in phases. In App. A, we present a phase-management protocol to coordinate these phases.
In the U-C-RNLP, a natural way to define which requests belong to a certain phase is to let
each row of Table indicate a phase. As shown in App. A, when defining and managing phases
in this way, the blocking experienced by request Ri is at most (ci,s +1)(Lmax,1 +Lmax,2) time
units, where ci,s is the contention Ri experiences on Socket s and Lmax,s is the maximum
critical-section length on Socket s. In Alg. 3, this boundary and change between phases is
coordinated in Line 4 and the current phase is stored in the variable Phase. The coordination
must ensure bounded time before a change of Phase when requests are waiting on the other
socket. Thus, in Line 5, a request must be able to be satisfied (e.g., it is in the active row of
Table in the U-C-RNLP) and the phase must be set to the local socket before the request
can be marked as satisfied by updating its spin location.

4 Floating Lock Servers

In the prior section, we implicitly assumed that static lock server(s) are to be supported by
devoting full core(s) to them. While this may be reasonable on a large platform, we could
instead allow other work to execute on the core(s) assigned to static lock servers(s) as long
as that work executes at a lower priority. The impact lock servers have on such work could
be assessed similarly to how interrupt accounting is done.

In this section, we explore a simpler alternative: floating lock servers. When using static
lock servers, every request executes a spin loop for each server interaction in order to wait
for a response. When using floating lock servers, the processor time wasted during these spin
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Algorithm 4 Floating Global/Local Lock Server

1: global var Server_exists: boolean initially FALSE

2: procedure Floating-Lock(c: ptr to core_data, D: set of resources)
3: var i_am_server: boolean initially FALSE
4: c�requested := D
5: c�service := LOCK_SERVICE
6: i_am_server := Wait-Until(ˆ(c�service), NULL)
7: if (i_am_server = FALSE):
8: i_am_server := Wait-Until(ˆ(c�spin_location), TRUE)
9: if (i_am_server = TRUE):
10: while (c�service 6= NULL) or (c�spin_location 6= TRUE): . Until satisfied, be server
11: Perform lock server functionality
12: Server_exists := FALSE

13: procedure Floating-Unlock(c: ptr to core_data, D: set of resources)
14: var i_am_server: boolean initially FALSE
15: c�requested := D
16: c�service := UNLOCK_SERVICE
17: i_am_server := Wait-Until(ˆ(c�service), NULL)
18: if (i_am_server = TRUE):
19: if c�service 6= NULL: . This request has not been serviced
20: Perform unlock for this request
21: Server_exists := FALSE

22: procedure Wait-Until(location: ptr, value)
23: var t: unsigned int
24: t := TestAndSet(&Server_exists)
25: while (t = TRUE) and (*location 6= value):
26: if (Server_exists = FALSE):
27: t := TestAndSet(&Server_exists) . TestAndSet return value of FALSE means . . .
28: return (t = FALSE) . . . . Server_exists was FALSE so I am now server

loops is reclaimed to execute lock-server code. This approach is tantamount to employing a
helping mechanism [39], but unlike the traditional sense of helping, where one request may
help another to complete a critical section, a request here performs only lock logic on behalf
of another request. We describe the floating lock-server paradigm more fully below by first
considering global servers and then local ones.

4.1 A Floating Global Lock Server

In this section, we more carefully describe the notion of a floating global lock server. Unlike
static lock servers, in floating ones, request code and lock-server code are inextricably linked.
Thus, we specify how a floating global lock server works via one code listing in Alg. 4.

In Alg. 4, a request in its lock call performs the same logic as it would using a static
server (marking itself as requiring service, waiting for a location on which to spin, and then
spinning), with intermediate checks to ensure that some request is acting as the lock server.
The existence of a lock server is maintained in the global variable Server_exists. The helper
method Wait-Until waits until a designated location holds a desired value, with the waiting
terminated if the caller becomes the server (as determined in a test-and-test-and-set manner).
The return value of this method indicates whether the caller is now the server.

Examining the Floating-Lock routine in a bit more detail, a request first marks that
it is ready to be serviced (Line 5). Then it waits to be serviced (Line 6). If it is not the
lock server, then it spins on spin_location (Line 8). If it becomes the lock server, then it
performs the lock server functionality until it is satisfied (Lines 10-11). Notice that whenever
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a request functions as the lock server here it would have been spinning in the global static
lock server paradigm waiting for a server response.

The Floating-Unlock routine is similar, except that a request that becomes the lock
server only services itself (Line 20). This is because an unlock does not involve blocking, so
servicing other requests would not replace useless spinning, but would just slow the unlock.

4.2 Floating Local Lock Servers

While a floating global lock server has the benefit over static lock server(s) of not requiring
dedicated core(s), it also would be expected to suffer higher overhead due to eroded cache
affinity when lock state moves between sockets. Fortunately, there is a quick fix to keep
lock state in cache: implement a floating local lock server. In this paradigm, a request can
only perform the functions of the lock server for the socket from which it was issued. By
restricting to a single socket, L3 cache affinity can be maintained. A floating local lock server
uses the structure found in Alg. 4, but with the server logic in Lines 11 and 20 being that of
a local lock server (with phase arbitration).

5 Handling Non-Uniform Requests

Recall from Sec. 3 that the C-RNLP is defined in an abstract rule-based way and that the
U-C-RNLP is just one implementation of it [43]. The U-C-RNLP can be used to handle non-
uniform requests by pessimistically viewing all critical sections as Lmax. However, this changes
the worst-case blocking bound of the general version from min(mLmax, ci(Lmax + Li)) to
min(m, (ci+1))Lmax [43]. In this section, we discuss an alternate non-uniform implementation,
denoted as the G-C-RNLP, that maintains the original bound.

The G-C-RNLP uses |Di| nodes to represent a request Ri, one corresponding to each
resource in Di. A separate queue is maintained for each resource in the system. When Ri

is processed, a satisfaction time is recorded for it by considering the satisfaction times for
other requests and the critical-section length of each. Then, the queue for each resource in
Di is updated by inserting a node for Ri at a position that ensures that Ri will be at the
head of its respective queues by its recorded satisfaction time. This protocol would likely
give rise to prohibitively high overhead if the tasks themselves were to execute the queuing
logic concurrently. In particular, when enqueuing a request Ri, |Di| queues must be checked
for the satisfaction times of existing requests and |Di| nodes must be inserted (sometimes in
the middle of queues). However, if this protocol is implemented using lock servers,3 then the
overhead becomes quite reasonable, as we show in Sec. 6.

Using global lock servers (Secs. 3.1 and 4.1) to implement the G-C-RNLP is straight-
forward: we merely use the G-C-RNLP instead of the uniform C-RNLP in the LS-Lock
and LS-Unlock routines. On the other hand, using local lock servers (Secs. 3.2 and 4.2)
is more problematic due to the phase management such servers require. We show why by
considering two examples. For the time being, we assume that a basic phase-management
protocol called Greedy Satisfaction is used that allows only requests that can be satisfied at
the start of a phase to be satisfied during that phase.

3 Although not reflected in the pseudocode given in this paper, our lock-server implementations have
been carefully honed using bit-vector operations and other techniques to improve efficiency. All of our
code is publicly available online [56].
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Figure 10 Scenarios with complicated phase management.

I Example 3. Consider the requests shown in Fig. 10(a), all issued on Socket 1. R2, R11,
and R12 are “short” requests for resource `b and most of the other requests (for various
resources) are longer. Under Greedy Satisfaction, requests would be satisfied in phases as
shown in the right half of Fig. 10(a), with dashed lines indicating phase boundaries. Observe
that, under this policy, only R1, R2, and R3 are satisfied in the first phase. R11 and R12
are satisfied later. Notice that all of the phases have odd indicies. This is because Socket 2
executes during even-indexed phases.

Ex. 3 shows that Greedy Satisfaction can unnecessarily delay requests: R11 and R12
both could have completed by the time R3 completed. Instead, they are moved to two later
phases. We call this the Long-Short Problem: when requests vary in length, shorter requests
can be delayed, further delaying other requests. In this example, R13 in particular is delayed
substantially by requests with which it does not conflict.

Ex. 3 highlights the fact that, for some protocols, Greedy Satisfaction is inadequate. A
better solution is a policy we call Timed Satisfaction, which allows requests that can finish
within Lmax time units to be satisfied in the same phase.

I Example 4. In Fig. 10(b), we apply Timed Satisfaction to a different set of requests on
Socket 1. On the left, the requests are shown as they are ordered by the G-C-RNLP. On
the right, the requests are shifted to occupy the phases the lock server would enforce. R4
and R5 are satisfied at the start of Phase 1. After R5 completes, R6 is also satisfied in this
phase. However, after R6 completes, R7 cannot be satisfied, as it cannot be guaranteed to
complete within Lmax time units from the start of the phase. Therefore, R7 must wait until
Socket 2 is allowed another phase, namely, Phase 3.

Ex. 4 illustrates another source of added blocking: R7 is forced to delay until the start of
the next phase to be satisfied. Even if we were to increase the time window, the problem
could arise again: another request could be issued that cannot complete within the window.
We call this difficulty the Overlap Problem. A phase must end at some point to prevent the
starvation of requests on the other socket. Whatever value we choose, we may have requests
that would overlap a phase boundary and need to be delayed. The Overlap Problem can
force a request that could otherwise be satisfied to be delayed until the current phase of its
lock server completes followed by a full phase of the other lock server before being satisfied.
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When considering the effect of local lock servers on blocking with the G-C-RNLP, we
assume Timed Satisfaction is the phase-management policy used. (Again, the issues just
discussed are unique to local servers.) As seen in Ex. 4, Timed Satisfaction is susceptible to
the Overlap Problem. This is the reason why the worst-case blocking bounds presented in
App. A for the G-C-RNLP are worse than those for the U-C-RNLP.

6 Evaluation

Our primary reason for exploring lock servers is to minimize overhead by keeping all lock
state cache hot. For static global and static local servers, cache hot means the lock state
should maintain L1 cache affinity on our platform, whereas a floating local server should
tend to execute out of its socket’s L3 cache. On the other hand, a floating global server will
likely not be able to maintain much cache affinity if tasks execute on more than one socket.

Given these expectations, a number of questions arise. How do the different lock-server
paradigms presented previously differ with respect to overhead, and do these differences
match the above expectations? To what extent do lock servers lower overhead compared to
not using lock servers? Are the overhead improvements enough to make contention-sensitive
locking practical? How do lock servers scale with increasing core counts?

To answer these questions, we conducted an experimental study. Before covering the
results revealed by our study, we first describe our experimental setup.

Experimental setup. Recall from Sec. 3 that our test platform is a dual-socket, 18-cores-
per-socket platform. We used this platform to evaluate the lock-server paradigms discussed
previously by conducting experiments involving tasks that repeatedly issue lock and unlock
calls for random resources. We varied the number of tasks, n, number of resources, nr,
nesting depth (which defines the number of resources required for request Ri), D = |Di|, and
critical-section length, Li, to evaluate each parameter’s effect on overhead and blocking. We
define a scenario as an assignment of values to three of these parameters while varying the
fourth. We considered the following parameter ranges: n ∈ {2, 4, ..., 36}, nr ∈ {16, 32, 64},
D ∈ {1, 2, 4, ..., 10}, and Li ∈ {1µs, 20µs, 40µs, ..., 100µs}. In our experiments, all requests
in a scenario have the same nesting depth. Unless stated otherwise, they also all have the
same critical-section length Li.

We recorded overhead and blocking times at user level, with one task pinned to each
core. This setup ensures that requests execute non-preemptively. For a given scenario, we
configured each task to perform 10,000 lock and unlock calls, with critical sections simulated
by spinning for a duration of Li. For task systems running on at most 18 cores, we used
only the cores on one socket. When using more than 18 cores, all cores on Socket 1 were
used with the remainder on Socket 2. Our workload is comprised solely of tasks making lock
and unlock calls as described above. Thus, our evaluation focuses on cache affinity losses
inherent to running a protocol and ignores potential evictions from other tasks; there exist
techniques to keep cache affinity in some systems [5, 22, 25, 40, 46, 47, 66, 69, 70, 72].

In the graphs that follow, we plot 99th percentile measurements as worst-case values to
filter out any spurious measurements caused by performing measurements at user level.4
Across over 150 scenarios, we generated approximately 1,000 graphs. The graphs shown in
this section were chosen as examples of trends seen across the entire collection of graphs.
The full set can be found in an online appendix [56].

4 This filtering does not guarantee smoothness of all curves.
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Figure 11 Blocking and lock/unlock overhead when no lock servers are used. For this scenario,
nr = 64,D = 4, and Li = 40µs for all i.

Overhead and blocking without lock servers. Before delving into results pertaining to
lock-server paradigms, we examine a range of server-less implementation options. To gauge
the tradeoffs involved in supporting lock nesting, we experimentally evaluated two contention-
sensitive options, the U-C-RNLP and the G-C-RNLP, both implemented without lock servers,
and the RNLP, which supports nesting but is not contention sensitive. As a baseline, we
evaluated coalescing all resources under one MCS queue lock [52]. We conducted experiments
in which these options were compared on the basis of blocking and overhead.

We now state several observations that follow from the full range of scenarios considered
in these experiments. We illustrate these observations using the graphs in Fig. 11.5 In this
figure, we present lock and unlock overhead separately to demonstrate their relative scale:
enqueuing takes slightly longer than dequeuing, but both operations require manipulating
lock state, and thus both contribute to overhead. In later figures, we will combine lock and
unlock overhead to yield one overhead graph.

I Obs. 1. Without using lock servers, both C-RNLP variants have dramatically higher
overhead than MCS.

This is expected behavior, as MCS implements just a single spin queue. As shown in
insets (b) and (c) of Fig. 11, the U-C-RNLP has lock and unlock overhead up to 27.4 and
23.9 times that of MCS, respectively. For the G-C-RNLP, these values are similarly high: up
to 31.1 and 22.9 times, respectively.

I Obs. 2. Compared to MCS, contention-sensitive protocols demonstrate significantly better
blocking bounds as the number of requests increases.

The low overhead of MCS (Obs. 1) comes at the expense of unscalable blocking. As
shown in Fig. 11(a), worst-case blocking under MCS grows up to 5.3 and 2.9 times faster
than that under the U-C-RNLP and G-C-RNLP, respectively.

Considering the RNLP is instructive because it provides some insights into the extra cost
of providing contention sensitivity in addition to handling lock nesting. As shown in insets
(b) and (c) of Fig. 11, lock and unlock overhead under the U-C-RNLP (resp., G-C-RNLP)
are up to 1.8 and 2.1 (resp., 1.5 and 1.4) times that under the RNLP, respectively.

5 In every such figure that we consider, the applicable scenario is stated in the figure’s caption. Note that
not all curves extend to n = 36. This is because up to two cores are reserved for lock servers and this
number is scheme-dependent.

ECRTS 2018



25:16 Using Lock Servers to Scale Real-Time Locking Protocols

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

(a) U-C-RNLP overhead.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

2

4

6

8

10

12

14

16

O
v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

G-C-RNLP
G-C-RNLP + SGLS
G-C-RNLP + SLLS
G-C-RNLP + FGLS
G-C-RNLP + FLLS
RNLP
MCS

(b) G-C-RNLP overhead.

Figure 12 For this scenario, nr = 64,D = 4, and Li = 40µs for all i.

0 5 10 15 20 25 30 35 40
Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

B
lo

ck
in

g
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
RNLP
MCS

Figure 13 Worst-case blocking for the scenario in Fig. 12(a).

Applying lock servers. In Secs. 3 and 4, we presented four lock-server paradigms, each of
which can be applied to any locking protocol. We conducted experiments to explore how
these paradigms differ when used to implement the U-C-RNLP and the G-C-RNLP. We
now state several observations that follow from the full range of scenarios considered in
these experiments. We illustrate these observations using the graphs in Figs. 12 and 13. In
Fig. 12(a), we compare the four possible lock-server variants of the U-C-RNLP against the
baselines of MCS, the RNLP, and the U-C-RNLP without lock servers. Fig. 12(b) is similar,
but is directed at the G-C-RNLP instead of the U-C-RNLP. (We abbreviate lock-server
paradigms in figure captions, e.g., static global lock server is SGLS.)

I Obs. 3. Using lock server(s) results in significantly lower overhead.

This can be seen both in Fig. 12(a) for the U-C-RNLP and in Fig. 12(b) for the G-C-
RNLP. Observe that using lock server(s) usually resulted in overhead even lower than that
of the RNLP. In fact, using local lock servers in this scenario reduced the overhead of the
U-C-RNLP and the G-C-RNLP by up to 86% and 77%, respectively.

I Obs. 4. When there are requests on only one socket, static lock servers result in the largest
overhead reduction.

This trend appears consistently in our results, and matches our intuition, as a static lock
server can maintain L1 cache affinity. In Fig. 12, only one socket is used when n < 18 (it is
strictly less because the lock server uses one core).

I Obs. 5. When considering requests on two sockets, as the number of tasks increases, the
overhead of local lock servers scales better than that of a global lock server.
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Figure 14 (a) Overhead as a function of critical-section length, for n = 34, nr = 64, and D = 4.
(b) Overhead and (c) blocking as a function of n, for nr = 64,D = 4, and Li = 1µs for all i.

For example, in Fig. 12, the overhead of the U-C-RNLP (resp., G-C-RNLP) with floating
local lock servers is up to 61% (resp., 43%) lower than with a floating global lock server.

I Obs. 6. Floating global lock servers scale the poorest of the four lock-server paradigms.

This observation is entirely expected and clearly evident in Fig. 12. Note that a floating
global lock server still reduces overhead to be comparable to or better than the RNLP.

In Fig. 13, worst-case blocking under the U-C-RNLP is plotted for each lock-server
paradigm for the same scenario presented in Fig. 12.

I Obs. 7. Moving from one socket to two can negatively impact blocking of local lock servers.

This observation is evident in Fig. 13. Two local lock servers are required if n ≥ 18. The
extra blocking is due to phase management and request imbalances between the two sockets.
For example, for n = 18 there are 17 requests on Socket 1 and one request on Socket 2. The
request on Socket 2 will have very low blocking, but requests on Socket 1 can experience
twice as much blocking as when only one socket is in use. Without the mitigation in App. A,
blocking scales poorly with increasing socket counts (e.g., a four-socket platform [56]).

Requests with short critical sections. Inset (a) of Fig. 14 plots overhead as a function
of critical-section length, while insets (b) and (c) provide data for a scenario with a short
critical section of 1µs. (The G-C-RNLP variants are omitted from this figure for clarity;
overhead for them is higher than their U-C-RNLP counterparts but follows similar trends.)
Such short critical sections result in overhead being a higher proportion of total request time
(overhead plus blocking). Note that the blocking time of a request includes the overhead of
any request upon which it must wait, so reducing overhead additionally reduces blocking.

I Obs. 8. Overhead is (mostly) constant for all U-C-RNLP variants with respect to Li.

This is demonstrated in Fig. 14(a). Note that, when static lock servers are used, overhead
remains low even for small Li.

I Obs. 9. When critical sections are short, lock servers greatly reduce the impact of overhead
on total request time.

The data in insets (b) and (c) of Fig. 14 indicates that, under the U-C-RNLP, requests
with 1µs critical sections can experience worst-case overhead that is up to 23.4% of the total
request time. When using a static local lock server, this is reduced to 9.6%.
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Figure 15 For this scenario, nr = 64,D = 4, and Li = 40µs for 75% of requests and Li = 100µs
for the remaining 25% of requests.

U-C-RNLP U-C-RNLP U-C-RNLP U-C-RNLP G-C-RNLP

+ SGLS + SLLS + FGLS + SGLS

Total Firsts 0 92 0 23 12

Total Seconds 1 26 18 70 4

Total Thirds 68 2 17 20 8

Total 69 120 35 113 24

Figure 16 Results of total request time comparison.

A case where the G-C-RNLP wins. From the results presented thus far, it is tempting to
discount the G-C-RNLP entirely. In cases where all critical sections are of the same duration,
the G-C-RNLP suffers worse overhead and blocking than the U-C-RNLP. We now explore
scenarios in which the G-C-RNLP has very competitive worst-case blocking; this occurs
when a large fraction of requests have critical-section lengths much less than Lmax. Such a
scenario is depicted in Fig. 15.

I Obs. 10. When most requests have critical sections much shorter than Lmax, the G-C-
RNLP and U-C-RNLP have similar performance when both use a static global lock server.

In Fig. 15, the G-C-RNLP with a static global lock server has lower blocking and only
slightly higher overhead than the U-C-RNLP with the same lock-server setup.

Overall winner. Judging the lock-server paradigms should be done with a specific workload,
but to make a general summary, we determined the “best” paradigm to the extent possible
in our experimental framework as follows. For each considered scenario,6 we calculated
a single “total request time” score (blocking plus overhead) for each protocol variant by
approximating the area under its curve using a midpoint Riemann sum. We then ranked
the protocol variants for that scenario. Fig. 16 gives the total number of first-, second-, and
third-place finishes for each protocol variant. The U-C-RNLP with a static global lock server
was the overall winner. However, our experimental setup mostly generates scenarios in which
critical sections are uniform, which tends to make the G-C-RNLP variants less competitive.
Still, these results show there is value in using lock servers.

6 We filtered out scenarios with D ∈ {8, 10}, as they require nearly coalescing all resources under a single
lock, which has non-contention-sensitive blocking.
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7 Conclusion

In this paper, we have considered for the first time the use of lock servers on large multicore
platforms to lessen overhead associated with contention-sensitive real-time locking protocols,
without modifying the associated pi-blocking bounds. We proposed four specific lock-server
paradigms and presented an experimental study in which the overhead reductions enabled by
these paradigms was assessed. This study showed that such reductions can be dramatic. For
example, the paradigm that generally performed best, static global lock servers, typically
exhibited overhead reductions in the range 25%–75% compared to not using lock servers.

This paper is certainly not the last word on lock servers. Indeed, we hope that our
work sparks further interest by others in this topic and more broadly raises an appreciation
for investigating scalability issues affecting real-time resource-allocation methods as core
counts continue to climb. With respect to lock servers themselves, a number of avenues
for further research come to mind. First, while we have limited attention to spin-based
locking protocols, the very notion of a lock server lends itself to an operating-system-based
implementation. In that setting, suspension-based protocols warrant detailed consideration.
Second, we have focused on one particular large multicore platform as an exemplar. Other
platforms, including manycore platforms with different interconnects, warrant further study.
Third, it would be interesting to apply the ideas in this paper to support transactions in a
real-time database. In fact, a contention-sensitive real-time locking protocol together with
lock server(s) can be thought of as a lock-based variant of software transactional memory that
targets real-time applications. Fourth, we have focused herein on the extent to which lock
servers can lower overhead. In the future, we will assess the schedulability-related impacts of
different lock-server deployments, which will require investigating lock server behavior in
the context of more complex workloads and exploring task balancing among lock servers.
Finally, in a hard real-time system, it might be necessary to provably ensure that lock servers
always execute in cache. Such assurances could be provided by integrating lock servers with
cache-isolation techniques explored elsewhere [5, 22, 25, 40, 46, 47, 66, 69, 70, 72].
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A Local Lock Server Phase Management and Blocking Bounds

In this appendix, we provide additional details concerning the phase-management protocol
needed for the local lock servers described in Secs. 3.2 and 4.2. Such a server must determine
which requests will execute in each of its phases in addition to managing phase changes.

Request selection. We restrict phases on Socket s to execute for at most the maximum
critical-section length on that socket, denoted Lmax,s. For the U-C-RNLP, the requests in a
phase are determined by selecting the row in Table pointed to by Head. For the G-C-RNLP,
Timed Satisfaction (recall Sec. 4.2) is used instead.

Phase coordination. Because all requests that can be satisfied simultaneously under C-
RNLP rules can run concurrently relative to each other, they may be processed like read
requests. With this in mind, the synchronization mechanism we need can be obtained by
building on the idea of a phase-fair reader/writer lock [17]. Such a lock supports two kinds of
requests, reads and writes, which execute in phases that alternate if both kinds of requests are
present, where any number of reads can occur during a read phase but only one write during
a write phase. The synchronization mechanism we desire similarly needs to support two
kinds of requests that execute in alternating phases, but in our case, any number of requests
can execute in a given phase. That is, we need a reader/reader lock. To our knowledge,
such locks have not been studied in the context of real-time systems, so we present a new
phase-fair reader/reader locking algorithm with corresponding blocking bounds in an online
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appendix [56]. (The phase-fair reader/reader problem is similar to the group mutual exclusion
problem [44, 45] except that we require O(1) pi-blocking bounds.)

Using this reader/reader lock, it is straightforward to support phase management in a
way that satisfies the following general properties.

Each lock server is either active or passive and at most one lock server is active at any
time. A maximal interval of time when a lock server is active is called a phase.
A request can be satisfied only if its lock server is active and if it can be satisfied under
the variant of the C-RNLP being used by that server.
A passive lock server with unsatisfied requests becomes active within Lmax time units.
All requests satisfied in a phase finish by the end of that phase.

Based on these properties, we prove the worst-case acquisition-delay bounds stated below
in an online appendix [56]. In stating these bounds, recall that LSs denotes the local lock
server on Socket s. Also, we denote the contention a request Ri experiences on Socket s as
ci,s. We call such a request entitled if it could be satisfied under the C-RNLP.

I Theorem 5. A request Ri on socket s that is serviced by a local lock server running the
U-C-RNLP will be satisfied within (ci,s + 1)(Lmax,1 + Lmax,2) time units.

I Theorem 6. A request Ri on Socket 1 (resp., Socket 2) that is serviced by a local lock
server running the G-C-RNLP will be satisfied within ci,1(3Lmax,1 + 2Lmax,2 + Li) (resp.,
ci,2(2Lmax,1 + 3Lmax,2 + Li)) time units.

These bounds have implications regarding how to partition a workload under schedulers
that assign tasks to execute on specific cores or clusters of cores. We illustrate this point in
the context of the U-C-RNLP.

To begin, suppose that the requests for each resource can be evenly split between sockets
such that Lmax,1 = Lmax,2 = Lmax. Then, ci,1 = ci,2 = 1

2ci, and the blocking bound in
Theorem 5 reduces to ( 1

2ci + 1)(2Lmax) = (ci + 2)Lmax, which is only one critical-section
length longer than that for the original protocol.

While splitting contention evenly like this may be desirable, a system designer could
instead choose to assign tasks so as to decrease ci,1 at the expense of ci,2, which may
be a more effective strategy if critical sections of different lengths exist. To see this,
suppose that a fraction α of all requests have critical sections of at most β · Lmax time
units, where 0 < β ≤ 1. If tasks can be assigned so that these shorter requests are
all issued from Socket 1 and all others from Socket 2, then the bound from Theorem 5
becomes (αci + 1)(βLmax + Lmax) = (αci + 1)(β + 1)Lmax when applied to Socket 1, and
((1−α)ci + 1)(βLmax +Lmax) = ((1−α)ci + 1)(β + 1)Lmax for Socket 2. Depending on the
system, such a task assignment could lower the bounds applicable to all requests, as seen in
the following example.

I Example 7. Suppose ci = 10, Lmax = 100µs, α = 1
5 , and β = 1

10 . With the partitioning of
requests described above, the bound on Socket 1 is ( 1

5 ·10 + 1)( 1
10 ·100 + 100)µs = 330µs, and

the bound on Socket 2 is 990µs, both of which are lower than the bound of (ci + 1)Lmax =
(10 + 1)100 = 1100µs for a server-less system (recall the U-C-RNLP discussion in Sec. 3).

Note that the improvement in the above example holds for both sockets, not just the one
with lower critical-section lengths.
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Abstract
Motivated by an apparent contradiction regarding whether certain scheduling policies are sus-
tainable, we revisit the topic of sustainability in real-time scheduling and argue that the existing
definitions of sustainability should be further clarified and generalized. After proposing a formal,
generic sustainability theory, we relax the existing notion of (strongly) sustainable scheduling
policy to provide a new classification called weak sustainability. Proving weak sustainability
properties allows reducing the number of variables that must be considered in the search of a
worst-case schedule, and hence enables more efficient schedulability analyses and testing regimes
even for policies that are not (strongly) sustainable. As a proof of concept, and to better under-
stand a model for which many mistakes were found in the literature, we study weak sustainability
in the context of dynamic self-suspending tasks, where we formalize a generic suspension model
using the Coq proof assistant and provide a machine-checked proof that any JLFP scheduling
policy is weakly sustainable with respect to job costs and variable suspension times.
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1 What Really is Sustainability?

Since the seminal paper by Liu and Layland [13], the analysis and certification of real-time
systems has often relied on the fundamental notion of sustainability [5], which at a high level
expresses the idea that “if a system is proven to be safe under extreme conditions, then it will
remain safe if the conditions improve at runtime.” By allowing system designers to focus on
such extreme scenarios (rather than the entire state space of the system), sustainability plays
a fundamental role in the design, prototyping, analysis, and validation of real-time systems.

One common application of this principle is to determine the schedulability of the system
by identifying worst-case scheduling scenarios. For example, any schedulability analysis for
uniprocessor fixed-priority (FP) scheduling of sporadic tasks [14] that assumes that jobs

© Felipe Cerqueira, Geoffrey Nelissen, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 26; pp. 26:1–26:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:felipec@mpi-sws.org
mailto:grrpn@isep.ipp.pt
mailto:bbb@mpi-sws.org
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 On Strong and Weak Sustainability

T1

T2

T3

2 4 100 6 8 12 14 16 18

T1 T1 T1 T1

T3

T2 T2 T2 T2

(a) EDF schedule of the original job set J . No jobs
are released after time 18.
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(b) Scheduling anomaly represented by job set
Jbetter , generated by reducing the cost of task T3.
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(c) Alternative job set Jsusp with original costs and
shorter suspensions that is as hard to schedule as
Jbetter .

Figure 1 (adapted from [1]) Three schedules under the segmented suspension model showing
that the impact of the lack of sustainability tightly depends on the considered task model. Despite
the anomaly shown in schedule (b), there exists a harder schedule (c) with no anomaly that still
incurs a deadline miss. If we assume that the task model allows variable suspension times, then any
schedulability analysis that covers all possible scenarios would not claim the job set in (c) (and thus
the task set) to be schedulable, regardless of the anomaly present in schedule (b).

execute for their worst-case execution time (WCET) or arrive at maximum rate exploits
the fact that the FP scheduling policy for sporadic tasks is sustainable, i.e., the occurrence
of “better” job parameters (namely, larger inter-arrival times or lower execution times) at
runtime does not cause any deadline miss.

While precursors to this concept were already identified and proven in earlier papers [10,
11], the general concept of sustainability was first formalized by Baruah and Burns [5, 6]
and later refined by Baker and Baruah [2]. Although the definition by Baker and Baruah is
more rigorous than the original definition, we argue in this paper that there is still a need
for improvement in terms of clarity and precision.

To support our claim, in §1.1 and §1.2 we present an example in the context of uniprocessor
scheduling with self-suspending tasks [16], where we show a scheduling policy that can be
interpreted as both sustainable and not sustainable with respect to job execution times (also
called job costs hereafter). Both claims are correct according to the existing definitions of
sustainability and only depend on varying interpretations by the reader. This example shows
that, despite being a well-established concept, the theory of sustainability needs further
clarification and formalization.

1.1 Uniprocessor EDF Scheduling with Self-Suspensions is not
Sustainable w.r.t. Job Costs

Consider uniprocessor earliest-deadline-first (EDF) scheduling of self-suspending tasks under
the segmented suspension model. Self-suspending tasks are used to model workloads that may
have their execution suspended at given times, for example, to perform remote operations on
co-processors, acquire locks, wait for data, or synchronize with other tasks. The segmented
self-suspending task model can be formalized as follows.

I Definition 1 (Sporadic Task Model with Segmented Self-Suspensions). Let τ be a task set
and let J be a job set generated by τ . Each task Ti ∈ τ is defined by a period pi, deadline
di and a sequence of execution and suspension segments Si = [e1

i , s
1
i , e

2
i , s

2
i , . . . , e

n
i ]. These
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task parameters encode the constraints that any two jobs generated by Ti must be separated
by a minimum inter-arrival time pi. Each job released by Ti must finish its execution by a
relative deadline di, and alternates between execution and suspension segments as defined by
the sequence Si. The execution time of the k-th execution segment of job j is upper-bounded
by ek

i , and the suspension time of its k-th suspension segment is upper-bounded by sk
i .

Next, let us recall the definition of sustainable policy as proposed by Burns and Baruah [6].

I Definition 2 (Sustainable Policy – original definition from [6]). A scheduling policy and/or a
schedulability test for a scheduling policy is sustainable if any system deemed schedulable by
the schedulability test remains schedulable when the parameters of one or more individual
tasks are changed in any, some, or all of the following ways: (i) decreased execution
requirements; (ii) larger periods; (iii) smaller jitter; and (iv) larger relative deadlines.

As explained by Burns and Baruah [6], the interpretation of Definition 2 for scheduling
policies concerns the values of job parameters at runtime: “[...] a scheduling policy that
guarantees to retain schedulability if actual execution requirements during run-time are smaller
than specified WCET’s, and if actual jitter is smaller than the specified maximum jitters,
would be said to be sustainable with respect to WCET’s and jitter”.

Thus, in order to show that a scheduling policy is not sustainable with respect to execution
requirements (i.e., job costs), we must find a counterexample that shows a job set J that is
schedulable under that policy, along with a job set Jbetter with lower or equal job execution
times that is not schedulable under the same policy.

Fig. 1 depicts such a counterexample for uniprocessor EDF scheduling on the segmented
self-suspending task model, adapted from prior work by Abdeddaïm and Masson [1]. Fig. 1-(a)
shows the original EDF schedule of three tasks T1, T2 and T3, which contains no deadline
misses. Next, by reducing the cost of T3’s job by 1 time unit as shown in Fig. 1-(b), the
different interleaving of suspension times during the time interval [13, 16) increases the
interference incurred by task T1, causing a deadline miss at time 18.

This counterexample, which is simple enough to make the claim non-disputable, proves
that, according to Definition 2, EDF scheduling under the segmented suspension model is
not sustainable with respect to job costs.

1.2 Uniprocessor EDF Scheduling with Self-Suspensions is Sustainable
w.r.t. Job Costs

Consider the same platform, task model and scheduling policy as in §1.1, and recall the
definition of sustainable policy proposed by Baker and Baruah [2].

I Definition 3 (Sustainable Policy – original definition from [2]). Let A denote a scheduling
policy. Let τ denote any sporadic task system that is A-schedulable. Let J denote a
collection of jobs generated by τ . Scheduling policy A is said to be sustainable if and only if
A meets all deadlines when scheduling any collection of jobs obtained from J by changing
the parameters of one or more individual jobs in any, some, or all of the following ways: (i)
decreased execution requirements; (ii) larger relative deadlines; and (iii) later arrival times
with the restriction that successive jobs of any task Ti ∈ τ arrive at least pi time units apart.

Definition 3 is similar to Definition 2, except that it explicitly makes the difference
between the notion of jobs and tasks. It requires the job set J with original parameters to
be generated by a task set τ that is A-schedulable, i.e., all job sets generated by τ exhibit

ECRTS 2018



26:4 On Strong and Weak Sustainability

no deadline misses when scheduled by A. However, note that the modified job set obtained
from J (which we call Jbetter) does not have to be generated by τ .

Now, we must check whether the counterexample in Fig. 1 is still valid. At a first glance,
the job sets J and Jbetter depicted in Fig. 1-(a) and Fig. 1-(b) seem to prove that uniprocessor
EDF scheduling with segmented self-suspending tasks is not sustainable with respect to
job costs, according to Definition 3. After all, we can assume that job set J is generated
for instance by some task set τ = {(p1 = 12, d1 = 6, S1 = [2, 2, 2]), (p2 = 9, d3 = 7, S2 =
[2, 2, 2]), (p3 = 10, d3 = 10, S3 = [2])}.

However, let us consider the alternative job set Jsusp in Fig. 1-(c), in which the job of
task T3 has the original cost of 2 time units, and the suspension time of the second job of
task T2 is reduced by 1 time unit. Clearly, Jsusp can be generated by task set τ , since the
job costs are the same as in J and the suspension segments are no larger than those in J ,
which is allowed by the segmented suspension model. Moreover, we can observe that in the
schedule of Jsusp, task T1 again misses a deadline at time 18.

Since job set Jsusp generated by τ is not schedulable, it is clear that τ does not satisfy
the assumption of being A-schedulable (i.e., EDF-schedulable) required by Definition 3.
Therefore, job sets J and Jbetter in Fig. 1 are not a valid counterexample for establishing
that the policy is not sustainable. Since the counterexample is not valid, what can we really
say about the sustainability of this policy? Why do the two definitions disagree?

One aspect that is implicit but unclear in both definitions is whether all job parameters
other than the sustainable parameter (i.e., job costs) must remain constant. In fact, as
shown in Jsusp from Fig. 1-(c), in some cases we can vary the other parameters (i.e., job
suspension times) to compensate the increase in interference that would otherwise cause the
scheduling anomaly. Since this parameter variation is allowed by the task constraints, this
suggests that a task set that is schedulable for any possible job suspension times may in
effect be resilient to scheduling anomalies on job costs, even though individual schedulable
job sets are not.

In fact, by constructing job sets similar to Jsusp in the example above, we provide
a mechanized proof (i.e., a proof that is verified by the Coq proof assistant) in §4 that
establishes that uniprocessor job-level fixed priority (JLFP) scheduling of sporadic tasks
under the dynamic suspension model is, what we later define as, weakly sustainable with
respect to job costs and variable suspension times.

Note that this result does not make the counterexample of Abdeddaïm and Masson
incorrect. Their result is simply based on a different interpretation of sustainability where
nothing but the job parameter under consideration for the sustainability property can vary
between the compared schedules; thus, the results stated in §1.1 and §4 are both correct. In
§3, we will complement the existing sustainability theory with the notions of strong and weak
sustainability to distinguish those contradictory but correct interpretations of sustainability.

1.3 This Paper
The seemingly contradictory observations in §1.1 and §1.2 suggest the need for clarification
in the definitions of sustainability, which are currently restricted to the standard sporadic
task model and are not precise with respect to how parameters can vary across the original
and modified job sets J and Jbetter .

We believe that the solution to this problem lies in formalizing the abstract concepts
of real-time scheduling meta-theory such as “job and task parameters” in a rigorous way,
so that the different notions of sustainability can be stated precisely. Additionally, this
approach allows transcribing those concepts into a proof assistant such as Coq to formalize
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and mechanically prove key results [7]. With that in mind, we propose a formal sustainability
theory for real-time scheduling, which we present in §2.

Our goal in this paper is not only to clarify what sustainability means, but also to
provide a foundation for more efficient schedulability analyses for policies that are sustainable
with varying parameters (such as the suspension times in the example from §1.2), a new
concept that we call weakly sustainable policy. The exact definition and implications of weak
sustainability will be discussed in §3.

Finally, we apply this newly defined notion of weak sustainability in §4, where we formalize
self-suspending tasks in Coq and mechanically prove that uniprocessor, job-level fixed priority
(JLFP) scheduling of self-suspending tasks under the dynamic suspension model is weakly
sustainable with respect to job costs and varying suspension times.

To summarize, this paper makes the following contributions:
1. a formal theory of sustainability in real-time scheduling, with definitions of sustainable

policy [2, 6], sustainable analysis [2, 5, 6] and self-sustainable analysis [2] generalized to
any scheduling policy and any task and platform models (§2);

2. the definition of the new notions of strongly and weakly sustainable policies (§3), and the
corresponding composition rules (§3.2);

3. the first formalization of sustainability theory and real-time scheduling with self-suspensions
in a proof assistant (§4.1 and online appendix [15]); and

4. a mechanized proof of weak sustainability of uniprocessor JLFP scheduling of dynamic
self-suspending tasks with respect to job costs and varying suspension times (§4.2–§4.4
and online appendix [15]).

2 Formalization of Sustainability Theory

In this section, we formalize the theory of sustainability in real-time scheduling and char-
acterize the basic notions of sustainability proposed in the literature, namely sustainable
policy [2, 6], sustainable analysis [5, 6] and self-sustainable analysis [2].

Our motivation for developing this theory is twofold: we aim to (a) clarify and generalize
the existing notions of sustainability so that they become compatible with any scheduling
policy and any task and platform models, and (b) provide the theoretical support for defining
the new concept of weak sustainability, which will be covered in §3 and mechanically proven
in §4 for uniprocessor JLFP scheduling of dynamic self-suspending tasks.

Note that this section does not introduce fundamentally new concepts; rather, it spells
out precisely common implicit assumptions about the task and platform models and gives a
more formal presentation of the underlying real-time scheduling meta-theory, which will be
used to mechanically prove the results (see §4).

In order to distinguish the different nuances of sustainability, one must be able to correlate
the variation of job and task parameters with schedulability. Hence, we must formalize the
system model and present the basic definitions related to jobs and tasks.

2.1 Platform Model
We begin by stating assumptions about the platform model, in particular the notions of time
and platform parameters, which specify part of the scheduling problem to be solved. Note
that all definitions in this paper are compatible with both discrete and dense time.

I Definition 4 (Processor Platform). Let platform Π be the system on which jobs are
scheduled.
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I Definition 5 (Platform Parameter). Each platform Π has a finite set of parameters Pplat .

I Example 6 (Common Platforms). Examples of platforms include uniprocessor systems,
identical multiprocessors [9], and uniform multiprocessors [3]. Multiprocessor platforms
usually have an associated parameter m ∈ Pplat that indicates the number of processors.

Note that Definition 5 does not limit the set of parameters defining a platform to its
number of processors; in fact, the set of parameters Pplat could also express the heterogeneity
of the platform [4], its power consumption, or execution speed profiles [17]. We keep the set
of parameters unspecified in order to retain maximal generality and not limit our definitions
to a fixed subset of system models.

This approach is uncommon. Most works tend to limit their results to a specific system
model (e.g., task-level fixed priority scheduling of sequential tasks on single or multi-core
processors). Instead, we prefer generality to specificity, so that the concepts and properties
presented hereafter can be instantiated for any scheduling problem.

2.1.1 Jobs
After discussing the general aspects of the system model, we now define a job set.

I Definition 7 (Job Set). A job set J is a (potentially infinite) collection of jobs.

Next, in order to define sustainability without being restricted to a particular task model,
we generalize the notion of a job parameter.

I Definition 8 (Job Parameter). We denote as job parameters any finite set Pjob, where each
parameter p ∈ Pjob is a function over jobs.

I Example 9. Common job parameters include cost(j), the actual job execution time,
arrival(j), the absolute job arrival time, and deadline(j), the relative job deadline. They
may for instance also include the job suspension time in the case of self-suspending jobs, its
level of parallelism and/or its energy consumption if such properties are of interest.

Next, we define the notion of scheduling policy, which specifies the strategy for selecting
jobs to be scheduled, i.e., allocated to a processor at a given time.

I Definition 10 (Scheduling Policy). Given a platform Π and a job set J with job parameters
Pjob, we define a scheduling policy σ as any algorithm that determines whether a job j ∈ J
is scheduled at a given time t on a processor π ∈ Π.

For job sets that have associated deadlines, we can also define whether they are schedulable.

I Definition 11 (Schedulable Job Set). Assume that jobs have a deadline as one of their
parameters. Then we say that a job set J is schedulable on platform Π under policy σ iff
none of its jobs misses a deadline when scheduled on Π under policy σ.

To compare different job sets, we must also be able to express how job parameters can
vary across job sets (e.g., job costs may increase while their arrival times remain constant).
For that, we define whether two job sets differ only by a given set of parameters.

I Definition 12 (Varying Job Parameters in V ). Consider any subset of job parameters
V ⊆ Pjob, which we call variable parameters, and consider two enumerated job sets J =
{j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}. We say that J and J ′ differ only by V iff |J | = |J ′| and

∀i,∀p ∈ (Pjob \ V ), p(ji) = p(j′
i), where |J | denotes the cardinality of job set J .
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I Example 13. By stating that {j1, j2} and {j′
1, j

′
2} differ only by V = {cost}, we claim

that jobs j1 and j′
1 (respectively, j2 and j′

2), are identical in all parameters other than cost.
This is useful to formalize, for example, the idea that “schedulability is maintained when
reducing only the cost of a job.”

2.1.2 Tasks
While some notions of sustainability apply exclusively to job sets, one can also describe how
the variation of task parameters affects schedulability analysis results. To be able to reason
at the task level, we begin by defining task set and task parameters.

I Definition 14 (Task Set). A task set τ is as a finite collection of tasks {T1, . . . , Tn}.

From a mathematical point of view, tasks are opaque objects, elements of an enumerated
set. Their utility comes from defining task parameters and using them to constrain the sets
of jobs that can possibly be generated at runtime (see Definition 18 below).

I Definition 15 (Task Parameters). We call task parameters any finite set Ptask , where each
parameter p ∈ Ptask is a function over tasks.

I Example 16. Similar to the job parameters in Example 9, common task parameters
include, but are not limited to, WCET(Ti), the worst-case execution time of task Ti, and
period(Ti), the period or minimum inter-arrival time of task Ti.

Next, we define a task model, which determines how job sets are related to task sets.

I Definition 17 (Task Model). A task modelM is the collection of all task sets that can
be defined with given task parameters Ptask , along with a set of constraints relating job
parameters with task parameters.

I Definition 18 (Generated Job Sets). Every task set τ ∈M generates a (potentially infinite)
collection of job sets, denoted jobsets(τ) = {J1,J2, . . .}, with the condition that, for every
job set J ∈ jobsets(τ) and every job j ∈ J , (a) j belongs to an associated task in τ , denoted
task(j), and (b) the job parameters of j are constrained by the task parameters of task(j),
as determined byM.

One example of such a task model constraint is the upper bound on job execution times.

I Example 19 (Constraint on Job Execution Time). Let M be the sporadic task model.
Let the job parameter cost(j) denote the actual execution time of job j and let the task
parameter WCET (Ti) denote the WCET of task Ti. For every job set J generated byM,
the cost of each job j ∈ J is upper-bounded by the cost of its task, i.e.,

∀τ ∈M,∀J ∈ jobsets(τ),∀j ∈ J , cost(j) ≤WCET (task(j)).

Using the notion of generated job sets, we can now define whether a task set is schedulable.

I Definition 20 (Schedulable Task Set). A task set τ ∈ M is schedulable on platform Π
under scheduling policy σ iff every generated job set J ∈ jobsets(τ) is schedulable on Π
under σ.

Similarly to Definition 12, in order to relate parameters across task sets, we define whether
two task sets differ only by a given set of parameters.

I Definition 21 (Varying Task Parameters in V ). Consider any subset of task parameters
V ⊆ Ptask , which we call variable parameters, and consider two task sets τ = {T1, T2, . . .}
and τ ′ = {T ′

1, T
′
2, . . .}. We say that τ and τ ′ differ only by V iff |τ | = |τ ′| and ∀ i,∀ p ∈

(Ptask \ V ), p(Ti) = p(T ′
i ), where |τ | denotes the cardinality of task set τ .
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2.2 Generalized Sustainability Definitions
In this section, we use the basic concepts of jobs and tasks to formalize the notions of
sustainability found in the literature, namely sustainable policy (§2.2.1), sustainable analysis
(§2.2.2) and self-sustainable analysis (§2.2.3). Note that, differently from prior work [2, 5, 6],
our definitions are generic and compatible with different task and platform models.

2.2.1 Sustainable Scheduling Policy
We begin by generalizing the concept of a sustainable scheduling policy [2, 6], which was
briefly discussed in §1. The definition captures the idea that, if a policy is sustainable with
respect to a set of job parameters, having “better” values for those parameters (e.g., lower
job execution costs, larger periods, less jitter, etc.) at runtime does not cause any deadline
miss. We call this notion “strong sustainability,” for reasons that will be made clear in §3.

I Definition 22 (Strongly Sustainable Policy). Assume any scheduling policy σ and platform
Π, and consider any subset of job parameters S ⊆ Pjob, which we call sustainable parameters.
For each parameter p ∈ S, let �p be any partial order over job sets, such that J �p J ′ holds
iff every job in J has no worse parameter p than its corresponding job in J ′. Then we say
that the scheduling policy σ is strongly sustainable with respect to the job parameters in S
iff

∀ J s.t. J is schedulable on platform Π under policy σ,
∀ Jbetter s.t. J and Jbetter differ only by S and ∀p ∈ S, Jbetter �p J ,
Jbetter is schedulable on platform Π under policy σ.

Definition 22 states that, under a strongly sustainable scheduling policy σ, whenever we
compare two job sets and show that the job set with “worse parameters” does not miss any
deadline, then the job set with “better parameters” must also not miss any deadline.

Note that the relation �p is a crucial part of the specification and should be clearly
indicated in the sustainability claim, as shown in the next examples.

I Example 23 (Sustainability with Decreasing Job Costs). Let σ denote any uniprocessor
work-conserving, fixed-priority scheduling policy and let cost(j) denote the actual execution
time of job j. Given any job sets J = {j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}, we define the

relation J �cost J ′ as ∀i, cost(ji) ≤ cost(j′
i).

Using the relation �cost, we can instantiate Definition 22. This property expresses the
notion that, under policy σ, decreasing job execution times does not render the system
unschedulable. This property was proven by Ha and Liu [11] for various job models.

Similarly, one can also define sustainability with respect to job inter-arrival times. It just
requires a more nuanced partial order definition, as shown in the following example.

I Example 24 (Sustainability with Increasing Job Inter-Arrival Times). Let σ denote any work-
conserving, fixed-priority scheduling policy and let arrival(j) denote the absolute arrival
time of job j. Next, given any job sets J = {j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}, we define the

relation �interarrival as

∀i,∀jprev,∀j′
prev s.t.

task(ji) = task(jprev) = task(j′
i) = task(j′

prev) and
arrival(jprev) < arrival(ji) and arrival(j′

prev) < arrival(j′
i),

arrival(ji)− arrival(jprev) ≥ arrival(j′
i)− arrival(j′

prev).
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This relation expresses that, if J �interarrival J ′, then the distance between two jobs of the
same task in J is no worse (i.e., no smaller) than in J ′.

Finally, note that Definition 22 differs from Definition 3 (in §1.2) due to Baker and
Baruah [2], as it does not require the original job set J to belong to some schedulable task
set τ . Thus, according to our definition, Figs. 1-(a) and 1-(b) are a valid counterexample for
establishing the non-sustainability (in the strong sense) of JLFP schedulers w.r.t. job costs
in the presence of self-suspensions, which agrees with Definition 2 in §1.1.

2.2.2 Sustainable Schedulability Analysis
Having discussed how sustainability applies to scheduling policies, we now present the
corresponding definitions for schedulability analyses, starting with the notion of sustainable
schedulability analysis [2, 5, 6]. Before we proceed, we must define schedulability analysis.

I Definition 25 (Schedulability Analysis). Let a schedulability analysis A for task modelM,
platform Π, and scheduling policy σ denote any algorithm that assesses whether a task set
τ ∈M is schedulable on Π under policy σ.

Now we state whether a given schedulability analysis A is sustainable. The intuition is
that, if analysis A is sustainable with respect to certain job parameters, then, if a task set τ
is deemed schedulable by A, any job set with “better” parameters than those of a job set
generated by τ does not miss any deadlines.

I Definition 26 (Sustainable Analysis). Consider any schedulability analysis A for task model
M, platform Π, and scheduling policy σ, and consider any subset of job parameters S ⊆ Pjob,
which we call sustainable parameters. For each parameter p ∈ S, let �p be any partial order
over job sets, such that J �p J ′ holds iff every job in J has no worse parameter p than its
corresponding job in J ′. Then we say that analysis A is sustainable with respect to S iff

∀ τ ∈M s.t. τ is deemed schedulable by A,
∀ J ∈ jobsets(τ),∀ Jbetter s.t.
J and Jbetter differ only by S and ∀p ∈ S,Jbetter �p J ,
Jbetter is schedulable on Π under policy σ.

Although the definitions of strongly sustainable policy (Definition 22) and sustainable
analysis (Definition 26) both refer to the runtime behavior of the policy, the two notions
are different. If the analyzed policy σ is strongly sustainable w.r.t. some parameters S, then
any sufficient or exact schedulability analysis for σ is also sustainable w.r.t. S. However,
even if σ is not strongly sustainable, it is possible to find sufficient schedulability analyses
that are sustainable. In fact, we argue this is exactly the case that an intuitive notion of
a “safe analysis” is trying to address: the underlying policy σ may exhibit various kinds
of scheduling anomalies, but if a specific task set is deemed schedulable by a sustainable
analysis, then no deadlines will be missed in the actual system even if some parameters turn
out to be “better in the real system than assumed during analysis.”

2.2.3 Self-Sustainable Analysis
Another type of sustainability that can be found in the literature, also related to schedulability
analysis, is the notion of self-sustainable analysis [2]. The intuition is that, if analysis A
is self-sustainable with respect to a set of task parameters, then, if a task set τ is deemed
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schedulable by analysis A, every task set with “better” parameters than τ will also be deemed
schedulable by A.

I Definition 27 (Self-Sustainable Analysis). Let A be any schedulability analysis for task
modelM, platform Π, and scheduling policy σ, and consider any subset of task parameters
S ⊆ Ptask . For each parameter p ∈ S, let �p be any partial order over task sets, such that
τ �p τ

′ holds iff every task in τ has no worse parameter p than its corresponding task in τ ′.
Then we say that schedulability analysis A is self-sustainable with respect to S iff

∀ τ ∈ M s.t. τ is deemed schedulable by A,
∀ τbetter s.t. τ and τbetter differ only by S and ∀p ∈ S, τbetter �p τ ,

τbetter is deemed schedulable by A. (1)

To clarify the definition, we provide an example.

I Example 28 (RTA is Self-Sustainable with respect to Decreasing Task Costs). Let A be some
response-time analysis (RTA) for the sporadic task model and let WCET (Ti) denote the worst-
case execution time of task Ti. Given any task sets τ = {T1, T2, . . .} and τ ′ = {T ′

1, T
′
2, . . .} with

the same number of tasks, we define the relation τ �WCET τ ′ as ∀i,WCET (Ti) ≤WCET (T ′
i ).

Based on the task parameter WCET and the relation �WCET , we can instantiate the
self-sustainability property as in Definition 27, which then expresses that, if the RTA claims
τ to be schedulable, then it must also claim task sets with lower WCETs to be schedulable.

Note that, despite their similarity, the notions of sustainable and self-sustainable analysis
are fundamentally different. While sustainability refers to job parameters, self-sustainability
concerns task parameters. Moreover, to prove that an analysis A is sustainable, one must
show that the job sets generated by a task set τ deemed schedulable by A do not have
any anomalies. On the other hand, proving that analysis A is self-sustainable is a purely
algorithmic property, akin to a notion of monotonicity, of the analysis procedure itself and has
nothing to do with the safety at runtime of a system under analysis. For example, to prove
the property in Example 28, one must show that, if the RTA computes a fixed point R for
given task costs, then it will compute a fixed point R′ ≤ R if lower task costs are provided.

3 Weakly Sustainable Scheduling Policies

Recall from §1.1 that uniprocessor EDF scheduling of self-suspending tasks was proven to
be not sustainable with respect to job costs [1], and as mentioned at the end of §2.2.1, this
result agrees with our notion of a strongly sustainable policy (Definition 22).

However, in §1.2, we also hinted (but did not prove) that this scheduling policy is still
sustainable to some extent with respect to job costs. As shown in Fig. 1-(c), by reducing
suspension times (i.e., a transformation that is compliant with the task model and its
constraints), we were able to construct a job set Jsusp ∈ jobsets(τ) that is as hard to schedule
as job set Jbetter. This suggests that any schedulability analysis A applied to task set τ
would deem it “not schedulable” anyway because of job set Jsusp.

Thus, the fact that Jbetter itself is not schedulable does not straightforwardly prove that
the uniprocessor EDF scheduling policy applied to self-suspending tasks is not sustainable in
some sense w.r.t. job costs, at least if self-suspension times may vary at runtime. In fact,
whether or not any parameters other than the sustainable parameters should be allowed to
vary at runtime is the cause of most confusion in the various interpretations of sustainability
found in the state of the art [2, 5, 6], and our motivation for formalizing the notion of varying
job and task parameters in Definitions 12 and 21.
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While the notion of strongly sustainable policy (Definition 22) expresses that the system
remains schedulable if we decrease job costs while maintaining all other parameters con-
stant, we believe that this is too strong an assumption in many settings, since most useful
schedulability analyses will consider that job parameters can vary freely and concurrently
across a range of possible values. The sustainability property that we are going to define
thus allows other parameters to vary, subject to the constraints defined by the given task
set. The rationale for this is that it allows for more efficient schedulability analyses if certain
job parameters can be assumed to have maximal values while others are considered variable.
The current sustainability theory does not allow such fine-grained categorization.

To develop a supporting theory for schedulability analyses based on this idea, in this
section we propose a new classification of sustainable scheduling policies that differentiates
between strong sustainability and weak sustainability.

3.1 Definition of Weakly Sustainable Policy
As suggested in the previous section, in order to define weak sustainability, we must be able
to infer that a collection of job sets remains schedulable when certain parameters are allowed
to vary. This idea is captured by the following definition.

I Definition 29 (Schedulable with Varying Job Parameters V ). Given a task set τ and a subset
of job parameters V ⊆ Pjob, we say that a job set J is schedulable with varying parameters
V subject to task set τ on platform Π under policy σ iff any job set Jother ∈ jobsets(τ) that
differs from J only by V is also schedulable on Π under policy σ.

To illustrate the definition, we provide an example.

I Example 30 (Schedulable with Varying Costs). Assume any scheduling policy σ and consider
the set of variable parameters V = {cost}. Given a job set J = {j1, j2} generated by task
set τ , we say that J is schedulable with varying costs subject to task set τ iff every job
set Jother generated by τ that has two jobs and the same parameters as J except for their
costs is schedulable. That is, any job set constructed by changing only the job costs of J (to
higher or lower values), without violating the constraints set forth by the parameters of task
set τ , must be schedulable.

In other words, one may understand this notion to mean that job set J is not only
schedulable itself, but also a “schedulability witness” for a whole family of related job sets
that are identical in all parameters except for those in V . Based on this concept, we can now
define precisely under which conditions a policy is weakly sustainable.

I Definition 31 (Weakly Sustainable Policy). Assume any platform Π, task model M,
and scheduling policy σ, and consider any disjoint subsets of job parameters S ⊆ Pjob
and V ⊆ Pjob, which we call sustainable and variable parameters, respectively. For each
sustainable parameter p ∈ S, let �p be any partial order over job sets, such that J �p J ′

holds iff every job in J has no worse parameter p than its corresponding job in J ′. Then
we say that scheduling policy σ is weakly sustainable with sustainable parameters S and
variable parameters V iff

∀ τ ∈M,∀ J ∈ jobsets(τ) s.t.
J is schedulable with varying V subject to τ on platform Π under policy σ,
∀ Jbetter s.t. J and Jbetter differ only by S and ∀ p ∈ S,Jbetter �p J ,

Jbetter is schedulable on platform Π under policy σ.
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The idea of weak sustainability is that, if we can determine that a job set is schedulable
for all variations of parameters in V (subject to the constraints imposed by its associated
task set), then all job sets with better parameters S must be schedulable. For clarity, we
provide the following example.

I Example 32 (Weak Sustainability w.r.t. Job Costs and Varying Suspension Times). Consider
a uniprocessor JLFP scheduling policy σ and the dynamic suspension model, i.e., jobs can
suspend at any time but the total suspension duration of each job is bounded by its task’s
maximum suspension time. Let susp(j) denote the total suspension time of job j and cost(j)
the execution time of job j.

By defining the sets of job parameters S = {cost} and V = {susp}, and the relation
�cost as in Example 23, one can instantiate Definition 31 and prove (as shown in §4) that,
for any task set τ ∈M, if job set J generated by τ is schedulable for all possible suspension
times (subject to the upper limit imposed by τ), then all job sets with lower or equal job
costs are also schedulable.

In the specific case where the set of varying parameters V is empty, we call the scheduling
policy strongly sustainable.

I Definition 33 (Strongly Sustainable Policy). We say that a policy is strongly sustainable
with respect to the job parameters in S iff it is weakly sustainable with respect to the
sustainable parameters in S and an empty set of variable parameters V = ∅.

Note that if V = ∅, proving that job set J is schedulable with varying parameters V is
the same as establishing that J itself is schedulable. That implies the following equivalence,
which connects the definitions of sustainable policy in §2 and §3.

I Corollary 34 (Equivalence of Strong Sustainability). The notion of strongly sustainable
policy as defined in Definition 33 is equivalent to Definition 22.

The weak sustainability property is useful for constraining the search space when develop-
ing schedulability analyses. As is already known, if some policy σ is strongly sustainable with
respect to the parameters in S, maximizing/minimizing such parameters enables constructing
worst-case scenarios (e.g., the critical instant for uniprocessor FP scheduling of sporadic
tasks [13]), so that only a single worst-case scenario must be analyzed (rather than the entire
space of all possible parameter combinations).

However, recall that policy σ might not be strongly sustainable with respect to S. But if we
are still able to prove that σ is weakly sustainable with respect to S and variable parameters
V , we can still maximize/minimize the parameters in S, as long as the schedulability analysis
covers all values of the parameters in V . In other words, establishing a weak sustainability
property can be thought of as a dimensionality reduction of the search space that must be
considered by a safe schedulability analysis.

For instance, having proven in Theorem 54 in §4.4 that uniprocessor JLFP scheduling of
self-suspending tasks is weakly sustainable with respect to job costs and variable suspension
times, we know that any schedulability analysis for that model may assume that all jobs
generated by the tasks execute for their maximum execution time, and must search only for
the worst-case assignments of job suspension times.

3.2 Composing Weak and Strong Sustainability Results
Although the definition of strong sustainability refers to a set S of multiple parameters,
one can still establish the sustainability of each parameter in isolation. In fact, the critical
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instant for the sporadic task model is obtained by composing worst-case assumptions about
individual job parameters: maximizing job costs, minimizing inter-arrival time, etc.

As will be shown in Theorem 38, this composition rule applies not only for strong
sustainability (as discussed in prior work [2]), but can also be extended to weak sustainability.
Before presenting the theorem, we first provide an alternative (but equivalent) definition of
weak sustainability based on the contrapositive of Definition 31, which simplifies the proof of
Theorem 38 below.

I Definition 35 (Weakly Sustainable Policy – alternative definition). Assume any platform Π,
task modelM and scheduling policy σ, and consider any disjoint subsets of job parameters
S ⊆ Pjob and V ⊆ Pjob, which we call sustainable and variable parameters, respectively.
For each sustainable parameter p ∈ S, let �p be any partial order over job sets, such that
J �p J ′ holds iff every job in J has no worse parameter p than its corresponding job in J ′.
Then we say that the scheduling policy is weakly sustainable with sustainable parameters S
and variable parameters V iff

∀ J s.t. J is not schedulable on platform Π under policy σ,
∀ τ ∈M, ∀Jworse ∈ jobsets(τ) s.t.

J and Jworse differ only by S and ∀p ∈ S,J �p Jworse,

∃ J ′
worse ∈ jobsets(τ) s.t.
Jworse and J ′

worse differ only by V and
J ′

worse is not schedulable on platform Π under policy σ.

Put differently, for any job set J that is not schedulable, if we can find another job set
Jworse that is generated by some task set τ and J is “better” than Jworse, then there exists
a member in Jworse’s “family” of related job sets that is also not schedulable.

For instance, recall that this is the same reasoning underlying the counterexample in §1.2:
given a job set J that is not schedulable (Fig. 1-(b)) and a job set Jworse with higher job
costs (Fig. 1-(a)), we were able to show that there exists a job set J ′

worse that only differs
from Jworse in its suspension times and that also misses a deadline (Fig. 1-(c)).

In addition, we must introduce the notion of independent sets of job parameters.

I Definition 36 (Independent Sets of Job Parameters). We say that subsets of job parameters
A ⊂ Pjob and B ⊂ Pjob are independent with respect to task model M iff for each task
parameter ptask defined byM, and for every pA ∈ A and pB ∈ B, if pA is constrained by
ptask according to modelM, then pB is not constrained by ptask according to modelM.

In most task models commonly considered in the real-time literature, job parameters are
usually independent of each other.

I Example 37 (Parameters Are Usually Independent). In the sporadic task model with
self-suspending tasks, the sets of job parameters A = {cost, arrival} and B = {susp}
have independent task constraints, since these job parameters are each constrained by a
different task parameter, namely, the task WCET, minimum inter-arrival time and maximum
suspension time. In contrast, in a hypothetical task model where every job j is split
into two execution sections of length cost1(j) and cost2(j) such that cost1(j) + cost2(j) ≤
WCET (task(j)), the parameters {cost1} and {cost2} are clearly not independent.

Using the definition of weak sustainability above (Definition 35) and the notion of
independent sets of job parameters (Definition 36), we establish the composition rule for
weakly sustainable policies.
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I Theorem 38 (Composition Rule: Weak – Weak). Consider any task modelM, scheduling
policy σ and processor platform Π. Let Sa, Va, Sb, Vb denote subsets of the job parameters
Pjob such that Sa ∩ Vb = ∅ and Sb ∩ Va = ∅, and such that either Sb is independent of
Pjob \ Sb, or Sa is independent of Pjob \ Sa, with respect to task model M. Assume that
(a) σ is weakly sustainable with respect to Sa and variable parameters Va, and that (b) σ
is weakly sustainable with respect to Sb and variable parameters Vb. Then (c) σ is weakly
sustainable with respect to Sa ∪ Sb and variable parameters Va ∪ Vb.

Proof. Consider a job set J that is not schedulable on platform Π under policy σ. Let τ
be any task set, and let Jworse ∈ jobsets(τ) be a job set that only differs from J by the
parameters in Sa ∪ Sb and that has no better parameters than J w.r.t. Sa ∪ Sb. Then,
according to Definition 35, we must prove that there exists a job set J ′

worse ∈ jobsets(τ) that
only differs from Jworse with respect to Va ∪ Vb and that is also not schedulable.

Using the independent parameters assumption, assume without loss of generality that it
is Sb that is independent of all other job parameters Pjob \ Sb, with respect to modelM. If
this is not the case, then by assumption we have that Sa is independent of other parameters
Pjob \ Sa and we can exchange the indices a and b in the remainder of the proof.

1. Step 1 – Construction of J ′
a from J . Let Ja be the same job set as J , but

with the same job parameters in Sa as Jworse. That is, let J = {j1, j2, . . .} and
Jworse = {jw

1 , j
w
2 , . . .} and recall that they have the same number of jobs. Then we

define Ja = {ja
1 , j

a
2 , . . .} with the same cardinality such that, for any index i, we have

∀p ∈ Sa, p(ja
i ) = p(jw

i ) and ∀p /∈ Sa, p(ja
i ) = p(ji).

Next, we construct a task set τa ∈ M such that, for every task parameter ptask that
constrains job parameters in Pjob \ Sb, the value of ptask in τa is the same as in τ , and
for every task parameter ptask that constrains job parameters in Sb, the value of ptask
in τa is the same to the task set that generated job set J . Since Ja only differs from
Jworse ∈ jobsets(τ) with respect to Sb, and Sb is independent of the other job parameters,
it follows that Ja ∈ jobsets(τa).
Since J is not schedulable, and J and Ja differ only by Sa, we can exploit the fact that
σ is weakly sustainable with Sa and varying Va. Thus, it follows that there exists a job
set J ′

a ∈ jobsets(τa) that differs from Ja only by the parameters in Va and that is not
schedulable on platform Π under policy σ.

2. Step 2 – Construction of J ′
ab from J ′

a. Let Jab be the same job set as J ′
a except

that the job parameters in Sb are the same as in Jworse. That is, let J ′
a = {ja′

1 , j
a′

2 , . . .}
and Jworse = {jw

1 , j
w
2 , . . .} and recall that they have the same number of jobs. Then

we define Jab = {jab
1 , jab

2 , . . .} with same cardinality such that, for any index i, we have
∀p ∈ Sb, p(jab

i ) = p(jw
i ) and ∀p /∈ Sb, p(jab

i ) = p(ja′

i ).
Note that by construction, Jab has the same job parameters as Jworse ∈ jobsets(τ),
except for those in Va, which were obtained when generating J ′

a via weak sustainability.
However, note that J ′

a is generated by task set τa, which has the same constraints for
Va as τ , since Va ∩ Sb = ∅. Thus, every job parameter of Jab is compatible with τ , i.e.,
Jab ∈ jobsets(τ).
Since J ′

a is not schedulable, and J ′
a and Jab differ only by Sb, we can exploit the fact

that σ is weakly sustainable with Sb and varying Vb. Thus, there must exist a job set
J ′

ab ∈ jobsets(τ) that differs from Jab only by the parameters in Vb and that is not
schedulable on platform Π under policy σ.

Since J has the same parameters as Jworse except for those in Sa ∪ Sb, and because Ja and
Jab were constructed from J by copying the parameters Sa and Sb from Jworse and varying
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the parameters in Va ∪ Vb, it follows that J ′
ab has the same parameters as Jworse, except

for the variable parameters Va and Vb. Moreover, since Sa ∩ Vb = ∅ and Sb ∩ Va = ∅, this
guarantees that Sa and Sb do not vary during the construction of J ′

a and J ′
ab, so for every

p ∈ Sa ∪ Sb, the order �p is preserved across the successive job set transformations.
Thus, there exists a job set J ′

worse = J ′
ab that belongs to jobsets(τ), that only differs from

Jworse with respect to Va ∪ Vb and is also not schedulable on platform Π under policy σ. J

Assuming Vb = ∅ yields a rule for combining strong and weak sustainability results.

I Corollary 39 (Composition Rule: Weak – Strong). Consider any scheduling policy σ and
processor platform Π. Let Sa, Va and Sb denote subsets of the job parameters Pjob such that
Sb ∩ Va = ∅, and such that either Sb is independent of Pjob \ Sb, or Sa is independent of
Pjob \ Sa, with respect to task model M. Assume that σ is weakly sustainable with respect
to Sa and variable Va and also strongly sustainable with respect to Sb. Then σ is weakly
sustainable with respect to Sa ∪ Sb and variable Va.

Finally, assuming Va = Vb = ∅ yields the composition rule for strong sustainability, which
was already proven by Baker and Baruah [2].

I Corollary 40 (Composition Rule: Strong – Strong). Consider any scheduling policy σ and
processor platform Π. Let Sa and Sb denote subsets of the job parameters Pjob, and such
that either Sb is independent of Pjob \ Sb, or Sa is independent of Pjob \ Sa, with respect to
task model M. Assume that σ is strongly sustainable with respect to Sa and also strongly
sustainable with respect to Sb. Then σ is strongly sustainable with respect to Sa ∪ Sb.

Note that, although necessary in the general case, the parameter independence constraint
in Corollary 40 was not explicitly stated in the original definition [2], since Baker and Baruah
only considered the sporadic task model, in which all parameters are independent.

4 Uniprocessor Scheduling of Dynamic Self-Suspending Tasks is
Weakly Sustainable w.r.t. Job Costs and Variable Suspensions

In this section, we prove that uniprocessor JLFP scheduling with dynamic self-suspending
tasks is weakly sustainable with respect to job costs and variable suspension times. Although
we could have focused on other real-time task models, we chose to study the sustainability of
self-suspending tasks for the following reasons.
1. Recent errors. This topic has faced many misconceptions in the past, with a considerable

number of unsound results being published [8]. We hope that our work on sustainability
introduces helpful formalism and a better understanding of the task model.

2. Future work on schedulability analysis. Proving weak sustainability of uniprocessor
JLFP scheduling of dynamic self-suspending tasks can provide directions for future work.
It enables more efficient schedulability analyses to be developed, by reducing the search
space to only the parameters that must be kept variable (i.e., suspension times), while
the others (i.e., execution times) can remain constant.

To address the issue of recent errors and increase the degree of confidence in the results,
our proof has been mechanized in Prosa [7], a library for the Coq proof assistant for formal
specification and machine-checked proofs of real-time scheduling theory. The specification
and proofs are available online [15] and can be checked independently with the CoqChk
tool. Simple step-by-step instructions are provided on the website.

ECRTS 2018



26:16 On Strong and Weak Sustainability

Note that, despite being phrased in terms of sporadic tasks for the sake of simplicity, this
proof is conceptually also compatible with other job arrival models (periodic, bursty, etc.).

The rest of this section is structured as follows. First, we present our formalization of the
dynamic suspension model, which is required for stating the theorems in Prosa. Next, we
provide an overview of our proof strategy based on schedule reductions, which can be reused
in other sustainability proofs. In the remaining subsections, we discuss the high-level steps
of the proof, which despite being specific for scheduling with self-suspensions, highlight key
steps necessary in a rigorous proof of sustainability.

4.1 A Generic Suspension Model
In order to instantiate the sustainability claim for real-time scheduling of self-suspending
tasks, we must formally define the concept of self-suspension.

I Definition 41 (Job Suspension Time). We define job suspension time as a function susp(j, s)
such that, for any job j and any value s ∈ N, susp(j, s) expresses the duration for which j
must suspend immediately after receiving s units of service.

The job suspension parameter is explained more clearly in the following example.

I Example 42 (Table of Suspension Durations). Job suspension times susp(j, s) can be
understood as a table containing the duration of the suspension intervals associated with
job j. For example, for a job j such that cost(j) = 5, we can define susp(j, s) to equal 0
except for susp(j, 3) = 2 and susp(j, 4) = 3.

This suspension table indicates that job j executes for 3 time units, then suspends for 2
time units, then executes for 1 more time unit, then suspends for 3 more time units and finally
completes its last time unit of execution. Note that this assignment is both an instance of
the dynamic suspension model (with total suspension time equal to 5) and of the segmented
suspension model (with execution segments [e1 = 3, s1 = 2, e2 = 1, s2 = 3, e3 = 1]).

By allowing arbitrary suspension durations between each unit of service, this model is
generic enough to represent any suspension pattern under discrete time. Thus, it supports
both segmented [16] and dynamic [12] suspension models, as shown in Example 42.

Next, by accumulating suspension durations, we define the total suspension time of a job.

I Definition 43 (Total Suspension Time). We define the total suspension time suspΣ(j) of job
j as the cumulative suspension time up to completion, i.e., suspΣ(j) =

∑
s<cost(j) susp(j, s).

After clarifying job suspension times, we now define task suspension times and show how
both are related under the dynamic suspension model.

I Definition 44 (Task Suspension Time). For any task Ti, we define the task suspension time
susp(Ti) as an upper-bound on the total suspension time of any job of Ti.

I Definition 45 (Suspension Time Constraints). The dynamic suspension model requires that
the total suspension time of any job is upper-bounded by the suspension time of its task, i.e.,

∀ τ ∈M,∀ J ∈ jobsets(τ),∀ j ∈ J , suspΣ(j) ≤ susp(task(j)).

Beside its suspension time, every task Ti is defined by a WCET, a minimum inter-arrival
time or period, and a deadline, as stated in Definition 1.
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Figure 2 Proof strategy for establishing weak sustainability with respect to job costs and variable
suspension times. Given a job ji that misses a deadline in schedule S of the original job set J ,
we construct a new job set J ′

worse and a new schedule S ′ where the corresponding job j′
i misses a

deadline. Note that in schedule S ′, job costs are no smaller than in S, suspension times can be
defined arbitrarily (within the bounds of the task set), and all other job parameters (i.e., arrival
time, deadline) remain unchanged.

4.2 Overview of the Proof Strategy
Having presented the main characteristics of the dynamic self-suspending task model, we
now explain our proof strategy for establishing weak sustainability of uniprocessor JLFP
scheduling of dynamic self-suspending tasks w.r.t. job costs and variable suspension times.
For simplicity, the proof is based on the alternative definition of weakly sustainable policy
(Definition 35). According to Definition 35, we must prove that

∀ J s.t. J is not schedulable under a uniprocessor JLFP scheduling policy σ,
∀ τ ∈M, ∀Jworse ∈ jobsets(τ) s.t.
J and Jworse differ only by S = {cost} and J �cost Jworse,

∃ J ′
worse ∈ jobsets(τ) s.t.
Jworse and J ′

worse differ only by V = {susp} and
J ′

worse is not schedulable under policy σ.

That is, first we consider any job set J that is not schedulable and any job set Jworse
that has “no better job costs” than J (and that is otherwise identical). Then we must show
that there exists a job set J ′

worse generated by the same task set as Jworse that differs from
Jworse only by its job suspension times and that it is not schedulable. In particular J and
Jworse have equal suspension times (but not necessarily equal execution costs), whereas
Jworse and J ′

worse have equal execution costs (but not necessarily equal suspension times).
Our proof begins by considering any job set J and its associated schedule S where some

job misses a deadline. Then we construct a job set J ′
worse together with its schedule S ′ where

some job also misses a deadline. This strategy is illustrated in Fig. 2.
In the next section, we present an algorithm for iteratively constructing schedule S ′

(and hence the associated job set J ′
worse) based on S. It is followed by the two main proof

obligations: (a) proving that some job misses a deadline in S ′ (§4.3.1) and (b) proving that
S ′ is a valid schedule of J ′

worse (§4.3.2). This proves that J ′
worse is not schedulable.

4.3 Constructing J ′
worse and Schedule S ′

Based on the strategy proposed in §4.2, we now present the algorithm to construct schedule
S ′ and the associated job set J ′

worse, based on the original schedule S. In the remainder
of this paper, whenever we want to refer to the same job before and after the parameter
transformation (i.e., from J to J ′

worse), we refer to them as corresponding jobs ji and j′
i.
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Before proceeding, we must first introduce the concept of job service.

I Definition 46 (Job Service). Given a schedule S, we define service(j, t) as the cumulative
amount of time during which job j executes in the interval [0, t).

Next, recall that jobs in J ′
worse have no better job costs than in J , i.e., for any corre-

sponding jobs ji and j′
i, cost(ji) ≤ cost(j′

i). Since they might have to execute for different
durations, we begin by defining the notion of added cost.

I Definition 47 (Added Cost). We define the added cost ∆cost(j′
i) of job j′

i in J ′
worse as the

difference between its original and inflated costs, i.e., ∆cost(j′
i) = cost(j′

i)− cost(ji) ≥ 0.

In order to guarantee that schedule S ′ becomes as hard as schedule S (i.e., so that jobs
still miss their deadlines) and at the same time easy to compare in terms of received job
service (i.e., the time for which a job executed since its release), we construct S ′ based on
the idea of “picking jobs that are late with respect to S,” where late is defined as follows.

I Definition 48 (Late job). We say that job j′
i is late in schedule S′ at time t iff the service

received by j′
i in S′ up to time t is less than the service received by the corresponding job ji

in schedule S (compensated by the added cost), i.e., service(j′
i, t) < service(ji, t) + ∆cost(j′

i).

We now present the algorithm used to iteratively build schedule S ′ and job set J ′
worse.

Algorithm 49 ensures that (i) every job j′
i ∈ J ′

worse executes for its total execution cost cost(j′
i)

(≥ cost(ji)), (ii) every job j′
i ∈ J ′

worse has a total suspension time susp(j′
i) upper-bounded

by the suspension time susp(ji) of its corresponding job in schedule S, and (iii) at least one
job of J ′

worse misses its deadline in S ′ (as proven in Sec 4.3.1).

I Algorithm 49 (Construction of Job Set J ′
worse and Schedule S ′). Consider any time t and

let J(t) denote the set that contains every job j′
i that is ready (i.e., released, not completed,

and not suspended) in schedule S ′ at time t and such that either (a) j′
i is late at time t or

(b) the corresponding job ji is scheduled in S at time t.
1. Schedule: We schedule in S′ at time t the highest-priority job in J(t), or idle the

processor if J(t) is empty.
2. Suspensions: Any job j′

i ∈ J ′
worse suspends in S ′ at time t iff the corresponding job ji

is suspended in S and j′
i is not late.

Note that Algorithm 49 not only picks late jobs, but also favors higher-priority jobs and
tries to copy schedule S if possible. While rule (a) ensures that the schedule respects the
JLFP policy, rule (b) provides a tie-breaking rule if there are multiple jobs that can be picked,
in which case we choose the same job as the job scheduled in S.

It only remains to be shown that schedule S ′ results in a deadline miss (Theorem 52)
and schedule S ′ does not violate any property of the scheduling policy, platform, and task
model, such as work conservation, priority enforcement, etc. (Theorem 53).

4.3.1 Proving that S ′ Misses a Deadline
In order to prove that some job j′

i ∈ J ′
worse misses a deadline in S ′, we establish the following

key invariant that relates the service in the two schedules S and S ′.

I Lemma 50 (Service Invariant). For any corresponding jobs ji ∈ J and j′
i ∈ J ′

worse, at any
time t, service(j′

i, t) ≤ service(ji, t) + ∆cost(j′
i).

Proof. Proven in Prosa [15]. Consider any pair of corresponding jobs ji and j′
i. The proof

follows by induction on time t.
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1. Base Case: At time t = 0, jobs have received no service, thus service(j′
i, 0) = 0 =

service(ji, t) ≤ service(ji, t) + ∆cost(j′
i).

2. Inductive Step: Assume as the induction hypothesis that, for some t, service(j′
i, t) ≤

service(ji, t)+∆cost(j′
i). Then we must prove service(j′

i, t+1) ≤ service(ji, t+1)+∆cost(j′
i).

First, consider the simple case where job j′
i is not scheduled in S ′ at time t. Then,

service(j′
i, t+ 1) = service(j′

i, t) (j′
i is not scheduled in S ′ at t)

≤ service(ji, t) + ∆cost(j′
i) (by induction hypothesis)

≤ service(ji, t+ 1) + ∆cost(j′
i). (by monotonicity of service)

Otherwise, assume that j′
i is scheduled in S ′ at time t. From the schedule construction

(Algorithm 49), it follows that either (a) S and S ′ schedule corresponding jobs at time t,
or (b) S ′ schedules a late job at time t. We analyze both cases.
a. Corresponding Jobs are Scheduled: The corresponding jobs scheduled in S and
S ′ at time t must be ji and j′

i, so

service(j′
i, t+ 1) = service(j′

i, t) + 1 (j′
i is scheduled in S ′ at time t)

≤ service(ji, t) + ∆cost(j′
i) + 1 (by induction hypothesis)

= service(ji, t+ 1) + ∆cost(j′
i) (ji is scheduled in S at time t).

b. Late Job: Job j′
i must be the highest-priority late job in S ′ at time t. By the definition

of late job (Definition 48), it follows that service(j′
i, t) < service(ji, t) + ∆cost(j′

i), so

service(j′
i, t+ 1) = service(j′

i, t) + 1 (j′
i is scheduled in S ′ at time t)

< service(ji, t) + ∆cost(j′
i) + 1 (by assumption)

≤ service(ji, t) + ∆cost(j′
i). (by converting < to ≤)

The claim holds in all cases, which concludes the proof by induction. J

Since we must prove that schedule S ′ results in a deadline miss, we use the service
invariant above to conclude that jobs complete earlier in S than in S ′.

I Corollary 51 (Jobs Complete Earlier in S). For any corresponding jobs ji ∈ J and j′
i ∈

J ′
worse, if j′

i has completed in schedule S ′ by time t, then ji has completed in S by time t.

Proof. Proven in Prosa [15]. Follows from Lemma 50, since ji receives enough service in S
to complete before the corresponding j′

i in S ′. J

Recall that we initially assumed that some job misses a deadline in S. We can thus
conclude that the corresponding job also misses a deadline in S ′.

I Theorem 52 (Deadline Miss). There exists a job j′
i ∈ J ′

worse that misses a deadline in S ′.

Proof. Proven in Prosa [15]. Recall from Corollary 51 that corresponding jobs complete
earlier in S than in S ′. Since by assumption there exists a job ji that misses a deadline in S,
the corresponding job j′

i must also miss a deadline in S ′. J

4.3.2 Proving that S ′ is a Valid Schedule
Although we have already established the non-schedulability of the generated schedule S ′, it
remains to be shown that schedule S ′ is valid and compatible with the task model.

I Theorem 53 (Valid Schedule). Schedule S ′ is a valid uniprocessor schedule of job set J ′
worse

assuming JLFP scheduling of sporadic, dynamic self-suspending tasks.

ECRTS 2018



26:20 On Strong and Weak Sustainability

Proof. Proven in Prosa [15]. Follows from Algorithm 49, since suspension intervals in
schedule S ′ are no longer than those in S and the fact that the dynamic self-suspension
model imposes only an upper bound on total job suspension time, and since by construction
the derived schedule S ′ is work-conserving, respects self-suspensions, and respects job
priorities. J

4.4 Main Claim
Based on the strategy explained in §4.2, by combining Theorems 52 and 53, we prove that
the scheduling policy is weakly sustainable.

I Theorem 54 (Weak Sustainability). Uniprocessor JLFP scheduling of sporadic self-suspending
tasks under the dynamic suspension model is weakly sustainable with respect to job costs and
variable suspension times.

Proof. Proven in Prosa [15]. Instantiate Definition 35 with uniprocessor JLFP scheduling
of sporadic self-suspending tasks under the dynamic suspension model for S = {cost}
and V = {susp}. Theorems 52 and 53 imply that, for any schedule S of job set J that
contains a deadline miss, there exists a schedule S ′ of the transformed set J ′

worse that
also contains a deadline miss. J

We emphasize that Algorithm 49 builds a schedule S ′ and hence a job set J ′
worse that has

different suspension times than the original job set J . Therefore, the presented argument
indeed proves the weak (but not strong) sustainability of uniprocessor JLFP scheduling under
the dynamic self-suspending task model w.r.t. job costs and variable suspension times.

5 Conclusion and Future Work

Sustainability is a central aspect of real-time theory with many applications in the development
of real-time systems. By allowing system designers to target only extreme scheduling scenarios,
it simplifies the design, prototyping, and analysis of real-time systems. In addition, the use
of sustainable scheduling policies and analyses greatly aids the validation and certification
process, by ensuring that only a subset of execution scenarios must be checked, and that any
variation within the system’s specified bounds does not compromise safety.

In this paper, we have identified that the existing notions of sustainability in real-time
scheduling allow for multiple interpretations with regard to whether real-time scheduling
of self-suspending tasks is sustainable with respect to job costs. To resolve the issue, we
developed a precise sustainability theory for real-time scheduling that is compatible with any
task and platform model (§2), and also proposed the new notions of strongly and weakly
sustainable policies (§3), which can be used to derive more efficient schedulability analyses
for policies that were shown to not be strongly sustainable.

To better understand a model for which many mistakes were found in the literature [8],
we chose to study weak sustainability in the context of self-suspending tasks. For that, we
developed a generic model for self-suspensions (§4.1) that was formalized in the Coq proof
assistant and integrated into Prosa [15, 7]. Finally, we mechanically proved in Prosa that
uniprocessor JLFP scheduling of self-suspending tasks is weakly sustainable with respect to
job costs and variable suspension times (§4.2–§4.4).

In ongoing work, we are working towards leveraging the obtained weak sustainability
result to derive new, machine-checked schedulability tests for the dynamic suspension model.
In future work, it will be interesting to identify instances of weakly sustainable parameters in
other task models, platforms, and scheduling algorithms to improve the complexity of their
associated timing analyses and to lessen test coverage requirements.
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