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Preface

Following the initiative in 2010 taken by the Association for Logic Programming and
Cambridge University Press, the full papers accepted for the International Conference
on Logic Programming again appear as a special issue of Theory and Practice of Logic
Programming (TPLP) and shorter papers appear in Leibniz International Proceedings
in Informatics (LIPIcs) series, published on line through the Dagstuhl Research Online
Publication Server (DROPS). Both sets of papers were presented by their authors at the 27th
ICLP. Together, the journal special issue and the volume of short technical communications
constitute the proceedings of ICLP.

Papers describing original, previously unpublished research and not simultaneously sub-
mitted for publication elsewhere were solicited in all areas of logic programming including
but not restricted to: Theory (Semantic Foundations, Formalisms, Non-monotonic Reas-
oning, Knowledge Representation), Implementation (Compilation, Memory Management,
Virtual Machines, Parallelism), Environments (Program Analysis, Transformation, Valida-
tion, Verification, Debugging, Profiling, Testing), Language Issues (Concurrency, Objects,
Coordination, Mobility, Higher Order, Types, Modes, Assertions, Programming Techniques),
Related Paradigms (Abductive Logic Programming, Inductive Logic Programming, Con-
straint Logic Programming, Answer-Set Programming), and Applications (Databases, Data
Integration and Federation, Software Engineering, Natural Language Processing, Web and
Semantic Web, Agents, Artificial Intelligence, Bioinformatics).

There were four broad categories for submissions: (1) technical papers for describing
technically sound, innovative ideas that can advance the state of the art of logic programming;
(2) application papers, where the emphasis is on their impact on the application domain;
(3) system and tool papers, where the emphasis is on the novelty, practicality, usability and
general availability of the systems and tools described; and (4) technical communications,
aimed at describing recent developments, new projects, and other materials that are not
ready for main publication as standard papers. The length limit for full papers was set at
15 pages plus bibliography for full papers (approximately in line with the length of TPLP
technical notes) and for technical communications at 10 pages total.

In response to the call for papers we received 67 submissions. Of those, 64 were full papers
submitted to the TPLP special issue track (21 of them applications or systems papers). The
program chairs acting as guest editors organized the refereeing process with the help of the
program committee and numerous external reviewers.1 Each paper was reviewed by at least
three anonymous referees who provided full written evaluations. After the first round of
refereeing 43 full papers remained. Of these, 23 went through a full second round of refereeing
with written referee reports. Finally, all 43 papers went through a final, copy-editing round.
In the end the special issue contains 19 technical papers, 3 application papers, and 1 systems
and tools paper. During the first phase of reviewing the papers submitted to the technical
communications track were also reviewed by at least three anonymous referees providing
full written evaluations. Also, a number of full paper submissions were moved during the
reviewing process to the technical communications track. Finally, 23 papers were accepted
as technical communications and are published in this volume. The list of the 23 accepted
full papers appearing in the TPLP special issue follows:
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Multi-Criteria Optimization in Answer Set
Programming

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub

Institut für Informatik, Universität Potsdam

Abstract
We elaborate upon new strategies and heuristics for solving multi-criteria optimization problems
via Answer Set Programming (ASP). In particular, we conceive a new solving algorithm, based on
conflict-driven learning, allowing for non-uniform descents during optimization. We apply these
techniques to solve realistic Linux package configuration problems. To this end, we describe the
Linux package configuration tool aspcud and compare its performance with systems pursuing
alternative approaches.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Deduction and Theorem
Proving, I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, Multi-Criteria Optimization, Linux Package
Configuration

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.1

1 Introduction

Solving multi-criteria optimization problems is of great interest in various application domains
because it allows for identifying the best solutions among all feasible ones. The quality
of a solution is often associated with costs or rewards subject to minimization and/or
maximization, respectively.

As detailed in the extended version of this paper (cf. [8]), we are interested in solving
Linux package configuration problems by appeal to the multi-criteria optimization capacities
of Answer Set Programming (ASP; [3]). To this end, we develop novel general-purpose
strategies and heuristics in the context of modern (conflict-driven learning) ASP solving [10].
In particular, we conceive a new optimization algorithm allowing for non-uniform descents
during optimization. In multi-criteria optimization, this enables us to optimize criteria in
the order of significance, rather than pursuing a rigid lexicographical descent. We illustrate
the impact of our contributions by appeal to our Linux package configuration tool aspcud
and its performance in comparison with alternative approaches.

Pioneering work in this area was done by Tommi Syrjänen in [15, 16], using ASP for
representing and solving configuration problems for the Debian GNU/Linux system. In
fact, ASP allows for defining such problems through sequences of cost functions represented
by (multi)sets of literals with associated weights. For instance, in the approach taken by
smodels [13], cost functions are expressed through a sequence of #minimize (and #maximize)
statements. Optimal models are then computed via a branch-and-bound extension to smodels’
enumeration algorithm. Similarly, dlv [11] offers so-called weak constraints, serving the same
purpose.

© Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub;
licensed under Creative Commons License NC-ND
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2 Multi-Criteria Optimization in Answer Set Programming

2 Background

The semantics of a (ground extended) logic program Π is given by particular models, called
answer sets; see [13] for details. In addition to rules, Π can contain #minimize statements
of the form

#minimize[`1 = w1@L1, . . . , `n = wn@Ln].

Besides literals `i and integer weights wi for 1 ≤ i ≤ n, a #minimize statement includes
integers Li providing priority levels [9]. The #minimize statements in Π distinguish optimal
answer sets of Π in the following way. For any set X of atoms and integer L, let ΣX

L denote
the sum of weights wi such that `i = wi@L occurs in some #minimize statement in Π and
`i holds wrt X. We also call ΣX

L the utility of X at priority level L. An answer set X of Π
is dominated if there is an answer set Y of Π such that ΣY

L < ΣX
L and ΣY

L′ = ΣX
L′ for all

L′ > L, and optimal otherwise. Note that greater priority levels are more significant than
smaller ones, which allows for representing sequences of several optimization criteria. Finally,
letting `i denote the complement of a literal `i, the following can be used as a synonym for a
#minimize statement: #maximize[`1 = w1@L1, . . . , `n = wn@Ln].

3 Multi-Criteria Optimization Algorithm

As detailed in [13], #maximize statements can be turned into #minimize statements,
literals with negative weights be transformed such that weights become positive, and multiple
priority levels be collapsed into a single one by scaling the weights of literals, where all
such transformations keep the optimal answer sets intact. However, while the elimination of
#maximize statements and negative weights can be done locally, collapsing priority levels
may lead to very large weights and also disguises an original multi-criteria optimization
problem. Hence, we assume here that optimization criteria are represented in terms of
a #minimize statement over literals associated with non-negative weights and, notably,
priority levels; i.e., priorities are not eliminated. The restriction to non-negative weights
has the advantages that the sum of weights is monotonically increasing the more literals are
assigned to true and that 0 is a (trivial) lower bound of the optimum at each priority level.

As mentioned in the introduction, multi-criteria optimization can in principle be accom-
plished by extending a standard enumeration algorithm, like the one of smodels [13], in
the following way: for every solution, memorize its vector of utilities, backtrack, and check
(during propagation) that assignments generated in the sequel induce a lexicographically
smaller vector of utilities (otherwise backtrack). This simple approach requires only the
most recent utility vector to be stored, and optimality of the last solution is proven once
the residual problem turns out to be unsatisfiable. But the simplicity comes along with the
drawback that the number of intermediate solutions, encountered before an optimal one, is
completely up to “luck” of the underlying enumeration algorithm. In fact, if no additional
measures are taken, such multi-criteria optimization is logically identical to optimization of a
single priority level along with scaled weights of literals.

The observation that plenty intermediate solutions improving only at low-priority utilities
can gravely obstruct the convergence towards a global optimum gave the main impetus to our
new approach to multi-criteria optimization in ASP. As noted in [2] for Maximum Satisfiability
(MaxSAT) and Pseudo-Boolean Optimization (PBO), a better idea is to optimize priority
levels stepwise in the order of significance, rather than to optimize all priority levels at
once. Thereby, we adhere to the strategy of successively improving upper bounds given
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by intermediate solutions. On the one hand, focusing on one priority level after the other
settles the issue of intermediate solutions improving only at low-priority levels. On the
other hand, it leads to the situation that, before optimization proceeds to the next priority
level, optimality at the current level must be verified by proving unsatisfiability wrt an
infeasible upper bound. Beyond the fact that accomplishing such unsatisfiability proofs
can be a bottleneck (cf. [1]), they imply that too strong bounds need to be taken back
before optimization can proceed at the next level. In particular, with solvers like clasp [10],
exploiting conflict-driven learning, also the learned constraints that rely on an infeasible
upper bound must be retracted. To this end, we make use of assumptions assigned at a
solver’s root level [6], i.e., unbacktrackable literals allowing for the selective (de)activation
of constraints. In fact, a speculative upper bound is imposed via an assumption such that
a corresponding constraint is not satisfied by making the assumption. If the upper bound
turns out to be infeasible, the respective constraint and all learned information relying
on it can then easily be discarded by irrevocably assigning the complement of the former
assumption. Likewise, if the upper bound is feasible, the former assumption can be fixed, so
that constraints involving it may be simplified and apply unconditionally in the sequel. In
the following, we detail how (dedicated) multi-criteria optimization can be accomplished in
modern (conflict-driven learning) Boolean constraint solvers, thereby exploiting assumptions
to circumvent the need of a relaunch after an unsatisfiability proof.

Our algorithm augmenting conflict-driven learning (cf. [5, 12]) with multi-criteria op-
timization is shown in Algorithm 1. The sequence 〈L1, . . . ,Llow〉 determined in the first
line contains the priority levels of the input #minimize statement in decreasing order of
significance. The counters assm, prio, and step, initialized to 1 in the second line, are used to
generate new assumptions on demand, to identify the current priority level to be optimized,
and to determine the amount by which the upper bound ought to be decreased when a
solution is found. The latter is always 1, thus yielding a linear decrease, if the input leap flag
is false, while an exponential scheme (described below) is applied otherwise. Furthermore, the
lower bound lb, set to 0 in the third line, stores the greatest value such that unsatisfiability
has been proven for smaller bounds at the current priority level. In fact, the optimization of
a priority level is finished once the utility of a solution matches the lower bound. In the loop
in Line 4–45, the optimization-specific information, kept in counters and the lower bound, is
used to guide conflict-driven search. As usual, the loop starts in Line 5 with a deterministic
Propagate step, assigning literals implied by the current assignment. Afterwards, one
of the following is the case: a conflict (Line 6–23), a solution (Line 24–44), or a heuristic
decision (Line 45). While the latter simply leads to reentering the loop, the first two cases
deserve more attention. We describe next the reaction to a solution and then the one to a
conflict.

Upon encountering a solution, we start by checking whether its objective value at the
current priority level provides us with a new (non-speculative) upper bound. This is clearly
the case if the current solution is the first one, as tested via assm = 1 in Line 25, and
setting recd to true informs our algorithm that the upper bound needs to be recorded before
proceeding to the next priority level. On the other hand, if a speculative upper bound
ubprio−step has already been imposed, the current solution witnesses that this bound is
feasible. Hence, a respective optimization constraint is made unconditional by fixing the
former assumption αassm in Line 27. In view of this, adding another constraint before
proceeding to the next priority level is required only if the current solution’s objective value
is smaller than ubprio−step, as tested in Line 28. The sequence 〈ub1, . . . , ublow〉 of upper
bounds given by the current solution is memorized in Line 30 and printed along with an
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4 Multi-Criteria Optimization in Answer Set Programming

Algorithm 1: CDNL-OPT
Input: A logic program Π, a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln], and a

flag leap ∈ {true, false}.
1 〈L1, . . . ,Llow〉 ← 〈max({L1, . . . , Ln} \ {L1, . . . ,Lm−1})〉1≤m≤|{L1,...,Ln}|
2 assm ← prio ← step ← 1 // assumption, priority, and step counter
3 lb ← 0 // lower bound
4 loop
5 Propagate // deterministically assign implied literals
6 if conflict then
7 if at root level then // unsatisfiability modulo optimization constraint
8 if assm = 1 then exit
9 Assign αassm // deactivate old optimization constraint

10 lb ← (ubprio−step) + 1
11 while prio ≤ low and ubprio = lb do
12 if recd = true then Add #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
13 lb ← 0
14 recd ← true
15 prio ← prio + 1
16 if prio > low then exit
17 step ← 1
18 assm ← assm + 1
19 Add

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
20 Assume αassm // activate new optimization constraint
21 else
22 Analyze // analyze conflict and add (violated) conflict constraint
23 Backjump // unassign literals until conflict constraint is unviolated

24 else if solution then
25 if assm = 1 then recd ← true // upper bound of witness yet unrecorded
26 else
27 Assign αassm // fix old optimization constraint
28 if (Σ1≤i≤n,Li=Lprio,`iassigned to true wi) < ubprio−step then recd ← true
29 else recd ← false
30 〈ub1, . . . , ublow〉 ← 〈Σ1≤i≤n,Li=Lm,`iassigned to true wi〉1≤m≤low
31 print answer set along with 〈ub1, . . . , ublow〉
32 prio′ ← prio
33 while prio ≤ low and ubprio = lb do
34 if recd = true then Add #sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]lb
35 lb ← 0
36 recd ← true
37 prio ← prio + 1
38 if prio > low then exit
39 if prio = prio′ and leap = true then step ← min{2 ∗ step, d(ubprio−lb)/2e}
40 else step ← 1
41 assm ← assm + 1
42 Add

(
αassm ∨#sum[`i = wi | 1 ≤ i ≤ n,Li = Lprio]ubprio−step

)
43 Assume αassm // activate new optimization constraint
44 Backjump // unassign literals until optimization constraint is unviolated

45 else Decide // non-deterministically assign some literal
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answer set of the input program Π in Line 31. Then, the loop in Line 33–37 proceeds to
the next priority level to optimize, depending on whether the condition ubprio = lb holds in
Line 33. If so, it means that the upper bound witnessed by the solution at hand matches the
lower bound at a priority level, so that no further improvement is possible. Furthermore,
if the current upper bound still needs to be recorded, a corresponding #sum constraint, as
available in ASP input languages [14, 7], is added to the constraint database of the solver in
Line 34; this makes sure that future solutions cannot exceed the lower bound lb at a forsaken
priority level. Also note that lb is set to the minimum 0 in Line 35, so that proceeding by
more than one priority level is possible only if some upper bound given by the solution at
hand is trivially optimal. After finishing the loop in Line 33–37, multi-criteria optimization
has been accomplished if the test prio > low succeeds in Line 38, meaning that the utilities
〈ub1, . . . , ublow〉 cannot be improved. Otherwise, an amount by which the current upper
bound ought to be decreased is determined in Line 39–40. If the priority level has not been
changed and the leap flag is true, we take the minimum of the double former step size and
half of the gap between the upper and lower bound as the amount by which to decrease
the upper bound. This exponential scheme aims at balancing two objectives: try to skip
non-optimal intermediate solutions while decreasing the upper bound, but do not provoke
many unnecessary (and potentially hard) proofs of unsatisfiability. Given the next step
size, an optimization constraint, being the disjunction of a fresh literal αassm and a #sum
constraint enforcing the new (speculative) upper bound, is added to the constraint database
of the solver in Line 42, and αassm is assumed in Line 43, so that any further solution must
fall below the speculative upper bound ubprio−step. Finally, backjumping in Line 44 retracts
literals (but not αassm assumed at the root level) in order to re-enable the search for solutions
satisfying the new optimization constraint.

In case of a conflict, we distinguish whether it is encountered at the root level or beyond it.
The latter means that the conflict is related to decisions made previously (in Line 45), so that
regular conflict analysis and backjumping (cf. [5, 12]) can in Line 22–23 be applied to identify
a reason in terms of a conflict constraint and to resume search at a point where the conflict
constraint yields an implication. On the other hand, a conflict at the root level indicates
unsatisfiability. Provided that assm = 1 does not hold in Line 8, i.e., if Π has some answer
set, there is no solution meeting the upper bound ubprio−step. This bound is imposed by the
most recently added optimization constraint, which is in Line 9 retracted by assigning αassm ,
thus withdrawing the former assumption and unconditionally satisfying the optimization
constraint (as well as all conflict constraints relying on it). Furthermore, the unsatisfiability
relative to the upper bound provides us with the lower bound (ubprio−step) + 1, assigned
to lb in Line 10. As in the case of a solution, the loop in Line 11–15 proceeds to the next
priority level to optimize, where a gap between the lower and upper bound leaves room
for improvements. If such a level prio exists, i.e., prio > low does not hold in Line 16, the
step size is reduced to 1 in Line 17, and the next optimization constraint along with a fresh
assumption are put into effect in Line 18–20. By reducing the step size to the smallest value
that would still improve ubprio, we reset the exponential scheme applied if the input leap flag
is true. This directs search to first check whether improvements are possible at all before
reattempting to decrease the upper bound more aggressively.

Multi-criteria optimization via Algorithm 1 is implemented in clasp from version 2.0.0
on. We do not detail the implementation here, but mention matters of interest. To begin
with, note that clasp stores a statement #minimize[`1 = w1@L1, . . . , `n = wn@Ln] in
a single optimization constraint, using as data-structure a two-dimensional array of size
|{L1, . . . , Ln}| ∗ |{`1, . . . , `n}| with w1, . . . , wn as its (non-zero) entries. Furthermore, the
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vector 〈ubm〉1≤m≤|{L1,...,Ln}| of upper bounds is initialized to 〈∞m〉1≤m≤|{L1,...,Ln}| and then
updated whenever a solution is found. For one, this permits to accomplish the simple
approach to multi-criteria optimization, described at the beginning of this section, via
lexicographic comparisons without scaling weights in view of priority levels. For another,
dedicated multi-criteria optimization wrt a current priority level prio merely requires to
(temporarily) ignore upper bounds at less significant priority levels, thus providing easy
means to strengthen the readily available optimization constraint by subtracting the value of
step from ubprio (cf. Line 19 and 42 of Algorithm 1). To further facilitate such steps, clasp
includes a single assumption α in its optimization constraint and, for the most significant
priority level L = max{L1, . . . , Ln}, sets the weight w@L of α to (

∑
1≤i≤n,Li=L wi)+1. This

makes sure that α belongs to every conflict constraint relying on the optimization constraint,
so that these conflict constraints can be fixed (by discharging α) or withdrawn, respectively,
immediately upon encountering either a solution or a conflict. To this end, clasp invokes
the method strengthenTagged() when a solution is found and removeTagged() when a
root-level conflict occurs, while keeping the assumption α in place at the root level; applying
either method turns α into a fresh assumption without presuming any particular solver state,
as otherwise required when performing constraint database simplifications.

The command-line parameters --opt-hierarch and --opt-heuristic allow for configur-
ing (multi-criteria) optimization in clasp. If the value 0 is provided for the former, simple lex-
icographic optimization (without assumptions) is applied, while 1 and 2 switch to Algorithm 1
with the leap flag set to false and true, respectively. Furthermore, --opt-heuristic de-
termines how #minimize statements are taken into account in clasp’s decision heuristics
(Line 45 of Algorithm 1). While 0 falls back to the default heuristic, a static sign heuristic,
preferably falsifying literals that occur in a #minimize statement, is applied for 1. Value 2
switches to a dynamic heuristic that, after a solution has been found, falsifies its literals
in a #minimize statement until a conflict is encountered. Finally, 3 combines 1 and 2,
thus falsifying literals subject to minimization if a respective variable is selected, while
also picking such variables after a solution has been found (until hitting a conflict). The
additional parameter --restart-on-model is a prerequisite for the values 2 and 3 to be
effective; without it, they drop down to 0 and 1, respectively.

4 Experiments

We developed the tool aspcud1 applying our approach to multi-criteria optimization in ASP to
Linux package configuration. At the start, aspcud translates a package configuration problem
in Common Upgradability Description Format (CUDF; [17]) into ASP facts, described in the
extended version of this paper [8]. The translation involves mapping CUDF package formulas
to sets of packages (clauses) and tracing virtual packages that cannot directly be installed
back to packages that implement them. Such flattening makes the problem encoding (cf. [8])
in ASP more convenient. Beyond syntactic simplifications, the translation by aspcud also
exploits optimization criteria and package interdependencies to reduce the resulting ASP
instance.

As ASP tools, aspcud (version 1.3.0) exploits gringo (version 3.0.3) for grounding and
clasp (version 2.0.0-RC2) for solving. To illustrate the impact of the strategies and heuristics
supported by clasp, our experiments consider several variants of it. Three settings are

1 http://www.cs.uni-potsdam.de/wv/aspcud

http://www.cs.uni-potsdam.de/wv/aspcud
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obtained by configuring --opt-hierarch with the values described above, indicated by a
subscript:

clasp0: optimizing whole utility vectors (as described at the beginning of Section 3 and
implemented also in smodels as well as clasp versions below 2.0.0),
clasp1: applying Algorithm 1 with the leap flag set to false, and
clasp2: applying Algorithm 1 with the leap flag set to true.

We further combine each claspi (i ∈ {0, 1, 2}) with optimization-oriented heuristics, activated
by setting --opt-heuristic to the value indicated by a superscript:

clasp0
i : applying no optimization-specific decision heuristic,

clasp1
i : applying the static sign heuristic to falsify literals of a #minimize statement,

clasp2
i : falsifying literals of a #minimize statement that were contained in a recent

solution, and
clasp3

i : combining the sign heuristic of clasp1
i with the dynamic approach of clasp2

i .
We thus obtain twelve variants of clasp, each invoked with the (additional) command-
line parameters --sat-prepro, --heuristic=vsids, --restarts=128, --local-restarts,
and --solution-recording, which turned out to be helpful on large underconstrained
optimization problems confronted in Linux package configuration. As mentioned above,
clasp2

i and clasp3
i further require --restart-on-model to be effective, and we indicate the

use of this parameter by writing claspj
i -r, where “-r” is mandatory for j ∈ {2, 3} but optional

for j ∈ {0, 1}. The reasonable combinations of the variable options amount to 18 variants of
clasp to perform the optimization within aspcud.

For comparison, we also consider the package configuration tools cudf2msu2 (version 1.0),
cudf2pbo3 (version 1.0), and p2cudf 4 (version 1.11). The PBO-based approaches of cudf2pbo
and p2cudf are closely related to multi-criteria optimization in ASP via Algorithm 1, while
the MaxSAT approach of cudf2msu utilizes unsatisfiable cores to iteratively refine lower
bounds. The tools included for comparison belong to the leaders in a recent trial-run5, called
MISC-live, of the competition organized by mancoosi.

Table 1 reports experimental results on package configuration problems used in the recent
MISC-live run,6 divided by the tracks paranoid, trendy, and user1–3, each applying a different
combination of optimization criteria. Note that the number of lexicographically ordered
utilities is two in the paranoid track, three in the user1 track, and four in the trendy and
user2–3 tracks. We ran the five criteria combinations on 117 instances considered in the
paranoid and trendy tracks of the MISC-live run (all instances except for the ones in the
“debian-dudf” category, which were not available for download). For each track, the column
headed by S provides the sums of solvers’ scores according to the MISC-live ranking: a solver
that returns a solution earns b+ 1 points, where b is the number of solvers that returned
strictly better solutions; a solver that returns no solution earns 2 ∗ s points, where s is the
total number of participating solvers (s = 21 in our case); finally, a solver that crashes or
returns a wrong solution (i.e., an invalid installation profile) is awarded 3 ∗ s points (for s as
before). Note that a smaller score is better than a greater one, and solvers are ranked by
their scores in ascending order. The columns headed by T/O report total runtimes per solver

2 http://sat.inesc-id.pt/~mikolas/cudf2msu.html
3 http://sat.inesc-id.pt/~mikolas/cudf2pbo.html
4 http://wiki.eclipse.org/Equinox/p2/CUDFResolver
5 http://www.mancoosi.org/misc-live/20101126
6 The results of (a preliminary version of) aspcud in this trial-run were scrambled due to scripting

problems, which led to complete failure rather than a sub-optimal solution if an optimum could not be
proven in time.
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paranoid trendy user1 user2 user3
Solver S T/O S T/O S T/O S T/O S T/O

clasp0
0-r 431 2,287/6 1730 23,829/ 80 935 14,349/35 525 5,097/12 1031 14,184/37

clasp0
0 416 2,294/6 2375 29,781/105 1727 21,897/73 1224 14,697/45 671 11,178/21

clasp1
0-r 410 2,210/6 1560 22,660/ 73 898 13,466/30 502 4,654/ 9 980 13,682/35

clasp1
0 410 2,326/6 2079 26,471/ 92 1723 21,525/72 922 10,767/31 658 10,675/23

clasp2
0-r 427 2,135/6 712 16,867/ 51 527 5,891/11 426 2,981/ 5 587 7,628/20

clasp3
0-r 429 2,134/6 740 17,079/ 52 507 5,863/12 425 3,044/ 6 576 7,769/21

clasp0
1-r 425 2,428/6 579 16,713/ 50 550 5,819/14 434 3,000/ 6 710 8,958/25

clasp0
1 417 2,418/6 549 16,544/ 50 475 5,318/12 411 2,538/ 5 502 6,279/16

clasp1
1-r 429 2,405/6 622 17,304/ 50 518 5,908/13 438 2,976/ 6 676 8,938/23

clasp1
1 427 2,372/6 613 16,946/ 49 490 5,478/12 416 2,562/ 5 496 6,144/16

clasp2
1-r 427 2,352/6 571 16,646/ 50 518 5,358/13 418 2,582/ 5 471 6,356/16

clasp3
1-r 429 2,346/6 547 16,386/ 50 499 5,306/12 413 2,498/ 5 497 6,255/16

clasp0
2-r 425 2,392/6 806 16,598/ 50 523 5,583/13 421 2,677/ 6 479 5,548/12

clasp0
2 417 2,364/7 748 17,132/ 50 487 5,823/14 422 2,583/ 5 482 5,592/15

clasp1
2-r 416 2,378/6 752 17,269/ 52 492 5,663/12 414 2,409/ 5 451 5,349/11

clasp1
2 425 2,365/6 864 17,128/ 51 517 6,151/15 412 2,681/ 5 463 5,972/14

clasp2
2-r 445 2,402/6 706 16,551/ 50 528 5,788/13 419 2,700/ 5 436 5,519/13

clasp3
2-r 434 2,345/6 748 16,982/ 51 518 5,850/14 415 2,559/ 5 457 5,360/13

cudf2msu 610 3,051/8 669 5,318/ 8 1270 8,709/18 548 3,238/ 7 504 4,750/ 9
cudf2pbo 465 2,727/7 1082 21,302/ 68 520 6,168/13 462 3,575/ 7 537 3,487/ 8
p2cudf 463 2,920/8 696 19,105/ 60 516 3,947/ 7 573 6,927/16 577 8,063/21

Table 1 Results on package configuration problems used in a recent MISC-live run.

in seconds followed by the number of instances on which the solver was aborted, either before
finding the optimum or while still attempting to prove it (or unsatisfiability, respectively).
These statistics are used for tie-breaking wrt scores in MISC-live ranking, and they also yield
valuable information regarding solvers’ capabilities to prove optima: after 280 seconds of
running, closeness of runtime exhaustion (300 seconds) is signaled to a solver, so that the
remaining time can be used to output the best solution found so far. Accordingly, we count
solutions returned after more than 280 seconds as aborts, which are not reflected in scores
(columns S) if output solutions happen to be optimal without the proof being completed.
We ran our experiments under MISC-live conditions on an Intel Quad-Core Xeon E5520
machine, possessing 2.27GHz processors and 48GB main memory, under Linux. The best
scores and runtimes obtained among the variants of clasp as well as the best ones among its
competitors are highlighted in bold face in Table 1.

Recall that two optimization criteria are applied in the paranoid track, three in the
user1 track, and four in the remaining tracks. One may expect solvers optimizing criteria
in the order of significance (all but the variants of clasp0) to have greater advantages the
longer the sequence of criteria is. In fact, we observe that clasp0, optimizing criteria in
parallel, is competitive in the paranoid track; in particular, the static sign heuristic applied
by the variants of clasp1

0 helps them to achieve the smallest score. However, the gap to other
solvers is not large, neither in terms of scores nor runtimes. Unlike this, the disadvantages of
clasp0

0 and clasp1
0 variants are remarkable in the other four tracks; they are compensated to

some extent by the optimization-oriented dynamic variable selection applied by clasp2
0-r and

clasp3
0-r. Comparing the variants of clasp1 and clasp2, applying Algorithm 1, we note that
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they are less sensitive to heuristic aspects. Nonetheless, their relative performance varies
over tracks, thus not suggesting any universal strategy to multi-criteria optimization. For
instance, the variants of clasp1, decreasing upper bounds linearly, are more successful than
clasp2 variants in the trendy track, where the large total runtimes and numbers of aborts
indicate that many instances were hard to complete (proving optima failed in many cases).
On the other hand, the exponential decrease scheme of clasp2 enables some of its variants to
achieve the smallest score and runtime in the user3 track. Finally, comparing the variants of
clasp with its three competitors, we observe that the ASP-based approach to Linux package
configuration is highly competitive. In particular, its consistent performance is confirmed by
scores, while each of the other tools achieved an impressive runtime (mainly by succeeding
to prove optima) in some track: cudf2msu in trendy, cudf2pbo in user3, and p2cudf in user1.
Unfortunately, cudf2msu produced non-optimal solutions and crashes in two tracks, trendy
and user1, so that its ranking in these two tracks is not very conclusive.

5 Discussion

We presented an approach to dedicated multi-criteria optimization in ASP. In particular,
we detailed the use of assumptions in modern (conflict-driven learning) Boolean constraint
solvers, so that speculative upper bounds can be imposed temporarily and withdrawn after
unsatisfiability proofs without relaunching the solver. In fact, our approach is readily
applicable in related areas like PBO and MaxSAT. Albeit Linux package configuration tools
based on these formalisms may already exploit similar techniques, we are unaware of precise
specifications of them. In the future, regular comparisons in competitions by mancoosi could
provide a fruitful platform for improving and sharing methods of optimization.

The interested reader is referred to the extended version of this paper [8] for a detailed
description of solving Linux package configuration problems by appeal to the multi-criteria
optimization capacities introduced in the previous sections.
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Abstract
Strong equivalence of disjunctive logic programs is characterized here by a calculus that operates
with syntactically simple formulas.
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1 Introduction

Logic programs Π1 and Π2 are said to be strongly equivalent to each other if, for every logic
program Π, the program Π1 ∪ Π has the same stable models as Π2 ∪ Π [4]. The study of
strong equivalence is important because we learn from it how one can simplify a part of a
logic program without looking at the rest of it. Characterizations of strong equivalence of
logic programs that allow us to establish it more easily than by using the definition directly
are given in [4], [6], and [7].

According to the main theorem of the first of these papers, grounded programs are
strongly equivalent to each other iff the equivalence between them can be proved in the logic
of here-and-there HT—the extension of intuitionistic propositional logic obtained by adding
to it the axiom schema

F ∨ (F → G) ∨ ¬G. (1)

This statement assumes that grounded rules are viewed as alternative notation for proposi-
tional formulas. Specifically, a disjunctive rule

A1; . . . ; Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An (2)

(n ≥ m ≥ l ≥ k ≥ 0), where each Ai is an atom, is identified with the propositional formula

Al+1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → A1 ∨ · · · ∨Ak ∨ ¬Ak+1 ∨ · · · ∨ ¬Al. (3)

In the special case when each rule of the program has the form (2) without negation in
head (l = k), strong equivalence can be characterized by a calculus that operates with such
rules directly, without rewriting them as propositional formulas [8]. This fact shows that
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under some conditions strong equivalence can be described in terms of derivations that do
not involve syntactically complex expressions, such as (1).

In this note we show that results of [1, Chapter 5] give us, implicitly, a calculus similar to
the one proposed in [8], slightly more general (negation in the head is allowed) and slightly
simpler (an inference rule with many premises is replaced by a rule with one premise). In
this modification of the calculus from [8], derivable objects are “flat implications”—arbitrary
formulas of the form (3). Negation in the head is important because it is needed to encode
the choice construct, frequently used in answer set programming [3]. For instance, the choice
rule

{p} ← q,not r

can be thought of as shorthand for

p;not p← q,not r.

2 Calculus of Flat Implications

A flat implication is a propositional formula of the form C → D, where C is a conjunction
of literals (possibly the empty conjunction >), and D is a disjunction of literals (possibly
the empty disjunction ⊥).

In the description of the calculus of flat implications CFI below, A is an atom; L is a
literal; C, C1, C2 are conjunctions of literals; D, D1, D2 are disjunctions of literals; N is a
disjunction of negative literals.

The calculus consists of two axiom schemas

A→ A, (4)

A ∧ ¬A→ ⊥ (5)

and three inference rules: cut

C1 → D1 ∨ L L ∧ C2 → D2

C1 ∧ C2 → D1 ∨D2
,

regularity
A ∧ C → N

C → N ∨ ¬A
,

and the structural rule
C → D

C1 → D1

where each member of C is a member of C1
and each member of D is a member of D1.

Theorem. A flat implication I is derivable from a set Π of flat implications in CFI iff I

is derivable from Π in HT.

In Section 4 we will show that this theorem is essentially a restatement of [1, Theo-
rem 5.36].

Corollary. For any sets Π1, Π2 of flat implications, the following conditions are equivalent:
Π1 is strongly equivalent to Π2,
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in the calculus of flat implications, each element of Π1 can be derived from Π2, and each
element of Π2 can be derived from Π1.

The main feature of CFI that distinguishes it from the calculus proposed in [8] is the
regularity rule, which takes advantage of the availability of negation in the heads of rules.

3 Examples

Example 1. We would like to verify that in the presence of the choice rule {p}, the rule
p← q can be replaced by the constraint ← q,not p. In other words, we want to show that
the program

{p}
p← q

is strongly equivalent to
{p}
← q,not p.

According to the corollary above, it is sufficient to derive in the calculus of flat implications

(a) q ∧ ¬p→ ⊥ from q → p;
(b) q → p from > → p ∨ ¬p and q ∧ ¬p→ ⊥.

Part (a):

1. q → p (assumption).
2. p ∧ ¬p→ ⊥ (axiom).
3. q ∧ ¬p→ ⊥ (by cut from 1 and 2).

Part (b):

1. > → p ∨ ¬p (assumption).
2. q ∧ ¬p→ ⊥ (assumption).
3. ¬p ∧ q → ⊥ (by the structural rule from 2).
4. q → p (by cut from 1 and 3).

Example 2. We would like to verify that the disjunctive program

p; q

← p, q

is strongly equivalent to the nondisjunctive program

p ← not q

q ← not p

← p, q.

It is sufficient to derive in the calculus of flat implications

(a) > → p ∨ q from the formulas

¬q → p, ¬p→ q, p ∧ q → ⊥;

(b) ¬q → p and ¬p→ q from the formulas

> → p ∨ q, p ∧ q → ⊥.
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14 Yet Another Characterization of Strong Equivalence

Part (a):

1. p ∧ q → ⊥ (assumption).
2. q → ¬p (by regularity from 1).
3. > → ¬p ∨ ¬q (by regularity from 2).
4. ¬q → p (assumption).
5. > → ¬p ∨ p (by cut from 3 and 4).
6. > → p ∨ ¬p (by the structural rule from 5).
7. ¬p→ q (assumption).
8. > → p ∨ q (by cut from 6 and 7).

Part (b):

1. > → p ∨ q (assumption).
2. q ∧ ¬q → ⊥ (axiom).
3. ¬q → p (by cut from 1 and 2).

The derivation of ¬p→ q is similar.

4 Proof of the Theorem

According to [1], a bisequent is an expression of the form

a : b ‖− c : d (6)

where a, b, c, d are finite sets of atoms. Bisequents can be thought of as flat implications in
disguise if we agree to identify (6) with the formula∧

A∈a

A ∧
∧
A∈b

¬A →
∨
A∈c

A ∨
∨

A∈d

¬A.

From [1, Proposition 5.84] we see that, given this convention, stable models of a set Π of flat
implications are identical to the extensions of Π in the sense of [1, Definitions 5.7 and 5.8].

The characterization of strong-extension equivalence of bisequent theories given by [1,
Theorem 5.36] provides a characterization of strong equivalence of sets of flat implications in
terms of a calculus that is almost identical to CFI . The axioms of that calculus are our ax-
ioms (4) and (5) (called in the book positive reflexivity and consistency, see [1, Definitions 3.1
and 3.8]) plus the axiom schema

¬A→ ¬A (7)

(negative reflexivity, see [1, Definition 3.1]). Its inference rules are the inference rules of
CFI (monotonicity, positive cut, negative cut, and C-regularity, see [1, Definition 5.7 and
Section 3.2.5]). It remains to observe that (7) can be derived from (5) by one application of
the regularity rule.

The “only if” part of the theorem can be proved also by noting that all postulates of CFI
can be justified in HT . In fact, the axioms, the cut rule, and the structural rule are even
intuitionistically acceptable. As to the regularity rule, its conclusion can be intuitionistically
derived from its premise and the weak excluded middle axiom ¬A ∨ ¬¬A; the latter is
provable in HT (in the axiom schema (1), take A as F and ¬A as G). This line of reasoning
shows, incidentally, that on the level of flat implications the logic of here-and-there does not
differ from the logic of the weak excluded middle WEM—a fact known from [2].
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5 Conclusion

There is a certain degree of freedom when we decide which monotonic logic can be viewed
as the basis of the stable model semantics of disjunctive logic programs. From the results
of [4] and [2] we see that each of the systems HT and WEM can play this role; the theorem
presented in this note shows that CFI would do as well.

In [5], the theorem from [4] is extended to logic programs with variables and to a first-
order version of HT . It would be interesting to extend the property of CFI proved above
in a similar way.
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Abstract
RDF/S ontologies are often used in e-science to express domain knowledge regarding the

respective field of investigation (e.g., cultural informatics, bioinformatics etc). Such ontologies
need to change often to reflect the latest scientific understanding on the domain at hand, and
are usually associated with constraints expressed using various declarative formalisms to express
domain-specific requirements, such as cardinality or acyclicity constraints. Addressing the evol-
ution of ontologies in the presence of ontological constraints imposes extra difficulties, because
it forces us to respect the associated constraints during evolution. While these issues were ad-
dressed in previous work, this is the first work to examine how ASP techniques can be applied
to model and implement the evolution process. ASP was chosen for its advantages in terms of
a principled, rather than ad hoc implementation, its modularity and flexibility, and for being
a state-of-the-art technique to tackle hard combinatorial problems. In particular, our approach
consists in providing a general translation of the problem into ASP, thereby reducing it to an
instance of an ASP program that can be solved by an ASP solver. Our experiments are prom-
ising, even for large ontologies, and also show that the scalability of the approach depends on
the morphology of the input.

1998 ACM Subject Classification I.2.4 Semantic Networks

Keywords and phrases Ontology evolution, Evolution in the presence of constraints, incremental
ASP application
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1 Introduction

Semantic Web [3], aims to extend the current web so as to allow information to be both
understandable by humans and processable by machines. Ontologies describe our under-
standing of the physical world in a machine-processable format and form the backbone of
the Semantic Web. They are usually represented using the RDF/S [13, 4] language; in a
nutshell, RDF/S permits the representation of different types of resources like individuals,
classes of individuals and properties between them, as well as basic taxonomic facts (such as
subsumption and instantiation relationships).

Several recent works [16, 14, 12, 5, 19] have acknowledged the need for introducing
constraints in ontologies. Given that RDF/S does not impose any constraints on data, any
application-specific constraints (e.g., functional properties) or semantics (e.g., acyclicity in
subsumptions) can only be captured using constraints on top of RDF/S data. In this paper,
we consider DED constraints [8], which form a subset of first-order logic and have been shown
to allow capturing many useful types of constraints; we will consider populated ontologies
represented using RDF/S, and use the term RDF/S knowledge base (KB) to denote possibly
interlinked and populated RDF/S ontologies with associated (DED) constraints.
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An important task towards the realization of the Semantic Web is the introduction of
techniques that allow the efficient and intuitive evolution of KBs in the presence of constraints.
Note that a valid evolution result should satisfy the constraints; this is often called the
Principle of Validity [1]. In addition, the Principle of Success [1] should be satisfied, which
states that the change requirements take priority over existing information, i.e., the change
must be applied in its entirety. The final important requirement is the Principle of Minimal
Change [1], which states that, during a change, the modifications applied upon the original
KB must be minimal. In other words, given many different evolution results that satisfy the
principles of success and validity, one should return the one that is “closer” to the original
KB, where “closeness” is an application-specific notion. The above non-trivial problem was
studied in [11], resulting in a general-purpose changing algorithm that satisfies the above
requirements. Unfortunately, the problem was proven to be exponential in nature, so the
presented general-purpose algorithmic solution to the problem (which involved a recursive
process) was inefficient.

ASP is a flexible and declarative approach to solve NP-hard problems. The solution
that was presented in [11] regarding the problem of ontology evolution in the presence of
constraints can easily be translated into a logic program with first-order variables; this is
the standard formalism that is used by ASP, which is then grounded into a variable free
representation by a so called grounder that is then solved by a highly efficient Boolean solver.
As it is closely related to the SAT paradigm, knowledge about different techniques for solving
SAT problems are incorporated into the ASP algorithms. Using first-order logic programs is
a smart way to represent the evolution problem while remaining highly flexible, especially
with respect to the set of constraints related to the ontology.

The objective of the present work is to recast the problem of ontology evolution with
constraints in terms of ASP rules, and use an efficient grounder and ASP solver to provide
a modular and flexible solution. In our work, we use gringo for the grounding and clasp
for the solving process as they are both state-of-the-art tools to tackle ASP problems [9].
Our work is based on the approach presented in [11], and uses similar ideas and notions.
The main contribution of this work is the demonstration that ASP can be used to solve the
inherently difficult problem of ontology evolution with constraints in a decent amount of
time, even for large real-world ontologies. ASP was chosen for its advantages in terms of a
principled, rather than ad hoc implementation, its modularity and flexibility, and for being a
state-of-the-art technique to tackle hard combinatorial problems.

In the next section we present the problem of ontology evolution in the presence of
constraints, and the solution proposed in [11]. In Section 3, we present ASP. Section 4 is
the main section, where our formulation of the problem in terms of an ASP program is
presented and explained. This approach is refined and optimized in Section 5. We present
our experiments in Section 6 and conclude in Section 7.

2 Problem Statement

2.1 RDF/S
The RDF/S [13, 4] language uses triples of the form (subject, predicate, object) to express
knowledge. RDF/S permits the specification of various entities (called resources), which may
be classes (i.e., collections of resources), properties (i.e., binary relations between resources),
and individuals (i.e., atomic entities). We use the symbol type(u) to denote the type of a
resource u (class, property, individual). RDF/S supports various predefined relations between
resources, like the domain and range of properties, subsumption relationships between classes

ICLP 2011



18 Evolution of Ontologies using ASP

Table 1 Representation of RDF/S Triples Using Predicates

RDF/S triple Intuitive meaning Predicate
c rdf :type rdfs:Class c is a class cs(c)
x rdf :type rdfs:Resource x is an individual ci(x)
c1 rdfs:subClassOf c2 IsA between classes c_IsA(c1, c2)
x rdf :type c class instantiation c_Inst(x, c)

and between properties, and instantiation relationships between individuals and classes, or
between pairs of individuals and properties. RDF/S associates such relations with semantics,
e.g., subsumption is transitive.

RDF/S KBs are commonly represented as labeled graphs, whose nodes are resources and
edges are relations (see Fig. 1). In Fig. 1, a, b, and c are classes and x is an individual. Solid
arrows represent subsumption relationships between classes (e.g., b is a subclass of c), and
dashed arrows represent instantiation relationships (e.g., x is an instance of b). The bold
arrow represents the change we want to make, namely to make a a subclass of b.

2.2 Ontology Evolution Principles

a

c

b

x

Figure 1
A knowledge
base with
change (ap-
pearing as
bold arrow)

In the presence of constraints in the ontology, one should make sure that
the evolution result is valid, i.e., it does not violate any constraints. This
is called the Principle of Validity [1]. Manually enforcing this principle is
an error-prone and tedious process. The objective of this work is to assist
knowledge engineers in applying their changes in an automated manner, while
making sure that no invalidities are introduced in the KB during the evolu-
tion.

In addition to the Validity Principle, two other principles are usually con-
sidered. The first is the Principle of Success [1], stating that the required
changes take priority over existing information, i.e., the change must be applied
in its entirety. The second is the Principle of Minimal Change [1], which
requires that the modifications applied upon the original KB to accommodate
the change must be minimal. Thus, if there are several different results that
satisfy the principles of success and validity, one should return the one that
is “closer” to the original KB, i.e., causes the least important modifications.
Note that the importance of modifications (i.e., “closeness”) is an application-
specific notion; in this work, we model “closeness” using a relation; details on
this relation will be given later.

2.3 Formal Setting
To address the problem of ontology evolution, we use the general approach presented in [11].
An RDF/S KB K is modeled as a set of ground facts of the form p(~x) where p is a predicate
and ~x is a vector of constants. Constants represent resources in RDF/S parlance, and each
predicate represents one type of RDF/S relationship (e.g., domain, range, subsumption
etc). For example, the triple (a, rdfs:subClassOf , b), which denotes that a is a subclass of
b, is represented by the ground fact c_IsA(a, b). For the rest of the paper, predicates and
constants will start with a lower case letter, whereas variables will start with an upper case
letter. Table 1 shows some of the predicates we use and their intuitive meaning (see [11] for
a complete list).

We assume closed world, i.e., K 0 p(~x) whenever p(~x) /∈ K. A change C is a request to



M. Ostrowski, G. Flouris, T. Schaub and G. Antoniou 19

Table 2 Ontological Constraints

ID, Constraint Intuitive Meaning
R5: ∀U, V

c_IsA(U, V )→ cs(U) ∧ cs(V )
Class subsumption

R12: ∀U, V, W

c_IsA(U, V ) ∧ c_IsA(V, W )→
c_IsA(U, W )

Class IsA transitivity

R13: ∀U, V

c_IsA(U, V ) ∧ c_IsA(V, U)→ ⊥
Class IsA irreflexivity

Table 3 Facts from example in Fig. 1

K0

ci(x)
cs(a) cs(b) cs(c)

c_IsA(b, c) c_IsA(b, a) c_IsA(c, a)
c_Inst(x, b) c_Inst(x, c) c_Inst(x, a)

C c_IsA(a, b)

add/remove fact(s) to/from the KB, and it is modeled as a set of positive/negative ground
facts.

Ontological constraints are modeled using DED rules [8], which allow for formulating
various useful constraints, such as primary and foreign key constraints (used, e.g., in [12]),
acyclicity and transitivity constraints for properties (as in [16]), and cardinality constraints
(used in [14]). Here, we use the following simplified form of DEDs, which still includes the
above constraint types:

∀~U
∨

i=1,...,head
∃~Viqi(~U, ~Vi)←e(~U) ∧ p1(~U) ∧ · · · ∧ pbody(~U),

where e(~U) is a conjunction of (in)equality atoms. We denote by p the facts p1(~U), . . . , pbody(~U)
and by q the facts q1(~U, ~V1), . . . , qhead(~U, ~Vhead). Table 2 shows some of the constraints used
in this work; for a full list, refer to [11]. We say that a KB K satisfies a constraint r (or a
set of constraints R), iff K ` r (K ` R). Given a set of constraints R, K is valid iff K ` R.

Now consider the KB K0 and the change of Fig. 1, which can be formally expressed using
the ground facts of Table 3. To satisfy the principle of success, we should add c_IsA(a, b) to
K0, getting K1 = K0 ∪{c_IsA(a, b)}. The result (K1) is called the raw application of C upon
K0, and denoted by K1 = K0 + C. C is called a valid change w.r.t. K0 iff K0 + C is valid.
In our example, this is not the case, because K1 violates R13; thus, it does not constitute
an acceptable evolution result. The form of the violated rule implies that the only possible
solution to this problem is to remove c_IsA(b, a) from K1 (removing c_IsA(a, b) is not an
option, because its addition is dictated by the change – cf. the Principle of Success). This is
an extra modification, that is not part of the original change, but is, in a sense, enforced by
it; such extra modifications are called side-effects.

We note that the result, K2 = K0 ∪ {c_IsA(a, b)} \ {c_IsA(b, a)} is no good either,
because R12 is violated, so, we need to repeat the above process recursively for K2. Note that
R12 can be resolved in more than one ways, each of which should be evaluated independently;
this fact leads to a recursive tree of resolutions (and side-effects). Eventually, after possibly
several recursive steps, we will reach one or more valid KBs (leaves in the resolution tree);

ICLP 2011



20 Evolution of Ontologies using ASP

these are possible results for the evolution, as they satisfy the principles of success and validity.
In our example, these are: K4.1 = K0∪{c_IsA(a, b), c_IsA(c, b)}\{c_IsA(b, a), c_IsA(b, c)}
and K4.2 = K0 ∪ {c_IsA(a, b), c_IsA(a, c)} \ {c_IsA(b, a), c_IsA(c, a)}.

It remains to determine the “preferable” KB, i.e., the one that is “closest” to K0.
To do so, we first determine the “distance” between KBs using difference sets, called
deltas, which contain the positive/negative ground facts that need to be added/removed
from one KB to get to the other (denoted by ∆(K,K′)). In our example, ∆(K0,K4.1) =
{c_IsA(a, b), c_IsA(c, b),¬c_IsA(b, a),¬c_IsA(b, c)}, ∆(K0,K4.2) = {c_IsA(a, b),
c_IsA(a, c),¬c_IsA(b, a),¬c_IsA(c, a)}. Then, we can determine “closeness” using an
ordering that ranks ∆(K0,K4.1), ∆(K0,K4.2); both deltas have the same size (and this occurs
often), so ranking cannot be based on cardinality, but should also consider more subtle
differences, like the severity of changes.

Here, we consider the ordering defined in [11], which is denoted by <K0 , where K0 the
original KB. To define <K0 , we first order the available predicates in terms of severity (<pred);
for example, the addition of a class (predicate cs) is more important than the addition of
a subsumption (predicate c_IsA), i.e., c_IsA <pred cs. Then, ∆1 is preferable than ∆2
(denoted by ∆1 <K0 ∆2) iff the most important predicate (per <pred) appears less times
in ∆1. In case of a tie, the next most important predicate is considered, and so on. If the
deltas contain an equal number of ground facts per predicate, the ordering considers the
constants involved: a constant is considered more important if it occupies a higher position
in its corresponding subsumption hierarchy in the original KB. In this respect, ∆(K0,K4.1)
causes less important changes upon K0 than ∆(K0,K4.2), because the former affects b, c

(c_IsA(c, b),¬c_IsA(b, c)) whereas the latter affects c, a (c_IsA(a, c),¬c_IsA(c, a)); this
means that K4.1 is a preferred result (over K4.2), as ∆(K0,K4.1) <K0 ∆(K0,K4.2). The
ordering between ground facts that allows this kind of comparison is denoted by <G. For a
more formal and detailed presentation of the ordering, we refer the reader to [11].

We denote the evolution operation by •. In our example, we get K0 • C = K4.1. Note that
K0 • C results from applying the change, C, and its most preferable side-effects upon K0.

3 Answer Set Programming (ASP)

In what follows, we rely on the input language of the ASP grounder gringo [9] (extending the
language of lparse [18]) and introduce only informally the basics of ASP. A comprehensive,
formal introduction to ASP can be found in [2].

We consider extended logic programs as introduced in [17]. A rule r is of the following
form:

h← b1, . . . , bm,∼bm+1, . . . ,∼bn.

By head(r) = h and body(r) = {b1, . . . , bm,∼bm+1, . . . ,∼bn}, we denote the head and the
body of r, respectively, where “∼” stands for default negation. The head H is an atom a

belonging to some alphabet A, the falsum ⊥, or a cardinality constraint L {`1, . . . , `k}U . In
the latter, `i = ai or `i = ∼ai is a literal for ai ∈ A and 1 ≤ i ≤ k; L and U are integers
providing a lower and an upper bound. Such a constraint is true if the number of its satisfied
literals is between L and M . Either or both of L and U can be omitted, in which case they
are identified with the (trivial) bounds 0 and∞, respectively. A rule r such that head(r) = ⊥
is an integrity constraint; one with a cardinality constraint as head is called a choice rule.
Each body component Bi is either an atom or a cardinality constraint for 1 ≤ i ≤ n. If
body(r) = ∅, r is called a fact, and we skip “←” when writing facts below. In addition to
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rules, a logic program can contain #minimize statements of the form

#minimize[`1 = w1@L1, . . . , `k = wk@Lk].

Besides literals `j and integer weights wj for 1 ≤ j ≤ k, a #minimize statement includes
integers Lj providing priority levels. A #minimize statement distinguishes optimal answer
sets of a program as the ones yielding the smallest weighted sum for the true literals among
`1, . . . , `k sharing the same (highest) level of priority L, while for L′ > L the sum equals that
of other answer sets. For a formal introduction, we refer the interested reader to [17], where
the definition of answer sets for logic programs containing extended constructs (cardinality
constraints and minimize statements) under “choice semantics” is defined.

Likewise, first-order representations, commonly used to encode problems in ASP, are only
informally introduced. In fact, gringo requires programs to be safe, that is, each variable
must occur in a positive body literal. Formally, we only rely on the function ground to
denote the set of all ground instances, ground(Π), of a program Π containing first-order
variables. Further language constructs of interest, include conditional literals, like “a :b”, the
range and pooling operator “..” and “;” as well as standard arithmetic operations. The “:”
connective expands to the list of all instances of its left-hand side such that corresponding
instances of literals on the right-hand side hold [18, 9]. While “..” allows for specifying
integer intervals, “;” allows for pooling alternative terms to be used as arguments within an
atom. For instance, p(1..3) as well as p(1; 2; 3) stand for the three facts p(1), p(2), and p(3).
Given this, q(X) :p(X) results in q(1), q(2), q(3). See [9] for detailed descriptions of the input
language of the grounder gringo.

4 Evolution using ASP

4.1 Potential Side-Effects
In order to determine the result of updating a KB, we need to determine the side-effects
that would resolve any possible validity problems caused by the change. The general idea is
simple: since the original KB is valid, a change causes a violation if it adds/removes a fact
that renders some constraint invalid. Let us denote by ∇ the set of potential side effects of a
change C. Given a set of facts C, we will write C+/C− to denote the positive/negative facts
of C respectively. First of all, we note that ∇ will contain all facts in C, except those already
implied by K, i.e., if p(~x) ∈ C+ and p(~x) /∈ K, then p(~x) ∈ ∇+, and if ¬p(~x) ∈ C− and
p(~x) ∈ K then ¬p(~x) ∈ ∇− (Condition I). The facts in the set ∇+ ∪ K are called available.
This initial set of effects may cause a constraint violation. Note that a constraint r is violated
during a change iff the right-hand-side (rhs) of r becomes true and the left-hand-side (lhs) is
made false. Thus, if a potential addition ∇+ makes the rhs of r true, and lhs is false, then we
have to add some fact from the lhs of the implication to the potential positive side-effects (to
make lhs true) (Condition II), or remove some fact from rhs (to make it false) (Condition III).
If a removal in ∇− makes the lhs of r false, and all other facts in rhs are available (so rhs is
true), we have to remove some fact from rhs (to make it false) (Condition IV). To do that,
we first define a select function si(X) = X \ {Xi} on a set X of atoms, to remove exactly
one element of a set. So we can then refer to the element Xi and the rest of the set si(X)
separately. Abusing notation, we write pred(p, ~U) for pred(p1, ~U), . . . , pred(pn, ~U), for any
predicate name pred where p is the set of atoms p1(~U), . . . , pbody(~U).

Formally, a set ∇ is a set of potential side-effects for a KB K and a change C, if the
following conditions are all true:
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Table 4 Instance from example in Fig. 1

kb(ci, (x)).
kb(cs, (a)). kb(cs, (b)). kb(cs, (c)).

kb(c_IsA, (b, c)). kb(c_IsA, (b, a)). kb(c_IsA, (c, a)).
kb(c_Inst, (x, b)). kb(c_Inst, (x, c)). kb(c_Inst, (x, a)).

changeAdd(c_IsA, (a, b)).

I x ∈ ∇ if x ∈ C+ and x /∈ K or x ∈ C− and ¬x ∈ K,
II ∀~Vh qh(~U, ~Vh) ∈ ∇+ if sl(p(~U)) ⊆ ∇+ ∪ K and pl(~U) ∈ ∇+ and qh(~U, ~Vh) /∈ K
III ¬pj(~U) ∈ ∇− if sj(sl(p(~U))) ⊆ ∇+ ∪ K and pl(~U) ∈ ∇+ and pj(~U) ∈ K and for all ~Vh

either ¬qh(~U, ~Vh) ∈ ∇− or qh(~U, ~Vh) /∈ K
IV ¬pl(~U) ∈ ∇− if sl(p(~U)) ⊆ ∇+ ∪ K and pl(~U) ∈ K and ∀~Vh ¬qh(~U, ~Vh) ∈ ∇−,

for each constraint r defined in Section 2.3 and for all variable substitutions for ~U wrt E(~U)
and for all 1 ≤ l, j ≤ body, l 6= j, 1 ≤ h ≤ head.

Our goal is to find a ⊂-minimal set of potential side-effects ∇. We do this using the
grounder gringo, which ground-instantiates a logic program with variables. We create a logic
program where the single solution is the subset minimal set of potential side-effects ∇.

To build a logic program, we first have to define the inputs to the problem, called instance.
An instance I(K,C) of a KB K and a change C is defined as a set of facts

I(K, C) = {kb(p, ~x) | p(~x) ∈ K}
∪ {changeAdd(p, ~x) | p(~x) ∈ C+}
∪ {changeDel(p, ~x) | p(~x) ∈ C−}.

In the above instance, predicate kb contains the facts in the KB, whereas predicates
changeAdd, changeDel contain the facts that the change dictates to add/delete respectively.
Note that this representation forms a twist from the standard representation, since a ground
fact p(~x) ∈ K is represented as kb(p, ~x) (same for the change). The representation of the KB
K in Fig. 1 and its demanded change C can be found in Table 4.

Furthermore we have to collect all resources available in the KB (1) or newly introduced
by the change (2). So the predicate dom associates a resource to its type,

dom(type(Xi), Xi)← kb(T, ~X). (1)

dom(type(Xi), Xi)← changeAdd(T, ~X). (2)

for all Xi ∈ ~X. The following two rules ((3) and (4)) correspond to Condition I above,
stating that the effects of C should be in ∇ (unless already in K). The predicates pAdd and
pDelete are used to represent potential side effects (additions and deletions respectively), i.e.,
facts in the sets ∇+,∇−.

pDelete(T, ~X)← changeDel(T, ~X), kb(T, ~X). (3)

pAdd(T, ~X)← changeAdd(T, ~X),∼kb(T, ~X). (4)

To find those facts that are added due to subsequent violations, we define, for the set ∇+∪K,
the predicate avail in (5) and (6). For negative potential side-effects ∇− we use a predicate
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Table 5 Potential side-effects of example in Fig. 1

c_IsA(a, b) c_IsA(c, c) c_IsA(c, b)
c_IsA(b, b) c_IsA(a, a) c_IsA(a, c)
¬c_IsA(b, a) ¬c_IsA(b, c) ¬c_IsA(c, a)

nAvail (7).

avail(T, ~X)← kb(T, ~X). (5)

avail(T, ~X)← pAdd(T, ~X). (6)

nAvail(T, ~X)← pDelete(T, ~X). (7)

At a next step, we need to include the ontological constraints R into our ASP program,
by creating the corresponding ASP rules. Unlike standard ontological constraints which
determine whether there is an invalidity, the ASP rules are used to determine how to handle
an invalidity. So now consider a constraint r ∈ R as defined in Section 2.3. For r, we define
a set of rules ((8)) that produce the set of potential side-effects according to Condition II.

pAdd(qh, (~U, ~Vh))← e(~U), avail(sl(p), ~U), pAdd(pl, ~U),

∼kb(qh, (~U, ~Vh)), dom(type(~Vh), ~Vh). (8)

for all 1 ≤ l ≤ body and 1 ≤ h ≤ head. Similarly, to capture Condition III, we need two sets
of rules ((9) and (10)), since we do not want to do this only for negative side-effects nAvail
on the lhs of the rule, but also for facts that are not in the KB K,

pDelete(pj , ~u)← e(~U), avail(sj(sl(p)), ~U), pAdd(pl, ~U), kb(pj , ~U),

nAvail(qh, (~U, ~Vh)) : dom(type(~Vh), ~Vh). (9)

pDelete(pj , ~U)← e(~U), avail(sj(sl(p)), ~U), pAdd(pl, ~U), kb(pj , ~U),

∼kb(qh, (~U, ~Vh)) : dom(type(~Vh), ~Vh). (10)

for all 1 ≤ l, j ≤ body, l 6= j, 1 ≤ h ≤ head. The last Condition IV can be expressed by the
following rule set (11)

pDelete(pl, ~U)← e(~U), avail(sl(p), ~U), kb(pl, ~U),

pDelete(qh, ~U, ~Vh) : dom(type(~Vh), ~Vh). (11)

for all 1 ≤ l ≤ body and 1 ≤ h ≤ head.
I Proposition 1. Given a KB K and a change C, and let A be the unique answer set of
the stratified logic program ground(I(K, C) ∪ {(1) . . . (11)}), then ∇ = {p(~x) | pAdd(p, ~x) ∈
A} ∪ {¬p(~x) | pDelete(p, ~x) ∈ A} is a subset minimal set of potential side-effects of the KB
K and the change C.
For our example in Fig. 1, this results in the set of potential side-effects in Table 5. Note
that the potential side-effects contain all possible side-effects, including side-effects that will
eventually not appear in any valid change.

4.2 Solving the Problem
Note that the set of potential side-effects computed above contains all options for evolving
the KB. However, some of the potential changes in pAdd, pDelete are unnecessary; in our
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running example, the preferred solution was {c_IsA(a, b),¬c_IsA(b, a),¬c_IsA(b, c)} (see
Section 2), whereas Table 5 contains many more facts.

To compute the actual side-effects (which is a subset of the side-effects in pAdd, pDelete),
we use a generate and test approach. In particular, we use the predicate add(p, ~x) and
delete(p′, ~x′) to denote the set of side-effects p(~x) ∈ ∆(K,K′) (respectively ¬p′(~x′) ∈ ∆(K,K′))
and use choice rules to guess side-effects from pAdd, pDelete to add, delete respectively (see
(12), (13) below).

{add(T, ~X) : pAdd(T, ~X)}. (12)

{delete(T, ~X) : pDelete(T, ~X)}. (13)

Our changed KB is expressed using predicate kb′ and is created in (14) and (15) consisting
of every entry from the original KB that was not deleted and every entry that was added.

kb′(T, ~X)← kb(T, ~X),∼delete(T, ~X). (14)

kb′(T, ~X)← add(T, ~X). (15)

Moreover, we have to ensure that required positive (negative) changes C are (not) in the new
KB respectively (Principle of Success) ((16) and (17)).

← changeAdd(T, ~X),∼kb′(T, ~X). (16)

← changeDel(T, ~X), kb′(T, ~X). (17)

To ensure the Principle of Validity we construct all constraints from the DEDs R, using
the following transformation for each r ∈ R:

← kb′(p, ~U),∼1{kb′(qi, (~U, ~Vi) : dom(type(~Vi), ~Vi))}, e(~U). (18)

for all 1 ≤ i ≤ head. Rule (18) ensures that if the rhs of a constraint is true wrt to the new
KB and the lhs if false, then the selected set of side-effects is no valid solution.

I Proposition 2. Given a KB K, a change C and a set of potential side-effects ∇, we
define a set of facts ∇′ = {pAdd(p, ~x) | p(~x) ∈ ∇} ∪ {pDelete(p, ~x) | ¬p(~x) ∈ ∇}. Let
A be the answer set of the logic program ground(I(K, C) ∪ ∇′ ∪ {(12) . . . (18)}), then
∆(K,K′) = {p(~x) | add(p, ~x) ∈ A} ∪ {¬p(~x) | delete(p, ~x) ∈ A} is a valid change of KB K.

4.3 Finding the Optimal Solution

The solutions contained in add, delete are all valid solutions, per the above proposition, but
only one of them is optimal, per the Principle of Minimal Change. So, the solutions must
be checked wrt to the ordering <K. We generate minimize statements for the criteria <pred

and <G (see Section 3). Several minimize constraints can be combined and the order of the
minimize statements is respected. As gringo allows hierarchical optimization statements, we
can easily express the whole ordering <K in a set of optimize statements O.

I Proposition 3. Given a KB K, a change C and a set of potential side-effects ∇, we define a
set of facts ∇′ = {pAdd(p, ~x) | p(~x) ∈ ∇}∪{pDelete(p, ~x) | ¬p(~x) ∈ ∇}. Let A be the answer
set of the logic program ground(I(K, C) ∪ ∇′ ∪ {(12) . . . (18)}), which is minimal wrt the
optimize statements O then ∆(K,K′) = {p(~x) | add(p, ~x) ∈ A} ∪ {¬p(~x) | delete(p, ~x) ∈ A}
is the unique valid minimal change of KB K.
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5 Refinements

In this section, we refine the above direct translation, in order to increase the efficiency of our
logic program. Our first optimization attempts to reduce the size of the potential side-effects
∇, whereas the second takes advantage of deterministic consequences of certain side-effects
to speed-up the process.

5.1 Incrementally Computing Side-Effects
As the set of potential side-effects directly corresponds to the search space for the problem
(see (12), (13) in Section 4), we could improve performance if a partial set of potential
side-effects that contains the minimal solution was found, instead of the full set. According
to the ordering of the solutions <pred, a set of side-effects that does not contain any fact with
a level greater than k is “better” than a solution that does. Thus, we split the computation
of the possible side-effects into different parts, one for each level of <pred optimization. We
start the computation of possible side-effects with k = 1, only adding facts of level 1 to repair
our KB. If with this subset of possible side-effects no solution to the problem can be found,
we increase k by one and continue the computation, reusing the already computed part of
the potential side-effects. For grounding, this means we only want to have the possibility
to find potential side-effects p(~x) of a level less than or equal to k. The corresponding ASP
rules can be found in the extended version of this paper [15] and are denoted by I.

We define the operator T (K, C, k), as T (K, C, 0) = ground(I(K, C)) and T (K, C, k) where
k > 0 is the set of facts of the unique answer set of the logic program ground(T (K, C, k −
1) ∪ {I}). T (K, C, n) produces a subset of the potential side-effects only using repairs up to
level n. Given our example in Fig. 1, T (K, C, 7) gives us the first two rows of Table 5.

5.2 Exploiting Deterministic Side-Effects
A second way to improve performance is to consider deterministic side-effects of the original
changes. As an example of a deterministic side-effect, suppose that the original change
includes the deletion of a class a (corresponding to the side-effect ¬cs(a)). Then, per rule R5
(cf. Table 2), all class subsumptions that involve a must be deleted as well (corresponding to
the side-effect ¬c_IsA). Therefore, the latter side-effect(s) are a necessary (deterministic)
consequence of the former, so they can be added to the set of side-effects right from the
beginning (at level 1). For the detailed logic program we refer to [15]. In this way we extend
our change by deterministic consequences, to possibly reduce the number of incremental steps.
For our example in Fig. 1 this results in the additionally required changeDel(c_IsA, (b, a)).

6 Experiments

We experimented with two real-world ontologies of different size and structure, namely GO [7]
and CIDOC [6] (∼458.000/∼1.500 facts). GO’s emphasis is on classes, whereas CIDOC
contains many properties. To generate the changes, we took each ontology K, randomly
selected 6 facts I ⊆ K, and deleted I from K, resulting in a valid KB K′. We then created our
“pool of changes”, IC , which contains 6 randomly selected facts from K′ (deletions) and the 6
facts from I (additions). The change C was a random selection of n facts from IC (1 ≤ n ≤ 6).
Our experiment measured the time required to apply C upon K′. The above process was
repeated 100 times for each n (1 ≤ n ≤ 6). The benchmark was run on a machine with
4 × 4 CPUs, 3.4Ghz each and was restricted to 4 GB of RAM. Our implementation uses
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Table 6 (a) GO benchmark (b) CIDOC benchmark

n times level timeouts n times level timeouts
1 123.3 2.37 0 1 2.2 10.70 0
2 243.7 4.72 0 2 3.3 16.28 20
3 454.6 8.50 0 3 3.4 16.15 30
4 619.0 11.94 0 4 7.0 16.96 51
5 711.1 13.44 2 5 3.5 16.19 66
6 756.1 14.27 6 6 7.3 18.00 76

gringo3.0.4 and clasp2.0.0RC1. A timeout of 3600 seconds was imposed on each run. Table 6
contains the results of our experiments in GO and CIDOC respectively. Each row in the
table contains the experiments for one value of n (size of C) and shows the average CPU
time (in seconds) of all runs that did not reach the timeout (column “times”), the average
level of incremental grounding where the solution was found (“level”) and the number of
timeouts (“timeouts”).

The results of our experiments are encouraging. GO, despite its large size and the
intractable nature of the evolution problem, can evolve in a decent amount of time, and
has very few timeouts. On the other hand, CIDOC has lots of timeouts, but very fast
execution when no timeout occurs. This indicates that the deviation of execution times,
even for KBs/changes of the same size, is very large for CIDOC, i.e., the performance is
largely affected by the morphology of the input. This behaviour is much less apparent in GO,
and is caused by the existence of many properties in CIDOC. Any violated property-related
constraint greatly increases the number of potential side-effects. Thus, for updates causing
many property-related violations, the execution time increases, often causing timeouts. Given
that GO contains no properties, the execution times are more smooth. Another observation
is that there is a strong correlation between the level, the average time reported and the size
of the change.

7 Summary and Outlook

We studied the problem of ontology evolution in the presence of ontological constraints.
Based on the setting and solution proposed in [11], we recast the problem and reduced it to
an ASP program that can be solved by an optimized ASP reasoner. Given that the problem
is inherently exponential in nature [11], the reported times (Table 6) for the evolution of two
real-world ontologies (GO/CIDOC) are decent. To the best of our knowledge, there is no
comparable approach, because the approach presented in [11] did not report any experiments,
and other similar approaches either do not consider the full set of options (therefore returning
a suboptimal evolution result), or require user feedback. An interesting side-product of our
approach is that we can repair ontologies by simply applying the empty change upon them;
we plan to explore this idea as a future work. We will also consider additional optimizations
using incremental ASP solvers such as iclingo [10].
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Abstract
Representing and solving constraint satisfaction problems is one of the challenges of artificial
intelligence. In this paper, we present answer set programming (ASP) models for an important
and very general class of constraints, including all constraints specified via grammars or automata
that recognise some formal language. We argue that our techniques are effective and efficient,
e.g., unit-propagation of an ASP solver can achieve domain consistency on the original constraint.
Experiments demonstrate computational impact.
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1 Introduction

Answer set programming (ASP; [3]) provides a compact, declarative, and highly competitive
approach to modelling and solving constraint satisfaction problems (CSP) [21, 9, 11]. CSP
are combinatorial problems defined as a set of variables whose value must satisfy a number of
limitations (the constraints), and stem from a variety of areas. One very promising method
for scheduling, rostering and sequencing problems is to specify constraints via grammars
or automata that recognise some formal language [23, 27, 25, 16]. For instance, we might
want to ensure that anyone working three consecutive shifts then has two or more days
off, or that an employee changes activities only after a fifteen minutes break or one hour
lunch. Grammar-based constraint propagators were proposed in [27, 25], and modelled with
Boolean satisfiability (SAT; [4]) in [26, 1], while an automata-based constraint propagator was
presented in [23], and modelled with SAT in [2]. Whilst SAT models can be directly converted
into ASP [21], we here show that grammar and related constraints can be modelled with
ASP in a more straightforward and easily maintainable way without paying any penalty,
e.g., in form of efficiency, for using ASP. First, we show that the grammar constraint can
be modelled with ASP based on the production rules in the grammar. Second, we present
alternative ASP models for a special case of the grammar constraint, that is, the regular
constraint, based on deterministic finite automata. Third, we give theoretical results on
the pruning achieved by unit-propagation of an ASP solver, and runtime complexity. Forth,
we provide an ASP model for the precedence constraint [18] which is a special case of
the regular constraint. It is useful for breaking value symmetry in CSP. We argue that
our encoding improves runtime complexity over regular. Finally, we demonstrate the
applicability of our approach on shift-scheduling and graph colouring instances. We show
that symmetry breaking using our ASP models yield significant improvements in runtime,
and outperforms recent generic approaches to symmetry breaking for ASP.
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2 Background

Answer Set Programming

A (normal) logic program over a set of primitive propositions A, ⊥ ∈ A, is a finite set of
rules r of the form

a0 ← a1, .., am, not am+1, .., not an

where ai ∈ A are atoms for 0 ≤ i ≤ n, and {a1, .., am, not am+1, .., not an} is the body of r.
We also consider choice rules of the form
{h1, .., hk} ← a1, .., am, not am+1, .., not an

that allow for the nondeterministic choice over atoms in {h1, .., hk}. Their semantics is
given through program transformations [28]. The answer sets of a logic program Π can
be characterised as Boolean assignments A over the atoms and bodies in Π, dom(A), that
satisfy nogoods imposed by Π [13]. Formally, an assignment A is a set {σ1, .., σn} of (signed)
literals σi expressing that a ∈ dom(A) is assigned true or false. The proposition ⊥ denotes an
atom that is false in every assignment. In our context, a nogood [8] is a set δ = {σ1, .., σm}
of literals, expressing a condition violated by any assignment A if δ ⊆ A. Nogoods allow
for a transparent technology transfer from SAT since every nogood can be syntactically
represented by a clause, for instance, inferences in ASP can be viewed as unit-propagation
on nogoods [13]. For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that δ is unit
and the complement of σ is unit-resulting if δ \A = {σ}. Unit-propagation is the process of
repeatedly extending A by unit-resulting literals until no unit nogood remains or is violated.
A total assignment A is a solution to a set of nogoods ∆ if δ 6⊆ A for all δ ∈ ∆. Given a logic
program Π, one can specify a set of nogoods such that its solutions capture the models of
the Clark’s completion of Π [6, 13]. We denote this set ∆(Π). If Π is tight [12], the solutions
to ∆(Π) are precisely the answer sets of Π. (All logic programs presented in this paper are
tight.) Otherwise, loop formulas, expressed in the set of nogoods Λ(Π), have to be added to
establish full correspondence to the answer sets of Π [19].

Constraint Satisfaction

We want to use ASP to model and solve CSP. Formally, a CSP is a triple (V,D,C) where
V is a finite set of variables, D is a set of finite domains such that each variable v ∈ V
has an associated domain dom(v) ∈ D, and C is a set of constraints. A constraint c is a
pair (RS , S) where RS is an n-ary relation on the variables in S ∈ V n, called the scope of c. A
(variable) assignment v 7→ t means that variable v ∈ V is mapped to the value t ∈ dom(v). A
(compound) assignment (v1, .., vm) 7→ (t1, .., tm) denotes the assignments vi 7→ ti, 1 ≤ i ≤ m.
A constraint c = (RS , S) is satisfied iff S 7→ (t1, .., tm) and (t1, .., tm) ∈ RS . A solution of a
CSP is an assignment for all variables in V satisfying all constraints in C. Constraint solvers
typically use backtracking search to explore assignments in a search tree. In a search tree,
each node represents an assignment to some variables, child nodes are obtained by selecting
an unassigned variable and having a child node for each possible value for this variable, and
the root node is empty. Every time a variable is assigned a value, a propagation stage is
executed, pruning the set of values for the other variables, i.e., enforcing a certain type of local
consistency such as domain consistency. An n-ary constraint c = (RS , S) is domain consistent
iff whenever a variable vi ∈ S is assigned a value ti ∈ dom(vi), there exist compatible values
in the domains of all the other variables tj ∈ dom(vj) for all 1 ≤ j ≤ n, j 6= i such that
(t1, .., tn) ∈ RS , forming a support for vi 7→ ti.
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Grammar Constraints

We will consider constraints requiring that values taken by the sequence of variable in
its scope belong to a formal language generated by a context-free grammar or accepted
by an automaton. A context-free grammar (CFG; [5]) is formally defined as a quadruple
G = (N,Σ, P, S), where N is a finite set of nonterminal symbols, Σ is a finite set of terminal
symbols (disjoint from N), P ⊆ N×(N∪Σ)∗ is a set of production rules, and the distinguished
start nonterminal S ∈ N . We often omit to specify the complete quadruple and only provide
the set of productions using the following conventions: capital letters denote nonterminals
in N , lowercase letters denote terminals in Σ, and υ and ω denote a sequence of letters called
string. We also assume that S is the start nonterminal. Moreover, productions (A,ω) ∈ P
can be written as A ::= ω, and productions (A,ω1), .., (A,ωm) ∈ P can be written as
A ::= ω1 | .. | ωm. We write υ1Aυ2 ⇒G υ1ωυ2 iff (A,ω) ∈ R, ω1 ⇒∗G ωm iff there exists a
sequence of strings ω2, .., ωm−1 such that ωi ⇒G ωi+1 for all 1 ≤ i < m. For ω1 ⇒∗G ωm we
say that ω1 generates ωm and ω1 is derived from ωm. The language produced by G is the set of
strings LG = {ω ∈ Σ∗ | S ⇒∗G ω}. A CFG is in Chomsky normal form iff all productions are
of the form A ::= a or A ::= BC. Every CFG G such that the empty string ε is not generated
by G can be transformed into a grammar H such that LG = LH and H is in Chomsky normal
form. Transformations are described in most textbooks on automata theory, such as [14],
with at most a linear increase in the size of the grammar. Given a CFG G, the grammar
constraint grammar(G, [v1, .., vn]) is satisfied by just those assignments to the sequence of
variables (v1, .., vn) which belong to the language produced by G [27, 25].

The regular constraint [23] regular(G, [v1, .., vn]) is a special case of the grammar
constraint, i.e., it accepts just those assignments to the sequence of variables (v1, .., vn)
which belong to the regular language, that is, produced by a regular grammar G. As we
are recognising only strings are of a fixed length, a transformation of grammar constraints
into regular constraints which may increase the space required to represent the constraint
is presented in [17]. Regular languages are strictly contained within context-free languages,
and can be specified with productions of the form A ::= t or A ::= tB. Alternatively,
regular languages can be specified by means of an automaton. A deterministic finite
automaton (DFA) M is a quintuple (Q,Σ, δ, q0, F ), where Q is a finite, non-empty set of
states, Σ is a finite, non-empty input alphabet, δ is a transition function Q×Σ→ Q, q0 is the
initial state, and F is a set of accepting states. A DFA takes a sequence of input symbols ω
as input, each symbol t ∈ Σ causes M to perform a transition from its current state q to a
new state δ(q, t), where M starts off in the state q0. The input ω is recognised by M iff ω
causes M to transition from q0 in one of the accepting states. The language recognised by
M is the set of inputs LM = {ω ∈ Σ∗ | M recognises ω}. Given a DFA M , the regular
constraint regular(M, [v1, .., vn]) is satisfied on just those assignments to the sequence of
variables (v1, .., vn) which belong to the language recognised by M .

The precedence constraint [18] is a special case of the regular constraint. It is used for
breaking symmetries of interchangeable values in a CSP. A pair of values are interchangeable
if we can swap them in any solution. Pairwise precedence of s over t in a sequence of variables
(v1, .., vn), denoted as precedence([s, t], [v1, .., vn]), holds iff whenever there exists j such
that vj 7→ t, then there must exist i < j such that vi 7→ s. Many CSPs, however, involve
multiple interchangeable values, not just two. For instance, when we assign colours to vertices
in the graph colouring problem, all values are interchangeable. Then, the precedence
constraint precedence([t1, .., tm], [v1, .., vn]) holds iff min({i | vi 7→ tk}∪{n+1}) < min({i |
vi 7→ t`} ∪ {n + 2}) for all 1 ≤ k < ` < m. A similar idea for breaking symmetries in the
planning domain is presented in [15].
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Modelling Multi-valued Variables
We want to model grammar, regular, and precedence constraints with ASP. Their
encoding requires access to information on the variables v1, .., vn in the scope of the constraint,
i.e., information on possible assignments vi 7→ t with t ∈ dom(v). In this paper, we will
follow previous work on modelling CSP with ASP [11], and maintain a consistent set of
assignments through translation into ASP together with our constraint encodings. Each
possible assignment vi 7→ t is represented by an atom [[vi 7→ t]]. It is false iff t has been pruned
from the domain of vi. Conversely, it is true iff vi 7→ t. The following rules, collected in
encode([v1, .., vn]), ensure that one and only one value tij

∈ Σ can be assigned, for 1 ≤ i ≤ n
and dom(vi) = {ti1 , .., tim

}.
{[[vi 7→ ti1 ]], .., [[vi 7→ tim

]]} ←
⊥ ← [[vi 7→ tij ]], [[vi 7→ tik

]], j 6= k

⊥ ← not [[vi 7→ ti1 ]], .., not [[vi 7→ tim ]]
Although there are O(nm2) nogoods resulting from this ASP model, unit-propagation
is performed on these nogoods in O(nm). A more compact O(nm) representation that
propagates in O(nm) time is presented in [11, 28].

3 Modelling the Grammar Constraint

We show here how to model grammar(G, [v1, .., vn]) with ASP in a very straightforward way,
based on the well known CYK parser [29] which requires the CFG to be in Chomsky normal
form. Our encoding of the CYK parser constructs a parsing table T where each A ∈ T [i, j]
is a nonterminal symbol that is derived from a substring ω of j symbols starting at the ith
symbol such that the assignment (vi, vi+1, .., vi+j−1) 7→ ω is possible. Our O(|P |n3) sized
ASP model, denoted as encode(G), is as follows:
1. We introduce new atoms A(i, j) which are true iff A ∈ A[i, j]. A consistent assignment

to A(i, j) is enforced by the rules that follow below.
2. Each production of the form A ::= t is encoded by

A(i, 1)← [[vi 7→ t]]
which states that A can be derived from the ith symbol if vi 7→ t, i.e., the ith symbol is t.

3. Each production of the form A ::= BC is encoded by
A(i, j)← B(i, k), C(i+k, j−k).

Intuitively, above rule states that A is derived from the string starting at the ith symbol
of length j if B is derived from the substring starting at the ith symbol of length k, and
C is derived from the substring starting at the i+kth symbol of length j−k. In other
words, k splits the string generated by A into the substrings B and C.

4. Finally, the condition that the start nonterminal S has to be derived from the input
string is captured by
⊥ ← not S(1, n)

which expresses that every answer set of the resulting ASP model contains S(1, n).

I Theorem 1. The assignments satisfying grammar(G, [v1, .., vn]) correspond one-to-one
to the answer sets of encode(G) ∪ encode([v1, .., vn]).
The theorem follows from the proof of correctness of the CYK parser. Unfortunately, our
straightforward ASP model is not very efficient from a theoretical point of view, i.e., it does
not prune all possible values.
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I Example 2. Consider the following CFG G given through the productions S ::= SA | AS | b
and A ::= a. Suppose the input sequence of length 2, (v1, v2) with dom(v1) = dom(v2) =
{a, b, c}. Our model encode(G) comprise the following rules

A(1, 1)← [[v1 7→ a]] S(1, 1)← [[v1 7→ b]] S(1, 2)← S(1, 1), A(2, 1)
A(2, 1)← [[v2 7→ a]] S(2, 1)← [[v2 7→ b]] S(1, 2)← A(1, 1), S(2, 1)

⊥ ← not S(1, 2)
Although the value c does not appear in a satisfying assignment for grammar(G, [v1, v2]),
unit-propagation on ∆(encode(G) ∪ encode([v1, v2])) does not prune c from the domains.

A SAT model of the grammar constraint, based on and-or-graphs, such that unit-propagation
achieves domain consistency on the original constraint was presented in [26]. To achieve
a similar result, we revise our ASP model that we now denote encodeDC(G). The idea is
that A(i, j) is set to true iff the nonterminal A participates in a successful parsing of the
input string starting from the start nonterminal S.
1. We introduce atoms A(i, j) which are true iff S ⇒∗G ω1Aω2 ⇒∗G ω for some ω1, ω2,

where ω is the input string and A is derived by the substring starting from i of length j.
Similarly, we introduce atoms ωBC(i, j) which indicate whether S ⇒∗G ω1BCω2 ⇒∗G ω
and the two nonterminals BC is derived by the substring starting from i of length j.
A consistent assignment to A(i, j), ωBC(i, j) respectively, is enforced by the rules that
follow below.

2. Each production of the form A ::= t is now encoded by
{A(i, 1)} ← [[vi 7→ t]] .

To ensure that unit-propagation prunes all possible values, we capture the condition
that for each assignment vi 7→ t there exist a nonterminal A that generates t at the ith
symbol and participates in a successful parsing starting from S. Let A1, .., Am be all
nonterminals such that A` ::= t for 1 ≤ ` ≤ m. We encode support for vi 7→ t by
⊥ ← [[vi 7→ t]], not A1(i, 1), .., not Am(i, 1) .

3. Each production of the form A ::= BC is encoded by
{A(i, j)} ← ωBC(i, j) {ωBC(i, j)} ← B(i, k), C(i+k, j−k)

stating that if a production for A applies (e.g., the string ωBC), then A may or may not be
in a parsing starting from S. To ensure that unit-propagation prunes all possible values,
we have to encode the condition that whenever ωBC(i, j) is true then there must be a
nonterminal A that generates BC, i.e., S ⇒∗G ω1Aω2 ⇒G ω1BCω2 ⇒∗G ω for some ω1,
ω2, where ω is the input string and A ::= BC. Let A1, .., Am be all such nonterminal A.
Then we encode this condition by
⊥ ← ωBC(i, j), not A1(i, j), .., not Am(i, j) .

Similarly, we encode support for each nonterminal A′ ∈ N \ {S}, i.e., A′ must be in the
right-hand-side of a production, say the string ωBC for A′ = B or A′ = C, such that
S ⇒∗G ω1ωBCω2 ⇒G ω1BCω2 ⇒∗G ω for some ω1, ω2, where ω is the input string. Let
ωBC,1, .., ωBC,m be all such strings ωBC . Then we encode this condition by
⊥ ← A′(i, j), not ωBC,1(i1, j1), .., not ωBC,m(im, jm) .

Observe that for all 1 ≤ ` ≤ m we have either i` = i or j` = j. Hence, there are only
O(|P |n3) rules from this item, i.e., encodeDC(G) does not increase the space complexity
over encode(G).

4. The condition that the starting nonterminal S has to generate the input string remains
unchanged.
⊥ ← not S(1, n)
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Altogether, the rules in encodeDC(G) enforce that whenever A(i, j) is in an answer set then
the nonterminal A is used to generate the substring at the ith symbol of length j in a
successful parsing starting from S. This observation also applies to ωBC(i, j).

I Example 3. Consider again the CFG G from Example 2, again applied to (v1, v2) with
dom(v1) = dom(v2) = {a, b, c}. Our ASP model encodeDC(G) comprises the following rules
{A(1, 1)} ← [[v1 7→ a]] {S(1, 1)} ← [[v1 7→ b]] {ωSA(1, 2)} ← S(1, 1), A(2, 1)
{A(2, 1)} ← [[v2 7→ a]] {S(2, 1)} ← [[v2 7→ b]] {ωAS(1, 2)} ← A(1, 1), S(2, 1)
{S(1, 2)} ← ωSA(1, 2) {S(1, 2)} ← ωAS(1, 2) ⊥ ← not S(1, 2)
⊥ ← ωSA(1, 2), not S(1, 2) ⊥ ← A(1, 1), not ωAS(1, 2) ⊥ ← S(1, 1), not ωSA(1, 2)
⊥ ← ωAS(1, 2), not S(1, 2) ⊥ ← A(2, 1), not ωSA(1, 2) ⊥ ← S(2, 1), not ωAS(1, 2)
⊥ ← [[v1 7→ a]], not A(1, 1) ⊥ ← [[v1 7→ b]], not S(1, 1) ⊥ ← [[v1 7→ c]]
⊥ ← [[v2 7→ a]], not A(2, 1) ⊥ ← [[v2 7→ b]], not S(2, 1) ⊥ ← [[v2 7→ c]]

Unit-propagation on ∆(encodeDC(G)∪ encode([v1, v2])) prunes the value c from the domains,
i.e., sets [[v1 7→ c]] and [[v2 7→ c]] to false.

Unit-propagation of an ASP solver provides an efficient propagator for free, i.e., unit-
propagation on our revised encoding is enough to achieve domain consistency.

I Theorem 4. The assignments satisfying grammar(G, [v1, .., vn]) correspond one-to-one to
the answer sets of encodeDC(G)∪ encode([v1, .., vn]). Unit-propagation on ∆(encodeDC(G)∪
encode([v1, .., vn])) enforces domain consistency on grammar(G, [v1, .., vn]) in O(|P |n3) down
any branch of the search tree.

The proof follows the one in [26], where an and-or-graph is created that is very similar to the
structure (i.e., the body-atom graph [20]) of encodeDC(G), and subsequently, a SAT formula
is constructed in a fashion that resembles the Clark’s completion of our ASP model. Note
that the propagators for the grammar constraint presented in [27, 25] have a similar overall
complexity.

An extension which is sometimes useful in practice but goes slightly outside CFGs
considers restrictions on some of the productions [26], e.g., in shift scheduling we want that
an employee works on an activity for a minimum of one hour. Then, for a production of
the form A ::= BC and conditions represented by cA(i, j), cB(i, j), cC(i, j) we restrict its
application by encoding A ::= BC in encode(G) by

A(i, j)← B(i, k), C(i+k, j−k), cA(i, j), cB(i, k), cC(i+k, j−k) .
This rule encodes that the nonterminal A generates a string starting at the ith symbol of
length j if (1) the condition cA(i, j) is satisfied, (2) B generates a string starting at the ith
symbol of length k such that the condition cB(i, k) is satisfied, and (3) C generates a string
starting at the i+kth symbol of length j−k such that the condition cC(i+k, j−k) is satisfied.
Similarly, productions of the form A ::= t can be constrained. The changes to encodeDC(G)
are symmetric.

4 Modelling the Regular Constraint

In some cases, we only need a regular language, e.g., generated by a regular grammar, to
specify problem constraints. One important point about regular grammars is that each
nonterminal A ∈ T [i, j] is derived by a substring at the ith symbol to the nth symbol, i.e.,
j = n. Using this insight we encode a production of the form A ::= tB in encode(G) as
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below, for 1 ≤ i ≤ n.
A(i, n−i+1)← [[vi 7→ t]], B(i+1, n−i)

The changes to encodeDC(G) are symmetric. For regular languages, propagation is faster.

I Theorem 5. If G is regular then unit-propagation on ∆(encodeDC(G)∪ encode([v1, .., vn]))
enforces domain consistency on grammar(G, [v1, .., vn]) in O(|P |n) down any branch of the
search tree.

Recall that each regular language L can also be specified by means of a DFA M =
(Q,Σ, δ, q0, F ) that accepts assignments to a sequence of variables iff it is a member of L.
One important advantage of using an automata-based representation is that it permits
to compress the ASP model using standard techniques for automaton minimisation. An
automata-based propagator for the regular constraint was first proposed in [23], and a
SAT model such that unit-propagation enforces domain consistency was presented in [2].
We show here how to model regular(M, [v1, .., vn]) with ASP in a straightforward and
easily maintainable way. Given M , we propose an ASP model, denoted encode(M), which
represents all possible states the DFA can be in after processing i symbols. An accepted
input string must generate a sequence of transformations starting at q0 and ending in some
finite state. Our encoding is as follows:
1. We introduce atoms qk(i) for each step i of M ’s processing, 0 ≤ i ≤ n, and each state

qk ∈ Q to indicate whether M is in state qk after having processed the first i symbols.
2. Each transition δ(qj , t) = qk is encoded as follows, for 1 ≤ i ≤ n.

qk(i)← qj(i−1), [[vi 7→ t]]
Intuitively, whenever M is in state qj after having processed the first i−1 symbols and M
reads t as the ith symbol then M transitions to the state qk in step i.

3. The condition that M must start processing in starting state q0 is captured by
q0(0)←

which sets q0(0) unconditionally to true.
4. To represent that M must not finish processing in a rejecting state qrej ∈ Q \ F , we post

⊥ ← qrej(n) .
Intuitively, it expresses the condition that no answer set contains qrej(n) for qrej ∈ Q \F .

To ensure that unit-propagation prunes all possible values, support has to be encoded. We
extend encode(M) by one item, resulting in encodeDC(M).
6. There is support for vi 7→ ti whenever there exists a transition δ(qj , t) = qk from the

state qj to the state qk at step i while reading t. To encode support for vi 7→ t, we define
auxiliary atoms d(qj , qk, i) for each transition δ(qj , t) = qk, for 1 ≤ i ≤ n, by

d(qj , qk, i)← qj(i−1), qk(i) .
Now, for each assignment vi 7→ t, we encode the existence of such a support by
⊥ ← [[vi 7→ t]], not d(qj1 , qk1 , i), not d(qj2 , qk2 , i), .., d(qjm , qkm , i) .

This rule is satisfied if either vi 7→ t has a support, or [[vi 7→ t]] is false.

I Theorem 6. The answer sets of encode(M) ∪ encode([v1, .., vn]) correspond one-to-one to
assignments that satisfy regular(M, [v1, .., vn]). Unit-propagation on ∆(encodeDC(M) ∪
encode([v1, .., vn])) enforces domain consistency on regular(M, [v1, .., vn]) in O(|δ|n) down
any branch of the search tree.
The proof follows the one in [2], i.e., we can exploit the fact that Clark’s completion of our
ASP model results in the SAT formula presented in [2]. Note that the propagator for the
regular constraint proposed in [23] has a similar overall complexity.
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5 Modelling the Precedence Constraint

For breaking value symmetry in a CSP, we only need a special case of the regular constraint.
Recall, precedence([t1, .., tm], [v1, .., vn]) holds iff whenever vj 7→ t` then there exists v 7→ tk
such that i < j, for all 1 ≤ k < ` ≤ m. We can model the precedence constraint with ASP.
Our encoding, denoted encode(pre[t1, .., tm]), is as follows:
1. We introduce new atoms taken(t`, j) for each t` ∈ [t1, .., tm], and each position j,

0 ≤ j ≤ n, to indicate whether vi 7→ t` for some i < j.
2. For each value t` ∈ [t1, .., tm], we encode that it has been taken if vi 7→ t`, 1 ≤ i ≤ n.

taken(t`, i+1)← [[vi 7→ tj ]]
To propagate the information to the other indices greater than i, our ASP model contains

taken(t`, i+1)← taken(t`, i) .
3. Finally, we post the condition that vj cannot be assigned a value t` such that t` ∈ [t1, .., tm]

if some value tk has not been taken by a variable vi such that i < j, 1 ≤ k < ` ≤ m.
⊥ ← [[vj 7→ t`]], not taken(tk, i)

Compared to our encodings for regular constraints, our ASP model for the precedence
constraint is more economical with respect to auxiliary variables and rule size while unit-
propagation can still enforce domain consistency.

I Theorem 7. The assignments satisfying precedence([t1, .., tm], [v1, .., vn]) correspond
one-to-one to the answer sets of encode(pre[t1, .., tm])∪ encode([v1, .., vn]). Down any branch
of the search tree, unit-propagation on ∆(encode(pre[t1, .., tm]) ∪ encode([v1, .., vn])) enforces
domain consistency on precedence([t1, .., tm], [v1, .., vn]) in O(m2n).

6 Experiments on Shift Scheduling

We tested the practical utility of our ASP models of the grammar constraint on a set of
shift-scheduling benchmarks [7]. The problem is to schedule employees in a company to
activities subject to the following rules. An employee either works on activity ai, has a
break b, has lunch l, or rests r. If the company business is open, an employee works on an
activity for a minimum of one hour and can change activities after a fifteen minutes break or
one hour lunch. Break and lunch both are scheduled between periods of work. A part-time
employee works at least three hours and at most six hours plus a fifteen minutes break, while
a full-time employee works at least six hours and at most eight hours plus an hour and a
half for the lunch and the breaks. Our goal is to minimise the number of hours worked. The
schedule of an employee is modelled with a sequence of 96 variables, each represents a time
slot of 15 minutes, that must be generated by the following CFG G.

S ::= RFR, cF (i, j) ≡ 30 ≤ j ≤ 38 F ::= PLP L ::= lL | l, cL(i, j) ≡ j = 4
S ::= RPR, cF (i, j) ≡ 13 ≤ j ≤ 24 P ::= WbW W ::= Ai, cW (i, j) ≡ j ≥ 4
Ai ::= aiAi | ai, cAi

(i, j) ≡ open(i) R ::= rR | r
Related work in [26] converts the shift scheduling problem into a SAT model, denoted SAT.
Experiments also consider our two ASP models of the grammar constraint: encode(G) and
encodeDC(G). We denote these models as ASP and ASP-DC, respectively. A bottom-up
ASP grounder such as gringo (3.0.3; [24]) can be employed to instantiate our models. Then,
the grounder simulates a CYK parser, i.e., it constructs all possible parsings for all possible
subsequences of the input string. However, as the CYK parser, it also instantiates productions
that cannot participate in a successful parsing, i.e., productions which are uninteresting for
us. We have implemented a grounder for the special purpose of this benchmark based on
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Table 1 Results on shift scheduling; |A|: number of activities; #: problem number; m: number of
employees; number of worked hours (boldfaced if best solution found amongst the different methods)

|A| # m ASP ASP-DC SAT |A| # m ASP ASP-DC SAT
1 2 4 26.00 26.25 26.00 2 1 5 25.00 25.00 25.00
1 3 6 37.25 37.50 37.50 2 2 10 58.00 58.75 59.25
1 4 6 38.00 38.00 38.00 2 3 6 39.50 40.25 39.50
1 5 5 24.00 24.00 24.00 2 4 11 68.25 68.50 69.00
1 6 6 33.00 33.00 33.00 2 5 4 24.50 24.75 25.50
1 7 8 49.00 49.00 49.00 2 6 5 28.25 29.25 28.50
1 8 3 20.50 20.50 20.50 2 8 5 32.00 32.75 32.25
1 10 9 54.00 54.25 54.25 2 9 3 19.00 19.00 19.00

2 10 8 57.25 57.75 57.00

the algorithm in [26]. This will allow for unit-propagation in the ASP model to achieve a
strong type of local consistency close to domain consistency. Experiments were run with
the system clasp (1.3.5; [24]) on a 2.00 GHz PC under Linux, where each run was limited
to 3600 sec time and 1 GB RAM. Table 1 presents the results for 17 satisfiable instances
of the benchmark involving one or two activities. The solver returned a feasible solution
for all instances regardless of the model after a few seconds, and subsequently optimised
the solution, where no model performs significantly better that the other. However, we can
draw a few conclusions. First, the ASP model encode(G) is strong enough in our setting, i.e.,
enforcing domain consistency does not increase runtime. And, second, we do not pay any
penalty for using our straightforward, easily maintainable ASP models vs the SAT model.

7 Experiments on Graph Colouring

A colouring of a graph (V,E) is a a mapping c from V to {1, .., k} such that c(v) 6= c(w) for
every edge (v, w) ∈ E with a given number k of colours. The graph colouring problem is
to determine the existence of a colouring. Our experiments consider different options for
breaking value symmetry between the colours: The options regular and regular-dc use
our ASP model for a DFA-based encoding of the precedence constraint. The option all
uses our ASP model for the precedence constraint to break all value symmetry. We denote
pairwise our ASP model of the method [18] which posts precedence constraints between
pairwise interchangeable values. The option none breaks no symmetry while generic
employs the preprocessor sbass (1.0; [24]) for symmetry breaking in terms of detected
symmetry generators [10]. We experimented on random graph colouring instances, but
restricted ourselves to 3-, 4- and 5-colourings, when we noticed that the relative performance
of symmetry breaking increased with each additional colour (exponentially with the number
of colours). For each of the k-colouring experiments we generated 600 instances around the
phase transition density with 400, 150, 75 vertices, respectively. All tests were run with the
system clasp (1.3.2) on a 2.00 GHz PC under Linux, where each run was limited to 600 s
time and 1 GB RAM. The results on 3-, and 5- colourings shown in Figure 1 indicate that
all symmetry breaking techniques considered in our study are effective, i.e., improve runtime.
The data on any colouring clearly suggest that the generic and regular methods are
inferior to enforcing value precedence through the precedence constraint using pairwise
and all, or regular-dc, where regular-dc outperforms regular due to the strong
type of local consistency achieved in regular-dc. For the 3-colouring case, all gives
a significantly better improvement compared to pairwise. For the 5-colouring case the
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Figure 1 Histogram of the average time required by different symmetry breaking approaches.

same conclusion can be drawn, albeit less convincing. (5-colouring instances have fewer
vertices, i.e., variables. This can improve propagation between precedence constraints in
pairwise.) The overall conclusion from our graph colouring experiments is that breaking all
value symmetry enforcing precedence is most effective.

8 Conclusions

Our work addresses modelling and solving CSP with ASP. We have presented ASP models
of grammar and related constraints specified via grammars or automata. Finally, we have
given an ASP model for the precedence constraint. All our encodings are straightforward
and easily maintainable without paying any penalty vs related SAT models. Unit-propagation
of an ASP solver can prune all values, i.e., unit-propagation can achieve domain consistency
on the original constraint. Future work concerns lazy modelling techniques [22] and ASP
encodings of further constraints useful for modelling and solving CSP.
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Abstract
This paper introduces an extension of Answer Set Programming (ASP) called Hybrid ASP which
will allow the user to reason about dynamical systems that exhibit both discrete and continuous
aspects. The unique feature of Hybrid ASP is that it allows the use of ASP type rules as
controls for when to apply algorithms to advance the system to the next position. That is, if
the prerequisites of a rule are satisfied and the constraints of the rule are not violated, then the
algorithm associated with the rule is invoked.
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1 Introduction

The purpose of this paper is to introduce an extension of Answer Set Programming (ASP)
which we call Hybrid ASP. The goal of Hybrid ASP is to allow the user to reason about
dynamical systems that exhibit both discrete and continuous aspects. The unique feature of
Hybrid ASP is that Hybrid ASP rules can be thought of as general input-output devices.
In particular, Hybrid ASP programs allow the user to include ASP type rules that act as
controls for when to apply a given algorithm to advance the system to the next position.

Modern computational models and simulations such as the model of dog’s heart described
in [6], the model of tsunami propagation described in [3], and the model of internal tides
within Monterey Bay and the surrounding area described in [5] rely on existing PDE solvers
and ODE solvers to determine the values of parameters. Such simulations proceed by invoking
appropriate algorithms to advance a system to the next state, which is often distanced by
a short time interval into the future from the current state. In this way, a simulation of
continuously changing parameters is achieved, although the simulation itself is a discrete
system. The parameter passing mechanisms and the logic for making decisions regarding
what algorithms to invoke and when are part of the ad-hoc control algorithm. Thus the laws
of a system are implicit in the ad-hoc control software.

On the other hand, action languages [2] which are also used to model dynamical systems
allow the users to describe the laws of a system explicitly. Initially action languages did not
allow simulation of the continuously changing parameters. This severely limited applicability
of such languages. Recently, Chintabathina introduced an action language H [1] where he
proposed an elegant approach to modeling continuously changing parameters. That is, a
program in H describes a state transition diagram of a system where each state models a
time interval where the parameter dynamics is a known function of time. However, the
implementation of H discussed in [1] cannot use PDE solvers nor ODE solvers. This means
that parameters governed by physical processes such as the distribution of heat or air
flow, that cannot be described explicitly as functions of time and realistic simulations of

© Alex Brik, Jeffrey R. Remmel;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 40–50

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.40
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


A. Brik, J. Remmel 41

which often require sophisticated numerical methods, cannot be modeled using the current
implementations of H.

Hybrid ASP is an extension of ASP that allows users to combine the strength of the
ad-hoc approaches, i.e. the use of numerical methods to faithfully simulate physical processes,
and the expressive power of ASP that provides the ability to elegantly model laws of a system.
Hybrid ASP provides mechanisms to express the laws of the modeled system via hybrid ASP
rules which can control execution of algorithms relevant for simulation.

In action languages like H, the goal is to compile an H program into a variant ASP
program that can be processed with current variant ASP solvers. Our long term goal is to
develop extensions of ASP solvers that can process Hybrid ASP programs. This would allow
us to develop Hybrid ASP type extensions of action languages like H that could be compiled
to Hybrid ASP programs which, in turn, would be processed by Hybrid ASP solvers.

Figure 1 A cross section of the regions to be traversed by Secret Agent 00111.

In this paper, we shall present the basic definitions of Hybrid ASP programs and define
an analogue of stable models for such programs. To help motivate our definitions, we shall
consider the following toy example. Imagine that Secret Agent 00111 (the agent, for short)
needs to move through a domain consisting of 3 areas: Area I, Area II, and Area III. The
domain’s vertical cross section is shown on the diagram ??. Area I is a mountain, Area II is
a lake, and Area III is a desert. Secret Agent 00111 needs to descend down the mountain in
his car until he reaches the lake at which point the car can be reconfigured so that it can be
used as a boat that can navigate across the lake. We shall assume that the lake has a water
current moving with a constant speed of 5m/s which makes an angle 4π

3 clockwise from
the positive direction of the x-axis. If Secret Agent 00111 is pursued by evil agents on his
trip down the mountain, he will accelerate the car at 4m/s2 in addition to the acceleration
due to gravity. If he is not pursued by evil agents, then he will simply coast down the hill.
Furthermore, if the agent is pursued by the evil agents then he will attempt to travel through
the lake as fast as possible, always steering at a 90 degrees angle to the opposite shore. If
the agent is not pursued by the evil agents then he would like to exit the lake at a point
with a y-coordinate being close to the y-coordinate of the point of his entrance into the lake.
To accomplish this, Secret Agent 00111 will be able to steer the boat in directions which
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make various angles to the x-axis. Finally upon entering the desert Secret Agent 00111 can
again begin to accelerate at 4m/s2.

The outline of this paper is as follows. In section 2 we shall introduce Hybrid ASP
programs. In section 3 we shall show how H-ASP programs can be used to model a dynamical
system for our secret agent problem. In section 4 we shall provide conclusions and directions
for further research.

2 Hybrid ASP

The main feature of H-ASP is to view rules as general input-output devices. Informally, this
means that given a set of parameter values and a set of facts associated with it, a rule may
or may not produce one or more new parameter values and an associated fact. This ensures
that H-ASP is suitable for defining control mechanisms for discrete time simulations that
require the use of PDE solvers or ODE solvers or both.

A H-ASP program P will have an underlying parameter space S. For instance, in our
secret agent example, imagine that we allow Secret Agent 00111 to make decisions every ∆
seconds. Then one can think of describing the Secret Agent 00111’s position and situation at
time k∆ by a sequence of parameters x(k∆) = (x0(k∆), x1(k∆), x2(k∆), . . . , xm(k∆)) that
specify both continuous parameters such as time, position, velocity, and acceleration as well
as discrete parameters such as is the car configured as a car or as a boat. In more complicated
simulations, the programmer may not know the value ∆ ahead of time as the exact value of
∆ may be determined by the needs of the parameter passing algorithms. Nevertheless, we
shall always assume that any parameter passing algorithm advances time in some discrete
time steps which may vary depending on the values of the input parameters. Thus in a
H-ASP program, one can always think of the parameter x0 as specifying time and the range
of x0 is either {k∆ : k = 0, . . . , n} for some fixed n and ∆ > 0 or {k∆ : k ∈ N} where N is
the set of natural numbers {0, 1, 2, . . . , }. In particular, for a finite H-ASP program, there
will be no loss of generality in assuming that the range of x0 is {k∆ : k = 0, . . . , n} for some
fixed n and ∆ > 0. In such a situation, we shall always write an element of S in the form
x = (k∆, x1(k∆), . . . , xm(k∆)) for some k. However, in our general definitions, we shall just
assume that elements of the parameter space S are of the form p = (t, x1, . . . , xm) where t is
time and we shall let t(p) denote t and xi(p) denote xi for i = 1, . . . ,m. We refer to the
elements of S as generalized positions. A H-ASP program will also have an underlying set of
atoms At. Then the underlying universe of the program will be At× S.

If M ⊆ At × S, then we let M̂ = {x ∈ S : (∃a ∈ At)((a,p) ∈ M)}. We will say
that M satisfies (a,p) ∈ At × S, written M |= (a,p), if (a,p) ∈ M . For any element
(t, x1, . . . , xm) ∈ S, we let WM (t, x1, . . . , xm) = {a ∈ At : (a, (t, x1, . . . , xm)) ∈ M} and we
shall refer to WM (t, x1, . . . , xm) as the world of M at the generalized position (t, x1, . . . , xm).
We let T (S) = {t : ∃p ∈ S(t = t(p)}. We say that M is a single trajectory model if for
each t ∈ T (S), there is exactly one generalized position of the form (t, x1, . . . , xm) in M̂ . If
M is a single trajectory model, then we let (t, x1(t), . . . , xm(t)) be the unique element of the
form (t, x1, . . . , xm) in M̂ and we can write M as a disjoint union

M =
⊔

t∈T (S)

WM (t, x1(t), . . . , xm(t))× {(t, x1(t), . . . , xm(t))}.

We will say that M is multiple trajectory model if for each t ∈ T (S), there is at least
one generalized position of the form (t, x1, . . . , xm) in M̂ and for some t ∈ T (S), there are



A. Brik, J. Remmel 43

at least two generalized positions of the form (t, x1, . . . , xm) in M̂ . Single trajectory stable
models are desirable when the objective of a computation is to obtain a trajectory satisfying
certain constraints. For example, in the planning problem, the objective is to find a sequence
of actions that achieves a predefined goal given an axiomatized initial situation [8]. Thus
solving planning problem provides a motivation for considering single trajectory models.
Multiple trajectory models are natural to consider when the objective of a computation is a
set of conclusions that depend on all the possible trajectories. For instance such a model
would be useful in reasoning about a best strategy for an agent acting within a dynamical
system where the consequences of actions are non-deterministic. Thus multiple trajectory
models are natural to consider in the context of dynamic programming problems (see [10] for
an introduction to dynamic programming).

If we drop the requirement that there is a generalized position (t, x1, . . . , xm) ∈ M̂ for
each t ∈ T (S) in the definition of single trajectory or multiple trajectory models, we get
what we call partial single trajectory and partial multiple trajectory models. For example, if
T (S) = {k∆ : k = 0, . . . , n}, then we may want to allow our parameter passing algorithms
the flexibility of advancing time by multiple steps of ∆ so that it may be the case that
our set of rules will derive no information about what happens a certain time k∆ in which
case WM (k∆, x1(k∆), . . . , xm(k∆)) will be empty for all generalized positions of the form
(k∆, x1(k∆), . . . , xm(k∆). Thus it is quite natural to consider partial single trajectory and
partial multiple trajectory models.

Given M ⊆ At× S and B = a1, . . . , an,¬b1, ...,¬bm, and p ∈ S, we say that M satisfies
B at the generalized position p, written M |= (Bi,p), if (ai,p) ∈ M for i = 1, . . . , n, and
(bj ,p) 6∈ M for j = 1, . . . ,m. For B as above define B− = ¬b1, ...,¬bm. Note that if Bi is
empty. then we assume that M |= (Bi,p) automatically holds.

There are two types of rules in H-ASP programs.

Advancing Rules are of the form

B1;B2; . . . ;Br : A,O
a

(1)

where A is an algorithm, each Bi is of the form a
(i)
1 ,. . .,a(i)

ni ,¬b
(i)
1 ,...,¬b(i)mi where a(i)

1 ,....a(i)
ni ,

b
(i)
1 ,...,b(i)mi , and a are atoms, and O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then t(p1) <
. . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all q ∈ A (p1, . . . ,pr), t(q) > t(pr). Here and in
the next rule, we allow ni or mi to be equal to 0 for any given i. Moreover, if ni = mi = 0,
then Bi is empty and we automatically assume that Bi is satisfied by any M ⊆ At × S.
We shall refer to O as the constraint set of the rule and the algorithm A as the advancing
algorithm of the rule. The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the
general position pi, then the algorithm A can be applied to (p1, . . . ,pr) to produce a set of
generalized positions O′ such that if q ∈ O′, then t(q) > t(pr) and (a,q) holds. Advancing
rules formalize reasoning steps in which new sets of parameter values are derived.

For instance consider the movement of an object through the 3 dimensional space R3

with a constant velocity v = (v1, v2, v3) where the parameter space S is defined so that
T (S) = {k∆ : k ∈ N}. Then we can use the following rule to model object’s movement: :A,S

T ,
where A ((t, x1, x2, x3)) = {(t+ ∆, x1 + v1 ·∆, x2 + v2 ·∆, x3 + v3 ·∆)}. Here T is a place
holder atom for “true”. That is, since an advancing rule requires a conclusion, "T" is used to
fulfill the requirement and has no significance otherwise.
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Stationary rules are of the form

B1;B2; . . . ;Br : H,O
a

(2)

where each Bi is of the form a
(i)
1 ,...,a(i)

ni ,¬b
(i)
1 ,...,¬b(i)mi where a(i)

1 ,....a(i)
ni , b

(i)
1 ,...,b(i)mi and a are

atoms, O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then t(p1) < · · · < t(pr), and H is a Boolean
algorithm such that for all (p1, . . . ,pr) ∈ O, H(p1, . . . ,pr) is defined. We shall refer to O
as the constraint set of the rule and the algorithm H as the Boolean algorithm of the rule.

The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the generalized
position pi, and H((p1, . . . ,pr)) is true, then (a,pr) holds. Stationary rules formalize
reasoning steps where new facts are derived about a particular set of parameters that has
already been derived. As an example consider the following. Suppose that we are considering
a program where T (S) = {k∆ : k = 0, . . . , n}, where we want to derive a single trajectory
stable model, and where once an atom A holds at (k∆, x1(k∆), . . . , xm(k∆), then A must
hold at all generalized positions of the form ((k + 2j)∆, x1((k + 2j)∆), . . . , xm((k + 2j)∆)
where j ≥ 1. To enforce this condition we can use the following stationary rule: A; :H, O

A

where for all O = {(p1,p2) : t (p1) < t (p2)} and for all (p1,p2) ∈ O, H ((p1,p2)) holds iff
and only if t(p2)−t(p1)

∆ is a positive even number.
A H-ASP program is a collection of rules of the form (1) and (2). Note that H-ASP

programs have the following features.

1. H-ASP advancing rules allows to pass parameters over variable length time steps.
Moreover, advancing algorithms are quite general so that the output of an advancing
algorithm can depend on only some of the parameters in any given generalized position.

2. Reasoning about future events can proceed with only partial information available about
past events and present events.

3. Rules in H-ASP can refer to a finite number of sets of parameter values in the past. This
means that to make a conclusion about a set of parameter values for a time t, a rule can
use information about the sets of parameter values for times t1 < t2 < ... < tk < t.

4. H-ASP allows users to perform reasoning when the computations made by the algorithms
are imprecise. That is, the advancing algorithm in an advancing rule is set valued. This
allows us to consider advancing algorithms that use random bits or advancing algorithms
that give approximate solutions.

5. H-ASP provides an indirect mechanism by which algorithms can specify values for only
some of the parameters. This is accomplished when some of the parameters of generalized
positions in an output set of an advancing algorithm are limited to few values, whereas
other parameters are allowed to take all the possible values. This will be illustrated
by the following example. Suppose that the parameter space S consists of triples of
values (t, x, y), where x ranges over set X, and y ranges over set Y . Our program P

consists of two rules, : A,S
set (x) ,

: B,S
set (y) , where set (x) and set (y) are atoms. Suppose

further that an algorithm A can only specify the value for x which is 2 at time t′. Then
the output of algorithm should be {(t′, 2, y) : y ∈ Y }. If algorithm B specifies the
value of y which is 1 at time t′ then the output of B should be {(t′, x, 1) : x ∈ X}.
Intuitively we would want to select only p = (t′, 2, 1) as a valid generalized position, since
only in p among the generalized positions produced by A and by B both x and y are
correctly specified. However besides p the algorithms will produce many other generalized
positions. To restrict the valid generalized positions to p, we could add the following
two rules, ¬set (x) : TRUE, S

set (x) ,
¬set (y) : TRUE, S

set (y) , where TRUE is a Boolean algorithm
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that returns 1 on any input. These rules will restrict any stable model to contain only p
as a generalized position with time equal to t′.

Next we define an analogue of stable models for H-ASP programs. To do this, we first
must define H-ASP Horn programs and a one-step provability operator for H-ASP Horn
programs.

A H-ASP Horn program is a H-ASP program that does not contain any negated atoms in
At. A consistent H-ASP Horn program P is a H-ASP Horn program such that if whenever
two pairs of an advancing algorithm and a constraint set, (A,O) and (A′, O′), appear in P
and O,O′ ⊆ Sr, then A �O∩O′= A′ �O∩O′ . Intuitively, consistent H-ASP Horn programs will
be used to derive single trajectory stable models while H-ASP Horn programs without the
consistency constraint will be used to derive multiple trajectory stable models.

Let P be a H-ASP Horn program and I ∈ S be an initial condition. Then the one-step
provability operator TP,I is defined so that givenM ⊆ At×S, TP,I(M) consists ofM together
with the set of all (a, J) ∈ At× S such that

1. there exists a stationary rule C = B1;B2;...;Br:H,O
a and (p1, . . . ,pr) ∈ O ∩

(
M̂ ∪ {I}

)r
such that (a, J) = (a,pr) and M |= (Bi,pi) for i = 1, . . . , r and H(p1, . . . ,pr) = 1.

2. there exists an advancing rule C = B1;B2;...;Br:A,O
a and (p1, . . . ,pr) ∈ O ∩

(
M̂ ∪ {I}

)r
such that J ∈ A(p1, . . . ,pr) and M |= (Bi,pi) for i = 1, . . . , r.

There is a nice subclass of H-ASP programs which are particularly well behaved that
we call Basic H-ASP (BH-ASP) programs. In a BH-ASP program, we assume that the
underlying parameter space S has the property that T (S) is of the form {k∆ : k = 0, . . . , n}
or {k∆ : k ∈ N} for some fixed ∆ > 0. Moreover, we do not allow the rules to refer to
multiple times in the past and we assume all advancing algorithms define functions that
just give us information about the next time step. That is, a BH-ASP program consists of
collections of the following two types of rules.

Basic Stationary rules are of the form
a1, ..., as,¬b1, ...,¬bt : O

a
(3)

where a, a1, ..., as, b1, ..., bt ∈ At, O is a set of generalized positions in the parameter space S.
The idea is that if for a generalized position p ∈ O, (ai,p) holds for i = 1, ..., s and (bj ,p)
does not hold for j = 1, ..., t, then (a,p) holds. Thus stationary rules are typical general
logic programming rules relative to a fixed world WM (p).

Basic Advancing rules are of the form
a1, ..., as,¬b1, ...,¬bt : A,O

a
(4)

where a, a1, ..., as, b1, ..., bt ∈ At, O is a set of generalized positions in the parameter space S,
and A is an algorithm such that for any generalized position p ∈ O, A(p) is defined and is
an element of S. Here as in H-ASP advancing rules, A can be any sort of algorithm that
might require solving a differential or integral equation, solving a set of linear equations or
linear programming equations, running a program or automaton, etc. However, we assume
that if p = (k∆, x1, . . . , xm) ∈ O, then A(p) is of the form ((k + 1)∆, y1, . . . , ym) for some
y1, . . . , ym.

In that case, we can prove the following result for consistent BH-ASP programs by
induction.
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I Theorem 1. Let I = (0, x1(0), . . . , xm(0)) be an initial condition.

1. Let P be a consistent BH-ASP Horn program over the parameter space S and set of
atoms At. Then the least model of P is a partial single trajectory model of the form⊔
k∈V

WM (k∆, x1(∆), . . . , xm(k∆))× {(k∆, x1(∆), . . . , xm(k∆))} where either V = N or

V is some initial segment of N.
2. Let P be a BH-ASP Horn program over parameter space S and set of atoms At. Then if

(a, (k∆, x1, . . . , xm)) is in the least model of P , then for all 1 ≤ j ≤ k, there must be an
element of the form (aj , (j∆, xj1, . . . , xjm)) in the least model of P .

Part 2 of the theorem has a simple interpretation - if the least model contains an element
for time k∆ then it also contains an element for every (discrete) time preceding k∆.

We define the stable model semantics for general H-ASP programs as follows. Suppose
that we are given a H-ASP program P over a set of atoms At and a parameter space S,
a set M ⊆ At × S, and an initial condition I ∈ S such that t(I) = 0. Then we form the
Gelfond-Lifschitz reduct of P over M and I, PM,I as follows.

1. Eliminate from P all advancing rules C = B1;...,Br:A,O
a such that for all (p1, . . . ,pr) ∈

O ∩
(
M̂ ∪ {I}

)r
, there is an i such that M 6|= (B−i ,pi) or A (p1, . . . ,pr) ∩ M̂ = ∅ .

2. If the advancing rule C = B1;...,Br:A,O
a is not eliminated by (1), then replace it by

B+
1 ;...,B+

r :A+,O+

a where for each i, B+
i is the result of removing all the negated atoms

from Bi, O+ is equal to the set of all (p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r
such that M |=

(B−i ,pi) for i = 1, . . . , r and A(p1, . . . ,pr) ∩ M̂ 6= ∅, and A+(p1, . . . ,pr) is defined to be
A(p1, . . . ,pr) ∩ M̂ .

3. Eliminate from P all stationary rules C = B1;...,Br:H,O
a such that for all (p1, . . . ,pr) ∈

O ∩
(
M̂ ∪ {I}

)r
, either there is an i such that M 6|= (B−i ,pi) or H(p1, . . . ,pr) = 0.

4. If the stationary rule C = B1;...,Br:H,O
a is not eliminated by (3), then replace it by

B+
1 ;...,B+

r :H|O+ ,O
+

a where for each i, B+
i is the result of removing all the negated atoms from

Bi, O+ is equal to the set of all (p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r
such that M |= (B−i ,pi)

for i = 1, . . . , r and H(p1, . . . ,pr) = 1.

We then say that M is a general stable model of P with initial condition I if TPM,I (∅) ↑
ω = M.

3 The Example

We will now present the use of these definitions in the Secret Agent 00111 example. In order
to keep things simple, our presentation will be restricted to the agent’s movement in the Area
I of the domain. We will also use the generalized positions (t, d, y, v, s) where d denotes the
displacement, i.e. the distance traveled from the top of the mountain, v is the agent’s velocity
in the direction of displacement, y is the agent’s y-coordinate, and s = 1 if a shot is heard at
time t and s = 0 if a shot is not heard at time t. It should be noted that the parameter y
will not be used below, however parameter y would be important for modeling the agent’s
movement in the lake. Since in the lake the agent can choose the steering direction, the
y-coordinate will vary according to the steering.
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A central consideration in determining the proper constraint sets associated with H-ASP
rules is the problem of modeling the interaction between regions. In the case of our example,
this means modeling accurately the agent’s movements as the agent crosses the boundary
between regions. In our example, the issue arises as the agent moves from region 1 of Area I
into region 2 of Area I.

Recall that the agent will simply coast down the mountain unless pursued by the evil
agents. If the agent is pursued, he will apply additional acceleration of 4m/s2 in the direction
of the movement. The agent is considered to be pursued during a time interval of ∆ seconds
if a shot is heard in the beginning of the interval, or if two shots were heard before the start
of the interval and the shots were separated by ∆ seconds.

For the rest of the presentation we will set ∆ = 1. To keep the numbers simple, we shall
round the acceleration due to gravity to 10m/s. We have carefully picked the slopes so that
we have (3,4,5) right triangle in region 1 and a (7,24,25) right triangle in region 2 so that the
acceleration due to gravity in region 1 in the direction of displacement will be 3

510 = 6m/s2

and the acceleration due to gravity in the direction of displacement will be 7
2510 = 14

5 m/s
2

in region 2 of Area I. We shall only model the agents behavior at times t = 0, 1, 2, 3, 4, 5
and we shall assume that the agent cannot exit Area I within 5 seconds so that we will not
concern ourselves with the boundary between Area I and Area II.

The set of atoms is At = {PURSUED, A, T} where PURSUED will indicate that the
agent is being pursued, A will indicate that two shots separated by 1 second were heard in
the past, and T is a place holder atom.

Given a generalized position p = (t, d, y, v, s) and an acceleration a let B (p, a) = b

be such that if the agent is at distance d as measured from the top of the mountain in
region 1 on the path along the mountain’s slope and has initial velocity v and he accelerates
continuously with the acceleration a in the direction of his movement, then at time t+ b he
will reach the boundary of region 1 of Area I which is a generalized position with d = 50m.
That is, we want 50 = a

2 b
2 + vb+ x so that B ((t, x, y, v, s) , a) = −v+

√
v2−2a(x−50)
a . Thus

O1 = {(t, x, y, v, s) : 0 ≤ d < 50 and B ((t, x, y, v, s) , 6) ≥ 1} is the set of generalized
positions in region 1 where the agent coasting down hill will not reach the boundary
between region 1 and region 2 in < 1 second and O2 = {(t, x, y, v, s) : 0 ≤ d < 50 and
B ((t, x, y, v, s) , 6) < 1} is the set of generalized positions in region 1 where the agent
coasting down hill will reach the boundary between region 1 and region 2 in < 1 second.
Similarly, O3 = {(t, x, y, v, s) : 0 ≤ d < 50 and B ((t, x, y, v, s) , 10) ≥ 1} is the set of
generalized positions in region 1 where the agent accelerating at 4m/s2 in addition to
gravity will not reach the boundary between region 1 and region 2 in < 1 second and
O4 = {(t, x, y, v, s) : 0 ≤ d < 50 and B ((t, x, y, v, s) , 10) < 1} is the set of generalized
positions in region 1 where the agent accelerating at 4m/s2 in addition to gravity will reach
the boundary between region 1 and region 2 in < 1 second. Finally let O5 be the set of all
the generalized positions in region 2.

We will have two types of advancing algorithms. That is, if we are using a constant
acceleration a in a region, then by the usual formulas for displacement d(t) = a

2 t
2+v(0)t+d(0)

and velocity v(t) = at+ v(0) at time t, one can see that our advancing algorithm should be

Aa(t, d, y, v, s) = {(t+ 1, a2 + v + d, y, a+ v, s) : s ∈ {0, 1}}.

If at p = (t, d, y, v, s), we know that we will cross from region 1 to region 2 so that we reach
the boundary d = 50 of region 1 with a velocity of aB(p, a) + v and then in region 2, our
acceleration is a′, one can see that our advancing algorithm should be

Ca,a′(t, d, y, v, s) = {(t+ 1, d′, y, v′, s) : s ∈ {0, 1}}.
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where d′ = a′

2 (1− B(p, a))2 + (aB(p, a) + v)(1− B(p, a)) + 50 and v′ = a′(1− B(p, a)) +
aB(p, a) + v.

We then have the following rules for when our agent is not being pursued by evil agents.

¬PURSUED : A6, O1

T

¬PURSUED : C6, 14
5
, O2

T

¬PURSUED : A 14
5
, O5

T

We have the following rules for when our agent is begin pursued by evil agents.

PURSUED : A10, O3

T

PURSUED : C10, 34
5
, O4

T

PURSUED : A 34
5
, O5

T
.

The atom A is to be derived at time t if a shot was heard at time t −∆t and at time
t. Also atom A is to be derived at time t if A was already derived at time t−∆t. This is
formalized by the following two stationary rules:

: H,G
A

A; : TRUE2, G

A

where G = {(p1,p2) ∈ S2 : 1 + t(p1) = t(p2)}, TRUE2 (p1,p2) = 1, and and H (p1,p2) =
χ(s (p2)− s (p1) = 1). Here for any statement Q, we let χ(Q) = 1 if Q is true and χ(Q) = 0
if Q is false.

Finally the atom PURSUED is to be derived at time t if a shot is heard at time t or if
atom A is derived at time t. Hence, we have the following two stationary rules

: U, S
PURSUED

A : TRUE1, S

PURSUED

where U (p) = χ(s (p) = 1) and for all p ∈ S, TRUE1 (p) = 1.
Let P be the program consisting of the rules described above. We will now consider a

particular single trajectory stable model M of P . According to this stable model there is a
shot heard at time t = 0 then at time t = 2 and then at time t = 3. We will only consider
the elements of the stable model up to and including the time t = 5.

Suppose that at time t = 0 the agent has displacement 5m and initial velocity 2m/s.
That is I = (0, 5, 0, 2, 1). Then the following table describes a stable model M of P .

t d (m) y (m) v (m/s) s WM (t, d, y, v, s)
0 5 0 2 1 T, PURSUED
1 5 + 2 + 5 = 12 0 10 + 2 = 12 0 T
2 3 + 12 + 12 = 27 0 6 + 12 = 18 1 T, PURSUED
3 5 + 18 + 27 = 50 0 10 + 18 = 28 1 T, A, PURSUED
4 17

5 + 28 + 50 = 407
5 0 34

5 + 28 = 174
5 0 T, A, PURSUED

5 17
5 + 174

5 + 407
6 = 598

5 0 34
5 + 174

5 = 208
5 0 T, A, PURSUED

M induces the following Gelfond-Lifschitz reduct

:A+
6 , {(1,12,0,12,0)}

T

PURSUED:A+
10,{(0,5,0,2,1),(2,27,0,18,1)}

T
PURSUED:A+

34
5

,{(3,50,0,28,1),(4, 407
5 ,0, 174

5 ,0),(5, 598
5 ,0, 208

5 ,0)}
T

:H|
G+ ,G+

A
A; :TRUE2 |Y ,Y

A

:U|
S+ ,S+

PURSUED

A:TRUE1 |
M̂

, M̂

PURSUED

where G+ = {((2, 27, 0, 18, 1), (3, 50, 0, 28, 1))}, S+ = {(0, 5, 0, 2, 1), (2, 27, 0, 18, 1), (3, 50, 0, 28, 1)},
Y = {((0, 5, 0, 2, 1), (1, 12, 0, 12, 0)), ((1, 12, 0, 12, 0), (2, 27, 0, 18, 1)), ((2, 27, 0, 18, 1), (3, 50, 0, 28, 1)),
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((3, 50, 0, 28, 1), (4, 407
5 , 0, 174

5 , 0)), ((4, 407
5 , 0, 174

5 , 0), (5, 598
5 , 0, 208

5 , 0))}, and
M̂ = {(0, 5, 0, 2, 1), (1, 12, 0, 12, 0), (2, 27, 0, 18, 1), (3, 50, 0, 28, 1), (4, 407

5 , 0, 174
5 , 0), (5, 598

5 , 0, 208
5 , 0)}.

The fact that M is stable model can be easily verified by computing the least model of
the Gelfond-Lifschitz reduct of P with respect to M and I.

Remark: We should note that the restriction on O in both extended stationary rules
and extended advancing rules that t(p1) < · · · < t(pr) can in fact be dropped by slightly
modifying our definitions of the one step provability operator and stable models. This
could in principle allow one to use rules that refer to both past and future times or to
multiple generalized positions that occur at the same time. We put in the restriction
t(p1) < · · · < t(pr) mainly for ease of presentation and the fact that we did not have space
to develop applications of these more extended rules.

4 Conclusion

In this paper, we introduced Hybrid ASP (H-ASP) - an ASP type system to reason about
dynamical systems which exhibit both continuous and discrete aspects. The key feature of
the system is that it includes advancing rules that incorporate an algorithm to allow for
parameter passing from one time step to the next and stationary rules which incorporate
an auxiliary algorithm to allow non-logical checking that govern the applicability of the
rule. We then defined an analogue of the stable model semantics for H-ASP by defining
an appropriate analogues of the one-step provability operator for Horn programs and the
Gelfond-Lifschitz reduct of normal logic programs.

We envision that an actual implementation of a H-ASP solver will require that the system
makes calls to other modules. That is, the algorithms that are part of advancing rules or
extended stationary rules are allowed to be any sort of algorithms which require solving
a differential or integral equation, solving a set of linear equations or linear programming
equations, running a program or automaton, etc. Thus a H-ASP-solver should naturally allow
calls to specialized software outside the system to run such algorithms. We have implemented
preliminary version of our system where the algorithm required solving PDEs associated
with the Heat equation (for a discussion of the Heat equation see [4] and [9]). This type of
application goes well beyond the simple toy model that we used to illustrate our ideas in this
paper and will be the subject of future papers.

We view the extension of the answer set programming paradigm, H-ASP, that we
introduced in this paper as a first step for further work that will lead to both theoretical tools
used for the modeling and analysis of dynamic systems and for computer applications that
simulate dynamical systems. There is considerable work to be done in developing a theory of
such programs which is similar to the theory that has been developed for ASP programs.
For example, a careful analysis of the complexity of the stable models of H-ASP programs
as a function of the complexity of the advancing and Boolean algorithms in the program
needs to be done. One can ask under what circumstances are there analogues of the forward
chaining algorithm of [7] for H-ASP programs. One can consider more extended sets of rules
that allow for partial parameter passing or allow different rules to instantiate disjoint sets of
parameters for the next time step. These issues will be pursued in later papers. Nevertheless,
we believe that the point of view of thinking of rules as general input-output devices has the
potential for many new applications of ASP techniques.
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Abstract
Action language C+, a formalism based on nonmonotonic causal logic, was designed for describ-
ing properties of actions. The definite fragment of C+ was implemented in system the Causal
Calculator (CCalc), based on a reduction of nonmonotonic causal logic to propositional logic.
On the other hand, in this paper, we represent the language of CCalc in answer set program-
ming (ASP), by translating nonmonotonic causal logic into formulas under the stable model
semantics. We design a standard library which describes the constructs of the input language
of CCalc in terms of ASP, allowing a simple modular method to represent CCalc input pro-
grams in the language of ASP. Using the combination of system f2lp and answer set solvers, our
prototype implementation of this approach, which we call Cplus2ASP, achieves functionality
close to CCalc while taking advantage of answer set solvers to yield efficient computation that
is orders of magnitude faster than CCalc on several benchmark examples.
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1 Introduction

Action languages are formal models of parts of natural language that are used for describing
properties of actions. Among them, language C+ [9] and its predecessor C [10] are based
on nonmonotonic causal logic. The definite fragment of nonmonotonic causal logic can be
turned into propositional logic by the literal completion method, which resulted in an effi-
cient way to compute C+ using satisfiability (SAT) solvers. The Causal Calculator (CCalc)
is an implementation of this idea. Version 1 of CCalc was created by McCain [16], accept-
ing C as its input language; Version 2 is an enhancement described in [11], which accepts
C+ as its input language. Language C+ is significantly more enhanced than C in several
ways, such as being able to represent multi-valued formulas, defined fluents, additive fluents,
rigid constants and defeasible causal laws. Although CCalc was not aimed at large scale
applications, it has been applied to several challenging commonsense reasoning problems,
including problems of nontrivial size [1], to provide a group of robots with high-level reason-
ing [4], to give executable specifications of norm-governed computational societies [3], and
to automate the analysis of business processes under authorization constraints [2].

An alternative way to compute C+ is to turn it into answer set programs and to use
existing answer set solvers. This can be achieved by first turning multi-valued causal logic
into Boolean-valued causal logic as described in [11] and then turning the latter into answer
set programs as described in [16, 5, 15]. In fact, a system called Coala (Compiler for action
languages) was implemented based on this idea [8]. The system turns a fragment of language
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C+ into the input language of Gringo1, but that fragment lacks several important features
of C+ mentioned above, which are available in CCalc.

In this paper, we provide a way to encode CCalc input language in answer set program-
ming, and present a prototype implementation called Cplus2ASP based on this idea. Our
approach differs from that of Coala in a few ways. First, Cplus2ASP can handle multi-
valued constants, which Coala does not allow. Second, we turn the language of CCalc
into formulas under the stable model semantics [7], and use system f2lp2 (“f ormulas to
logic programs”) [14] to turn them into the input language of ASP solvers. This allows
users to write the same complex formulas as in the input language of CCalc. Third, we
design a standard library that defines the constructs of the CCalc input language in terms
of the language of Gringo. Using the standard library and reusing the existing software
f2lp and Clingo3 allowed a simple design of Cplus2ASP that achieves functionality close
to CCalc. Also thanks to the efficiency of answer set solvers, our experiments show that
Cplus2ASP is orders of magnitude faster than CCalc in several benchmark examples.

The paper is organized as follows. Section 2 provides preliminaries, and Section 3 shows
how to encode the language of CCalc in ASP, and presents the prototype implementation
Cplus2ASP. We compare the efficiency of Cplus2ASP against that of CCalc in Section 4.

2 Preliminaries

2.1 Nonmonotonic Causal Theories and C+
Due to lack of space, the reviews in this section are rather dense. We refer the reader to [9]
for the details. In C+, formulas are multi-valued. A (multi-valued propositional) signature
is a set σ of symbols called constants, along with a nonempty finite set Dom(c) of symbols
called the domain of c. An atom of a signature σ is an expression of the form c=v (“the value
of c is v”) where c ∈ σ and v ∈ Dom(c). A (multi-valued) formula of σ is a propositional
combination of atoms. A causal rule is an expression of the form

F ⇐ G

where F and G are multi-valued propositional formulas. A causal theory is a set of causal
rules.

Language C+ is a high level notation for causal theories that was designed for describing
transition systems—directed graphs whose vertices represent states and edges are labeled
by actions that affect the states. In C+, constants are partitioned into fluent constants
and action constants. Fluent constants are further partitioned into simple and statically
determined fluents. A fluent formula is a formula where all constants occurring in it are
fluent constants. An action formula is a formula that contains at least one action constant
and no fluent constants. A static law is an expression of the form

caused F if G (1)

where F and G are fluent formulas. An action dynamic law is an expression of the form (1)
in which F is an action formula and G is a formula. A fluent dynamic law is an expression

1 http://potassco.sourceforge.net
2 http://reasoning.eas.asu.edu/f2lp
3 Clingo is a system that combines Gringo and Clasp in a monolithic way, available from the same
link as the one in Footnote 1.
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of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does not contain
statically determined constants. A causal law is a static law, or an action dynamic law, or
a fluent dynamic law. An action description is a set of causal laws.

The semantics of C+ in [9] is described via a translation into causal logic. For any action
description D and any nonnegative integer m, the causal theory Dm is defined as follows.
The signature of Dm consists of the pairs i :c such that

i ∈ {0, . . . ,m} and c is a fluent constant of D, or
i ∈ {0, . . . ,m− 1} and c is an action constant of D.

The domain of i :c is the same as the domain of c. By i :F we denote the result of inserting
i : in front of every occurrence of every constant in a formula F , and similarly for a set of
formulas. The rules of Dm are

i :F ⇐ i :G (3)

for every static law (1) in D and every i ∈ {0, . . . ,m}, and for every action dynamic law (1)
in D and every i ∈ {0, . . . ,m− 1};

i+1:F ⇐ (i+1:G) ∧ (i :H) (4)

for every fluent dynamic law (2) in D and every i ∈ {0, . . . ,m− 1};

0:c=v ⇐ 0:c=v (5)

for every simple fluent constant c and every v ∈ Dom(c).
The causal models of Dm correspond to the paths of length m in the transition system

described by D.

2.2 Language of the Causal Calculator
The language of CCalc provides a convenient way of expressing C+ descriptions. It allows
us to declare sorts, objects, variables and constants, as well as to describe causal laws.
A causal law may contain variables, which are understood in terms of grounding. Such
causal laws are schemas for ground instances, as in answer set programming.

The left column of Figure 1 is a simple C+ description in the language of CCalc. The
symbol >> in the sort declaration between the names of two sorts expresses that the second
is a subsort of the first, so that every object that belongs to the second sort belongs also to
the first. Lines 1–2 declare that s_num is a subsort of num. Lines 11–13 introduce objects
of the two sorts. The integers from 0 to n− 1 belong to sort s_num; the integers from 0 to
n belong to sort num. Line 19 declares that has is an inertial fluent whose domain is num.
CCalc understands this line the same as the declaration

has :: simpleFluent(num)

followed by the fluent dynamic law

caused has=X if has=X after has=X

where X ranges over all objects of sort num. Similarly, Line 22 declares that buy is an
exogenous action with Boolean values. Lines 32–35 represent a simple query for finding a
path of length 3 from the initial state where has=2 to the goal state where has=4.
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2.3 Stable Model Semantics of First-Order Formulas and System f2lp
We refer the reader to [7, 14] for the details. The stable model semantics from [7] is defined
for first-order formulas, which allow for arbitrary nesting of connectives and quantifiers as
in first-order logic. Strong negation (∼) occurs only in front of an atom. For instance,

¬ ∼p(x)→ p(x) (6)

expresses that x belongs to p by default.
System f2lp can be used to turn any “almost universal sentence” into an answer set

program so that answer set solvers can be used to compute the Herbrand stable models of
the almost universal sentence. As far as this paper is concerned, it is sufficient to know that
any sentence where every quantifier is in the scope of negation is almost universal. (6) can
be encoded in the language of f2lp as

p(X) <- not -p(X).

(In the language of f2lp, the default negation (¬) is expressed as not; the strong negation
(∼) is encoded as -, following the convention in the input language of ASP solvers. In
addition, ? and ! denote the existential and universal quantifiers, respectively; | denotes
disjunction and & denotes conjunction.) The input language of f2lp also allows aggregates
and choice rules as in the language of Gringo.

1 :- sorts
2 num >> s_num.
3

4

5

6

7

8

9

10

11 :- objects
12 0..n-1 :: s_num;
13 n :: num.
14

15 :- variables
16 K :: s_num.
17

18 :- constants
19 has :: inertialFluent(num);
20

21

22 buy :: exogenousAction(boolean).
23

24

25 buy causes has=K+1 if has=K.
26

27

28

29 nonexecutable buy if has=n.
30

31

32 :- query
33 maxstep :: 3;
34 0: has=2;
35 maxstep: has=4.

1

2 sort(num).
3 #domain num(V_num).
4 sort_object(num,V_num).
5

6 sort(s_num).
7 #domain s_num(V_s_num).
8 sort_object(num,V_s_num).
9

10 num(V_s_num).
11

12 s_num(0..n-1).
13 num(n).
14

15

16 #domain s_num(K).
17

18

19 inertialFluent(has).
20 constant_sort(has,num).
21

22 exogenousAction(buy).
23 constant_sort(buy,boolean).
24

25 h(eql(has,K+1),V_astep+1) <-
26 h(eql(buy,true),V_astep) &
27 h(eql(has,K),V_astep).
28

29 false <-
30 h(eql(buy,true),V_astep) &
31 h(eql(has,n),V_astep).
32

33 false <- query_label(0) &
34 not (h(eql(has,2),0) &
35 h(eql(has,4),maxstep)).

Figure 1 Simple Transition System in the Language of CCalc and in the Language of f2lp
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3 Representing the Language of the Causal Calculator in ASP

3.1 Translating C+ into Answer Set Programs
We consider a finite definite C+ description D of signature σ, where the heads of the rules
are either an atom or ⊥. Without losing generality, we assume that, for any constant c
in σ, Dom(c) has at least two elements. Description D can be turned into a logic program
following these steps: (i) turn D into the corresponding multi-valued causal theory Dm (as
explained in Section 2.1); (ii) turn Dm into a Boolean-valued causal theory D′

m; (iii) turn
D′

m into formulas under the stable model semantics; (iv) turn the result further into a logic
program (using f2lp as explained in Section 2.3). In this section we explain Steps (ii) and
(iii).

Definite Elimination of Multi-Valued Constants Consider the causal theory Dm

with signature σm consisting of rules of the form (3), (4) and (5). Consider all constants
i : c (0 ≤ i ≤ m) in σm, where c is a fluent constant of D. By σc

m we denote the signature
obtained from σm by replacing every constant i : c with Boolean constants i : eql(c, v) for
all v ∈ Dom(c).

The causal theory Dc
m with signature σc

m is obtained from Dm by replacing each oc-
currence of an atom i : c = v in Dm with i : eql(c, v) = t, and adding the causal rules

i : eql(c, v′)= f ⇐ i : eql(c, v)=t (0 ≤ i ≤ m) (7)

for all v, v′ ∈ Dom(c) such that v 6= v′.
The following proposition is a simplification of Proposition 9 from [11].4

I Proposition 1. There is a 1-1 correspondence between the models of Dm and the models
of Dc

m.

The elimination of multi-valued action constants is similar.

Turning Boolean-valued Action Descriptions into SM In [6], McCain’s translation
is modified and extended as follows. Take any set T of causal rules of the forms

A⇐ G, (8)
¬A⇐ G, (9)
⊥ ⇐ G, (10)

where A is an atom and G is an arbitrary propositional formula. For each rule (8), take
the formula ¬¬G → A; for each rule (9), the formula ¬¬G → ∼A; for each rule (10), the
formula ¬G. Also add the following completeness constraints for all atoms A:

¬A ∧ ¬∼A→ ⊥ . (11)

Note that, for T , which is definite, the modified McCain translation yields a first-order
theory that is tight [7].

Consider D′
m which is obtained from Dm by eliminating all multi-valued constants in

favor of Boolean constants. h(i : F ) is a formula obtained from i : F by replacing every

4 Proposition 9 from [11] involves adding two kinds of rules. Vladimir Lifschitz pointed out that one
kind of rules can be dropped if the given theory is definite.
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occurrence of i : eql(c, v)= t in it with h(eql(c, v), i) and every occurrence of i : eql(c, v)= f
with ∼h(eql(c, v), i). According to the modified McCain translation, the causal rules (3)
that represent a static law (1) are represented by formulas under the stable model semantics
as

h(i : F )← ¬¬h(i : G) (12)

(i ∈ {0, . . . ,m}). The translation of causal rules for an action dynamic law is similar except
that i ranges over {0, . . . ,m − 1}. In the special case when h(i : F ) and h(i : G) are the
same literal, (12) can be represented using choice rules in ASP:

{h(i :F )}. (13)

This is because (12) is strongly equivalent to h(i :F ) ∨ ¬h(i :F ), which can be abbreviated
as (13) [12]. In fact, we observe in many cases (13) can be used in place of (12).

Similarly, the modified McCain translation turns the causal rules (4) that correspond to
a fluent dynamic law (2) into

h(i+1:F ) ← ¬¬
(
h(i+1:G) ∧ h(i :H)

)
.

In fact, we can also turn (4) into

h(i+1:F ) ← ¬¬h(i+1:G) ∧ h(i :H) (14)

because the change does not affect the stable models of the resulting theory, which is tight
[7]. Similarly, certain occurrences of ¬¬ in (12) and (14) can be further dropped if removing
them does not cause the resulting theory to become non-tight.

Again in the special case when h(i+1 :F ) and h(i+1 :G) are the same literal, (14) can
be represented using choice rules as follows:

{h(i+1:F )} ← h(i :H).

3.2 Representing Domain Descriptions in the Language of f2lp
Figure 1 shows a side-by-side comparison of an example CCalc input program and its
representation in the language of f2lp. As shown, the translation is modular. For each
sort name S that is declared in the CCalc input program, the translation introduces a fact
sort(S) and a variable VS that ranges over all objects of sort S by the line #domain S(VS),
and relates the sort name and the objects by the fact sort_object(S, VS). (This “meta
predicate,” together with another meta predicate constant_sort that is shown later, is
used in the standard library to associate constants with their domains.) As an example,
Lines 2–8 in the right column of Figure 1 is a representation of sort declarations in the
language of Gringo. In addition, the declaration that S1 is a supersort of S2 is represented
by S1(VS2), as illustrated in Line 10.

The ASP representation of the object and variable declarations are straightforward. The
declaration that O is an object of sort S is encoded as a fact S(O). In order to declare a
user-defined variable V of sort S, we write #domain S(V ). See Lines 12–13, and Line 16
for example.

A constant declaration in the language of CCalc of the form

C :: CompositeSort(V )
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Figure 2 The Hierarchy of Atomic Formulas

is turned into a fact CompositeSort(C), followed by another fact constant_sort(C, V ),
which is used in the standard library. See Lines 19–23 for example.

Encoding causal laws in the language of f2lp follows the method in Section 3.1. Like
the input language of CCalc, the variables in the f2lp rules are understood as schemas for
ground terms. Lines 25–31 are example encodings of causal laws in the language of f2lp.
Since every variable is sorted, these f2lp rules are safe according to the definition of safety
in [13], and its translation into an ASP program also results in a safe logic program.

Note that Figure 1 does not contain the other causal laws (the inertial assumption for
has and the exogeneity assumption for buy). Since such causal laws and rules are frequently
used, they are described in the standard library, which we explain in the next section.

3.3 Standard Library
The standard library5 declares built-in sorts and objects, such as sort boolean and its
objects true and false; sorts step and astep and the integer objects that belong to the
sorts (0, . . . , maxstep for step and 0, . . . , maxstep − 1 for astep). More importantly, it
contains postulates specific to each kind of fluents and actions.

3.3.1 Postulates for Specific Fluents and Actions
First, we assume the presence of certain meta-variables that are used in the postulates.
For instance, V_inertialFluentAF is a meta-variable that ranges over all ground terms
of the form eql(c, v) where c is an inertialFluent and v is an object in the domain
of c as introduced in the domain description. For the domain description in Figure 1,
V_inertialFluentAF ranges over eql(has, 0), eql(has, 1), . . . , eql(has, n). Similarly, we
have other meta-variables V_fluentAF, V_simpleFluentAF, V_sdFluentAF, V_rigidAF,
V_actionAF, V_exogenousActionAF, V_attributeAF that range over ground terms of the
form eql(c, v) where c and v range over corresponding constants and values. We show later
how to prepare a program so that meta-variables range over the atoms as intended.

The inertial assumption for inertialFluents is represented by

{h(V_inertialFluentAF,V_astep+1)} <- h(V_inertialFluentAF,V_astep).

5 See http://reasoning.eas.asu.edu/cplus2asp for the complete file.
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The exogeneity assumption (5) for simple fluents at time 0 is represented by

{h(V_simpleFluentAF,0)}.

The exogeneity assumption for exogenousAction is stated as

{h(V_exogenousActionAF,V_astep)}.

The completeness assumption (11) for fluents is represented as follows.

false <- not h(V_fluentAF,V_step) & not -h(V_fluentAF,V_step).

or equivalently as

false <- {h(V_fluentAF,V_step), -h(V_fluentAF,V_step)}0.

The definite elimination rules for multi-valued fluent constants corresponding to (7) can
be represented as

-h(eql(V_fluent,Object1),V_step) <-
h(eql(V_fluent,Object),V_step) & constant_object(V_fluent,Object)
& constant_object(V_fluent,Object1) & Object != Object1.

Here V_fluent is a meta-variable that ranges over all fluent constants. The predicate
constant_object is defined in terms of sort_object and constant_sort:

constant_object(V_constant,Object) <-
constant_sort(V_constant,V_sort) & sort_object(V_sort,Object).

(Recall that sort_object is introduced in translating sort declarations from the domain
description and constant_sort is introduced in translating constant declarations from
the domain description.)
The definite elimination rules and the completeness assumptions for action constants are
similar to those for fluent constants.

3.4 Meta-Sorts and Meta-Variables
In order to make grounding replace all meta-variables with the corresponding ground terms
as intended in the previous section, we first introduce meta-level sorts for representing the
constant hierarchy in C+. This is done in the same way as the object-level (user-defined)
sorts are introduced. For instance, the following are sort declarations for simpleFluent and
inertialFluent, and the declaration of their subsort relation.

sort(simpleFluent). #domain simpleFluent(V_simpleFluent).
sort_object(simpleFluent,V_simpleFluent).

sort(inertialFluent). #domain inertialFluent(V_inertialFluent).
sort_object(inertialFluent,V_inertialFluent).

simpleFluent(V_inertialFluent).

Recall that in Figure 1, the constant declarations included the fact inertialFluent(has);
the variable V_simpleFluent ranges over all simple fluent constants, including the inertial
fluent has.

Similarly, we introduce meta-level sorts for different kinds of atomic formulas depending
on the different kinds of constants. For instance, the following is a part of the declaration
for simpleFluentAF and inertialFluentAF.
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sort(simpleFluentAF). #domain simpleFluentAF(V_simpleFluentAF).
sort_object(simpleFluentAF,V_simpleFluentAF).

sort(inertialFluentAF). #domain inertialFluentAF(V_inertialFluentAF).
sort_object(inertialFluentAF,V_inertialFluentAF).

simpleFluentAF(V_inertialFluentAF).

These declarations are used to define domain predicates ConstantAFs which contain
terms of the form eql(c, v) where c is a constant of meta-level sort Constant and v is a
value in the domain of c. For instance, the following represents that inertialFluentAF
is a domain predicate that contains all ground terms of the form eql(c, v) where c is an
inertialFluent, and v is a value in the domain of c, using the meta-predicate constant_
object.

inertialFluentAF(eql(V_inertialFluent,Object)) <-
constant_object(V_inertialFluent,Object).

(Recall the definition of constant_object in the previous section.) The grounding process
replaces the meta-variable V_inertialFluentAF by every ground term of the form eql(c, v)
where c is a constant of meta-level sort inertialFluent and v is an element in the domain
of c, as specified by the constant_object relation. So once the user declares that c is an
inertialFluent (or one of its subsorts) in the domain description, the postulates for the
inertial assumption for c are generated by ASP grounders.

4 Implementation and Experiments

We implemented the techniques described in Section 3 in a prototype implementation, which
we call Cplus2ASP. The system achieves functionality close to CCalc by using the stan-
dard library and the combination of the existing software f2lp and Clingo. As documented
in Figure 3, the system turns the CCalc domain description into the language of f2lp, calls
f2lp to turn it into the language of Clingo, calls Clingo to find answer sets, and displays
them in CCalc-style solutions (as2transition is a post-processor that takes answer sets
and transforms them into a format of CCalc output.) Cplus2ASP is designed to be com-
patible with the input language of CCalc. It supports most of the basic features of CCalc,
but does not yet handle features like user-defined macros, where clauses, and shifting. The
system was written in C++, utilizing the tools flex and bison to aid in the creation of a
CCalc language grammar and syntax parser.

Figure 3 The Architecture of Cplus2ASP
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Problem CCalc with zchaff Cplus2ASP with Clingo
Total Preparationa Solving Total Preparationb Solvingc

Traffic World:
Scenario 1
(maxstep=5)

1.55s 1.52s
(1.06s + 0.29s +
0.17s)

0.03s 0.22s 0.20s
(0.11s + 0.09s)

0.02s
(0.02s + 0.00s)

Traffic World:
Scenario 2
(maxstep=3)

22.74s 22.38s
(17.85s + 3.45s
+ 1.08s)

0.36s 1.42s 1.14s
(0.11s + 1.03s)

0.28s
(0.28s + 0.00s)

Traffic World:
Scenario 3
(maxstep=5)

6.29s 6.05s
(4.48s + 0.99s +
0.58s)

0.24s 0.52s 0.40s
(0.08s + 0.32s)

0.12s
(0.12s + 0.00s)

Traffic World:
Scenario 3-1
(maxstep=11)

608.76s 558.46s
(415.06s +
85.45s + 57.95s)

50.30s 59.84s 34.42s
(0.08s + 33.34s)

25.42s
(17.95s + 7.47s)

a (grounding time + completion time + shifting & writing input clause time)
b (Cplus2ASP processing time + Clingo grounding time)
c (Clingo pre-processing time + solving time)

Figure 4 Experiments with CCalc and Cplus2ASP

We ran both CCalc and Cplus2ASP on a series of benchmark problems designed to
utilize a variety of CCalc syntactic elements and tested the speed of each program with
respect to grounding and solving. These tests included all examples from [9] along with
specific versions of the larger domains described in [1]. Figure 4 shows the performance
comparison of CCalc and Cplus2ASP on the Traffic World domain from [1] using the
same scenarios described there, plus one more that is a scaled-up version of Scenario 3.
All tests were run in a native install of Ubuntu on a machine with a 3.2 GHz Pentium 4
processor and 2 GB of RAM. Overall Cplus2ASP consistently performs significantly faster
than CCalc, producing identical solutions to those of CCalc. The preparation times that
are spent for Cplus2ASP in producing the input to Clingo are negligible, as they do not
involve grounding.

5 Conclusion

Based on the theoretical result that turns nonmonotonic causal logic into the stable model
semantics, we presented a method that represents the language of the Causal Calculator in
answer set programming, and implemented it in a prototype called Cplus2ASP. In com-
parison with Coala, Cplus2ASP allows the full expressivity of action language C+ using
input language syntax that is almost identical to the language of CCalc. Our ongoing work
involves making Cplus2ASP fully compatible with CCalc by implementing the remaining
features of CCalc missing in Cplus2ASP.

Acknowledgements: We are grateful to Michael Bartholomew, Vladimir Lifschitz, Yun-
song Meng, Ravi Palla, and anonymous referees for their useful comments on this paper.
The authors were partially supported by the National Science Foundation under Grant IIS-
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Abstract
We describe an application of Prolog: a type checking tool for the Q functional language. Q
is a terse vector processing language, a descendant of APL, which is getting more and more
popular, especially in financial applications. Q is a dynamically typed language, much like Prolog.
Extending Q with static typing improves both the readability of programs and programmer
productivity, as type errors are discovered by the tool at compile time, rather than through
debugging the program execution.

We designed a type description syntax for Q and implemented a parser for both the Q language
and its type extension. We then implemented a type checking algorithm using constraints. As
most built-in function names of Q are overloaded, i.e. their meaning depends on the argument
types, a quite complex system of constraints had to be implemented.

Prolog proved to be an ideal implementation language for the task at hand. We used Definite
Clause Grammars for parsing and Constraint Handling Rules for the type checking algorithm. In
the paper we describe the main problems solved and the experiences gained in the development
of the type checking tool.
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1 Introduction

The paper presents a type analysis tool for the Q vector processing language, which has
been implemented in Prolog. The tool has been developed in a collaborative project between
Budapest University of Technology and Economics and Morgan Stanley Business and Tech-
nology Centre, Budapest. We emphasize two merits of our system: 1) it enforces certain
type declarations on Q programmers, making their code better documented and easier to
maintain and 2) we check the type correctness of Q programs and detect type errors that
can be inferred from the code before execution.

In Section 2 we give some background information on the Q language and typing. Next,
in Section 3 an overview of the type analysis tool is presented. The subsequent three sections
discuss the three main tasks that had to be solved in the development of the application:
extending Q with a type description language (Section 4); implementing the parser (Sec-
tion 5); and developing the type checker (Section 6). In Section 7 we provide an evaluation
of the tool developed and give an outline of future work, while in Section 8 we provide an
overview of approaches related to our work. Finally, Section 9 concludes the paper. A more
detailed version of this paper is available online as a technical communication at [16].
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2 Background

In this section we first present the Q programming language. Next, we introduce some
notions related to type handling that will be important for understanding the type analyser.

2.1 The Q Programming Language
Q is a highly efficient vector processing functional language, which is well suited to per-
forming complex calculations quickly on large volumes of data. Consequently, numerous in-
vestment banks (Morgan Stanley, Goldman Sachs, Deutsche Bank, Zurich Financial Group,
etc.) use this language for storing and analysing financial time series [4]. The Q language
first appeared in 2003 and is now (December 2010) so popular, that it is ranked among the
top 50 programming languages by the TIOBE Programming Community [15].

Types Q is a strongly typed, dynamically checked language. This means that while each
expression has a well-defined type, it is not declared explicitly, but stored along its value
during execution. The most important types are as follows:

Atomic types in Q correspond to those in SQL with some additional date and time
related types that facilitate time series calculations. Q has the following 16 atomic types:
boolean, byte, short, int, long, real, float, char, symbol, date, datetime, minute,
second, time, timespan, timestamp.
Lists are built from Q expressions of arbitrary types.
Dictionaries are a generalisation of lists and provide the foundation for tables. A
dictionary is a mapping that is given by exhaustively enumerating all domain-range
pairs.
Tables are lists of special dictionaries called records, that correspond to SQL records.

Main Language Constructs Q being a functional language, functions form the basis of the
language. A function is composed of an optional parameter list and a body comprising a
sequence of expressions to be evaluated. Function application is the process of evaluating the
sequence of expressions obtained after substituting actual arguments for formal parameters.
As an example, consider the expression

f: {[x] $[x >0; sqrt x;0]}

which defines a function of a single argument x, returning
√

x, if x > 0, and 0 otherwise.
Note that the formal parameter specification [x] can be omitted from the above function,
as Q assumes x, y and z to be implicit formal parameters.

Although it is a functional language, Q also has imperative features, such as multiple
assignment variables, loops, etc. Q is often used for manipulating data stored in tables.
Therefore, the language contains a sublanguage called Q-SQL, which extends the function-
ality of SQL, while preserving a very similar syntax.

Principles of evaluation In Q, expressions are always parsed from right to left. For ex-
ample, the evaluation of the expression a:2*3+4 begins with adding 4 to 3, then the result
is multiplied by 2 and finally, the obtained value is assigned to variable a. In Q it is quite
common to have a series of expressions f1 f2, evaluated as the function f1 applied to argu-
ments f2. For example we can define the function 4

√
x using the above function for

√
x as

follows: g : f f.
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There is no operator precedence, one needs to use parentheses to change the built-in
right-to-left evaluation order.

Type restrictions in Q The program code environment can impose various kinds of restric-
tions on types of expressions. In certain contexts, only one type is allowed. For example, in
the do-loop do[n;x*:2], the first argument specifies how many times x has to be multiplied
by 2 and it is required to be an integer. In other cases we expect a polymorphic type. If,
for example, function f takes arbitrary functions for argument, then its argument has to be
of type A -> B (a function taking an argument of type A and returning a value of type B),
where A and B are arbitrary types. In the most general case, there is a restriction involving
the types of several expressions. For instance, in the expression x = y + z, the type of x
depends on those of y and z. A type analyser for Q has to use a framework that allows for
formulating all type restrictions that can appear in the program.

2.2 Static vs. Dynamic Typing

The Q language is dynamically typed. This means that the type of an expression is not
explicitly associated with it, but the type is stored along the value. However, since the value
is only known during execution, there is few possibility of detecting a type error during
compilation. In statically typed languages, each expression has a declared type associated
with it, which is known before execution. Handling type information requires extra effort,
but it allows for compile time detection of some errors, namely type errors.

3 The Q Type Analyser – Architecture

In this section we give a bird’s eye view of the architecture of the system. The type analysis
can be divided into three parts:

Pass 1: lexical and syntactic analysis
The Q program is parsed into an abstract syntax tree structure.
Pass 2: post processing
Some further transformations make the abstract syntax tree easier to work with.
Pass 3: type checking proper
The types of all expressions are processed, type errors are detected.

Abs Abs

TreeTree

Q program

Type comments

Lexical

Analyser Analyser

Syntactic Post

Processing

Errors

Type

Checking

types

Built-in-Func

1

Figure 1 Architecture of the type analyser
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The algorithm is illustrated in Figure 1. The analyser receives the Q program along with
the user provided type declarations. The lexical analyser breaks the text into tokens. The
tokenizer recognises constants and hence their types are revealed at this early stage. After-
wards, the syntactic analyser parses the tokens into an abstract syntax tree representation
of the Q program. Parsing is followed by a post processing phase that encompasses various
small transformation tasks.

In the post processing phase some context sensitive transformations are carried out, such
as filling in the omitted formal parameter parts in function definitions; and finding, for each
variable occurrence, the declaration the given occurrence refers to.

Finally, in pass 3, the type analysis component traverses the abstract syntax tree and
imposes constraints on the types of the subexpressions of the program. This phase builds on
the user provided type declarations and the types of built-in functions. The latter are listed
in a separate text file with a syntax that is an extension of the type language described in
Section 4. The difference is that the current version of the type analyser does not support
polymorphic types for user defined functions, while this is unavoidable for characterising
built-in-functions.1 The predefined constraint handling rules trigger automatic constraint
reasoning, by the end of which the types of all subexpressions are inferred.

Each phase of the type analyser detects and stores errors. At the end of the analysis, the
user is presented with a list of errors, indicating the location and the kind of error. In case of
type errors, the analyser also gives some justification, in the form of conflicting constraints.

The type checking tool has been implemented in SICStus Prolog 4.1 [13]. The subsequent
sections deal with three main parts of the development process: extending Q with a type
language, implementing parsing and implementing type checking.

4 Extending Q with a Type Language

In order to allow the users to annotate their programs with type declarations, we had
to devise a type language that could be comfortably integrated into a Q program. Type
annotations appear as Q comments and hence do not interfere with the Q compiler. A
type declaration can appear anywhere in the program and it will be attached to the smal-
lest expression that it follows immediately. For example, in the code x + y //$: int
variable y is declared to be an integer.

Due to lack of space, we can only give a brief illustration the type language. The type lan-
guage contains the atomic types of Q, such as int, float, real, symbol and constructors
for building lists (list(int)), dictionaries (dict(int,list(int))), tables (table(‘name:
symbol; ‘age: int)), records (record(‘name: symbol; ‘age: int)) and functions
(int -> symbol). There are a couple of generic types, such as numeric and any. Further-
more, we introduced some other types, such as the tuple type, which allow us to describe
fixed length generic lists (tuple(int,real,int)). Such types require extra care, because
the same expression can have different descriptions. For example (3;2.2;4) could have
type list(numeric) or tuple(int,float,int), and this has to be kept in mind constantly
during type analysis. Type constructors can be embedded into each other, building complex
types of arbitrary depth.

Type declarations can be of two kinds, having slightly different semantics: imperative
(believe me that the type of expression E is T) or interrogative (I think the type of E is T,

1 We are currently working to extend the type language to polymorphic types. See more about this in
Section 7.
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but please do check). To understand the difference, suppose the value of x is loaded from
a file. This means that both the value and the type is determined at runtime and the type
checker will treat the type of x as any. If the user gives an imperative type declaration
that x is a list of integers, then the type analyser will believe this and treat x as a list of
integers. If, however, the type declaration is interrogative, then the type analyser will issue
a warning, because there is no guarantee that x will indeed be a list of integers (it can be
anything). Interrogative declarations are used to check that a piece of code works the way
the programmer intended. Imperative declarations provide extra information for the type
analyser. A Q program is guaranteed to be free of type errors in case the analyser issues no
errors and all the imperative declarations are indeed true.

Different comment tags have to be used for introducing the two kinds of declarations.
We give an example for each:

f //$: int -> boolean interrogative
g //!: int -> int imperative

5 Parsing

In this section we give an outline of the data structures and algorithms used by the parser
component of the type checker. The input of this phase is the original Q program extended
with type declarations embedded into Q comments. Its output is the abstract syntax tree
and a (possibly empty) list of lexical and syntactic errors. The parser consists of three parts:
a lexical analyser, a syntax analyser and a post processor. A particular challenge of parsing
Q was that there is no publicly available syntax for the language. We had to use various
incomplete tutorials and experiment a lot. Not only is the language poorly documented, we
found that it supports lots of exceptions and extreme cases. Some exceptions are demanded
by programmers while others only lead to wrong programming habits, hence we were in
constant negotiation with Q programmers about what the final syntax should look like.

5.1 Lexical and Syntactic Analysis
As the first processing step, the type checker converts its input Q program to a list of
lexical elements, or tokens, for short. The syntax analyser takes a list of tokens as its input
and builds an abstract syntax tree representation of the program. In the syntax analyser we
exploit the backtracking search of the Prolog language and use the Definite Clause Grammar
(DCG) [11] extension of Prolog to perform the parsing.

It is beyond the scope of this paper to present the syntax of the Q language. We only
mention that the most frequent expressions are function definitions, function applications,
infix function applications, list expressions, table expressions, assignments, identifiers and
constant atomic values. The abstract syntax tree form of an expression consists of a node
whose label identifies an expression constructor, and whose children are the abstract syntax
forms of its subexpressions. For example, the abstract form of a function application is a
node labelled with app, whose left subtree is the expression providing the function, and the
right subtree is the argument (or the list of arguments). Atomic constants are represented
with a node labelled cons, whose left subtree is the constant itself (as a Prolog string), while
the right subtree identifies the type of the constant. As an example, in Figure 2 we show
the abstract format of the expression f (4+2).

In the rest of the subsection, we list some of the challenges that we had to overcome for
building the syntax analyser.
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app

app

var

varf

24

+

list

conscons

intint

1

Figure 2 The abstract syntax tree format of the expression f (4+2)

Left-Recursion and Evaluation Order Our first version of the grammar was simple to
understand, but it was not free from (indirect) left recursion. A formal grammar that
contains left recursion cannot be parsed using DCGs. The right-to-left evaluation order
of Q also caused difficulties. Both problems were solved using the well known algorithm
from [8] to convert the grammar into an equivalent right recursive grammar. The algorithm
is based on dividing the problematic nonterminals to a start and a tail part. In this grammar,
implementing right-to-left evaluation became simple.

Avoiding Exponential blowup Improper grammar can drive the parsing to exponential run
time. Consider the following simplified grammar fragment:

expression :=
...
| assignment
| application ;

application :=
identifier , expression ;

assignment :=
application , :, expression ;

An expression starting with an application can be parsed directly as an application or
as an assignment whose left-hand side starts with an application. Hence, the expression
e1 e2 . . . ek can be parsed in 2k different ways. The problem occurs whenever there are two
disjunctive non-terminals that can be parsed to start with the same expression. We solved
this problem by transforming the grammar to eliminate unnecessary choice points.

Parsing Q-SQL The query sublanguage of Q, called Q-SQL, has a syntax that differs from
the rest of the code. To make matters worse, some language elements are defined both
inside and outside of Q-SQL, with different meaning. For example, ’,’ is the join operator
in Q, but it serves to separate conditional arguments in Q-SQL. The where function is
another example. The parser had to be prepared for this double parsing, which was further
complicated by the fact that one can insert a normal Q expression between parentheses into
a Q-SQL expression. This requires knowledge about the current context during parsing. In
our solution the DCG clauses were extended with an environment argument, which carries
information about the parenthesis depth and the actual position of the parser whenever
parsing inside a Q-SQL expression.
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5.2 Post Processing
In the post processing phase we perform some transformations on the abstract syntax tree
provided by the syntax analyser. The result is another abstract syntax tree conforming to
the same abstract syntax. This phase has two main tasks:

Implicit formal parameters are made explicit, e.g. the function definition f:{x+y} is
extended to f:{[x;y] x+y}.
Local variables are made globally unique:
Variable name x refers to different variables in different function definitions. Since we
would like to associate a type with each variable, we attach a context specific part to the
variable name, making all variables globally unique.

6 The Type Analysis Component

In this section we give an outline of the data structures and algorithms used by the type
analysis component. The input of this phase is the abstract syntax tree, constructed by the
parser. Its output is a (possibly empty) list of type errors.

6.1 Type Analysis Proper
Figure 3 gives a brief summary of the type analysis component. Our aim is to determine
whether we can assign a type to each expression of the program in a coherent manner.
Some types are known from the start, since the type analyser requires that the Q program
to be checked includes type definitions for all user defined functions and variables. Further-
more, we know the types of the built-in functions. The analyser infers the types of further
expressions and checks for the consistency of all types.

1. To each node of the abstract syntax tree, we assign a type variable.
2. We traverse the tree and formulate type constraints.
3. Constraint reasoning is used to automatically

propagate constraints,
deduce unknown types
detect and store clashes, i.e., type errors.

4. By the end of the traversal, each node that corresponds to a type correct ex-
pression is assigned a type. The types satisfy all constraints.

Figure 3 Overview of the type analysis component

Each expression in the concrete syntax corresponds to a subtree in the abstract syntax.
Hence, we maintain a variable (in mathematical sense) for each node of the tree, that stands
for the type of the subtree rooted at the node. The task of the type checker is to substitute
the variables with proper types.

We use type expressions to describe the type of an expression in the Q language. The
type checker uses type expressions similar to those described in Section 4, extended with
type variables.

We traverse the tree and formulate context specific constraints on the type of the current
node and those of its children. For instance, in the example in Figure 2, when we reach the
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app node, we know it is a function application, so the left child has to be of type a -> b, the
right child of type a and the whole subtree of type b. In some cases the constraint determines
the type of some node, but in many others it only narrows down the range of possible values.
In case of clash between the restrictions, there is a type error in the program.

The type checker also detects hazardous code that contains potential type error. This
is the case when the expected type of some expression is a subtype of the inferred one. An
example for this is when a function is declared to expect an integer argument and all we
know about the argument is that it is numeric. We cannot determine the runtime behaviour
of such a code, since the type error depends on what sort of numeric argument will be
provided. Instead of an error, we give a warning in such cases that the user can decide to
suppress.

Constraints are handled using the Prolog CHR [12] library. For each constraint, the
program contains a set of constraint handling rules. Once the arguments are sufficiently
instantiated (what this means differs from constraint to constraint), an adequate rule wakes
up. The rule might instantiate some type variable, it might invoke further constraints or
else it infers a type error. In the latter case we mark the location of the error, along with
the clashing constraint.

In case all variables and user defined functions are provided with a type declaration, we
start the analysis with the knowledge of the types of all leaves of the abstract syntax tree.
This is because a leaf is either an atomic expression, a variable or a function. Once the leaf
types are known, propagation of types from the leaves upwards is immediate, because we
can infer the type of an expression from those of its subexpressions. Constraints wake up
immediately when their arguments are instantiated, as a result of which the type variables
of the inner nodes become instantiated.

6.2 Constraints
The constraints that can be used for type inference come from two sources. First, we know
the types of atomic expressions and built-in functions. For example, 2.2 is immediately
known to be a float. Similarly, we know that the function count is of type any -> int.
Such knowledge allows us to set – or at least constrain – the types of certain leaves of the
abstract syntax tree. The other source of constraints is the language syntax. This can be
used to propagate constraints, because the language syntax imposes restrictions on the types
of neighbouring nodes.

Besides these type constraints, there can be type information provided by the user at
any level of the abstract syntax tree.

Constraint Handling Rules To handle type constraints, we use constraint logic program-
ming. More precisely we use the Prolog CHR (Constraint Handling Rules) library [12],
which provides a general framework for defining constraints and describing how they inter-
act with each other. The advantage of CHR is that the constraint variables can take values
from arbitrary Prolog structures, so we can comfortably represent all values that a type
expression can have.

6.3 Issues about Type Declarations
As we have discussed in Section 3, the user is required to provide every variable and user-
defined function with a type description. In this subsection we give reasons for this require-
ment.
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As we have seen before, the immediate benefit is that the types of all leaves of the
abstract syntax tree are known at the beginning of the analysis. Without type declarations,
some constraints might remain suspended and lots of types unknown. In this case we have
to use some sort of labeling to assign a type to each expression.

Furthermore, if the arguments of constraints are ground, we do not have to worry about
the interaction of constraints. Consider, for example the following two constraints:

int_or_float (X) <=> (X == int ; X == float) | true.
int_or_long (X) <=> (X == int ; X == long) | true.

If these two constraints apply to type T, then they will not do anything as long as T is
a variable, even though there is only one solution, namely T=int. In order for the type
analyser to infer this, we have to add a new rule that describes the interaction of the two
constraints, such as

int_or_float (X), int_or_long (X) <=> X = int.

More complex constraints can interact in many different ways and the number of constraint
handling rules necessary for capturing all interactions can be exponential in the number of
constraints. Given that we work with more than 50 different constraints, it is not realistic
to exhaustively write up all rules. If, on the other hand, the arguments are sufficiently
instantiated that the constraints can wake up individually (not knowing about the others),
then we only need to provide a couple of rules for each constraint. In the above example,
if X is instantiated, then either X=int and both constraints exit successfully or else at least
one constraint indicates an error.

7 Evaluation and Future Work

The static type checking tool has been developed in Prolog in about 6 months by the three
authors of this paper. Having undergone some initial testing, it is now being evaluated
on real-life Q programs at Morgan Stanley Business and Technology Centre. Even in this
early stage of testing, the type checking tool pointed out several type errors in real-life Q
programs.

Implementation The DCG rule formalism of Prolog was extremely useful in implementing
the parser. Because no precise definition for the Q language is publicly available, the syntax
accepted by the tool often changed during the development. Hence it was crucial that the
parser is easy to modify. For this reason we believe that DCG was a particularly good choice.

Similarly, we were satisfied with the choice of CHR for implementing the type checking.
The development of the constraint rules describing the types of the built-in functions was
fairly straightforward. Even without rules describing the interaction of constraints, we
experienced no performance problems in type checking (although this may change if we
move on to type inference).

From Type Checking towards Type Inference In Subsection 6.3 we gave justification for
requiring type information about variables and user defined functions. However, it is often
rather uncomfortable for the programmer to write so many declarations, so it is worth trying
to lift this restriction at least partially. First, (non-function) variables that are initialised
do not require a type declaration since the analyser can infer the type from the code. For
functions, in many cases it is enough to declare the types of the input parameters, since
from them the type of the output can be inferred.
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A related question is that of polymorphic types. The type definition language can be
extended in a straightforward way to allow polymorphism. In principle, it seems to be
feasible to use a variant of the Hindley-Milner algorithm [7] for type inference involving
polymorphic types. However, it is yet unclear whether this can be done with acceptable
performance, given the large number of overloaded function symbols.

In the immediate future, we plan to further examine and implement all possibilities of
omitting type declarations and allowing for polymorphic types.

8 Related Work

Use of Prolog for Parsing Prolog has been used for writing parsers and compilers from its
very conception. [2] defines Metamorphosis Grammars as a Prolog extension to support the
task of parsing, while [11] describe Definite Clause Grammars as a simplified form of Meta-
morphosis Grammars. This extension is supported by practically all Prolog implementations
today.

[1] give a comprehensive overview of parsing and compiling techniques in the context of
Prolog language. [10] reports on the Prolog implementation of a compiler for a programming
language called Edison.

Types and constraints Several dynamically typed languages have been extended with a
type system allowing for static type checking or type inference. [9] describe a polymorphic
type system for Prolog. [6] present a type system for Erlang, which is similar to Q in that
they are both dynamically typed functional languages. Several of the shortcomings of this
system were addressed in [5]. The tool presented in this work differs from ours in its mo-
tivation. It requires no alteration of the code (no type annotations) and infers function
types from their usage. Instead of well-typing, it provides success typing: it aims to discover
provable type errors. We, on the other hand, guarantee type safety by providing warnings
in cases of potential errors. Besides, type annotations are an important means to enhance
program readability and although we are working to reduce the number of mandatory an-
notations, it is very unlikely that we would ever want to eliminate all of them. [3] report on
using constraints in type checking and inference for Prolog. They transform the input logic
program with type annotations into another logic program over types, whose execution per-
forms the type checking. They give an elegant solution to the problem of handling infinite
variable domains by not explicitly representing the domain on unconstrained variables. We
believe that their work can be useful for us as we move from type checking towards type
analysis. [14] describe a generic type inference system for a generalisation of the Hindley-
Milner approach using constraints, and also report on an implementation using Constraint
Handling Rules.

9 Conclusions

We presented a type checking tool for the Q language as a Prolog application. We developed
a type description language for the type system of Q, which helps in making Q programs
easier to read and maintain. We implemented a parser, and a constraint-based type checker.
Using constraints enabled us to capture the highly polymorphic nature of built-in functions
due to overloading. The type checker provides type safeness: a program that is deemed type
correct cannot produce type errors during execution. The tool is now being deployed in an
industrial environment, with positive initial feedback.
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Abstract
Regular types represent sets of structured data, and have been used in logic programming (LP)
for verification. However, first-class regular type systems are uncommon in LP languages. In
this paper we present a new approach to regular types, based on type canonization, aimed at
providing a practical first-class regular type system.
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1 Introduction

Regular types describe (infinite) sets of structured data, and have a long history in the
verification of logic programs. Briefly, a data term is a term t built up from a universe of
constants using data constructors:

t
·= employee(name(“John”, “Smith”), id(100))

The functions name, employee, and id are constructors for building data; the remaining
symbols are constants. A type term is a term τ denoting a set of data terms:

τ
·= employee(name(“John”,String), id(Natural))

The special constants String and Natural denote the sets of all strings and natural numbers.
In this example, τ denotes the set of all employee data terms where the employee’s first name
is “John” and the employee’s ID is a natural number. We write JτK for the set of data terms
denoted by τ :

JτK ·= {employee(name(“John”, x), id(y)) | x ∈ JStringK ∧ y ∈ Z+ ∪ {0}}

In this paper we develop a language of type terms to represent, manipulate and canonize
regular types. We use the phrase type term and regular type interchangeably.

Regular types have been primarily used to verify properties of untyped logic programs
using the following technique [7]: For each n-ary program relation r define an n-ary data
constructor fr. Compute a type term τr such that if r(x1, . . . , xn) holds in the program, then
the data term fr(x1, . . . , xn) is a member of JτrK. Now, τr can be used to check properties of
r using type-theoretic operations of type equality (≈) and subtype testing (<:). For example,
if JτrK is empty then r never holds in the program, which is likely a mistake.

However, unlike other typing paradigms, regular types have not been embraced as a
first-class type system in logic programming. Their application remains narrowly scoped
to verification of untyped logic programs. There are several reasons why regular types are
difficult to use at the language level:
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No Language-Level Representation Regular types are equivalent to powerful recognizers on
data terms, called non-deterministic tree automata (NDTAs). Most verification tools use
NDTAs to represent types, but this low-level representation is unsuitable for programmer
manipulation. Meanwhile, the shallow embedding of regular types via type programs [7]
does not provide a first-class type system.

No Unique Representation Regardless of representation, regular types are non-unique. Two
types may have the same meaning, but look drastically different. Programmers cannot be
expected to know if this is the case, because type equality is EXPTIME-complete. This
limits the effectiveness of type inference to report useful information.

No Infinite Base Types Existing approaches do not support an infinite universe of constants.
This restriction is fundamental to all approaches based on finite tree automata, where
it provides key closure properties. Thus, languages with infinite base types, such as the
mathematical set of integers, are not supported.

In this paper we present a new approach to regular types aimed at typed logic programs
over a first-class regular type system. This approach has been implemented in our LP
language formula 1[11]. Our contributions are:
First-class Types and Declarations We define a language for regular types using type terms.

Programmers explicitly declare the types of data constructor arguments using type terms.
We develop a special class of type declarations, which we call uniform, where type equality
and subtype testing are in coNP.

Unique Representations Under the uniformity restriction, we develop a type canonizer that
converts any two semantically equivalent type terms into syntactically identical type terms.
In this way, programmers observe the results of type inference as uniquely represented
type terms, regardless of the steps taken by type inference. We experimentally show that
inferred type terms are small.

New Algorithms/Infinite Base Types We present alternative algorithms based on algebraic
manipulation of type terms instead of tree automata. This formalization eliminates the
finite signature restriction and supports infinite base types directly.

This paper is organized as follows. Section 2 contains related work. Section 3 formalizes
regular types over infinite base types. Section 4 introduces uniform declarations. Section 5
describes the canonization algorithm. We conclude in Section 6.

2 Related Work

Regular types have been primarily been used for verification of untyped logic programs [8, 13].
Ciao-Prolog uses a shallow embedding into logic programming [9]. NU-Prolog was reported to
have first-class regular types [5], while Mercury employs a Hindley-Milner style type system
[12]. However, other programming paradigms provide support for first-class regular types
[10, 3]. Though none of them employ canonical forms to present the results of type inference.
Instead, regular types are commonly stored as optimized NDTAs [1]. Further optimizations
can be obtained by restricting the class of type declarations [4], which is conceptually similar
to our approach. Extensions to regular types include feature algebras [2] and may add arrow
types [6].

1 See http://research.microsoft.com/formula

http://research.microsoft.com/formula
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3 Regular Types and their Semantics

In this section we develop a theory of regular types through a language of type terms. We
start from an algebraic signature Σ∆, called the data signature, identifying the name/arity
of data constructors and the universe U of constants. A data signature contains a finite
number of non-nullary function symbols and may contain an infinite universe of constants U .
Here is an example of a data signature: (Z ∪ S, employee(, ), name(, ), age()), where S is the
set of all strings. Typically, the language predefines many constants in the universe and the
programmer defines the non-nullary function symbols.

A data term is either a constant, or an application of a Σ∆-function to data terms.
Importantly, data terms are untyped, meaning any arity-respecting sequence of applications
is a legal data term, even if it appears to be nonsensical: name(id(100), employee(40, “Foo”))
Semantically, data terms are interpreted in a very simple way: Two data terms denote the
same object if and only if they are identical sequences of function applications and constants.
This interpretation yields the Herbrand Universe of Σ∆, written H(Σ∆), which is the set of
all objects labeled by data terms under this rule of equality. From henceforth, the phrases
data constructor and Σ∆-function are equivalent.

Regular types allow the programmer to identify the meaningful data terms by describing
subsets of data terms. For example, the regular type name(String,String) identifies all the
data terms with string arguments; the unwanted term name(id(100), id(100)) does not belong
to this set. In our setting a regular type is type term that can be formed using: (1) data
constructors, (2) constants, (3) base types such as Integer or String, (4) type variables such as
αcons or αlist, and (5) the operations ∩ and ∪.

3.1 Type Signatures and Terms
Formally, a type term is a term formed over a type signature Στ :

I Definition 1 (Type Signature). A type signature Στ is extends a data signature Σ∆:

Στ
·= (Σ∆, V, B,⊥,∩,∪). (1)

1. V is a (possibly infinite) set of nullary functions called the set of type variables. The
symbols in V are disjoint from other symbols.

2. B is a finite set of constants called the set of base types. The symbols in B are disjoint
from other symbols, except for the distinguished base type ⊥ ∈ B, called void.

3. The type intersection (∩) operation and type union (∪) operation are binary operations.
These operations are not in Σ∆, V , or B.

Conventions A type term τ is a term over Στ , and H(Στ ) is the Herbrand Universe of
type terms. Let σ, σ1, σ2, . . . range over the nullary symbols of Σ∆ and f, g, . . . range over
the non-nullary symbols of Σ∆. Also, α, α1, . . . range over type variables and β, β1, . . . range
over base types. We write f(τ) as shorthand for f(τ1, . . . , τn). For the remainder of this
paper we assume all data constructors are binary functions. However, all definitions and
theorems generalize for functions of arbitrary arity.

3.2 Type Environments and Denotations
The meaning of a type term τ is a set of data terms, which is fixed except for the meaning of
type variables. For example, Jid(α)K depends on the denotation of the type variable α. A
type environment η provides the missing information in the form of a function from type
variables to sets of data terms.
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I Definition 2 (Type Environments). A type environment η : V → 2H(Σ∆) is a function from
type variables to sets of data terms. Set-theoretical operations on 2H(Σ∆) can be lifted to
type environments by defining:

η u η′ ·= λα . η(α) ∩ η′(α) ⊥env
·= λα . ∅

η t η′ ·= λα . η(α) ∪ η′(α) >env
·= λα . H(Σ∆).

I Definition 3 (Type Denotation). A type denotation function J Kη is a function from type
terms and environments to sets of data terms. It gives a denotation to every type term with
respect to a fixed environment.

J K : H(Στ )→
(
V → 2H(Σ∆)

)
→ 2H(Σ∆). (2)

satisfying:

J⊥Kη
·= ∅.

JαKη
·= η(α), α ∈ V.

JσKη
·= {σ}, σ ∈ Σ∆.

JβKη
·= {σ1, σ2, . . .}, β ∈ B − {⊥}.

Jτ1 ∪ τ2Kη
·= Jτ1Kη ∪ Jτ2Kη.

Jτ1 ∩ τ2Kη
·= Jτ1Kη ∩ Jτ2Kη.

Jf(τ1, τ2)Kη
·=

{
f(t1, t2)

∣∣∣∣ t1 ∈ Jτ1Kη ∧
t2 ∈ Jτ2Kη

}
, f ∈ Σ∆.

The denotations of base types are fixed by the language. In other words, they are independent
of the environment, denote unique sets, and are closed under intersection. For all β, β′, η, η′:

JβKη = Jβ′Kη′ ⇔ β = β′, ∃β′′ JβKη ∩ Jβ′Kη = Jβ′′Kη.

3.3 Type Variables and Declarations
Type variables have a very different use in regular types compared to other type systems.
They are used to define recursive data types via a system of type equations. Solutions to
these equations are type environments where the equations hold. A type equation is a pair of
type terms, written τ ≈ τ ′. A type equation holds for a type environment η if JτKη = Jτ ′Kη.
Programmers introduce type variables through type declarations, which are equations of the
form α ≈ τ . The smallest solution to these equations gives a unique type environment fixing
the denotation of all variables.

I Definition 4 (Type Declarations). A set of type declarations D is a finite set of type
equations of the form α ≈ τ , where α ∈ V . For each α ∈ V there is at most one equation in
D with α on the left hand side.

I Example 5 (Declaration of Integer Lists). The following declarations characterize finite lists
of integers:

D ·= {αcons ≈ cons(Integer, αlist), αlist ≈ nil ∪ αcons}, Σ∆
·= (Z, nil, cons(, )).

The solution to this system of equations produces the expected result, because any so-
lution η must have nil ∈ JαlistKη, implying Jcons(Integer, nil)Kη ⊆ αcons, implying Jnil ∪
cons(Integer, nil)Kη ⊆ αlist. By induction αlist and αcons obtain their usual denotations. We
now formalize this result.
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I Definition 6 (Least Environment). A set of type declarations distinguishes a unique type
environment η(D) and denotation J Kη(D), which is the least environment satisfying all type
declarations:

η(D) ·= min

{
η ∈ Env(Στ )

∣∣∣∣ ∀α ≈ τ ∈ D, JαKη = JτKη
}
. (3)

I Lemma 7. The environment η(D) exists and is unique. It is the least fixpoint of a
monotone operator Γ : Env(Στ )→ Env(Στ ).

IDefinition 8 (Models Relation). A set of declarations D may imply additional type equations.
Define:

D |= τ ≈ τ ′ ·= JτKη(D) = Jτ ′Kη(D). (4)

Conventions The |= relation is read: “D models the equation τ ≈ τ ′”. Two sets of
declarations are equivalent, written D ≈ D′, if they model the same equations:

D ≈ D′ ·= (∀τ ≈ τ ′ D |= τ ≈ τ ′ ⇔ D′ |= τ ≈ τ ′). (5)

For the remainder of this paper we drop the subscript η(D) from J K when the corresponding
D is clear from context. Similarly, we write τ ≈ τ ′ instead of D |= τ ≈ τ ′. The type term τ ′

is a subtype of τ , written τ ′ <: τ , if Jτ ′K ⊆ JτK. Equivalently, τ ′ <: τ if and only if D models
the equation τ ∩ τ ′ ≈ τ ′.

I Lemma 9. The type intersection (∩) and union (∪) operations inherit the properties of
set-theoretical intersection and union: they are idempotent, commutative, associative, and
satisfy distributivity and absorbtion properties. Furthermore, the following identities hold for
every D:

(product-∩) f(τ1, τ2) ∩ f(τ ′1, τ ′2) ≈ f(τ1 ∩ τ ′1, τ2 ∩ τ ′2)
(disjoint-f, g) g(τ1, τ2) ∩ f(τ ′1, τ ′2) ≈ ⊥ when f and g are different.
(disjoint-σ, f) σ ∩ f(τ1, τ2) ≈ ⊥
(disjoint-β, f) β ∩ f(τ1, τ2) ≈ ⊥
(disjoint-σ, σ′) σ ∩ σ′ ≈ ⊥ when σ 6= σ′

(member) σ ∩ β ≈ σ when σ ∈ JβK

(non-member) σ ∩ β ≈ ⊥ when σ 6∈ JβK

(base-∩) β ∩ β′ ≈ β′′ when JβK ∩ Jβ′K = Jβ′′K

4 Uniform Declarations

For the remainder of this paper we study type environments generated by a restricted class
of type declarations, which we call uniform declarations. In order to avoid confusion, let
us emphasize that uniformity is a restriction only on type declarations D. Arbitrary type
terms can be constructed w.r.t. to uniform declarations; as before the denotations of terms
continues to be given by J Kη(D). To illustrate this restriction, we begin with an example of
declarations that are not uniform:
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I Example 10 (Lists of Various Lengths).

αL2 ≈ cons(Integer, cons(Integer, nil ∪ αL2)).
αL3 ≈ cons(Integer, cons(Integer, cons(Integer, nil ∪ αL3))).
αL ≈ αL2 ∪ αL3.

The type variables αL2 and αL3 denote lists with lengths divisible by two and three; αL
denotes their union. These types are related in non-trivial ways: αL2 ∩ αL3 6≈ ⊥, αL2 <: αL,
and αL3 <: αL. In general, proving these relationships may require witnesses of exponential
size. Exponentially large witnesses can be eliminated (and the complexity class reduced) by
restricting the structure of type declarations:

I Definition 11 (Uniform Declarations). A set of declarations D is uniform if:
1. For every α ≈ τ ∈ D, either τ is free of constructor applications (application-free), or

τ = f(τ1, τ2) and every τi is application-free.
2. For every f ∈ Σ∆ there is exactly on equation of the form αf ≈ f(τ1, τ2).

Example 5 is uniform, while Example 10 is not. Importantly, the uniformity restriction
does not prevent arbitrarily precise approximations of general regular types. The types
denoted by αL2 and αL3 can be arbitrarily approximated by the following type terms over
the uniform declaration of integer lists:

I Example 12 (Uniform Approximations of Non-uniform Types).

τL2(1)
·= cons(Integer, cons(Integer, nil)).

τL3(1)
·= cons(Integer, cons(Integer, cons(Integer, nil))) . . .

τL2(i)
·= τL2(i−1) ∪ cons(Integer, cons(Integer, τL2(i−1))).

τL3(i)
·= τL3(i−1) ∪ cons(Integer, cons(Integer, cons(Integer, τL3(i−1)))) . . .

Observe, τL2(i) <: αL2 <: αlist, τL3(i) <: αL3 <: αlist, and τL2(i) ∩ τL3(i) 6≈ ⊥.
This example also illustrates that type terms can have arbitrary nesting of function

symbols; uniformity only constrains type declarations. Uniform declarations provide two key
results that aid in type canonization. First, type canonization is simpler because all variables
not of the form αf can be eliminated from type expressions over uniform declarations.
Second, type equations are easier to decide; they become coNP-complete as opposed to
EXPTIME-complete. We now elaborate on these results. Note that similar observations
have been made for restricted classes of XML schema [4].

4.1 Orientability and Complexity of Uniform Declarations
In this section we show that uniform declarations can be rewritten to eliminate dependencies
on type variables that are not of the form αf ≈ f(τ). As a result, we say a variable α
is an auxiliary variable if its declaration is α ≈ τ and τ is application-free. Orienting the
declarations allows many simplifying assumptions when canonizing type expressions. Two
lemmas are required to prove the orientability of uniform declarations.

I Lemma 13 (Substitution). If {α ≈ τ, α′ ≈ τ ′} ⊆ D, then any occurrence of α in τ ′ can be
replaced with τ . In symbols:

D ≈ D \ {α1 ≈ τ1} ∪ {α1 ≈ τ1[α2/τ2]}, (6)

where τ ′[α/τ ] is the replacement of every occurrence of α with τ .
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I Lemma 14 (Eliminating Self-Dependencies). If α ≈ τ ∈ D, τ is application-free, and α
appears in τ , then α can be eliminated from τ .

I Theorem 15 (Uniform Declarations are Orientable). A set of uniform declarations D is
equivalent to a set of uniform declarations D̂ where:

∀α ≈ τ ∈ D̂, vars(τ) ⊆ {αf | f ∈ Σ∆}. (7)

The problem of deciding a type equation τ ′ ≈ τ is to decide if D |= τ ′ ≈ τ . For instance,
we earlier showed that subtype testing τ ′ <: τ is equivalent to deciding a type equation
τ ′ ∩ τ ≈ τ ′. Our solution is by canonization; a type canonizer converts two type terms to
syntactically identical terms if and only if the terms have the same denotation. First, we
prove coNP-completeness of deciding type equalities over uniform declarations. We show this
by establishing NP-completeness of the complement problem: checking type disequalities.

I Theorem 16. Deciding type disequalities over uniform declarations is NP-complete.

Proof. The sketch is as follows: Satisfiabiliy of a 3-CNF formula ϕ can be encoded as the
type disequality τ(ϕ) 6≈ ⊥. This establishes NP-hardness, but it remains to be shown that
if τ 6≈ τ ′ then there is a polynomial size witness. This witness is shown to exist due to the
structure of uniform declarations. J

5 Canonical Forms

In this section we develop a process for canonizing type expressions over uniform declarations.
The type canonizer reduces the problem of deciding type equations to checking syntactic
equality of canonical forms. To simplify theorems, we assume non-auxiliary variables never
denote the empty set: Jαf K 6= ∅. It should be possible to construct at least one well-typed
term for a given data constructor.

I Definition 17 (Type Canonizer). For uniform declarations D, a type canonizer can() is a
function from type expressions to type expressions satisfying:

can(⊥) = ⊥ ∧ τ ≈ can(τ) ∧ τ ≈ τ ′ ⇔ can(τ) = can(τ ′). (8)

5.1 Eliminating intersection and auxiliary variables
Our canonizer takes advantage of the fact that intersection and auxiliary variables can be
eliminated from type expressions. Given an input to the canonizer τ , then all auxilliary
variables can be eliminated from τ by Theorem 15 using the rewrites:

αaux → ⊥, if αaux ≈ τaux /∈ D.

αaux → τaux, if αaux ≈ τaux ∈ D̂.
(9)

Similarly, the equations from Lemma 9 eliminate intersections between non-variable atoms.
In the context of uniform type declarations, we can also eliminate intersections involving
non-auxiliary variables by using the equations:

(product-∩) αf ∩ f(τ ′1, τ ′2) ≈ f(τ1 ∩ τ ′1, τ2 ∩ τ ′2), αf ≈ f(τ1, τ2) ∈ D.
(disjoint-f, g) αf ∩ αg ≈ ⊥, when f and g are different.
(disjoint-f, g) αf ∩ g(τ1, τ2) ≈ ⊥, when f and g are different.
(disjoint-f, σ) αf ∩ σ ≈ ⊥
(disjoint-f, β) αf ∩ β ≈ ⊥
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To completely eliminate intersections it remains to apply the set-theoretical properties
of union and intersection from Lemma 9: Distribute intersections over unions and apply
idempotency to eliminate redundant intersections. Let us call the procedure simplify(τ) that
applies the elimination steps for intersection. We now have:

I Lemma 18. For uniform D and any τ , then τ ≈ simplify(τ) and simplify(τ) contains
neither intersections nor auxiliary variables.

The remaining two subproblems are canonizing repeated unions and recognizing unfoldings
of recursive data types. For example,

τ = f(0, 1) ∪ f(1, 0) ∪ f(1, 1), τ ′ = f(1, 0 ∪ 1) ∪ f(0 ∪ 1, 1).

Casual inspection reveals that τ ≈ τ ′, even though the two terms have quite different forms.
One approach to canonization is to expand constructor applications, so τ ′ is rewritten τ .
However, this approach guarantees a combinatorial blow-up in the size of the canonical form;
it is also problematic when infinite base types appear as subterms. On the other hand, if τ ′
should be the canonical form, then the canonizer must compress τ into τ ′; it is less obvious
how this can be done. The approach we present uses τ ′ as the canonical form, and does not
eagerly expand unions into singleton constructor applications.

5.2 Base Case: Canonizing Depth-0 Terms
We build the canonizer inductively; the induction is over the depth of terms.

I Definition 19 (Depth). The depth of an term τ is the length of the longest sequence of
constructor applications.

depth(τ) ·=


1 +max(depth(τ1), depth(τ2)) if τ = f(τ1, τ2)
max(depth(τ1), depth(τ2)) if τ = τ1 ∪ τ2, or τ = τ1 ∩ τ2
0 otherwise.

(10)

A depth-0 term is another name for an application-free term.

I Lemma 20. For uniform D and any term τ , then depth(simplify(τ)) ≤ depth(τ).

I Definition 21 (Base Rewrite System). Let Rexpand be the term rewrite system given by
the rule: τ → β ∪ τ, if JβK ⊆ JτK. Let Rcontract be the term rewrite system: τ ∪ β →
β, if JτK ⊆ JβK. The term base(τ) is constructed by first applying Rexpand exhaustively
(modulo associativity and commutativity (AC) of ∪) until no new types can be added to τ .
Second, Rcontract is applied to eliminate subsumed types.

I Lemma 22. For uniform D and simplified, depth-0 terms τ and τ ′. If τ ≈ τ ′, then
base(τ) = base(τ ′) modulo AC of ∪.

Lemma 22 guarantees syntactic equivalence up to ordering of unions. However, we would
like to handle this order precisely. Fix an arbitrary ordering ≺ on type terms, then a type
term τ is sorted if τ is of the form τ1 ∪ (τ2 ∪ (τ3 ∪ (. . . ∪ τn))), and τ1 ≺ τ2 ≺ τ3 ≺ . . . ≺ τn,
and the type terms τ1, . . . , τn are not union expressions. Let sort be a function that takes
any type term τ and rewrites it into an equivalent but sorted expression sort(τ).

I Corollary 23 (Depth-0 Canonizer). Define can0 as a function from depth-0 terms to depth-0
terms such that: can0(τ) ·= sort(base(simplify(τ))). Then can0 is a type canonizer for
depth-0 expressions.



E. Jackson, N. Bjørner, and W. Schulte 81

5.3 Induction: Terms of Depth k > 0
The induction step builds a canonizer cank+1 for terms with at most depth k + 1 from a
canonizer cank for terms with at most depth k. When canonizing union expressions, we
utilize the lattice-theoretic properties induced by a cank canonizer:

I Definition 24. Let S = {σ1, . . . , σn} be a finite set of constants and k ≥ 0 then Στ (S, k)
is the set of all terms τ such that depth(τ) ≤ k and cnsts(τ) ⊆ S. Note, cnsts(τ) is the set of
constants appearing as subterms of τ .

I Lemma 25 (S, k-Canonical Lattice). Let S be a finite set of constants, and cank be a
canonizer for expressions with depth at most k. Define

L(S, k) ·= 〈cank(Στ (S, k)),⊥,>,u,t〉, where

⊥ ·= ⊥Στ , > ·= cank((
⋃
α∈V

α) ∪ (
⋃
β∈B

β) ∪ (
⋃
σ∈S

σ)),

τ u τ ′ ·= cank(τ ∩ τ ′), τ t τ ′ ·= cank(τ ∪ τ ′).

Then, L(S, k) is a finite lattice such that τ u τ ′ ≈ τ ∩ τ ′ and τ t τ ′ ≈ τ ∪ τ ′.

The effect of constructor applications on canonized terms of depth k can be understood
as an f -labeled product lattice:

I Lemma 26 (f, S, k-Canonical Lattice). Let f be a binary constructor, S a finite set of
constants, and cank a canonizer, define

L(f, S, k) ·= 〈U,⊥,>,u,t〉, where

U
·= ⊥Στ ∪

{
f(τ, τ ′)

∣∣∣∣ τ ∈ L(S, k) \ {⊥Στ },
τ ′ ∈ L(S, k) \ {⊥Στ }

}
.

⊥ ·= ⊥Στ . >
·= f(>L(S,k),>L(S,k)).

f(τ1, τ2) u f(τ ′1, τ ′2) ·= f(τ1 uL(S,k) τ
′
1, τ2 uL(S,k) τ

′
2).

f(τ1, τ2) t f(τ ′1, τ ′2) ·= f(τ1 tL(S,k) τ
′
1, τ2 tL(S,k) τ

′
2).

Then, L(f, S, k) is a finite lattice where τ u τ ′ ≈ τ ∩ τ ′ and τ ∪ τ ′ <: τ t τ ′.

The elements of L(f, S, k) already denote unique type expressions (otherwise L(f, S, k) would
not be a lattice), and have maximum depth k + 1. However, the join operation may over-
approximate the union of two elements: f(0, 0) t f(1, 1) = f(0 ∪ 1, 0 ∪ 1). Thus, L(f, S, k)
cannot be immediately used to canonize unions of terms with depth k + 1. The following
lemmas overcome this limitation:

I Theorem 27 (Maximal Decomposition). Given τ = τ1 ∪ . . . ∪ τn such that τ1, . . . , τn ∈
L(f, S, k), then a maximal decomposition of τ is an element τ ′ ∈ L(f, S, k) such that:

Jτ ′K ⊆ JτK ∧ ∀τ ′′ ∈ L(f, S, k) τ ′ @ τ ′′ ⇒ Jτ ′′K * JτK. (11)

Let decs(τ) be a type term that is the union of all maximal decompositions. It is computed by
saturating τ w.r.t. the following implications and keeping the L(f, S, k)-maximal subterms:

f(τ1, τ2), f(τ ′1, τ ′2) ∈ τ ⇒ f(τ1 u τ ′1, τ2) ∈ τ. f(τ1, τ2), f(τ ′1, τ ′2) ∈ τ ⇒ f(τ1, τ2 u τ ′2) ∈ τ.
f(τ1, τ2), f(τ1, τ3) ∈ τ ⇒ f(τ1, τ2 t τ3) ∈ τ. f(τ2, τ1), f(τ3, τ1) ∈ τ ⇒ f(τ2 t τ3, τ1) ∈ τ.
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I Lemma 28 (Correctness\Uniqueness of Decompositions). Modulo AC of ∪:

τ ≈ decs(τ) ∧ τ ≈ τ ′ ⇔ decs(τ) = decs(τ ′)

The union of all maximal decompositions has the same denotation as the original type
expression, but is unique for a lattice L(f, S, k). We now have almost all the ingredients to
define a complete canonizer. The final task is to ensure that recursive data types are folded
and unfolded consistently. Suppose τ is an expression of depth at most k + 1 and has the
form f(τ ′1, τ ′′1 ) ∪ . . . ∪ f(τ ′n, τ ′′n ), where every τ ′i , τ ′′i is canonical with respect to cank. We
can use a maximal decomposition to canonize this union by creating the type expression
sort(fold(decs(τ))) where fold replaces constructor applications with non-auxiliary type
variables. The unfold() operation expands type variables with their declarations:

fold(f(τ1, τ2)) ·= αf , αf ≈ f(τf1 , τ
f
2 ) ∈ D̂, τi = cank(τfi ), i = 1, 2.

fold(τ1 ∪ τ2) ·= fold(τ1) ∪ fold(τ2).
fold(τ) ·= τ, otherwise.
unfold(αf ) ·= f(cank(τf1 ), cank(τf2 )), αf ≈ f(τf1 , τ

f
2 ) ∈ D̂.

unfold(f(τ1, τ2)) ·= f(cank(τ1), cank(τ2)), cank(τ1) 6= ⊥ ∧ cank(τ2) 6= ⊥.
unfold(f(τ1, τ2)) ·= ⊥, cank(τ1) = ⊥ ∨ cank(τ2) = ⊥.
unfold(τ1 ∪ τ2) ·= unfold(τ1) ∪ unfold(τ2).

Then define the canonizer for such terms to be canf,k+1(τ) ·= sort(fold(decs(unfold(τ)))).

I Lemma 29 (Canonizer for Unions of f -terms). Let τ be a sequence of unions of either the
type variable αf or an f-term with depth ≤ k + 1. Also, suppose αf ≈ f(τf1 , τ

f
2 ) ∈ D̂ and

S = cnsts(τ)∪ cnsts(τf1 )∪ cnsts(τf2 ). Then, canf,k+1 is a canonizer for terms in Στ (S, k+ 1).

The full canonizer is a obtained by canonizing base types together with constants, and
then canonizing for each constructor in the signature: If simplify(τ) has the form:

αf ∪ f(τ1, τ2)..︸ ︷︷ ︸
τf

∪ g(τ3, τ4) ∪ g(τ5, τ6)︸ ︷︷ ︸
τg

∪σ1 ∪ σ2 . . . ∪ β1 ∪ β2..︸ ︷︷ ︸
τc

I Theorem 30 (Canonizer cank+1). Assume cank is a canonizer for terms of depth at most
k, then cank+1 is a canonizer for terms with depth at most k + 1, where:

cank+1(τ) ·= sort(base(canf,k+1(τf ) ∪ cang,k+1(τg) ∪ τc)) (12)

6 Conclusion

We developed a type canonizer for regular types expressed as type terms over uniform
declarations. The canonizer solves type checking problems and returns type judgments
as canonical type terms. We implemented a type system using this approach in the LP
language formula [11], and experimentally showed that canonization times behave linearly
while canonical forms are of high quality. Please see the full technical report at http://
research.microsoft.com/~ejackson for experimental data. Future work includes studying
the interaction of regular types and constraints: It is well-known that Presburger constraints
describe regular sets, so constraints, such as x = 2y, can be used to infer that x is even.

http://research.microsoft.com/~ejackson
http://research.microsoft.com/~ejackson
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Abstract
Today, Prolog is often used to solve well-defined, domain-specific problems that are part of
larger applications. In such cases, a tight integration of the Prolog program and the rest of
the application, which is commonly written in a different language, is necessary. One common
approach is to compile the Prolog code to (native) code in the target language. In this case, the
effort necessary to build, test and deploy the final application is reduced.

However, most of the approaches that achieve reasonable performance compile Prolog to
object-oriented code that relies on some kind of virtual machine (VM). These VMs are libraries
implemented in the target language and implement Prolog’s execution semantics. This adds
a significant layer to the object-oriented program and results in code that does not look and
feel native to developers of object-oriented programs. Further, if Prolog’s execution semantics
is implemented as a library the potential of modern runtime environments for object-oriented
programs, such as the Java Virtual Machine, to effectively optimize the program is more limited.
In this paper, we report on our approach to compile Prolog to high-level, idiomatic object-oriented
Java code. The generated Java code closely resembles code written by Java developers and is
effectively optimized by the Java Virtual Machine.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Prolog, Compiling, Logic Programming, Object-oriented Programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.84

1 Introduction

One application area, in which Prolog is often used today, is static source code analysis
[6, 7, 2, 11]. In this area, the tight integration of the Prolog program with the rest of
the application is crucial. Developers using modern IDEs expect to be able to download
corresponding source-code analysis plug-ins for their favorite IDE without requiring the
installation of further tools. To solve the integration problem and to make deployment a
non-issue, it is either possible to use an embedded Prolog interpreter that is written in
the language of the rest of the application or to compile the Prolog code to (native) code
in the target language. Unfortunately, the performance of Prolog interpreters is generally
not sufficient for decent source code analyses. On the other hand, approaches that compile
Prolog code to code in the target language usually offer reasonable performance. However,
most approaches rely on some kind of virtual machine or framework implemented in the
target language [1, 5]. This layer basically implements Prolog’s execution semantics and is
responsible for managing the overall control-flow and the memory. The result is, that the
target code generated for the Prolog code often does not look and feel native to developers
familiar with the target language.

In this paper, we report on our approach to compiling Prolog to high-level object-oriented
Java code which is effectively optimized by the Java Virtual Machine. Our primary goal is to
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functor () : StringAtom
arity() : int
arg(i : Int) : Term
expose() : Term 
unify(t : Term) : boolean
manifestState() : State
call() : Goal
intEval() : long

Term
«abstract»

getValue() : Term
setValue(t : term)
frontVariable() : Variable
expose() : Term

value : Term

Variable

Atomic

CompoundTermreincarnate()

State

next() : boolean
abort()
choiceCommitted() : boolean

Goal

choiceCommitted() : boolean

PrimitiveGoal

{ return false; }

register(PredicateIdentifier, PredicateFactory)
getFactory(PredicateIdentifier) : PredicateFactory

PredicateRegistry

createInstance(Term [] args) : Goal

PredicateFactory
* 

Figure 1 Core Classes and their Dependencies

generate code that is modular, easy to understand and easy to reuse/embed. I.e., we try to
generate code that has the least possible impact on the overall application design, but which
offers reasonable performance. To achieve this goal, we (A) rely on the functionality offered
by Java Virtual Machines for memory management and (B) do not use a framework based
approach which prescribes or manages the control-flow and memory used by the Prolog
based part of the application. Additionally, at the interface level, the transformed code
closely resembles code as written by Java developers to facilitate the integration between
the Prolog based code and the (rest of the) Java application. By generating idiomatic
code we also want to leverage the optimizations done by modern virtual machines. This
optimizations often only fully apply to idiomatic object-oriented programs [4].

This paper is structured as follows. In the next section, we discuss our approach and
its implementation — called SAE Prolog. After that, we discuss important related work
in Section 3. Section 4 presents the results of our evaluation. This paper ends by drawing
some final conclusions in Section 5.

2 Approach

2.1 Overview
The core idea of the chosen approach is to compile each Prolog predicate to one class
that implements the complete semantics of the predicate. The goal is that classes, which
implement predicates, have minimal dependencies. To this end, we defined one core interface
PrimitiveGoal which basically defines one core method: boolean next() (cf. Figure 1).
This interface is implemented by all classes that represent Prolog predicates and enables
clients of the class (callers of the predicate) to iterate over all solutions given a certain set
of arguments. I.e., the complete execution semantics of the predicate is implemented by the
method next. The calling contract of next is:
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1. Variable Rs = new Variable();
2. queens2 q = new queens2(atomic(8),Rs);
3. while (q.next()) System.out.println(Rs.toProlog());

Figure 2 Java code to get all solutions for the eight-queens problem.

If next returns true, a (another) solution exists. A result is returned by binding it to
the Prolog variable(s) passed to the class (predicate) when the instance was created.
If next returns false, all parameters (Prolog variables) passed to the class are exactly
as before the first call to next; i.e. variable bindings that were done while trying to prove
the goal are undone.

Besides an implementation of the next method, each of the classes that implements a pred-
icate has a constructor that defines one parameter for each argument of the corresponding
Prolog predicate. The sole purpose of the constructor is to store the parameter values in
corresponding fields to make them accessible later on.

For example, let’s assume that we have defined a Prolog predicate queens(N, Rs) :-
... to solve the n-queens problem. In this case a class called queens2 will be gener-
ated that defines a constructor (public queens2(Term N,Term Rs){...}) that takes two
parameters: One for the problem size N and one to return a solution/to check a given so-
lution (Rs). To get a solution for the eight-queens problem, it is now sufficient to create a
new instance of the queens2 class (Line 2 in Figure 2) and to pass in the problem size N
(atomic(8)) and a free variable (Rs - Lines 1 and 2) to which the (next) solution will be
bound, if a/another solution exist. After instantiation, we call next to get the first/next
solution. If next returns true (Line 3), the solution is bound to the given Prolog variable;
otherwise Rs is/remains a free variable.

The property that instances of Prolog variables have the initial state when a predicate
has failed is crucial, if we have multiple dependent goals and backtracking does occur. For
example, the query ?- X=a(Y),(X=a(1);X=a(2)).has two solutions: Y == 1 and Y == 2.
At runtime, when the ;/2 predicate is called/the next method is invoked, it first tries to
prove the left goal X=a(1) and if it succeeds, the predicate immediately returns true. If we
now ask for another solution, the left goal is again asked if there is another solution. Since
there are no further solutions, the ;/2 predicate immediately tries to prove the right goal
(X=a(2)). But, this requires that Y is (again) a free variable. If Y would still be bound to
the value 1, proving the right goal would fail. In general, in our approach we rely on the
contract that – after a goal has failed – all terms are exactly as if we would have never tried
to prove the (sub-)goal.

Given the proposed approach, it is crucial to be able to efficiently save the information
which variable shares with which other variable and which variable is instantiated or free.
To achieve this goal we use the State Pattern[8] to manifest the state of a (compound)
term (Term.manifestState():State in Figure 1). Calling manifestState returns a State
object that enables us to restore the term’s state later on by calling reincarnate. The
State object is basically a list of Prolog variables that do not reference other variables (at
the object-oriented level). If several Prolog variables share, we chain these variables such
that exactly one variable does not reference any other variable (called the front variable
in Figure 1). For example, let’s assume that the user first unifies the variable X with Y
and then unifies X with Z. In this case, the Variable object (cf. Figure 1) that represents
the Prolog variable X will reference the object that represents Y; i.e., the field value of the
object representing X will reference the object that represents Y and the value field of Y
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case X: init new variables;
goalStack.put( new <GOAL>(...) ); // fall through

case X+1: if (!goalStack.peek().next()) {
goalStack.scrapTopGoal();
< continue with the next goal after failure >; }

< continue with the next goal after success >;

Figure 3 Initializing and calling a non-deterministic goal.

will remain free. If the Prolog program then unifies X and Z, the value field of the object
representing Z will reference the object referencing Y. If the Prolog program later on unifies
Y and Z “nothing” happens. Whenever two variables are unified, we always first check if
their front variables are different. In this case the front variable of Z and Y is Y. Hence, we
know that these two variables already share and no further changes are necessary.

To support the cut operator, the interface Goal (cf. Figure 1) defines two further meth-
ods: abort() and choiceCommitted():boolean (cf. Figure 1). The latter method returns
true, if the goal is the cut operator (!/0) or if a subgoal of an or(;/2) or and(,/2) goal
returns true. If true is returned, we do commit to the current choices. If the immedi-
ate subsequent goal fails, no backtracking is done, but instead abort is called on all goals
preceding the cut. I.e., all terms passed to the previous goals are reset to their initial states.

In our approach, we support calling of terms/predicates using call(Goal) by means of a
factory [8]. For each predicate, we generate a second class that inherits from PredicateFactory
(cf. Figure 1) and which defines a single method to create an instance of the predicate given
the correct number of arguments. The factory object is registered with a central predicate
registry (PredicateRegistry) that associates a predicate’s identifier (Functor/Arity) with
the corresponding factory. If the Prolog program at runtime calls a dynamic predicate or
uses the call/1 predicate, we first lookup the predicate’s factory object and use it to create
an instance of the actual predicate. The lookup functionality to call a term is implemented
by the method call():Goal of class Term (cf. Figure 1).

2.2 Compiling Predicates to Java Code
In the previous section, we outlined the general approach and explained the public interface
that all classes share that implement a predicate. In this section, we discuss how we translate
a predicate that has multiple clauses to Java code.

The core idea is to represent a clause’s control-flow using a switch statement where each
goal that is not a conjunction or disjunction of goals is mapped to two case statements.
In the following, we refer to these goals as primitive goals. From the point of view of the
inter-goal control-flow the first case statement is responsible for handling the initial-call
of the goal and the second case statement handles the redo case in case of backtracking.
However, w.r.t. initializing and calling a goal the two case statements work closely together
and “internally” there is no necessary strict separation.

In case of the call of a non-deterministic predicate the generated code is outlined in
Figure 3. In this case, the first case statement first initializes new clause-local variables that
are used by the goal, then the goal itself is initialized and then the goal instance is put on
the clause-local goal stack. The second case statement then handles the initial call as well
as all further attempts to re-satisfy the goal, in case of backtracking. All goals – except of
unifications, arithmetic expressions or cuts – are compiled using this schema.

The cut operator is compiled as shown in Figure 4. The first case statement handles the
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case X: cutEvaluation = true;
< continue with the next goal after success >;

case X+1: goalStack.abortAndScrapAllGoals();
return false;

Figure 4 Result of the compilation of the cut operator.

case X: State s1=t1.manifestState(), s2 = t2.manifestState();
if(t1.unify(t2)) {

goalStack.put(UndoGoal.create(s1,s2));
< continue with the next goal after success >;

} else {
s1.reincarnate(); s2.reincarnate();
< continue with the next goal after failure >; }

case X+1: goalStack.abortAndScrapAllGoals();
< continue with the next goal after failure >;

Figure 5 Unification of two terms t1 and t2.

initial “call” of the cut operator. The information that a cut was called is stored and we
continue with the next goal. When a subsequent goal fails all previous goals on the goal
stack are aborted and we let the clause as a whole fail.

If two terms are unified (cf. Figure 5), we first manifest the state of the terms, before we
try to unify them. If they unify, we put a special undo-goal on the clause-local goal stack
to be able to later on restore the state of both terms in case of backtracking. If the terms
do not unify, we restore the initial state and continue with the next goal.

To be able to map a clause’s control-flow to case statements of a switch statement, we
first associate each primitive goal with a unique id in the range [0..“number of primitive
goals”]. The id of the case statement that handles the initial call is then “2 * Goal ID”
and the id of the second case statement is “2 * Goal Id + 1”. Additionally, we analyze
the control-flow of the clause to determine the order in which the primitive goals have to
be called at runtime. This analysis associates each primitive goal with the goal which needs
to be called next, if the current goal succeeds. Furthermore, it associates each primitive
goal with the list of those goals that may need to be executed next if the goal fails. This
list contains multiple entries if the clause’s body contains one or more disjunctions. For
example, in case of (b;c),d, the goal b or c may be the direct predecessor of d at runtime
and if d fails at runtime, we need to continue with the goal that preceded c. However, the
list of goals that need to be executed next if a goal fails, is not to be confused with the list
of goals that may precede a certain goal at runtime. E.g., in case of a,(b;c) the goal that
needs to be called next, if b fails, is c and not a, which will always directly precede b. In
case of c the goal that needs to be executed next if c fails, is a. Finally, the analysis marks
all goals that are not the unique predecessor of its successors as such.

Given the control-flow graph and the ids of the goals, we can then create the code
to manage the control-flow of a clause. We discuss our translation scheme, based on the
example: a,(b;c),d. The result of compiling a,(b;c),d is shown in Figure 6. In this case,
the goal that will be called next if a has succeeded is b, if a has failed the corresponding
list of next goals to execute is empty. In case of b, the next goal is d if b has succeeded and
c otherwise. If c has failed, the next goal is a and d otherwise. Hence, the goal d has two
predecessors which may have been called immediately before d: b and c and which may need
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1: private int caseToExecute = 0;
2: private int caseToExecuteIfGoalDFails;
3: boolean clause() {
4: eval_goals: do { switch (caseToExecute) {
5: case 0: goalStack.put(new a0()); // goal: a
6: case 1: if (!goalStack.peek().next()) {
7: goalStack.scrapTopGoal();
8: return false; }
9: case 2: goalStack.put(new b0()); // goal: b

10: case 3: if (!goalStack.peek().next()) {
11: goalStack.scrapTopGoal();
12: caseToExecute = 4;
13: continue eval_goals; }
14: caseToExecuteIfGoalDFails = 3;
15: caseToExecute = 6;
16: continue eval_goals;
17: case 4: goalStack.put(new c0()); // goal: c
18: case 5: if (!goalStack.peek().next()) {
19: goalStack.scrapTopGoal();
20: caseToExecute = 1;
21: continue eval_goals; }
22: caseToExecuteIfGoalDFails = 5;
23: case 6: goalStack.put(new d0()); // goal: d
24: case 7: if (!goalStack.peek().next()) {
25: goalStack.scrapTopGoal();
26: caseToExecute = caseToExecuteIfGoalDFails;
27: continue eval_goals; }
28: caseToExecute = 7;
29: return true;
30: } } while (true);
31: }

Figure 6 The result of compiling “a,(b;c),d” to Java code.

to be called, if d fails. If d succeeds no further goal will be called. We need one variable
to store the information which case statement needs to be executed next (caseToExecute
- Line 1 in Figure 6). Additionally, we create one variable for each goal that has multiple
predecessors (e.g., caseToExecuteIfGoalDFails Line 2) to store the information which goal
preceded it at runtime.

If a goal succeeds, the id of the case statement that needs to be executed next (caseToExe-
cute) is set to the id of the first case statement of the target goal (e.g., Line 15 in Figure 6).
After that, the evaluation is continued by jumping to the respective case statement (Line
16). If a goal succeeds that has no successor, we set caseToExecute to the goal’s second case
statement. If the clause is called again in case of backtracking, the redo case is executed.
After that, we return true (Lines 28 and 29). If the current goal is not the unique prede-
cessor of its successor (e.g., b and c in our example), we additionally save the information
which goal preceded its successor (line 14 and 22).

If a goal fails and there are no more alternatives we return false (line 8). If there is
exactly one alternative, we set caseToExecute to the id of the first case statement of the
target goal (Lines 13 and 22). After that, we continue the execution with the respective case
statement (Lines 12 and 20). If the goal that needs to be executed next cannot be statically
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Prolog Java
1: private int clauseToExecute = 0;
2: public boolean next() {
3: switch (clauseToExecute) {
4: goal :- a, case 0: if (this.clause0()) return true;
5: !. if (cutEvaluation) return false;
6: goalToExecute = 0; clauseToExecute = 1;
7: goal :- b. case 1: if (this.clause1()) return true;
8: goalToExecute = 0; clauseToExecute = 2;
9: goal :- c. case 2: return this.clause2();

10: } }

Figure 7 Code to select the current clause.

member(X, [X|_]).
member(X, [_|Ys]) :- member(X, Ys).

Figure 8 The predicate member/2.

determined, we set the id of caseToExecute to the id that was specified by the goal that
preceded the current goal (Line 26).

The approach that we have chosen to model the inter-clause control-flow is based on the
idea discussed, e.g., in [3]. The control-flow is encoded in the next method and uses a switch
statement to select the current clause. In Figure 7, the generated code is outlined. After
creation, the first clause is called until it fails (Line 4). When it fails and there may have
been a cut, we check whether it was effective. If so, the predicate as a whole fails (Line 5),
otherwise we continue by calling the next clause (Line 7).

2.2.1 Optimizing Tail-recursive Calls
To demonstrate the potential of this approach, we briefly discuss our last call optimization.
Currently, we optimize tail-recursive calls where we can statically decide that there are no
more choice points left, when the tail call is made. For example, in case of the predicate
member/2 shown in Figure 8, it is easy to decide that there are no more choice points left if
the tail-recursive call is made – “all goals” are deterministic.

The generated code is outlined in Figure 9: First, we save the state of the arguments
passed to the predicate (Lines 3 and 4). This is necessary to be able to reset the arguments’
state when the predicate eventually fails (Line 15). Second, we embed the next method’s
switch statement into an endless loop (Line 7–15) to be able to jump to a previous clause.
If the tail-recursive clause succeeds, we continue with the next iteration of the loop (Line
13) and again start with the first goal of the first clause (Line 12). Third, before the tail
call is made, we have to update the fields that store the predicates’ arguments (Line 20).

3 Related work

Our approach to compiling Prolog code to Java code uses a large number of ideas originally
explored in various Prolog implementations. For example, the idea to make the overall
architecture of applications — where only some part is implemented in Prolog — a core
design goal was, e.g., explored by tuProlog[10].
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1: public member2(final Term arg0, final Term arg1) {
2: // ... store the arguments for future use
3: initialArg0state = arg0.manifestState();
4: initialArg1state = arg1.manifestState();
5: }
6: public boolean next() {
7: eval_clauses: do { switch(clauseToExecute) {
8: ...
9: case 1: // tail recursive clause with last call optimization

10: if (clause1()) {
11: < reset clause local variables >;
12: goalToExecute = 0; clauseToExecute = 0;
13: continue eval_clauses; }
14: abort(); return false;
15: } } while (true);
16: }
17: private clause1() {
18: // forever, switch ...
19: case 2: // tail call with last call optimization
20: arg1 = < Ys >; // update arguments
21: goalStack.scrapAllGoals();
22: return true;
23: }

Figure 9 Code specific for for the predicate member/2.

The approach to compile each clause to its own method is also used by Prolog Café.
However, compared to SAE Prolog, Prolog Café uses a WAM-based compilation schema
with continuation passing style. The general idea of using a switch statement to branch
over the different clauses of a predicate was also described in [3]. However, to the best of
our knowledge, the idea to directly map the control-flow of a clause to a switch statement
where each goal is represented using two case statements was not explored previously. The
proposed approach enables us to treat a cut operator as a normal goal during the calculation
of the control-flow graph.

The idea to generate “idiomatic code” was also explored previously. In [9] an approach
is described to create idiomatic C code and [4] discuss the generation of idiomatic C# code.
However, the meaning of the term idiomatic differs. We consider the code that we generate as
idiomatic, because all classes that implement a predicate have a very lightweight interface.
Furthermore, we rely on the Java virtual machine for memory management and general
optimizations and do not implement our own abstraction layer. In the cited paper, the
term idiomatic is used to describe code which uses the primitive data-types and control-flow
constructs of the target language. But, to generate such idiomatic code the Prolog predicate
requires type and mode annotations and has to be (semi-)deterministic. In all other cases
a WAM-based translation scheme is used. Hence, the overall architecture is not idiomatic
w.r.t. our understanding of the term.

4 Evaluation

We have done a twofold preliminary evaluation of our approach. First, we compared SAE
Prolog to other Prolog implementations to assess its performance. Second, we evaluated it
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Table 1 Performance comparison. All times are given in seconds; the programs tak, qsort,
primes, queens-8 (findall), chat parser were each run several times.

Program JLog Prolog Café SWI-Prolog (-O) SAE Prolog
1.3.6 1.2.5 5.8.3, 64 bits 0.1.2

8-queens (findall) 141,85 6,30 6,15 5,09
22-queens 515,87 19,80 23,45 15,65
qsort faileda failed (OOM)b 4,20 4,74

4,60
primes 848,77 failed (OOM) 18,76 16,41

21,00
nrev failed (OOM) 0,29 0,17 0,85
tak failed (OOM) 21,88 16,36 14,69
chat parser 250,94 18,92 9,54 54,01

a The query did not return the expected result.
b After changing the test harness, we were able to run the unmodified program.

w.r.t. the desired property that it generates code that the Java virtual machine is able to
effectively optimize. All performance measurements were done on a 2,33 GHz Core 2 Duo,
with 3GB RAM and a Java HotSpot(TM) 64-Bit Server VM.

4.1 Performance Comparison
We compared our implementation with: JLog[http://jlogic.sourceforge.net], Prolog
Café[1] and SWI-Prolog[12]. JLog is a Java-based Prolog interpreter that has a straight-
forward implementation and a clean object-oriented architecture. Prolog Café specifically
targets performance and translates Prolog code to Java code by means of the WAM. SWI-
Prolog is a mature Prolog implementation that is implemented in C and uses the ZIP VM.

The results of our performance evaluation are summarized in Table 1. When we compare
the results of these Prolog implementations, we immediately see that JLog generally performs
the worst, which was expected given that it is a Prolog interpreter. Prolog Café and SWI-
Prolog are roughly on par. SAE Prolog is a bit faster for queens, tak and primes and is on par
with Prolog Café in case of qsort. In case of chat parser and nrev SAE Prolog is considerably
slower than Prolog Café and SWI-Prolog. Given the early state of the implementation of
SAE Prolog these results are encouraging. Implementing well-known techniques, such as
term-indexing, will lead to a significant speedup, as preliminary, manual tests have shown
and will help us to close this gap.

4.2 Optimizability of the Generated Code
To assess the optimizability of the generated code, we made a detailed analysis of two of
the benchmarks. First, we searched for the first solution to the twenty-queens problem.
Finding the first solution usually takes more than one second, but the amount of code (3
predicates) that is involved is very small. The second benchmark that we used is the chat
parser benchmark. In this case, the time to execute it once is also very small, but the number
of involved predicates is much higher (> 100). We run the base benchmark several times
without restarting the VM to make sure that the VM “fully optimized” the given program.
Additionally, we did repeat each experiment five times. The results are shown in the Figures
10 and 11.

http://jlogic.sourceforge.net
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Figure 10 Performance development of the twenty-queens (first solution) benchmark.
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Figure 11 Performance development of the chat parser benchmark.

As shown in the respective figures, the first iteration is always dramatically slower than
every succeeding iteration. The initial translation of the Java bytecode to machine code is
done as part of this iteration. However, it takes the Java Virtual Machine (JVM) several
more iterations (8 for twenty-queens, and 50 for chat parser) before no further performance
improvements are measurable. In case of the chat parser benchmark the effect of the step-
wise optimizations done by the JVM are immediately obvious. Many of the predicates
are not utilized very often and therefore several runs are required before the code is “fully
optimized”. If we take the second iteration as the base line, we can conclude that the JVM is
able to effectively optimize the generated code. The VM is able to improve the performance
by a factor of 2 to 3 when compared to the second iteration.

We have repeated this experiment using Prolog Café to gain a better understanding of
the optimizability of the code generated by our approach. In case of Prolog Café the VM
is also able to further improve the performance. But, the effect is smaller and it takes the
VM longer to reach a stable state.

5 Conclusion

In this paper, we have presented an approach to compiling Prolog code to idiomatic object-
oriented (Java) code that does not use a virtual machine or framework to implement Prolog’s
execution semantics. Instead each Prolog predicate is compiled to one class that looks and
feels natural to object-oriented developers. Our preliminary evaluation shows that Prolog
applications where efficient head unification is not a major concern already perform well and
are competitive. Furthermore, we have shown that a modern virtual machine, such as the
Java Virtual machine, is able to very effectively optimize the generated program.
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Abstract
Early validation of requirements is crucial for the rigorous development of software. Without
it, even the most formal of the methodologies will produce the wrong outcome. One successful
approach, popularised by some of the so-called lightweight formal methods, consists in generating
(finite, small) models of the specifications. Another possibility is to build a running prototype
from those specifications. In this paper we show how to obtain executable prototypes from formal
specifications written in an object oriented notation by translating them into logic programs.
This has some advantages over other lightweight methodologies. For instance, we recover the
possibility of dealing with recursive data types as specifications that use them often lack finite
models.
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1 Introduction

Lightweight formal methods [12, 9] have become relatively popular thanks to their success
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such that the node lies somewhere in the transitive-reflexive closure of the next relation
starting with the root of that node. The second one says that no node can be in the transitive
closure of the next relation starting in itself. Model checking the refined specification will
generate less instances, thus allowing to explore bigger ones, which will hopefully lead to
reveal subtler corners in the requirements.

As said before, this approach is extremely attractive: requirements are refined in a
stepwise manner guided by counterexamples found by means of model checking, and the
whole process is performed with the help of graphical tools. However, there are also some
limitations inherent to this approach. Leaving aside the fact that total correctness of the
specification is abandoned in favour of a more relaxed notion of being not yet falsified by a
counterexample, which can make the whole enterprise unsuitable for safety critical domains,
the use of model checking rather than proof based techniques also brings other negative
consequences, such as limiting the choice of data types in order to keep models finite, making
extremely difficult to model and reason over recursive data types like naturals, lists, trees,
etc. (See [13], Ch. 4, Sec. 8.)

A natural alternative to model checking the initial requirements is to produce an executable
prototype from them. Using the right language it is possible to obtain recursive code and
validation can be guided by testing, which might also be automated by tools such as
QuickCheck [6]. Regarding how to obtain the prototypes, there are several possibilities.
One of them is to follow the correct by construction slogan and to produce code from the
specification, either by means of a transformational approach that often requires human
intervention, or by casting the original problem in some constructive type theory that will
lead directly to an implementation in a calculus thanks to the Curry-Howard isomorphism
[21, 5, 4, 20].

Another possibility is to use logic programming. In this case, executable specifications
are obtained free of charge, as resolution or narrowing will deal with the existential variables
involved in any implicit (i.e. non-constructive) specification. Readers familiar with logic
programming will remember the typical examples – obtaining subtraction from addition
for free, sorting algorithms from sorting test, etc. – and those familiar with logic program
transformation techniques will also recognise that these can be used to turn those naive
implementations into decent prototypes. However, when it comes to practical usage, none of
these formalisms can compete with the lightweight methods above, due to the great distances
separating them from the notations used for modelling object oriented software.

This paper studies the synthesis of logic programs from specifications written in an
object oriented notation. The specification language, Clay, is being designed around two
driving ideas. First, the language must be small but make room for the basic constructs in
object oriented programming. Second, specifications must admit at least one translation into
executable prototypes to allow the specifier to interactively validate her own specifications.
We contribute, on one hand, a static theory of types and inheritance that somehow copes
with bridging the aforementioned gap between object orientation and logic programming,
and, on the other, a dynamic part that deals with search in the presence of equality and
inheritance (Section 3). To support our contributions we review the examples of the prototypes
automatically generated by our tool (Section 4).

2 Object Oriented Specifications in Clay

Clay is a stateless object oriented formal notation, a class-based language with a nominal
type system. Classes are defined as algebraic types in the form of case classes: complete and
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class BSTInt {
state Empty { }
state Node { data : Int , left : BSTInt, right : BSTInt }
modifier insert (x : Int ) {
post { self : Empty ∧

result = BSTInt.mkNode(x,BSTInt.mkEmpty,BSTInt.mkEmpty)
∨ self : Node ∧

( x < self .data : True ∧
result = BSTInt.mkNode(self.data,self. left . insert (x) , self . right )

∨ x = self .data ∧ result = self
∨ x < self .data : False ∧

result = BSTInt.mkNode(self.data,self. left , self . right . insert (x))) }
}
modifier remove (x : Int ) {
post { result . contains(x) : False ∧ result . insert (x)=self}

}
observer contains (x : Int ) : Bool {
post { self : Empty ∧ result : False

∨ self : Node ∧ x = self.data ∧ result : True
∨ self : Node ∧ x < self.data : True ∧ result = self . left . contains(x)
∨ self : Node ∧ x < self.data : False ∧ result = self . right . contains(x) }

}
}

Figure 1 Binary search trees in Clay

disjoint subclasses of the defining class. Classes can be extended by subclassing. Methods
are specified with pre and postconditions, first order formulae involving self (the recipient),
parameters and result (the resulting object). Atomic formulae are equalities (=) and class
membership ( :).

An interlingua [3] declarative semantics for Clay is provided by translation into first-order
logic. Clay tools generate an axiomatisation in Prover9/Mace4 [22] syntax. Then, early
detection of inconsistencies is achieved by the combination of automatic theorem proving
(Prover9) and model checking (Mace4) of the first order logic theories that reflects the
structure of Clay specifications. For the purposes of this paper, the move to logic program
synthesis requires, on the front-end of the tools, to take some simplifying decisions in order
to keep the resulting theory tractable and readable: no multiple inheritance, no overloading
(just method refinement) and no parametric polymorphism.

Figures 1 and 2 contain examples of Clay specifications that will guide the whole paper.

2.1 Modelling Data
Let us start with a specification of binary search trees of integers (Figure 1).1 Instances of a
class are the disjoint and complete sum of the instances of its case classes (indicated with
keyword state due to their similarity to the design pattern State [8]): if t is an instance of
BSTInt (t : BSTInt) then it is an instance of Empty or, exclusively, of Node. The following
Clay formula expresses it formally:

∀ t : BSTInt ((t : Empty ∨ t : Node) ∧ t : Empty ⇔ ¬ t : Node)

1 Clay allows parametric polymorphism but we have not used this feature for the sake of conciseness.
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class Cell {
state CellCase { contents : Int }
constructor mkCell {
post { result .contents = 0 }

}
observer get : Int {
post { result = self .contents }

}
modifier set (v : Int ) {
post { result .contents = v }

}
}

class ReCell <: Cell {
state ReCellCase { backup : Int }
constructor mkReCell {
post { result = Cell.mkCell ∧

result .backup = result .contents }
}
modifier set (v : Int ) {
post { result .backup = self .contents }

}
modifier restore {
post { result .contents = self .backup ∧

result .backup = self .backup }
}

}

Figure 2 Inheritance in Clay

The case classes Empty and Node introduce the constructor methods mkEmpty and mkNode.
Both are messages that can be sent to the object BSTInt (classes are objects in Clay):
BSTInt.mkEmpty creates an instance of the case class Empty and
BSTInt.mkNode(42,BSTInt.mkEmpty,BSTInt.mkEmpty) creates an instance of Node.
Composition Composition is represented by fields defined in a case class. Those fields are

methods that project the encapsulated information of its case. In our example the result
of the expression BSTInt.mkNode(42,l,r).data is 42.

Inheritance Classes can be extended with subclasses that inherit all the properties of the
superclass. In Figure 2, class ReCell extends Cell and therefore its instances obey the
property: ∀ c : ReCell (c : CellCase).

Inheritance induces a subtype relation (<:) with all its expected laws: reflexivity, transitivity
and subsumption. The most important aspect of this relation is that subclasses cannot inval-
idate by overriding any property specified in a superclass, otherwise the whole specification
is considered inconsistent.

This approach is essential when we are specifying in the large: the specifier needs to
reason locally to a class and a subclass cannot show a behaviour that forces the specifier to
take into account all the subclasses. The approach adds another advantage: specifications can
be much more concise since it is not needed to state already stated properties in superclasses.
The main drawback is certain loss of flexibility but, in our view, the decision pays back.

The Cell and ReCell classes in Figure 2 are brought from [1]. Instances of Cell are
storage-cell objects encapsulating a natural number that can be changed (set) and read (get).
The extension of Cell with a restore option yields ReCell. We can observe the conciseness of
the overriding of set in ReCell since properties of Cell are inherited.

2.2 Modelling Behaviour
Methods are specified with first order formulae that relate the receiver of the message ( self )
and the message’s parameters with the answer to the message ( result ). Primitive predicates
include equality and class membership.

Class membership is mainly used to do pattern matching. In the specification of method
insert we can see how antecedents of implications distinguish between empty and nonempty
trees ( self : Empty and self : Node).
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Equality is particularly interesting in Clay. The predicate is implicitly indexed by the
minimum subtype of the compared instances in the context in which the formula appears.
The rationale behind this decision has to do with reasoning locally, a more dynamic equality
would lead unexpected results in the specifier context. In the insert example, the minimum
type of result and self in the first disjunct of the post is BSTInt. The semantics establishes
that no properties of self other than those reachable from BSTInt are enforced in result .
In the Cell/ReCell example, formula Cell .mkCellCase(42) = ReCell.mkReCell.set(13).set(42)
holds, as only the state relevant in class Cell – the smallest common subtype – is considered.

Keywords modifier and observer are merely type informative (the result of a modifier is
an instance of the class being specified) and has no influence in the semantics of the methods.

In the binary trees example, the specification of insert and contains are, so to say, explicit
as they describe recursively all the possible situations. The specification of remove, however,
is implicit: the result is specified by means of a condition that the result must meet with no
additional clues.

2.3 Interacting with Clay
The prototype generated by our synthesiser supports interacting with Clay specifications by
asking it to reduce a Clay object expression to a normal representation. We describe now
some use cases and in Section 4 we will check the actual performance of the synthesised
prototype with those use cases.
Inheritance Classes Cell and ReCell will be our first guiding example. We will inter-

act with Clay to check that the compiler is enabling the specifier to write concise
specifications with safe inheritance, and we will see the answers to expressions like
ReCell.mkReCell.set(0). set (1) .get and ReCell.mkReCell.set(0). set (1) . restore .get.

Recursive Specifications More interesting examples are the recursive definitions of methods
insert and contains of binary search trees in Figure 1. We will interact with the synthesised
prototype to check that recursive definitions can be executed.

Implicit Specifications Our last guiding example will be the implicit specification of method
remove in the class BSTInt in Figure 1. We will execute some examples sending the
message remove to some binary search trees.

Requirements Validation The interaction with Clay should help the specifiers to gain con-
fidence in their specifications. We will detect an error in our previous specifications.

3 Translating Clay Specifications into Logic Programs

The distance between Clay and Prolog is big enough to make the the translation far from
trivial and difficult to follow. Its full formalisation can be found in [10]. This section discusses
the intuitions behind the main decisions.

Given a Clay specification we will synthesise facts that represent its abstract syntax tree:
classes, inheritance, case classes, fields, and pre- and post-conditions of methods. Figure 3
describes the meaning of the target predicates.

The heart of our translator is a common theory for all specifications: the Clay theory.
The most important predicates of this axiomatisation are (instanceof/2, reduce/2, and eq/3),
definitions that rely on the facts translated from the source specifications (Figure 3). Their
meaning is:

Predicate instanceof(NF,A) is a generator of instances NF of a class A. NF is a normal
form of an instance of A. These normal forms are flexible representation of instances as
incomplete data structures and will be presented in Sections 3.1 and 3.2.
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class(C) C is a Clay’s class identifier.
inherits(A,[B]) B is the superclass of A
cases(C,Cs) Cs is the list with case classes of class C
fields(C,Fs) Fs is the association list with the field names and field types of case class C
msgtype(C,M) M is the message identifier of a method defined or overridden in class C
pre(C,S,M,As) Precondition for sending message M with arguments As to an instance S

of class C
post(C,S,M,As,R) Postcondition that establishes that R is the resulting instance of sending

message M with arguments As to instance S of class C

Figure 3 Representing Clay in Prolog.

Predicate eq(A,NF1,NF2), Clay’s equality, decides if the representations (NF1 and NF2)
of two instances are indistinguishable in class A.
Finally, predicate reduce(E,NF) reduces any Clay object expression E to its normal form
NF. Predicates eq and reduce will be presented in Sections 3.2 and 3.3.

3.1 Representing Clay Instances in Prolog

We have mentioned that the predicate reduce/2 reduces a Clay object expression to a normal
form. Clay object expressions have a straightforward representation in Prolog:

A class expression ci<C1, . . ., Cn> is represented by the Prolog term
(ci<C1, . . ., Cn>)# = ci#(C#

1 , . . ., C#
n ).

A class identifier ci is represented by a valid Prolog constant ci# by quoting its lexeme.
A class variable cv (an object variable ov) is represented by a valid Prolog variable cv#

(ov#) by prefixing its name with “_”: _cv (_ov).
A send expression o.mi(o1, . . ., on) is represented by the Prolog term

(o.mi(o1, . . ., on))# = o#<-mi#(o#
1 , . . ., o#

n ).
A message identifier mi is represented by a valid Prolog constant mi# by using its lexeme.

To describe how the generated prototype represents the instances of our language in normal
form we will use the example of restorable cells (instances of ReCell). We need to capture all
the information of known superclasses (Cell ) and to capture all the information about the
specific case class (ReCell).

With no multiple inheritance, a sorted linear structure can represent the classes of
an instance. Therefore, we can use a list where each element contains the part of the
representation for a given class of the instance: (C,S,F) where C is the class, S is the
particular case class, and F is an association list from field names to the representation of
their instances. Let us show the representation of Cell .mkCell:

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])])])]

The list contains one element since the object is an instance of just one class (Cell ).
Under subtyping, during a deduction process where a cell with 42 is expected an instance

of ReCell could appear. If we follow our rules, the representation of ReCell.mkReCell.set(42)
would be:

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])])]),

(’ReCell’,’ReCellCase’,[(backup,[(’Int’,’Int’,[0])])])]
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The representation of the cell with 42 and the instance of ReCell are partially the same but
the latter does not fit in the former. This is something that we would expect to happen since
both instances represent the same information with respect to the properties of Cell .

We propose to make room for yet unknown information of subclasses and to use an
incomplete data structure where the incomplete part represents the room for the information
of the potential subclasses. The representation of Cell .mkCell would be

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])|_])])|_]

and for the instance of ReCell we would have the following representation:

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])|_])]),

(’ReCell’,’ReCellCase’,[(backup,[(’Int’,’Int’,[0])|_])])|_]

Apart from carrying all the information needed by methods specified in the superclasses,
our normal form has the following properties:

Information about case classes allows us to reflect the disjoint sum (case classes) of
products (fields).
The incomplete part might be instantiated with data of an instance of a subclass (like the
backup of ReCell) during the deduction process. The most interesting benefit is that the
instantiation can be implemented with the unification of our logic language engine. The
example above shows how the instance of ReCell fits, by unification, in the cell with 42.

Predefined Integers

The predefined class Int encapsulates integers that get translated into Prolog integers
managed via finite domain constraints. This illustrates another technique that can be applied
in the translation when the target language has declarative extensions. Previous versions of
the same specification used a Peano representation for naturals (predefined class Nat) as a
way of obtaining a complete theory for numbers. The experiments in Section 4 show drastic
gains over our previous implementation presented in [11].

3.2 Atomic Formulae (Instance of and Equality)
The predicate “ :” (instance of) is translated into the Prolog predicate instanceof/2. Which
generates the representation of all instances (first argument) of all classes (second argument)
of a specification. Thanks to our incomplete structures every instance of a subclass is an
instance of a superclass, a technique that makes the desirable property of subsumption to be
a theorem in our Prolog axiomatisation.

Clay equality (=) is the other predicate used in the atomic formulae of Clay in this work.
Our translation of Clay equality into Prolog consists of two steps: a reduction of the object
expressions to normal form and the unification of the obtained representations.

Let us see a description of the implementation of the reduction step and postpone the
formalisation of the translation of the equality literals to Section 3.3. Predicate reduce/2
relates terms that represent abstract syntax trees of Clay expressions with their normal form.
The most important clause of reduce/2 defines the reduction of sending a message (M) to an
object expression O. Functor .-, in infix form, represents the send operator of Clay:

reduce(O<--M,NF) :- M =.. [Mid|Args],

reduce(O,ONF), reduceall(Args,ArgsNF),

knownclasses(ONF,Cs),

checkpreposts(Cs,ONF,Mid,ArgsNF,NF,defined).
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modifier insert (x : Int ) {
post {
self : Empty ∧
result = BSTInt.mkNode(

x,
BSTInt.mkEmpty,
BSTInt.mkEmpty)

∨
self : Node ∧
(x < self .data : True ∧

result = BSTInt.mkNode(
self .data,
self . left . insert (x) ,
self . right )

∨ ...) }
}

post(’BSTInt’,_s,insert,[_x],_r) :-

instanceof(_s,’Empty’),

reduce(’BSTInt’<--mkNode(

_x,

’BSTInt’<--mkEmpty,

’BSTInt’<--mkEmpty),

_NF_BSTInt_mkNode),

eq(’BSTInt’,_r,NF_BSTInt_mkNode).

post(’BSTInt’,_s,insert,[_x],_r) :-

instanceof(_s, ’Node’),

reduce(_x < _s<--data,_NF__x_le),

instanceof(_NF__x_le,’True’),

reduce(’BSTInt’<--mkNode(

_s<--data,

_s<--left<--insert(_x),

_s<--right),

_NF_BSTInt_mkNode),

eq(’BSTInt’, _r, _NF_BSTInt_mkNode).

...

Figure 4 Translation of insert .

modifier remove (x : Int ) {
post { result . contains(x) : False

∧ result . insert (x)=self
}
}

post(’BSTInt’,_s,remove,[_x],_r) :-

reduce(_r<--contains(_x), _NF__r_contains),

instanceof(_NF__r_contains, ’False’),

reduce(_r<--insert(_x), _NF__r_insert),

eq(’BSTInt’,_NF__r_insert,_s).

Figure 5 Translation of remove.

Predicate reduceall/2 reduces a list of expressions, the second argument of knownclasses/2
contains the known classes (Cs) of the recipient of the message, and checkpreposts checks
pre- and post-conditions of every class of Cs in which method Mid is defined.

We already mentioned in Section 2 the danger of overriding the properties of methods
in subclasses: the practical impossibility of reasoning in large programs. The above imple-
mentation of predicate reduce/2 will fail if any postcondition in the inheritance hierarchy is
inconsistent with the postconditions specified in superclasses.

3.3 Translation of Pre- and Post-conditions
The translation of formulae takes into account that objects involved in atomic predicates
must be reduced. The translation of non-atomic formulae are directly translated into first-
order logic formulae resulting in extended programs (sets of implications with an arbitrary
first-order formulae in the body). Then, a Lloyd-Topor transformation [17, 18] is applied to
obtain a logic program.

Figures 4 and 5 present, in parallel, the correspondence between the Clay specification of
methods insert and remove of BSTInt and the automatically synthesised Prolog code.
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4 Experimental Results

Let us get back to the problems posed in Section 2.3. Relevant parts of the code obtained for
the recursive definition of insert are shown in Figure 4. We have automatically generated up
to 4000 trees with up to 80 nodes with a maximum depth of 10. The insertion of elements
works properly and the execution time in the worst case is less than 1000 milliseconds.

The second question was whether Clay would be able to generate an executable prototype
from the implicit specification of the remove method for binary search trees. The code
obtained is shown in Figure 4.

Running tests on this specification shows several problems. First, the logic program
obtained from the specification seemed to be only partially correct. Given a (valid) binary
insertion tree and one of its elements, the returned tree was, in some cases, a tree meeting
the specification but failed in the rest.

Analysis of the tests revealed that the prototype was working properly exactly in those
cases where the element to remove was at the leaves of the structure — i.e. in a node with
two empty subtrees as children. This solves the mystery: the specification for remove uses
predefined (structural) equality while the specifier was probably thinking in the intended
set semantics for the trees as collections. The order in which elements are stored in the
tree affects its actual shape. That is why only elements that make their way down to the
“bottom” of the structure via method insert meet the specification of remove.

In other words, the specification was flawed and the execution allowed us to spot the
bug. There are several ways to solve the problem. One of them is, of course, to use a self
normalizing data structure – balanced tree, heap. . . – for which predefined equality behaves
as set equality. A quicker fix – less efficient – is to flatten both sides of the equality:

modifier remove (x : Int ) {
post { result . contains(x) : False ∧ result . insert (x) . flatten () = self . flatten ()}

}

where flatten is an observer defined recursively in the obvious way:

observer flatten () : List <Int> {
post { self : Empty ∧ result = []

∨ self : Node ∧ result = self . left . flatten .append([] .cons( self .data)) .

append(self . right . flatten ) }
}

We show now the effects of the safe inheritance:

?- reduce(’Cell’<--mkCellCase(0),R).

R = ’CellCase’{contents : 0}

?- reduce(’Cell’<--mkCellCase(0)<--set(1)),R).

R = ’CellCase’{contents : 1}

?- reduce(’Cell’<--mkCellCase(0)<--set(1)<--get,R).

R = 1

?- reduce(’ReCell’<--mkReCell<--set(0)<--set(1)<--restore<--get,R).

R = 0

?- reduce(’Cell’<--mkCell<--set(0)<--set(1)<--restore<--get,R).

no

The table below shows performance figures obtained in an Intel Dual Core T7200@2.00GHz,
with 4096KB of cache and 2GB of RAM running GNU/Linux 2.6.32-25 SMP and SWI-Prolog
v. 5.10.0. The depth limit used for the iterative deepening strategy for predicate instanceof
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was 38. The full Clay code for these examples, their translation into Prolog and the Prolog
implementation of the Clay theory can be found at http://babel.ls.fi.upm.es/~angel.

Test Time (ms.)
Generation of trees (1000 trees) 202
Creation of trees (15 insertions) 929
Removing leaf from tree (1 node) 0
Removing leaf from tree (3 nodes) 391
Removing leaf from tree (7 nodes) 7211
Removing leaf from tree (15 nodes) 18300

5 Related Work and Conclusions

We have presented the compilation scheme of an object oriented formal notation into
logic programs. This allows the generation of executable prototypes that help in validating
requirements, e.g. by means of automated test generation. We have emphasized the generation
of code from implicit method specifications, specially in presence of recursive definitions,
something which is seldom supported by other lightweight methods and tools.

Early experiments with our prototype compiler show the feasibility of the approach,
but also the limitations of a naive application of Prolog’s standard search mechanisms. In
fact, obtaining an efficient search scheme is one of the challenges for future research. Our
current implementation combines techniques such as the Lloyd-Topor transforms of first-order
formulae and iterative deepening search for achieving completeness in some examples.

We expect to increase efficiency with the use of constructive negation and also with
techniques that allow for lazy instance generation, that is, coroutining the logic code that
implements quantification via instance generation with the one that implements the implicit
postconditions. More mature tools, like ProB [15, 16] already take advantage of these.

One improvement that has already been incorporated in this version is the use of
constraints for arithmetic. A previous version used a Peano representation for naturals
(predefined class Nat) as a way of obtaining a complete theory for numbers. Now, predefined
class Int encapsulates integers that get translated into Prolog integers managed via finite
domain constraints. The tests show drastic gains over our previous implementation.

One aspect hard to implement properly is nondeterminism. If the specs are assumed
correct, then it suffices to choose one interpretation at random to obtain an executable
prototype. This can be achieved, for instance, by limiting nondeterminism in the logic
program generated by always choosing the first solution at any choice point.

But if the goal is to use the prototypes for requirement validation, then choosing the good
one by chance does not help. In this case, interpretations must be generated randomly, but
any of these must be internally consistent, i.e. methods intended to be deterministic must
always return the same answer in each interpretation. Ensuring this in Prolog is trickier and
can be achieved, for instance, using tabulation techniques.

Certain features of object oriented programming (e.g. mutable state) have been left out
of this presentation. Studying the introduction of state in our code generation scheme would
help in applying the ideas presented in this paper to other object oriented formal notations
like VDM++, Object-Z, Troll or OASIS [7, 23, 14, 19].

http://babel.ls.fi.upm.es/~angel
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Abstract
Modal Transition Systems (MTSs) provide an appropriate framework for modelling software

behaviour when only a partial specification is available. A key characteristic of an MTS is that
it explicitly models events that a system is required to provide and is proscribed from exhibiting,
and those for which no specification is available, called maybe events. Incremental elaboration of
maybe events into either required or proscribed events can be seen as a process of MTS refinement,
resulting from extending a given partial specification with more information about the system
behaviour. This paper focuses on providing automated support for computing strong refinements
of an MTS with respect to event traces that describe required and proscribed behaviours using
a non-monotonic inductive logic programming technique. A real case study is used to illustrate
the practical application of the approach.
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1 Introduction

A Modal Transition System (MTS) is a state-transition formalism for specifying and verify-
ing system behaviour. It extends conventional models such as Labelled Transition Systems
(LTSs) by introducing modalities over transitions. Hence, an MTS not only models the
events that a system is required to provide and is proscribed from exhibiting, but also expli-
citly models the events which system being modelled cannot guarantee to admit or prohibit,
called maybe events.

Though MTSs have been introduced for over twenty years [9], it is only recently that
the software engineering community has begun to develop automated support for stepwise
elaboration of system requirements through MTSs. Intuitively, an MTS can be seen as a
class of possible system implementations, each generated by changing maybe transitions into
either required or proscribed. Within this context, a key notion is that of modal refinement
[8]. Modal refinement is the process of incrementally refining an MTS, as more information
about the system becomes available, by modifying possible behaviours into behaviours that
must be provided or prevented by every system implementation of the given MTS. A final
refined MTS would therefore be an LTS with just required events, where all unspecified
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events are assumed to be proscribed. We refer to this refined model as an implementation.
Much work has been done on theoretical aspects of modal refinement and different notions of
refinements have been presented (i.e. strong, weak and branching refinement[4]). However,
how to compute these different refinements remains still an open problem.

The aim of our work is to provide a formal, tool-supported platform for incremental
refinement of MTSs. This paper presents a first step towards such a general framework, in
which it is shown how inductive learning can be used to compute strong refinements of MTSs
from event traces. We consider a partial system description, consisting of a specific class
of safety properties expressed in temporal logic, and assume that traces and the transitions
to be required or proscribed are either provided by the user or automatically computed by
model checking a given MTS with respect to some property. This description is encoded into
an Event Calculus (EC) logic program, whose language is close to existing logic formalisms
used in MTS synthesis and verification, and which allows explicit representation of event oc-
currences at different (time) points, through its time structure. We deploy a non-monotonic
Inductive Logic Programming (ILP) system to generate new safety properties from event
traces that would either require and proscribe transitions, and show how the learned prop-
erties characterise a class of implementations of the original MTS with respect to the given
traces. The proposed approach is much influenced by our recent work on the elaboration of
software requirements through ILP [1, 2] where we have shown how non-monotonic learning
can be used to compute an implementation (i.e. an LTS) that satisfy a given set of proper-
ties from scenarios. In this paper, we show how inductive learning can be used to computes
classes of implementations.

The paper is organised as follows. Section 2 describes background work on MTSs and the
specification language used to construct and verify MTSs. Section 3 describes the proposed
methodology. Section 4 presents a case study used to evaluate the our refinement process
and Sections 5 and 6 conclude the paper with a discussion of related and future work.

2 Background

A Modal Transition System is a formalism used for modelling and reasoning about the
behaviour of a system. A formal definition of an MTS is given below.

I Definition 1 (Modal Transition System). A Modal Transition System is a tuple M =
(S,Act,∆r,∆p, s0) where Act is the alphabet of label events, S a set of state, ∆r ⊆ S×Act×S
the set of required transitions, and ∆p ⊆ S × Act × S the set of possible transitions, such
that ∆r ⊆ ∆p. Transitions that are possible but not required are called maybe transitions.
An MTS is said to have a required transition on a, denoted s a−→r s

′, if (s, a, s′) ∈ ∆r. It is
said to have a possible transition on a, denoted s a−→p s

′, if (s, a, s′) ∈ ∆p.

An implementation is an MTS (S,Act,∆r,∆p, s0) where ∆r = ∆p, also referred to as an
LTS. An MTS can be represented as a directed graph in which nodes correspond to states
and the edges between two nodes represent the transition relation. Maybe transitions are
denoted with a question mark following the event label. System executions are represented as
sequences of transitions called traces. A trace can be either required, possible or proscribed.
A formal definition is given below. The definition of a trace presupposes that only one event
can occur at a single position in a trace, i.e. events cannot occur simultaneously.

I Definition 2 (Traces). Let M = (S,Act,∆r,∆p, s0) be an MTS. A trace σ = a1, a2, ...

where ai ∈ Act is said to be a required trace in M if there exists in M an infinite sequence of
transitions s0

a1−→r s1, s1
a2−→r s2...; it is said to be a possible trace in M if there exists in M
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an infinite sequence of transitions s0
a1−→p s1, s1

a2−→p s2..., where (si, ai+1, si+1) ∈ ∆p for
each i ≥ 0, and there is at least one transition relation in the sequence that is in ∆p −∆r.
Otherwise, it is said to be a proscribed trace in M.

In this paper, we refer to traces that should be possible in a model as positive traces, and
to traces that should be proscribed as negative traces. The notion of modal refinement
is defined between two MTSs and states when one MTS is “more defined” than another.
Given two MTSs N and M , N is said to refine M if N preserves all the required and all
the proscribed transitions of M . In this paper we assume a particular notion of refinement
relation, called strong refinement, which assumes that all MTSs share the same alphabet [9].
This is defined as follows.

I Definition 3 (Strong Refinement). Let ℘ be the universe of all MTSs for a given alphabet
Act. An MTS N = (U,Act, δr, δp, u0) is a refinement of an MTS M = (S,Act,∆r,∆p, s0),
written as M � N , if there exists some refinement relation R ⊆ S × U such that, for all
s ∈ S and u ∈ U , if (s, u) ∈ R, the following holds for every label a in Act:

if (s a−→r s
′), then for some u′ ∈ U , (u a−→r u

′ ∧ (s′, u′) ∈ R); and
if (u a−→p u

′), then for some s′ ∈ S, (s a−→p s
′ ∧ (s′, u′) ∈ R).

An MTS can be synthesised from and verified against formulae expressed in some form
of temporal logic. We give here a brief description of FLTL[7] as the language used by
the MTSA model checker [3]. In FLTL, a fluent f is defined by a tuple consisting of a
set If of initiating events, a set Tf of terminating events and an initial truth value (tt
or ff), such that If ⊆ Act, Tf ⊆ Act and If ∩ Tf = ∅. We write f = 〈If , Tf , Init〉 as a
shorthand for a fluent definition, where Init∈ {tt,ff}. Every event label a ∈Act defines a
fluent ȧ = 〈a,Act\{a},ff〉. We refer to such fluents as event fluents.

Given the set of fluents F , FLTL formulae can be constructed using the standard boolean
connectives and temporal operators

tt | ff | f | ¬φ | φ ∨ ψ | φ ∧ ψ | Xφ | φUψ | Fφ | Gφ

Given a set of traces Σ over Act and a set D of fluent definitions, a fluent is said to be true
in a given trace σ = 〈a1, ...., an〉 at position i with respect to D, denoted σ, i |=D f , if and
only if either of the following conditions hold:

f is defined initially true and ∀j ∈ N . ((0 < j ≤ i)→ aj 6∈ Tf );
(∃j ∈ N . (j ≤ i) ∧ (aj ∈ If )) ∧ (∀k ∈ N .((j < k ≤ i)→ ak 6∈ Tf )).

In other words, a fluent f holds if and only if it is initially true or an initiating event
for f has occurred, and no terminating event has occurred since. The semantics of boolean
connectives are defined in the standard way. The semantics of the temporal operators are
defined as follows:

σ, i |=D Xφ, if and only if σ, i+ 1 |=D φ

σ, i |=D φUψ, if and only if ∃j ≥ i. σ, j |=D ψ and ∀i ≤ k < j. σ, k |=D φ

σ, i |=D Gφ, if and only if ∀j ≥ i. σ, j |=D φ

σ, i |=D Fφ, if and only if ∃j ≥ i. σ, j |=D φ

Given that MTSs represent a set of possible implementations, it is often necessary to
reason about properties that hold in some or all implementations or none. Thus the satis-
faction of FLTL formulae over MTSs is given a 3-valued semantics. An MTS M is said to
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satisfy a property φ with respect to D, if φ is satisfied in every possible trace of M with
respect to D. It is said to be violated in M , if there is a required trace in M that refutes
it or if all possible traces in M violate it. Otherwise, the satisfaction of φ is unknown,
meaning that some implementations satisfy φ while others do not. Two FLTL formulae φ
and ψ are consistent if there exists a model M that satisfies the formula φ ∧ ψ. For the
remainder of this paper, we use ℘(φ) to denote an MTS that satisfies φ with respect to D.
Furthermore, we consider only safety properties of the form (G (

∧
0≤i fi → X(¬)ȧ)) where

fi is a literal over event or non-event fluent, and a is an event label. We also assume that
the MTS synthesised from given safety properties is the least refined MTS that satisfies the
given properties (for further detail see [13]).

3 Approach

The aim of our work is to develop an automated approach for refining MTSs, given a set
of traces that represent required and proscribed system behaviour. In this paper we focus
on the notion of strong refinement given in Definition 3 and on FLTL safety properties of
the form (G (

∧
0≤i fi → X(¬)ȧ)) described above. The input to our approach is a set D

of fluent definitions, a set Γ = {γi} of safety properties and two disjoint sets of positive
and negative traces, Σ = Σ+ ∪Σ− that are possible traces in the MTS M synthesised from
Γ. The input D, Γ and Σ are encoded into an Event Calculus (EC) logic program, and a
non-monotonic ILP system is used to learn rules about required and proscribe transitions
that can be translated back into FLTL safety properties Φ satisfying the following property:
the MTS N synthesised from the (refined) property

∧
γi ∧ Φ is a strong refinement of the

given MTS M where every trace in Σ+ is a possible trace in N and every trace in Σ− is a
proscribed trace in N .

I Definition 4 (Refinement with respect to traces). Let M = 〈S,Act,∆r,∆p, s0〉 and let
Σ = Σ+ ∪ Σ− be a set of positive and negative traces that are possible in M . An MTS
N = 〈U,Act, δr, δp, u0〉 is a correct refinement of M with respect to Σ if and only if N is a
refinement ofM (M � N) and every trace σ+∈ Σ+ is a possible trace in N , and every trace
σ−∈ Σ− is a proscribed trace in N .

I Definition 5 (Refinement Task). Let Γ = {γ1, ..., γn} be a set of FLTL safety properties,
let D a set of fluent definitions, let M = ℘(

∧
γi) be an MTS that satisfies Γ w.r.t D and

Σ = Σ+ ∪ Σ− a set of positive and negative traces that are possible in M . The refinement
task is to find an FLTL safety property Φ such that the MTS N = ℘(

∧
γi ∧ Φ) is a correct

refinement of M with respect to the traces in Σ. We call Φ a consistent extension of Γ.

3.1 An Event Calculus for MTSs
The Event Calculus is a widely-used logic programming formalism for reasoning about ac-
tions and time [12]. The definition of an EC language in this paper includes terms of
four different types: event terms, fluent terms, time (here referred as position) terms and
trace terms. Position terms are represented by the non-negative integers 0, 1, 2, . . . , events
correspond to actions that can be performed, fluents correspond to time-varying Boolean
properties, and traces are constants denoting different (independent) time lines.

The EC ontology includes the basic predicates happens, initiates, terminates, initially
and holdsAt. The atom happens(e, p, c) indicates that event e occurs at position p in a
trace c, initiates(e, f) (resp. terminates(e, f)) means that, if event e were to occur, it would
cause fluent f to be true (resp. false) immediately afterwards. The predicate holdsAt(f, p, c)
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indicates that fluent f is true at position p in a trace c, and initially(f) means that fluent f is
initially true. The formalism also includes an auxiliary predicate clipped(p1, f, p2, c) which is
defined as an event that terminates f occurs between positions p1 and p2 in a trace c. The
interactions between these EC predicates are governed by the set of domain-independent
core axioms defined below, where not denotes negation by failure.

clipped(P1,F,P2,C) : − happens(E, P, C), terminates(E, F), P1 ≤ P<P2.

holdsAt(F,P2,C) : − happens(E,P1,C), initiates(E,F), (1)
P1 < P2, not clipped(P1,F,P2,C).

holdsAt(F,P,C) : − initially(F), not clipped(0,F,P,C).

To capture in EC the different types of MTS transitions we have extended the lan-
guage with the predicates required, proscribed, and maybe. The atom required(e, p, c) (resp.
proscribed(e, p, c)) means that event e’s occurrence is required (resp. proscribed) at position
p in a given trace c. The atom maybe(e, p, c) is defined in (2) below and means that the
occurrence of event e at position p in trace c has not yet been specified.

maybe(E,P,C):- not required(E,P,C), not proscribed(E,P,C). (2)

Auxiliary predicates are also introduced to refine and appropriately constraint the notion of
occurrence of event: req_happens(e, p, c) is used to capture the fact that all required events
must happen, and may_happens(e, p, c) defines that a maybe event may happen at some
position in a trace if executed at that position in that trace. They are related to the happen
predicate by the following axioms:

req_happens(E,P,C):- required(E,P,C). (3)
may_happens(E,P,C):- executed(E,P,C), maybe(E,P,C). (4)

happens(E,P,C):- may_happens(E,P,C). (5)
happens(E,P,C):- req_happens(E,P,C). (6)

Integrity constraints over these predicates are captured by the following denial rules1:

false:- required(E,P,C), proscribed(E,P,C). (7)
false:- required(E,P,C), not executed(E,P,C). (8)
false:- happens(E1,P,C), happens(E2,P,C), not eq(E1,E2). (9)

Constraint (7) states that an event cannot be required and proscribed at the same position in
a trace, whereas constraint(8) states that a required event must be executed at the position
where it is required. A weaker semantics for required transitions is discussed in Section 5.

In addition to the above domain-independent axioms, our EC program is equipped with
domain-dependent axioms that capture properties of the given partial system description.
The following definition shows how FLTL partial specifications are encoded into domain-
dependent EC axioms.

I Definition 6 (EC Encoding). Let Γ = {γ1, ..., γn} be a set of safety properties, D a set of
fluent definitions and Σ a set of finite traces, such that every trace in Σ is a possible trace
in MTS M = ℘(

∧
γi). The EC encoding of Γ and D, denoted EC (Γ ∪ D ∪ Σ), is the EC

program Π constructed as follows:

1 Denial rules take the form false :- (not)b_1, . . . , (not)b_n where b_i can be any atom defined in
the language.
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add to Π, for each fluent definition f = 〈{ai}, {bi}, Init〉 in D,
the set of facts initiates(ai, f) and terminates(bi, f),
the fact initially(f) if f is defined in D as initially true,

add to Π, for each safety property of the form �(
∧

0≤i≤k(¬)fi →©¬ȧ),
the rule proscribed(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C)2,
add to Π, for each safety property of the form �(

∧
0≤i≤k(¬)fi →©ȧ),

the rule required(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C),
add to Π, for each trace σj = 〈a1, ..., an〉 ∈ Σ,
the set of facts executed(ai, i− 1, cj), where 0 < i ≤ n and cj denotes the trace σj .

The EC program described above is a normal logic program for which we use the notions
of stable model semantics and entailment under credulous stable model semantics [6]. Hence
we say that an EC program Π entails an expression π, denoted Π |= π, if and only if π is
satisfied in at least one stable model of Π. The following theorem proves that the above EC
encoding is sound.

I Theorem 7 (Soundness of EC Encoding). Let Γ be a set of safety properties, D be a set of
fluent definitions and M = (S,Act,∆r,∆p, s0) an MTS that satisfies Γ with respect to D.
Let σ = 〈a1, ..., an〉 be a finite possible trace in M . Let Π be the EC logic program given by
EC(Γ ∪D ∪ σ) and let I be a stable model of Π. Then, for each fluent f in D and position
p in σ, where 0 ≤ p ≤ n, f is true at position p in σ if and only if holdsAt(f, p, σ) ∈ I;
for every event a ∈ Act and position p in the trace σ, where 0 ≤ p ≤ n, there is a required
transition on a at position p in M if and only if req_happens(a, p− 1, σ) ∈ I and there is a
maybe transition on a at p in M if and only if may_happens(a, p− 1, σ) ∈ I.

The proof is by induction of the position p in the trace σ, using the fact that Π is a locally
stratified program and, as such, has a unique stable model.

3.2 Refining MTS using Inductive Logic Programming
Inductive Logic Programming (ILP) is concerned with the computation of hypotheses H
that extend a prior background theory B to entail a set of examples E, i.e. B ∪ H |= E

[10]. The hypotheses H are assumed to be part of a set of clauses HS, called the hypothesis
space, which defines all hypotheses that would be accepted as a solution.

I Definition 8 (Inductive Solution). Given a normal logic program B, a set of ground literals
E, and a set of clauses HS, the task of ILP is to find a normal logic program H ⊆ HS,
consistent with B, such that B ∪H |= E under the stable model semantics. H is called an
inductive solution for E with respect to B and HS.

In our refinement approach, the inductive learning task is to compute hypotheses H from a
background B, given by the EC encoding of a partial system specifications, that is consistent
with the given specification, and that entails, together with B, require and proscribe event
transitions specified in a given set of traces. The (possible) traces in a given Σ are therefore
translated into facts about what is required to happen and what should be proscribed
from happening in the refined model. These facts constitute the set E of examples for our
inductive learning task.

2 (not) preceding a literal is a shorthand for either the positive or negative form of that literal.
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I Definition 9 (EC encoding of event traces into examples). Let Γ = {γ1, ..., γn} be a set
of safety properties, D a set of fluent definitions and Σ+ ∪ Σ− a set of finite positive and
negative traces, such that every trace in Σ is a possible trace in MTS M = ℘(

∧
γi). The

EC translation of traces in Σ into examples E, denoted EC(Σ), is constructed as follows:
for each trace σ+

j = 〈a1, ..., am〉 ∈ Σ+ where s0
a1−→p s1, ..., sm−1

am−→p sm in M
add to E facts req_happens(ai, i− 1, cj) for every transition si−1

ai−→p si that should
be required, where 1 ≤ i ≤ m,
add to E facts happens(ai, i− 1, cj) for all other transitions, where 1 ≤ i < m,

for each trace σ−k = 〈b1, ..., bn〉 ∈ Σ−, where s0
b1−→p s1, ..., sn−1

bn−→p sn in M
add to E the fact not happens(bn, n− 1, ck).

So transitions in the traces of Σ+ that are intended to be required in the refined model are
formalised as req_happens atoms, and transitions in the traces of Σ− that are intended to be
proscribed are encoded with not happens literals. All other transitions that are not defined
as required or proscribed, are represented as happens atoms.

To learn safety properties rules, we defined theHS to be the set of clauses with proscribed
or required in the head and holdsAt literals in the body. Because the examples are given
in terms of req_happens and (not) happens, and given our EC background knowledge, our
learning task requires an ILP algorithm capable of non-observational predicate and non-
monotonic learning. For this we have used the ILP system in [11].

In brief, for every transition that is assumed to be executed, and for which the background
knowldge B does not include any proscribed rule, the consequence that it may happen can be
derived from the background knowledge. This is inconsistent with the examples req_happens
or not happens given in E for the same event. So the learning algorithm explains the example
(consistently) by abducing a set A of ground required and proscribed facts for these trans-
itions. These then are used to form the head of the learned rules. Body literals are grounds
holdsAt literals derived from B∪A at the same positions of the traces of the adbuced literals.
These constructed ground rules are then generalised in a way that preserves consistency with
the integrity constraints included in the background knowledge. The learning may produce
alternative solutions. Once a solution H is chosen, this is translated back into FLTL. Rules
of the form proscribed(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C) are trans-
lated back into safety properties of the form �(

∧
0≤i≤k(¬)fi →©¬ȧ), while rules of the form

required(a, P,C):-(not) holdsAt(f1, P, C), ..., (not) holdsAt(fk, P, C) are translated back into
FLTL properties of the form �(

∧
0≤i≤k(¬)fi →©ȧ). The soundness of the learning step is

proved by Lemma 10 and Theorem 11.

I Lemma 10. Let Γ = {γ1, ..., γn} be a set of properties expressed in FLTL, D a set of
fluent definitions and Σ = Σ+ ∪ Σ− a set of traces, such that every trace in Σ is a possible
trace in the MTS M = ℘(

∧
γi). Let Π = EC(Γ∪D ∪Σ) be the EC translation of Σ, D and

Γ, and let E = EC(Σ) be the encoding of Σ into examples. Let H be an inductive solution
for E with respect to Π, within the hypothesis space HS. Then FLTL(H) is consistent with
the given specification Γ.

The proof is by contradiction were Γ and FLTL(H) are assumed to be inconsistent and show
that it falsifies the assumption of H be an inductive solution.

I Theorem 11. Let Γ = {γ1, ..., γn} be a set of safety properties expressed in FLTL, D a set
of fluent definitions and Σ = Σ+∪Σ− a set of traces, such that every trace in Σ is a possible
trace in the MTS M = ℘(

∧
γi). Let Π = EC(Γ∪D ∪Σ) be the EC translation of Σ, D and

Γ, and let E = EC(Σ) be the encoding of Σ into examples. Let H be an inductive solution
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for E with respect to Π, under the hypothesis space HS. Then FLTL(H) is a consistent
extension of Γ with respect to the traces in Σ.

4 A Case Study

In this section we illustrate an application of our approach to a real case study, the Philips
Television Set Configuration reported in [14], which describes an industrial protocol for
a product family of Philips television sets. We used the MTSA tool described in [3] to
construct an MTS from the available (partial) system description and to verify the resulting
refined MTS.

The system comprises multiple tuners, a video output device and a switch that can
be configured by the television user to display several signals in different configurations.
The protocol is concerned with controlling the signal path to avoid visual artefacts ap-
pearing on video outputs when a tuner is changing frequency. The alphabet is composed
of {set_Active_t1, set_Active_t2, t1_tune, s_restore, t1_dropReq, s_dropAck_t1}. The
fluent definitions are given by the following tuples:

Active_t1 =<set_Active_t1, set_Active_t2, tt>
Tuning_t1 =<t1_tune, {s_restore, set_Active_t1, set_Active_t2}, ff>
WaitingDropAck_t1 =<t1_dropReq, s_dropAck_t1, ff>
Dropped_t1=<s_dropAck_t1, t1_restore, ff>

Figure 1 shows an MTS generated from the initial descriptions. Note that the numbered
nodes are used for reference and do not designate a particular state in ∆p. The positive and
negative traces Σ+ ∪ Σ− include:

Σ+ = {〈start, t1_tune〉} (10)
Σ− = {〈start, t1_tune, t1_newValue, t1_tune〉, 〈start, t1_tune, t1_newValue,

t1_dropReq, s_dropAck_t1, t1_restore, t1_tune〉} (11)

0 1

start

set Active t1?
set Active t2?

t1 tune?
t1 dropReq?
t1 restore?

t1 newValue?
s dropAck t1?

Figure 1 An initial MTS M for the Philip TV set

In the traces given in Σ the proscribed transitions are last occurrence of transition t1_tune
in each trace in Σ−, whereas the required transitions are the transition t1_tune in Σ+.
To learn safety properties that would ensure that only those MTS refinements that would
meet these proscribed and required transitions are generated, we translate the given fluent
definitions into EC domain-dependent axioms and the given traces in Σ into EC narratives
and examples as defined in Section 3. Part of this translation is given below.
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initiates(set_Active_t1,active_t1). terminates(set_Active_t2,active_t1).
initially(active_t1).
initiates(t1_tune,tuning_t1). terminates(s_restore,tuning_t1).
terminates(set_Active_t1,tuning_t1). terminates(set_Active_t2,tuning_t1).
initiates(s_dropReqAck_t1,dropped_t1). terminates(t1_restore,dropped_t1).
initiates(t1_dropReq,waitingDropAck_t1). terminates(s_dropAck_t1,waitingDropAck_t1).

executed(start,0,c1). executed(t1_tune,1,c1).
executed(start,0,c2). executed(t1_tune,1,c2).
executed(t1_newValue,2,c2).

executed(t1_tune,3,c2). executed(start,0,c3).
executed(t1_tune,1,c3). executed(t1_newValue,2,c3).
executed(t1_dropReq,3,c3).executed(t1_tune,4,c3).

examples:-
happens(start,0,c1), req_happens(t1_tune,1,c1),
not happens(t1_tune,3,c2), not happens(t1_tune,4,c3).

At the beginning, as no domain specific properties are included in the background know-
ledge, all event transitions are by default maybe transitions. Hence in the stable model of
the EC program we have maybe(e,p,c) for every combination of event e, position p and trace
c given in the language. Furthermore, the model contains happens(e,p,c) for those events
where also executed(e,p,c) has been added to the narrative of the background knowledge. In
other words, before the learning, the background knowledge entails that all executed events
happen as maybe events. However, the examples state that last t1_tune executed in traces
c2 and c3 should not occur and that the same event is required to happen in trace c1. So
the given background knowledge does not entail the given examples. The ILP task then
computes the following set of hypotheses:

required(t1_tune,X1,X2):-holds_at(f_start,P,C).

proscribed(t1_tune,X1,X2):-holds_at(tuning,P,C). (12)
not holds_at(waitingDropAck_t1,P,C).

The above rules are translated back into the safety properties

G(start→ X (t1_tune))
G((Tuning_t1 ∧WaitingDropAck_t1)→ X ¬(t1_tune)) (13)

The MTS generated from the conjunction of learned assertions in (13) is shown in Figure
2. It is easy to show that the refined model is a strong refinement of the initial model given
in Figure 1 since every possible transition in the refined MTS is a possible transition in the
initial MTS, and every required transition in M , in this case just the single transition start
from the initial state, is also preserved in the refined model.

5 Discussion

In our present approach, we have focused on learning universal properties that force one
required transition from states that satisfy the properties’ conditions. The choice to adopt
this semantics was inspired by existing work on synthesising MTSs that satisfy properties
universally and existentially. Weaker semantics, whereby there can be several required
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Figure 2 A refined MTS N for the Philip TV set

transitions from a single state to satisfy existential properties, can be modelled in our EC
programs by adding an executed literal to the body of the definition of req_happens in (3)
and dropping the constraint (8).

In defining our refinement, we have considered the MTSs that are generated from the
conjunction of a given set of formulae instead of constructing an MTS for each formula
and merging the single MTS models as proposed in [5]. Though only argued in [5] to be
equivalent fro the case of safety properties and MTSs with the same alphabet, we have
now verified through our refinement approach that this is indeed the case. We have also
compared our work with techniques that synthesise MTS from scenarios directly [13] and
found that such approaches do not support the use of negative scenarios which are crucial
in our case to avoid over generalising the learned conditions.

In [1], we have presented an approach for detecting and resolving incompleteness in op-
erational specifications using ILP. The this previous work the system models are Labelled
Transition Systems which are less expressive than MTS as they are based on a comple-
tion assumption by which the system behaviour is strictly classified as either proscribed
or required. The properties that were learned aimed at pruning undesirable traces from
the initial Labelled Transition System. In this paper, the learning task is more general as
it prunes traces where current possibly transitions should instead be proscribed, and also
forces possible traces to be required. Both sets ∆r and ∆p of a given MTS are therefore
consistently refined, whilst preserving the refinement relation between the MTS of the given
description and that of the refined specifications.

6 Conclusion and Future Work

The overall aim of the work presented in this paper is to provide a formal and tool-supported
approach for incremental software development through modal refinement by means of in-
ductive learning. In brief, we have described the use of EC logic programs and ILP for
computing strong refinements of MTSs from given event traces. We have shown how the
EC language can sufficiently capture the different notions of the system models and how
non-monotonic learning preserves the conditions of a strong refinement. We have argued
that our computed hypothesis characterise a set of implementations of the original MTS.

As part of our future work, we intend to extend the approach to a wider class of safety
properties, both as initial partial system descriptions and as learned properties, and to
other forms of refinements such as weak refinement. This will enhance the applicability of
our methodology to problems where the incremental refinement requires extending the given
alphabet of events as new descriptions become available. We would also like to explore the
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use of ILP to reason and refine non-deterministic MTSs, so fully exploiting the benefit of
the EC representation.
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Abstract
In high-level constraint modelling languages, constraints can occur in non-Boolean contexts:
implicitly, in the form of partial functions, or more explicitly, in the form of constraints on local
variables in non-Boolean expressions. Specifications using these facilities are often more succinct.
However, these specifications are typically executed on solvers that only support questions of the
form of existentially quantified conjunctions of constraints.

We show how we can translate expressions with constraints appearing in non-Boolean contexts
into conjunctions of ordinary constraints. The translation is clearly structured into constrained
type elimination, local variable lifting and partial function elimination. We explain our approach
in the context of the modelling language Zinc. An implementation of it is an integral part of our
Zinc compiler.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Logic and constraint program-
ming; F.3.3 Semantics of Programming Languages; I.2.2 Automatic Programming: Program
transformation

Keywords and phrases Constraint modelling languages, model transformation, partial functions
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1 Introduction

In high-level constraint modelling languages such as Essence [3], OPL [13] and Zinc [8]
constraints can occur in non-Boolean expressions: i.e. expressions whose value is not a
Boolean, but for instance an integer. Most commonly, such constraints appear in the form
of partial functions. For example “y + 1 div y = 2 ∨ y 6 0” is a constraint involving an
application of the partial function div (integer division), which is undefined if the divisor
equals zero. The subexpression 1 div y is an integer expression that implicitly introduces
the constraint that y must be non-zero.

Several proposals for dealing with such constraints resulting from partiality are studied
in [5]. In an imperative language, we may simply abort if y takes the value 0, but in a declar-
ative language, this is unacceptable. The most popular approach for (constraint) modelling
languages is the so-called relational semantics, which treats functions as “shorthand” for
relations, since this is easy to support by solvers. In this semantics, the implicit constraint
y 6= 0 is active at the nearest enclosing Boolean context. The above example thus means
“(y + 1 div y = 2 ∧ y 6= 0) ∨ y 6 0”.

In Zinc, constraints in non-Boolean contexts can also arise in the form of a local variable
declaration in a non-Boolean context if the type-inst1 is constrained. Local variables are
created using expressions of the form “let {T : x = A} in E” where E is a (Boolean or

1 A type-inst in Zinc is the combination of a type, such as int, and an instantiation pattern. See Section 2.
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non-Boolean) expression in which we introduce a new local variable called x whose type-inst
is T and whose assignment (optional) is A. A formal semantics of these let expressions is
given in Section 2.

Now consider the following constraint, imposing an ordering between two tuples
(u, v) < (y, let {var 0..4: x = 2 · y + 1} in x · x)
where a local variable x is introduced to factor out a computation. It also implicitly intro-
duces the constraint 0 6 x 6 4 in the context of the non-Boolean expression x · x. In the
relational semantics this constraint is active at the level of the nearest enclosing Boolean
expression, that is, at the level of the tuple comparison.

In the above example, we introduced a range type-inst (var 0..4), which is one of the
forms of constrained type-ints in Zinc. The most general form is the arbitrarily constrained
type-inst: (T : x where C(x)) with T a type-inst, x a name to refer to any value of T , and
C(x) a constraint that all values of the resulting constrained type-inst have to satisfy.

Constrained type-insts are useful to improve locality during modelling, but in particular
they also frequently arise in the process of (automatic) type reduction: the mapping of com-
plex structured types to basic types that can be handled by solvers. Consider the expression
min((x, 1), (y, 2)) where x and y are integer variables, which represents the minimum of the
tuples (x, 1) and (y, 2) (in lexicographic order). It may be mapped to
let {(tuple(var int, var int): t

where (x 6 y → t = (x, 1)) ∧ (x > y → t = (y, 2))): m} in m

so that it can be dealt with by solvers that do not support min/2 over tuples.
These examples illustrate how constraint models can involve (in some cases quite com-

plex) constraints attached to non-Boolean expressions. To match the relational semantics
of constraint modelling languages, and to eventually reach a constraint model that can be
directly supported by underlying solvers, these constraints must be lifted to the nearest
enclosing Boolean context. This is a non-trivial task since the enclosing non-Boolean oper-
ations can be deeply nested.

While Zinc has a direct way of expressing constraints in non-Boolean contexts using local
variables with constrained type-insts, other constraint modelling languages such as F [7] and
Essence [3] have to deal with such constraints as well during model transformations. In
these languages, the model transformation rules need to keep track of constraints attached to
non-Boolean expressions, and each rule needs to state how to deal with them appropriately.

In this paper, we propose a series of transformations to obtain the relational semantics
for non-Boolean expressions that have constraints attached to them. Partial functions are
a special case of this, and in that respect, this work generalises [5] by dealing with any
sort of constraint in a non-Boolean context, and by decomposing the problem into partial
function elimination, local variable lifting and constrained type elimination. While we focus
on the Zinc language, this work is relevant to all constraint modelling languages and logic
programming-based languages that allow partial function applications, and in particular also
to functional-logic programming languages such as Curry [6]. Our transformations have the
following significant features:
Zinc-to-Zinc: the result of the transformations is Zinc – no separate information outside a

model needs to be maintained. This means these transformations can be followed by or
combined with other Zinc transformations.

Data-independence: the transformations are independent of parameter values. Instance
data need not be available at transformation time.

Locality: the transformations are only concerned with those parts of the model that contain
non-Boolean constraints. Flattening of the model is not required.
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2 Preliminaries

Zinc. A Zinc model consists of a set of items for decision variable and parameter declar-
ations, constraints, solving objective and output. A variable or parameter declaration has
the form “T : x” or “T : x = A”, where x is the name of the variable, T is its type-inst and
expression A is its optional assignment.2 A type-inst is the combination of a type (a set of
values) and an instantiation pattern, which determines which components of a variable are
fixed when solving starts. Examples of type-insts are int, var 0..1, tuple(bool, var float)
and array[int] of var set of 1..9, representing respectively an integer parameter, a binary
variable, a tuple whose first and second field are a Boolean parameter and a float variable
respectively, and an integer-indexed array whose elements are set variables taking elements
from 1..9. The distinction between variables and parameters via the instantiation pattern
in the type is crucial for data-independent transformation and compilation of Zinc models.

A constraint item holds a constraint. A solve item states whether the aim of solving is
satisfaction, or optimisation in which case it also holds the objective function. An output
item states how a solution to the problem should be presented. There are other types of
items; see [8] for more details.

I Example 1. Here is a simple Zinc model:

int: c; % declare an integer parameter c
var set of 1..3: s; % declare a set variable s, subset of {1, 2, 3}
constraint card(s) = c; % enforce that the cardinality of s is c
solve satisfy; % search for any solution
output [“s = ”, show(s)]; % output the resulting set

c = 2;

The last line defines the parameter c. It could be in a separate data file. J

In the following, we highlight some features of Zinc that are important for our discussion.
Zinc supports type-insts beyond the base ones (int, float, etc.), called constrained

type-insts. One particularly expressive case of these are arbitrarily constrained type-insts.
An example is (int: i where i > 0), denoting the positive integers.

Variables with a local scope can be introduced by let expressions. The scope, and thus
the type-inst of the let expression itself, can be Boolean or non-Boolean. One can have
multiple comma-separated variable declarations inside a single let expression.

Zinc allows the user to define their own functions and predicates (functions returning var
bool). A function definition has the form “function T : f(T1: x1, . . . , Tn: xn) = E”, where
T is the return type-inst, f is the function name, Ti and xi are respectively the type-insts
and names of its arguments, and E is its body, which is an expression of type-inst T .

Semantics of Zinc. In this paper we are mainly concerned with constraints on non-Boolean
expressions. In the introduction, we already gave an example of the intended meaning of an
expression involving division. In the relational semantics, we consider Boolean expressions
only, and in particular we decompose nested non-Boolean expressions into a conjunction of
equality constraints. We denote the meaning of a Boolean expression E by I(E). Here is a
(partial) definition of I, given in priority order:
I(x = y) := x = y where x and y are variables or constants;

2 A parameter must be assigned, but the assignment can be in a separate data file.

ICLP 2011



120 Constraints in Non-Boolean Contexts

I(x = B) := x ↔ I(B) with x a variable or constant and B a Boolean expression;

I(x = f(y1, . . . , yn)) := ∃y′
1, . . . , y′

n :
∧

i∈1..n I(y′
i = yi) ∧ x = f(y′

1, . . . , y′
n) for

any total non-Boolean function f/n where x is a variable or constant;

I(x = f(y1, . . . , yn)) := ∃y′
1, . . . , y′

n :
∧

i∈1..n I(y′
i = yi) ∧ p(y′

1, . . . , y′
n, x)

for any partial non-Boolean function f/n where x is a variable or constant and
p(z1, . . . , zn, zn+1)↔ (f(z1, . . . , zn) = zn+1);

I(x = let {T : y = A} in E) := ∃y : Iti(T, y) ∧ I(y = A) ∧ I(x = E) with x a
variable or constant and Iti(T, y) the interpretation of y being of type-inst T ;

I(p(x1, . . . , xn)) := ∃x′
1, . . . , x′

n :
∧

i∈1..n I(x′
i = xi) ∧ p(x′

1, . . . , x′
n) for any pre-

dicate p/n, including operators such as ∧/2, ¬/1, = /2 and 6 /2.
The interpretation for partial functions can also be used for total functions; however, the
latter is more compact.

I Example 2. For the example from the introduction we find

I(y + 1 div y = 2 ∨ y 6 0) =
(∃i1 : (∃i2 : div(1, y, i2) ∧ i1 = y + i2) ∧ i1 = 2) ∨ y 6 0

(after some simplification). For y = 0 it evaluates to true. J

From Zinc to solver. Our compiler for Zinc proceeds in two main stages. First, the high-
level Zinc model is reduced to an equivalent model in a subset of Zinc called CoreZinc. For
fixed expressions (expressions over parameters), CoreZinc is equivalent to Zinc. For expres-
sions involving decision variables, CoreZinc is similar to MiniZinc [9]. The transformation
from Zinc to CoreZinc is done independently of instance data by rewrite rules in the model
transformation language Cadmium [1].

The resulting CoreZinc model is compiled into procedural code for the entire solution
process, that is, to create variables and post constraints in the solvers, maintain communic-
ation between solvers, handle search, and generate output.

To handle constraints in non-Boolean context there are three interacting translations:
elimination of constrained type-insts, lifting local variables, and elimination of unsafe partial
function applications. They are described in the following three sections.

3 Elimination of Constrained Type-Insts

In Zinc, type-insts can be basic (e.g. bool, int, float) or constrained. Constrained type-
insts have one of the following forms:

ranges of the form “l..u” with l and u either (fixed) integer or float expressions;
enumerated sets, e.g. {1, 3, 4}, or set parameters;
arbitrarily constrained type-insts of the form (T : x where C(x)) with T a type-inst, x a
name, and C(x) a constraint;
structured type-insts with constrained type-insts as components.

Solvers typically support range domains for their variables. The more complex type con-
straints, however, need to be converted into regular constraints.

A constraint in the type-inst of a global variable can immediately be extracted and
posted as a regular constraint at the model root level. The interesting case is that of a local
variable with constrained type-inst. In that case, the type constraints need to be lifted to
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the nearest enclosing Boolean context. This is done by first lifting the variable declaration
to this nearest Boolean context and then extracting the parts of the type constraint that
can cause failure. The lifting to a Boolean context is described in Section 4. We show here
how to extract the type constraint and add it to the Boolean context of the declaration.

The type-inst in the declaration of a local variable can cause failure in three ways:
(a) the type domain of the variable is empty;
(b) its assignment is not within its type-inst;
(c) its assignment fails.

We deal with case (a) by redeclaring the local variable with a guaranteed non-empty
type-inst and adding a constraint stating that the original type-inst must be non-empty.
For range type-insts, we do so by transforming “let {var l..u: x} in B” into
“let {var l..max(l, u): x} in B ∧ l 6 u”. Here and in what follows, B is Boolean because
we assume the let expression has already been lifted to the nearest Boolean context.

Local declarations with non-range set type-insts are dealt with as follows:

let {var s: x} in B

which states that x can take any value in s, is transformed into

let {var (if card(s) > 0 then s else {d} endif): x} in B ∧ card(s) > 0
where d is an arbitrary value of the appropriate type, e.g. 0 for the integers.

For tuples and record types, we ensure each field has a non-empty type-inst. Set types
are always non-empty, as the empty set is always a possible value. Array types are non-
empty if their element type is non-empty. The index type can be empty, as in such case the
empty array is a possible value.

For case (b), an assignment that might not be within the type-inst, we relax the type-
inst to its base type-inst, which always includes the assigned value. The original type-inst
is made explicit as an arbitrarily constrained type-inst and then extracted.

For range type-insts, “let {var l..u: x = A} in B” is transformed into
“let {var int: x = A} in B ∧ l 6 A ∧ A 6 u”.

For set type-insts in general, “let {var s: x = A} in B” is transformed into
“let {var T : x = A} in B ∧ A in s” where T is the (base) element type of s.

The final case (c), a (non-Boolean) assignment that fails, can only occur because of
partial functions. We treat it in Section 5.

4 Lifting Local Variables

Constraints that appear in non-Boolean contexts, either implicitly for partial functions or
explicitly, must be lifted to the nearest enclosing Boolean context. Similarly, in order to
allow solving by a constraint solver that can only handle existentially quantified conjunctions
of constraints, all local variables must be lifted to the top level.

Local variable lifting is the process of lifting local variable declarations through enclosing
expressions, modifying the declarations and occurrences of the declared variables as needed.
It is the key step in dealing with these kinds of requirements.

In this section we show how we can lift local variable definitions through the different
Zinc constructs.
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4.1 Base Case
The base case for lifting is simple. For non-Boolean expression Ei, introducing local variable
x and appearing as an argument to function f : f(E1, . . . , let {T : x} in Ei, . . . , En)
transforms into let {T : x} in f(E1, . . . , Ei, . . . , En). We assume x does not occur in
E1, . . . , Ei−1, Ei+1, . . . , En, renaming it to a unique new name if necessary.

4.2 Boolean Contexts
For a local variable declaration in a Boolean context, we apply the transformations of Sec-
tion 3 to extract potentially failing type constraints. We can then safely lift the local variable
above the Boolean context in which it appears using the base case.

One complication is that Zinc does not allow unassigned local variables in negative
Boolean contexts, such as the argument of not or the first argument of implication ->. This
is because existentially quantified variables become universally quantified by lifting through
negation, and our target solvers do not implement universal quantification.

I Example 3. The expression “not (let {var float: x} in B)” means that there is no float
value x for which B holds. In other words, for all float values x, expression B is false. J

Original Zinc models with unassigned local variables in negative contexts will be rejec-
ted, hence all originally occurring let constructs can be lifted out. The failure extraction
transformations of Section 3 never remove an assignment.

However, sometimes an unassigned local variable may in fact be constrained to a single
value by a type constraint. For example, “let {(T : x where x = A): y} in E(y)” is
of course equivalent to “let {T : x = A} in E(x)”. Another example, that cannot be
written equivalently as an assignment, was given in the introduction where we translated
the minimum of two tuples into an appropriately constrained tuple variable. We allow such
implicitly assigned variables to be lifted over negative contexts.

4.3 Structured Types
Constraints can occur within a component of a structured type, e.g. within a field of a tuple
or within an element of an array. Following the relational semantics, this constraint holds
for the whole structure, and so we have to be careful with evaluating structure access as
shown in the following example.

I Example 4. Consider the constraint “(5, let {var 1..10: i = 0} in i).1 = 5”. Evaluating
the tuple access would result in “5 = 5”, which is trivially true. Alternatively, we could lift
the declaration, giving us “let {var 1..10: i = 0} in ((5, i).1 = 5)” which further evaluates
to false. The correct answer is found by looking at the semantics (Section 2) and treating
tuple construction and access as non-Boolean functions. We obtain t.1 = 5 ∧ t = (5, t2) ∧
(∃i : i = 0 ∧ i ∈ 1..10 ∧ t2 = i). The failure holds for the entire structure. J

One important consequence of this is that some seemingly reasonable simplifications are
incorrect. For example, the tuple access (a1, . . . , an).i cannot always be replaced by ai.

4.4 Comprehensions
An array comprehension [H(i) | i in G where W (i)] generates an array of instances of
H for each value in the array G satisfying condition W . Local variables can appear in
comprehensions in three places: in the comprehension head H, in a generator expression G,
and in the condition W . We now look at each of these in detail.
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Comprehension head. The way a local variable declaration is lifted outside of a compre-
hension head depends on which of the following properties the declaration has:
(1) the type-inst is independent of the generator;
(2) the assignment (if present) is independent of the generator;
(3) the assignment (if present) is free of local unassigned variables.
Before describing the general approach, we give two special cases for which we can do better.

Special case 1: an assignment is present and all properties (1), (2) and (3) hold. We can
lift the variable declaration outside as is, as the different instantiations of the declaration,
one for each value of the generator, have the same value and type-inst. More formally,
[ let {T : x = A} in E(x) | g in G ] is rewritten to let {T : x = A} in [ E(x) | g in G ].

I Example 5. To see that property (3) is indeed needed, consider
[ let {var int: x = y + let {var 0..8: z} in z} in a[x] > 0 | i in 1..9 ]
which evaluates to an array of 9 Boolean variables. This would become
let {var int: x = y + let {var 0..8: z} in z} in [ a[x] > 0 | i in 1..9 ].
However, this is not equivalent to the original version: it would force all 9 instantiations of
z (and x by transition) to take the same value. J

Special case 2: property (1) holds, and if an assignment is present, it does not have
property (2) or (3). In this case the instantiations of the local variable within the compre-
hension are different in general. We need one copy of it for each generator value. Therefore,
we create an array of variables outside the comprehension and replace each occurrence of
the original local variable by a lookup into this array. More concretely,
[ let {T : x = A(g)} in E(x) | g in G ] is rewritten to
let {array[G] of T : y = [ A(g) | g in G ]} in [ E(y[g]) | g in G ]. The case without an
assignment to x is similar: we simply omit the assignment to y.

Here, we use the generator as an index into the array. This is not always possible, i.e.
when the generator values are either not fixed, or potentially contain duplicates. If necessary,
we first transform the comprehension so that its generator ranges are sets. For example,
[ E(x) | g in G ] is rewritten to [ E(G[g′]) | g′ in index_set(G) ].

General case: property (1) does not necessarily hold. Again, we create an array for
separate declarations outside of the comprehension, but this time we need to generalise the
type-inst of its element type to make it independent of the generator. This is done in two
steps. We will illustrate them using the comprehension
[ let {T (g): x = A(g)} in E(x) | g in G ].
First, we make those type constraints that depend on the generator explicit by using an
arbitrarily constrained type-inst:
[ let {(T ′: y where CT (y, g)): x = A(g)} in E(x) | g in G ]
where T ′ is a supertype of T that does not depend on g. In the second step, we create
a constrained type-inst for the resulting array in which each element has the appropriate
generator-dependent type constraint:
let {(array[G] of T ′: w where forall(g in G)( CT (w[g], g) )): z =

[ A(g) | g in G ]} in [ E(z[g]) | g in G ]
I Example 6.
[ let {tuple(var 1..j, var i..j): x = f(i)} in g(x) | i in 1..5 ]
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is a more concrete example. Only the second component of the type-inst of x depends on a
generator. It is first transformed to
[ let ({tuple(var 1..j, var int): y where i 6 y.2 ∧ y.2 6 j): x = f(i)}

in g(x) | i in 1..5 ].
Then the constrained type-inst is lifted out of the comprehension to give
let {(array[1..5] of tuple(var 1..j, var int): y where

forall(i in 1..5)(i 6 y[i].2 ∧ y[i].2 6 j)): x = [ f(i) | i in 1..5 ]}
in [ g(x[i]) | i in 1..5 ]. J

Generator expression. A declaration in the generator expression can directly be lifted out
of the comprehension since it is independent of the generator.

where condition. The where condition forms a Boolean context, and so the rules of Sec-
tion 3 apply. A non-failing declaration in a where condition can be lifted outside the com-
prehension similar to declarations in the comprehension head.

Multiple generators. Zinc allows multiple generators for the same comprehension. The
extension to handle these is straightforward: essentially the declaration is lifted to a multi-
dimensional array declaration. The most complicated case is declarations in generator ex-
pressions. In general
[ E | g1 in G1, . . . , gi in let {T : x = A} in Gi(x), . . . , gn in Gn where C ]
can be rewritten into
let {array[T1, . . . , Ti−1] of T : x =

[ (g1, . . . , gi−1): A | g1 in G1, . . . , gi−1 in Gi−1 ]}
in [ E | g1 in G1, . . . , gi in Gi(x[g1, . . . , gi−1]), . . . , gn in Gn where C ]
where T1 . . . Ti−1 are the element type-insts of the arrays G1, . . . , Gi−1.

5 Elimination of Unsafe Partial Function Applications

Zinc includes various built-in partial functions, such as division and modulo (not defined if
the divisor equals zero), array lookup (not defined for index values outside of the index set
of the array), or the minimum of a set (not defined if the set is empty). Furthermore, there
are a number of partial real functions, such as trigonometric ones.

The treatment of a partial function application depends on whether it operates on a
fixed value. If so, the application is left as is, and it is simply evaluated when required. Not
translating fixed applications avoids the associated increase in expression size.

For non-fixed values, the partial function acts as a constraint that restricts the values
to be within the domain of the function. These applications are transformed to make
the constraints explicit. In the process, the partial function application is made safe: its
argument is guaranteed to be within the function’s domain.

Solvers generally do not support reified versions of constraints such as the element
constraint, which models an array lookup with a variable as the index, or integer division.
Moreover, such reified constraints are absent in low-level solver input languages, such as
FlatZinc [9] or XCSP [10]. If we simply lift such constraints to the top level conjunction,
we end up with the strict semantics rather than the relational one [5]. We must therefore
eliminate partiality from models.

The basic idea behind the transformation is that we encode the potential failure of
a partial function application by a local variable declaration with a constrained type-inst.
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How to move it to the nearest Boolean context is discussed earlier in the paper. Furthermore,
we ensure that the partial function application in constraint form never fails because it is
applied using input values outside of its domain.

Integer division. As an example of a partial arithmetic function, we show how integer
division is made safe. A propagator for division as a constraint excludes zero from the
domain of the divisor. Let x div y be a potentially unsafe division. That is, it is not a priori
clear that y can never assume the value 0. A first attempt to transform this division is
let {(var int: w′ where w′ = y): w} in x div w.
Constrained-type elimination will extract the type constraint w′ = y and add it to the
nearest enclosing Boolean context. An issue here is that w is an unassigned local variable.
If the original expression x div y appears in a negative Boolean context, then we now have
an unassigned local variable in a negative context, a situation we disallow. Therefore, we
find the above formulation undesirable. We prefer
let {(var int: w′ where w′ = y): w = y + bool2int(y = 0)} in x div w.
Again, constrained-type elimination will extract the type constraint and add it to the appro-
priate context. Moreover, w has an assignment which is guaranteed to be inside the domain
of the partial function.

Looking at the interpretation of both expressions (see Section 2), we have that I(z =
x div y), which reduces to div(x, y, z), is equivalent to

I(z = let {(var int : w′ where w′ = y) : w = y + bool2int(y = 0)} in x div w).

Assuming a total division operation, this reduces to

∃w : w = y ∧ w = y + bool2int(y = 0) ∧ z = x div w

which for y = 0 simplifies to false and for y 6= 0 to z = x div y. Moreover, we can safely
remove zero from the domain of w without affecting the possibility of y being zero.

Alternative encodings are possible, for example
let {(var int: w′ where w′ = y): w = [y, 1][bool2int(y = 0) + 1]} in x div w.
Which encoding is more suitable depends on which solver is being used.

General approach. In general, let f/1 be a unary partial function, c/1 a constraint that
succeeds when its input is in the domain of f/1 and fails otherwise, T be the type-inst of
the domain of f/1 and d a value within the domain of f/1. We can transform a call f(x)
into a safe partial function application as follows:
let {(var T : w′ where w′ = x): w = [d, x][bool2int(c(x)) + 1]} in f(w).
We can consider n-ary functions as unary functions operating on n-ary tuples.

6 Conclusions

Local variables and constrained types are crucial for both high-level modelling and effective
model transformation (e.g. type reduction or solver-specific constraint transformations).
To solve Zinc models, we must have a way to transform away these constructs to obtain
existentially quantified conjunctions of constraints. The transformations that do this in
a data-independent way are challenging and form a core part of Zinc. Any declarative
language that wishes to treat partial functions correctly and in a data-independent manner
must address these issues.
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We have presented three sets of transformation rules to deal with respectively constrained
type-insts, local variables and partial functions in Zinc. They transform valid Zinc models to
semantically equivalent ones that are free of arbitrarily constrained type-insts, local variable
declarations and potentially failing partial function applications. Our transformations are
data-independent and can be run concurrently. Previous work on Zinc [8] required flattening
the model and was not data independent.

In practice, we run partial function elimination first. Local variable lifting and con-
strained type elimination take place concurrently. They are run multiple times during the
model transformation process, because other transformations introduce local variables and
constrained type-insts but may assume a model without them.

Related Work
Zinc belongs to the family of constraint modelling languages that also includes F [7] and its
successor esra [2], s-COMMA [12], Essence [3] and OPL [13].
F provides function variables. Both partial and total functions can be represented. It

supports a function membership operation 〈i, j〉 ∈ F which is equivalent to i ∈ dom(F ) ∧
F (i) = j. However, function application is only allowed for values within the domain of the
function. F models are translated into a lower-level language. For some expressions, this
translation requires the introduction of new variables and constraints. Since local variables
and a way to encapsulate constraints in non-Boolean contexts are not part of the language,
these new variables and constraints need to be lifted. It is not described how this is done.

The s-COMMA language is an object-oriented constraint modelling language. It appears
to support division and variable index array lookups, but it is unclear how it deals with
undefinedness in these operations.

Essence is a specification language for CSPs and shares many features with Zinc. Es-
sence models are transformed into the lower-level language Essence′ using transformation
rules written in Conjure [4]. In Conjure, the result of rewriting an expression is a new
expression that may be tagged with a set of constraints. Since Essence lacks local vari-
ables and an encapsulation mechanism for constraints in a non-Boolean context, rules need
to state explicitly what to do with constraints that result from refining subexpressions.

Frisch and Stuckey [5] study undefinedness in the constraint (logic) programming lan-
guages ECLiPSe, SWI-Prolog, SICStus Prolog, OPL and MiniZinc. They discuss three
different formal semantics and show how to transform models to ensure they behave as de-
sired. The transformations consist of first identifying the nearest Boolean context of every
unsafe function application and creating a local variable alias for it, which is immediately
lifted to the top level. Next, each of these Boolean contexts is made safe by replacing unsafe
function applications by safe versions and adding the necessary constraints. The approach
of [5] is not always applicable to Zinc, as it can be the case that the unsafe partial function
application uses variables that are not defined at the level of the nearest Boolean context.

In the functional-logic programming language Curry [6], a program is a set of functions.
A function in Curry can be nondeterministic and in particular it can be partial. Whenever
a partial function is applied to a value outside of its domain, the function application fails,
which is different from returning false. As a result, we have that for instance not x evaluates
to True if x evaluates to False and vice versa, but fails if x fails.

Mercury [11] allows functions to have a solution or to fail. Unlike Curry, it allows
reasoning about success and failure using conjunction, disjunction, negation, etc. Failure is
automatically lifted to the nearest Boolean context. However, Mercury is only concerned
with evaluating fixed expressions.
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Abstract
Parallel implementations of programming languages need to control synchronization overheads.
Synchronization is essential for ensuring the correctness of parallel code, yet it adds overheads
that aren’t present in sequential programs. This is an important problem for parallel logic pro-
gramming systems, because almost every action in such programs requires accessing variables,
and the traditional approach of adding synchronization code to all such accesses is so prohibitively
expensive that a parallel version of the program may run more slowly on four processors than a
sequential version would run on one processor. We present a program transformation for imple-
menting dependent AND-parallelism in logic programming languages that uses mode information
to add synchronization code only to the variable accesses that actually need it.
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1 Introduction

The usual motivation for parallelism is higher performance. Parallelizing imperative programs
is notoriously errorprone, whereas in some declarative languages, introducing parallelism
into a program can be as easy as adding a directive asking for it. Unfortunately, parallel
implementations of declarative languages have a big enemy: overheads.

Parallel systems have overheads for the mechanisms used to manage the parallelism itself,
as well as the overheads present in the sequential system they are based on. To get speedups
over the best sequential systems, overheads must be kept to a minimum. Unfortunately, most
sequential implementations of logic programming languages have quite high overheads. The
best way to minimize overheads is to design a language that removes the need for them as
far as possible, which is best done by moving all possible decisions to compile time. The only
logic programming language designed with this objective is Mercury. Its implementation has
consequently long been the fastest among sequential implementations of logic programming
languages [8], though recently systems like YAP [3] have been catching up. This speed makes
Mercury a good starting point for a parallel logic programming implementation.

Most parts of most Mercury programs are deterministic, so Mercury needs AND-
parallelism, not OR-parallelism, and since most goals in predicate bodies depend on the goals
preceding them, it needs dependent AND-parallelism. If you want to use this parallelism to
achieve higher speeds than would be possible on one processor in any language (which may
be the “killer application” of declarative languages), then you need to be very aggressive in
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keeping down the overheads of the synchronization required to implement the dependencies
between parallel goals. Our paper presents a way to do this.

The structure of the paper is as follows. Section 2 briefly reviews the Mercury language.
Sections 3 and 4 present the main contributions of the paper, our synchronization and
specialization transformations respectively. Section 5 gives some performance results, while
section 6 concludes with comparisons to related work.

2 Background

The part of Mercury relevant to this paper can summarized by this abstract syntax:

pred P : p(x1, . . . , xn) ← G predicates
goal G : x = y | x = f(y1, . . . , yn) unifications

| p(x1, . . . , xn) | x0(x1, . . . , xn) first and higher order calls
| (G1, . . . , Gn) | (G1 & . . . & Gn) seq and par conjunctions
| (G1; . . . ; Gn) | switch x (. . . ; fi : Gi; . . .) disjunctions and switches
| (if Gc then Gt else Ge) | not G if-then-elses and negations
| some [x1, . . . , xn] G quantifications

The atomic constructs of Mercury are unifications, plain first-order calls, and higher-order
calls. The composite constructs include sequential disjunctions, if-then-elses, negations and
existential quantifications. These should all be self-explanatory. A parallel conjunction is
a conjunction in which all the conjuncts execute in parallel. They may be independent or
dependent; if dependent, the dependencies must be respected. (The mechanism for enforcing
the dependencies is the subject of this paper.) A switch is a disjunction in which each
disjunct unifies the same variable, whose value is known, with a different function symbol.

Mercury has a strong mode system. The mode system classifies each argument of each
predicate as either input or output; there are exceptions, but they are not relevant to this
paper. If input, the caller must pass a ground term for that argument. If output, the caller
must pass a distinct free variable, which the predicate will instantiate to a ground term.
A predicate may have more than one mode; we call each one a procedure. The Mercury
compiler generates different code for different procedures. The compiler is responsible for
reordering conjuncts in both sequential and parallel conjunctions as necessary to ensure that
for each variable shared between conjuncts, the goal that generates the value of the variable
(the producer) comes before all the goals that use this value (the consumers). This means
that for each variable in each procedure, the compiler knows exactly where in that procedure
that variable gets grounded.

The mode system both establishes and requires some invariants. The conjunction invariant
says that on any execution path consisting of conjoined goals, each variable that is consumed
by any one of the goals is produced by exactly one goal. The branched goal invariant says that
in disjunctions, switches and if-then-elses, each branch of execution must produce the exact
same set of variables that are visible from outside the branched goal, with one exception: a
branch of execution that cannot succeed may produce a subset of this set.

Each procedure and goal has a determinism, which puts limits on the number of its
possible solutions. Goals with determinism det succeed exactly once, semidet goals at most
once, multi goals at least once, while nondet goals may succeed any number of times. Each
procedure’s mode declaration declares the procedure’s determinism.

Before we started this work, Mercury already supported independent AND-parallelism
[2]. This meant that programmers who wanted to use parallelism could indicate which
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:- pred p(int, int, int).
:- mode p(in, in, out) is det.

% before transformation
p(A, B, C) :-

(
q(A, D), % produces D
r(D, E) % produces E

) & (
s(B, F), % produces F
t(D, F, G) % produces G

),
C = D + E + G. % produces C

% after transformation
p(A, B, C) :-

new_future(FutureD),
(

q(A, D), % produces D
signal_future(FutureD, D),
r(D, E) % produces E

) & (
s(B, F), % produces F
wait_future(FutureD, D’),
t(D’, F, G) % produces G

),
C = D + E + G. % produces C

Figure 1 Example of synchronizing a parallel conjunction

conjunctions should be executed in parallel by writing the parallel connective ’&’ instead
of the sequential connective ’,’ between the conjuncts. The compiler then checked that the
code satisfied the restrictions imposed on parallel conjunctions. The first restriction required
all conjuncts in parallel conjunctions to be det, and the second required them to be all
independent (no conjunct could produce any variable consumed by any other conjunct). The
reason for the first check is that while there are ways to run nondeterministic conjuncts in
parallel, the overheads of the algorithms required to assure correctness in such cases make it
almost impossible to achieve speedups, even on several cores, over the best possible sequential
version of the program at hand. We therefore keep the first restriction, even though our work
obviously removes the second.

3 Synchronization for dependent AND-parallelism

Our main objective is to minimize the cost of synchronization by incurring it only when it
is truly needed. In Mercury, this is relatively easy to do, due to the compiler’s complete
knowledge of the data flow in every predicate. (This was one of the design criteria for the
language, even though the original implementation was sequential.) Given two or more
conjuncts in a conjunction, the compiler knows not only which variables they have in common
(i.e. which variables they share), but for each shared variable, it also knows which conjunct
produces the variable and which conjuncts consume it.

The main parts of our implementation are the synchronization transformation (described
in this section) and the specialization transformation (in section 4) . They both operate on a
representation of the source code, which is based on the Mercury abstract syntax (section 2).

The synchronization transformation processes each parallel conjunction in the program
independently. For each parallel conjunction, it computes the set of variables that need
synchronization because they are produced by one conjunct and consumed by later conjuncts.
For each such variable, it creates a new variable that we call a future. It then modifies all
conjuncts to use these futures to synchronize all accesses to the shared variables.

We will introduce the synchronization transformation using the example in figure 1. The
body of p contains a parallel conjunction, whose first conjunct is the sequential conjunction
q(A, D), r(D, E) and whose second is the sequential conjunction s(B, F), t(D, F, G).
The comments indicate the modes of the calls.
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add_sync_par_conj(Conjuncts, Purity) returns Goal:
let SharedVars be the set of variables that are

(a) produced by one conjunct and
(b) consumed by one or more later conjuncts

if SharedVars = ∅:
Goal := par_conj(Conjuncts)

else:
FutureMap := ∅
AllocGoals := []
for each Var in SharedVars:

create a new var FutureVar
FutureMap := FutureMap ∪ {Var → FutureVar}
AllocGoals := [new_future(FutureVar) | AllocGoals]

ParConjuncts := []
for each Conjunct in Conjuncts:

ParConjuncts := ParConjuncts ++
[add_sync_par_conjunct(Conjunct, SharedVars, FutureMap, yes)]

Goal := seq_conj(AllocGoals ++ [par_conj(ParConjuncts)])

Figure 2 Synchronizing a parallel conjunction

The basic idea of our work is that
the producer of a shared variable will signal the availability of a value for the shared
variable immediately after that value has been computed, and
all consumers of a shared variable will wait for the availability of a value for the shared
variable immediately before they use that value for the first time.

No consumer ever accesses the shared variable directly. Instead, each consumer waits on the
future, and creates its own copy (D’ in this case).

The data structures we use for this synchronization are the futures. (We got the name
from MultiLisp [4]; our futures resemble theirs.) A future consists of these four fields:

a boolean that says whether the future has been signalled yet;
the value of the variable, if it has been signalled;
a list of the contexts suspended waiting for this future, if it has not;
a mutex to allow only one engine to access the future at a time.

The implementations of the three operations on futures are quite straightforward.

new_future allocates a new future on the heap, and initializes its fields to the obvious
values: not yet signalled, no waiting contexts.
wait_future locks the mutex. If the future has been signalled, it picks up the its value
and unlocks the mutex. Otherwise, the thread suspends itself on the future, unlocking
the mutex. It will pick up the future’s value when it resumes.
signal_future locks the mutex, sets the value of the shared variable, records that the
value is now available, makes all the threads suspended on the future runnable, and
unlocks the mutex.

The synchronization transformation traverses the bodies of all procedures looking for parallel
conjunctions. When it finds one, it invokes the algorithm in figure 2. In our algorithmsall
variable names start with an upper case letter, names starting with lower case letters represent
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add_sync_par_conjunct(Goal, SharedVars, FutureMap, Rename) returns NewGoal:
ConsumedVars := SharedVars ∩ Goal’s consumed vars
ProducedVars := SharedVars ∩ Goal’s produced vars
if ConsumedVars and ProducedVars are both ∅:

NewGoal := Goal
else:

NewGoal := Goal
for each ConsumedVar in ConsumedVars:

NewGoal := insert_wait_into_goal(NewGoal, ConsumedVar, FutureMap)
for each ProducedVar in ProducedVars:

NewGoal := insert_signal_into_goal(NewGoal, ProducedVar, FutureMap)
if Rename:

map each var in ConsumedVars to a fresh clone var
apply this substitution to NewGoal

Figure 3 Synchronizing one parallel conjunct

the names of functions or data constructors, square parentheses represent lists as in Prolog
syntax, and ++ means list concatenation. The seq_conj and par_conj data constructors
create conjunctions of the named kinds out of a list of conjuncts.

If none of the conjuncts consumes a variable produced by one of the other conjuncts, then
the conjunction represents independent AND-parallelism, and requires no synchronization
(beyond the barrier at the end, which we will ignore from now on). Otherwise, the conjunction
is dependent and needs synchronization using futures. We create one future for each shared
variable; FutureMap maps each shared variable to the variable that holds its future. The
goals that create and initialize the futures (AllocGoals) will all run before execution enters
the parallel conjunction (ParConjuncts) in the transformed code.

Figure 3 shows the algorithm that transforms each parallel conjunct to ensure that the
conjunct waits for each shared variable it consumes before its first use, and that it signals the
availability of each shared variable it produces just after it is bound. First, the algorithm finds
out which shared variables it consumes and which it produces. If there are no variables in

insert_wait_into_goal(Goal, ConsumedVar, FutureMap)
returns <NewGoal, WaitAllPaths>:

if Goal does not consume ConsumedVar:
NewGoal := Goal
WaitAllPaths := false

else:
switch on the type of Goal:

the switch cases are shown in the following figures
each case sets NewGoal and WaitAllPaths

if not WaitAllPaths:
create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewGoal

Figure 4 Inserting waits into goals, top level
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case unify, plain call, higher order call:
look up ConsumedVar in FutureMap; call the result FutureVar
WaitGoal := wait_future(FutureVar, ConsumedVar)
NewGoal := seq_conj([WaitGoal, Goal])
WaitAllPaths := true

case sequential conjunction:
let Goal be seq_conj([Conjunct_1, ..., Conjunct_n])
NewConjuncts := []
WaitAllPaths := false
for i = 1 to n:

if Conjunct_i consumes ConsumedVar:
<NewConjunct, ConjunctWaitAllPaths> :=

insert_wait_into_goal(Conjunct_i, ConsumedVar, FutureMap)
if ConjunctWaitAllPaths:

NewConjuncts := NewConjuncts ++ [NewConjunct] ++
[Conjunct_i+1, ... Conjunct_n]

WaitAllPaths := true
break out of the loop

else:
NewConjuncts := NewConjuncts ++ [NewConjunct]

else:
NewConjuncts := NewConjuncts ++ [Conjunct_i]

NewGoal := seq_conj(NewConjuncts)

Figure 5 Inserting waits into goals, part 1

either category, then this conjunct is independent of the others and needs no synchronization.
Otherwise, we loop over the consumed and produced variables, each iteration modifying the
conjunct by adding the code required to synchronize accesses to that variable.

The reason why add_sync_par_conj tells add_sync_par_conjunct to rename the vari-
ables consumed by each conjunct is to ensure that no variable is produced more than once on
any one execution path (the mode system’s conjunction invariant). The calls to wait_future
bind their second argument. Since each shared variable is bound once in its producing
conjunct, binding it again in one or more of its consuming conjuncts would violate this
invariant. This way, each consuming conjunct gets its own copy of the shared variable, and
the code after the parallel conjunction gets the original version from the producing conjunct.

Figures 4, 5, 6 and 7 each show part of the algorithm for inserting the call to wait_future
on ConsumedVar into a goal.

The insert_wait_into_goal function returns NewGoal, an updated version of Goal
in which every occurrence of ConsumedVar is preceded by code that picks up the value of
ConsumedVar by waiting on its future. It also says whether all execution paths that lead to
the success of NewGoal have such a wait operation on them. If they all do, then the code
following the original Goal will be able to access ConsumedVar without waiting, and thus
does not need to be transformed. If some or all do not, then the code after the original Goal
will need to wait for ConsumedVar, and thus does need to be transformed. However, we do
not want both Goal and the code following it to wait for and thus bind ConsumedVar, as
this would violate the conjunction invariant. That is why, if WaitAllPaths = false, we
replace all occurrences of ConsumedVar in NewGoal with a fresh variable. This renaming
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case parallel conjunction:
let Goal be par_conj([Conjunct_1, ..., Conjunct_n])
NewConjuncts := []
WaitAllPaths := false
for i = 1 to n:

if Conjunct_i is the first conjunct that consumes ConsumedVar:
<NewConjunct, WaitAllPaths> :=

insert_wait_into_goal(Conjunct_i, ConsumedVar, FutureMap)
NewConjuncts := NewConjuncts ++ [NewConjunct]

else if Conjunct_i consumes ConsumedVar:
<NewConjunct, _> :=

insert_wait_into_goal(Conjunct_i, ConsumedVar, FutureMap)
create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewConjunct
NewConjuncts := NewConjuncts ++ [NewConjunct]

else:
NewConjuncts := NewConjuncts ++ [Conjunct_i]

NewGoal := par_conj(NewConjuncts)

Figure 6 Inserting waits into goals, part 2

leaves the meaning of NewGoal unchanged. Therefore when insert_wait_into_goal returns
WaitAllPaths = false, NewGoal will not bind ConsumedVar; it won’t refer to it at all.

If the goal given to insert_wait_into_goal does not consume ConsumedVar, then the
given goal does not need modification. If it does consume ConsumedVar, then the kind of
modification it needs depends on what kind of goal it is, which is why the main body of
the insert_wait_into_goal is a switch on goal type. The base case handles atomic goals
(goals that do not contain other goals): unifications, calls, and higher order calls. For these
goals, we insert a call to wait_future before the goal to wait for and pick up the value of
the consumed variable. For unifications, this is the best we can do. For calls, we can wait for
ConsumedVar closer to the time when it is actually needed, but we will worry about that in
the next section.

insert_wait_into_goal processes the conjuncts of plain sequential conjunctions left to
right. When it finds a conjunct that consumes ConsumedVar, it calls itself recursively to
insert the call to wait_future into that conjunct. If all successful execution paths inside this
conjunct wait for ConsumedVar, then it is guaranteed to be available by the time execution
gets to the following conjuncts, so we can leave them unchanged. If only some execution
paths inside this conjunct wait for ConsumedVar, then NewConjunct will wait on a renamed
version of ConsumedVar, so ConsumedVar itself won’t be bound when execution gets to the
next conjunct. If none of the conjuncts that consume ConsumedVar wait for it on all paths,
then ConsumedVar itself won’t be bound by the conjunction itself, which is why we return
WaitAllPaths = false.

Parallel conjunctions differ from sequential conjunctions in that even if one conjunct waits
for ConsumedVar on all paths, the later conjuncts cannot assume that it will be available
when they need it. Each conjunct that consumes ConsumedVar thus needs to wait for it
independently. However, as above, having several conjuncts all ask their call to wait_future
to bind the same variable (ConsumedVar) would violate the invariant that no variable have
more than one producer in a conjunction. insert_wait_into_goal therefore renames the
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case switch:
if the switch is on ConsumedVar:

look up ConsumedVar in FutureMap; call the result FutureVar
WaitGoal := wait_future(FutureVar, ConsumedVar)
NewGoal := seq_conj([WaitGoal, Goal])
WaitAllPaths := true

else:
NewCases := []
WaitAllPaths := true
for each Case in Goal:

if Case’s goal consumes ConsumedVar:
<NewCaseGoal, CaseWaitAllPaths> :=

insert_wait_into_goal(Case’s goal, ConsumedVar, FutureMap)
NewCase := replace Case’s goal with NewCaseGoal
NewCases := NewCases ++ [NewCase]
WaitAllPaths := WaitAllPaths and CaseWaitAllPaths

else:
NewCases := NewCases ++ [Case]
WaitAllPaths := false

NewGoal := replace Goal’s cases with NewCases

Figure 7 Inserting waits into goals, part 3

occurrences of ConsumedVar in all but one of the conjuncts; the last one may also be renamed
by add_sync_to_par_conjunct to avoid a similar collision with the binding made by a
producer conjunct.

Given a switch on ConsumedVar, we obviously need to wait for the value of ConsumedVar
before the switch. For switches on other variables, we insert the wait into the switch arms
that consume ConsumedVar.

To see how insert_wait_into_goal treats other kinds of goals, and for the code of
insert_signal_into_goal, see the long version of this paper on the Mercury web site.

4 The specialization transformation

The algorithms in the previous section try to push each wait_future operation as late as
they can and each signal_future operation as early as they can, in order to maximize
parallelism by maximizing the time during which the producer and the consumers of the
shared variable can all run in parallel. However, the amount of parallelism they can create is
limited by procedure boundaries. Overcoming this limitation is the task of the specialization
algorithm. The first step in this algorithm is the “making requests” step, which looks for
places in the code where creating specialized versions of procedures can increase parallelism:

We look for plain calls to procedures preceded by one or more calls to wait_future,
followed by one or more calls to signal_future, or both.
For each of these wait_future operations, we check whether the waited-for variable is
an input argument of the call and the callee does non-trivial work before it needs the
variable. PushedInputs is the set of variables for which the answer is “yes”.
For each of these signal_future operations, we check whether the signalled variable is
an output argument of the call and the callee does non-trivial work after it produces the
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variable. PushedOutputs is the set of variables for which the answer is “yes”.
If PushedInputs ∪ PushedOutputs is not empty, and we have access to the code of
the callee, we replace the call, all the wait_futures on PushedInputs and all the
signal_futures on PushedOutputs with a call to a specialized version of the called
procedure, one in which all the replaced waits and signals will be done in the callee. We
also request that this specialized version be created. This request identifies the variables
in PushedInputs and PushedOutputs by their position in the call’s argument list.

The specialized version of the callee will have each formal parameter corresponding to a
variable in PushedInputs or PushedOutputs replaced by a newly-created variable that will
hold its future.

The second step executes each request by creating the specialized version of the request’s
callee. To generate the body of the new procedure, it invokes add_sync_par_conjunct
from figure 3 with the callee’s original code as Goal. As SharedVars, it passes the formal
parameters corresponding to PushedInputs ∪ PushedOutputs, and FutureMap will map
each variable in SharedVars to the future that replaced it in the list of formal param-
eters. add_sync_par_conjunct will push the synchronization code for each variable in
SharedVars as deeply into the code of the callee as possible. Since the goal returned by
add_sync_par_conjunct will be the body of the specialized procedure and thus will not be
conjoined to anything, it is ok for this goal to bind the consumed variables, which is why we
pass “no” as the value of Rename.

We invoke the specialization algorithm after the algorithms of section 3 have inserted
synchronization operations into all the procedures in the module being compiled that contain
dependent parallel conjunctions. We invoke the “making requests” step on all of these
procedures, looking for opportunities for specialization, and modifying the code at each such
opportunity as if the specialized version of the callee already existed. In doing so, we collect
a queue of specialization requests, none of which have yet been acted upon. The rest of the
specialization algorithm is a fixpoint operation. While there are specialization requests that
have not yet been acted upon, the algorithm selects one such request, executes it (creating
the requested specialized procedure), and then invokes the “making requests” step of the
algorithm again on the newly created procedure to look for more specialization requests.
Some of these may have been already acted upon, some of them may already be in the queue,
and some may be new; we add the new ones to the queue. The algorithm must terminate
because the number of procedures and of possible specialization requests are both finite.

5 Performance evaluation

We have room to report on only one benchmark, but it should suffice to demonstrate the low
overheads of our system. This benchmark is a raytracer: its top level loops over the rows
of the picture, with each iteration computing the RGB values of the pixels in a chunk of
consecutive rows. We have two versions of this loop. The independent version (i1) computes
the pixels for these rows, (i2) recurses to compute the pixels for the remaining rows, then
(i3) add both sets of pixels to the list of pixels so far. The parallelized conjunction is (i1 &
i2), i3, and there is no data flow from i1 to i2. The dependent version (d1) computes the
pixels for these rows, (d2) adds these pixels to the list of pixels so far, and then (d3) recurses
to compute the pixels for the remaining rows, based on the updated list of the pixels so far.
The parallelized conjunction is (d1, d2) & d3, and there is data flow from d1 to d2 and
from d2 to d3. We tested both forms of the loop with varying chunk sizes, which divided the
rows into 1, 8, 16 and 32 chunks. The table shows speedups compared to the best sequential
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version on our test machine, which was a Dell Optiplex 755 PC with a 2.4 GHz Intel Core 2
Quad Q6600 CPU. Each test was run ten times.

1i 8i 16i 32i 1d 8d 16d 32d
sequential 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
parallel, 1 CPU 0.91 1.08 1.08 1.10 0.90 1.02 1.03 1.04
parallel, 2 CPUs N/A 1.46 1.73 1.74 N/A 2.05 2.14 2.13
parallel, 3 CPUs N/A 2.16 2.19 2.21 N/A 2.36 2.73 2.72
parallel, 4 CPUs N/A 2.41 2.49 2.55 N/A 2.83 3.28 3.32

The parallel version of the system needs to use a real machine register to point to thread-
specific data, such as each engine’s abstract machine registers. On x86s, this leaves only
one real register for the Mercury abstract machine, which is why switching to the parallel
version of the system can yield a 10% slowdown on one CPU. However, inevitable differences
between program versions (such as in the placement of code and data) happen to allow
similar speedups as well.

The independent versions on the left do not need any of the algorithms in this paper.
The dependent versions on the right do, and thus incur extra synchronization costs. However,
these costs must be very small, since they are massively outweighed by the better cache
utilization resulting from appending each chunk’s pixels to the pixels so far immediately
after computing those pixels. (In all versions, the append is done in constant time using a
cord, not a list, and all versions do the same appends and compute the same cord.)

Different rows take different times to render. Dividing the input into more chunks evens
out such fluctuations. The data shows this to be worthwhile (up to a point) even though it
also increases synchronization overhead. Overall, the speedup of 3.32 over the sequential
version and 3.32/1.04 = 3.19 over the 1-CPU parallel version shows that we have succeeded
in keeping synchronization costs to a very low level.

6 Conclusion

We don’t have space for a detailed comparison with all existing parallel logic programming
systems [9], so we list only the main differences between our work and previous systems.

Unlike Concurrent Prolog, Parlog, GHC and their descendants, our system incurs synchro-
nization overhead on accesses only to a very small proportion of variables; the fraction
can be as low as tens out of billions.
Our system cannot deadlock: every shared variable has a producer, which (unless it
throws an exception) cannot exit without binding the variable.
Our system does not require programmers to divide clauses into guard and body, much
less into ask guard, tell guard and body.
Unlike e.g. Janus [6], our system allows a variable to have more than one consumer.
Unlike most other systems that allow multiple consumers, ours requires synchronization
for consumers only up to the first one that waits for the variable on all paths.
Unlike the DASWAM and similar parallel Prolog systems [7], our system does not allow
the producer of a variable to be decided at runtime, so it does not have to keep track of
which goal is the leftmost goal referring to a variable.
Unlike CIAO’s <& operator [1], our futures are significantly simpler to implement, and
support finer grained parallelism.
Unlike Moded FGHC [10], our system supports separate compilation.
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One important further advantage of our system is that it completely eliminates the need
for a system for controlling the order of parallel code’s interactions with the outside world,
such as the one in [5]. This is because Mercury uses dummy variables called I/O states to
represent states of the outside world, and models operations that interact with the outside
world as predicates that consume and destroy the current I/O state and produce a new one.
If two or more goals in a conjunction update I/O states, the algorithm in section 3 will
ensure that the parallel version of the conjunction executes the same actions in the same
order as the sequential version.

The system we have described is part of recent versions of Mercury, which are available
for free download from the Mercury project’s web page.

We would like to thank Tom Conway for implementing independent AND-parallelism.
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Abstract
We present a novel counterexample generator for the interactive theorem prover Isabelle based on
a compiler that synthesizes test data generators for functional programming languages (e.g. Stand-
ard ML, OCaml) from specifications in Isabelle. In contrast to naive type-based test data gen-
erators, the smart generators take the preconditions into account and only generate tests that
fulfill the preconditions. The smart generators are constructed by a compiler that reformulates
the preconditions as logic programs and analyzes them by an enriched mode inference. From
this inference, the compiler can construct the desired generators in the functional programming
language. These test data generators are applied to find errors in specifications, as we show in a
case study of a hotel key card system.
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1 Introduction

Writing programs and specifications is an error-prone business and testing is common practice
to find bugs and to validate software. Being aware that testing cannot prove the absence
of bugs, formal methods are applied for safety- and security-critical systems. To ensure
the correctness of programs, critical properties are guaranteed by a formal proof. Proof
assistants are used to develop a proof with trustworthy sound logical inferences. Once one
has completed the formal proof, the absence of bugs is certified. But in the process of proving,
bugs could still be revealed and tracking down such bugs by failed proof attempts is a tedious
task for the user. When reaching for the “holy grail”, the formal proof, testing is still fruitful
on the way to save time detecting bugs in programs and specifications. Modern interactive
theorem provers therefore do not only provide means to prove properties, but also to disprove
properties by counterexample generators.

Without specifications, it is common practice to write manual test suites to check
properties. However, having a formal specification at hand, we can automatically generate test
data and check if the program fulfills its specification. Such an automatic specification-based
testing technique for functional Haskell programs was introduced by the tool QuickCheck [8].
The interactive theorem prover Isabelle [27] provides a counterexample generator [2] based
on random testing, similar to QuickCheck. It works fine on specifications that have weak
preconditions and properties stated in a form to be directly executable in the functional
language. If the properties to be tested only hold under very specific preconditions, test data
with a random distribution seldom fulfill the preconditions, and most execution time for
testing is spent generating useless test values and rejecting them.
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Our new approach aims to only generate test data that fulfill the preconditions. The test
data generator for a given precondition is produced by a compiler1 that analyzes precondition
and synthesizes a purely functional program that serves as generator. For this purpose,
the compiler reformulates the preconditions as logic programs. In this process, we adopt
various techniques from logic programming. Formulas in predicate logic with quantifiers and
recursive functions are translated to logic programs. The compiler then analyzes the logic
program by an enriched mode inference. From this inference, the compiler can construct the
desired generators. This way, a much smaller number of test cases suffices to find errors in
specifications.

We introduce the Isabelle system and illustrate how Isabelle’s users interactively explore
proofs (Section 2). We present a concrete case study for the counterexample generator
(Section 3). In the main part, we then describe key ideas of this counterexample generator,
the preprocessing, enriched mode inference and compilation (Sections 4 to 7). In the end, we
discuss related work (Section 8) and conclude.

2 Interactive Theorem Prover Isabelle

The Isabelle system is a generic framework for interactive theorem proving. Isabelle’s
logic is a higher-order logic with Hindley-Milner polymorphism. It provides the usual
boolean operations, functional programming constructs, e.g., let, if and case expressions,
and mechanisms to define recursive datatypes, recursive functions, and inductive predicates
by Horn clauses. The code generation facility creates programs in functional programming
languages, e.g., ML, Haskell or OCaml, from their specifications in the theorem prover.

Users of interactive theorem prover intend to construct a machine-checked proof in
cooperation with the theorem prover. After stating a proposition, the system invokes
automated proof methods and counterexample generators. If the user’s proposition is proved
automatically, its validity is certified by the system. If a counterexample is found, the user
must refine the proposition. If neither happens, the user continues to explore the proof by
stating further propositions. In a horizontal exploration, the user believes its truth, but does
not prove it formally. Instead, he sketches further lemmas and proof steps based on the
skipped proposition.

If the counterexample generators were not be in place, the horizontal exploration would
have a major pitfall: With no counterexample generator, the statement is unchecked, but
the user continues to develop the proof upon this wrong assertion. Realizing the flaw at a
later stage requires much effort restructuring the proof. Counterexample generators are vital
to spare the user this frustration and time-consuming work of unsuccessful proof attempts.

3 Case Study: Hotel Key Card System

Most hotels employ some kind of digital key card system. We describe a hotel key card
system where every room is secured by a digital lock. Every guest of the hotel receives a
card at the reception. The locks at the rooms can read the cards from the guest, and open
the door if it is the card of the owner. The key card system is decentralized, i.e., the locks
cannot communicate with each other or the reception. Nevertheless, only guests that check

1 Throughout the presentation, we use the term compilation with a very specific meaning: to designate
our translation of Horn specifications in Isabelle into programs written in a functional programming
language.
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in for a room should be allowed to enter, and previous guests should not have further access
to the room once they checked out.

Safety is achieved by the following system: Upon check-in, a new guest gets a card at
the reception which carries two keys, the old key of the previous guest of the room and his
own new key. The locks only store their current key, i.e., the key of the latest guest the
lock has been aware of. When a new guest enters the room, the lock checks if the old card
key matches its current key, and if so discards the old key and stores the new key as its
new current key. Once the lock has been recoded, it allows access only to the card with the
current key until the next guest enters the room. This recoding ensures that the previous
guest cannot enter the room after the new guest has been in his room.

Nipkow [17] gives a formalization of this hotel key card system in Isabelle which itself
was inspired by a model from Jackson [13]. The safety property of the hotel key card system
is: Once the owner of the room, i.e., the guest who was the last to check in, entered his
room, no previous guest can enter the room (even if they have kept or copied their cards).
Unfortunately, this property does not hold. But fortunately, the counterexample generator
finds the tricky man-in-the-middle attack.

In Isabelle, the hotel key card system is formalized as follows: We consider three events,
a guest g checking in for a room r where he gets a card with keys (k, k′) from the reception,
a guest g entering a room r with a card with keys (k, k′), or a guest g leaving a room r.
We denote these events as Checkin g r (k, k′), Enter g r (k, k′), and Exit g r. A trace,
represented as a list of events, describes the temporal order of events taking place. Without
going into details here, the set of possible and valid traces in a hotel and safety is given by
the following functional description in Isabelle:

hotel [] = True
hotel (e · evs) = (hotel evs ∧ (case e of

Checkin g r (k, k′)⇒ k = currentkey evs r ∧ k′ /∈ issued evs |
Enter g r (k, k′)⇒ (k, k′) ∈ cards evs g ∧ (roomkey evs r ∈ {k, k′}) |
Exit g r ⇒ g ∈ isin evs r))

safe evs r =
∃evs1 evs2 evs3 g c c

′. evs = evs3 @ (Enter g r c · evs2 @ Checkin g r c′ · evs1) ∧
noCheckin (evs3 @ Enter g r c · evs2) ∧ isin (evs2 @ Checkin g r c′ · evs1) = ∅

where noCheckin evs r = ¬(∃g c. Checkin g r c ∈ evs) and @ denotes appending two lists.

The safety property is formally hotel evs ∧ safe evs r ∧ g ∈ isin evs r =⇒ owner evs r = g.
When checking the validity of this property, the existing counterexample generator for
Isabelle [2], based on the ideas of QuickCheck, faces two problems:

Firstly, naive black-box testing would generate traces where most traces do not fulfill the
necessary conditions to be a valid hotel key card trace, i.e., hotel evs evaluates to false for
most traces evs. The common approach is to write a manual generator for the predicate
hotel. But the functional description already contains all necessary information on how to
construct values that fulfill the predicate hotel, which is not exploited by black-box testing.

Secondly, a predicate, such as safe cannot be (naively) executed because it contains
unbounded existential quantifiers (over an infinite type) for evs1, evs2, evs3. However,
having a closer look at the description of safe, we see that the values for evs1, evs2 and evs3
are actually restricted to be parts of the trace evs, which could be computed given evs.

The system we describe tackles the two problems, generating test data that fulfills the
precondition, and detecting for which quantifier the values are bound within the computation,
using an enriched mode analysis. For the hotel key card example, the new approach allows
us to find the man-in-the-middle attack within a few seconds, whereas the black-box testing
does not find the counterexample even after ten minutes of testing.
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4 Overview of the tool

In this section, we present the overall structure of our counterexample generator, and motivate
the key features and design decisions. The detached presentation of individual components
is then discussed in the following three sections.

Design decisions. The Isabelle system is implemented in ML and runs in the interactive
shell of the ML compiler. ML source code generated from Isabelle specifications can be
passed to the underlying ML compiler, and executed in the same process.

As Isabelle runs on top of the ML compiler, it is a natural choice to test specifications in
the underlying programming language ML as it adds no further system requirements and
dependencies. ML as a strict functional language does not support natively the common
execution mechanisms from logic programming, such as non-determinism and logic variables
in terms. If we want to use these mechanisms, we must embed them in the functional language.
But the execution in an embedding is considerably slower than native execution. We aim to
find a balance between deep embedding and fast execution.

We only allow values to be ground during the execution, which is the native setting for
purely functional languages. In other words, we do not allow logic variables in terms or
partially instantiated terms. Allowing such terms would require that even purely functional
specifications be embedded deeply as well, causing a tremendous overhead for purely func-
tional execution. Restricting ourselves to ground terms has the advantage that functional
specifications can be translated directly into the target functional programming language.
The test data generators only construct proper ground values in the functional programming
language. Only parts of the specification, i.e., predicates occurring in preconditions, are
compiled to test data generators with an embedding of nondeterministic execution whereas
the testing of the conclusion can be done via the fast direct execution mechanism of the
functional language. E.g., consider the safety property of the hotel key card system, the set of
values for evs, r, and g for the preconditions, hotel evs, safe evs and isin evs r, are computed
with the deep embedding, the conclusion, owner evs r = g, is executed as functional program
directly.

The decision above burdens the compilation with a static analysis – the mode analysis
– to determine a possible dataflow of ground values in the description of the precondition.
However, the advantage of smarter test data generators is worth this burden. The test
data generators commonly return a set of values – we implement this behavior using lazy
sequences in ML.

In summary, our system compiles predicate preconditions to smart test data generators
using ground terms, a dataflow analysis and nondeterministic execution. The conclusion is
tested via direct functional execution.

Architecture. The counterexample generator performs the these steps: As the original
specification can be defined using various definitional mechanisms, the specification is
preprocessed by a few simple syntactic transformations (Section 5) to Horn clauses. The core
component, which was previously described in [1], consists of the mode analysis (Section 6)
and the code generator (Section 7). This core component only works on a syntactic subset of
the Isabelle language, namely Horn clauses of the following form:

Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P t

In a premise Qi ui, Qi must be a predicate defined by Horn clauses and the terms ui must
be constructor terms, i.e., only contain variables or datatype constructors. Furthermore, we
allow negation of atoms, assuming the Horn clauses to be stratified. If a premise obeys these
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restrictions, the core compiler infers modes and compiles functional programs for the inferred
modes. If a premise has a different form, e.g., the terms contain function symbols, or a
predicate is not defined by Horn clauses, the core compiler will treat them as side conditions.
For side conditions, the mode analysis does not infer modes, but requires all arguments as
inputs. Enriching the mode analysis, we mark unconstrained values to be generated. Once
we have inferred modes for the Horn clauses, these are turned into test data generators in
ML using lazy sequences and type-based generators.

5 Preprocessing

In this section, we sketch how specifications in predicate logic and functions are preprocessed
to Horn clauses. A definition in predicate logic is transformed to a system of Horn clauses,
based on the fact that a formula of the form P x = ∃y. Q1 u1 ∧ · · · ∧Qn un can be soundly
underapproximated by a Horn clause Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P x. Predicate logic
formulas in different form are transformed in the form above by a few logical rewrite rules in
predicate logic. We rewrite universal quantifiers to negation and existential quantifiers, put the
formula in negation normal form, and distribute existential quantifiers over disjunctions. In the
process of creating Horn clauses, it is necessary to introduce new predicates for sub formulas,
as our Horn clauses do not allow disjunctions within the premises and nested expressions
under negations. Furthermore, we take special care of if, case and let-constructions.

I Example 1. The predicate hotel is processed to a system of Horn clauses with predicates
hotel, hotelaux and hotelaux2; the latter two are introduced during the preprocessing:

hotel []
hotel evs =⇒ hotelaux e evs =⇒ hotel (e · evs)
k = currentkey evs r =⇒ k′ /∈ issued evs =⇒ hotelaux (Checkin g r (k, k′)) evs
(k, k′) ∈ cards evs g =⇒ hotelaux2 evs r k k

′ =⇒ hotelaux (Enter g r (k, k′)) evs
g ∈ isin evs r =⇒ hotelaux (Exit g r) evs
roomkey evs r k =⇒ hotelaux2 evs r k k

′

roomkey evs r k′ =⇒ hotelaux2 evs r k k
′

To enable inversion of functions, we preprocess n-ary functions to (n + 1)-ary predicates
defined by Horn clauses, which enables the core compilation to inspect the definition of the
function and leads to better synthesized test data generators. This is achieved by flattening
a nested functional expression to a flat relational expression, i.e., a conjunction of premises
in a Horn clause.

I Example 2. Consider the formula evs = evs3 @ (Enter g r c · evs2 @ Checkin g r c′ · evs1)
used in the predicate safe. This formula is flattened to two premises,

appendP evs2 (Checkin g r c′ · evs1) r1 and appendP evs3 (Enter g r c · r1) evs,

and appendP is defined by two Horn clauses derived from its functional definition:

appendP [] ys ys and appendP xs ys zs =⇒ appendP (x · xs) ys (x · zs)

This well-known technique is similarly described by Naish [16] and Rouveirol [21]. We also
support flattening of higher-order functions, which allows inversion of higher-order functions
if the function argument is invertible.
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6 Mode analysis

In order to execute a predicate P , its arguments are classified as input or output, made
explicit by means of modes. Modes can be inferred using a static analysis on the Horn clauses.
Our mode analysis is based on [15]. There are more sophisticated mode analysis approaches,
e.g., by Smaus et al. [23] using abstract domains and Overton et al. [18] by translating to a
boolean constraint system. For our purpose, we can apply the simple mode analysis, because
if the analysis does not discover a dataflow due to its imprecision, the overall process still
leads to an test data generator.

Modes. For a predicate P with k arguments, we call mode a particular dataflow assignment
by a which follows the type of the predicate and annotates all arguments as input (i) or
output (o), e.g., for appendP , o ⇒ o ⇒ i ⇒ bool denotes the mode where the first two
arguments are output, the last argument is input.
A mode assignment for a given clause Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P t is a list of modes
M,M1, . . .Mn for the predicates P,Q1, . . . , Qn. Let FV (t) denote the set of free variables
in a term t. Given a vector of arguments t and a mode M , the projection expression t〈M〉
denotes the list of all arguments in t (in the order of their occurrence) which are input in M .

Mode consistency. Given a clause Q1 u1 =⇒ · · · =⇒ Qn un =⇒ P t a corresponding mode
assignmentM,M1, . . .Mn is consistent if the chain of sets of variables v0 ⊆ · · · ⊆ vn defined by
(1) v0 = FV (t〈M〉) and (2) vj = vj−1∪FV (uj) obey the conditions (3) FV (uj〈Mj〉) ⊆ vj−1
and (4) FV (t) ⊆ vn. Mode consistency guarantees the possibility of a sequential evaluation
of premises in a given order, where vj represents the known variables after the evaluation of
the j-th premise. Without loss of generality, we can examine clauses under mode inference
modulo reordering of premises. For side conditions R, condition 3 has to be replaced by
FV (R) ⊆ vj−1, i.e., all variables in R must be known when evaluating it. This definition
yields a check whether a given clause is consistent with a particular mode assignment.

Generator mode analysis. To generate values that satisfy a predicate, we extend the
mode analysis in a genuine way: If the mode analysis cannot detect a consistent mode
assignment, i.e., the values of some variables are not constrained after the evaluation of the
premises, we allow the use of generators, i.e., the values for these variables are constructed by
an unconstrained enumeration. In other words, we combine two ways to enumerate values,
either driven by the computation of a predicate or by generation based on its type.

I Example 3. Given a unary predicate R with possible modes i⇒ bool and o⇒ bool and
the Horn clause R x =⇒ P x y, classical mode analysis fails to find a consistent mode
assignment for P with mode o⇒ o⇒ bool. To generate values for x and y fulfilling P , we
combine computations and generation of values as follows: the values for variable x are built
using R with o⇒ bool; values for y are built by a generator.

This extension gives rise to a number of possible modes, because we actually drop the
conditions 3 and 4 for the mode analysis. Instead, we use a heuristic to find a considerably
good dataflow by locally selecting the optimal premise Qj and mode Mj with respect to the
following criteria:
1. minimize number of missing values, i.e., have |FV (uj〈Mj〉)− vj−1| is minimal;
2. use functional predicates with their functional mode;
3. use predicates and modes that do not require generators themselves;
4. minimize number of output positions;
5. prefer recursive premises.
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Next, we motivate and illustrate these five criteria. In general, we would like to avoid genera-
tion of values and computations that could fail, and to restrain ourselves from enumerating
any values that could possibly be computed. Hence, the first priority is to use modes where
the number of missing values is minimal. This way, we partly recover conditions 3 and 4
from the mode analysis.

I Example 3 (continued). For mode M1 for R x, one has two alternatives: generating
values for x and then testing R with mode i⇒ bool, or only generating values for x using R
with o⇒ bool. The first choice generates values and rejects them by testing; the latter only
generates fulfilling values and is preferable. The analysis favors o⇒ bool to i⇒ bool due to
criterion 1: for v0 = {}, u1 = x and M1 = i ⇒ bool, FV (u1〈M1〉) − v0 = {x}; whereas for
M1 = o⇒ bool, FV (u1〈M1〉)− v0 = {}. |FV (u1〈M1〉)− v0| is minimal for M1 = o⇒ bool.

I Example 4. Consider a clause R x y =⇒ F x y =⇒ P x y where R is a one-to-many relation
and F is functional, i.e., a one-to-one relation. R and F both allow modes i⇒ o⇒ bool and
i ⇒ i ⇒ bool. For M = i ⇒ o ⇒ bool, R x y and F x y can be evaluated in either order.
Our criterion 2 induces preference for computing y with the functional computation F x y

and checking R x y, i.e., the one value for y can either fulfill R x y or not.

Criterion 3 induces avoiding the generation of values in the predicate to be invoked. Further-
more, we minimize output positions, e.g., we prefer checking a predicate (no output position)
before computing some solution (one output position) as we illustrate by the following
example:

I Example 5. In a clause R x y =⇒ Q x =⇒ P x y with mode i ⇒ o ⇒ bool for R and
P , and i⇒ bool for Q, we prefer Q x before R x y, since computing values for y would be
useless if Q x fails. This ordering is enforced by criterion 4.

Finally, we prefer recursive premises - this leads to a bottom-up generation of values.
Generating larger values for predicates from smaller values for the predicate is commonly
preferable because it takes advantage of the structure of the preconditions.

I Example 6. In a clause P xs =⇒ C xs =⇒ P (x · xs), P xs is favored for generation of
xs and C xs for checking. Generating values for P , we apply the generator for P recursively
and check the condition C xs afterwards.

This “aggressive” mode analysis results in moded Horn clauses with annotations for generators
of values. In summary, it does not only discover an existing dataflow, but helps creating a
dataflow by filling the gaps with value generators.

7 Generator compilation

In this section, we discuss the translation of the compiler from moded Horn clauses to
functional programs. First, we present the building blocks of the compiler, the execution
mechanism and the generators. Then, we sketch the compilation scheme and show its
application in the hotel key card example.

Monads for non-deterministic computations. We use lazy sequences to enumerate the
(potentially infinite) set of values fulfilling the involved predicates – in other words, the lazy
sequences will hold the enumerated solutions. As customary [25], they are implemented using
the ML datatype ’a lazy. On lazy sequences, we define plus monad operations describing
non-deterministic computations. Depending on our enumeration scheme, we employ three
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different plus monads: one for unbounded computations, and two others for depth-limited
computations within positive and negative contexts, respectively.

A plus monad supports four operations: empty, single, plus and bind. They provide
executable versions of basic set operations: empty = ∅, single x = {x}, plus A B = A∪B and
bind A f =

⋃
x∈A f x. Using lazy sequences results in a Prolog-like execution strategy, with a

depth-first search. This strategy is fine for user-initiated evaluations, but for counterexample
generation, automatically generated values cause infinite computations escaped from the
control of the user. To avoid being stuck in such a computation, we also employ a plus monad
with a different carrier that limits the computation by a depth-limit. Evaluating predicates
with a depth-limited computation, we must take special care of negation. We implement
different behaviors for queries in different contexts: for positive contexts, we compute an
underapproximation; for negative contexts, an overapproximation.

For positive contexts, we implement a plus monad with the type int → ’a lazy as carrier.
The bind+ operation checks the depth-limit and if reached, returns empty, which yields a
sound underapproximation; otherwise it passes a decreased depth-limit to its argument. It is
defined by bind+ xq f = (λi. if i = 0 then empty else bind (xq (i− 1)) (λa. f a i)).

In negative contexts, we must distinguish more explicitly failure (no solution found)
from reaching the depth limit. To signal reaching the depth-limit, we include an explicit
element to model an unknown value (as a third truth value), and continue the computation
with this value. This makes the monad carrier type be int → ’a option lazy where the
option value None stands for unknown. If one computation reaches the depth-limit and
another computation fails, then the overall computation fails, in other words failure absorbs
the unknown value (which is consistent with a three-valued logic interpretation). This is
witnessed by the behavior of the bind− operator: bind− single-none (λx. empty−) = empty−
where single-none is the singleton sequence with the unknown value.

Because negative and positive occurrences of predicates are intermixed, in actual enu-
meration we have to combine the positive and negative monads – the bridge between them
is performed by executable not-operations that handle the unknown value depending on
the context. For instance, when applied to a solution enumeration of a negated premise,
unknown is mapped to false (computation failure); this reflects the intuition that if we were
not able to prove a negated premise ¬Q x within a given depth-limit for x, then all we can
soundly assume is that Q x may hold; hence the computation cannot proceed further.

The compilation scheme builds abstractly on the monad structure interface and hence is
employed for all three monads. For the rest of the presentation, we write plus and bind infix
as t and >>=.

Type-based generators. If values cannot be computed, we enumerate them up to a given
depth. To generate values of a specific type, we make use of type classes in Isabelle. More
specifically we require which the involved types τ come equipped with an operation gen τ ,
the generator for type τ that enumerates all values as lazy sequence. For recursively-defined
datatypes τ with n constructors C1 τ

1
1 . . . τ

m1
1 | . . . | Cn τ1

n . . . τ
mn
n we construct generators

that enumerate values exhaustively up to depth d by the following scheme:

gen τ d =
if d = 0 then empty else

(gen τ1
1 (d− 1)>>= (λx1. gen τ2

1 (d− 1)>>= . . . >>= (λxm1−1.

gen τm1
1 (d− 1)>>= (λxm1 . single (C1 x

1 . . . xm1))) . . .)) t . . . t
(gen τ1

n (d− 1)>>= (λx1. gen τ2
n (d− 1)>>= . . . >>= (λxmn−1.

gen τmn
n (d− 1)>>= (λxmn . single (Cn x1 . . . xmn))) . . .))
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Compilation of moded clauses. The central idea underlying the compilation of a predicate
P is to generate a function PM for each mode M of P that, given a list of input arguments,
enumerates all tuples of output arguments. The functional equation for PM is the union of
the output values generated by the characterizing clauses. Employing the data flow from
the mode inference, the expressions for the clauses are essentially constructed as chains
of type-based generators and function calls for premises, connected through bind and case
expressions. All functions PM are executable in ML, because they only employ the monad
operations and pattern matching. The function PM for the mode M with all arguments as
output serves as test data generator for predicate P .

I Example 7. The ML function hotelo with mode o ⇒ bool is the test data generator for
the predicate hotel:

val hotelo = (single ()>>= (λ(). single []))
t (single ()>>= (λ(). hotelo >>= (λevs. hotelaux

oi evs >>= (λe. single (e · evs)))))
fun hotelaux

oi evs = (single evs >>= (λevs. currentkeyP
ioo evs >>= (λ(r, k1). genkey

>>=(λk2. not (issuedii evs k2)>>= (λ(). genguest >>= (λg. single (Checkin g r (k1, k2))))))))
t (single evs >>= (λevs. cardsioo evs

>>=(λ(g, (k1, k2)). hotelaux2
ioii evs k1 k2 >>= (λr. single (Enter g r (k1, k2))))))

t (single evs >>= (λevs. isinioo evs >>= (λ(r, g). single (Exit g r))))
fun hotelaux2

ioii evs k1 k2 =
(single (evs, (k1, k2))>>= (λ(evs, (k1,_)). roomkeyP

ioi evs k1 >>= (λr. single r)))
t (single (evs, (k1, k2))>>= (λ(evs, (_, k2)). roomkeyP

ioi evs k2 >>= (λr. single r)))

The generator hotelo constructs hotel traces in a bottom-up fashion. hotelaux
oi adds a new

event as prefix to (shorter) hotel traces. hotelaux
oi can either prefix a trace by Checkin,

Enter, or Exit events; the conditions for these events, i.e., restriction on the values of these
constructors, are fulfilled by either computing values using further generating functions or
are generated unrestrictedly based on their type. An instance of computation is the call
isinioo evs to construct Exit events; an instance of generation is genguest to select a guest
for Checkin events. Applying the counterexample generator to the safety property (cf. §3)
results in the following counterexample trace:

Enter g1 r0 (k1, k2) · Enter g1 r0 (k0, k1) · Checkin g0 r0 (k2, k3)
· Checkin g1 r0 (k1, k2) · Checkin g0 r0 (k0, k1)

This resembles the following situation in a hotel with one room r0: (1) Joe (Guest g0) checks
in and gets a card (k0, k1). (2) Eve (Guest g1) checks in and gets a card (k1, k2). (3) Joe
checks in again and gets a card (k2, k3). (4) At this point, Joe has two cards for the room:
He tries the newest card (k2, k3), but it does not open the door, so he gives it a try with the
card from his last stay (k0, k1) which unlocks the door. Feeling safe in his room, he puts
his wallet on the nightstand and goes to bed. (5) At night, Eve enters the room with card
(k1, k2) and takes Joe’s wallet. A subtle error in the key card system causes this jeopardy
and can be resolved if Joe would have followed a reasonable safety policy, i.e., to only use his
recent card. After understanding the counterexample and formulating this safety policy, one
can prove the safety of the key card system.

8 Related work

The idea of specification-based testing was pioneered by the Haskell tool QuickCheck and
has many descendants in interactive theorem provers, e.g., Agda/Alfa [9], ACL2 [10],
Isabelle [2] and PVS [19], and in a variety of programming languages. QuickCheck uses test
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data generators that create random values to test the propositions. Random testing can
handle propositions with strong preconditions only very poorly. To circumvent this, the
user must manually write a test data generator that only produces values that fulfill the
precondition. SmallCheck [22] tests the propositions exhaustively for small values. It also
handles propositions with strong preconditions poorly, but in practice handles preconditions
better than QuickCheck because it gives preference to small values, and they tend to fulfill
the commonly occurring preconditions more often. Lazy SmallCheck [22] uses partially-
instantiated values and a refinement algorithm to simulate narrowing in Haskell. This is
closely related to the work of Lindblad [14] and EasyCheck [7], based on the narrowing
strategy in the functional logic programming language Curry [12]. This approach can cut
the search space of possible values to check if partially instantiated values already violate
the precondition. The three approaches, QuickCheck (without manual test data generators),
SmallCheck and Lazy SmallCheck, have in common black-box testing, i.e., not considering
the description of the precondition - they generate (partial) values and test the precondition.

Previous work [1] focused on the verification of the transformation of Horn clauses to
functional programs, whereas the focus of this work is the extension and application of the
transformation for counterexample generation. Our approach is a glass-box testing approach,
i.e., it considers the description of the precondition and compiles a purely functional program
that generates values that fulfill the precondition. Closely related to our work is the glass-box
testing by Fischer and Kuchen [11] for functional logic programs, but they take advantage of
narrowing and non-determinism features of Curry.

Another approach to finding values that fulfill the preconditions is to use a CLP(FD)
constraint solver, as done by Carlier et al. [4]. Testing specifications using αProlog [6]
is described by Cheney and Momigliano [5]. A completely different approach to finding
counterexamples is translating the specification to propositional logic and invoking a SAT
solver, as practiced by the Isabelle tools Refute [26] and Nitpick [3].

9 Conclusion

We described a counterexample generator that improves upon existing solutions by translating
specifications into logic programs and which in turn are processed to functional programs,
applying an enriched mode analysis. This counterexample generator is included in the next
Isabelle release and can be invoked by Isabelle’s users to validate their specifications before
proving them correct.

Thus, we adopt mode analysis, a common technique from logic programming, and apply
it in the context of functional programming for synthesizing test data generators. We
employ the analysis in a compilation with an embedding of depth-limited non-deterministic
computations in the functional language. Using these generators for preconditions allows us
to find counterexamples in Isabelle specifications where type-based exhaustive and random
testing have failed.

In the future, we would like to investigate counterexample generation via testing in
(functional) logic programming languages, e.g., Curry, Mercury [24], αProlog [6] and XSB [20].
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Abstract
Most real-world programs must produce output. If a deductive database is used to implement
database application programs, it should be possible to specify the output declaratively. There is
no generally accepted, completely satisfying solution for this. In this paper we propose to specify
an output document by defining the position of text pieces (building blocks of the document).
These text pieces are then ordered by their position and concatenated. This way of specifying
output fits well to the bottom-up way of thinking about rules (from right to left) which is
common in deductive databases. Of course, when evaluating such programs, one wants to avoid
sorting operations as far as possible. We show how rules involving ordering can be efficiently
implemented.
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1 Introduction

Currently, database application programs are usually developed in a combination of two or
more languages, e.g. PHP for programming and SQL for the database queries and updates.
SQL is declarative, but most languages used for the programming part are not.

The goal of deductive databases is that only a single, declarative language is used for
programming and database tasks. The advantages of declarativity have been clearly shown
in SQL: The productivity is higher (because the programs are shorter and there is no need
to think about efficient evaluation), and new technology (parallel hardware and new data
structures and algorithms) can be used for existing application programs without changing
them (only the DBMS needs to be updated).

While in general, it might be difficult to reach acceptable performance for really declarative
programs (Prolog is not completely declarative), database applications are quite special and
usually not very difficult. For the most part, the task of an application program is to check
the input and to generate an output document (e.g., a web page).

Although generating output is practically very important, it seems that there is no
really good solution in logic programming yet. The standard solution in Prolog with a
write-predicate is clearly non-declarative: It depends on the specific evaluation order used
in Prolog.

The Gödel programming language, which improves upon Prolog in many ways, did also
not solve this problem: “Gödels input/output facilities do not have a declarative semantics,
so it is very important that input/output predicates are confined to as small a part of
a program as possible.” [4]. Certainly, it is a good advice to separate the generation of
output documents from the more complex logic of the program. But at least for database
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applications, the generation of output is a substantial part of the program, and deserves a
declarative specification, too.

Another standard way is to use an accumulator pair: A prefix of the document to be
generated is passed as an input argument to every predicate involved in generating output,
and the current state of the document after the output of the predicate is returned. For
instance, this solution is used in Mercury. The Mecury tutorial [1] contains this example:

main(IOState_in, IOState_out) :-
io.write_string("Hello, ", IOState_in, IOState_1),
io.write_string("World!", IOState_1, IOState_2),
io.nl(IOState_2, IOState_out).

This is declarative, but has some problems, too:
1. It complicates the programs (many predicates have two additional arguments). In part,

this problem can be solved by using special syntactic features to hide these arguments.
E.g., Mecury has special state variables as a syntactic convenience [1] (only one argument
is written instead of two, and the numbering of variables is done automatically).

2. Another problem is that if backtracking is possible, the actual output cannot be immedi-
ately done, and furthermore, the possibility remains that the program might sometimes
produce alternative documents, which is certainly not expected. In the Mercury language,
this problem is solved by checking the determinism of predicates which perform I/O, and
using destructive input and unique output modes for the arguments [1].

3. This solution needs recursion already for simple tasks, e.g. printing the contents of a
database table. As Molham Aref stated in his invited talk at last year’s ICLP, one of
the advantages of Datalog is that not so experienced users can be easily offered subsets
of the language with restricted complexity. It seems unlucky that recursion is basically
unavoidable if one uses this state-passing method for specifying output.

4. The situation is even worse, because one also needs lists or similar data structures: In
databases, several answers are most naturally constructed as several solutions to a query
(e.g. via backtracking). For instance, database tables are normally represented as sets
of facts. This does not fit well with requiring deterministic code for output: One must
use a predicate like findall, and then recurse over the resulting list. (Our proposal
also contains lists, but many interesting programs do not need recursion, and do not
need to inspect the constructed lists, i.e. no complex terms in body literals are needed.
Furthermore, the use of lists can be hidden with some syntactic sugar.)

In functional programming, monads are used for declarative output [6, 5]. However, they
depend on higher order programming, which is not common practice in logic programming.
Therefore, monads are not easily understandable for logic programmers.

2 Basic Idea

The basic idea of our proposed solution is very simple: The Datalog program defines a
predicate output with two arguments: The first argument determines the position in the
output, and the second argument is a text piece. A simple example is:

output(1, ’Hello, ’).
output(2, Name) ← name(Name).
output(3, ’.’).
name(’Nina’).
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output([1], ’<table>\n’).
output([2], ’<tr><th>Points</th><th>Student</th></tr>\n’).
output([3,Points,Name,1], ’<tr><td>’) ← homework(Name, Points).
output([3,Points,Name,2], Points) ← homework(Name, Points).
output([3,Points,Name,3], ’</td><td>’) ← homework(Name, Points).
output([3,Points,Name,4], Name) ← homework(Name, Points).
output([3,Points,Name,5], ’</td></tr>’) ← homework(Name, Points).
output([4], ’</table>\n’).
homework(’Ann’, 5).
homework(’Bob’, 10).
homework(’Chris’, 10).

Figure 1 Generating an HTML Table with Homework Results

The generated output document can be computed as follows: One first uses standard bottom-
up evaluation to generate all derivable facts of the form output(P,T), then one sorts them
by the first argument P, and prints the strings T in this sequence. Two comments must be
made here:
1. Probably nobody likes to write the numbers for the output sequence, but syntactic sugar

can be used to hide that (see Section 3). Basic Horn clauses are used to have a simple,
common semantic framework, but different tasks might need different syntactic variants
to specify the task clearly and concisely. For instance, definite clause grammar rules are
a very useful notation in Prolog for syntax analysis tasks.

2. In the same way, there is not only one algorithm for the evaluation of rules, but different
algorithms can be used for special cases of rules. In the above example, it would not be
necessary to first generate all derivable output-facts and then sort them: Since the sorting
argument is given explicitly in the rules, the rules might be applied in that order, and
the text pieces immediately printed. But it is important to have a very simple evaluation
algorithm for a directly executable semantics before discussing optimizations.

Of course, using only numbers as position specifications becomes impractical as soon as
one wants to produce already slightly more complex documents. Therefore, we suggest to
use a list as the first argument of output. Lists are sorted as usual: They are compared
element by element, and the first position in which they differ decides the sequence. For
instance, suppose we have stored homework points in a predicate homework(Name, Points).
An HTML table which contains the data sorted by points, and for equal points by name,
can be generated as shown in Figure 1. Note that the sorting based on the data is for free if
one uses this approach: Since the ID of the text piece contains first the points and then the
name, these two sorting criteria are applied with the points having higher priority.

3 Syntactic Sugar

Of course, one wants to eliminate the ordering argument as far as possible. Furthermore,
it should not be necessary to split a text whenever a parameter value must be inserted.
Quotation marks and explicit commands for line breaks should be avoided as far as possible.
With the pattern syntax which we propose, it is possible to write longer pieces of text, just
as it appears in the output, and mark the places where something must be inserted.
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homeworks_table(#
<table>
<tr><th>Points</th><th>Student</th></tr>
<#homeworks_row>
</table>

#).

homeworks_row([Points, Name]#
<tr><td><$Points></td><td><$Name></td></tr>

#) ← homeworks(Name, Points).

Figure 2 Generating an HTML Table with Patterns

homeworks_table([1], ’<table>\n’).
homeworks_table([2], ’<tr><th>Points</th><th>Student</th></tr>\n’).
homeworks_table([3|X], Y) ← homeworks_row(X, Y).
homeworks_table([4], ’</table>’).

homeworks_row([Points, Name, 1], ’<tr><td>’).
homeworks_row([Points, Name, 2], Points).
homeworks_row([Points, Name, 3], ’</td><td>’).
homeworks_row([Points, Name, 4], Name).
homeworks_row([Points, Name, 5], ’</td></tr>’).

Figure 3 Internal Rules denoted by Patterns

Figure 2 shows the running example in this syntax, and Figure 3 shows the rules that are
generated by the patterns.

Each pattern corresponds to a predicate. One writes the pattern/predicate name, then
“(”, then possibly a list as part of the position specification (if the pattern is instantiated
multiple times), then a “#”, then several lines which form the text of the pattern, then “#)”,
and then possibly a rule body. Within the pattern text, two special markers can be used:
“<#p>” links to another pattern p, which is embedded here, and “<$X>” inserts the value of a
variable which is bound in the rule body.

The generated predicates have two arguments just as the output-predicate (one can use
pattern syntax for the output-predicate, too). The pattern text is internally split into as
many pieces as needed, at least the inserted patterns and variables must be pieces of their
own, but one can in addition split the text at line breaks. Each piece gets a sequential
number. Then one fact or rule is generated for each piece:
1. The position consists of the optional list of variables (specified before the # in the first

line of the pattern), then the piece number, and in case of an embedded pattern, the
position argument of that pattern.

2. The second argument is either the text piece, or, if a variable is inserted at this point,
the variable, or, if a pattern is embedded here, a variable for a text piece of that pattern.

3. If the pattern has a body, it is attached to each generated rule. If this position is for an
embedded pattern, a call to the corresponding predicate is added to the body.

A predicate or pattern called “output” is the “main” predicate, which defines the overall
output of the program (the example is only a part of the generation of an entire web page).
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4 Efficient Evaluation

The goal is not having to do a lot of sorting when evaluating the rules. Sorting is a relatively
expensive operation, and furthermore it is necessary to store intermediate results. Relational
database management systems often work internally with tuple streams, where the next
tuple is computed on demand only (using an iterator/cursor interface). In this way, the
materialization of intermediate results is avoided. Only sorting needs intermediate storage,
because the first result tuple can only be produced after the last input tuple was seen.

Often, already by choosing the right evaluation order of the rules, sorting can be avoided.
Furthermore, if we can get the tuples for the predicates in the body in the right sorted
sequence, this sorting can often be preserved. For the base predicates (the EDB predicates
stored in database relations), sorting can sometimes be avoided, if they are stored in an
ISAM file or index-organized table (if the required sorting sequence matches the key) or if a
b-tree index with a fitting search key is available.

First note that the only way in which the predicate output should be treated specially is
that the second argument is printed in the end, when the tuples (derived facts) are accessed
ordered by the first argument. For instance, it should be possible to write

output([X, Y], Z) ← p(Z, X, Y).

Thus, in order to produce the tuples for output ordered by first argument, we need to
generate the tuples for p ordered by second and third arguments (second argument with
higher priority than third argument, i.e. the third argument is only important for determining
the order of two tuples if the second argument is equal). So in general, we need to produce
tuples for any predicate in the program ordered by any given sequence for the arguments.

In order to concentrate on the sorting problem, we make two simplifying assumptions in
this paper:

We do not consider recursive rules. There is a large body of work on evaluating recursive
rules, but in most cases, sorting sequences for the predicates in the body do not give a
sorting sequence for the derived tuples. Furthermore, in order to guarantee termination,
the resulting tuples must be stored (materialized), so that duplicates can be eliminated.
When this is anyway needed, one could of course choose a b-tree or similar data structure
which gives the required sorting on output.
While we need structured terms in the head of the rules (to build lists for the position
specifications), we assume that the body literals contain only variables and constants.

4.1 Interface for Relations
As usual in relational DBMS, we use a tuple stream interface for relations (predicates), i.e. it
is possible to open a cursor (scan, iterator) over the relation, which permits to loop over all
tuples. We assume that for every normal predicate p, there is a class p_cursor with the
following methods:

void open(): Open a scan over the relation, i.e. place the cursor before the first tuple.
bool fetch(): Move the cursor to the next tuple. This function must also be called to
access the first tuple. It returns true if there is a first/next tuple, or false, if the cursor
is at the end of the relation.
T col_i(): Get the value of the i-th column (attribute) of the current tuple (T is the
data type of this column). This interface permits to get access to the attribute values
without actually materializing the tuple (especially, large data values do not need to be
copied).
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void close(): Close the cursor.
p_cursor_pos position(): Return current position of the cursor for a later call to
restore (in order to return to this position). This is only used for complicated loop
structures, and very seldom more than one position must be saved at the same time.
void restore(p_cursor_pos): Return to a previously saved position of the cursor. It
is possible to return multiple times to the same position.

The objects of the class p_cursor do not guarantee any specific order of the returned
tuples. Thus, we also need classes p_cursor_i1_..._ik, which return tuples sorted by
argument i1 with highest priority, i2 with second highest priority, and so on.

Our goal in the section is to create code for such cursors for the derived predicates (IDB
predicates), given such cursors for the base predicates (stored relations, EDB predicates). As
mentioned above, the storage structures for the base predicates sometimes give the sorting
more or less for free, otherwise some explicit sorting is unavoidable.

Again, in order to focus on the main problem (the sorting), and not to overload the paper
with details already considered extensively in the literature, we ignore a very important
optimization:

Often, when a predicate is called, values are known for some arguments. Thus, one does
not need to produce the entire extension of the predicate. One could extend the cursor
interface by attaching a binding pattern to the cursor name (specifying which arguments
are bound in the call, i.e. input arguments), and permit to specify values for them in the
open() call. This is also interesting for base predicates with indexes.
This situation is even more complicated, since some arguments are known at compile-time,
others only at runtime. Furthermore, one might want to pass not only equality conditions
for the arguments to the called predicate, but also other simple conditions (e.g. X ≤ 5).
An extreme case in this direction is the SLDMagic-method of the author [2]. There is a
large body of literature on Magic Sets that treats such problems.

4.2 Single Rule, Nested Loop Join
Consider the rule

p(t1, . . . , tn)← B1 ∧ · · · ∧ Bm

and suppose an ordering of the derived tuples by arguments i1, . . . , ik is required.
Then we first determine a sequence of variables X1, . . . , Xl that appear in the head such

that the matches found for the body must be ordered in this sequence. These variables are
simply the variables that appear in ti1 , . . . , tik

in the order of first appearance. For instance,
given the head

p([a, X, Y, b], c, [Z, Y, X])

and the sorting of the derived p-tuples by arguments 1, 2, 3, the considered variable assign-
ments must be sorted by values for X, Y, Z in this sequence.

The simplest implementation of the rule body is a nested loop join. It is well known that
that an ordering of tuples in the outer loop is preserved by the nested loop join. This holds
more generally. For instance, consider the rule body

q(X, Y, a) ∧ r(Y, Z)

A nested loop join works as shown in Figure 4. Of course, the code shown in Figure 4 must
be rewritten so that it fits itself in a fetch() method. Currently we would need coroutines
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q_cursor_1_2 q;
r_cursor_2_1 r;
q.open();
while(q.fetch()) { // q(X, Y, a)

if(q.col_3 == ’a’) {
int X = q.col_1();
int Y = q.col_2();
r.open();
while(r.fetch()) { // r(Y, Z)

if(r.col_1 == Y) {
int Z = r.col_2();
print(X, Y, Z); // Variable assignment satisfying body

}
}
r.close();

}
}
q.close();

Figure 4 Nested Loop Join for q(X, Y, a) ∧ r(Y, Z)

(when a match found, instead of the print, one must do a “yield return”, so the next call to
fetch() starts at this place). But this restructuring of the code is a simple task for an able
programmer. We have used the above code so that the nested loops are easily visible.

It is quite obvious that the program in Figure 4 produces the tuples ordered by the values
for X ,Y, Z: Let (X1, Y1, Z1) and (X2, Y2, Z2) be two tuples that the above code yields, where
the second tuple is produced later. Then there are two cases to consider:

Suppose that the second tuple is produced in a different (later) iteration of the outer loop.
The cursor over q guarantees that the tuples are considered sorted by first argument,
and for equal first argument, by the second argument. There is no order for the third
argument, but if we can assume that there are no duplicate tuples, the constant in the
third argument means that tuples produced in different iterations of the loop must differ
in at least one of the first two arguments. Therefore, we can conclude that either X1 < X2
or X1 = X2 and Y1 < Y2.
Now suppose that both tuples are produced in the same iteration of the outer loop,
but the second tuple is produced in a later iteration of the inner loop. Of course, we
immediately get X1 = X2 and Y1 = Y2. Since the second argument is the main sorting
criterion in the inner loop, it follows that Z1 ≤ Z2.

Now, in general, suppose we need the variable assignments sorted by X1, . . . , Xl, and that
the body B1 ∧ · · · ∧ Bm is evaluated by nesting loops in this order, i.e. B1 corresponds to the
outermost loop and Bm to the innermost. Then the following condition must be satisfied for
each i = 1, . . . , l:

Suppose that Bj is the first body literal, in which Xi appears.
Then for given values for X1, . . . , Xi−1, there can be only a single match for B1, . . . , Bj−1,
(i.e. a single assignment of tuples to literals such that the conditions of B1, . . . , Bj−1 are
satisfied), and furthermore,
the argument in which Xi appears in Bj is in the sorting specification for the cursor,
preceded only by arguments in which one of {X1, . . . , Xi−1} or a constant appears.
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This ensures that the variable assignments are produced in the right order: Suppose this were
not the case. Then there are tuples (d1, . . . , dn) and (d′1, . . . , d′n) of values for X1, . . . , Xn,
where the second tuple is produced later and for some i∈{1, . . . , n}: d1 = d′1, . . . , di−1 = d′i−1,
and di > d′i. Let Bj be the first body literal in which Xi appears. Since for the given
values (d1, . . . , di−1), there is only a single match for B1 ∧ · · · ∧ Bj−1, the outer loops are
not switched forward between the two assignments, i.e. the problem occurs within a single
run through the loop for Bj . But all arguments in Bj with higher sorting priority than the
argument for Xi are filled with variables from {X1, . . . , Xi−1} (which have the same value
in both tuples), or constants (also the same value). Thus, the required ordering for Bj is
violated.

4.3 More Interesting Loops
Of course, the above condition cannot always be reached by a permutation of the body
literals. However, using only one loop per literal is not the only possibility.

Consider a rule with body

p(X, Y) ∧ q(Y, Z)

and suppose we need the matching assignments ordered by X, Z. If the outer loop is over
p_cursor_1_2, and the inner loop over q_cursor_2_1, we get a wrong sequence given the
following predicate extensions:

p
X Y
1 3
1 4

q
Y Z
4 5
3 6

Result
X Z
1 6
1 5

Here the condition is violated that for every value for X, there is only a single match
for p(X, Y). The problem is that the value for Y from the first literal selects only specific
facts for the second literal, and thus the ordering on Z in the second literal is not preserved,
not even for a single X value.

However, it is possible to create a loop structure that preserves the ordering as required.
The idea is to iterate with the outer loop only over different X-values, then to iterate with
a middle loop over the second literal, and finally iterate with an innermost loop over the
tuples of the first literal for a given X-value (i.e. an X-partition of p). For space reasons, the
details cannot be shown here, but more information is available on the project web page.

4.4 Using Merge Joins, Explicit Sorting and Intermediate Storage
Of course, ordered tuple streams are also useful for merge joins, which can be much faster
than a nested loop join. In general, the output of a merge join remains ordered only on the
join columns, which sometimes might be just what is needed, but often not.

With techniques like shown above in the “interesting loops” example, one could do e.g. an
outer loop over X-values, and inside do merge joins over Y. This is not as good as a single
merge join, but also not as bad as a nested loop join (if there are several Y-values for a
single X-value).

There are many ways to evaluate a given logic program, and especially there is always
the option to require no order for the computation of the tuples for a predicate p, and then
do an explicit sorting before the tuples are used. This would for instance give all options
for merge joins in the evaluation of rules for p. Furthermore, if the tuples are used multiple
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times (e.g. in an inner loop of a nested loop join), one has the advantage of computing them
only once. The performance tests we did in [3] show that this becomes an important factor
if the computation of the tuples of p is not easy. Thus, even if no explicit sorting is needed
(because the tuples are produced in the right order using the techniques shown above), it
might still be useful to materialize the tuples for some intermediate predicates. In general,
one would use a cost-based optimizer which generates a number of alternative evaluation
plans, estimates their costs, and chooses the cheapest.

4.5 Multiple Rules for a Predicate

So far, we have only considered the evaluation of a single rule. Of course, there are often
several rules about a predicate.

Again, the goal is to produce the tuples sorted by given arguments. In the most general
case, we implement each rule as shown above, so that each rule produces the tuples in the
required order, and then merge the tuple streams produced by the rules (i.e. we compare the
current tuple of every rule, output the smallest, and fetch the next tuple from that rule).

However, often by analyzing the rule heads, we can see that all tuples produced by one
rule must come before all tuples produced by another rule. In that case we can of course
evaluate one rule first, and then the other. I.e. the explicit merging at runtime may be
avoided or reduced, because we need to compare only tuples from rules where the order
cannot be determined already at compile time.

Let us again consider the example from Figure 1. From the first list element in the head
it is clear, that we must first apply the first rule, then the second, then the following block of
rules, and finally the last rule.

Now the block of rules with first list element 3 is an interesting case, because they all
have the same body, and each of the rules has the same variables in position 2 and 3 in the
list, and position 4 is again a constant which can be ordered at compile-time. Thus, when
we found one match for homework(Name, Points), we can output five tuples in the order of
the rules. Of course, the tuples for homework must be produced in sorted order, with the
second argument sorted with higher priority.

Note that it is not required that the rule bodies are exactly equal. What is required is
that we can get a superset for the possible values for the variables in the rule head in sorted
order. Since after the variables, distinct constants follow, we can give each rule a chance in
turn, whether it wants to produce facts with the given values for the variables. For instance,
it would be no problem if the rule bodies contained further literals besides the common
literal which determines the set of values for the variables Points and Name.

Of course, in general, the special treatment of the list-valued positioning argument should
not be done only for the predicate output. Thus, the compiler should try to determine
intervals of possible values for ordering arguments. If the intervals for two rules about a
predicate do not overlap, the sequence of rule applications is again clear, and no merging at
runtime is needed.

4.6 Avoiding List Construction, Example

One final point for the efficient evaluation of the output-rules is that the positioning argument
is seldom explicitly needed, and one wants of course to avoid constructing the list terms if at
all possible. In most cases, computing tuples in the right sequence and knowing intervals for
the possible values is all that is needed. This is especially clear if the lists appear only in the
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main()
{

print("<table>\n");
print("<tr><th>Points</th><th>Student</th></tr>\n");
homework_cursor_2_1 h;
h.open();
while(h.fetch()) {

print("<tr><td>");
print(h.col_2()); // Points
print("</td><td>");
print(h.col_1()); // Name
print("</td></tr>");

}
h.close();
print("</table>\n");

}

Figure 5 Implementation for the Example from Figure 1

rules about output, or in rules about predicates which have a unique position in the final
output (i.e. no explicit sorting or merging is needed for the resulting tuples).

Putting all together, we arrive at the natural program for the example shown in Figure 5.
Of course, for output, we do not generate a cursor, but directly print the second argument
of the derived facts.

5 Conclusions

In this paper, we made a simple proposal for specifying output declaratively in deductive
databases. An important feature in these languages is that one thinks from right to left,
i.e. in the natural direction of the rules (corresponding to bottom-up evaluation). Therefore
output, updates, and other results of program execution seem to be specified most natural in
the rule heads. Furthermore, it seems normal that literals have several solutions, which all
need to be printed — no backtracking should be needed for this (backtracking is not really a
concept of bottom-up evaluation: it is always implicitly set-oriented).

Although in its pure form, specifying output in this way is not very convenient, with the
proposed pattern syntax, it seems quite reasonable. Of course, more can and should be done
for special output problems (e.g., currently, putting a comma between list elements, but not
at the end needs a self join to check whether there is still another element).

In the second half of the paper, we showed that the rules can often be evaluated without
explicit sorting: In the end, the proposed solution should be as efficient as a standard,
imperative program (regarding output). Therefore, it is good to see that the declarative
specification can be translated into a C++ program, which does only as much sorting as the
data really requires and any program must do.

The web page [http://www.informatik.uni-halle.de/~brass/output/] contains a
small prototype program that does bottom-up evaluation and computes the output (currently
without optimizations) and a few examples for interesting loop structures.

http://www.informatik.uni-halle.de/~brass/output/
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Abstract
Transaction Logic is an extension of classical logic that gracefully integrates both declarative
and procedural knowledge and has proved itself as a powerful formalism for many advanced ap-
plications, including modeling robot movements, actions specification, and planning in artificial
intelligence. In a parallel development, much work has been devoted to various theories of de-
feasible reasoning. In this paper, we unify these two streams of research and develop Transaction
Logic with Defaults and Argumentation Theories, an extension of both Transaction Logic and
the recently proposed unifying framework for defeasible reasoning called Logic Programs with
Defaults and Argumentation Theories. We show that this combination has a number of interest-
ing applications, including specification of defaults in action theories and heuristics for directed
search in artificial intelligence planning problems. We also demonstrate the usefulness of the
approach by experimenting with a prototype of the logic and showing how heuristics expressed
as defeasible actions can significantly reduce the search space as well as execution time and space
requirements.
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1 Introduction

Transaction logic (abbr., T R) [5, 2] is a general logic for representing knowledge base dynamics.
Its model and proof theories cleanly integrate declarative and procedural knowledge and the
logic has been employed in domains ranging from reasoning about actions [3], to knowledge
representation [1], AI planning [5], workflow management and Web services [14], and general
knowledge base programming [4]. Defeasible reasoning is another important paradigm, which
has been extensively studied in knowledge representation, policy specification, regulations,
law, learning, and more [6, 11, 12].

In this paper we propose to combine T R with defeasible reasoning and show that the
resulting logic language has many important applications. This new logic is called Transaction
Logic with Defaults and Argumentation Theories (or T RDA) because it extends T R in the
direction of the recently proposed unifying framework for defeasible reasoning called logic
programming with defaults and argumentation theories (LPDA) [17]. Along the way we define
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a well-founded semantics [16] for T R, which, to the best of our knowledge, has never been
done before.

We show that the combined logic enables a number of interesting applications, such as
specification of defaults in action theories and heuristics for pruning search in search-intensive
applications such as planning. We also demonstrate the usefulness of the approach by
experimenting with a prototype of T RDA and showing that heuristics expressed as defeasible
actions can drastically prune the search space together with the execution time and space
requirements.

This paper is organized as follows. Section 2 motivates reasoning with defaults in T R
with an example. Section 3 provides background on Transaction Logic to make the paper
self-contained. Section 4 extends T R by incorporating defeasible reasoning. Section 5
specializes the logic developed in Section 4 by defining a useful argumentation theory that
extends Generalized Courteous Logic Programs (GCLP) [12] and Section 7 summarizes the
paper and outlines future work.

2 Motivating Example

In this section, we give an example that illustrates the advantages of extending Transaction
Logic with defeasible reasoning.

The syntax of T RDA is similar to that of standard logic programming except for the fact
that literals in the rule bodies are connected via the serial conjunction, ⊗, which specifies
an order of action execution. For instance, pickup(block1)⊗ puton(block1, block2) says that
the action pickup(block1) is to be executed first and the action puton(block1, block2) second.
The set of predicate symbols of the program is partitioned into:

a set of fluents, which are facts stored in database states or derived propositions that do
not change the state of the database; and
a set of actions, which represent actions that change those states.

In addition to the user defined predicate symbols, there are built-in actions called elementary
transitions for basic manipulation of states. These include delete(f) and insert(f) for every
ground fluent f . Examples of such elementary transitions include delete(on(block1, block0)
and insert(clear(block0).

As usual in defeasible reasoning, rules in T RDA can be tagged with terms. For instance,
the move rule in the example below is tagged with the termmvrule(Block, To). The predicate
!opposes is used to specify that some rules are incompatible with others. The predicate
!overrides specifies that some actions have higher priority than other actions.

Following the standard convention in Logic Programming, we will be using alphanumeric
symbols that begin with an uppercase letter to denote variables. Alphanumeric symbols that
begin with lowercase letters will denote constant, function, and predicate symbols.
I Example 2.1 (Block world planning). This example illustrates the use of defeasible reasoning
for heuristic optimization of planning in the blocks world. The T RDA program below is
designed to build pyramids of blocks that are stacked on top of each other so that smaller
blocks are piled up on top of the bigger ones. The construction process is non-deterministic
and several different blocks can be chosen as candidates to be stacked on top of the current
partial pyramid. The heuristic uses defeasibility to give priority to larger blocks so that
higher pyramids would tend to be constructed.1

1 For more information on planning with T R see [5].
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In this example, we represent the blocks world using the fluents on(x, y), which say that
block x is on top of block y; isclear(x), which says that nothing is on top of block x; and
larger(x, y), which says that the size of x is larger than the size of y. The action pickup(X,Y )
lifts the block X from the top of block Y and the action putdown(X,Y ) puts it down on
top of block Y . These actions are specified by the second and third rules, respectively.
The action move(X,From, To), specified by the first rule, moves block X from its current
position on top of block From to a new position on top of block To. This action is defined
by combining the aforementioned actions pickup and putdown, if certain preconditions are
satisfied. The stacking action (not included in the program) then uses the move action to
construct pyramids.

The key observation here is that at any given point several different instances of the
rule tagged with move_action might be applicable and several different moves might be
performed. The predicate !opposes stipulates that two different move-actions for different
block are considered to be in conflict (because only one action at a time is allowed).

@mv_rule(Block,To) move(Block,From,To) :-
(on(Block,From) ∧ larger(To,Block)) ⊗
pickup(Block,From) ⊗ putdown(Block,To).

pickup(X,Y) :- (isclear(X) ∧ on(X,Y)) ⊗
delete(on(X,Y)) ⊗ insert(isclear(Y)).

putdown(X,table) :- (isclear(X) ∧ not on(X,Z))
⊗ insert(on(X,table)).

putdown(X,Y) :- (isclear(X) ∧ isclear(Y) ∧ not on(X,Z))
⊗ delete(isclear(Y)) ⊗ insert(on(X,Y)).

!opposes(move(B1,F1,T1),move(B2,F2,T2)) :- B1 6= B2.

Various heuristics can be used to improve construction of plans for building pyramid of
blocks. In particular, we can use preferences among the rules to cut down on the number of
plans that need to be looked at. For instance, the following rule says that move-actions that
move bigger blocks are preferred to move-action that move smaller blocks—unless the blocks
are moved down to the table surface.

!overrides(mv_rule(B2,To), mv_rule(B1,To)) :- larger(B2,B1) ∧ To 6= table.

Consider the following configuration of blocks:

on(blk1,blk4). on(blk2,blk5). on(blk3,table). on(blk4,table).
on(blk5,table). isclear(blk1). isclear(blk2). isclear(blk3).
larger(blk2,blk1). larger(blk3,blk1). larger(blk3,blk2).
larger(blk4,blk1). larger(blk5,blk2). larger(blk2,blk4).

Although, both blk1 and blk2 can be moved on top of blk3, moving blk2 has higher
priority because it is larger.

For moving blocks to the table surface, we use the opposite heuristic, one which prefers
unstacking smaller blocks:

!overrides(mv_rule(B2,table), mv_rule(B1,table)) :- larger(B1,B2).

In our example, this makes unstacking blk1 and moving it to the table surface preferable
to unstacking blk2, since the former is a smaller block. This blocks the opportunity to then
move blk4 on top of blk2 and subsequently put blk1 on top of blk4. These preference
rules can be applied to a pyramid-building program like this:
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stack(0,Block).
stack(N,X) :- N>0 ⊗ move(Y,_,X) ⊗ stack(N-1,Y) ⊗ on(Y,X).
stack(N,X) :- (N>0 ∧ on(Y,X)) ⊗ unstack(Y) ⊗ stack(N,X).
unstack(X) :- on(Y,X) ⊗ unstack(Y) ⊗ unstack(X).
unstack(X) :- isclear(X) ∧ on(X,table).
unstack(X) :- (isclear(X) ∧ on(X,Y) ∧ Y 6= table) ⊗ move(X,_,table).
unstack(X) :- on(Y,X) ⊗ unstack(Y) ⊗ unstack(X).

Running this program by the interpreter described in [9] shows that the above preferences
drastically reduce the number of plans that need to be considered—sometimes to just one
plan. These experiments are described in Section 6. �

3 Serial-Horn Transaction Logic

In this section we describe a subset of Transaction Logic called serial-Horn T R. This subset
has been shown to be sufficiently expressive for many applications, including planning,
workflow management, and action languages [5].

The syntax of T R is derived from that of standard logic programming. The alphabet
of the language LT R of T R contains an infinite number of constants, function symbols,
predicate symbols, and variables. The atomic formulas have the form p(t1, ..., tn), where
p is a predicate symbol, and ti are terms (variables, constants, function terms). However,
unlike standard logic programming, predicate symbols are partitioned into fluents and
actions. Fluents are predicates whose execution does not change the state of the database,
while actions are predicates that can change the state of the database. Fluents are further
partitioned into base fluents and derived fluents. Base fluents correspond to the classical base
predicates in relational databases; they represent stored data and may be inserted or deleted.
Derived fluents correspond to derived predicates, which represent database views. An atomic
formula p(t1, ..., tn) will be also called a fluent or an action atomic formula depending on
whether p is a fluent or an action symbol. Furthermore, if p is a derived or base fluent
symbol then p(t1, ..., tn) is said to be a derived or base fluent atomic formula. An expression
is ground if it does not contain any variables.

The symbol neg will be used to represent the explicit negation (also called “strong”
negation) and not will be used for default negation, that is, negation as failure. A fluent
literal is either an atomic fluent or has one of the negated forms: negα, notα, notnegα,
where α is a fluent atomic formula. An action literal is an action atomic formula or has the
form notα, where α is a action atomic formula. Literals of the form negα, where α is an
action, are not allowed. Atoms of the form negnot alpha are also not allowed.

A database state is a set of ground base fluents. All database states are assumed to be
consistent, meaning that they cannot have both f and neg f , for any base fluent f .

Transaction Logic distinguishes a special sort of actions, called elementary transitions or
elementary updates. Intuitively, an elementary transition is a “builtin” action that transforms
a database from one state into another. All other actions are defined via rules using elementary
transitions and fluents. In this paper, elementary transitions are deletions and insertions
of base fluents. Formally, an elementary state transition is an action atomic formula of the
form insert(f) or delete(f), where f is a ground base fluent or has the form neg g, where g
is a ground base fluent. For any given database state D,

insert(f) causes a transition from D to the state D ∪ {f} \ {neg f}; and
delete(f) causes a transition from D to D \ {f} ∪ {neg f}.
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In addition to the classical connectives and quantifiers, T R has new logical connectives:

⊗ - the sequential conjunction
♦ - the modal operator of hypothetical execution

The formula φ ⊗ ψ represents an action composed of an execution of φ followed by an
execution of ψ, while the formula ♦φ is an action of hypothetically testing whether φ can be
executed at the current state, but no actual state changes takes place. In procedural terms,
executing delete(on(blk1, table))⊗ insert(on(blk1, blk2)) means “first delete on(blk1, table)
from the database, and then insert on(blk1, blk2).” The current database state changes as
a result. In contrast, ♦move(blk1) is only a “hypothetical” execution: it checks whether
move(blk1) can be executed in the current state, but regardless of whether it can or not the
current state does not change.

The semantics of Transaction Logic is such that when f1 and f2 are fluents, f1 ⊗ f2 is
equivalent to f1 ∧ f2 and ♦f to f . Therefore, when no actions are present, T R reduces to
classical logic. This also explains our use of ∧ in Example 2.1 where it could have been
replaced with ⊗ without changing the meaning (but, the uses of ⊗ in the Example 2.1
cannot be replaced with ∧ without changing the meaning).

I Definition 1 (Serial goal). Serial goals are defined recursively as follows:

If P is a fluent or an action literal then P is a serial goal. Note that fluent literals can
contain both not and neg , and action literals can contain not .
If P is a serial goal, then so are notP and ♦P .
If P1 and P2 are serial goals then so are P1 ⊗ P2 and P1 ∧ P2. �

I Definition 2 (Serial rules). A serial rule is an expression of the form: H : − B. where
H is a not -free literal and B is a serial goal. We will be dealing with two classes of serial
rules:

Fluent rules: In this case, H is a derived fluent of the form f or a fluent literal of the
form neg f and B = f1 ⊗ ...⊗ fn, where each fi is a fluent literal (and thus ⊗ could be
replaced with ∧).
Action rules: In this case, H must be an atomic action formula, while the body of the
rule, B, is a serial goal.

A transaction base is a finite set of serial rules. �

An existential serial goal is a statement of the form ∃X̄ψ where ψ is a serial goal and
X̄ is a list of all free variables in ψ. For instance, ∃Xmove(X, blk2) is an existential serial
goal. Informally, the truth value of an existential goal in T R is determined over sequences of
states, called execution paths, which makes it possible to view truth assignments in T R’s
models as executions. If an existential serial goal, ψ, defined by a program P, evaluates to
true over a sequence of states D0, . . . Dn, we say that it can execute at state D0 by passing
through the states D1, ..., Dn−1, and ending in the final state Dn. Formally, this is captured
by the notion of executional entailment, which is written as: P,D0, . . . Dn |= ψ. Further
details on T R can be found in [5] and [2].
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4 Defeasibility in Transaction Logic

In this section we define a form of defeasible Transaction Logic, which we call Transaction
logic with defaults and argumentation theories (T RDA). The development was inspired by
our earlier work on logic programming with argumentation theories, which did not support
actions [17]. Language-wise, the only difference between T RDA and serial T R is that the
rules in T RDA are tagged.

I Definition 3 (Tagged rules). A tagged rule in the language T RDA is an expression of
the form: @r H : − B. where the tag r of a rule is a term. The head literal, H, and the
body of the rule, B, have the same restrictions as in Definition 2.
A serial T RDA transaction base P is a set of rules, which can be strict or defeasible. �

I Definition 4 (Transaction formula). A transaction formula in the language T RDA is a
literal, a serial goal, a tagged or an untagged serial rule. �

We note that the rule tag in the above definition is not a rule identifier: several rules can
have the same tag, which can be useful for specifying priorities among sets of rules.

Strict rules are used as definite statements about the world. In contrast, defeasible rules
represent defaults whose instances can be “defeated” by other rules. Inferences produced
by the defeated rules are “overridden.” We assume that the distinction between strict and
defeasible rules is specified in some way: either syntactically or by means of a predicate (in
this paper, we consider strict rules to be non-tagged rules, as in Definition 2).

I Definition 5 (Rule handle). Given a tagged rule, the term handle(r,H) is called the
handle of that rule. �

T RDA transaction bases are used in conjunction with argumentation theories, which are
sets of rules that define conditions under which some rule instances in the transaction base
may be defeated by other rules. The argumentation theory and the transaction base share
the same set of fluent and action symbols.

I Definition 6 (Argumentation theory). An argumentation theory, AT, is a set of strict
serial rules. We also assume that the language of T RDA includes a unary predicate,
$defeatedAT, which may appear in the heads of some rules in AT but not in the transaction
base. A T RDA P is said to be compatible with AT if $defeatedAT does not appear in
any of the rule heads in P, �

The rules AT are used to specify how the rules in P get defeated. This is usually done
using special predicates defined in T RDA, such as !opposes and !overrides used in
our example. For the purpose of defining the semantics, we assume that the argumentation
theories AT are grounded. This grounding can be done by appropriately instantiating the
variables and meta-predicates in AT.

Although Definition 6 imposes almost no restrictions on the predicate $defeatedAT,
practical argumentation theories are likely to require that it is executed hypothetically,
i.e., that its execution does not change the current state. This is certainly true of the
argumentation theories used in this paper.

I Definition 7 (Herbrand universe and base). The Herbrand universe of T RDA, denoted
U , is the set of all ground terms built using the constants and function symbols of the
language of T RDA. The Herbrand base, denoted B, is the set of all ground not -free
literals that can be constructed using the language of T RDA. �
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The key concept underlying the semantics of T R and T RDA is that of execution paths,
which are sequences of database states. The truth assignment in T R is done using path
structures, which are mappings from paths of states.

I Definition 8 (Path and Split). A path of length k, or a k-path, is a finite sequence of
states, π = 〈D1 ... Dk〉, where k ≥ 1. A split of π is any pair of subpaths, π1 and π2, such
that π1 = 〈D1 ... Di〉 and π2 = 〈Di ... Dk〉 for some i (1 ≤ i ≤ k). If π has a split π1, π2
then we write π = π1 ◦ π2. �

We extend the well-founded semantics for logic programing [16] to T RDA using a definition
in the style of [13]. In the following, we use the usual three truth values t, f , and u, which
stand for true, false, and undefined, respectively. We also assume the existence of the following
total order on these values: f < u < t.

I Definition 9 (Partial Herbrand interpretation). A partial Herbrand interpretation
is a mapping H that assigns f , u, or t to every formula L in B. A partial Herbrand
interpretation H is consistent relative to an atomic formula L if it is not the case
that H(L) = H(negL) = t. H is consistent if it is consistent relative to every formula.
H is total if, for every ground not -free formula L (other than u), either H(L) = t and
H(negL) = f or H(L) = f and H(negL) = t. �

Partial Herbrand interpretations are used to define path structures, which tell which
ground atoms (fluents or actions) are true on what paths. Path structures play the same role
in T RDA as that played by the classical semantic structures in classical logic. The semantic
structures of T RDA are mappings from paths to partial Herbrand interpretations.

I Definition 10 (Herbrand Path Structure). A partial Herbrand Path Structure is a
mapping I that assigns a partial Herbrand interpretation to every path subject to the
following restrictions:

1. For every ground base fluent-literal d and every database state D:
I(〈D〉)(d) = t, if d ∈ D;
I(〈D〉)(d) = f , if d 6∈ D;
I(〈D〉)(d) = u, otherwise

2. I(〈D1,D2〉)(insert(p)) = t if D2 = D1 ∪ {p} \ {neg p} and p is a ground fluent-literal;
I(〈D1,D2〉)(insert(p)) = f , otherwise.

3. I(〈D1,D2〉)(delete(p)) = t if D2 = D1 \ {p} ∪ {neg p} and P is a ground fluent-literal;
I(〈D1,D2〉)(delete(p)) = f , otherwise. �

Without loss of generality, while defining the semantics of T RDA we will consider ground
rules only. This is possible because all variables in a rule are considered to be universally
quantified, so such rules can be replaced with the set of all of their ground instantiations.

We assume that the language includes the special propositional constants: uπ and tπ, for
each path π. Informally, tπ is a propositional transaction that is true precisely over the path
π and false on all other paths; uπ is a propositional transaction that has the value u over π
and is false on all other paths.

I Definition 11 (Truth valuation in path structures). Let I be a path structure, π a path, L a
ground not -free literal, and let F , G ground serial goals We define truth valuations with
respect to the path structure I as follows:

If p is a not -free literal then I(π)(p) is already defined because I(π) is a Herbrand
interpretation, by definition of I.
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For any path π:
I(π)(tπ) = t and I(π′)(tπ) = f , if π′ 6= π;
I(π)(uπ) = u and I(π′)(uπ) = f , if π′ 6= π.
If φ and ψ are serial goals, then I(π)(φ⊗ψ) = max{ min(I(π1)(φ), I(π2)(ψ))|π = π1 ◦π2}
.
If φ and ψ are serial goals then I(π)(φ ∧ ψ) = min(I(π)(φ), I(π)(ψ)).
If φ is a serial goal then I(π)(notφ) =∼ I(π)(φ), where ∼ t = f , ∼ f = t, and ∼ u = u.
If φ is a serial goal and π = 〈D〉, where D is a database state, then
I(π)(♦φ) = max{I(π′)(φ) | π′ is a path that starts at D}
I(π)(♦φ) = f , otherwise.
For a strict serial rule F :-G,
I(π)(F :-G) = t iff I(π)(F ) ≥ I(π)(G).
For a defeasible rule @r F :-G,
I(π)(@r F:- G) = t iff
I(π)(F ) ≥ min ( I(π)(G), I(〈D0〉)(not ♦ $defeated(handle(r, F )))),
where D0 is the first database in the path π.

We will write I, π |= φ and say that φ is satisfied on path π in the path structure I if
I(π)(φ)=t.
We will say that a path structure I is total if, for every path π and every serial goal φ,
I(π)(L) is either t or f . �

I Definition 12 (Model of a transactional formula). A path structure, I, is a model of a
transaction formula φ if I, π |= φ for every path π. In this case, we write I |= φ and say
that I is a model of φ or that φ is satisfied in I. A path structure I is a model of a set of
formulas if it is a model of every formula in the set. �

I Definition 13 (Model of T RDA). A path structure I is a model of a T RDA transaction
base P if all rules in P are satisfied in I (i.e., I |= R for every R ∈ P). Given a T RDA

transaction base P, an argumentation theory AT, and a path structure M, we say that M
is a model of P with respect to the argumentation theory AT, written as M |= (P,AT), if
M |= P and M |= AT. �

Like classical logic programs, the Herbrand semantics of serial-Horn T R can be formu-
lated as a fixpoint theory [3]. In classical logic programming, given two Herbrand partial
interpretations σ1 and σ2, we write σ1 � σ2 if all not -free literals that are true in σ1 are
also true in σ2 and all not -literals that are true in σ2 are also true in σ1. Similarly, for
partial interpretations, σ1 ≤ σ2 if all not -free literals that are true in σ1 are also true in σ2
and all not -literals that are true in σ1 are also true in σ2.

I Definition 14 (Order on Path Structures). If M1 and M2 are partial Herbrand path
structures, then M1 �M2 if M1(π) �M2(π) for every path, π. Similarly, we write
M1 ≤M2 if M1(π) ≤M2(π) for every path, π. A model M of P is minimal with respect
to � iff for any other model, N, of P, we have that N � M implies N = M. The least
model of P is a minimal model that is unique (if it exists). �

It is well-known that in ordinary logic programming any set of Horn rules always has a
least model. In [5], it is shown that every positive serial-Horn T R program has a unique
least total model. Theorem 15, below, shows that this property is preserved by serial
not -free T R programs, but in this case the model might be a partial path structure. Serial
not -free programs are more general than the positive T R programs because the undefined
propositional symbol uπ for some path π may occur in the bodies of the program rules.
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I Theorem 15 (Unique Least Partial Model for serial not -free T R programs). If P is a
not -free T RDA program, then P has a least Herbrand model, denoted LPM(P).2 �

Next we define well-founded models for T RDA by adapting the definition from [13]. First,
we define the quotient operator, which takes a T RDA program P and a path structure I
and yields a serial-Horn T R program P

I . Despite what one might have been expecting, this
adaptation is rather subtle.

I Definition 16 (Quotient). Let P be a set of T RDA rules and I a path structure for P.
The T RDA quotient of P by I, written as P

I , is defined through the following sequence of
steps:

1. First, each occurrence of every not - literal of the form notL in P is replaced by tπ
for every path π such that I(π)(notL) = t and with uπ for every path π such that
I(π)(notL) = u.

2. For each labeled rule of the form @r L:-Body obtained in the previous step, replace
it with rules of the form: L:- t〈Dt〉 ⊗ Body for each database state Dt such that
I(〈Dt〉)(not (♦ $defeated(handle(r, L)))) = t, and rules of the form L:-u〈Du〉 ⊗
Body for each database stateDu such that I(〈Du〉)(not (♦ $defeated(handle(r, L))))
= u.

3. Remove the labels from the remaining rules. The resulting set of rules is the quotient P
I .

�

Note that in Step 1 of the above definition of the quotient each occurrence of notL is
replaced with different tπ and uπ for different π’s, so every rule in P may be replaced with
several (possibly infinite number of) not -free rules. All combinations of replacements for the
not - literals in the body of the rules have to be used. Only the π’s where I(π)(notL) = f
are not used, which effectively means that the rule instances that correspond to those cases
are removed from consideration. Also note that, the T RDA quotient of a T RDA transaction
base P with respect to an argumentation theory AT (the program union P ∪ AT) for any
path structure I, P ∪AT

I , is a negation-free T R program, so, by Theorem 15, it has a

unique least Herbrand model, LPM(P ∪AT
I ).

We will now give the definition for the immediate consequence operator Γ. For compatib-
ility with the classical notations in logic programming, we will use the set representation of
Herbrand models: I+ = {L | L ∈ I is a not -free literal}, I− = {L | L ∈ I is a not -literal}
and I = I+ ∪ I−.

I Definition 17 (T RDA immediate consequence operator). The incremental consequence
operator, Γ, for a T RDA transaction base P with respect to the argumentation theory
AT takes as input a path structure I and generates a new path structure: Γ(I) =def

LPM

(
P ∪AT

I

)
Suppose I∅ is the path structure that maps each path π to the empty Herbrand interpretation
in which all propositions are undefined (i.e., for every path π and every literal L, we have
I∅(π)(L) = u).

2 All proofs can be found in our technical report [10].
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The ordinal powers of the immediate consequence operator Γ are defined inductively as
follows:

Γ↑0(I∅) = I∅;
Γ↑α(I∅) = Γ(Γ↑α−1(I∅)), for α a successor ordinal;
Γ↑α(I∅)(π) = ∪β<αΓ↑β(I∅)(π), for every path π and α a limit ordinal. �

The operator Γ is monotonic with respect to the ≤ order relation when P and AT are fixed
(see [10]). Because Γ is monotonic, the sequence {Γ↑n(I∅)} (Γ↑0(I∅), Γ↑1(I∅), Γ↑2(I∅), . . .)
has a least fixed point and is computable via transfinite induction.

I Definition 18 (Well-founded model). The well - founded model of a T RDA transaction
base P with respect to the argumentation theory AT, written as WFM(P,AT), is defined
as the limit of the sequence {Γ↑n(I∅)}. �

I Theorem 19 (Correctness of the Constructive T RDA Least Model). WFM(P,AT) is the
least model of the program (P,AT).

The next theorem shows that T RDA programs under the well - founded semantics reduce
to ordinary T R programs under the same well - founded semantics. In conclusion, T RDA

can be implemented using ordinary transaction logic programming systems that support the
well - founded semantics.

I Theorem 20 (T RDA Reduction). WFM(P,AT) coincides with the well - founded model
of the T R program P′ ∪AT, where P′ is obtained from P by changing every defeasible rule
(@r L:- Body) ∈ P to the plain rule L:-not (♦ $defeated(handle(r, L)) )⊗ Body and
removing all the remaining tags.

5 The GCLP T R Argumentation Theory

We present here a particularly interesting argumentation theory which extends GCLP—
generalized courteous logic programs [12]—to T R under the T RDA framework. The infer-
ences claimed in the discussion of the planning example in Section 2 assumed that particular
argumentation theory. We will call this argumentation theory GCLP T R. As any argument-
ation theory in our framework, GCLP T R defines a version of the predicate $defeated
using various auxiliary concepts. We define these concepts first.

The user-defined predicates !opposes and !overrides are relations specified over
rule handles. They tell the system what rule instances are in conflict with each and which
rule instances are preferred over other rules.

The predicate $defeated is defined indirectly in terms of the predicates !opposes
and !overrides. In the following definitions the variables R and S are assumed to range
over rule handles, while the implicit current state identifier D is assumed to range over
the possible database states. A rule is defeated if it is refuted or rebutted by some other
rule, assuming that the first rule is defeasible and the second rule is not compromised or
disqualified. We will define these notions shortly, but first we explain them informally. A
rule is refuted if a higher-priority rule implies a conclusion that is incompatible with the
conclusion implied by the refuted rule, A rule rebuts another rule if the two rules assert
conflicting conclusions and there is no way to resolve the conflict. A rule is compromised if
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it is defeated by some other rule, and a rule disqualified if that rule refutes itself.

$defeated(R) : − $refutes(S, R) ∧ not$compromised(S).
$defeated(R) : − $rebuts(S, R) ∧ not$compromised(S).
$defeated(R) : − $disqualified(R).
$refutes(R, S) : − $conflict(R, S) ∧ !overrides(R, S).
$conflict(R, S) : − $candidate(R),$candidate(S),!opposes(R, S).

(1)

A rule R rebuts another rule S if the two rules assert conflicting conclusions, but neither
rule is “more important” than the other, i.e., no preference can be inferred between the
two rules. This intuition can be expressed in several different ways, but we selected the one
below, which mimics the definition in [17].

$rebuts(R, S) :- $candidate(R) ∧ $candidate(S) ∧ (2)
!opposes(R, S) ∧ not$compromised(R) ∧
not$refutes(__ , R) ∧ not$refutes(__ , S).

The important difference here compared to [17] is that we are dealing with state-changing
actions and so all tests for refutation, rebuttal, and the like, must be hypothetical. This is
reflected in the definition of a rule candidate. We say that a rule instance is a candidate
if its body is hypothetically true in the current database state. The other two rules in the
group below specify the symmetry of !opposes and the fact that literals H and negH are
in conflict with each other.

$candidate(R):- body(R, B)⊗ ♦call(B). (3)
!opposes(X, Y ) :- !opposes(Y, X). (4)

!opposes(handle(__ , H), handle(__ , neg H)). (5)

A rule is compromised if it is defeated, and it is disqualified if it transitively refutes itself.
Here the predicate $refutestc denotes the transitive closure of $refutes.

$compromised(R) :- $refuted(R) ∧ $defeated(R).
$disqualified(X) :- $refutestc(X, X).
$refutestc(X, Y ) :- $refutes(X, Y ).
$refutestc(X, Y ) :- $refutestc(X, Z) ∧ $refutes(Z, Y ).

(6)

As in [17], one can define other versions of the above argumentation theory, which differ
from the above in various edge cases. However, defining such variations is tangential to the
main focus of the present paper.

6 Implementation, evaluation and related work

We implemented an interpreter for T RDA in XSB 3 and tested it on a number of examples,
including Example 2.1. The goal of these tests was to demonstrate how preferential heuristics
can be expressed in T RDA and to evaluate their effects on the efficiency of planning. Table
1 shows how the preferential heuristics of Example 2.1 fare in our tests. We can see that
the number of plans being searched decreases dramatically and so does the time and space.

3 http://xsb.sourceforge.net/

http://xsb.sourceforge.net/
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Table 1 Planing in blocks world with and without preferential heuristics

World size No heuristics Preferential heuristics

30 blocks
Plans 4060 28
Time(sec.) 2.390 0.438
Space(kBs) 3730 90

40 blocks
Plans 9880 38
Time(sec.) 7.000 1.219
Space(kBs) 8562 120

50 blocks
Plans 19600 48
Time(sec.) 17.109 2.938
Space(kBs) 16347 150

However, the time spent on generation of all those plans is not proportional to their number
because our implementation takes advantage of sharing of partially constructed plans among
the different searches due to tabling [9] even without the heuristics.

Although a great number of works deal with defeasibility in logic programming, few have
goals similar to ours: to lift defeasible reasoning from static logic programming to a logic for
expressing knowledge base dynamics, such as T R. As far as the actual chosen approach to
defeasible reasoning is concerned, this work is based on [17], and extensive comparison with
other works on defeasible reasoning can be found there. Although our work is not about
planning but rather about a general language for declarative programming with defeasible
actions, the closest works that we can possibly compare with are the works on planning
with preferences. T RDA is quite different from [15] in that it is a full-fledged logic that
combines both declarative and procedural elements, while [15] is geared towards specifying
preferences over planning solutions.Whereas T RDA deals with infinite domains and allows
function symbols, the approach in [15] considers only planning with complete information on
finite domains and deterministic actions. Thus, although the two approaches have common
applications in the area of planning, they target different knowledge representation scenarios.
Both the temporal and the choice preferences presented in [7]can be expressed in the T RDA

framework, although due to the difference in the semantics the exact relationship needs
further study. The framework [8] for planning with cost preferences assigns a numeric cost
to each action and plans with the minimal cost are considered to be optimal. Clearly, this
work uses a completely different type of preferences and tackles a different and very specific
problem in planning, which we do not address.

7 Conclusions

This paper proposes a theory of defeasible reasoning in Transaction Logic, an extension
of classical logic for representing both declarative and procedural knowledge. This new
logic, called T RDA, extends our prior work on defeasible reasoning with argumentation
theories from static logic programming to a logic that captures the dynamics in knowledge
representation. We also extend the Courteous style of defeasible reasoning [12] to incorporate
actions, planning, and other dynamic aspects of knowledge representation. We believe that
T RDA can become a rich platform for expressing heuristics about actions. The paper also
makes a contribution directly to the development of Transaction Logic itself by defining the
well-founded semantics for it and for its T RDA extension—a non-trivial adaptation of the
classical well-founded semantics of [16].
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Abstract
In the context of multi-agent hypothetical reasoning, agents typically have partial knowledge
about their environments, and the union of such knowledge is still incomplete to represent the
whole world. Thus, given a global query they collaborate with each other to make correct in-
ferences and hypothesis, whilst maintaining global constraints. Most collaborative reasoning
systems operate on the assumption that agents can share or communicate any information they
have. However, in application domains like multi-agent systems for healthcare or distributed
software agents for security policies in coalition networks, confidentiality of knowledge is an ad-
ditional primary concern. These agents are required to collaborately compute consistent answers
for a query whilst preserving their own private information. This paper addresses this issue show-
ing how this dichotomy between "open communication" in collaborative reasoning and protection
of confidentiality can be accommodated. We present a general-purpose distributed abductive lo-
gic programming system for multi-agent hypothetical reasoning with confidentiality. Specifically,
the system computes consistent conditional answers for a query over a set of distributed normal
logic programs with possibly unbound domains and arithmetic constraints, preserving the private
information within the logic programs. A case study on security policy analysis in distributed
coalition networks is described, as an example of many applications of this system.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence
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1 Introduction

In the context of multi-agent reasoning, each agent has its own partial knowledge about the
world together with local and/or global constraints. Given a reasoning task, agents interact
and compute answers that are consistent with respect to the global constraints. When the
union of all the agent knowledge is still incomplete to represent the whole world, hypothetical
reasoning is needed, and agents need to collaborate to make correct inferences and hypotheses
given a global query. Previously, a general-purpose system called DAREC has been developed,
which combines distributed problem solving and abductive logic programming, for multi-agent
hypothetical reasoning. In DAREC, agent knowledge is represented as a normal logic program,
and a distributed abductive logic programming algorithm is used to coordinate the agents’
local reasoning tasks. Through this algorithm, agents compute local conditional answers, by
assuming undefined knowledge needed to maintain their (global) constraints, and coordinate
their proofs through consistency checks over their respective assumptions. DAREC is the first
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distributed abductive system that can compute non-ground answers and handle arithmetic
constraints. In DAREC, all knowledge is considered public, so, during collaboration, agents
can communicate any information they may have. However, in application domains such as
simulation of policy-based distributed systems for decentralised policy analysis, confidentiality
is an additional primary concern – agents may contain private information that cannot be
shared with others during, or after, the collaborative reasoning. This concern imposes an
extra challenge to agent interactions during the reasoning process, as agents must decide
what to disclose between their communications.

This paper addresses the new challenge by extending the DAREC system to support multi-
agent hypothetical reasoning with confidentiality. It provides two main contributions. At
knowledge representation level the logical language and the distributed abductive framework
have been extended to allow modelling of private agent knowledge. At algorithmic level, the
distributed proof procedure has been customised with a safe yet efficient agent interaction
protocol, which prevents private knowledge being passed between agents and allows some
degree of concurrent computation. From the operational point of view, our new distributed
abductive algorithm, called DAREC2 is a coordinated state rewriting process, consisting
of local abductive inferences by the agents and coordination of these local inferences. The
local inference is a goal-directed reasoning process, where a current agent (i) solves as many
sub-goals of the query as possible, using its own knowledge, and (ii) collects those sub-goals
solvable only by other agents, and the constraints that must be satisfied by all agents to
guarantee global consistency of the final answer. The latter are generated from constructive
negations and arithmetic constraints during the local inference process. They can be reduced
to a set of inequalities and arithmetic constraints and be handled by external Constraint Logic
Programming (CLP) solvers, enabling also reasoning over unbounded domains. The collected
sub-goals and constraints, together with the hypotheses made during the local inference,
are encapsulated into a token state, which is then passed around to other agents for further
processing once all private sub-goals of the current agent have been solved by the agent. This
guarantees that confidential information is not included in the token state and not passed to
other agents. The coordination of state-passing implements synchronised backtracking, whilst
enabling concurrent computation between local inferences. The coordination allows two types
of agent interaction: positive and negative. In the case of a positive interaction, the token
state is directed to a suitable agent (i.e. who may help to solve some pending sub-goals),
whereas for negative interactions, the token state is passed among all agents enforcing each
to check the pending constraints. Application dependent strategies may be adopted to
interleave/combine such interactions in order to reduce communication overheads. The new
system is implemented in Prolog together with a benchmarking test-bed environment. The
main intended use of DAREC2 is as a decoupleable multi-purpose tool for larger multi-agent
systems (MAS). For example, each DAREC2 agent could be implemented as a reactive
reasoning module of an agent in a larger MAS to support other agent/system functionalities
(e.g., distributed reasoning over BDI agents’ belief stores [12]). Alternatively, the whole
DAREC2 system could be implemented as a “simulator” to verify properties of a target MAS,
such as the case study example described in this paper for decentralised policy analysis.

The paper is organised as follows. Section 2 discusses related work, Section 3 formalises the
notion of a multi-agent abductive reasoning problem, and Section 4 describes the DAREC2

algorithm. A case study in the context of distributed policy analysis to exemplify the
confidentiality aspect in real-world applications is described in Section 5. Finally, conclusion
and future work are given in Section 6.
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2 Related Work

Distributed abductive reasoning has previously been studied, such as in the ALIAS system [2],
the DARE system [7], MARS [1] and DAREC [8]. ALIAS focuses on local consistency, i.e.,
the global answer is consistent with each agent’s knowledge individually, where the other
three systems focus on global consistency, i.e, the global answer is consistent with the union
of all the agent knowledge. Both ALIAS and DARE deploy distributed abductive algorithms
that are based on the Kakas-Mancarella proof procedure [5], and can only compute ground
proofs/answers. MARS uses the consequence finding algorithm [9] for local computation, and
is mainly for computing a consistent superset of the agents’ existing hypotheses. DAREC,
whose distributed abductive algorithm is based on ASystem [10], is the first system that
can compute non-ground proofs/answers for possibly unbound domains and with arithmetic
constraint satisfaction support. None of these systems considers the confidential aspect of
agent knowledge. Our system extends DAREC. In addition to the inherited features, it allows
private and public agent knowledge to be explicitly expressed, and guarantees confidentiality
during collaborative reasoning. Specifically, the new system introduces askable literals that
can be shared between agents (i.e., to represent public knowledge), and new local inference
rules for solving askable sub-goals. An agent interaction protocol, consisting of special goal
selection and agent selection strategies, is enforced to preserve confidentiality while reducing
communications and increasing concurrent computation.

In DAREC2, an askable literal is A@S where A is an atom and S is an agent identifier
indicating where the askable sub-goal should be solved. This language feature is most closed
to one proposed in speculative computation [11]. However, whereas in speculative computation
when an askable sub-goal is selected, the agent identifier must be ground, in our system it
can also be a variable with quantifier.

3 Knowledge Representation

Standard logic programming notations are employed throughout the paper. We use ~t
to represent a vector of arguments. Constraint atoms are those formed with constraint
predicates from CLP for a particular domain, such as {∈, <,≤, >,≥}. A clause is either a
rule φ← φ1, . . . , φn with n ≥ 0, or a denial ← φ1, . . . , φn with n > 0, where φ1, . . . , φn is a
conjunction of literals called the body, and in the case of a rule φ is an atom called the head.
All variables appearing in a clause are universally quantified with the scope the whole clause
implicitly, unless stated otherwise. A query is a conjunction of literals, whose variables are
existentially quantified with the scope the whole conjunction implicitly.

In abductive logic programming, predicates of atoms that are not equality or constraint are
divided into abducible predicate and non-abducible predicate. An atom with (non-)abducible
predicate is called an (non-)abducible (atom). An abductive (logic programming) framework
is a tuple 〈Π,AB, IC〉, where Π is a finite set of rules called the background knowledge, AB is
a set of abducible predicates, and IC is a finite set of denials, each of which contains at least
one positive abducible, called the integrity constraints. Sometimes AB represents the set of
all abducible atoms. Without loss of generality, it is often assumed that no abducible appears
in the head of a rule in Π. Therefore, non-abducibles are also called defined atoms (or defined
in brief). Given a query Q, an abductive logic programming task consists of computing an
abductive answer 〈∆, θ〉, where ∆ is a set of abducibles, θ is a set of variable substitutions,
such that (1) Π ∪∆θ |= Q, (2) Π ∪∆θ |= IC, where |= is logical entailment under a selected
semantics. ∆ is called the hypotheses, or explanation, for the given query (i.e. observation).
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3.1 Multi-agent Confidential Abductive Framework
In this work, we focus on MAS’s with a fixed set of agents satisfying the following assumptions:

Each agent has a unique ID and has an abductive framework.
Agents have the same set of abducible predicates, which ensures they can only generate
hypotheses that are not defined or provable by others.
Agents can send peer-to-peer messages, i.e., the MAS communication channels form a
fully connected graph, eliminating the need for considering message routing.

As our current main focus is on the correctness of multi-agent hypothetical reasoning, we
further assume that the agents and the communication channels are reliable (i.e. no corruption
or loss of messages).

Let’s denote an agent’s abductive framework with the tuple F= 〈Π,AB, IC〉, where Π
and IC constitute together the agent’s local knowledge. We may use an agent’s identifier,
say i, to suffix the agent’s abductive framework and its components, i.e., Fi, Πi, ABi and
ICi. Non-abducible predicates of an agent can be private or public (askable). The former are
defined only in the agent background knowledge and cannot appear in the body of a rule of
any other agent1. Public predicates can only be defined in the agent background knowledge,
but can appear in the body of rules of other agents.

I Definition 1. An askable atom is p(~u)@ID where p(~u) is a non-abducible atom and ID
is the agent identifier where the predicate is defined.

Askable atoms p(~u)@ID that appear as the head of a rule in an agent’s background knowledge
have their ID ground with the agent’s identifier. Askable atoms that appear in the body of
a rule may have an unground agent identifier. The ID of an askable atom is therefore more
than just a syntactic alias. It denotes a variable that can be (appropriately) existentially
and universally quantified. Syntactically, an askable can be seen as a non-abducible with an
extra agent identifier argument. The negation of an askable ¬p(~u)@ag is read as ¬(p(~u)@ag),
meaning “p(~u) should not be provable by agent ag”.

I Definition 2. The global abductive framework is 〈Σ, F̂〉, where Σ is the set of all
agent identifiers and F̂ is the set of agent abductive frameworks, i.e. {Fi | i ∈ Σ}. For any
pair of agents i, j ∈ Σ, ABi = ABj .

I Definition 3. Global Abductive Answer Given a global abductive framework 〈Σ, F̂〉
and a query Q, let Π̂ =

⋃
i∈Σ Πi, let ÎC =

⋃
i∈Σ ICi, and let ÂB =

⋃
i∈ΣABi. A pair 〈∆, θ〉

is a global abductive answer for Q if and only if:
(1) ∆θ ⊆ AB; (2) Π̂ ∪∆θ |= Qθ; (3) Π̂ ∪∆θ |= ÎC

where θ is the variable substitutions over the variables in Q, and |= is the logical entailment
of a selected semantics for the logic program formed by Π̂ ∪ ÎC.

4 Distributed Algorithm

Given a global abductive framework (of a MAS) and a query, agents must collaborate to
compute global abductive answers, while keeping there private information confidential.

1 Name clashes between private predicates of different agents are assumed to have been resolved.
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I Definition 4. The collaboration of agents to compute global abductive answers for a given
query is a confidential reasoning if and only if no private predicate and its definitions of any
agent can be seen or inferred by another agent during or after the collaboration.

The DAREC2 distributed abductive algorithm satisfies this property. Operationally, the
distributed computation is a sequence of coordinated local abductive computations, i.e.,
distributed abduction = local abduction + coordination.

4.1 Local Abduction
Local abduction is a top-down (goal-directed) abductive inference, which can be described
as a state rewriting process. A state contains intermediate computational results, and
has four components: (1) a remaining goals store – a goal is either a literal or a denial
“∀ ~X ← φ1, . . . , φn” (n > 0), where ~X is the set of variables in the φ1, . . . , φn that are
universally quantified with the scope the whole denial, (2) a hypotheses store containing a
set of collected abducibles, (3) a constraints store containing a set of collected and consistent
inequalities and arithmetic constraints, and (4) a denials store containing collected denial
goals whose left-most literal in the body is an abducible. These denials represent the
conditions for collecting the instances of their left-most abducibles and are collected during
the inference. A state also contains abducible tagging information – an abducible in the
hypotheses store is tagged by an agent’s identifier if the agent has not checked it against its
integrity constraints. All free variables in a state are existentially quantified with the scope
the whole state implicitly. A solved state is one that has no remaining goal and no tagged
abducible. At each inference step, a goal is selected from a non-solved state, and a literal is
selected from the goal if the goal is a denial. Safe goal selection strategies are adopted, in
which the current agent (i.e. the one performing the local abduction) can select:

an askable goal, only if its agent ID is the current agent’s ID or a variable;
an askable from a denial goal, only if its agent ID is the current agent’s ID or a variable;
an abducible from a denial goal, only if there is no private non-abducible literal in the
denial goal;
inequalities, arithmetic constraints and negative literals, only if they do not contain
universally quantified variables;

The first three requirements guarantee the confidentiality (see later), whereas the last
requirement avoids floundering. The next state is obtained after applying a local inference
rule to the selected goal. These rules are based on the ASystem [6] inference rules, with
extensions to handle askables and tagging information, where ag is the current agent’s ID:

if an askable goal p(~u)@ID is selected:
if ID is ag, it is resolved with a rule in the agent’s background knowledge;
otherwise, ID must be an existentially quantified variable, and the goal can be replaced
with either p(~u)@ag, if ID = ag is satisfiable, or with ID 6= ag, p(~u)@ID. Semantically,
this means that the askable can be either solved by the current agent, or by a different
agent (later).

if an askable p(~u)@ID in a denial goal is selected:
if ID is ag, it is reduced as being non-abducible in a denial goal;
if ID is an existentially quantified variable, then either the denial goal is replaced with
one obtained by replacing the askable with p(~u)@ag if ID = ag is satisfiable, or the
denial goal is kept but an inequality goal ID 6= ag is added. Semantically, this means
that the denial can be either solved by the current agent on p(~u)@ag, or by a different
agent ag′ on p(~u)@ag′ (later);
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if ID is a universally quantified variable with the scope the denial, then the denial
goal is replaced by the set of denial goals obtained by binding ID to all the agent
identifiers. Semantically, this means the denial goal must be solved by all the agents.

if an abducible is collected to the hypotheses store by the current agent, it is tagged with
all other agents’ identifiers;
if there is an abducible in the hypotheses store that is tagged by the current agent’s
identifier, the set of denial goals generated by resolving the abducible with the current
agent’s integrity constraints is added to the remaining goals store, and the tag is removed.

Each inference step may result in zero or more next states. A state is called a transitional
state if any of the following conditions is satisfied: (1) it contains only askable goals, or
denial goals consist of only askables, where none of the askables has an agent ID equal to the
current agent’s identifier; (2) it has no remaining goal but at least one collected abducible is
tagged. A state is called a failure state if it is not a solved or transitional state, and no local
inference rule is applicable to a selected goal or no goal can be selected. Thanks to the safe
goal selection strategies, the whole local state rewriting process can be visualised as a local
abductive derivation tree, whose leaf states can only be failure, transitional and solved states.

4.2 Coordination
When a query is received by an agent, the agent starts a local abduction with an initial
state, whose pending goals are the literals in the query and all other stores are empty. If
a transitional state is derived, it can be passed to a suitable agent for further processing
(i.e., the recipient agent will start another local abduction with the state). If a solved state
is derived, an answer 〈∆, θ〉, where ∆ is the set of collected abducibles and θ is the set of
variable substitutions induced by the constraints store, is returned to the query issuer.

4.2.1 Transitional States and Confidentiality
A transitional state is one that can be passed between agents. It can be seen as a specification
of agent collaboration – intuitively, the hypotheses store and the constraints store record the
partial answer, the pending goals are the remaining reasoning tasks to be solved by relevant
agents, the denials store includes the global integrity constraints that must not be violated by
the agents during their reasoning, and finally the abducible tagging information is used to
ensure consistency checks on the abducibles by all the agents, which may themselves result
in new global integrity constraints. Under the safe goal selection strategies (1) an agent is
forced to process a state as much as possible, and (2) no private non-abducible predicates
can appear in transitional states, so preserving confidentiality.

4.2.2 State Recipient Agent Selection
When a transitional state is derived by an agent, a recipient agent is identified so that the
state can be passed on for further processing. This uses a helpfulness ranking algorithm.
We say “an agent ag may help with an askable p(~u)@ID” if ID is ag’s identifier or ID is a
variable and ID = ag is satisfiable; and we say “an agent ag may help with a (collected)
abducible” if the abducible is tagged with ag’s identifier. Given a transitional state, we
compute the helpfulness of each agent in the system by summing up the total number of
askable goals, denial goals (containing an askable) and abducibles that the agent may help
with, and sort the agents according to the their helpfulness. One of the agents with highest
value of helpfulness is then selected as the state recipient. However, it may occur that no
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agent can help with a transitional state (i.e., agents’ helpfulness value is 0). This may happen
when the state contains an askable goal, p(~u)@ID, with ID being a variable and has been
passed around all agents once but no agent is able to solve it by bounding ID to its own
identifier. In this case, the transitional state is treated as a failure state.

4.2.3 Backtracking with Concurrent Computation
Each local abduction constructs a local abductive derivation tree in search for solved states.
If a transitional state is derived, this is sent out and another local abduction is initiated by a
different agent. It can be shown that merging all local derivation trees would give a global
abductive derivation tree equivalent to the one that would be constructed by the ASystem
algorithm for the same query but over the merged agents’ background knowledge and integrity
constraints. This is, in fact, the formal basis for the correctness of our distributed algorithm.
However, in practice such centralised reasoning is not always feasible and from an operational
perspective we are interested in coordinations of local abductions that strike a balance
between performance and communication. In our system, after an agent sends a transitional
state to another agent, it can continue its local abduction while the recipient is working on
a different local abductive reasoning task. Agents then essentially construct and explore
different parts of the global derivation tree concurrently, providing a better performance than
a fully sequential reasoning process. Each agent may derive more than one transitional state
during its local abduction. If transitional states are sent as soon as they are derived, the
communication channels between agents may quickly “flood” and agents become overloaded,
as they may receive several states and perform several unfinished local abductions at the
same time. To address these issues without sacrificing concurrent computation, a token based
synchronised backtracking coordination strategy is adopted:
1. when the query issuer sends a query to an agent, it also sends a token. The agent creates

the initial state and starts a local abduction;
2. during the local abduction, if the agent derives a transitional state,

a. if it has the token, then it sends out the transitional state with the token (i.e., it will
no longer have the token);

b. otherwise, it buffers the transitional state;
and in both cases it continues the local abduction;

3. once an agent receives a transitional state and the token, it initiates a local abduction
and keeps the token;

4. if an agent derives a solved state, it sends the extracted answer to the query issuer
regardless if it has the token or not, and continues the local abduction (i.e., to search for
more solutions);

5. if an agent finishes a local abduction (i.e., finishes constructing and exploring a local
abductive derivation tree), then
a. if it has the token, it returns the token as a backtracking signal to the agent who

passed the transitional state;
b. otherwise, it waits for the backtracking signal;

6. after an agent receives a backtracking signal (i.e., it regains the token),
a. if there are buffered transitional states, then one of them is sent out with the token

(i.e., the agent loses the token again);
b. otherwise, the agent stores the token and continues the local abduction if it has not

yet completed, or the agent sends a backtracking signal as in 5(a) if finished;
7. if the query issuer no longer needs further answers, it sends a discard message to all the

agents, so they will stop all relevant local abductions and remove relevant buffered states.
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Note that with such a coordination strategy, an agent may still receive a transitional state
while it still has some unfinished local abduction. Because of the synchronised backtracking,
the current local abduction computation can be interrupted until a new local abduction is
finished, and then resumed.

4.2.4 Soundness and Completeness
The distributed algorithm is sound and complete only with respect to a three-valued se-
mantics [13] for which, given a global query Q and a global abductive answer 〈θ,∆〉, the
interpretation (completion) of all abducibles (i.e. AB) is defined as I∆θ = {At | A ∈ ∆θ∧A ∈
AB} ∪ {Af | A /∈ ∆θ ∧A ∈ AB}.

I Theorem 5. (Soundness) Given a global abductive framework 〈Σ, F̂〉 and a global query Q,
if there is a successful global derivation for Q with answer 〈∆, θ〉, then 1.

⋃
i∈Σ Πi∪I∆θ |=3 Qθ,

and 2.
⋃
i∈Σ Πi ∪ I∆θ |=3

⋃
i∈Σ ICi, where |=3 is the logical entailment under the three-valued

semantics for abductive logic programs [13].

I Theorem 6. (Completeness) Let 〈Σ, F̂〉 be a global abductive framework and Q a global
query, suppose there is a finite global derivation tree T for Q. If

⋃
i∈Σ Πi ∪

⋃
i∈Σ ICi ∪ ∃Q is

satisfiable under the three-valued semantics, then T contains a successful branch.
Our DAREC2 system is a customisation of the DAREC system, i.e., special goal selection

and agent interaction strategies are adopted. With these strategies, askable atoms can be seen
as normal non-abducible atoms where the agent ID argument has the set of (the identifiers)
the agents as domain. The DAREC system is sound and complete with respect to any goal
selection and agent interaction strategies, and therefore our system inherits these properties
(the reader is referred to [8] for outline proofs). The choice of three-valued completion
semantics instead of other stronger semantics (e.g. stable model semantics [4]), is because
top-down inference procedures, like abduction, may suffer from looping. In practice, looping
can be avoided either by implementing a depth-bounded search strategy or by ensuring that
the overall logic program satisfies certain properties (e.g., abductive non-recursive [14]).

4.2.5 Implementation
Our system has been implemented with YAP Prolog 6 2. An inequality solver extending the
standard unification algorithm has also been implemented. For example, given f(1, p(X)) 6=
f(Y, p(2)), the solver will answer 1 6= Y or X 6= 2. The system uses the finite domain
constraint solver (CLP(FD)) by YAP and the inequality solver for handling the arithmetic
constraints and inequalities during the local inferences.

Agents in the system use TCP messages for peer-to-peer communications. For optimisation
purposes, the system allows the option of using a “yellow page directory”. When enabled, each
agent maintains a copy of the directory to record agent advertisements. An advertisement
contains an agent’s identifier, the set of askables defined by the agent, and the set of abducibles
regulated by the agent (i.e., the abducible that appears in an integrity constraint of the
agent). When a new agent joins the system, it broadcasts its advertisements, so they are
added to all other agents’ directory. When an agent leaves, its advertisements are removed
from everyone’s directory. The directory can be used to further reduce communications and
local computations: (1) abducibles no longer need to be checked (tagged) by agents that do

2 http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/
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not regulate them; (2) denials, with an askable whose agent ID is a universally quantified
variable, no longer need to be checked by agents that do not know the askable; (3) in deciding
recipient agents for a transitional state, agents that do not define the askable in question, are
no longer considered. Note that the directory does not contain private atoms of any agent,
and therefore its use does not affect the confidentiality property of the system.

5 Distributed Policy Analysis

A policy analysis framework has been proposed in [3]. The framework provides a specification
language to represent security policies (authorisations and obligations), and system domain,
as normal logic programs. Various policy analysis tasks can be solved using abduction.
Modality conflict, for instance, can be defined as an abductive reasoning task where the
goal is the negation of the property to analyse and the conditional answer is an example of
system execution that proves this goal, i.e. a counterexample to the property. An example
of analysis of separation of duty (SoD) in the context of security policies distributed over
networks is given below.
I Example 7. In a Role-based Access Control (RBAC) system, the permission of an action depends
on the role(s) assigned to the subject. Assume a RBAC corporate network with one team agent
(team1) and two administrator agents (admin1 and admin2). The team1 is responsible for taking
orders which can only be completed by an initiator and a verifier together, and who cannot be the
same person, (i.e. the SoD concept). Before team1 can accept an order, it needs to check whether it
can have clerks with suitable roles available to perform the two actions. The role assignments can
only be performed by independent administrators, whose duties/privileges are also separated – they
manage different role assignments and have without centralising the knowledge of the agents.

A distributed network, such as in the example, often consists of multiple nodes, each of
which may have its own policies that are not shareable with others, but which may depend
on each other. Centralised policy analysis for the whole network is not possible because of
the confidentiality concern. Our system can be applied directly to this class of problems as a
simulator of the distributed network.

Let’s elaborate the example further. For simplicity, we only describe the policies relevant
to the aforementioned analysis tasks. The team agent has local knowledge about team
members and administrators, as well as the effects of roles assignments. It also has a rule
specifying that role assignments are decided by the administrators. The system domain is
dynamic, as executed actions may change its properties, and it is modelled using a set of
domain independent Event Calculus axioms. Thus, Πteam1 contains at least the following
rules (by convention, Su, Ta, Ac and F are variables of the sorts subjects, targets, actions
and fluents respectively, and T, T1, T2, . . . are variables of the sort time):

holds(F, T )← initially(F ), 0 < T,¬clipped(0, F, T ).
holds(F, T )← do(Su, T a, Ac, T 1), initiates(Su, T a, Ac, F, T 1),

0 < T 1, T 1 < T,¬clipped(T 1, F, T ).
clipped(T 1, F, T )← do(Su, T a, Ac, T 2), terminates(Su, T a, Ac, F, T 2),

T 1 < T 2, T 2 < T.

do(Su, T a, Ac, T )← Ac = assign(Role),
request(Su, T a, Ac, T ), permitted(Su, T a, Ac, T )@Su.

initiates(Su, T a, assign(Role), hasRole(T a, Role), T )←
holds(clerk(T a), T ), holds(admin(Su), T ).

holds(clerk(X), T )← X ∈ {alex, bob}.
holds(admin(X), T )← X ∈ {admin1, admin2}.
holds(canInitiateOrder(X), T )@team1← holds(hasRole(X, initiator), T ).
holds(canV erifyOrder(X), T )@team1← holds(hasRole(X, verifier), T ).
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One of the administrators, admin1, can assign the verifier role to users. It has a
blanket policy rule “a user can be assigned a role if it is permitted by at least one local policy”.
Blanket policy rules that can be used for modelling conflict resolutions are also private to
the agent, e.g., in admin1, positive authorisation policies (rules with permitted as head)
has higher priority than negative authorisation policies (rules with denied as head). In
addition, admin1 maintains a local trust level database of the users and has a local positive
authorisation policy “the verifier can be assigned to a user if the user’s trust level is greater
than 4”. Thus, Πadmin1 contains at least the following rules:

permitted(admin1, T a, assign(Role), T )@admin1←
holds(managed_role(Role), T ), permitted(admin1, T a, assign(Role), T ).

permitted(admin1, T a, assign(verifier), T )← holds(trust_level(T a, L), T ), L > 4.

holds(trust_level(alex, 3), T ).
holds(trust_level(bob, 5), T ).
holds(managed_role(verifier), T ).

The other administrator, admin2, can assign the initiator role to users. It has a different
blanket policy rule “a user can be assigned a role if none of the local policies denies it” (i.e.,
negative authorisation has higher priority). It also tries to implement SoD by having a local
negative authorisation policy “a user cannot be assigned to the initiator role if it has been
assigned the conflicting verifier role”. Thus, Πadmin2 contains at least of the following:

permitted(admin2, T a, assign(Role), T )@admin2←
holds(managed_role(Role), T ),¬denied(admin2, T a, assign(Role), T ).

denied(admin2, T a, assign(initiator), T )←
holds(conflicting(initiator, Role), T ), request(Su, T a, assign(Role), T 1), T 1 < T.

holds(managed_role(initiator), T ).
holds(conflicting(initiator, verifier), T ).

To check if team1 can fulfil a task with the administrators under the SoD constraint, we can use
the query ∃X,Y, T, Z.[holds(canInitiateOrder(X), T )@Z, holds(canV erifyOrder(Y ), T )@Z
∧X 6= Y ]. Our system can succeed the query and find one answer: Ans1 = request(admin1, bob,
assign(verifier), T1)∧request(admin2, alex, assign(initiator), T2)∧T1 < T∧T2 < T∧Z =
team1. To check if the existing administrators’ policies can guarantee the SoD security prop-
erty of the overall system, i.e., “it is not possible that someone can complete an order alone”, we
can use the (negated) query ∃X,T, Z.[holds(canInitiateOrder(X), T )@Z, holds(canV erify−
Order(X), T )@Z]. Our system can also succeed this query and find one answer: Ans2 =
req(admin1, bob, assign(verifier), T1)∧req(admin2, bob, assign(initiator), T2)∧T1 ≤ T2∧
T2 < T ∧Z = team1. Therefore, the existing policies are not sufficient to guarantee the SoD
property, and the administrators have to revise their policies.

5.1 Benchmarking
To study the scalability of DAREC2 in distributed policy analysis, an auto-testing environment
has been developed. Given a set of tunable parameters, the environment is able to generate
policy rules and action effect rules with randomised conditions conforming to the language
in [3]. These rules are then distributed among a specified number of agents. Note that the
language in [3] guarantees the overall system model (as a logic program) is abductive acyclic
and hence the executions of policy analysis queries always terminate. For each distributed
computation, the total number of messages exchanged between agents, the average ping
time and the total time for computing all solutions for a given query are recorded. For
example, empirical results (e.g., 5 agents, each having about 250 rules; each rule body has on
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average 10 conditions, 3 of which are askables) showed that for about two thirds of the tested
queries, the DAREC2 computation is about 1.26∼6.17 times faster than a computation using
abduction over the centralised rules with an average ping time between agents being 0.015ms.
This was expected as concurrent computation was performed during collaborative reasoning.

6 Conclusion and Future Work

Confidentiality in knowledge is one important constraint that makes a multi-agent reasoning
problem challenging, and it is also a very common assumption in MAS’s. The main
contributions of this paper include (1) a logical framework for modelling the distributed
knowledge of a multi-agent system where the agent knowledge bases are correlated and have
private information, and (2) a top-down distributed abductive algorithm which allows agents
to perform collaborative hypothetical reasoning without disclosing private information. By
limiting the set of abducible predicates to be empty, the system becomes a general purpose
distributed deductive theorem prover that performs constructive negation. This feature
is very useful when dealing with logic programs with unbounded domains (e.g., Πadmin2
in Example 7) that cannot be implemented using bottom-up algorithms like answer set
programming. The system has many potential applications including distributed security
policy analysis. As a future work, we aim to perform more benchmarking to investigate the
performance under different safe goal selection strategies, agent selection strategies and agent
interaction strategies, and extend our system to handle private abducible predicates.
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Abstract
The paper presents a system for knowledge representation and coordination, where autonomous
agents reason and act in a shared environment. Agents autonomously pursue individual goals,
but can interact through a shared knowledge repository. In their interactions, agents deal with
problems of synchronization and concurrency, and have to realize coordination by developing
proper strategies in order to ensure a consistent global execution of their autonomously derived
plans. This kind of knowledge is modeled using an extension of the action description language B.
A distributed planning problem is formalized by providing a number of declarative specifications
of the portion of the problem pertaining a single agent. Each of these specifications is executable
by a stand-alone CLP-based planner. The coordination platform, implemented in Prolog, is easily
modifiable and extensible. New user-defined interaction protocols can be integrated.
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1 Introduction

Representing and reasoning in multi-agent domains are two of the most active research
areas in multi-agent system (MAS) research. The literature in this area is extensive, and
it provides a plethora of logics for representing and reasoning about various aspects of
MAS, e.g., [13, 9, 17, 15, 7]. Several logics proposed in the literature have been designed
to specifically focus on particular aspects of MAS, often justified by a specific application
scenario. This makes them suitable to address specific subsets of the general features required
to model real-world MAS domains. The task of generalizing these proposals to create a
uniform and comprehensive framework for modeling different aspects of MAS domains is
an open problem. We do not dispute the possibility of extending the existing proposals in
various directions, but the task is not easy. Similarly, a variety of multi-agent programming
platforms have been proposed, mostly in the style of multi-agent programming languages,
e.g., Jason, ConGolog, 3APL, GOAL [1, 4, 3, 10], but with limited planning capabilities.

Our effort here is on developing a multi-agent system for knowledge representation based
on a high-level action language. The starting point of this work is the action language
BMV [6]; this is a flexible single-agent action language, that generalizes the action language
B [8], with support for multi-valued fluents, non-Markovian domains, and constraint-based
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formulations (which enable, for example, the formulation of costs and preferences). In this
work, we propose a further extension to support MAS scenarios. The perspective is that of
a distributed environment, with agents pursuing individual goals but capable of interacting
through shared knowledge and concurrent actions. A first step in this direction has been
described in the BMAP language [5]; BMAP extends BMV providing a multi-agent action
language with capabilities for centralized planning. In this paper, we embed BMAP into a truly
distributed multi-agent platform. The language is extended with Communication primitives
for modeling interactions among Autonomous Agents. We refer to this language as BAAC.
Differently from [5], agents can have private goals and are capable of developing independent
plans. Agents’ plans are developed in a distributed fashion, leading to replanning and/or to
the introduction of coordination actions to enable a consistent global execution. The system
is implemented in SICStus Prolog, using the libraries clpfd and linda.

2 Syntax of the Multi-agent Language BAAC

The signature of the language BAAC consists of a set G of agent names, used to identify the
agents in the system, a (unique) set F of fluent names, a set A of action names, and a set V
of values for the fluents in F—we assume V = Z. The behavior of each agent a is specified
by an action description theory Da, i.e., a collection of axioms of the forms described next.

Name and priority of the agent a are specified in Da by agent declarations:

agent a [ priority n ] (1)

where n ∈ N. 0 (default value) denotes the highest priority. Priorities might be used to
resolve conflicts among actions of different agents. Agent a can access only those fluents
that are declared in Da by axioms of the form:

fluent f1, . . . , fh valued dom (2)

with fi ∈ F , h ≥ 1, and dom ⊂ V is a set of values representing the admissible values for
f1, . . . , fh (possibly represented as an interval [v1, v2]). We refer to these fluents as the “local
state” of agent a. Fluents accessed by multiple agents are assumed to be defined consistently.

I Example 1. Let us specify a domain inspired by volleyball. There are two teams: black and
white, with one player in each team; let us focus on the domain for the white team (Sect. 4
deals with the case that involves more players). We introduce fluents to model the positions
of the players and of the ball, the possession of the ball, the score, and a numerical fluent
defense_time. All players know the positions of all players. Since the teams are separated
by the net, the x-coordinates of a black and white players must differ. This can be stated by:

agent player(white,X) :- num(X).
known_agents player(black,X) :- num(X).

fluent x(player(white,X)) valued [B,E] :- num(X), net(NET),B is NET+1, linex(E).
fluent x(player(black,X) valued [1,E] :- num(X), net(NET),E is NET-1.
fluent y(A) valued [1,MY] :- player(A), liney(MY).
fluent x(ball) valued [1,MX] :- linex(MX).
fluent y(ball) valued [1,MY] :- liney(MY).
fluent hasball(A) valued [0,1] :- agent(A).
fluent point(T) valued [0,1] :- team(T).
fluent defense_time valued [0,1].

team(black). team(white). num(1). linex(11). net(6). liney(5).

where linex, and liney are the field sizes, and net is the x-coordinate of the net. �
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Fluents are used in Fluent Expressions (FE), which are defined as follows:

FE ::= n | f t | f@r | FE1 ⊕ FE2 | − (FE) | abs(FE) | rei(C) (3)

where n ∈ V, f ∈ F , t ∈ {0,−1,−2,−3, . . . }, ⊕ ∈ {+,−, ∗, /, mod}, and r ∈ N. FE is referred
to as a timeless expression if it contains no occurrences of f t with t 6= 0 and no occurrences
of f@r. f can be used as a shorthand of f0. The notation f t is an annotated fluent expression.
The expression refers to the value f had −t steps in the past. An expression of the form f@r

denotes the value f has at the rth step in the evolution of the world (i.e., an absolute point in
time). We use the expression pair(FE1, FE2) to encode a pair, and the projection functions
x(·) and y(·) such that x(pair(a, b)) = a and y(pair(a, b)) = b. The reified expression rei(C)
represents a Boolean value indicating the truth value of the constraint C.

A Primitive Constraint (PC) is formula FE1 op FE2, where FE1 and FE2 are fluent expres-
sions, and op ∈ {=, 6=,≥,≤, >, <}. A constraint C is a propositional combination of PCs. As
a syntactic sugar, f++ (f--) denotes the primitive constraint f = f−1 + 1 (f = f−1 − 1).

An axiom of the form action x in Da, declares that the action x ∈ A is available to
the agent a. The same action name x can be used by different agents. A special action, nop
is always executable by every agent, and it causes no changes to any of the fluents.

I Example 2. The actions for each player A of Example 1 are:
• A : move(d) one step in direction d, where d is one of the eight directions: north, north-
east, . . . , west, north-west (i.e., analogous to the moves of a King on a chess-board).
• A : throw(d, f) the ball in direction d (same eight directions as above) with a strength
f varying from 1 to a maximum throw power (5 in our example).

Moreover, the player of each team is in charge of checking if a point has been scored (in such
case, he whistles). We write the actions as act([A],action_name) and state these axioms:

action act([A],move(D)) :- whiteplayer(A),direction(D).
action act([A],throw(D,F)) :- whiteplayer(A),direction(D),power(F).
action act([player(white,1)],whistle).

where whiteplayer, power, and direction can be defined as follows:
whiteplayer(player(white,N)) :- agent(player(white,N)).
power(1). power(2). power(3). power(4). power(5).
direction(D) :- delta(D,_,_). delta(nw,-1,1). delta(n,0,1). delta(ne,1,1).
delta(w,-1,0). delta(e,1,0). delta(sw,-1,-1). delta(s,0,-1). delta(se,1,-1). �

The executability of the actions is described by axioms of the form:

executable x if C (4)

where x ∈ A and C is a constraint, stating that C has to be entailed by the current state in
order for x to be executable. We assume that at least one executability axiom is present for
each action x. Multiple executability axioms are treated as a disjunction.

I Example 3. In our working example, we can state executability as follows:
executable act([player(white,1)],whistle) if [S eq 0] :- build_sum(S).
executable act([A],move(D)) if [hasball(A) eq 0, defense_time gt 0,

Net lt x(A)+DX, x(A)+DX leq MX, 1 leq y(A)+DY, y(A)+DY leq MY] :-
action(act([A],move(D))), delta(D,DX,DY), net(Net), linex(MX), liney(MY).

executable act([A],throw(D,F)) if
[hasball(A) gt 0,defense_time eq 0, 1 leq x(A)+DX*F, x(A)+DX*F leq MX,
1 leq y(A)+DY*F, y(A)+DY*F leq MY] :-

action(act([A],throw(D,F))), delta(D,DX,DY), linex(MX), liney(MY).

These axioms state that neither a player nor the ball can leave the field. build_sum is recurs-
ively defined to return the expression: defense_time + hasball(A1) + · · ·+ hasball(An)
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where A1, . . . , An are the players (i.e., player(white,1) and player(black,1)). Let us
observe that =, 6=,≤, <, etc. are concretely represented by eq,neq,leq,lt, respectively. �

The effects of an action are described by axioms (dynamic causal laws) of the form:

x causes Eff if Prec (5)

where x ∈ A, Prec is a constraint, and Eff is a conjunction of primitive constraints of the
form f = FE, where f ∈ F . The axiom asserts that if Prec is true w.r.t. the current
state, then Eff must hold after the execution of x. Since agents share fluents, their actions
may cause inconsistencies. A conflict happens when the effects of different actions lead to
an inconsistent state; a procedure has to be applied to resolve conflicts and determine a
consistent subset of the conflicting actions (Sect. 3.2). A failure occurs whenever an action x

cannot be executed as planned by an agent a as a consequence of the above procedure.

I Example 4. Let us state the effects of the actions in the volleyball domain. When the
ball is thrown, with force f , in direction d, it reaches a destination cell whose distance is as
follows: a) if d is either north or south then ∆X = 0, ∆Y = f ; b) if d is east or west then
∆X = f, ∆Y = 0; c) if d is any other direction, ∆X = f, ∆Y = f . As a further effect of
throw, the fluent defense_time is set (to 1 in our example).

actocc([A],throw(D,F)) causes hasball(A) eq 0 :- action(act([A],throw(D,F))).
actocc([A],throw(D,F)) causes defense_time eq 1 :- action(act([A],throw(D,F))).
actocc([A],throw(D,F)) causes pair(x(ball),y(ball)) eq

pair(x(A)−1+ F*DX,y(A)−1+ F*DY) :-
action(act([A],throw(D,F))), delta(D,DX,DY).

actocc([A],throw(D,F), causes hasball(B) eq 1
if [pair(x(B),y(B)) eq pair(x(A)+F*DX, y(A)+F*DY)] :-
action(act([A],throw(D,F))), player(B), neq(A,B),delta(D,DX,DY).

actocc([A],throw(D,F)) causes point(black) eq 1 if [x(A)+F*DX eq Net] :-
action(act([A],throw(D,F))), delta(D,DX,_), net(Net).

The effects of the other two actions move and whistle can be stated by:
actocc([player(white,1)],whistle) causes point(white) eq 1

if [x(ball) lt NET] :- net(NET).
actocc([player(white,1)],whistle) causes point(black) eq 1

if [NET lt x(ball)] :- net(NET).
actocc([A],move(D)) causes pair(x(A),y(A)) eq pair(x(A)−1+DX,y(A)−1+DY) :-

action(act([A],move(D))), delta(D,DX,DY).
actocc([A],move(D)) causes defense_time-- :- action(act([A],move(D))).
actocc([A],move(D)) causes hasball(A) eq 1

if [pair(x(ball),y(ball)) eq pair(x(A)+DX,y(A)+DY)] :-
action(act([A],move(D))), delta(D,DX,DY).

Let us observe here that we concretely used actocc instead of act. This has been introduced
to give the idea of the occurrence of an action. �

At least two perspectives can be followed, by assigning either a passive or an active role
to the conflicting agents during conflict resolution. In the first case, a supervising entity
is in charge of resolving the conflicts, and all the agents will adhere to the supervisor’s
decisions. Alternatively, the agents are in charge of reaching an agreement, possibly through
negotiation. The following declarations describe basic reaction policies the agents can use:

action x [OPT ] (6)

where:
OPT ::= on_conflict OC [OPT ] | on_failure OF [OPT ]

OC ::= retry_after T [provided C] | forego [provided C] | arbitration
OF ::= retry_after T [if C] | replan [if C] [add_goal C] | fail [if C]
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In these axioms one can also specify policies to be adopted when a failure occurs during
action execution. Reacting to a failure is a “local” activity the agent performs after the state
transition has been completed. In the axioms (6), one can specify different reactions to a
conflict (resp. a failure) of the same action, to be considered in their order of appearance.

Apart from the communications occurring among agents during conflict resolution, other
forms of “planned” communication can be modeled in an action theory. An agent might seek
help from other agents to make a constraint true. The request can be broadcast to all known
agents or sent to some specific agents. The agent can optionally offer a “reward” in case of
acceptance of the proposal. This allows us to model negotiations and bargaining.

request C1[ to_agent a′] if C2 [ offering C3 ] (7)

Various global constraints can be exploited to impose control knowledge and maintenance
goals representing properties that must persist. For example:
• FC holds_at n: the fluent constraint FC holds at the nth time step.
• always FC: the fluent constraint FC holds in all states of the evolution of the world.
A detailed description of these constraints and their semantics can be found in [6].

An action domain description consists of a collection Da of axioms of the forms described
so far, for each agent a ∈ G. Moreover, it includes a collection Oa of goal axioms (objectives),
of the form goal C, where C is a constraint, and a collection Ia of initial state axioms of the
form: initially C where C is a constraint involving only timeless expressions. We assume
that all the sets Ia are drawn from a consistent global initial state description I, i.e., Ia ⊆ I.
A specific instance of a planning problem is a triple

〈
〈Da〉a∈G , 〈Ia〉a∈G , 〈Oa〉a∈G

〉
. The prob-

lem has a solution only if 〈Oa〉a∈G characterizes a consistent state, i.e., there exists a con-
sistent assignment of values to the fluents that satisfies the constraint

∧
a∈G

∧
goalC∈Oa

C.

3 System Behavior

The behavior of BAAC can be split in two parts: the semantics of the action description
languages used locally by each agent, ignoring the axioms (6) and (7), and the behavior
of the overall system that deals with agents’ interactions. Let us assume that there is an
overall planning horizon length N. Due to space restrictions, we don’t enter into the details
of the “local” semantics which is given in terms of transition systems (as in [8]). The formal
semantics of the language BMV , upon which BAAC is defined, is given in detail in [6].

3.1 Concurrent Plan Execution
The agents are autonomous and plan their activities independently. In executing their plans,
the agents must take into account the effects of concurrent actions. We developed a basic
communication mechanism among agents by exploiting a tuple space, realized using the
Linda system [2]. Moreover, most of the interactions among concurrent agents, especially
those aimed at resolving conflicts, are managed by a specific process, the supervisor, that also
provides a global time to all agents, enabling them to execute their actions synchronously.
1. At the beginning, the supervisor acquires the initial state description I =

⋃
a∈G Ia.

2. At each time step the supervisor starts a new state transition:
Each active agent sends to the supervisor a request to perform an action specifying
its effects on the (local) state.
The supervisor collects these requests and determines whether subsets of actions/a-
gents are conflicting. A conflict occurs whenever agents require incompatible assign-
ments of values to the same fluents. The transition takes place once all conflicts have
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been resolved and a subset of compatible actions has been identified using one or more
policies (see below). These actions are enabled while the remaining ones are inhibited.
All the enabled actions are executed, yielding changes that define a new (global) state.
These changes are then sent back to all agents, to update their local states. Those
agents whose actions have been inhibited receive a failure message.

3. The computation stops when the time N is reached.
After each step of the local plan execution, the agents need to check if the reached state still
supports their successive planned actions. If not, each agent has to reason locally and revise
its plan, i.e., initiate a replanning phase. This may occur in two cases: (a) The proposed
action was inhibited, so the agent actually executed a nop; this case occurs when the agent
receives a failure message from the supervisor. (b) The interaction was successful, i.e., the
planned action was executed, but the effects of the actions performed by other agents affected
fluents in its local state, preventing the successful continuation of the rest of the plan—e.g.,
the agent a may have assumed that the fluent g maintained its value by inertia, but another
agent changed such value. This might affect the executability of the next action of a’s plan.

3.2 Conflicts Resolution
A conflict resolution procedure is performed by the supervisor whenever it identifies a set
of incompatible actions. Different policies can be adopted in this phase and different roles
can be played by the supervisor. First, the supervisor exploits the priorities of the agents to
attempt a resolution of the conflict, by inhibiting the actions of low priority agents. If this
does not suffice, further options are applied. Two simple options have been implemented in
our prototype, assigning the active role either to the supervisor or to the conflicting agents.
The architecture is modular, and can be extended with more complex policies.

The supervisor has the active role—it decides which actions to inhibit. In the current
prototype, the arbitration strategy is limited to (1) A random selection of a single action
to be executed or (2) The computation of a maximal set of compatible actions to be
executed. This computation is done by solving a dynamically generated CSP. In this
strategy, the on_conflict policies assigned to actions by axioms (6) are ignored.
The supervisor simply notifies the set of conflicting agents about the inconsistency of
their actions. The agents involved in the conflict are completely in charge of resolving
it via negotiation. The supervisor waits for a solution from the agents. In solving the
conflict, each agent a makes use of one of the on_conflict directives (6) specified for
its conflicting action x. The semantics of these directives are as follows ([provided C]
is an optional qualifier; if omitted it will be interpreted as provided true):

The option on_conflict arbitration causes the execution of the supervisor which
performs an arbitration phase to resolve the conflict, as previously described.
The option on_conflict forego provided C causes the agent a to “search” among
the other conflicting agent for someone, say b, that can guarantee the condition C. In
this case, b performs its action while the execution of a’s action fails, and a executes
a nop in place of its action x. Different strategies can be implemented in order to
perform such a “search for help”, e.g., a round-robin policy described below, but
other alternatives are possible and should be considered in completing the prototype.
The option on_conflict retry_after T provided C, differs from the preceding
one because a will execute nop during the following T time steps and then will try
again to execute its action (provided that the preconditions of the action still hold).
If there is no applicable option (e.g., no option is defined or none of the agents accept
to, or is able to, guarantee C), the action is inhibited and its execution fails.
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The way in which agents exploit the on_conflict options can rely on several policies.
In the current prototype we implemented a round-robin policy. Let us assume that the
agents a1, . . . , am aim at executing actions z1, . . . , zm, respectively, and these actions are
conflicting. The agents are sorted by the supervisor, and the agents take turn in resolving
the conflict. Suppose that at a certain round j of the procedure the agent ai is selected.
It determines the j-th option for its action and tries to apply it. If the option is directly
applicable or an agreement is reached with another agent on a condition C, then the
two agents exit the procedure. If no arbitration is invoked, then the remaining agents
will complete the procedure. If the option does not lead to an agreement, then the next
agent in the sequence will start its active role in the round, while ai will wait its next
turn in round j + 1. This procedure always ends with a solution to the conflict, since a
finite number of on_conflict options are defined for each action. This a rigid policy,
and it represents a simple example of how to realize a terminating protocol for conflict
resolution. Alternative solutions can be added to the prototype thanks to its modularity.

Once all conflicts have been addressed, the supervisor applies the enabled actions, and
obtains the new global state. Each agent receives a communication containing the outcome
of its action execution and the changes to its local state. Moreover, further information
might be sent to the participating agents, depending on the outcome of the coordination
procedure. For instance, when two agents agree on an on_conflict option, they “promise”
to execute specific actions (e.g., one agent may have to execute T consequent nop). This
information has to be sent back to the interested agents to guide their replanning phases.

3.3 Failure Policies
Agents receiving a failure message from the supervisor need to revise their original plans to
detect if the local goals can still be achieved. Different approaches can be used. For instance,
one agent could avoid developing an entire plan at each step, but only produce a partial plan
for the very next step. Alternatively, an agent could determine the “minimal” modifications
to the existing plan in order to make it valid with respect to the new encountered state. At
this time, the prototype includes only replanning from scratch at each step.

While replanning, the agent might exploit the on_failure options associated to the
inhibited action. The intuitive semantics of these options is as follows. (The options declared
for the inhibited action are considered in the given order, executing the first applicable one).

retry_after T [if C]: the agent evaluates the constraint C; if C holds, then it will
execute nop T times and then try again the failed action (provided it is executable).
replan [if C1] [add_goal C2]: the agent evaluates C1; if it holds, then in the replan-
ning phase the goal C2 will be added to the local goal. The add_goal C2 is optional; if it is
not present then nothing will be added to the goal, i.e., it is the same as add_goal true.
fail [if C1]: this is analogous to replan [if C1] add_goal false. In this case the
agent declares that it is impossible to reach its goal.
If none of the above options is applicable, then the agent will proceed as if the option
replan if true is present.

It might be the case that some global constraints (such as holds_at and always) involve
fluents that are not known by any of the agents. Therefore, none of the agents is able to
consider such constraints while developing his plan. These constraints have to be enforced
when merging the individual plans. In doing so, the supervisor adopts the same strategies
introduced to deal with conflicts and failures among actions, as described earlier.
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3.4 Broadcasting and Direct Requests
Let us describe a simple protocol for implementing communications among agents, following
an explicit request of the form (7). We assume that the current state is the i-th one of the
plan execution. The handling of requests is interleaved with the agent-supervisor interac-
tions; nevertheless, requests and offers are directly exchanged among agents. The main steps
involved in a state transition, from the point of view of an agent a, are:
1. Agent a tries to execute its action and sends this information to the supervisor (Sect. 3.1).
2. Possibly after a coordination phase, a receives from the supervisor the outcome of its

attempt to execute the action (namely, failure or success, the changes in the state, etc.)
3. If the action execution is successful, before declaring the current transition completed,

the agent a starts an interaction with the other agents to handle pending requests. All the
communications associated to such interactions are realized using Linda’s tuple-space.
3.a. Agent a fetches the collection H of all pending requests. For each request h ∈ H,
e.g., originating from agent b, a decides whether to accept h. Such a decision might involve
exploitation of the planning facilities, in order to determine if the requested condition
can be achieved by a, possibly by modifying its original plan. If possible, a posts its offer
into the tuple-space and waits for a rendezvous with b.
3.b. Agent a checks whether there are replies to the requests it previously posted. For
each request, a collects the set of offers/agents that expressed their willingness to help
a and, by using some strategy, selects one of them, say b. The policy for choosing the
responding agent can be programmed (e.g., by exploiting priorities, etc.). Once the choice
has been made, a communicates with the selected agent, declares its availability to b,
and communicates the fulfillment of the request to the other agents. The request is also
removed from the tuple space, along with all the obsolete offers.

4. At that point, the transition is completed for agent a. By taking into account the in-
formation about the outcome of the coordination phase in solving conflicts (point (2)),
the agreement reached in handling requests (point (3)), a might need to modify its plan.
If the replanning phase succeeds, then a will execute the next action in its local plan.

3.5 Implementation Issues
A prototype of the system has been implemented in SICStus Prolog, using the libraries clpfd
for reasoning (and the planners described in [5, 6]), and the libraries system, linda/server,
and linda/client for process communication. The system is organized in modules and it
is available, together with some sample domains at www.dimi.uniud.it/dovier/BAAC.

Each autonomous agent corresponds to an instance of the module plan_executor, which,
in turn, relies on a planner for planning/replanning activities, and on client for interacting
with other actors in the system. As previously explained, a large part of the coordination
is guided by the module supervisor. Notice that both the supervisor and client act
as Linda-clients. Conflict resolution functionalities are provided to the modules client and
supervisor by the modules ConflictSolver_client and ConflictSolver_super, respect-
ively. Finally, the arbitration_opt module implements the arbitration protocol(s).

Let us remark that all the policies exploited in coordination, arbitration, and conflict
handling can be customized by providing a different implementation of individual predic-
ates exported by the corresponding modules. For instance, to implement a conflict resolution
strategy different from the round-robin described earlier, it suffices to add to the system a
new implementation of the module ConflictSolver_super (and for ConflictSolver_client,
if the specific strategy requires an active role of the conflicting agents). Similar extensions

www.dimi.uniud.it/dovier/BAAC
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can be done for arbitration_opt. A settings.pl file is available to enable specification
of various parameters, e.g., the names of the files containing the action descriptions, the
number of planning steps allowed, the selected conflict resolution strategies, etc.

As far as the planning module is concerned, we modified the interpreters of the BMV

and the BMAP languages [5, 6] to accept the coordination constructs described in this paper.
The two planners, sicsplan and bmap, have been integrated in the system to process BMV

and BMAP theories. However, the system is open to further extensions and different planners
(even not necessarily based on Prolog technology) can be easily integrated thanks to the
simple interface with the module plan_executor, which consists of few Prolog predicates.

4 The Volleyball Domain

Let us describe a specification in BAAC of a coordination problem between two multi-agent
systems. Let us extend the domains described in Examples 1–4. There are two teams: black
and white whose objective is to score a point, i.e., to throw the ball in the field of the other
team (passing over the net) in such a way that no player of the other team can reach the ball
before it touches the ground. Each team is modeled as a multi-agent system that elaborates
its own plan in a centralized manner (thus, each step in the plan consists of a set of actions).

The playing field is discretized by fixing a linex×liney rectangular grid that determines
the positions where the players (and the ball) can move (see Fig. 1). The leftmost (rightmost)
cells are those of the black (white) team, while the net (x = 6) separates the two subfields.
There are p players per team (p = 2 in Fig. 1). The allowed actions are: move(d), throw(d, f),
and whistle. During the defense time, the players can move to catch the ball and/or to
re-position themselves on the court. When a player reaches the ball (s)he will have the ball
and will throw the ball again. A team scores a point either if it throws the ball to a cell
in the opposite subfield that is not reached by any player of the other team in the defense
time, or if the opposite team throws the ball in the net. The captain (first player) of each
team is in charge of checking if a point has been scored. In this case, (s)he whistles.

Each team is modeled as a centralized multi-agent system, which acts as a singe agent in
the interaction with the other team. Alternative options in modeling are also possible—for
instance, one could model each single player as an independent agent that develops its own
plan and interacts with all other players. The two teams have the goal of scoring a point:
goal(point(black) eq 1). for blacks and goal(point(white) eq 1). for whites.

At the beginning of the execution every team has a winning strategy, developed as a
local plan; these are possibly revised after each play to accommodate for the new state of
the worlds reached. An execution (as printed by the system) is reported in Fig. 1, for a plan
length of 9. The symbol 0 (respectively, Y) denotes the white (respectively, black) players, Q
(resp. X) denotes a white player with the ball. The throw moves applied are:

[player(black,1)]:throw(ne,3) (time 1) [player(black,2)]:throw(se,3) (time 3)
[player(white,1)]:throw(w,5) (time 5) [player(black,1)]:throw(e,5) (time 7)

Let us observe that, although it would be in principle possible for the white team to
reach the ball and throw it within the time allowed, it would be impossible to score a point.
Therefore, players prefer to avoid to perform any move.

The complete description of the encoding of this domain is available at http://www.
dimi.uniud.it/dovier/BAAC. The repository includes also additional domains—e.g., a domain
inspired by games involving one ball and two-goals, as found in soccer. Although the encoding
might seem similar to that of volleyball, the possibility of contact between two players makes
this encoding more complex. Indeed, thanks to the fact that the net separates the two teams,
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Time 0: Time 1: Time 2: Time 3: Time 4:
******|****** ******|****** ******|****** ******|****** ******|******
* | * * | * * | * * | * * | *
* Y | O* * Yo | O* * X | O * * Y | O * * Y | O *
* | * * | * * | * * | * * | *
* | O * * | O * * Y | O * * Y | O * *Y | *
*X | * *Y | * * | * * |o * * |Q *
******|****** ******|****** ******|****** ******|****** ******|******
Time 5: Time 6: Time 7: Time 8: Time 9:

******|****** ******|****** ******|****** ******|****** ******|******
* | * * | * * | * * | * * | *
* Y | O * * Y | O * * Y | O * *Y | O * *Y | O *
* | * * | * * | * * | * * | *
*Y | * * | O * * | O * * | O * * | O *
* o |O * * X | * * Y |o * *Y |o * *Y |o *
******|****** ******|****** ******|****** ******|****** ******|******

Figure 1 A representation of an execution of the volleyball domain

in the volleyball domain rules like the following one suffice to avoid collisions:
always(pair(x(A),y(A)) neq pair(x(B),y(B))) :-

A=player(black,N),B=player(black,M), num(N), num(M), N<M.

In a soccer world this is not true because only the supervisor can be aware, in advance,
of possible contacts between different team players originating from concurrent actions.
This generates interesting concurrency problems, e.g., concerning the ball possession after
a contact. A simple way to address this problem consists in assigning a fluent to each field
cell, whose value can be −1 (free), 0 (resp., 1) if a white (resp. black) player is in the cell.
The supervisor identifies a conflict when two opponent players move to the same cell, thus
assigning to that fluent a different value. In this case, the supervisor arbitrarily enables one
action, the other agent waits a turn to retry the action:

action act([A],move(D)) on_failure retry_after 1 on_conflict arbitrate :-
agent(A), direction(D).

5 Conclusions and future work

In this paper, we designed a system for reasoning with action description languages in multi-
agent domains. The language enables the description of agents with individual goals operat-
ing in shared environments. The agents can interact (by requesting help from other agents
in achieving goals) and implicitly cooperate in resolving conflicts that arise during execution
of their plans. The implementation is distributed, and uses Linda to enable communication.

The work is preliminary but shows strong potential and several directions of research. The
immediate goal is to refine strategies and coordination mechanisms, involving, for instance,
payoff, trust, etc. We intend to evaluate the performance and quality of the system in several
multi-agent domains (e.g., game playing scenarios, auctions, and other domains requiring
distributed planning). We will investigate the use of future references in the fluent constraints
(as supported in BMV )—we believe this feature may provide a more elegant approach to
handle the requests among agents, and it is necessary to enable the expression of complex
interactions among agents (e.g., to model commitments). In particular, we view this platform
as ideal to experiment with models of negotiation (e.g., as discussed in [14]) and to deal with
commitments [11]. We will also explore the implementation of different strategies associated
to conflict resolution; we are interested in investigating how to capture the notion of “trust”
among agents, as a dynamic property that changes depending on how reliable agents have
been in providing services to other agents.
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Abstract
In order to give application programs access to data stored in the web in semistructured formats,
in particular, in XML format, we propose a domain-specific language (DSL) for declarative
processing such data. Our language is embedded in the functional logic programming language
Curry and offers powerful matching constructs that enable a declarative description of accessing
and transforming XML data. We exploit advanced features of functional logic programming
to provide a high-level and maintainable implementation of our language. Actually, this paper
contains the complete code of our implementation so that the source text of this paper is an
executable implementation of our embedded DSL.
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Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.198

1 Motivation

Nowadays, huge amounts of information are available in the world-wide web. Much of
this information is also available in semistructured formats so that it can be automatically
accessed by application programs. The extensible markup language (XML) is often used as an
exchange format for such data. Since data in XML format are basically term structures, XML
data can be (in principle) easily processed with functional or logic programming languages:
one has to define a term representation of XML data in the programming language, implement
a parser from the textual XML representation into such terms, and exploit pattern matching
to implement the specific processing task.

In practice, such an implementation causes some difficulties due to the fact that the
concrete data formats are complex or evolve over time:

For many application areas, concrete XML languages are defined. However, they are
often quite complex so that it is difficult or tedious to deal with all details when one is
interested in extracting only some parts of the given data.
For more specialized areas without standardized XML languages, the XML format might
be incompletely specified or evolves over time. Thus, application programs with standard
pattern matching must be adapted if the data format changes.

For instance, consider the XML document shown in Fig. 1 which represents the data of a
small address book. As one can see, the two entries have different information fields: the first
entry contains two email addresses but no nickname whereas the second entry contains no
email address but a nickname. Such data, which is not uncommon in practice, is also called
“semistructured” [1]. Semistructured data causes difficulties when it should be processed with
a declarative programming language by mapping the XML structures into data terms of the
implementation language. Therefore, various distinguished languages for processing XML
data have been proposed.
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<contacts>
<entry>

<name>Hanus</name>
<first>Michael</first>
<phone>+49-431-8807271</phone>
<email>mh@informatik.uni-kiel.de</email>
<email>hanus@acm.org</email>

</entry>
<entry>

<name>Smith</name>
<first>William</first>
<nickname>Bill</nickname>
<phone>+1-987-742-9388</phone>

</entry>
</contacts>

Figure 1 A simple XML document

For instance, the language XPath1 provides powerful path expressions to select sub-
documents in XML documents. Although path expressions allow flexible retrievals by the
use of wildcards, regular path expressions, stepping to father and sibling nodes etc, they
are oriented towards following a path through the document from the root to the selected
sub-documents. This gives them a more imperative rather than a descriptive or declarative
flavor. The same is true for query and transformation languages like XQuery2 or XSLT3

which are based on the XPath-oriented style to select the required sub-documents.
As an alternative to path-oriented processing languages, the language Xcerpt [5] is a

proposal to exploit ideas from logic programming in order to provide a declarative method
to select and transform semistructured data in XML format. In contrast to pure logic
programming, Xcerpt proposes matching with partial term structures for which a specialized
unification procedure, called “simulation unification” [6], has been developed. Since matching
with partial term structures is a powerful feature that avoids many problems related to the
evolution of web data over time, we propose a language with similar features. However, our
language is an embedded domain-specific language (eDSL). Due to the embedding into the
functional logic programming language Curry [12], our language for XML processing has the
following features and advantages:

The selection and transformation of incompletely specified XML data is supported.
Due to the embedding into a universal programming language, the selected or transformed
data can be directly used in the application program.
Due to the use of advanced functional logic programming features, the implementation
is straightforward and can be easily extended with new features. Actually, this paper
contains the complete source code of the implementation.
The direct implementation in a declarative language results in immediate correctness
proofs of the implementation.

1 http://www.w3.org/TR/xpath
2 http://www.w3.org/XML/Query/
3 http://www.w3.org/TR/xslt
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In the following, we present our language for XML processing together with their implementa-
tion. Due to lack of space, we have to omit some details about functional logic programming
in Curry and further features and properties of our eDSL. Interested readers find these in a
separate technical report [10].

2 Functional Logic Programming and Curry

Curry [12] is a declarative multi-paradigm language combining features from functional, logic,
and concurrent programming (recent surveys are available in [4, 9]). The syntax of Curry
is close to Haskell [14]. In addition, Curry allows free (logic) variables in conditions and
right-hand sides of defining rules. In contrast to functional programming and similarly to
logic programming, operations can be defined by overlapping rules so that they might yield
more than one result on the same input. For instance, the choice operation is predefined by:

x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, one wants to select intended values according to some constraints, typically in
conditions of program rules. A rule has the form “f t1 . . . tn | c = e” where the (optional)
condition c is a constraint, like an equational constraint e1 =:= e2 which is satisfied if both
sides are reducible to unifiable values. For instance, the rule

last xs | (ys++[z]) =:= xs = z where ys,z free

defines an operation to compute the last element z of a list xs based on the (infix) operation
“++” which concatenates two lists (in contrast to Prolog, free variables like ys or z need to
be declared explicitly to make their scopes clear).

In the following, we implement an eDSL for XML processing based on functional logic
programming features. To make this implementation as simple as possible, we exploit two
more recent features described in the following: functional patterns and set functions.

A functional pattern [2] is a pattern occurring in an argument of the left-hand side of
a rule containing defined operations (and not only data constructors and variables). For
instance,

last (xs++[e]) = e

is a rule with the functional pattern (xs++[e]) stating that last is reducible to e provided
that the argument can be matched against some value of (xs++[e]) where xs and e are free
variables. By instantiating xs to arbitrary lists, the value of (xs++[e]) is any list having e
as its last element. As we will see in this paper, functional patterns are a powerful feature to
express arbitrary selections in term structures. More details about their semantics and a
constructive implementation of functional patterns by a demand-driven unification procedure
can be found in [2].

Set functions [3] allow the encapsulation of nondeterministic computations in non-strict
functional logic languages. For each defined function f , fS denotes the corresponding set
function. fS encapsulates only the nondeterminism caused by evaluating f except for the
nondeterminism caused by evaluating the arguments to which f is applied. For instance,
consider the operation decOrInc defined by

decOrInc x = (x-1) ? (x+1)
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Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4}, i.e., the
nondeterminism caused by decOrInc is encapsulated into a set. However, “decOrIncS
(2?5)” evaluates to two different sets {1, 3} and {4, 6} due to its nondeterministic argument,
i.e., the nondeterminism caused by the argument is not encapsulated.

This paper contains the complete source code of our implementation. Actually, the
paper’s source text is a literate program [13] that is directly executable. In a literate Curry
program, all real program code starts with the special character “>”. Curry code not starting
with “>”, e.g., the example code shown so far, is like a comment and not required to run the
program. To give an example of executable code, we show the declaration of the module
XCuery for XML processing in Curry developed in this paper:

> module XCuery where
> import XML

Thus, we import the system module XML which contains an XML parser and the definition of
XML structures in Curry that are explained in the next section.

3 XML Documents

There are two basic methods to represent XML documents in a programming language: a
type-based or a generic representation [16]. In a type-based representation, each tagged XML
structure (like contacts, entry, name etc) is represented as a record structure of appropriate
type according to the XML schema. The advantage of this approach is that schema-correct
XML structures correspond to type-correct record structures. On the negative side, this
representation depends on the given XML schema. Thus, it is hardly applicable if the schema
is not completely known. Moreover, if the schema evolves, the data types representing the
XML structure must be adapted.

Due to these reasons, we prefer a generic representation where any XML document is
represented with one generic structure. Since any XML document is either a structure with
a tag, attributes and embedded XML documents (also call child nodes of the document), or
a text string, one can define the following datatype to represent XML documents:4

data XmlExp = XText String
| XElem String [(String,String)] [XmlExp]

Since it could be tedious to write XML documents with these basic data constructors, one
can define some useful abstractions for XML documents:

xtxt s = XText s

xml t xs = XElem t [] xs

Thus, we can specify the second entry structure of the XML document shown in Fig. 1 by:

xml "entry" [xml "name" [xtxt "Smith"],
xml "first" [xtxt "William"],
xml "nickname" [xtxt "Bill"],
xml "phone" [xtxt "+1-987-742-9388"]]

4 For the sake of simplicity, we ignore other specific elements like comments.
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These definitions together with operations to parse and pretty-print XML documents are
contained in the system module XML of the PAKCS programming environment for Curry [11].
In principle, these definitions are sufficient for XML processing, i.e., to select and transform
XML documents. For instance, one can extract the name and phone number of an entry
structure consisting of a name, first name and phone number by the following operation:

getNamePhone
(xml "entry" [xml "name" [xtxt name],

_,
xml "phone" [xtxt phone]]) = name++": "++phone

Note that we use the abstractions xml and xtxt as functional patterns to provide a readable
notation for matching XML documents. Nevertheless, XML processing operations as defined
above have several disadvantages:

The exact structure of the XML document must be known in advance. For instance,
the operation getNamePhone matches only entries with three components, i.e., it fails on
both entries shown in Fig. 1.
In large XML documents, many parts are often irrelevant if one wants to select only
some specific information entities. However, one has to define an operation to match the
complete document.
If the structure of the XML document changes (e.g., due to the evolution of the web
services providing these documents), one has to update all patterns in the matching
operations which could be tedious and error prone for large documents.

As a solution to these problems, we propose in the next section appropriate abstractions that
can be used in patterns of operations for XML processing.

4 Abstractions for XML Processing

In order to define reasonable abstractions for XML processing, we start with a wish list.
Since we have seen that exact matchings are not desirable to process semistructured data,
we want to develop a language supporting the following features for pattern matching:

Partial patterns: allow patterns where only some child nodes are known.
Unordered patterns: allow patterns where child nodes can appear in any order.
Patterns at arbitrary depth: allow patterns that are matched at an arbitrary position in
an XML document.
Negation of patterns: allow patterns defined by the absence of tags or provide default
values for tags that are not present in the given XML document.
Transformation: generate new structures from matched patterns.
Collect matchings: accumulate results in a newly generated structure.

In the following, we show how these features can be supported by the use of carefully defined
abstractions as functional patterns and other features of functional logic programming.

4.1 Partial Patterns
As we have seen in the example operation getNamePhone above, one would like to select
some child nodes in a document independent of the availability of further components. Thus,
instead of enumerating the list of all child nodes as in the definition above, it would be
preferable to enumerate only the relevant child nodes. We support this by putting the
operator “with” in front of the list of child nodes:
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getNamePhone
(xml "entry" (with [xml "name" [xtxt name],

xml "phone" [xtxt phone]])) = name++": "++phone

The intended meaning of “with” is that the given child nodes must be present but in between
any number of other elements can also occur.

We can directly implement this operator as follows:5

> with :: [a] → [a]
> with [] = _
> with (x:xs) = _ ++ x : with xs

Thus, an expression like “with [1,2]” reduces to any list of the form

x1:. . .:xm:1:y1:. . .:yn:2:zs

where the variables xi, yj , zs are fresh logic variables. Due to the semantics of functional
patterns, the definition of getNamePhone above matches any entry structure containing a
name and a phone element as children. Hence, the use of the operation with in patterns
avoids the exact enumeration of all children and makes the program robust against the
addition of further information elements in a structure.

A disadvantage of a definition like getNamePhone above is the fact that it matches only
XML structures with an empty attribute list due to the definition of the operation xml. In
order to support more flexible matchings that are independent of the given attributes (which
are ignored if present), we define the operation

> xml’ :: String → [XmlExp] → XmlExp
> xml’ t xs = XElem t _ xs

For instance, the operation getName defined by

getName (xml’ "entry" (with [xml’ "name" [xtxt n]])) = n

returns the name of an entry structure independent of the fact whether the given document
contains attributes in the entry or name structures.

4.2 Unordered Patterns
If the structure of data evolves over time, it might happen that the order of elements changes
over time. Moreover, even in some given XML schema, the order of relevant elements can
vary. In order to make the matching independent of a particular order, we can specify that
the required child nodes can appear in any order by putting the operator “anyorder” in
front of the list of child nodes:

getNamePhone
(xml "entry"

(with (anyorder [xml "phone" [xtxt phone],
xml "name" [xtxt name]]))) = name++": "++phone

5 The symbol “_” denotes an anonymous variable, i.e., each occurrence of “_” in the right-hand side of a
rule denotes a fresh logic variable.
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Obviously, the operation anyorder should compute any permutation of its argument list.
In a functional logic language, it can be easily defined as a nondeterministic operation
by inserting the first element of a list at an arbitrary position in the permutation of the
remaining elements:

> anyorder :: [a] → [a]
> anyorder [] = []
> anyorder (x:xs) = insert (anyorder xs)
> where insert [] = [x]
> insert (y:ys) = x:y:ys ? y : insert ys

Thus, the previous definition of getNamePhone matches both entry structures shown in
Fig. 1.

4.3 Patterns at Arbitrary Depths
If one wants to select some information in deeply nested documents, it would be tedious to
define the exact matching from the root to the required elements. Instead, it is preferable to
allow matchings at an arbitrary depth in a document. Such matchings are also supported
in other languages like XPath since they ease the implementation of queries in complex
structures and support flexibility of the implementation w.r.t. to future structural changes
of the given documents. We support this feature by an operation “deepXml”: if deepXml
is used instead of xml in a pattern, this structure can occur at an arbitrary position in the
given document. For instance, if we define

getNamePhone
(deepXml "entry"

(with [xml "name" [xtxt name],
xml "phone" [xtxt phone]])) = name++": "++phone

and apply getNamePhone to the complete document shown in Fig. 1, two results are (nonde-
terministically) computed (methods to collect all those results are discussed later).

The implementation of deepXml is similar to with by specifying that deepXml reduces to
a structure where the node is at the root or at some nested child node:

> deepXml :: String → [XmlExp] → XmlExp
> deepXml tag elems = xml tag elems
> deepXml tag elems = xml’ _ (_ ++ [deepXml tag elems] ++ _)

Thus, an expression like “deepXml t cs” reduces to “xml t cs” or to a structure containing
this element at some inner position.

4.4 Negation of Patterns
As mentioned above, in semistructured data some information might not be present in a given
structure, like the email address in the second entry of Fig. 1. Instead of failing on missing
information pieces, one wants to have a constructive behavior in application programs. For
instance, one could select all entries with a missing email address or one puts a default
nickname in the output if the nickname is missing.

In order to implement such behaviors, one could try to negate matchings. Since negation
is a non-trivial subject in functional logic programming, we propose a much simpler but
practically reasonable solution. We provide an operation “withOthers” which is similar to
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“with” but has a second argument that contains the child nodes that are present but not part
of the first argument. Thus, one can use this operation to denote the “unmatched” part of a
document in order to put arbitrary conditions on it. For instance, if we want to get the name
and phone number of an entry that has no email address, we can specify this as follows:

getNamePhoneWithoutEmail
(deepXml "entry"

(withOthers [xml "name" [xtxt name], xml "phone" [xtxt phone]] others))
| "email" ‘noTagOf‘ others = name++": "++phone

The useful predicate noTagOf returns true if the given tag is not a tag of all argument
documents (the operation tagOf returns the tag of an XML document):

> noTagOf :: String → [XmlExp] → Bool
> noTagOf tag = all ((/=tag) . tagOf)

Hence, the application of getNamePhoneWithoutEmail to the document in Fig. 1 returns a
single value.

The implementation of withOthers is slightly different from with since we have to
accumulate the remaining elements that are not part of the first arguments in the second
argument:

> withOthers :: [a] → [a] → [a]
> withOthers ys zs = withAcc [] ys zs
> where -- Accumulate remaining elements:
> withAcc prevs [] others | others=:=prevs++suffix = suffix
> where suffix free
> withAcc prevs (x:xs) others =
> prefix ++ x : withAcc (prevs++prefix) xs others
> where prefix free

Thus, an expression like “withOthers [1,2] os” reduces to any list of the form

x1:. . .:xm:1:y1:. . .:yn:2:zs

where os = x1:. . .:xm:y1:. . .:yn:zs. If we use this expression as a pattern, the semantics
of functional patterns ensures that this pattern matches any list containing the elements 1
and 2 where the variable os is bound to the list of the remaining elements.

4.5 Transformation of Documents
Apart from the inclusion of data selected in XML documents in the application program,
one also wants to implement transformations on documents. Such transformation tasks are
almost trivial to implement in declarative languages supporting pattern matching by using a
scheme like “transform pattern = newdoc” and applying the transform operation to the
given document. For instance, we can transform an entry document into another XML
structure containing the phone number and full name of the person by

transPhone (deepXml "entry" (with [xml "name" [xtxt n],
xml "first" [xtxt f],
xml "phone" phone])) =

xml "phonename" [xml "phone" phone, xml "fullname" [xtxt (f++’ ’:n)]]
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If we apply transPhone to the document of Fig. 1, we nondeterministically obtain two new
XML documents corresponding to the two entries contained in this document.

4.6 Collect Matchings
In order to collect all matchings in a given document in a single new document, we have
to encapsulate the nondeterministic computations performed on the input document. For
this purpose, we can exploit set functions described above. Since set functions return an
unordered set of values, we have to transform this value set into an ordered list structure
that can be printed or embedded in another document. This can be done by the predefined
operation sortValues. Thus, if c denotes the XML document shown in Fig. 1, we can
use our previous transformation operation to create a complete table of all pairs of phone
numbers and full names by evaluating

xml "table" (sortValues (transPhoneS c))

Similarly, one can also transform XML documents into HTML documents by exploiting the
HTML library of Curry [8]. Furthermore, one can also nest set functions to accumulate
intermediate information. As an example, we want to compute a list of all persons together
with the number of their email addresses. For this purpose, we define a matching rule for
an entry document that returns the number of email addresses in this document by a set
function emailOfS :

getEmails (deepXml "entry" (withOthers [xml "name" [xtxt name]] os))
= (name, length (sortValues (emailOfS os)))

where emailOf (with [xml "email" email]) = email

In order to compute a complete list of all entries matched in a document c, we apply the set
function getEmailsS to collect all results in a list structure:

sortValues (getEmailsS c)

For our example document, this evaluates to [("Hanus",2),("Smith",0)].

5 Related Work

Since the processing of semistructured data is a relevant issue in current application systems,
there are many proposals for specialized languages or embedding languages in multi-purpose
programming languages. We discuss some related approaches in this section.

We have already mentioned in the beginning the languages XPath, XQuery, and XSLT for
XML processing supported by the W3C. These languages provide a different XML-oriented
syntax and use a navigational approach to select information rather than the pattern-oriented
approach we proposed. Since these are separate languages, it is more difficult to use them in
application programs written in a general purpose language where one wants to process data
available in the web.

The same is true for the language Xcerpt [5]. It is also a separate XML processing
language without a close connection to a multi-purpose programming language. In contrast
to XPath, Xcerpt proposes the use of powerful matching constructs to select information
in semistructured documents. Xcerpt supports similar features as our embedded language
but provide a more compact syntax due to its independence of a concrete base language. In
contrast to our approach, Xcerpt requires a dedicated implementation based on a specialized



Michael Hanus 207

unification procedure [6]. The disadvantages of such separate developments become obvious
if one tries to access the implementation of Xcerpt (which failed at the time of this writing
due to inaccessible web pages and incompatible compiler versions).

HaXML [16] is a language for XML processing embedded in the functional language
Haskell. It provides a rich set of combinators based on content filters, i.e., functions that map
XML data into collections of XML data. This allows an elegant description of many XML
transformations, whereas our rule-based approach is not limited to such transformations
since we have no restrictions on the type of data constructed from successful matchings.

Caballero et al. [7] proposed the embedding of XPath into the functional logic language
Toy that has many similarities to Curry. Similarly to our approach, they also exploit
nondeterministic evaluation for path selection. Due to the use of a functional logic language
allowing inverse computations, they also support the generation of test cases for path
expressions, i.e., the generation of documents to which a path expression can be applied.
Nevertheless, their approach is limited to the navigational processing of XPath rather than
a rule-based approach as in our case. The same holds for FnQuery [15], a domain-specific
language embedded in Prolog for the querying and transformation of XML data.

6 Conclusions

We have presented a rule-based language for processing semistructured data that is imple-
mented and embedded in the functional logic language Curry. The language supports a
declarative description to query and transform such data. It is based on providing operations
to describe partial matchings in the data and exploits functional patterns and set functions
for the programming tasks. Due to its embedding into a general-purpose programming
language, it can be used to further process the selected data in application systems or one
can combine semistructured data from different sources. Moreover, it is easy to extend our
language with new features without adapting a complex implementation.

The simplicity of our implementation together with the expressiveness of our language
demonstrate the general advantages of high-level declarative programming languages. In
order to check the usability of our language, we applied it to extract information provided by
our university information system6 in XML format into a curricula and module information
system7 that is implemented in Curry. In this application it was quite useful to specify
only partial patterns so that most of the huge amount of information contained in the XML
document could be ignored.

Although our implementation heavily exploits nondeterministic computations, e.g., for
matching in partially specified or deep structures, our initial experiments show that it is
practically useful. The processing time in these tests to select or transform documents is almost
equal or smaller than the time to parse the document by an already given (deterministic!)
XML parser.

For future work, we intend to apply our language to more examples in order to enrich
the set of useful pattern combinators. Moreover, it would be interesting to generate more
efficient implementations by specializing functional patterns (e.g., by partial evaluation w.r.t.
the given definitions, or by exploiting the XML schema if it is precisely known in advance).

6 http://univis.uni-kiel.de/
7 http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/

ICLP 2011

http://univis.uni-kiel.de/
http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/


208 Declarative Processing of Semistructured Web Data

References
1 S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistruc-

tured Data and XML. Morgan Kaufmann, 2000.
2 S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of

the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

3 S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declara-
tive Programming (PPDP’09), pages 73–82. ACM Press, 2009.

4 S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010.

5 F. Bry and S. Schaffert. A gentle introduction to Xcerpt, a rule-based query and transfor-
mation language for XML. In Proceedings of the International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web (RuleML’02), 2002.

6 F. Bry and S. Schaffert. Towards a declarative query and transformation language for
XML and semistructured data: Simulation unification. In Proceedings of the International
Conference on Logic Programming (ICLP’02), pages 255–270. Springer LNCS 2401, 2002.

7 R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez. Integrating XPath with the functional-
logic language Toy. Technical report sic-05-10, Univ. Complutense de Madrid, 2010.

8 M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92.
Springer LNCS 1990, 2001.

9 M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International
Conference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

10 M. Hanus. Declarative processing of semistructured web data. Technical report 1103,
Christian-Albrechts-Universität Kiel, 2011.

11 M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at http:
//www.informatik.uni-kiel.de/~pakcs/, 2010.

12 M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available at
http://www.curry-language.org, 2006.

13 D.E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
14 S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-

bridge University Press, 2003.
15 D. Seipel, J. Baumeister, and M. Hopfner. Declaratively querying and visualizing knowledge

bases in XML. In Applications of Declarative Programming and Knowledge Management
(INAP/WLP 2004), pages 16–31. Springer LNCS 3392, 2005.

16 M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-based
translation? In Proc. of the ACM SIGPLAN International Conference on Functional
Programming (ICFP’99), pages 148–159. ACM Press, 1999.

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org


CDAOStore: A Phylogenetic Repository Using
Logic Programming and Web Services∗

Brandon Chisham1, Enrico Pontelli1, Tran Cao Son1, and
Ben Wright1

1 Dept. Computer Science, New Mexico State University
{bchisham | epontell | tson | bwright}@cs.nmsu.edu

Abstract
The CDAOStore is a portal aimed at facilitating the storage and retrieval of data and metadata
associated to studies in the field of evolutionary biology and phylogenetic analysis. The novelty
of CDAOStore lies in the use of a semantic-based approach to the storage and querying of
data. This enables CDAOStore to overcome the data format restrictions and complexities of
other repositories (e.g., TreeBase) and to provide a domain-specific query interface, derived from
studies of querying requirements for phylogenetic databases.

CDAOStore represents the first full implementation of the EvoIO stack, an inter-operation
stack composed of a formal ontology (the Comparative Data Analysis Ontology), an XML ex-
change format (NeXML), and a web services API (PhyloWS). CDAOStore has been implemen-
ted on top of an RDF triple store, using a combination of standard web technologies and logic
programming technology. In particular, we employed Prolog to support some of the format trans-
formation tasks and, more importantly, in the implementation of several of the domain-specific
queries, whose structure is beyond the reach of standard RDF query languages (e.g., SPARQL).
CDAOStore is operational and it already hosts over 90 million RDF triples, imported from Tree-
Base or submitted by other domain scientists.
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1 Introduction

The explosive growth of stock-piled information in the biological and earth sciences presents
a wealth of opportunities for expanding bioinformatics-based analyses with respect to both
the amount of data incorporated and the diversity of data types and sources to be integrated.
While large-scale or integrative analyses of such data may use generic methods of machine
learning, there is a theory-based comparative approach to the analysis of diverse types
of biological data, in which the similarities and differences between compared things are
interpreted as evolved differences that have arisen by a process of descent-with-modification
from common ancestors. This evolutionary comparative approach, used throughout biology
and paleobiology, depends fundamentally on “phylogenetic trees” representing paths of
descent. While powerful tools exist for the inference of phylogenies, and while evolutionary
approaches are increasingly recognized as effective, the lack of interoperability in tree-based
data and services hinders large-scale and integrative analyses.
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To address this overarching problem, a collaboration among computational scientists
and evolutionary biologists has been established—within a working group (EvoInfoWG)
sponsored by the National Evolutionary Synthesis Center—leading to the development of an
interoperation stack (EvoIO Stack) for the exchange of evolutionary structures. The EvoIO
Stack comprises of (i) an ontology for the description of data (the Comparative Data Analysis
Ontology), (ii) an exchange format (NeXML), and (iii) a web service interface (PhyloWS).

The use of components of the EvoIO Stack has been gaining momentum—e.g., NeXML
is now a supported format by several analysis tools (e.g., Mesquite [11], DAMBE [22]),
CDAO and PhyloWS are supported by TreeBase [1]), the largest repository of phylogenetic
trees. While these efforts adopt components of the EvoIO Stack as adds-on to the existing
features of the tools and repositories, the EvoInfoWG has initiated the development of a
novel data repository completely built around the EvoIO Stack and capable of providing
forms of access to evolutionary data that are beyond the relational access forms offered by
traditional repositories, like TreeBase. The CDAOStore is the first effort in this direction.

CDAOStore is a triple store that implements the complete EvoIO Stack. As a triple store,
it maintains a semantic-based repository for phylogenetic data, as RDF triples; it provides
the ability to import and export the content in NeXML and other commonly used formats,
and it supports querying through a PhyloWS web service interface. CDAOStore offers a
domain-specific querying interface supporting classes of queries relevant to phylogenetic
investigation, as identified by domain experts. The implementation of the CDAOStore
combines established web services and ontology technologies with Prolog; logic programming
is employed to provide an effective implementation of several classes of domain-specific queries,
which are beyond the reach of traditional ontology-based query languages (e.g., SPARQL
[16]). In particular, Prolog enables the elegant encoding of operations that manipulate
collection of phylogenetic trees, performing selection of branches and transitive closures.

2 Background

Phylogenetics and Interoperation: Phylogenetic trees (a.k.a. phylogenies) have gained
a central role in modern biology. Trees provide a systematic structure to organize evolu-
tionary knowledge about diversity of life. Trees have become fundamental tools for building
new knowledge, thanks to their explanatory and comparative-based predictive capabilities.
Evolutionary relationships provide clues about processes underlying biodiversity and enable
predictive inferences about future changes in biodiversity (e.g., in response to climate or
anthropogenic changes). Phylogenies are used with increase frequency in several fields,
e.g., comparative genomics [2], metagenomics [21], and community ecology [19]. The major
obstacle hindering broad availability and repurposing of phylogenies has been, for a long time,
the lack of effective standards and a community-driven process for adopting and extending
them. Existing file formats allow for representation of trees using a simple string and also
the molecular or morphological character data used to infer the tree. There are no widely
accepted standards for annotating tips, internal nodes or branches, and different applications
have adopted unique methods for modifying the tree strings, meaning that annotations from
one program may generate errors or be misinterpreted when import into another program.
Other types of data/metadata, such as descriptions of evolutionary models or metadata
annotations for provenance, have not seen any attempts at standardization.

The EvoIO Stack: The EvoIO Stack [17] has been proposed as a platform that coherently
combines support for exchange of data and their semantics and predictable programmatic
access. The EvoIO Stack is seeded with a triplet of emerging interoperability standards—



B. Chisham, E. Pontelli, T. Son, B. Wright 211

NeXML, CDAO, and PhyloWS.
NeXML [18] is an exchange standard for phylogenetic trees, data matrices, and arbitrary

metadata. NeXML is an XML schema for comparative biology that draws on the successful
high-level block structure of NEXUS [10], but takes advantage of widespread support for
XML, and harnesses the W3C-proposed RDFa standard to embed semantically rich metadata.

The Comparative Data Analysis Ontology (CDAO) [15] provides a formal ontology for
describing phylogenies and their associated character state matrices. It provides a gen-
eral framework for talking about the relationships between taxa, characters, states, their
matrices, and associated phylogenies. The ontology is organized around four central concepts:
operational taxonomic units (OTUs), characters, character states, phylogenetic trees, and
transitions. A phylogenetic analysis starts with the identification of a collection of Operational
Taxonomic Units (OTUs), representing the entities being described (e.g., species, genes).
Each OTU is described, in the analysis, by a collection of properties, typically referred to as
characters. The values that characters can assume are referred to as character states. In
phylogenetic analysis, it is common to collect the characters and associated character states
in a matrix, the character state matrix, where the rows correspond to the different OTUs and
the columns correspond to the characters. Phylogenetic trees are used to represent paths of
descent-with-modification, capturing the evolutionary process underlying the OTUs.

PhyloWS [8] is a web-services standard for searching, addressing, and accessing phylogen-
etic trees, data matrices, and their associated metadata in a predictable and programmable
way from online phylogenetic data providers. All PhyloWS URI’s begin with /phylows/ as
the standard delimiter. Then based on the phylogenetic information being queried a data
structure will be given, such as taxon, tree, or study. This is followed by any specific identifiers
needed for the query. For example, http://purl.org/phylo/treebase/phylows/tree/TB2:
Tr3099?format=rdf returns the tree with the TreeBase ID equal to ’Tr3099’ in RDF format.

3 CDAOStore

The CDAOStore is a novel repository and portal aimed at facilitating the storage
and retrieval of phylogenetic data; it is the first instance of a repository built on the
EvoIO stack. The novelty of CDAOStore
lies in the use of a semantic-based approach
to the storage and querying of data, build-
ing on CDAO for the semantic annotation
of data. This approach enables scientists to
overcome the restrictions imposed by the use
of specific data formats—thus, facilitating
inter-operation among phylogenetic analysis
applications. This is different, e.g., from the
main existing repository for phylogenies, Tree-
Base, which requires submissions in NEXUS

TreeBase Triple-Store

Ph
yl

og
en

et
ic

 D
at

a

NEXUS

NeXML

PHYLIP

MEGA

CDAO
Triples

CDAO
Triples

Queries

IM
PO

RT
ER

 M
O

D
U

LE

EX
PO

RT
ER

 M
O

D
U

LE

QUERY 
ENGINE

Ph
yl

oW
S

Vi
su

al
iz

er
s

Request
Manager

Query
Processing

Output
Formatting

Figure 1 Overall structure of CDAOStore

format; there is experimental evidence (e.g., [13]) that data reuse and inter-operation has
been hard to achieve, and TreeBase has high rates of rejected submissions due to incorrect
data formats (e.g., a study showed that, over a period of time, 9% of the submissions to
TreeBase were complete, and 11% of them could not be parsed). Furthermore, the use of
a semantic-based repository makes it possible to design and implement more meaningful
domain-specific queries. The overall structure of CDAOStore is illustrated in Fig. 1. The
system is organized in three modules. The Importer module enables the submission of new
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phylogenies, data matrices, or metadata for existing phylogenies into the repository. The
Query module supports all the queries to the repository. The Exporter module implements the
user interface to the CDAOStore. In the following subsections, we review the functionalities
and implementation of these three modules. The details of the Query modules are discussed
in the following sections, as this module represents the core of the system.
Importer Module: The purpose of the Importer module is to import phylogenies and their
associated data into the repository, automatically extracting their representations in terms
of instances of CDAO. The data importer module can process phylogenetic data encoded in
several commonly used data formats—currently, the Importer supports NEXUS [10], NeXML
[18], PHYLIP [3], and MEGA [7] formats. The Importer has been realized by developing a
semantic characterization of each data format in terms of CDAO concepts and relations. The
Importer module includes a permanent link to TreeBase—i.e., the CDAOStore repository
provides a semantic mirroring of the complete content of TreeBase, and new updates to
TreeBase are immediately reflected into CDAOStore. The various parsing sub-modules have
been developed from scratch, using combinations of C++, Prolog, and XSLT. In particular,
Prolog has been used to implement a parser for NEXUS—accommodating for differences
in the interpretations of the NEXUS specification [10] through non-determinism[6]. The
Importer maps data from the input files to an object model that mirrors CDAO classes,
producing RDF/XML triples that can be deposited in the CDAOStore triple store. The data
importer module is also capable of mapping the object model back into any of the acceptable
data formats; this enables the use of CDAOStore for conversion among data formats.
Exporter Module: The Exporter modules provides the user interfaces of CDAOStore.
It consists of a Web portal, which allows users to submit and query data, and a series of
visualization tools, referred to as CDAO Explorer. CDAO Explorer includes an application
for visualizing phylogenetic trees, that provides different visualization formats and the ability
to highlight or hide parts of the trees according to user-defined criteria, an application for
displaying character data matrices, with capabilities to use color coding to highlight character
patterns, and a tool to graphically add annotations to existing phylogenies. Additionally,
the Exporter module includes the ability to map phylogenies encoded in the triple store to
any of a number of formats (e.g., phyloXML, NeXML, Newick, RDF/XML), which can be
piped to other visualization tools, such as Nexplorer 3 [4], which accepts CDAO RDF/XML
input, and PhyloBox [5], which accepts phyloXML and Newick representations.
Query Module: At the core of CDAOStore we find a triple store which collects data and
meta-data associated to phylogenetic analysis studies. All the data and metadata are stored
as RDF triples, encoded using CDAO. The repository itself has been implemented using the
RDFlib library (www.rdflib.net), a Python-based RDF store which uses a MySQL database
to maintain the serialized RDF triples representing instances of CDAO. RDFlib was selected
for its simplicity and for the flexibility offered in formatting the output of queries posed to
the store. The Query module is articulated into three components—a request manager, a
query processor, and an output formatter.

The request manager provides the infrastructure for the PhyloWS web service API and
prepares the queries for execution on the triple store. The PhyloWS API is the basis for all
the data access features of CDAOStore. The other web components and the CDAO Explorer
use PhyloWS to access data. The URI’s of the CDAOStore implementation of PhyloWS
are divided into three conceptual parts: (1) the address of the store site and path prefix
www.cs.nmsu.edu/~cdaostore/cgi-bin/phylows, (2) a query type (e.g., tree, matrix, msc,
nca, size), and (3) a parameter list, dependent on the specific type of query. For example,
the msc (maximum spanning clade) and nca (nearest common ancestor) query types expect a

www.rdflib.net
www.cs.nmsu.edu/~cdaostore/cgi-bin/phylows
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list of taxon id’s separated by ‘/’. The listing query takes optional limit and offset parameters
to paginate results. The size query requires parameters describing a direction (greater, less,
or equal), a criteria (node, internal, or leaf) and a limit (a numeral). The request manager
handles parsing, sanitizing, interpreting request arguments, and orchestrating the remaining
components. The results produced by the execution of a query are returned to the Exporter
for output. For most queries, the formatting is largely determined by the format string
given to the query processor, and a query-dependent header and footer. For the queries
determining phylogenies, the output is filtered through a post-processing layer to reorder its
components and make it easier to be processed by the exporter module—e.g., the components
of the phylogeny are exported in an order that resembles a breadth-first traversal of the tree.

4 Domain-Specific Queries

4.1 Querying Biological Phylogenies
CDAOStore maps phylogenies and characters state data matrices to instances of CDAO, and
stores them as RDF triples in a triple store. The triple store of CDAOStore is exposed to
the users via the PhyloWS web service interface, enabling them to submit SPARQL queries
[16]. These queries are processed by the SPARQL processor implemented by the RDFlib
library. Nevertheless, the use of a SPARQL interface has several drawbacks; SPARQL is a
relatively complex query language, which is relatively inaccessible to the average life scientist.
Furthermore, there is evidence in the literature on uses of phylogenetic analysis in biological
investigations that the type of queries required are often more complex than what standard
SPARQL can provide. In particular, SPARQL is weak in handling queries to hierarchical
structures of arbitrary depth and offers limited support for aggregate functions.

To address these issues, we developed a domain-specific query interface to the triple
store, providing classes of queries that have been determined to be of general interest to
life scientists using phylogenies in their investigations. The classes of queries have been
devised through a combination of focus groups with life scientists and investigation of the
relevant literature—the problem of storing and accessing phylogenies has been recognized for
quite some time (e.g., [14]) and attacked by various research groups (e.g., the Evolutionary
Database Interoperability group at the Natl. Evolutionary Synthesis Center). In particular,
a seminal paper on desiderata for phylogenetic databases [12] provided a classification of
phylogenetic investigations and the associated types of queries.

The study in [12] identifies six classes of uses of phylogenetic repositories: (1) Casual Uses
(occasional search for a phylogeny, e.g., for informational use); (2) Visualization Uses (retrieval
of one or more phylogeny for graphical display); (3) Study Development Uses (contribution of
new phylogenies or update of existing ones); (4) Super-Tree Uses (for assembly of phylogenies
into super-trees); (5) Simulation Studies (e.g., to assess performance of models of evolution);
(6) Comparative Genomics Studies (use of phylogenies to relate different genes/genomes).

The investigation in [12] identified the needs of these six application leading to eleven
basic types of phylogenetic queries. We revised these classes of queries through our own
focus groups and refined them into the following classes of queries:
• Q1 Determine all the phylogenies containing a given set of taxa—e.g., locate all trees
containing the taxonomic units named Ilex anomala and Ilex glabra.

• Q2 Determine the relations among a set of taxa in all phylogenies (query not supported).
• Q3 Determine the minimum spanning tree/clade for a given set of taxa—e.g., locate the
minimum spanning clade in the tree Tree3099 (TreeBase identifier) for the taxonomic
units Ilex anomala and Ilex glabra.
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• Q4 Determine all phylogenies constructed using a given inference method—e.g., locate
all the phylogenies constructed using a parsimony method.

• Q5 Determine all the phylogenies containing a set number of taxa—e.g., locate all the
phylogenies with at most 25 taxa.

• Q6 Determine all the phylogenies produced by a given tool or author—e.g., locate all the
phylogenies published by W. Piel.

• Q7 Determine all phylogenies satisfying a given geometric property—e.g., locate all the
phylogenies that have diameter equal to 5.

• Q8 Given a phylogeny P , a measure m, and a quantity q, determine all the phylogenies
that are at distance q from P according to the measure m (e.g., for the purpose of
clustering phylogenies that are “close” to a given tree).

• Q9 Given a model of evolution, determine all the phylogenies that have been constructed
using such model of evolution—e.g., identify all the phylogenies that have been constructed
using Jukes-Cantor model for estimating distance.

• Q10 Given a measure, return statistics about the measure in the phylogenies present in
the repository—e.g., determine the distribution of tree lengths

• Q11 Given a type of data and a set of taxa, determine all the phylogenies on the set of
taxa that have been constructed using the specified type of data. sequences.

Two classes of queries are currently not supported—classes Q2 and Q8. The class Q2, drawn
from the study in [12], is only vaguely specified, and further investigation is in progress
to characterize the type of relationships to be considered—the queries in this class are
aimed at discovering opportunities for clustering of taxa based on how they are related
by the phylogenies in the repository. Queries in class Q8 are associated to the use of
distance measures between phylogenetic trees (e.g., Robinson-Foulds distance, K tree score)
to determine clusters of trees. For questions Q7, we support the computation of radii and
diameters—defined in terms minimum and maximum eccentricity of the phylogeny, where
the eccentricity is the maximum distance in the phylogeny among any two nodes.

4.2 Query Implementation
The various queries listed above have been implemented in CDAOStore using a combination of
SPARQL and Prolog; some of the queries (e.g., Q1) can be mapped to corresponding SPARQL
queries; other queries require more involved reasoning on phylogenies (e.g., computation of
nearest common ancestors) and these are implemented by mapping phylogenies into Prolog
terms and using Prolog to address the queries.

In order to use of Prolog in CDAOStore, we developed a pre-processor, which is used to
generate a Prolog program that will produce the result of the submitted query. The first
step of the pre-processor is to generate SPARQL queries to retrieve from the triple store
the phylogenies of interest (i.e., those referred to by the query being executed) and convert
the RDF representation of such phylogenies into a collection of ground Prolog facts. The
pre-processor combines these ground facts with a set of pre-determined Prolog rules, which
describe the computation of the query, and feeds the result to a Prolog engine for execution
(in our case, SWI-Prolog). Finally, the pre-processor converts the result back into a RDF
format for final output. The facts used to describe phylogenies include facts of the form:

tree(TreeName). node(TreeName, NodeName).
edge(TreeName, EdgeName, Direction, SourceNode, DestinationNode).

The nodes are classified as internal, root, or leaf nodes by adding suitable simple rules. The
set of rules added include those used to determine the ancestors of a node, in the form of a
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predicate ancestor_of(Tree, Ancestor, Node), as a simple transitive closure of the edge
predicate. For queries that involve the entire repository (e.g., Q10), the process above is
broken down into chunks, where the Prolog system is invoked not on all the phylogenies
at once, but on groups of a given size (established as a system parameter); the results are
incrementally aggregated to produce the final result.
Queries Q1: This class of queries is used to determine all the phylogenies containing a
given set of taxa. This query can be implemented directly in SPARQL:

PREFIX study: <http://www.cs.nmsu.edu/~bchisham/study.owl#>
PREFIX contact: <http://www.w3.org/2000/10/swap/pim/contact#>
PREFIX foaf: <http://www.mindswap.org/2003/owl/foaf#>
SELECT ?tree WHERE { ?tree has_TU TU1. . . . ?tree has_TU TUN. }

The various taxa passed as arguments refer to standardized names of taxa within the
CDAOStore; work is in progress to adapt the internal nomenclature to satisfy global naming
standards being developed by several working groups (e.g., the Darwin Core [20]).
Queries Q3: This class of queries is used to determine the minimum spanning clade for a
given set of taxa or the nearest common ancestor of a given collection of taxa. These queries
are implemented using the Prolog engine. The nearest common ancestor is an ancestor of all
taxa in a given set such that none of its descendants is also an ancestor of all such taxa:

common_ancestor_of(Tree, Ancestor, [Node]) :- !, ancestor_of(Tree, Ancestor, Node).
common_ancestor_of(Tree, Ancestor, [Node | Nodes]) :-

ancestor_of(Tree, Ancestor, Node), common_ancestor_of(Tree, Ancestor, Nodes).
distant_common_ancestor_of(Tree,DistantAncestor,Nodes) :-

common_ancestor_of(Tree,Anc,Nodes), ancestor_of(Tree,DistantAncestor,Anc).
nearest_common_ancestor_of(Tree,Nca,Nodes) :- common_ancestor_of(Tree,Nca,Nodes),

not(distant_common_ancestor_of(Tree, Nca, Nodes)).

The minimum spanning clade of a set of taxa is the set of nodes that includes the
nearest-common ancestor of all the taxa in the set, and all of its descendants.

clade( Tree, Node, Member ):- ancestor_of( Tree, Node, Member ).
clade( Tree, Node, Node):- node( Tree, Node ).
msclade( Tree, Nodes, Clade ):- nearest_common_ancestor_of(Tree,NCA,Nodes),

setof(Member, clade( Tree, NCA, Member), Clade).

Queries Q4: This class of queries is used to determine all the phylogenies constructed using
a given inference method. There are two different “methods” information that can be checked
(as from the CDAO specification)—i.e., the algorithm used and the specific phylogenetic
inference system (i.e., the specific software used). Both cases can be handled in SPARQL:

SELECT ?tree WHERE { SELECT ?tree WHERE {
?study study:has_analysis ?analysis. ?study study:has_analysis ?analysis .
?analysis study:has_algorithm ’$ALGO’ . ?analysis study:has_software ’$ALGO’ .
?analysis study:has_output_tree ?tree . } ?analysis study:has_output_tree ?tree . }

where $ALGO is the variable for the given algorithm/software being checked for.
Queries Q5: This queries are used to determine all phylogenies containing a given number of
taxa. This query requires the use of Prolog, to count the number of leaves in the phylogenies:

taxa_count( Tree, Count ) :- leaf_count( Tree, Count ).
leaf_count(Tree,C) :- setof(LNode, leaf(Tree,LNode),Nodes), length(Nodes,C).
tree_with_n_taxa( N, Trees ) :- findall(T, (tree(T), taxa_count(T,N)), Trees).
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Queries Q6: These queries determine all the phylogenies produced by a given tool or author;
these can be easily addressed using SPARQL, e.g., to search for a specific author:

SELECT ?study WHERE {
?study study:has_author ?authorid.
?authorid foaf:last_name ’$LAST_NAME’^^<http://www.w3.org/2001/XMLSchema#string>.
?authorid foaf:first_name ’$FIRST_NAME’^^<http://www.w3.org/2001/XMLSchema#string>.}

where $LAST_NAME and $FIRST_NAME are the last and first name of the author,
respectively. The option to search on just the last name is also available.

Queries Q7: CDAOStore currently supports only the computation of queries requesting
phylogenies with a given constraint on either their radii or their diameters. The code for the
radius is provided next—the predicate computes the radii of the trees (through a recursive
comparison of distances among leaves) and selects those that have a radius equal to the
requested value R. The code for the diameter is analogous, with the exception that we will
maximize the eccentricity instead of minimizing it.

radius_count( Tree, R, Trees ) :- setof(T, (tree(T), radius(T,R)), Trees).
radius( Tree, R ) :- findall(Leaf, leaf(Tree, Leaf), [L|Leaves]),

max_distance(Tree, L, Leaves, Curr), radii(Tree, Leaves, R, Curr).
radii( _, Leaf, R, R) :- length(Leaf, 1), !.
radii(Tree, [Leaf | Leaves], Radius, Curr) :-

max_distance(Tree,Leaf,Leaves, Len),
(Len < Curr *-> radii(Tree,Leaves,Radius,Len); radii(Tree,Leaves,Radius,Curr)).

eccList(_,_,[],[]).
eccList(Tree, Leaf, [LeafNode | Leaves], [E | Rest]) :-

pathlength(Tree,Leaf,LeafNode,E), eccList(Tree,Leaf,Leaves,Rest).
max_distance(Tree,Node,Nodes,D) :- eccList(Tree,Node,Nodes,Lens), max_list(Lens,D).

Queries Q9: This query is used to determine all phylogenies that have been constructed
using a particular model of evolution; this query is mapped to a SPARQL query that filters
phylogenies based on the model of evolution property. Unfortunately, the TreeBase repository
is lacking this type of meta-data, preventing us from experimenting with it.
Queries Q10: This class of queries is used to determine statistical information about the
phylogenies present in the repository (e.g., distribution of tree lengths). The code has been
developed to support the computation of the mean, median, mode, and standard deviation
of size of trees, edge lengths, radii, and diameters of all phylogenies in the repository. These
queries are implemented in Prolog. Here below we sketch its main aspects.

stat_measures(Type, Mean, Median, Mode, Dev) :-
select_data(Type, List), msort(List, Sorted),
find_mean(Sorted, Mean), find_median(Sorted, Median),
find_mode(Sorted, Mode), find_stddev(Sorted, Dev).

select_data(size, List) :- findall(C, node_count(Tree,C), List).
select_data(edge_length, List) :-

findall(C, (edge(Tree,Name,_,_,_), edge_length(Name,C)), List).
...
findMean(List, Mean):- sum(List, Sum), length(List, N), Mean is Sum / N.

Queries Q11: This class of queries is used to determine, given a type of data and a set of
taxa, all the phylogenies containing all the given taxa and whose construction involved data
of the given type (e.g., DNA). This type of queries can be addressed using SPARQL, since
CDAO provides properties describing all these features; the overall structure of the query is
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SELECT ?tree WHERE {
?study has_analysis ?analysis. ?analysis has_output_tree ?tree.
?analysis has_input_matrix ?matrix.
?tree has_TU <TU1>. . . . ?tree has_TU <TUN>.
?matrix has_Character ?character.
?character rdf:type cdao:AminoAcidResidueCharacter. }

5 Preliminary Evaluation

The CDAOStore has been implemented and it is now available for access. The implementation
has been realized using a collection of publicly available tools. In particular, the triple store
has been implemented on top of the RDFlib Python library, the Prolog components in
SWI-Prolog, and various libraries have been adopted to deal with specialized data formats.
The store has been populated by importing into CDAOStore the complete content of the
TreeBase [1] repository, encoded using CDAO and enhanced with semantic annotations
drawn from several associated repositories. At this time, CDAOStore contains over 4, 000
phylogenies, and the overall size of the repository is now at more than 90 million RDF triples.

We performed some preliminary experiments to evaluate the performance of the system on
some sample queries, drawn from scientific publications. Let us observe that performance was
not one of the main driving criteria in initial design and implementation of CDAOStore—we
focused more on providing an environment that is flexible and provides querying capabilities
that are beyond what supported in existing repositories. Furthermore, CDAOStore is viewed
as a service provider that will be used by other clients for various types of applications.

The performance in answering the queries has been measured in terms of time to respond.
Since our Web portal uses cgi-bin, we evaluated performance by performing a direct call
with a specific URL, instead of going through the actual HTML form, in order to get a more
accurate time measurement. The queries have been performed on a server running on a HP
Intel Core i7 860 machine, with 8GB of memory and making use of SuSE Linux.

Table 1 Execution Times for Sample Queries (time in sec.)

Query PhyloWS Time Web Portal Time
T1 2.44 1.20
T2 1.82 3.18
T3 0.91 4.19
T4 6.12 6.18
T5 6.19 6.26
T6 32.58 35.22
T7 5.42 5.04
T8 15.91 *

Table 2 summarizes the queries and results, while Table 1 summarizes some of the
execution times. The timings are expressed in seconds. The different rows correspond
to different queries. The first time column reports the response time while issuing the
query through the PhyloWS API, while the second made use of the web portal. Note that
occasionally the web portal provides a faster response time as some of the argument parsing
is pre-determined by the specific fields in the portal. We do not report results for queries of
type 9 because meta-data about models of evolution are missing from the current repository.
Queries 10 and 11 have been only very recently integrated in the system. A particular note
for query of type 7—the pre-processing of the query required excessive time, leading to a
time-out of the web server; we are working on addressing this issue.
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Table 2 Sample queries

Query Description Query Answer
Type

T1 Phylogenies containing taxa Ilex anomala and
Ilex glabra

Q1 16 phylogenies

T2 Minimum Spanning Clade for taxa Ilex anomala
and Ilex glabra in tree Tree3099

Q3 1 clade, 14 nodes

T3 Nearest Common Ancestor of taxa Ilex anomala
and Ilex glabra in tree Tree3099

Q3 1 node

T4 Phylogenies constructed using Parsimony al-
gorithm

Q4 3,636 phylogenies

T5 Phylogenies constructed using PAUP∗ Q4 4,091 phylogenies
T6 Phylogenies with less than 25 nodes Q5 3,120 phylogenies
T7 Phylogenies co-authored by W.H. Piel Q6 3 phylogenies
T8 Phylogenies with radius equal to 10 Q7 1 phylogeny

Some of the queries require a larger execution times (in the order of several tens of
seconds), due to the fact that the queries check all possible phylogenies in the triple store,
rather than looking only at nodes from a particular phylogeny. Some ways to improve these
execution times may include maintaining summary information of the various phylogenies.
An asynchronous query mechanism would also be useful for running queries such as radius
and diameter, avoiding the web server timeout issue mentioned earlier.

6 Conclusion and Future Work

The CDAOStore is a collaborative effort to implement a repository of results from phylogenetic
analysis studies in the field of life sciences, built on a formally specified inter-operation
stack, the EvoIO stack, composed of a formal ontology, a standard exchange format, and
a web service API. The first deployment of CDAOStore has been completed with success,
embedding a sophisticated domain-specific querying API and Web interface, implemented
using a combination of SPARQL and Prolog. The CDAOStore platform is open-source and is
available as a SourceForge project, at sourceforge.net/projects/cdaotools. The portal
to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.

The novelty of CDAOStore lies in the use of a semantic-based approach to the storage
and querying of data, building on established ontologies for the semantic annotation of
data and on a query language which is domain-specific. These are features that are absent
from related existing repositories (e.g., TreeBase [1], Tree of Life Web project [9], Dryad
datadryad.org). This approach enables us to overcome restrictions imposed by the use of
specific data formats (facilitating interoperation among phylogenetic analysis applications)
and makes it possible to formulate more meaningful domain-specific queries.

We are currently working on extending the set of domain-specific queries supported by
CDAOStore, paying particular attention at queries used to discover clustering of taxa and
clustering of phylogenies, according to different types of distance measures. We are also
exploring ways of enhancing the speed of some queries, through better representations and
pre-computation of additional meta-data. An important component of our future work will
include the evaluation of the suitability of the current platform (based on RDFlib) to sustain
the growing size of the triple store. Alternative platforms are available (e.g., Jena, RAP,
AllegroGraph), with probably better performance but also with steeper amount of work
required to integrate the various system components.

sourceforge.net/projects/cdaotools
http://www.cs.nmsu.edu/~cdaostore
datadryad.org
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Abstract
Probabilistic models that associate annotations to sequential data are widely used in computa-
tional biology and a range of other applications. Models integrating with logic programs provide,
furthermore, for sophistication and generality, at the cost of potentially very high computational
complexity. A methodology is proposed for modularization of such models into sub-models, each
representing a particular interpretation of the input data to be analysed. Their composition
forms, in a natural way, a Bayesian network, and we show how standard methods for prediction
and training can be adapted for such composite models in an iterative way, obtaining reasonable
complexity results. Our methodology can be implemented using the probabilistic-logic PRISM
system, developed by Sato et al, in a way that allows for practical applications.
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1 Introduction

Analysis of DNA is an important example of a complex sequence annotation task which has
motivated our approach. The sheer size of data instances and the degree of ambiguity in such
tasks pose great challenges for efficient probabilistic analysis. Furthermore, most systems
for DNA-analysis used in practice are implemented in low-level programming languages,
optimized and tweaked for very specific procedures, thus leading to systems with an unclear
semantics and lack of flexibility for the modeling part. A possible shift to using probabilistic-
logic systems and languages provides obvious benefits in terms of clear semantics and
flexibility, but also introduces potential problems concerning complexity and scalability. We
present here a modular approach, in which complex probabilistic-logic models are defined in
terms of separate sub-models, each representing a particular interpretation (or “signal”) of
the input data to be analyzed. The dependencies among the results of analyses performed
by these sub-models are described in terms of edges in a Bayesian network. This allows for
an implementation based on incremental application of standard methods for prediction and
training, one sub-model at a time, thus possibly leading to acceptable complexity. We refer
to such modularized models for sequence analysis as Bayesian Annotation Networks. We
demonstrate an implementation based on PRISM [16], which is a probabilistic extension of
Prolog.
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2 Probabilistic Annotation Models

Probabilistic-logic models for sequence annotations will be presented in two steps, first the
logical part, and then probabilities are added. Notice also, that we abstract away the details
of any actual modeling language and the format of probability parameters.

I Definition 1. An annotation program, or just a program, is a logic program prog, that
defines a set of atoms, each of the form:

prog(s, a, parents),

where
- s is called the sequence, and represents the data sequence to be annotated by the program.
- a is called an output annotation, and
- parents represents zero or more conditioning annotations.
The name “parents” anticipates the introduction of Bayesian Annotations Networks in
section 3 below. They represent annotations produced by other sub-models, serving as
conditions for the analysis associated with prog.

I Definition 2. A probabilistic annotation model

m = 〈prog, θ〉

consists of a probabilistic annotation program prog and a parameter θ. The parameter
is element of some data domain which is not specified further, but which gives rise to a
well-defined conditional probability distribution for atoms prog(s, a, parents) as follows:

P (a | s, parents, θ)

The intuition is that θ that associates probabilities to the detailed choices made within prog
to produce the output annotation a, given a specific sequence s and parent annotations.
Notice that our framework captures also analyses that are not necessarily written in a
probabilistic-logic language. Notice that our framework captures also analyses that are not
necessarily written in a probabilistic-logic language.

I Definition 3. A deterministic annotation model is a program

prog(s, a, parents)

where, for specific sequence s0 and parents0, there exists exactly one output annotation a0,
i.e.,

P (a0 | s0, parents0, θ) = 1,
where θ, in this case, refers to an (empty) parameter which is ignored.

The empty parameter is included for uniformity of notation only. A deterministic annotation
model with empty parents may represent an analysis provided by an external tool that, e.g.,
searches for similarities in a database of related sequence data.

3 Organizing Annotation Models as a Bayesian Network

Our overall idea for prediction is to evaluate one model at a time, fix its output annotation
to a single “best” one which, then, is used as parent for subsequent analyses. This is very
similar to the way forward analysis takes place in Bayesian networks, which we thus take as
our central paradigm for putting sub-models together to a whole. A Bayesian Network (BN)
is defined as a directed acyclic graph as follows [15].
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Its nodes are random variables.
An edge from node A to node B indicates that B is directly dependent on A, and A is
called a parent of B; the notation parents(B) refers to the sequence of parent nodes of B.
Each node A has an associated conditional probability distribution, CPD, P (A | parents(A)).

For many applications of BNs, the CPDs are given in the form of tables, but since the
random variables in our case range over huge sets of alternative annotations, this is infeasible,
and we use probabilistic models instead.

I Definition 4. A Bayesian annotation network (BAN) is a set of probabilistic annotation
models {Mi | i = 1, . . . , n}, with Mi = 〈mi(s, ai, parentsi), θi〉, numbered in such a way that
parentsi ⊆ {a1, . . . , ai−1}.
The model Mn is a designated top model, and it is assumed that the parent relationship
induces a path from any other Mi to Mn.

A BAN in itself is not a BN, but it induces a BN in the following way.
Nodes are labelled ai, i = 1, . . . , n and s.
Whenever aj ∈ parentsi, there is an edge from aj to ai, and there is an edge from s to
any ai.
The CPD associated with ai is given by the model Mi, i.e., P (ai | s, parentsi, θi).

For ease of terminology, we refer to a suitable set of annotation programs as a BAN, when
below, we talk about training a BAN, i.e., finding parameters such that it actually becomes
a BAN, as per the present definition. When presenting a BAN as a graph, we typically leave
out s and the n edges going out from it. When doing predictive inference below, the sequence
is always fixed, so we can leave it out, assuming instead a particular BN for each sequence.

4 Predictive inference

Predictive inference refers here to the process of identifying a best proposal for top output
annotation that characterizes a given sequence. The fundamental assumption when using
probabilistic models is that quality of a solution is intimately coupled to its probability,
in other words, we should be searching for a top output annotation with a relatively high
probability, ideally the one with highest probability.

Below, we give first a precise, declarative characterization of the best top output annota-
tion, and then an approximative calculation method which, under certain circumstances,
may reduce computational complexity drastically. Examples and detailed arguments for this
claim will be given later.

We assume a BAN {Mi | i = 1, . . . , n} with Mi = 〈mi(s, ai, parentsi), θi〉 and a fixed
sequence s0 to be analysed. We use Θ to refer to the set of all parameters in the BAN,
{θ1, . . . , θn}. Considering the BAN as an entire model, we can describe the best solution as
follows.

idealn(s0,Θ) =def argmax
an

P (an | s0,Θ)

where the term inside the argmax can be unfolded as follows.

P (an | s0,Θ) =
∑

〈a1,...,an−1〉

P (a1, . . . , an | s0,Θ) (1)

=
∑

〈a1,...,an−1〉

n∏
i=1

P (ai | s0, parentsi, θi) (2)
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Standard methods for reasoning in Bayesian networks, see, e.g., [6], is of very little use here
due to the unmanageable size of the random variables’ outcome spaces, which in practice are
impossible to iterate over.

We are not aware of any reasonable way to reduce this formula, although we do not have
a formal proof that this is not possible. Instead, we propose an approximative, iterative
algorithm that fixes one particular best annotation ai = approxi(s0,Θ) for each sub-model
and applies it subsequently in the prediction of those aj with ai ∈ parents(aj).

approxi(s0,Θ) = argmax
ai

P (ai | s0, approxparentsi
(s0,Θ),Θ), i = 1, . . . , n (3)

where approxparentsi
(s,Θ), for some sequence s, stands for the sequence of parent annotations

approxj(s,Θ) for all aj ∈ parentsi.

Specifically, we take approxn(s0,Θ) as an approximated value for idealn(s0,Θ); the possible
conditions under which this may be considered a good approximation will be discussed among
our conclusions, section 8.

Notice, that there is no circularity in this definition and approxn(· · · ) can be calculated
in a single sweep calculating approx1(· · · ), approx2(· · · ), . . . in that order. The “argmax” in
(3) may be calculated by existing algorithms as we demonstrate below.

In practical applications of our methodology, we expect the number of sub-models in a
BAN to be a relatively small number (say, arbitrarily, < 10), but lengths of sequences and
their annotations are expected to be huge. Measured in sequence length, the complexity
of approximate prediction with the entire BAN coincides with the complexity for the most
complex sub-model.

5 Training the network

In order to obtain the probabilistic parameters Θ for a BAN, we rely on existing training
algorithms for supervised learning, e.g., as built into the PRISM system [7], [17]. Such
algorithms require a sufficiently large and representative collection of ground atoms for each
sub-model, each representing a sequence with its correct annotation, which in our motivating
application domain means annotations verified in the lab by the biologists.

To this end, we assume the availability of some state-of-the-art training algorithm
T supervised , described as a function mapping a particular program together with its training
data into a parameter. Notice that we are not interested here in the actual details of how
the training algorithm works.

For doing supervised training of any sub-model in a BAN, we need in principle ground data
that exemplifies the relation between sequence, parent annotations, and output annotation.
We define, thus, a conditional training data set for program mi as a set

CTDi = {mi(sj
i , a

j
i , parentsj

i ) | j = 1, . . .}.

It is called “conditional” since it includes parent annotations parentsj
i for each output

annotation aj
i .

In practice, however, we cannot expect such conditional training sets always be available
as this assumes that the signals represented by the different sub-models has been analyzed
consistently for the same set of sequences. In other words, we can only assume that the
following sorts of training data are available in a more traditional format without explicit
parent annotations.

TDi = {〈sj
i , a

j
i 〉 | j = 1, . . .}
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However, if we train the different models one by one in the order M1, M2, . . ., we can use
the already trained models to supply parent annotations. We can thus specify an iterative
BAN training algorithm as follows.

θi = T supervised(mi, CTDi)

where

CTDi = {m(sj
i , a

j
i , approxparentsj

i
(sj

i , {θ1, . . . , θi−1})) | 〈sj
i , a

j
i 〉 ∈ TDi}

There is no circularity in these equations which may be evaluated in one sweep θ0, θ1, . . ..
This strategy can be adapted to handle cases where training data TDi are unavailable for

some non-top model Mi, i.e., i < n. Here we may use unsupervised training, or even set the
parameters manually, and still hope for good results. It is not essential that model Mi is a
faithful mirror of some physically measurable signal (call this M true

i ): the necessary property
is whether Mi represents some annotation that can help the models Mj of which Mi is a
parent to discriminate the details of the sequence under consideration. To see this, notice
that such an Mj consistently applies annotations produced by Mi (rather than M true

i ) for
its own training and prediction.

We postulate the following rule of thumb for checking the relevance of a specific model
Mi within a given BAN.

(*) – Whether a model Mi contributes an interesting signal to Mj can be checked by inspection
of the parameter to check whether different values for ai provide any significant variation
in the magnitude of P (aj | s0, a1, . . . , ai, . . . , aj−1).1

However, we expect that models designed according to biological expert knowledge, that
are trained using a sufficient set of authoritative data, and whose position in the hierarchy
is based on the same biological expert knowledge, will have the best chance to constitute
an interesting signal according to (*). In case of a biologically justified model, for which
sufficient amounts of data are available, it will be natural also to check it with standard
precision and recall methods.

We can summarize some of the practical consequences of these arguments as follows.
Mi may for reasons of performance, or to avoid over-training, be programmed in a rather
coarse way, which gives only a very rough approximation of Mi.
We may introduce an arbitrary sub-model in a BAN, be it based on only little or no
biological insights; it may be trained unsupervised or the parameter may be set by hand,
and we can apply (*) to check whether it is of any use.
We may introduce alternative models for the same biological signal, and use another
model as a voting mechanism to combine the different signals and check its contribution
according to (*).
Having a collection of candidate sub-models, we can experiment with different topologies
for dependencies, and validate it internally according to (*) as well as using precision and
recall tests for the top model.

We will discuss some these points below in relation to our experiments.

1 For a trained PRISM model, we may compare the different conditional msw probabilities produced by
the training of Mj .
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6 Implementation in PRISM – the LoSt Framework

The methodology described so far is supported by an implementation built on top of the
PRISM system [16], which is a probabilistic extension to Prolog which provides a wide range
of learning and prediction algorithms.

In this section, we first explain our own system, called the LoSt-framework [9], which
is basically a collection of scripts that control the ordering of different runs of PRISM for
prediction and training plus a file management system that keeps track of the different
models, their parameters, the connections that tie them together to a BAN as well as all
data files involved (catalogues of sequences, training data, files of predicted annotations,
etc.). We also show a simplified, implemented example that illustrates different aspects of
our methodology.

6.1 Embedding BANs in PRISM
The PRISM system [16] realizes a probabilistic extension to Prolog and is equipped with a
comprehensive collection of facilities for prediction and training.

The PRISM language extends Prolog with so-called multi-valued switches: a call
msw(name, X) represents a probabilistic choice of a value to be assigned to X.2 The se-
mantics of a PRISM program is given as a probabilistic Herbrand model, determined by a
parameter which is a file of probability declarations for the individual switches. For this
semantics to be well-defined, any choice point in the program must be governed by an msw.

The program part of a sub-model m(s, a, parents) may be represented by a PRISM
program with a main predicate

m(s, a, parents)

where parents are a arguments corresponding to the number of parents of mi. A typical
sequence model is implemented as a recursive predicate which relates the s and a arguments
in a probabilistic fashion conditioned by given parent annotations and involving myriads of
msw calls.

PRISM contains algorithms for training based on suitable generalizations of EM learning
and Variational Bayesian learning [17] which can be used for both supervised and unsupervised
learning; the LoSt environment keeps track of training data and generated parameter files
for the individual sub-models.

Prediction using a PRISM program, representing a trained sub-model, can be performed
using one of PRISM’s generalized Viterbi algorithms. Specifically, we use a minor extension
to PRISM, described in [3], which makes it possible to analyse longer sequences in reasonable
time. The following call,

S= · · · , A1= · · · , A2= · · · , viterbiAnnot( m(S,A,A1,A2, · · · )),

will instantiate A to the annotation that provides the highest probability of the goal
m(S,A,A1,A2, · · · ), thus implementing the argmax in equation (3) above.

The scripts in the LoSt environment implement the correct ordering of sub-model pro-
cessing as prescribed by our incremental prediction and training algorithms described in
sections 4 and 5 above, however, avoiding computations that have been made before and
whose results are available on files.

2 To be exact, a switch introduced by a declaration values(name, [· · · outcomes · · · ]) defines a family
of random variables, one for each execution of msw(name, · · · ) in a program run.
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6.2 Example: Gene-finding in DNA

We illustrate our methodology showing experiments with BANs that represent gene-finders
for DNA sequences. A piece of DNA is a sequence of letters {a, c, g, t}; it can be viewed as a
sequence of triplets, each called a codon. Codons are separated into specific start-codons,
stop-codons and other codons; a gene is a specific subsequence matching the codon structure
such that it must begin with a start codon and it will definitely end at the next stop-codon;
such a syntactic pattern is called an open reading frame (ORF). Our BAN models are
designed to annotate ORFs, where the annotation task is to find out whether an ORF
contains a gene and, if so, where in the sequence the gene starts.

We define sub-models for different signals — codon preference, gene length and conserva-
tion — which are are expected to have influence on whether a sequence is a gene or not. The
resulting annotation from such models is a sequence that for each position in the original
sequence contains a 1 if the position is predicted as part of a gene and a 0 if it is not.

All our probabilistic models are output HMMs with a gene-state and a non-gene state,
which can emit symbols of the annotations of the parent nodes. The transitions between the
states reflect the described ORF pattern.

The codon preference model m1 reflects preferential codon usage in the gene and non-gene
state. The states can each emit one of the 64 possible codons.

The gene length annotation is obtained by using a deterministic model m2 that annotates
each potential start codon with a symbol representing the distance to the upstream stop
codon.

Conservation describes a degree to which the codons of a DNA sequence are conserved
across species. To detect conservation, each ORF matched to a database of genome sequences
of distantly related organisms 3 using the tblastn tool, which produce a gapped alignment
of the matches. Only statistically significant matches (evalue < 10−34) and only one match
per organism are reported. The conservation model m3 emits identity positions of reported
matches to ORFs.

In the following we discuss and assess a number of BAN topologies built using these three
signals as basic building blocks. The considered models are m1, m3, m1 conditioned on
m2 – m1(m2), m1 conditioned on m3 – m1(m3), and m1 conditioned on both m2 and
m3 – m1(m2,m3).

We train and predict on the well-annotated Escherischia Coli genome and its curated
gene annotations from refseq (NC_000913). We have randomly divided the ORFs of the
genome into a training and a test set. Supervised training is done using only the former and
the method for supervised training algorithm described in section 5. We report prediction
accuracy results for both sets. Accuracy is measured as Sensitivity(SN) = T P

T P +F N and
Specificity(SP ) = T P

T P +F P , with respect to annotation of start and stop codons. The results
are summarized in table 1.

It can be observed from table 1 that all our models have good generalization capabilities,
since the performance is very similar on both the training and test set.

The best model seems to be m1(m2), which achieve a significant increase in specificity
with only slightly degraded sensitivity, e.g. it predicts fewer genes but its predictions are
more reliable. By them selves, both m1 and m3 have reasonable stop specificity, but m3 has
consistent tendency to predict too long genes, leading to severely decreased start specificity.

3 The sequences are from refseq: NC_004547, NC_008800, NC_009436, NC_009792, NC_010067,
NC_010694 and NC_011283.
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Table 1 Accuracy of predictions using different BAN topologies.

Training set (114429 ORFs, 2075 genes) Test set (114404 ORFs, 2065 genes)
BAN SNstart SPstart SNstop SPstop SNstart SPstart SNstop SPstop

m1 0.7701 0.2935 0.9711 0.3701 0.7564 0.2920 0.9719 0.3751
m3 0.0636 0.0322 0.8255 0.4183 0.0140 0.0072 0.8412 0.4298

m1(m2) 0.6723 0.5011 0.9345 0.6965 0.6489 0.4896 0.9433 0.7117
m1(m3) 0.4405 0.2243 0.8255 0.4204 0.4315 0.2216 0.8416 0.4323

m1(m2,m3) 0.4361 0.2228 0.8255 0.4217 0.4174 0.2149 0.8416 0.4333

Interestingly, conditioning m1 on the conservation additional signal m3 does not improve
prediction accuracy much. It does lead to slightly better stop specificity but it tends to
degrade the start specificity. Additionally, conditioning on the length signal as done in
m1(m2,m3) does not seem to help, even though the impact observed in m1(m2) was quite
significant. It seems that the m3 signal dominates decisions about which ORFs should be
predicted as coding. This effect is apparent from model parameters and it is possible to get
an intuition of the problem from inspection of the prediction accuracies.

The m3 model has a (stop) false negative rate of 1− SPstop = 1− 0.4183 ≈ 0.58. The
vast majority of ORFs ∼ 98% does not contain genes. The probability that an ORF contains
a gene but m3 classifies it as non-gene is thus relatively small, 1− 0.98× 0.58 ≈ 0.11. In the
conditional distribution defined by m1(m3) (given predictions of m3), it becomes virtually
impossible for the viterbi algorithm to classify an ORF as a gene if m3 has not, since the
probability of the gene hypothesis is scaled by ∼ 0.11 and the non-gene hypothesis by ∼ 0.89.

Part of the explanation is that maximizing the likelihood of observed data (as we do
in training) is not equivalent to maximizing prediction accuracy; it may have an adverse
effect when selecting predictions as most probable explanations as done by the viterbi
algorithm. An other part of the explanation is in our model assumptions; namely, m1(m3)
is an output HMM that has joint emissions of both codon and the signal from m3, and
these are dominated by m3 as explained above. Alternative HMM structures with different
constraints and independence tradeoffs might avoid the dominating effect of m3. We are
still investigating how this is best done.

7 Related work

Our method is closely related to Dynamic Bayesian Networks (DBNs) of [10]. By our
definition of a BAN, the detailed dependencies between individual models in the network are
left abstract, but a concrete instantiation of a BAN may indeed be a DBN. However, as the
nodes in a BAN may be arbitrary probabilistic models, for instance context-free grammars,
not all BAN instantiations can be represented as DBNs. Oppositely, we only define BANs
for discrete models but DBNs may include continuous-valued nodes.

In the realm of classification techniques, it is common to combine the results of different
classifiers of the same phenomena in ways such that the combined classifications outperform
the individual constituent classifiers. Such methods are generally known by the name
ensemble methods, which covers a wide range of different ways to the combine classifiers
[14]. Our method is related but quite different; this is not just because we consider sequence
annotation rather than classification, but also because constituent models of a BAN may
model very different phenomena.

In biological sequence analysis, the most successful genome annotation programs are
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combiners [4]; programs which combines different sources of annotation evidence using some
sort of weighting scheme. Evidence may come in diverse forms, including comparative
analysis sources [12], but are typically predictions (e.g. annotations) from other annotation
programs (e.g. gene finders). Brent [1] makes a distinction between combiners and joint
models, where joint models are described as models which consider the full joint probability
distributions evidence and combiners as probabilistic models of the the relative accuracy of
evidence sources they are combining. Using our approximate inference algorithm we have a
situation similar to combiners in that predictions of parents are combined by child nodes.

While many combiners use non-probabilistic combinations methods, several are explicitly
based on principles of (dynamic) Bayesian networks [11, 8]. A main difference is that our
framework allows multi-layered and branching topologies where the combiners are usually
just single layered probabilistic models.

Our approach also has analogies to annotation pipelines [13, 2] where a complex sequence
of analysis steps are performed in a possibly branching topology and perhaps synthesized (e.g.
by a combiner) in a final annotation as the last step. Opposed to combiners, such pipelines
usually allows complex topologies like our framework. However, such pipelines are usually
just practical and pragmatic ways of combining existing tools and incorporate probabilistic
modeling only to a very limited degree.

There are other declarative approaches to combining evidence in biological sequence
analysis. In GAZE [5], a configurable XML-based specification describes a particular
composition of evidence sources. However, GAZE integrates existing tools, where our PRISM
based approach allows for much more modelling flexibility and have clear and well-defined
semantics.

8 Conclusions

We have proposed a Bayesian framework, Bayesian Annotation Networks, which allows the
representation and composition of models for complex sequence analysis. In a modular way,
it supports experimentation with and evaluation of models and signals and it is a practically
useful tool for modeling and analyzing sequences. In particular, its applicability to biological
sequence analysis has been motivated. We have shown that reasonable complexity can be
achieved by the use of tractable, incremental algorithms for inference and training, which
can be implemented by successive calls to PRISM, and shown that these algorithms may
produce useful annotations.
In general, we have no good analytical or sampling-based principles for analyzing the quality
of the approximated annotations compared with the ideal ones. By assumption, the ideal
annotations provided by a BAN for a given sequence is too complex to be evaluated, so we
need to rely on standard validation techniques based on authoritative test data. However,
we will list a few observations which may be used as guidelines.
The crux in our approximate inference algorithm is, in each iteration step, to select a most
probable annotation approxi for each annotation node ai and take it as a representative for
the distribution of all possible ai values. In the detailed calculations, this means that we use
P (aj | s, · · · approxi · · · ), for some aj with ai ∈ parentsj , as a replacement of a weighted sum
over all possible ai values of P (aj | s, · · · ai · · · ).
In the trivial case, where all freedom of choice is implemented in the top node of the Bayesian
Network, the approximate algorithm coincides to the ideal. Beyond the trivial case, however,
it is difficult (impossible in general) to give sufficient conditions for which the approximate
inference method will yield good results.
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The relation between the quality of an annotation and its probability is assumed implied by
the purpose of a probabilistic annotation model; e.g. it should assign high probability to good
annotations. In our definitions of BANs, we define a child model to be dependent on its parent
model. In a concrete BAN, however, individual models typically have more fine grained
interdependencies, e.g. enforce their inherent independence assumptions. If these assumptions
are not faithful to the actual data dependencies, a discordance between annotation quality
and probability may arise. Similarly, in the case of approximate inference, we are concerned
in particular with the degree of validity of the assumption about independence of parent
distributions given the most probable individual elements of those distributions.
Perhaps surprisingly, the annotation quality achieved by the approximate method may
be positively affected by correlation between assumed independent nodes of the network.
Redundant (correlated) signals does not generally result in better annotations, if the ideal
inference method is used. However, such overlapping signals may indeed compensate for the
information lost due to the (possibly) unjustified independence assumptions imposed by the
approximation method or inherent in constituent models. For instance, information contained
in the distribution of a particular parent node, but not reflected by the best annotation from
that distribution, may be reflected through the best annotation of some other (correlated)
parent.
In practice, we are satisfied with the approximation if the annotations are judged as good
using an external measure of quality (e.g. sensitivity/specificity) and we have used cross-
validation to build confidence about generality, as demonstrated in section 6.2. Obviously,
this may require a considerable amount of, possibly unavailable, labelled training data. A
second consequence, also observed in section 6.2, is that the measure optimized by the
training algorithm does not necessarily coincide with the external measure of quality. Model
constraints and independence assumptions play a key role affecting the correlation between
these measures.
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Abstract
APOPCALEAPS is a logic-based music generation program that uses high level probabilistic
rules. The music produced by APOPCALEAPS is controlled by parameters that can be custom-
ized by a user to create personalized songs. Perlin noise is a type of gradient noise algorithm
which generates smooth and controllable variations of random numbers. This paper introduces
the idea of using a Perlin noise algorithm on songs produced by APOPCALEAPS to alter their
melody. The noise system modifies the song’s melody with noise values that fluctuate as meas-
ures change in a song. Songs with more notes and more elaborate differences between the notes
are modified by the system more than simpler songs. The output of the system is a different but
similar song. This research can be used for generation of music with structure where one would
need to generate variants on a theme.
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1 Introduction

Automatic music generation is a broad area in the field of artificial intelligence, even the
subfield of declarative logic programming contains work on the subject [1] [2]. Probabilistic
methodologies for generating music are less explored. Research in the field is often specific to
certain domains, such as certain types of piano music [5]. The focus of this paper is on music
generation in the area of probabilistic logic programming; that is, logic programming with
probabilistic features added on. APOPCALEAPS (Automatic Pop Composer And Learner of
Parameters) [10] is a music generation program written in the CHRiSM language [11] which
builds on a music classification/generation program [12] written in PRISM [9]. CHRiSM is
an extension of Constraint Handling Rules [3] that contain multi-headed rules which are
triggered only if certain probabilistic conditions are met. Rules can lead to different outcomes
for the same input based on set probabilities.

In this paper, the APOPCALEAPS system will be extended by adding a noise component
that takes the music files generated by the system and alters the melody to produce new
music files that maintain some features of the original piece while showing diversity. The noise
feature is based on a variation of Perlin Noise [7] (commonly used in the field of computer
graphics to generate natural-looking patterns) which was introduced in [14]. Perlin noise has
benefits over random noise when altering a pattern, such as the melody of a song. Perlin
noise is controllable: we can decide what sort of a design the noise should take.

© Colin J. Nicholson, Danny De Schreye, and Jon Sneyers;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 231–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.231
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


232 Improving the Outcome of a Probabilistic Logic Music System Generator ...

This paper will first introduce the CHRiSM language (Section 2), then go into detail
about how APOPCALEAPS generates music (Section 3). Noise generation will be explained
in Section 4. In Section 5 we will describe how noise can interact with the current APOP-
CALEAPS system to produce interesting output. We end with conclusions and future work
ideas.

2 CHRiSM

CHRiSM [11] is a programming language based on a combination of concepts of two logic
programming languages: CHR [3] and PRISM [11]. The rules of CHRiSM act on constraints,
which are similar to Prolog atoms. During execution, all constraints are stored as a multiset.
This multiset is referred as the constraint store. An initial store (query) is given to the
program, which applies all possible rules before ending with a final store (the result for the
query). CHRiSM combines the benefits of CHR with those of PRISM, while maintaining a
more user-friendly syntax than a CHR(PRISM) system.

2.1 Constraint Handling Rules
Constraint Handling Rules (CHR) is a programming language introduced by Frühwirth [3].
The name comes from the original intention of adding constraint solvers to a host language.
CHR extends a host language. For example, CHR(Prolog) allows one to use Prolog as a
host language but with the added benefit of CHR’s multiheaded rules. A CHR program is a
sequence of CHR rules which can be of the following types:

Simplification: h1, ..., hn <=> g1, ..., gm | b1, ..., bk

Propagation: h1, ..., hn ==> g1, ..., gm | b1, ..., bk

Simpagation: h1, ..., hl \ h1, ..., hn <=> g1, ..., gm | b1, ..., bk

When the head of a simplification rule matches with corresponding constraints in a
constraint store and the (optional) guard conditions are met, then the rule adds constraints
corresponding to the body to the constraint store. A propagation rule is the same only the
constraints matching with its head are kept in the store. To illustrate the difference between
simplification and propagation rules, consider the following example:

Listing 1 CHR example code
rain ==> wet.

rain ==> umbrella .

The query “rain” will give the result “rain, wet, umbrella”. If the two propagation rules were
replaced with simplification rules, however, the same query would give the result “wet” or
“umbrella,” non-deterministically. A simpagation rule removes the constraints matching with
the part of the head after the backslash, but keeps those corresponding to the part before it.
Consider the following example:

Listing 2 CHR example code
male(X) \ female (Y) <=> pair(X,Y).

pair(X,Y) :- write(X), write(‘ dances with ’), write(Y), nl.

Here, the simpagation rule at the top leads to a PROLOG rule that outputs “X dances
with Y” for variables X and Y. If a male and several females are provided as queries to the
program, the output will be the male dancing with each female.
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2.2 PRISM
PRISM is an extension of Prolog developed by Sato which includes probabilistic rules [9].
PRISM extends Prolog by adding the msw/2 (multiarity random switch) predicate. The
probabilistic switch msw(id,v) enables one to choose a value v from a set labeled with id.
For example, id could be blood type and v could be a, b, or o depending on which value is
probabilistically chosen. Below is a sample PRISM program.

Listing 3 PRISM Coin Flip program
values (coin ,[head ,tail ]).

direction (D):-
msw(coin ,Face),
( Face == head -> D=left ; D=right ).

In this program, the switch labeled “coin” has two possible values (head or tail) each with a
50% probability of occurrence. The query “direction” will return a value of left if head is
chosen and right if tail is chosen. The parameters of the values can be learned from examples
or set manually. Learning from examples entails providing a list of observed atoms to an
expectation maximization algorithm to find the parameters with the greatest likelihood.

2.3 CHRiSM syntax
The following example from [10] shows a game of “rock, paper, scissors” represented by
CHRiSM code:

Listing 4 CHRiSM Rock, Paper, Scissors program
player (P) <=> choice (P) ?? rock(P) ; paper(P); scissors (P).

rock(P1), scissors (P2) ==> winner (P1).
scissors (P1), paper(P2) ==> winner (P1).
paper(P1), rock(P2) ==> winner (P1).

Here each player leads to a choice. The “??” introduces three choices (rock, paper, and
scissors) of equal probability. Apart from just simulating games for groups of players and
returning lists of winners and losers, the constraints can be used to learn playing styles
of individual players. [10] has a more detailed analysis of this program and the statistical
experiments CHRiSM can perform on it.

2.4 CHRiSM to CHR(PRISM)
A CHRiSM program maintains the ability to use the multiheaded rules of CHR while including
the ability to use the probabilities, statistical sampling, and expectation maximization learning
of PRISM. A CHRiSM program is translated to a CHR(PRISM) program. As shown in [10],
a simplification rule such as

Listing 5 CHRiSM rule
player (P) <=> choice (P) ?? rock(P) ; scissors (P); paper(P)

is translated to
Listing 6 CHR(PRISM) translation

values ( choice (_), [1 ,2 ,3]).

player (P) <=> msw( choice (P),X),
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(X = 1 -> rock(P); X = 2 -> scissors (P); X = 3 -> paper(P)).

in CHR(PRISM).

3 APOPCALEAPS

APOPCALEAPS is a music generation program written in CHRiSM. APOPCALEAPS
generates a song in the form of a text file, and uses the program LilyPond [4] to make a MIDI
music file and a PDF file of the sheet music. The program is unique in that it is the first
music generation system that is both probabilistic and constraint-based. APOPCALEAPS
can use the voices: melody, bass, chords, and drums, or any combination of the four. The
user can specify properties of the song to be produced, such as number of measures or the
shortest possible duration for the notes of a particular voice.

In its current state, APOPCALEAPS can generate all notes, where X flat is written as (X
- 1) sharp. Only the chords C, F, G, A minor, E minor, and D minor (and their corresponding
four-note seventh chords) are possible (this is an arbitrary limitation but covers the most
common chords in pop music). APOPCALEAPS outputs one chord (or three and four-note
chords of the same root) per measure. For example: one measure may have C and C7 as its
chords (pauses, called rests, are always possible as well).

Listing 7 Probabilitistic choices in APOPCALEAPS
values ( chord_choice (C), [c,g,f,am ,em ,dm ]).
values ( note_choice (V,C,B), [c,d,e,f,g,a,b,r]).
values ( octave_choice (mid), [ -2 , -1 ,0 ,+1 ,+2]).
values ( octave_choice (low), [0 ,+1 ,+2]).
values ( octave_choice (high), [ -2 , -1 ,0]).
values ( drum_choice (B), [bd ,sn ,hh ,cymc ,r]).
values ( chord_type (_,B), [0,7,r]).
values ( split_beat (V), [no ,yes ]).
values ( join_notes (V,_,_), [no ,yes ]).

3.1 Chord Generation
APOPCALEAPS uses the chord C major for the first and last measure of a piece if the piece
is in major key, and the chord A minor for the first and last measure if the piece is in minor
key. The remaining chords are generated by looking at the current chord and choosing a
chord to follow it based on preset probabilities for chord transitions (the probabilities were
empirically chosen).

Listing 8 CHRiSM rules for Chord Generation
key(major), measure (1) ==> mchord (1,c).
key(major), measures (N) ==> mchord (N,c).
key(minor), measure (1) ==> mchord (1,am).
key(minor), measures (N) ==> mchord (N,am).

measures (N) ==> make measures (N).
make_measures (N) <=> N>0 | measure (N), N1 is N-1, next measure (N1 ,N),

make measures (N1).

mchord (X,C), next_measure (X,Y), measures (M) ==> Y < M |
msw(chord choice (C),NextC), mchord (Y,NextC ).
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3.2 Rhythm Generation
To generate rhythm, first APOPCALEAPS generates beats in each measure. Each voice has
“beat(V,M,N,X,D)” constraints (V = voice, M = measure, N = beat number, X = sub-beat
position, D = duration). A chance rule (with probabilities specific to each voice) determines
if a beat will be split or not. Beat splitting entails taking a note and turning it into two
notes with half the duration of the original note (beat splitting can only occur if the duration
of the original beat is longer than the shortest duration the user has specified). Also, beats
are sometimes joined together. This occurs with different frequencies depending on whether
the notes are in the same measure and belong to the same beat. Like beat splitting, beat
joining depends on probabilities unique to each voice.

Listing 9 CHRiSM rules for Splitting and Joining Beats
split_beat (V) ??
meter(_,OD), shortest_duration (V,SD) \ beat(V,M,N,X,D),
next_beat (V,M,N,X,Mn ,Nn ,Z)
<=> D<SD | D2 is D*2, Y is X+1/( D2/OD), next_beat (V,M,N,X,M,N,Y),
next_beat (V,M,N,Y,Mn ,Nn ,Z), beat(V,M,N,X,D2), beat(V,M,N,Y,D2).

join_notes (V,cond Ma=Mb ,cond Na=Nb) ??
next_beat (V,Ma ,Na ,Xa ,Mb ,Nb ,Xb), note(V,Mb ,Nb ,Xb , SameNote )
\ note(V,Ma ,Na ,Xa , SameNote ) <=> note(V,Ma ,Na ,Xa , SameNote + ’~’).

4 Perlin Noise

Perlin noise was introduced in 1984 by Ken Perlin [7] as a way of bringing the controlled
randomness of nature to computer graphics simulations. For example: one might want to
have several patterns in a large cloud of smoke that are similar in shape and movement but
not exactly the same. The algorithm behind Perlin noise has been revised slightly over time
[8] but remains largely the same. Perlin noise can add variety to many domains besides
computer graphics. Perlin noise is bounded, band-limited, non-periodic, stationary and
isotropic.

Using a traditional random number generator has a few disadvantages over a Perlin noise
algorithm. True randomness (also called white noise) lacks the smoothness of a Perlin noise
algorithm, that is more continuous in its output. Also, a Perlin noise algorithm can be
controllable. Figure 1 shows a 1-dimensional example of noise. The input must be an integer
and the outputs will be random numbers that show no pattern. Figure 2 shows the noise in
Figure 1 after it has been smoothed with an interpolation function. Now we can give real
input values and the change in them will be much more gradual.

The noise function takes in a coordinate and returns a real number between -1 and 1. The
coordinate can be of any dimension. In this paper we will be using 1-dimensional coordinates.

In 2005 Yoon et al. introduced the idea of using Perlin noise to modify melody of an
existing song to produce a new song [14] using a Perlin noise variation they had developed
earlier [13]. This paper will use the same noise algorithm used in [14]. The steps for the
algorithm (with x as a real input value) are as follows:

1: Generate M pseudorandom numbers (PRNs) between -1 and 1 and store them in a list
G. Make another list (P) which is a random permutation of the set of integers from 0 to
M - 1.
2: Calculate the integer interval [q0, q1], where q0 = bxc mod M, and q1 = (q0 + 1) mod
M.
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Figure 1 Scattered graph points, repres-
enting white noise.

Figure 2 Smoothed graph points, repres-
enting Perlin noise.

3: Obtain two PRNs gj = G[P[qj ]], where j = 0, 1.
4: The noise value is computed by: Noise(x) = (1 - s(d0))g0d0+s(d0)g1d1, where dj = qj

- x, j = 0, 1, and s(t) = 6t5 - 15t4 + 10t3.

Here, a pseudorandom number is a number that is returned by a function that appears
to be random, but will always return the same number for the same input. The M value can
vary; M values of 200 are usual. Also, s(t) is an ease curve. The ease curve in the Perlin noise
algorithm takes in a number and returns a number that exaggerates the numbers proximity
to zero or one; an input number close to zero would return a number much closer to zero
while an input number close to one would return a number much closer to one. This has a
smoothing effect on the numbers and will produce waves similar to the ones in Figure 2. The
integer interval corresponds to the two integer grid points surrounding our real input value.
Each integer point has a PRN (obtained in Step 3 from a list of PRNs generated in Step
1). The d value represents the distance between our input value and the two surrounding
grid points. Each grid point’s PRN value has an influence on the value of the input point in
between. The closer grid point will have greater influence. So, if our grid points were 1 and
2 and our input 1.99, the algorithm would output a PRN that is much closer to 2’s PRN
than 1’s PRN. If the input were 1.5, the output value would be in the middle of 1 and 2’s
PRN values, and so on.

5 Noise Component in APOPCALEAPS

Until this point, APOPCALEAPS generated one sound file. In this paper, we take files
generated by APOPCALEAPS and modify the melodies using the Perlin noise algorithm
presented earlier to produce new but similar songs. Figure 3 shows an example of how noise
values can modify a melody by altering notes. In this example, a note will stay the same
if the noise value is between -0.1 and 0.1; a value between 0.1 and 0.2 will increase the
note’s position on the scale by one place, above 0.2 will increase the position by two places.
Similarly, a noise value between -0.1 and -0.2 will decrease the note’s position by one place
while a value below -0.2 will decrease the note’s position by two places.

5.1 Noise on Notes
As can be seen in Figure 3, each measure contains noise values that are similar. This has
been proven to work well for songs with a small amount of notes in each measure. It enables
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consistent changes to notes that are grouped together, while enabling diversity for the entire
song. Generating similar noise values for notes within a measure is done simply by providing
close input values to the Perlin noise algorithm. So real input values are fed to the noise
algorithm which are close, but change drastically, every time the measure changes.

However, we must also consider cases where there are several notes within a certain
measure. In fact, it is possible for APOPCALEAPS to produce music that has many notes all
in one measure; we would not want to use very similar noise values for all of these notes just
because they are in the same measure, the output would not show much diversity. So, if a
measure contains too many notes, we split the measure into two measures (each with distinct
noise values) and distribute the notes equally among the new measures. Determination of
whether or not to split a measure depends on the ratio of the shortest note duration in the
measure and the duration of the measure itself (the maximum number of notes we can fit in
a measure if it was exclusively filled with notes of the shortest duration). That raio must
have an upper bound of six, or we split measures until that ratio is below six. It is not
necessary to enforce a lower bound since we do not need to group notes in terms of noise
that were not in the same measure in the original song.

If a note is a rest in the original melody, it will remain a rest in the new melody. Apart
from just changing notes, we can also change the duration (the length of time a note is held).
The main aspects of the piece (meter, tempo, length) will remain the same.

5.2 Duration Modification
The duration of notes must be changed in a precise manner. The sum of the duration for all
the notes in each measure of the melody must be the same in a changed song as it was in
the original song or the melody will lose connection with the rest of the song. Experiments
with changes in duration seem to indicate that large changes can cause a melody to lose
smoothness and become unlistenable.

One method that works well for duration changes is to produce an altered melody that
uses a random permutation of the duration values for the notes in each measure. This ensures
each measure maintains the same duration values (though in a different order) as the original
song contained. Also, some simple songs (such as “Twinkle Twinkle Little Star”) just have a
few notes with the same duration values in each measure. These values are kept the same as
altering them can be too dramatic a change for a song with a just few notes in each measure.
So, while more simple songs are more protected from atonality, they are also less diverse
when changed by the system, in terms of note duration.

It is also possible to use Perlin noise to change the duration values. Noise can alter the

Figure 3 Example of Noise Effect on Notes: a) original melody b) melody modified with noise
on each note
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duration of a few notes while the durations of the rest of the notes can be altered to balance
out the difference from the change brought by the noise. At this point, using noise to alter
duration produces limited results that are not better than using permutations. However,
as the noise feature is extended in later work to include possibilities such beat splitting or
joining, using noise to alter durations as well as note values could become the better option.

5.3 Conclusions From Noise Experiments

Songs generally sound better when the melody rounds the new (noise altered) notes to the
nearest chord note (dictated by the chord in the corresponding measure) as opposed to just
changing to the note returned by the noise function. However, using chord rounding with
every melody can produce output which is too similar. It is more desirable for the purpose of
machine learning to have distinct melodies created each time the noise function is run on the
same input melody. Chord rounding should be done for some of our output melodies, but
not all. Songs with more notes can generally handle more variation in the frequency of chord
rounding. Also, chord rounding is more important for long notes on strong beat positions
than for short notes on intermediate positions.

It is possible for APOPCALEAPS to produce a rest instead of a chord for a given measure.
In cases like these, it is best to use the chord from the previous measure when performing
chord rounding on the notes (if the chords are all rests, no rounding will be done). This can
be seen especially in more simple songs with few notes and not much variation, where the
difference in perception between using chord rounding and not can be dramatic.

6 Future Work

Future work for this system involves two main areas: using the information that can be
obtained from the new melodies for new purposes and extending the current noise system.
For the first area it is clear that the various outputs produced by the noise algorithm pave the
way for future work on a machine learning component for the APOPCALEAPS system. The
user can hear different melodies produced by APOPCALEAPS and indicate to the system
which sound preferable and which do not. A forthcoming machine learning algorithm can
use this data sample to improve its rules for melody generation. First, a distance function
is needed to show differences between different LilyPond files output by the noise system.
At this point, the differences would be related to note and duration changes. The user
can then classify the noise variations of a song based on taste. The parameters used by
APOPCALEAPS to produce melody can be updated by the new data. Research already
exists where previous notes are used to predict ideal new notes for a music system [6].

The second area of research shows much promise as well. The noise component is
currently specialized for the melody. It could also be extended to the other voices of the
APOPCALEAPS system. Furthermore, instead of just changing notes, the noise function
could split or join beats in a similar way that APOPCALEAPS does in rhythm generation.
As the APOPCALEAPS system develops, the noise function can be used to modify features
not currently present in the system. In addition, the noise patterns could be used to change
the volume of a song (to fade in and out).1

1 Examples of APOPCALEAPS songs that were altered by the noise function in this paper can be found
online: http://dooz.myweb.uga.edu/noisecolin/music.html

http://dooz.myweb.uga.edu/noisecolin/music.html
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Abstract
Annotated Probabilistic Temporal (APT) logic programs are a form of logic programs that allow
users to state (or systems to automatically learn) rules of the form “formula G becomes true K
time units after formula F became true with L to U% probability.” In this paper, we develop a
theory of abduction for APT logic programs. Specifically, given an APT logic program Π, a set
of formulas H that can be “added” to Π, and a goal G, is there a subset S of H such that Π ∪ S
is consistent and entails the goal G? In this paper, we study the complexity of the Basic APT
Abduction Problem (BAAP). We then leverage a geometric characterization of BAAP to suggest
a set of pruning strategies when solving BAAP and use these intuitions to develop a sound and
complete algorithm.
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1 Introduction

Statements of the form “formula G becomes true K time units after formula F became true
with L to U% probability” occur naturally in many different domains. For example, it is
common to talk about the probability that certain stock prices will increase or decrease
within a given amount of time after an economic announcement is made by the US Federal
Reserve. In the same vein, it is normal to say that there is a probability that certain diseases
will occur at specific levels within some amount of time after a natural disaster has occurred.
And in an all too common scenario for air-travelers, there is a certain probability that a
plane will take off within a time T after pushing back from the gate. All of these examples
can naturally be expressed as Annotated Probabilistic Temporal (APT) rules [19].

In this paper, we consider the problem of abduction in APT logic programs (APT-LPs).
There are many cases where abduction in such logic programs is critically needed. For instance,
[19] describes how APT logic programs describing the temporal and probabilistic behavior
of over 30 terrorist groups were automatically extracted from data about those groups. In
those APT logic programs, there are two types of predicate symbols—action predicates
describing actions the group takes (e.g., suicide bombing, kidnappings), and environmental
predicates describing the environment in which the group operates (e.g., whether the group
gets financial support from a foreign state, whether the group can participate in the electoral
process in its country, etc.). In such an application, APT-rules have action atoms in the rule
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1) interOrgConflict(Group1) efr
; armedAttack(Group1) : [2, 0.85, 0.95]

Group1 will use armed attacks as a strategy within two time units of being involved in
inter-organizational conflict with a probability between 0.85 and 0.95.

2) militaryW ing(Group1)
pfr
↪→ bomb(Group1) : [2, 0.86, 0.91, 0.7, 0.8]

Group1 will carry out a bombing exactly two time units after establishment of a standing
military wing with a probability between 0.86 and 0.91.

Figure 1 A sample APT program based on automatically extracted rules from [19] modeling the
behavior of a terrorist organization Group1.

head and environmental atoms in the rule body. Figure 1 provides a small set of such rules.
Clearly, defense experts are interested in understanding how they can modify the true set of
environmental atoms (subject to constraints specifying what can and cannot be made true) so
that a given goal (e.g., reduction of suicide attacks by 10% or more in the next quarter) can be
achieved, if possible. In a second application we are building, we are studying the relationship
between numerous social-cultural-economic and policy variables with educational outcomes
in over 220 countries.1 Here again, APT rules can describe the temporal relationship between
environmental atoms (e.g., percentage of education budget spent on primary education,
student-teacher ratio, provision of childcare facilities) and outcomes (e.g., percentage of
females enrolled in primary education), together with the probability that those relationships
hold. Here, policy makers want to understand what environmental atoms they can make
true (subject to some constraints) so that certain desirable outcomes occur during a given
time frame with some probability.

In this paper, we consider triples of the form 〈Π, H, g〉 where Π is an APT logic program,
H is a set of formulas that can be added (e.g., adding some childcare facilities might be
possible, but increasing the share of the education budget spent on primary education might
not), and g is a goal we wish to achieve (e.g., improve primary education female enrollment
by 10%). The Basic APT Abduction Problem (BAAP) tries to find (if possible) a set S ⊆ H
such that Π ∪ S is consistent and entails the goal. In the case of the terrorism and education
applications mentioned above, such sets S correspond to things we could do to try to ensure
the desired goal occurs at the desired time (with some probability).

The organization and contributions of this paper are as follows. Section 2 briefly reviews
the syntax and semantics of APT-LPs from [19]. Section 3 defines the basic APT abduction
problem and shows the complexity of checking for the existence of a solution (which is
ΣP

2 -complete) and the complexity of checking whether a given set is a solution (which
is DP -complete). Section 4 provides a geometric intuition behind APT-LPs and derives
conditions to prune the search space for a solution to BAAP. Section 5 derives a sound and
complete algorithm for BAAP. Finally, Section 6 describes related work.

2 Preliminaries

We now briefly recall the syntax and semantics of APT-LPs from [19]. We assume the
existence of a finite set Lcons of constant symbols, a finite set Lpred of predicate symbols,

1 http://www.aaas.org/news/releases/2011/0113rwanda.shtml?sa_campaign=Internal_Ads%
2fAAAS%2fAAAS_News%2f2011-01-13%2fjump_page, Jan. 13, 2011.
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and an infinite set Lvar of variable symbols. Each predicate symbol p ∈ Lpred has an arity.
A term is any member of Lcons ∪ Lvar. If t1, . . . , tn are terms and p ∈ Lpred is a predicate
symbol with arity n, then p(t1, . . . , tn) is an atom. Every atom is a formula. If F and G are
formulas, then F ∧ G, F ∨ G and ¬F are formulas.2 A formula is ground iff no variables
occur in it. B denotes the Herbrand base, i.e., the set of all ground atoms. We assume an
arbitrarily large, but fixed size window of time τ = {1, . . . , tmax} .

I Definition 1 (Annotated formula). If F is a (ground) formula, t ∈ τ is a time point, and
[`, u] ⊆ [0, 1], then F : [t, `, u] is an (ground) annotated formula.

Intuitively, F : [t, `, u] says that F will be true at time t with a probability in the range
[`, u]. We assume the existence of a finite set F of symbols called frequency function symbols
denoting “frequency functions," which will be defined shortly.

I Definition 2 (APT rule/program). Let F and G be two (ground) formulas, ∆t be a time
interval, [`, u] ⊆ [0, 1], fr ∈ F be a frequency function symbol, and [α, β] ⊆ [0, 1].
1. F

fr
; G : [∆t, `, u] is called an (ground) unconstrained APT rule.

2. F
fr
↪→ G : [∆t, `, u, α, β] is called a (ground) constrained APT rule.

An (ground) APT program is a finite set of (ground) APT rules and annotated formulas.

We now define the semantics of APT-programs.

I Definition 3 (World). A world is any set of ground atoms. We use 2B to denote the set of
all worlds.

As a world is just an ordinary Herbrand interpretation, satisfaction of a formula F by a
world w, denoted w |= F , is defined in the usual way [14].

I Definition 4 (Thread). A thread is a mapping Th : τ → 2B.

Intuitively, Th(t) is the set of ground atoms which are true at time t according to Th.
We use T to denote the set of all possible threads and now define a tp-interpretation.

I Definition 5 (Temporal Probabilistic Interpretation). A temporal probabilistic (tp) inter-
pretation I is a probability distribution over the set of all possible threads, i.e., I : T → [0, 1]
and

∑
Th∈T I(Th) = 1.

A tp-interpretation I assigns a probability to each thread.

I Definition 6 (Satisfaction of an Annotated Formula). Let F : [t, `, u] be a ground annotated
formula, and I be a tp-interpretation. We say that I satisfies F : [t, `, u], denoted I |= F :
[t, `, u], iff ` ≤

∑
Th∈T ,Th(t)|=F I(Th) ≤ u.

A tp-interpretation satisfies an annotated formula iff it satisfies all its ground instances.
Each frequency function symbol in an APT rule denotes a frequency function (FF) which
tries to capture (within a thread) how often G is true ∆t units after F . FFs are defined
axiomatically by [19].

I Definition 7 (Frequency Function). Let Th be a thread, F and G be ground formulas, and
∆t > 0 be an integer. A frequency function fr is a mapping of quadruples (Th, F,G,∆t) to
[0, 1] such that:

2 Throughout this paper, negation ¬ is treated in a classical manner and not as non-monotonic negation.
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(FF1) If G is a tautology, then fr(Th, F,G,∆t) = 1.
(FF2) If F is a tautology and G is a contradiction, then fr(Th, F,G,∆t) = 0.
(FF3) If F is a contradiction, then fr(Th, F,G,∆t) = 1.
(FF4) If G is not a tautology, and either F or ¬G is not a tautology, and F is not a
contradiction, then there exist threads Th1, Th2 ∈ T such that fr(Th1, F,G,∆t) = 0 and
fr(Th2, F,G,∆t) = 1.

The rationale behind the above axioms is given in [19], which also introduces two useful FFs,
the point frequency function (pfr) and the existential frequency function (efr):

pfr(Th, F,G,∆t) = |{t : Th(t) |= F ∧ Th(t+ ∆t) |= G}|
|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}|

If there is no t ∈ [0, tmax −∆t] such that Th(t) |= F then we define pfr to be 1. Intuitively,
pfr expresses how frequently G follows F in exactly ∆t time points.

efr(T h, F, G, ∆t) = efn(T h, F, G, ∆t, 0, tmax)
|{t : (t ≤ tmax −∆t) ∧ T h(t) |= F}|+ efn(T h, F, G, ∆t, tmax −∆t, tmax)

Here efn(Th, F,G,∆t, t1, t2) = |{t : (t1 ≤ t ≤ t2) and Th(t) |= F and there exists t′ ∈
[t + 1,min(t2, t + ∆t)] such that Th(t′) |= G}|. If the denominator is zero (if there is no
t ∈ [0, tmax −∆t] such that Th(t) |= F and efn(Th, F,G,∆t, tmax −∆t, tmax) = 0) then we
define efr to be 1. Intuitively, efr indicates the frequency that G follows F within ∆t time
points.

We now define satisfaction of APT rules by tp-interpretations.

I Definition 8 (Satisfaction of APT rules). Let r be a ground APT rule with FF fr and I be
a tp-interpretation.
1) If r = F

fr
; G : [∆t, `, u], then we say that I satisfies r (denoted I |= r) iff

` ≤
∑
Th∈T I(Th) · fr(Th, F,G,∆t) ≤ u.

2) If r = F
fr
↪→ G : [∆t, `, u, α, β], then we say that I satisfies r (denoted I |= r) iff

` ≤
∑
Th∈T ,α≤fr(Th,F,G,∆t)≤β I(Th) ≤ u.

Intuitively, the unconstrained APT rule F fr
; G : [∆t, `, u] evaluates the probability that F

leads to G in ∆t time units as follows: for each thread, it finds the probability of the thread
according to I and then multiplies that by the frequency (in terms of fraction of times) with
which F is followed by G in ∆t time units according to frequency function fr. It then sums
up these products across all threads in much the same way as an expected value computation.
For constrained rules, the probability is computed by first finding all threads such that the
frequency of F leading to G in ∆t time units is in the [α, β] interval, and then summing up
the probabilities of all such threads. This probability is the sum of probabilities assigned
to threads where the frequency with which F leads to G in ∆t time units is in [α, β]. To
satisfy the constrained APT rule F fr

↪→ G : [∆t, `, u, α, β], this probability must be within the
probability interval [`, u]. A tp-interpretation I satisfies an APT-rule iff it satisfies all its
ground instances, and it satisfies an APT-program Π, denoted I |= Π, iff I satisfies all rules
and annotated formulas in it.

An APT program Π is consistent iff there exists a tp-interpretation I s.t. I |= Π. Π
entails an annotated formula f (resp., an APT rule r), denoted Π |= f (resp., Π |= r), iff
every tp-interpretation satisfying Π satisfies f (resp., r) as well.
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3 Abduction in APT Logic

Given an APT program modeling a particular situation, we may want to know how to act to
induce some goal condition at a given time in the future and within specified probability
bounds.

I Definition 9 (Basic APT Abduction Problem (BAAP)). An instance of the basic APT
abduction problem is a triple 〈Π, H, g〉, where Π is an APT program, H is a finite set of
annotated formulas and g is an annotated formula. S ⊆ H is a solution to BAAP iff Π∪ S is
consistent and Π ∪ S |= g.

Intuitively, Π models an environment, g is a goal we want to achieve, and H represents
possibilities for what we can do in order to achieve the goal. Note that g is an annotated
formula of the form G : [t, `, u], where G is an arbitrary boolean combination.

I Example 10. Suppose we have an instance 〈Π, H, g〉 of BAAP, where Π is the simple APT
program consisting of the following rules:

b
pfr
; a : [1, 0.68, 0.82]

c
pfr
; a : [1, 0.47, 0.7]

the set of abducibles is H = {b : [1, 0.3, 0.5], c : [1, 1, 1]}, and the goal is g = a : [2, 0.6, 0.85].
In addition, assume that for this problem tmax = 2. We must find a subset S of formulas
from H such that Π ∪ S is consistent and entails g, that is, a solution where a will be true
at time 2 with a probability in the range [0.6, 0.85]. Consider the subset S = {c : [1, 1, 1]}.
When this formula is added to Π, we have that the resulting program Π ∪ {c : [1, 1, 1]} is
consistent and entails a : [2, 0.68, 0.7], which entails the goal formula a : [2, 0.6, 0.85]. Thus,
S is a solution to this instance of BAAP.

Different preference criteria among solutions might be expressed in order to identify
“preferred” solutions. Due to space constraints, in this paper we restrict ourselves to the
Basic APT Abduction Problem defined above, thus no preference relation is considered.

Checking for the existence of a solution is ΣP2 -complete even for restricted classes of APT
programs.

I Theorem 11 (BAAP Existence). Let P = 〈Π, H, g〉 be an instance of BAAP. Deciding
whether a solution exists for P is ΣP2 -complete. ΣP2 -hardness holds even if Π is empty.

Checking if a given set is a solution to BAAP is DP -complete even for restricted classes
of APT programs.

I Theorem 12 (BAAP Checking). Let P = 〈Π, H, g〉 be an instance of BAAP. Deciding
whether S ⊆ H is a solution for P is DP -complete. Hardness holds even if Π is restricted to be
a program containing only annotated formulas, only unconstrained rules, or only constrained
rules.

It is easy to see that 〈Π, H, g〉 does not have solutions if at least one of Π and g is
inconsistent; thus, in the rest of this paper we assume that both Π and g are consistent. A
consistency checking algorithm is given in [19].
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4 Geometric Characterization of APT Abduction

In this section, we present a geometric characterization of abduction in APT logic. As shown
in [19], given an APT program Π, we can derive a linear program LC(Π) s.t. the solutions
of LC(Π) are in 1− 1 correspondence with the interpretations satisfying Π. Clearly, LC(Π)
defines a convex polytope denoted Polytope(Π). For any two polytopes P1 and P2, we write
P1 ⊆ P2 iff P1 is contained in P2, whereas P1 ∩ P2 denotes the intersection of P1 and P2.

We can apply this geometric interpretation to BAAP as follows: given an instance P =
〈Π, H, g〉 of the basic APT abduction problem, S ⊆ H is a solution of P iff Polytope(Π∪S) 6= ∅
and Polytope(Π ∪ S) ⊆ Polytope({g}). Intuitively, we can think of BAAP as the problem of
“cutting” Polytope(Π) by using half-spaces in H so that we obtain a non-empty polytope
which fits inside Polytope({g}).

The following simple proposition provides a sufficient condition for the intersection of the
polytope of an APT program and the polytope of an annotated formula to be empty. This
proposition will effectively provide a pruning condition that we can exploit when looking for
a solution.

I Proposition 4.1. Let Π be a consistent APT program and F : [t, `, u] a consistent annotated
formula. If [`′, u′] is a probability interval s.t. Polytope(Π) ⊆ Polytope({F : [t, `′, u′]}) and
[`′, u′] ∩ [`, u] = ∅, then Polytope({F : [t, `, u]}) ∩ Polytope(Π′) = ∅ for any Π′ ⊇ Π.

By leveraging the geometric characterization of the APT abduction problem, we can
make the following observations that play an important role in developing an algorithm for
BAAP.

If Polytope(Π) ∩ Polytope({g}) = ∅, then the problem does not have a solution—no
matter how we slice Polytope(Π), it will never fit inside Polytope({g}). Alternatively, if
Polytope(Π) ⊆ Polytope({g}), then ∅ is a solution—we do not need to cut Polytope(Π)
as it already fits within Polytope({g}), i.e., Π |= g.
If neither of the above conditions holds, then we iterate over all possible subsets of H.
There are two possible reasons why a subset S of H may not be a solution:
1. Polytope(Π ∪ S) = ∅, that is, Π ∪ S is inconsistent. In this case, any superset of S is

also not a solution.
2. Polytope(Π ∪ S) 6= ∅, but Polytope(Π ∪ S) 6⊆ Polytope({g}). In this case, any subset

of S is also not a solution.
In addition, Proposition 4.1 allows us to say even more. If g = G : [t, `, u] and
[`′, u′] is a probability interval s.t. Polytope(Π ∪ S) ⊆ Polytope({G : [t, `′, u′]}) but
[`′, u′]∩ [`, u] = ∅, then Polytope(Π∪S) and Polytope({g}) are not overlapping. Thus,
any additional cuts to Π ∪ S would be useless, that is, any superset of S is also not a
solution. Intuitively, this is the case where Π has been cut too much by S.

5 Basic APT Abduction Algorithm

We now present a sound and complete algorithm for BAAP. We note that the search space
of possible solutions H = 2H is a lattice under ⊆. A brute-force algorithm to solve BAAP
would traverse this lattice, inspecting one element at a time and checking whether or not
that element is a solution. The algorithm would halt when it arrived at a solution (or when
all lattice elements had been considered).
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I Example 13. Suppose we have an arbitrary instance 〈Π, H, g〉 of BAAP, where |H| = 4.
H = 2H has 16 elements and is a complete lattice under the ⊆ ordering. All 16 elements
need to be considered, either implicitly or explicitly.

Instead of blindly choosing an element from this lattice, we can find a better way of
choosing an element S ∈ H such that (i) S has a good chance of being a solution, and (ii) if
it is not a solution, then we are able to prune the search space to avoid inspecting elements
of H that are definitely not solutions.

As for the first point, we note that bigger subsets of H make more cuts to Π, but they also
have a greater chance of being inconsistent with Π. For example, an extreme case would be
the entire set H. If Π∪H is consistent, then we can determine whether or not the abduction
problem has a solution without looking at any other subset of H; however, Π ∪H has a high
likelihood of being inconsistent. On the other hand, smaller subsets of H are more likely
to be consistent, but we risk not cutting Π enough to entail the goal. For example, ∅ is
consistent, but it is unlikely to be a solution unless Polytope(Π) ⊆ Polytope({g}). Thus, a
“medium-sized” set might be a good compromise between these two extremes.

Regarding the second point above, as already mentioned in the previous section, when
we find that a subset S ∈ H is not a solution, we can prune the search space by discarding
either all supersets or all subsets (or even both when Proposition 4.1 applies) of S. However,
as the following example will demonstrate, the amount of potential pruning depends on the
size of the subset chosen.

I Example 14. Consider again the instance of Example 13. Suppose we choose a “small” S1 ⊆
H, e.g., where |S1| = 1. If S1 is not a solution because Polytope(Π ∪ S1) 6⊆ Polytope({g}),
then we can discard only the empty set from the search space. On the other hand, suppose
we choose a “big” S2 ⊆ H, e.g., where |S2| = 3. If S2 is not a solution because Polytope(Π∪
S2) = ∅, then we can discard only H from the search space. Note that if S1 fails to be a
solution because Polytope(Π ∪ S1) = ∅, or S2 is not a solution because Polytope(Π ∪ S2) 6⊆
Polytope({g}), then the search space is pruned more, but these cases are less likely to
occur. Thus, in the worst case we will end up pruning only one element. If we choose an
S ⊆ H having cardinality 2 and it fails to be a solution, then it is guaranteed that at least 3
elements from the search space will be discarded, regardless of why S is not a solution. A
“medium-sized” set looks like a promising choice—because it is located in the center of the
lattice surrounded by many elements, it can provide the largest amount of pruning in the
worst case.

In the previous example, we saw that a subset S of H having cardinality 2 would be a
good choice. In addition, proceeding by choosing medium-sized, centrally-located sets will
move towards a solution in a binary search fashion, providing faster convergence. Identifying
such a medium-sized set is easy in the first iteration, but as we move through the search
space looking for a solution and pruning parts of the lattice, it becomes more difficult to
determine how to choose a good element to inspect. Following the same intuitions introduced
above, we would like to choose an element of the lattice from an area where there are many
other elements, and in addition, choose one that has a medium size among those.

To identify the medium-sized subsets from a populous region of the search space, we use
the scoring function defined below.

I Definition 15. Consider an instance 〈Π, H, g〉 of BAAP. Let P ⊆ 2H , S ∈ P, vmax =
max{|S′| : S′ ∈ P ∧ S ⊆ S′}, and vmin = min{|S′| : S′ ∈ P ∧ S′ ⊆ S}. We define
score(S,P) = (vmax − vmin)− abs(|S| − (vmax + vmin)/2).
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In the previous definition, (vmax − vmin) gives a measure of how many elements are
around S whereas abs(|S| − (vmax + vmin)/2) gives a measure of the distance from S to a
medium-sized element among those surrounding S. Note that in this definition, P is any
subset of 2H , and represents the remaining portions of the original search space H that have
not yet been pruned.

I Example 16. Once again, consider the instance of Example 13 and let P be the whole
search space H = 2H . For the top element of the lattice, vmax = 4, since the largest superset
in P is H itself, and vmin = 0, since the smallest subset in P is the empty set. Using the
scoring function from Definition 15, the score of the top element is (4−0)−abs(4−( 4+0

2 )) = 2.
Likewise, we can compute the scores of the remaining elements in the lattice: all sets of
cardinality 3 have score 3, all sets of cardinality 2 have score 4, sets of cardinality 1 have
score 3, and the score of the empty set is 2. As described in Example 14, the medium-sized
elements of size 2 in the middle of the lattice are the most preferable choices for pruning,
and have thus been assigned the highest score.

The observations made so far lead us to the algorithm reported below for solving the
basic APT abduction problem.

Algorithm 1 Basic Abduction
Input: Instance P = 〈Π, H, g = G : [t, `, u]〉 of the basic APT abduction problem
Output: A solution for P if it exists, false otherwise
1: if P olytope(Π) ∩ P olytope({g}) = ∅ then
2: return false
3: if P olytope(Π) ⊆ P olytope({g}) then
4: return ∅
5: H := 2H

6: while H 6= ∅ do
7: Choose S ∈ H having maximum score(S,H)
8: [`′, u′] = T ightest(Π ∪ S, G, t)
9: if [`′, u′] ∩ [`, u] = ∅ then
10: H := H− {S′ | S′ ∈ H ∧ S′ ⊇ S}
11: if [`′, u′] 6= ∅ then
12: if [`′, u′] ⊆ [`, u] then
13: return S

14: else
15: H := H− {S′ | S′ ∈ H ∧ S′ ⊆ S}
16: return false

The algorithm first checks whether no solution exists because Polytope(Π)∩Polytope({g}) =
∅ or if the empty set is a trivial solution (lines 1–4). These checks can be done by solving a
linear program as described in [19].

After that, in line 6 we begin to traverse the search space H, pruning as the algorithm
proceeds. In line 7 we choose a set S ∈ H with the maximum score. The function
Tightest(Π ∪ S,G, t) in line 8 returns the tightest interval [`′, u′] s.t. Polytope(Π ∪ S) ⊆
Polytope({G : [t, `′, u′]}) if Π∪ S is consistent, otherwise it returns ∅. Again, [19] shows how
this function can be computed by solving a linear program, providing different optimizations
that can be applied to significantly reduce the size of these constraints. In lines 9 and 10 the
search space is pruned by discarding every superset of S. Note that here we handle both the
case where Π ∪ S is inconsistent and the case where Polytope(Π ∪ S) and Polytope({g}) do
not overlap, i.e., when Proposition 4.1 can be applied. If S is a solution, then it is returned
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(lines 11–13). Line 15 examines the case where Π ∪ S is consistent but not a solution—here
every subset of S is discarded. If no solution can be found, then the algorithm returns false.

I Theorem 17. Let P be an instance of BAAP. If P has a solution, then Algorithm Basic
Abduction returns one solution of P , otherwise the algorithm returns false.

I Example 18. Suppose we have an instance 〈Π, H, g〉 of BAAP that we want to solve
using Algorithm Basic Abduction, where Π is the simple APT program given in Example 10,
H = {f1 = b : [1, 0.4, 0.8], f2 = c : [1, 0.8, 1.0], f3 = c : [1, 1, 1], f4 = b : [1, 1, 1]}, and g = a :
[2, 0.6, 0.85]. First, we check whether the problem has no solution because Polytope(Π) ∩
Polytope({g}) = ∅, or a trivial solution if Polytope(Π) ⊆ Polytope({g}). Since neither of
these conditions are true, we begin searching H in line 6. As described in Example 16, in
the initial lattice, elements of cardinality 2 have the maximum score of 4, so we choose
the first such set S = {f1, f2}. Next, computing Tightest(Π ∪ S,G, t) on line 8 returns
[`′, u′] = [0.68, 0.9]. We now check to see if S is a solution, and if not, what elements we can
prune from H. Because [`′, u′] ∩ [0.6, 0.85] 6= ∅ on line 9, we cannot prune any supersets of S.
However, because [`′, u′] 6⊆ [0.6, 0.85] we can prune all subsets of S on line 14, removing the
sets {f1}, {f2}, and ∅ from H. We now begin the loop on line 6 again with our pruned H.
This time, the maximum score is 2.5 for subsets of cardinality 2 or 3, so we choose one of these
elements—the next subset of cardinality 2—S = {f1, f3}. This time, Tightest(Π ∪ S,G, t)
on line 8 returns [`′, u′] = [0.68, 0.7]. Again, [`′, u′] ∩ [0.6, 0.85] 6= ∅ on line 9, so we continue
to the next test on line 12. Since [0.68, 0.7] ⊆ [0.6, 0.85], Polytope(Π ∪ S) ⊆ Polytope({g}),
so we return S = {b : [1, 0.4, 0.8], c : [1, 1, 1]} as a BAAP solution.

6 Related Work and Conclusion

Though abduction has been extensively studied [3, 7, 16, 8], there is no work that we are
aware of that studies abduction in the context of both probabilities and time.

There has been important work on abduction in temporal logic. [2] presents a non-
deterministic algorithm to find explanations for temporal phenomena based on a framework
called STP. [5] is another important paper that uses constraint checking methods and
compilation methods to achieve greater efficiency. [6] develops an SLDNF-based procedure
to perform temporal abduction in logic programs based on the Abductive Event Calculus
[6, 9, 21, 12] using a notion of partial plans. [1] provides an abduction mechanism that allows
the definition of preferences over abductive explanations. However, none of these frameworks
involves uncertainty.

Abduction has also been studied in the context of uncertainty. However, all past work on
abduction in such settings has been devised under various independence assumptions [18, 17, 4].
The only exceptions are [24, 23] which perform abduction in possible worlds-based probabilistic
logic systems such as those of [11], [15], and [10] where independence assumptions are not
made. In this paper, no independence assumption is made, and moreover, none of the above
frameworks include time in addition to probabilities. The first implementation of abductive
logic programs without independence assumptions is contained in [23, 22].

In this paper, we have shown how abduction can be performed in the context of logic
programs containing both probabilistic and temporal information. We have formally defined
the Basic APT Abduction Problem (BAAP). We have shown that the problem of determining
existence of a solution to BAAP is ΣP2 -complete whereas checking if a given set is a solution
to BAAP is DP -complete. We have developed strategies to prune the search space for a
solution and have given an algorithm to compute a solution to BAAP.
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Much work remains to be done. It is only recently that practical algorithms to compute
consistency and entailment in logic programs with probability and time have been developed
based on randomized algorithms [20]. Likewise, it is only recently that algorithms to compute
abductive explanations to probabilistic logic programs without independence assumptions
have been devised [23, 22]. Scalable implementations of algorithms for BAAP are necessary.
We are developing randomized and sampling-based algorithms for BAAP in the spirit of [13]
which scale well to very large numbers of possible worlds and threads. We are also developing
an application of APT Abduction to the problems described in this paper.
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Abstract
Our project is concerned with the automatic parallelization of Mercury programs. Mercury is
a purely-declarative logic programming language, this makes it easy to determine whether a set
of computations may be performed in parallel with one-anther. However, the problem of how
to determine which computations should be executed in parallel in order to make the program
perform optimally is unsolved. Therefore, our work concentrates on building a profiler-feedback
automatic parallelization system for Mercury that creates programs with very good parallel
performance with as little help from the programmer as possible.
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1 Introduction

The rate at which computers are becoming faster at sequential execution has dropped
significantly. Instead their parallel processing ability is increasing, and multicore computers
are now common. It is now necessary to use parallelism to get the most out of a modern
processor. However, parallelization in imperative languages is very difficult, logic and
functional languages make parallelism easier by supporting deterministic parallelism, which
can prevent deadlocks and race conditions, and will always compute the same answer for the
same inputs regardless of how execution is scheduled.

Unfortunately most programmers are not very good parallelizing their programs. It is
very easy to slow a program down by creating a lot of fine-grained parallelism, in which
the overheads are more expensive than the benefit of parallel evaluation. In other cases
communicating threads may block waiting for one-another to produce some value, to minimize
the runtime of the program, the programmer must understand how their program’s threads
will be scheduled and when during their execution values will be produced and consumed.

Our work attempts to solve these problems by automatically parallelizing programs written
in the Mercury programming language. Mercury is a pure logic programming language, it
already supports explicit parallelism of dependent conjunctions, as well as powerful profiling
tools which generate data for our analysis.
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2 Background

Mercury supports dependant AND parallelism [4, 13], allowing programmers to request
parallel evaluation of a conjunction by using an ampersand to separate conjuncts. We
are extending this work to enable feedback directed automatic parallelization of Mercury
programs.

Mercury’s deep profiler [5] gathers detailed information about a programs execution. In
particular, it records statistics not just for each predicate but for the chain of ancestor calls
that represent the predicate’s invocation. For example, if list.map/3 is used in multiple
places within a program the deep profiler will record separate data for each use. This enables
us to gather accurate information that we use to automatically parallelize the program.

3 Related Work

Mercury has strong mode and determinism systems [12], this makes it easy to detect how
many solutions a goal may have as well as the locations within a predicate where variables are
bound. Mercury only allows parallelization of goals that never fail, and never produce more
than one solution, which is the most common type of goal in Mercury programs. Therefore,
discovering producer-consumer relationships is easy compared to Prolog systems supporting
AND-parallelism such as [6].

Most research in parallel logic programming so far has focused on trying to solve these
problems of getting parallel execution to work well, with only a small fraction trying to find
when parallel execution would actually be worthwhile. Almost all previous work on automatic
parallelization has focused on granularity control: parallelizing only computations that are
expensive enough to make parallel execution worthwhile [7, 9], and properly accounting for the
overheads of parallelism itself [11]. Most of the rest has tried to find opportunities to exploit
independent AND-parallelism during the execution of otherwise-dependent conjunctions [10,
3].

We have found that this is far from enough: the majority of conjunctions with two or
more goals that are expensive enough to parallelize are dependant conjunctions, and most of
these are dependant in such a way that they must almost be executed sequentially, usually
because one goal’s execution blocks on a variable that won’t be produced until much later.

4 Goals

Our first goal is to detect all the parallelism implicit in a Mercury program — this information
can be used by a parallelizing compiler to create efficient parallel Mercury by detecting all
the profitable parallelism in a Mercury program. The more opportunities for parallelism that
can be found, then the more optimally a program can be parallelized.

Given this, our second goal is to choose which set of these opportunities to take advantage
of in order to automatically parallelize a program. This will involve parallelizing opportunities
that have the best cost-benefit ratio, those that have the most parallelism due to their
dependencies. When doing this, it is important to account for the effects that parallel
evaluation of one opportunity will have on the benefits of parallelizing other opportunities.

5 Current Status

We have been able to automatically parallelize a number of small programs with abundant
parallelism, including those with only dependant parallelism. For these programs we have
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recorded speed-ups that meet our expectations. [2]
We have also modified Mercury’s deep profiler, making it possible to extract coverage

information for every goal in a Mercury program. This is used by our analysis for measuring
the parallel overlap between dependant conjuncts.

Based on ThreadScope [8] we are building tools to profile parallel Mercury programs. Note
that this profiler is not related to the deep profiler. This enables us to improve Mercury’s
parallel runtime system and to improve our automatic parallelization tools. This will also
help other developers profile their parallel Mercury programs.

We have also made a number of contributions to Mercury’s parallel runtime system,
making it more efficient.

6 Preliminary Results

Please see [2] for recent benchmarks. This paper was accepted into the ICLP 2011 conference
as a full paper, and has been accepted for publication in TPLP.

Please also see [1] For a description of how we intend to modify ThreadScope to support
the profiling of parallel Mercury programs. This paper was accepted into the WLPE 2011
workshop associated with ICLP.

I have also presented this research at the Multicore Miniconference associated with the
Linux Conference Australia 2010 in Wellington, New Zealand. I have also been invited to
speak at The University of New South Wales, and Google Australia.

7 Open issues

There are many ways in which we can improve our work. Firstly, we can use a best-first
traversal of the call tree rather than a depth-first traversal. We can also use this to revisit
nodes in the call tree after deciding to parallelize their siblings. We can also use parallelization
as a specialization.

Often a loop may do very little work per iteration but may iterate many times. In these
cases we should use granularity control to create fewer, larger parallel tasks. This should
be tied to automatic parallelization so that the cost-benefit ratio of a granularity-controlled
loop can be calculated.

We should also implement parallelization of dependant but commutative operations.
When operations are commutative we can re-order them provided that the commutative
operations are the only ones that are dependant. There are other cases where code can be
re-ordered or transformed to improve the parallel speedup.
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Abstract
The goal of this paper is to show consistency techniques methods and hybrid stochastic/determin-
istic models to describe biochemical systems and their behaviour through the ordinary differential
equations.
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1 Introduction and problem description

In this paper, we investigate hybrid methods based on simulation of stochastic and determ-
inistic models for biochemical systems, with consistency techniques in ordinary differential
equations to have a preliminary vision on dissimilar methods to simulate different biochemical
systems in Biocham.

2 Background and overview of the existing literature

System biology is an interdisciplinary science, integrating experimental activity and mathem-
atical modeling, which studies the dynamical behaviors of biological systems. An important
problem in the modeling these systems is to characterize the dependence of certain properties
on time and space. One frequently applied strategy is the description of the change of
state variables by differential equations. If only temporal changes are considered, ordinary
differential equations (ODEs) are used; for changes in time and space, partial differential
equations are appropriate [3].

A variety of formalisms for modeling biological systems has been proposed in literature but
in this paper we want to investigate only the consistency techniques in ordinary differential
equations [2] and a new hybrid stochastic and deterministic model for biochemical systems [1].
There are two formalisms for mathematically describing the time behavior of a spatially
homogeneous chemical system: the deterministic approach and the stochastic approach.
The deterministic approach regards the time evolution as a continuous, wholly predictable
process which is governed by a set of coupled, ordinary differential equations (the "reaction-
rate equations"). The stochastic approach regards the time evolution as a kind of random-walk
process which is governed by a single differential-difference equation (the "master equation").
Fairly simple kinetic theory arguments show that the stochastic formulation of chemical
kinetics has a firmer physical basis than the deterministic formulation, but unfortunately the
stochastic master equation is often mathematically intractable [7].

There is also a way to make exact numerical calculations within the framework of the
stochastic formulation without having to deal with the master equation directly. We are
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talking about the Monte Carlo procedure to numerically simulate the time evolution of the
given chemical system. Like the master equation, this "stochastic simulation algorithm"
correctly accounts for the inherent fluctuations and correlations that are necessarily ignored
in the deterministic formulation. Moreover this algorithm never approximates infinitesimal
time increments dt by finite time steps ∆t. The feasibility and utility of the simulation
algorithm are demonstrated by applying it to several well-known model chemical systems,
including the Lotka model, the Brusselator, and the Oregonator [7].

3 Goal of the research

How we have explained in the previous section, the ordinary differential equations (ODEs)
play a crucial role in the deterministic model. A first order (ODE) system O is a system of
the form

u
′

1(t) = f1(t, u1(t), ..., un(t))
u

′

2(t) = f2(t, u1(t), ..., un(t))
...

u
′

n(t) = fn(t, u1(t), ..., un(t))

In [2] the author uses the vector representation u
′(t) = f(t, u(t)) or more simply u

′ =
f(t, u). At this point, there are two assumptions:
(1) the function f is sufficiently smooth;
(2) the existence and uniqueness of a solution.
Now, given an initial condition u(t0) = u0 and for the second assumption, the solution of O
is a function s∗ : R→ Rs satisfying O and the initial condition s∗(t0) = u0.

Although for some classes of ODEs the solution can be represented in closed form,
most ODE systems cannot be solved explicitly [2]. The discrete variable method aim at
approximating the solution s∗(t) of any ODE system, not over a continuous range of t,
but only at some points t0, t1, ..., tm. This method include one-step methods and multi-step
methods; in general these methods do not guarantee the existence of a solution within a
given bound.
The interval analysis method instead, was introduced by Moore [16] in 1966. These methods
provide numerically reliable enclosures of the exact solution at points t0, t1, ..., tm. To achieve
the result, they typically apply a one-step Taylor interval method and make extensive use of
automatic differentiation to obtain the Taylor coefficients[2].

The major problem of interval analysis methods on ODE systems is the explosion of the
size of resulting boxes at point t0, t1, ..., tm. For the author, there are two reasons for this
explosion: at first this method has a tendency to accumulate errors from point to point,
second the approximation of an arbitrary region by a box (wrapping effect) may introduce
considerable loss of accuracy after a number of steps.

For all these reasons, in[17, 2] they show how to provide a unifying framework to
extend traditional numerical techniques to intervals providing reliable enclosures. The first
contribution is to extend explicit and implicit, one-step and multi-step methods to intervals.
The second one is to generalize interval techniques into a two-step process: a forward process
(to compute an enclosure) and a backward process (to reduce this enclosure).
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4 Current status of the research

The stochastic effects play an important role in biological processes leading to an increase
in stochastic modelling attempts. The main problem related to the stochastic simulations
regards times and computations which are very expensive [1].
The stochastic models have gained considerable attention when experiments conducted at
the level of single cells showed the existence of a non-negligible level of noise in intracellular
processes, like transcriptions and translation [4]. The dynamics of a stochastic system
is described by the chemical master equation and in the 1976 Gillespie devised two exact
algorithms to numerically simulate the stochastic time evolution of coupled chemical reactions,
which are equivalent to solving the chemical master equation [7]. Only recently, modifications
to the original chemical master equation have been proposed to further speed up simulations.
The most important methods involve the averaging over fast reactions [8], application of
quasi-steady-state theory [9], grouping together reactions that occur in fast succession [10].

Another strategy is to model those processes that either involve large number of particles
or have fast rates, in a deterministic way, keeping stochastic the remaining ones [1]. There
are two recent algorithms to simulate biochemical systems in such hybrid framework that
have been proposed [11, 12]. In both cases, the main idea is to first predict the time in which
a stochastic event should occur and then evolve the system of ordinary differential equations.
At specific instant in time, the system is updated, and it is checked whether the stochastic
event has to be performed or not. Instead in [1] the authors propose a rigorous mathematical
ground for hybrid stochastic and deterministic modelling in a natural way. There are three
different algorithms: the direct hybrid method, the first reaction hybrid method and the
next reaction hybrid method. The main difference between the first two approaches and
the second one is essentially one: they are based on a prediction correction heuristic for the
realization of the stochastic part that can be seen as an approximation to the simultaneous
solution of the system of ODEs which in [1] are precisely calculated.

Consider N chemical species S1, ..., SN involved in M reactions R1, ..., RM . Chemical
species are modelled in terms of number of molecules X(t) = (X1(t), ...,

XN (t)). The reaction rate for each reaction Rj is specified by a so-called propensity function
aj = aj(X(t), t), which is equal to the product rate constant cj and the number of possible
combinations of reactant molecules involved in reaction Rj . Once a reaction Rj is performed,
the number of molecules for each species is updated according to the state change vector vj ,
i.e., X(t)← X(t) + vj [1].

The deterministic model is based on the law of mass action, where a system of coupled
ordinary differential equations (ODEs) is established for the time evolution of the number of
molecules X(t) ∈ RN

+

d

dt
X(t) =

M∑
j=1

vjaj(X(t), t) (1)

with some initial value X(t0) ∈ RN
+ . While the system should be described as a vector

of integers, this model needs real values for X(t). This is however acceptable under the
assumption of large number of molecules (Xi(t) >> 1) so that the relative error can be
neglected [1].

The stochastic model is based on physical laws and the idea that chemical reactions
are essentially random processes, the stochastic formulation of chemical reactions is given
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in terms of a Markov jump process X(t) ∈ NN [13]. Its characterization is based on the
probability aj(X(t), t)dt of a reaction Rj occurring in the next infinitesimal time interval
[t, t + dt]. Denoting by Tj(t) the time at which reaction Rj first occur after t, this amounts
to write that

P[Tj(t) ∈ [t, t + dt]|X(t)] = aj(X(t), t)dt. (2)

In [1] the authors consider a partition of the reactions R1, ..., RM into those modelled
stochastically (labeled with index j ∈ S) and those modelled deterministically (labeled with
index j ∈ D). Now we can write the evolution equation for X(t) ∈ RN which is given by the
following hybrid system

dX(t) =
∑
j∈D

vjaj(X(t), t)dt +
∑
j∈S

vjdNj(t) (3)

To partition the reactions the authors suggest some methods:

run a fully stochastic realization and analyze the frequencies/propensities of each reaction;
use biological insight (i.e. in [1] the authors say that seems reasonable to model gene
regulatory parts stochastically, while metabolic reactions deterministically);
for each reaction choose adaptively between two approaches using a criterion based on
the number of the molecules and its propensity function.

To check if the algorithms based on hybrid model (direct hybrid method, first and
next reaction methods) obtained good results they tested them in a intracellular growth of
bacteriophage T7 derived by [14]. From the experiment appears that the hybrid simulations
are about 100 times as fast as the fully stochastic ones without compromising the results
accuracy (fig. 1).

Figure 1 Hybrid kinetics for the bacteriophage T7 model (reaction R1, R2, R3 and R4 modelled
stochastically, reactions R5 and R6 modelled deterministically) compared to the the reference fully
stochastic model (based on 104 realizations) [1].

5 Preliminary results accomplished

The goal is to implement in Biocham some techniques to realize hybrid simulation, combining
different kinds and different nature models, in a qualitative and quantitative optical, with
discrete and continue dynamics. The solution is to provide the specific language with a
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multi level description mechanism for the modelization; the second step is to distinguish in
the formalism, the common characteristics from the details. At last we want to specify the
criteria to change, during the simulation, the formalism.

6 Open issues and expected achievements

The importance of precise analysis to study and comprise biological phenomena involve
different kind of models. On the one hand, it is necessary to describe some parts in a
rigorous and accurate numerical method (for example methods based on ordinary differential
equations or stochastic methods). On the other hand, the lack of evidence, drives the analysis
on purely qualitative models (boolean or discrete models).
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Abstract
This paper describes a doctoral research in three areas: Hybrid ASP – an extension of Answer
Set Programming for reasoning about dynamical systems, an extension of Set Constraint atoms
for reasoning about preferences, computing stable models of logic programs using Metropolis
type algorithms. The paper discusses a possible application of all three areas to the problem of
maximizing total expected reward.
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1 Introduction and Problem Description

The research investigates three areas related to ASP.
Area 1: H-ASP. The main motivation for this area is the question of how to reason about
dynamical systems that exhibit both discrete and continuous behavior. The unique feature
of Hybrid ASP (H-ASP) is that H-ASP rules can be thought of as general input-output
devices. In particular, H-ASP programs allow the user to include ASP type rules that act
as controls for when to apply a given algorithm to advance the system to the next position.
This feature allows H-ASP to be used with Partial Differential Equation (PDE) solvers and
Ordinary Differential Equation (ODE) solvers.

Area 2: preferences as SC atoms. The notion of a set constraint atom (SC atom) was
introduced by Marek and Remmel [18]. This notions is extended to the notion of an extended
set constraint atom (ESC atom) to model preferences.

Area 3: computing stable models of logic programs using Metropolis type al-
gorithms. The Metropolis algorithm introduced by Metropolis et al. [16] in 1953, is a
widely applicable procedure for drawing samples from a specified distribution on a large finite
set. It was later generalized to the Metropolis-Hastings algorithm [8]. Since its introduction
the Metropolis algorithm has found many applications in statistical physics, biology, statistics,
and other areas of science [5]. The subject of the research is to produce algorithms that use
Metropolis type algorithms for the following two tasks:

1. Given a finite propositional logic program P which has a stable model, find a stable
model M of P .

2. Given a finite propositional logic program P which has no stable model, find a maximal
program P ′ ⊆ P which has a stable model and find a stable model M ′ of P ′.

Finding maximal subprograms that have stable models is important for certain extensions
of ASP where arbitrary set constraints are used to model both hard and soft preferences. In
such situations, one may not be able to satisfy all soft preferences so that stable models may
not exist that satisfy all preferences. However, if certain soft preferences are dropped, then
the subprograms that do have stable models may be found.
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The three areas can be combined when one considers certain problems. For instance:
what is a next action that an agent acting in a dynamical system has to perform in order to
maximize the total expected reward. The idea is to describe a dynamical system in H-ASP,
define optimal strategy as a set of preferred stable models and then perform computations
using Metropolis type algorithm.

2 Background and Overview of Existing Literature

The following is a review of the definitions of normal propositional logic programs and stable
model semantics. A normal propositional logic program P consists of clauses of the form
C = a← a1, . . . , am,¬b1, . . . ,¬bn where a, a1, . . . , am, b1, . . . , bn are atoms. Here a1, . . . , an

are called the premises of clause C, b1, . . . , bm are called the constraints of clause C, and a
is called the conclusion of clause C. For any clause C as above, let prem(C) = {a1, . . . , an},
cons(C) = {b1, . . . , bm}, and c(C) = a. Either prem(C), cons(C), or both may be empty. C
is said to be a Horn clause if cons(C) is empty. Let mon(P ) denote the set of all Horn clauses
of P and nmon(P ) = P \mon(P ). The elements of nmon(P ) will be called nonmonotonic
clauses. Let H(P ) denote the Herbrand base of P . A subset M ⊆ H(P ) is called a model
of a clause C if whenever prem(C) ⊆ M and cons(C) ∩M = ∅, then c(C) ∈ M . M is a
model of a program P if it is a model of every clause C ∈ P . The Gelfond-Lifschitz reduct
of P with respect to M denoted PM is obtained by removing every clause C such that
cons (C) ∩M 6= ∅ and then removing the constraints from all the remaining clauses. M is
called a stable model of P if M is the least model of PM .

H-ASP
Modern computational models and simulations such as the model of dog’s heart described

in [11], or the model of internal tides within Monterey Bay and the surrounding area described
in [10] rely on PDE solvers and ODE solvers to determine the values of parameters. Such
simulations proceed by invoking appropriate algorithms to advance a system to the next
state, which is often distanced by a short time interval into the future from the current state.
In this way, a simulation of continuously changing parameters is achieved. The parameter
passing mechanisms and the logic for making decisions regarding what algorithms to invoke
and when are part of the ad-hoc control algorithm. Thus the laws of a system are implicit in
the ad-hoc control software.

Action languages [7] which are also used to model dynamical systems allow the users to
describe the laws of a system explicitly. Initially action languages did not allow simulation
of the continuously changing parameters. Recently, Chintabathina introduced an action
language H [4] where he proposed an elegant approach to modeling continuously changing
parameters. However, the implementation of H discussed in [4] cannot use PDE solvers
nor ODE solvers. This means that parameters governed by physical processes such as the
distribution of heat or air flow, that cannot be described explicitly as functions of time and
realistic simulations of which require sophisticated numerical methods, cannot be modeled
using the current implementations of H.

Hybrid ASP [3] is an extension of ASP that allows users to combine the strength of the
ad-hoc approaches, i.e. the use of numerical methods to faithfully simulate physical processes,
and the expressive power of ASP, which provides the ability to elegantly model laws of a
system. Hybrid ASP provides mechanisms to express the laws of the modeled system via
hybrid ASP rules which can control execution of algorithms relevant for simulation.

Let S be a parameter space and let At be a set of atoms. The universe is At × S.
Given M ⊆ At× S and Bi = a

(i)
1 , . . . , a

(i)
ni ,¬b

(i)
1 , ...,¬b(i)

mi , where a
(i)
1 ,....a(i)

ni , b
(i)
1 ,...,b(i)

mi ∈ At
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and p ∈ S, M satisfies Bi at p, if (a(i)
j ,p) ∈ M for j = 1, . . . , ni, and (b(i)

j ,p) 6∈ M for
j = 1, . . . ,mi. Advancing Rules are of the form

B1;B2; . . . ;Br : A,O
a

where A is an algorithm, each Bi is as above, a ∈ At, and O ⊆ Sr is such that if (p1, . . . ,pr) ∈
O, then t(p1) < . . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all q ∈ A (p1, . . . ,pr), t(q) > t(pr).
The idea is that if for each i, Bi is satisfied at pi, then the algorithm A can be applied to
(p1, . . . ,pr) to produce a set O′ ⊆ S such that if q ∈ O′, then t(q) > t(pr) and (a,q) holds.
Stationary rules are of the form

B1;B2; . . . ;Br : H,O
a

where each Bi is as above, a ∈ At, O ⊆ Sr such that if (p1, . . . ,pr) ∈ O, then t(p1) <
· · · < t(pr), and H is a Boolean algorithm such that for all (p1, . . . ,pr) ∈ O, H(p1, . . . ,pr)
is defined. The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at pi, and
H(p1, . . . ,pr) is true, then (a,pr) holds.

Modeling Preferences as SC Atoms
SC atoms were first introduced by Marek and Remmel in [18]. A SC atom is a pair

〈X,F〉 where X is a finite set and F ⊆ 2X . A set constraint clause (SC clause) is a string of
the form 〈X,F〉 ← 〈Y1,G1〉, . . . , 〈Yn,Gn〉, where 〈X,F〉, 〈Y1,G1〉, . . . , 〈Yn,Gn〉 are SC atoms.
A set constraint program (SC program) is a finite set of SC clauses. Let M be a set of atoms
and K = 〈X,F〉 be a SC atom. Define M |= K if X ∩M ∈ F . Marek and Remmel in [18]
defined the stable model semantics for SC program using the notion of NSS transform.

The basic idea of using SC atoms to define preferences is to consider triples of the from
〈X,F , wt〉 or 〈X,F ,4〉 where X is a finite set of atoms, F ⊆ 2X , wt : F → [0,∞) ⊆ R, 4 is
a partial order in F .

The triples of the form 〈X,F , wt〉 are called weight preference set constraint atoms and
triples of the form 〈X,F ,4〉 are called partially ordered preference set constraint atoms. A
set of atoms M is satisfies 〈X,F , wt〉 or 〈X,F ,4〉 if and only if M satisfies 〈X,F〉. Now
suppose that we have a SC program P and an additional finite set of clauses T of the form
〈Xi,Fi, wti〉 ← , i ∈ {1, . . . , n}. Suppose that M is a stable model of P ∪ T . Then we can
define the weight of the model M as W (M) =

∑n
i=1 wti(Xi ∩M). The weight functions can

be used to describe user’s preferences for what the user wants M ∩Xi to be by saying that
for F1, F2 ∈ Fi, F1 is preferred over F2 if wti(F1) < wti(F2). A stable model M1 of P ∪ T is
preferred over the stable model M2 of P ∪ T if W (M1) < W (M2). Thus the introduction of
weight preference set constraint atoms can lead to a natural weighting of stable models which
can be used to model preferences. Similarly, suppose that there is an SC program P which
in addition has a finite set of clauses T of the form 〈Xi,Fi,4i〉 ← for i ∈ {1, . . . , n}. Now
suppose that two stable models M1 and M2 of P ∪ T are given. Then M1 4M2 if and only
if M1 ∩Xi 4i M2 ∩Xi for i = 1, . . . , n. Thus the introduction of partial order preference set
constraint atoms can lead to a natural partial order on stable models which can be used to
model preferences.

Computing Stable Models of Logic Programs Using Metropolis Type Algorithms
The use of Metropolis type algorithms to compute stable models of logic programs is based

on the Forward Chaining (FC) algorithm introduced by Marek et al.[17]. The FC algorithm
provides two ingredients necessary for any procedure to be used with the Metropolis type
algorithms: a way to produce a "next" candidate given a current candidate, and a measure of
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merit that assigns a numeric score to a candidate (based on how closely it corresponds to a
stable model).

Given a Markov chain K (x, y) and a probability distribution π (x), let G (x, y) =
π (y)K (y, x) /π (x)K (x, y) . The Metropolis-Hastings algorithm defines a new Markov chain
M (x, y), where the probability M (x, y) is equal to the probability of drawing xt+1 = y given
xt = x using the following procedure:

1. given current state xt = x, draw y based on the Markov chain K (x, ·);
2. draw U from the uniform distribution on [0, 1];
3. set xt+1 = y if U ≤ G (xt, y) and set xt+1 = xt otherwise.
The key result about the Metropolis-Hasting algorithm is the following.

I Theorem 1. Let X be a finite set and K (x, y) be a Markov chain on X such that ∀x, y ∈ X
K (x, y) > 0 iff K (y, x) > 0. Let π (x) be a probability distribution on X. Let M (x, y) be
the Metropolis-Hastings chain as defined above. Then π (x)M (x, y) = π (y)M (y, x) for all
x, y. In particular, for all x, y ∈ X lim

n→∞
Mn (x, y) = π (y).

The relevance of this result to the task of finding stable models of normal propositional
logic programs is in the following: after sampling from M for sufficiently many steps the
probability of being at y is π (y) regardless of the starting state. If π (y) is defined to be
relatively large whenever y corresponds to a stable model then for a normal propositional
logic program P which has a stable model, samples generated from M will eventually include
those corresponding to the stable models and moreover the sampling from M will be biased
towards those samples that correspond to the stable models of P .

There are various approaches to computing stable models of logic programs. Systems
such as smodels [20] and clasp [6] use complete algorithms that will either find stable models
if they exist or will report that stable models do not exist. These systems are not based on
the Metropolis type algorithms. The use of the Metropolis type algorithm for the purpose of
finding stable models of logic programs was investigated in [13], [14], and [15]. The Metropolis
algorithm is also used in SAT solvers [19].

3 Goal of the Research

Each of the 3 areas studied has its own goal. Thus the goal of the research in the area of
Hybrid ASP is to produce theoretical machinery necessary to build an H-ASP software system
that is able to reason about dynamical systems that exhibit both discrete and continuous
behavior, and to produce a prototype of such a software system.

In action languages like H, the goal is to compile an H program into a variant ASP
program that can be processed with variant ASP solvers. A long term goal of this research
is to develop extensions of ASP solvers that can process Hybrid ASP programs. This would
allow the development of extensions of action languages like H that could be compiled to
Hybrid ASP programs which, in turn would be processed by Hybrid ASP solvers.

The goal of the research in the area of modeling preferences is to produce theoretical
machinery necessary to build a software system for finding preferred stable models of SC
logic programs and to produce a prototype of such a software system.

The goal of the research in the area of computing stable models of logic programs using
Metropolis type algorithms is to produce a theoretical machinery necessary to build a software
system for finding stable models of logic programs using Metropolis type algorithms and to
produce a prototype of such a software system.
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Finally, it would be interesting to combine the research to produce a theoretical foundation
and software system for solving the following problem: what is a next action that an agent
acting in a dynamical system has to perform in order to maximize the total expected reward.

4 Current Status of the Research

Hybrid ASP. A paper on H-ASP [3] was accepted as a technical communication to ICLP
2011. Proof of concept software prototypes are developed and successfully tested to research
the feasibility of combining H-ASP with numerical algorithms for solving PDEs and with
decision making algorithms (see [22] for a review of decision making algorithms).
Preferences as SC atoms. The framework of theoretical definitions is created and various
examples of the use of SC atoms to model preferences are being investigated.
Computing stable models of logic programs using Metropolis type algorithms.
The subject is discussed in [2]. The paper discusses Metropolized Forward Chaining (MFC)
algorithm and some computer experiments performed using the algorithm.

5 Preliminary Results Accomplished

Hybrid ASP. see section 4.
Preferences as SC atoms. Preliminary results include being able to successfully model
preferences as defined in [21], as well as to model preferences in various toy examples.
Computing stable models of logic programs using Metropolis type algorithms.
Preliminary results include software prototypes, both single processor and parallel versions, as
well as a size 300 (2, 6) Van der Waerden certificate found by the software as discussed in [2].
The certificate was found using a 288 processor parallel run in under 2 weeks. To illustrate
the difficulty of finding size 300 (2, 6) Van der Waerden certificate - a single processor version
of smodels has failed to find size 210 certificate (while running for over 3 weeks), and a single
processor version of clasp 1.3.3 has failed to produce size 240 certificate (while running for
over 2 weeks). The experiments demonstrate that the method is feasible for the problem
of finding stable models of logic programs and merits additional research. A different set
of experiments was used to validate the use of MFC for the problem of finding maximal
subprograms that have stable models of the programs that don’t have stable models. Two
Metropolis type algorithm were tested: Metropolis algorithm and Stochastic Approximation
Monte Carlo (SAMC) algorithm [1], [12]. Preliminary experiments indicate that for difficult
problems SAMC performs significantly better than the Metropolis algorithm.

6 Open Issues and Expected Achievements

Hybrid ASP. It is expected that the theoretical foundation necessary for computations
with H-ASP will be produced as well as a software proof of concept prototype.
Preferences as SC atoms. It is expected that a theoretical foundation necessary for
modeling preferences using SC atoms will be produced. It is not clear whether a software
proof of concept prototype will be produced as part of the dissertation.
Computing stable models of logic programs using Metropolis type algorithms.
The initial goal of this area is already mostly achieved. However research produced many open
issues. Here are some of them: 1. what are the relative merits of using various Metropolis
type algorithms? 2. What other approaches to using Metropolis type algorithms for finding
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stable models of logic programs are there? 3. How does MFC compare in performance to the
existing algorithms?

Regarding combining the 3 areas: it is not clear whether a fusion of 3 areas will be
accomplished, and a proof of concept prototype will be produced as part of the dissertation.
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Abstract
In this paper a general framework (based on soft constraints) to model and solve the fair allocation
problem is proposed. Our formal approach allows to model different allocation problems, ranging
from goods and resources allocation to task and chore division. Soft constraints are employed
to find a fair solution by respecting the agents’s preferences; indeed these can be modeled in a
natural fashion by using the Semiring-based framework for soft constraints. The fairness property
is considered following an economical point of view, that is, taking into account the notions of
envy-freeness (each player likes its allocation at least as much as those that the other players
receive, so it does not envy anybody else) and efficiency (there is no other division better for
everybody, or better for some players and not worse for the others).

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases soft constraints fairness allocation resources
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1 Introduction and problem description

The problem of “fair division”, that is, fairly dividing resources or costs among a set of
people, is an important issue in real life scenarios; it can refer to several situations, such
as inheritance and divorce settlements, division of health resources, computer networking
resources, voting power, intellectual property licenses, costs for environmental improvements,
etc. In these cases, formal protocols for division are needed. Many variations of the basic
problem exist, for example, the situation with divisible resources is quite different from the
situation with indivisible objects; the items to be divided can be goods or sometimes “bads”
like chores or other burdens; some problems can involve the division of money to compensate
a “non fair share”, or a payoff in exchange for performing a chore. Other aspects to consider
are the number of objects with respect to the number of people. If goods are scarce, an
auction is needed and the items are assigned to (usually) one winner; in this case fairness
methods are studied in repeated auctions to guarantee that not always the same player will
be the winner.

But most of the variation comes from the fact that there are many reasonable ways to
formalize “fairness” including max-min fairness, proportional fairness, envy-free fairness, etc.
which may or may not lead to the same optimal allocation; if we take into account a global
view this means looking at the overall allocation in terms of social welfare, while a local view
focus on the agents preferences.

In this paper we investigate on the allocation of indivisible objects which can be either
goods or bads; thus, given a set of items and a set of people, each person states a weight for
each object which, depending on the cases, can represent preferences or costs (such as time,
money, resources etc.). According our model, the solution will be an envy-free allocation of
objects to the agents, reminding that envy-freeness is a fairness property that guarantees
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that no agent would rather have one of the bundle allocated to any of the other agents, that
is, each player prefers his bundle.

The paper is organized as follows: in Sec. 2.1 the various aspects of fair division problems
are illustrated; in Sec. 2.2 we give a background on Soft Constraint Satisfaction Problems
and semirings; in Sec. 4.1 we show how to use the SCSP framework to model allocation
problems; in Sec. 4.2 the mapping between SCSP and allocation problems is provided; finally,
Sec. 5 contains references to similar works in the field of fair division and allocation problems,
a short summary and our future works.

2 Background and overview of the existing literature

In the indivisible resource area, most of the issues are based on the Santa Claus problem [4],
in which the goal is to distribute n presents among k kids, in such a way that the least
lucky kid is as happy as possible; a linear programming is used with the Max-min fairness
objective function. Another variant is represented by the “housemate problem” [5], where
goods are associated with bads. The problem consists in assigning different rooms to people
sharing a house according the bid they submit, but also to determine a price to be paid by
each roommate for his assigned room. Concerning Chore division, the problem of dividing
an undesirable object has been investigated only for divisible goods, where cake cutting
algorithms have been adapted in order to deal with chores instead of desirable goods. It is
supposed that chores are infinitely divisible [3] and valuations over bundles are additive. Other
works view the problem from a computational perspective and are based on approximation
algorithms with the purpose of finding a solution closest to the optimum [6].

2.1 The problem of fair division

Fair division [2] is the problem of dividing one or several goods amongst two or more agents in
a way that satisfies a suitable fairness criterion. Fair division has been studied in philosophy,
political science, economics and mathematics for a long time, but is also relevant to computer
science and multiagent systems (MAS), in which resource allocation is a central topic since
the application or agents need resources to perform tasks. It is assumed that agents are
autonomous. A solution needs to respect and balance their individual preferences; fairness
definitions are required and once we have a well-defined fair division problem, we require an
algorithm to solve it.

The elements of a Fair Division Problem are a set P of n players: p1, p2, ..., pn and a set
of m objects O to be divided. The problem is to divide the set O into n shares ( o1, o2, ..., on

) so that each player gets a fair share of O. A fair share is any share that, in the opinion of
the player receiving it, has a value that is at least 1

n of the total value of the set of goods O.
It is crucial to understand that share value is subjective, and that each player may even have
a different notion of how much the set to be divided is worth.

There are three types of fair division schemes: the Continuous Fair Division Schemes,
in which the set O is infinitely divisible (cake, land, etc.) and shares can be adjusted by
arbitrarily small amounts; the Discrete Fair Division Schemes where the set O is made up of
indivisible objects (cars, houses, etc) and the Mixed Fair Division Schemes. In this paper,
since we are dealing with indivisible objects, we will focus on the discrete case.
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2.2 Constraint Satisfaction Problems, Semirings and Soft Constraints
The classic definition of a Constraint Satisfaction Problem (CSP) is as follows [10]. A
CSP P is a triple P = 〈X,D,C〉 where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉,
D is a corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi can assume
values within a determined domain Di, C is a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉. A
constraint Cj is a pair 〈RlSj

, Sj〉 where RlSj
is a relation on the variables in Si = scope(Ci).

A solution to the CSP P is an n-tuple A = 〈a1, a2, . . . , an〉 where ai ∈ Di and each Cj is
satisfied in that RlSj

holds on the projection of A onto the scope Sj . In a given task one may
be required to find the set of all solutions, sol(P), to determine if that set is non-empty or
just to find any solution, if one exists. If the set of solutions is empty the CSP is unsatisfiable.
A c-semiring [8, 9] S (or simply semiring in the following) is a tuple 〈A,+,×,0,1〉 where A
is a set with two special elements 0,1 ∈ A (respectively the bottom and top elements of A)
and with two operations + and × that satisfy certain properties: + is defined over (possibly
infinite) sets of elements of A and is commutative, associative and idempotent; it is closed, 0
is its unit element and 1 is its absorbing element; × is closed, associative, commutative and
distributes over +, 1 is its unit element and 0 is its absorbing element (for the exhaustive
definition, please refer to [8]). The + operation defines a partial order ≤S over A such that
a ≤S b iff a+ b = b; intuitively a ≤S b if b represents a value better than a. Other properties
related to the two operations are that + and × are monotone on ≤S , 0 is its min and 1 its
max, 〈A,≤S〉 is a complete lattice and + is its lub. A soft constraint [8, 9] may be seen as
a constraint where each instantiation of its variables has an associated preference. Given
S = 〈A,+,×,0,1〉 and an ordered set of variables V over a finite domain D, a soft constraint
is a function which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints that can be
built starting from S, D and V .

Given the set C, the combination function ⊗ : C × C → C is defined as (c1 ⊗ c2)η =
c1η × c2η [8, 9]. The ⊗ builds a new constraint which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying the elements
associated by the original constraints to the appropriate sub-tuples. Given a constraint c ∈ C
and a variable v ∈ V , the projection [8, 9, 11] of c over V − {v}, written c ⇓(V \{v}) is the
constraint c′ such that c′η =

∑
d∈D cη[v := d]. Informally, projecting means eliminating

some variables from the support. A SCSP [9] is a tuple P = 〈X,D,C,A〉 where X is
a set of variables, D is the domain of the variables and C is a set of constraints over
X associating values form a c-semiring A. The best level of consistency notion defined
as blevel(P ) = Sol(P ) ⇓∅, where Sol(P ) =

⊗
C [9]. A problem P is α-consistent if

blevel(P ) = α [9]; P is instead simply “consistent” iff there exists α >S 0 such that P is
α-consistent [9]. P is inconsistent if it is not consistent.

3 Goal of the research

Although there is wide literature on fair division within the fields of economics, game theory,
political science, mathematics, operations research and computer science, it seems to lack a
unified and general framework which allows to solve the different kinds of problems, each
one with different objects (desirable or undesirable items), weights or preferences. Another
issue encountered in previous works is that often it is not possible to find a solution and the
problem remains unsolved; our approach might be applied in all these cases because the use
of soft constraints allows to always find a solution; moreover we provide a general framework
which can model several cases by choosing the appropriate semiring (see Sec. 2.2).
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4 Preliminary results accomplished

4.1 The SCSP framework for allocations problems

In this section we define a quantitative framework to model fair division problems, where
each assignment of objects to people have an associated preference/weight and, consequently,
modeling this kind of problems as Soft CSPs (see Sec. 2.2) leads to an allocation of goods to
people that optimize the criteria defined by the chosen semiring. For instance, the Weighted
semiring 〈R+,min, +̂, 0, 1〉, where +̂ is the arithmetic plus (0 = ∞ and 1 = 0), can be
used to model the undesirable objects case (such as chore division) by expressing the (e.g.
money) cost for performing a chore; the optimum solution in this scenario corresponds to an
allocation with minimum total cost. The Fuzzy semiring 〈[0..1],max,min, 0, 1〉 is well suited
for modeling the players’s preferences with respect to each good; the solution we obtain with
this semiring corresponds in choosing the highest among the minimum preferences. The
Probabilistic semiring 〈[0..1],max, ×̂, 0, 1〉 can be used when preferences are unknown, thus,
weights corresponds to probabilities; we can express for instance, that person p1 prefers
object o3 with probability 0.4. The arithmetic ×̂ is used to compose the probability values
together (since we assume that preferences and thus probabilities are independent). By
using the Boolean semiring 〈{true, false},∨,∧, false, true〉 we can solve the non weighted
allocation problems, that is, each person states only the goods he/she desires (or the tasks
he is able to perform).

4.2 Mapping Allocation Problems to SCSPs

In this section we show a mapping from the allocation problem to SCSPs. An allocation
problem is formed by a set of m indivisible objects (or items) O = {o1, o2, . . . , om} and a
set of people (or players) P = {p1, . . . , pn}. Each player has their own preferences or costs
regarding the allocation of goods/tasks to be selected. The problem consists in partitioning
the set of objects in n subsets (or bundles) in a way that each person receives a (non-empty)
bundle that satisfies a suitable fairness criterion. In order to model this problem with a SCSP,
we define a variable for each object oi ∈ O, i.e. V = {o1, o2, . . . , om} and the domain of each
variable is the set of people in P : D = {p1, . . . , pn}, meaning that an object can be assigned
to a person in the set P ; for example o1 = p2 means that player p2 receives object o1. A
soft constraint associates a semiring value for each assignment of the variables in its scope,
which represent the preference of the player for a given item; if no weights are considered ,
the corresponding variable assignment is not admitted or admitted and the values 0 or 1 of
the boolean semiring set are respectively returned.

I Example 1. As a simple example, suppose we must assign 3 objects (o1, o2, o3) to 2
players (p1, p2). The corresponding SCSP, by using (for instance) a Fuzzy semiring, has
three variables: o1, o2 and o3, each with the domain D = {p1, p2}; we define the following
unary constraints: Co1 := {(p1, 0.7); (p2, 0.2); } meaning that object 1 can be assigned either
to person 1 (who has a preference of 0.7 for this objects) or person 2 (with preference 0.2);
Co2 := {(p1, 0.3); (p2, 0.1); } that is, object 2 can be assigned either to person 1 or 2 with
preferences 0.3 and 0.1 respectively; Co3 := {(p2, 0.7)} meaning that object 3 can only be
assigned to person 2 who desires the object with preference 0.7;

the solution is illustrated in the table below:
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o1 o2 o3 Sol(P )
p1 p1 p1 not allowed
p1 p1 p2 0.7 × 0.3 × 0.7 0.3
p1 p2 p1 not allowed
p1 p2 p2 0.7 × 0.1 × 0.7 0.1
p2 p1 p1 not allowed
p2 p2 p1 not allowed
p2 p2 p2 0.2 × 0.1 × 0.7 0.1
p2 p1 p2 0.2 × 0.3 × 0.7 0.2

The (unique) optimal solution of this problem is o1 = p1, o2 = p1o3 = p2 (with preference
0.3).

Depending on the cases, the solution provided might not be fair if we only use the previous
method. For example, with different preferences, the solution (p2, p2, p2) could be returned,
which is certainly unfair, since player 1 does not get any object and envies player 2. For this
reason, we need to specify additional constraints in order to solve the allocation problem
and guarantee the envy-freeness property of fairness. Let xij be a boolean variable which is
equal to 1 if item j is assigned to player i and 0 otherwise and let ui(Bi) be the value for
person i of the set of objects (Bi) assigned to him; this value represents the valuation of the
bundle (that is, the subset of items) for each person; an issue encountered in this case is that
requesting an input to the agents for every possible combination of goods is NP-hard, in fact
for m object there are 2m valuations for each of the n players. In order to reduce the size of
the problem, we can automatically calculate the value of the bundle, by specifying in the
problem if the valuations are additive (thus, the value is obtained by summing the weights of
the single objects in the bundle), super-additive (the value of the bundle is greater than the
values of the single objects), sub-additive (the value of the bundle is lower than the values
of the single objects) or maximal (the value of the bundle corresponds to the maximum
weight among the objects in the bundle); in this way we can compute the value of the entire
bundle ui(Bi); the type of valuation depends on the kind of goods; for example if the items
considered are complementary (e.g. printers and ink cartridges) the valuation of the bundle
might be super-additive, or conversely, if the goods are substitute (e.g. petroleum and natural
gas), the valuation might be sub-additive. The defined constraints are the following: 1

1. Each object must be assigned to at most one person ∀j
∑

i xij = 1;
2. Each person must receive at least one item: ∀i

∑
j xij ≥ 1;

3. Envy-freeness constraint. Each person does not prefer the set of objects assigned to the
other players: ∀i ui(Bi) ≥ ui(Bj) for each j 6= i;

Moreover, since we are assuming that the number of objects is greater (or equal) than the
number of people, our solution is also efficient, as shown in [12], which proves that when
m ≥ n envy-freeness implies efficiency.

5 Open issues and expected achievements

We investigated on the use of the semiring-based framework for soft constraints in order to
model and solve the fair allocation of objects problem. According the chosen semiring, we
can easily represent the different set of preferences, their combination and the various kind of
objects. In the future we plan to use the framework for the Stable Marriage Problem, which
can be casted in a particular fair allocation problem involving the same number of objects
and people.

1 constraints 1 and 2 are based on those used in the Santa Claus Problem’s paper [4]
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Abstract
Modularity in Logic Programming has gained much attention over the past years. To date, many
formalisms have been proposed that feature various aspects of modularity. In this paper, we
present our current work on Modular Nonmonotonic Logic Programs (MLPs), which are logic
programs under answer set semantics with modules that have contextualized input provided by
other modules. Moreover, they allow for (mutually) recursive module calls. We pinpoint issues
that are present in such cyclic module systems and highlight how MLPs addresses them.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases Knowledge Representation, Nonmonotonic Reasoning, Modular Logic
Programming, Answer Set Programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.274

1 Introduction and Problem Description

Answer set programming (ASP) is an approach for declarative problem solving geared towards
search problems. More specifically, problems are represented by nonmonotonic logic programs,
such that the stable models (or answer sets) [19] of the program represent the solutions
to a given problem instance. ASP has many applications in knowledge representation and
problems in artificial intelligence including planning, diagnosis, and configuration.

A natural way to design software for solving problems is to identify easier to handle
subproblems that can be solved independently from each other, and then based on this
analysis to craft corresponding software components that solve the subproblems: the modules.
The combination of these components then gives an implementation for the whole problem.
Most general-purpose programming languages have their own way to introduce modularity,
a key concept that helps developing software artifacts. Techniques like information hiding,
abstraction, and structured programming are well-established principles for breaking down
sub-tasks in an imperative program, and essentially any standard programming language
has amenities that allow to define input/output interfaces to modules for easy code-reuse
in implementations of possibly unrelated problems. Testing software greatly benefits from
structured programs, since it involves defining well-suited interfaces to the components,
which in turn assists writing testcases. When many programmers are working on a project,
the strict component-wise building of software is the only way to success. In contrast, it is
customary to view logic programs as monolithic entities, i.e., one program is tailored to solve
a particular problem without a clear separation of the sub-tasks, albeit the same principle of
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creating manageable pieces will help users of logic programming systems building knowledge
bases. Having an explicit way to modularize knowledge in logic programs is thus needed and
adding modularity principles to ASP has several advantages like easy knowledge base reuse
by clean input/output interfaces and helping to model complex problem domains by focusing
on smaller parts first. This issue has been identified and various notions for modularizing
logic programs have been proposed to support testing logic programs, reusing and abstracting
components, and maintaining program code.

However, there are obstacles that impede to bring such characteristics to ASP. Traditional
answer set semantics has no module concept and there is no straightforward way that would
allow that. It is not clear how a semantics should be defined that caters for modules, as the
declarative nature of ASP does not distinguish between knowledge stored in different logic
programs (when viewed as modules). Another issue is to allow for cyclic module systems,
i.e., when modules mutually refer to each other. Modules that have such cyclic dependencies
may bring in semantic issues like unfounded models that would not be present when viewing
logic programs as single unit. Both of these problems are related to the declarative nature
of ASP, and any prospective model-theoretic semantics for modular ASP has to deal with
unwanted semantic deficits. Methods that bring modularity aspects closer to ASP have not
yet stood the test of time, and no single semantics has gained general acceptance.

The aim of this paper is to recall existing approaches in modular logic programming and
to present work and results on a novel formalism to modular ASP: Modular Nonmonotonic
Logic Programs (MLPs) [10]. We pinpoint peculiar issues that exist in modular frameworks
for ASP and highlight how the MLP formalism addresses them. We conclude with prospective
future work and open research issues.

2 Background and Overview of Existing Literature

There is a long history of research in investigating modularity principles in logic programming.
A good overview provides [5, 7], which studies modularity in the context of traditional definite
Horn logic programming. In general, they identify two directions for investigating modularity
aspects in logic programming: (i) Programming-in-the-large, which introduce compositional
operators to combine separate and independent modules; and (ii) Programming-in-the-small,
which builds upon abstraction and scoping mechanisms. Early influential work on modularity
in logic programming include [17] and [18], where the former can be seen as an approach
for (ii), while the latter is a prototypical instance of (i).

In the context of answer set semantics, whose focus lies in the treatment of negation-as-
failure and disjunctive rules, several important proposals have been put forward. Representa-
tives for (i) are DLP-functions [21] and modular smodels programs [25], which has recently
been generalized to a module-based framework for multi-language constraint modeling [22],
and to modular P-log programs [9] that combines probabilistic reasoning with logic programs.
Another proponent [28] is concerned with operator splitting similar in the vein of splitting
sets [24]. Exponents in (ii) are modular logic programs with generalized quantifiers [15],
macros [3], templates [8], and web rule bases [1]. On a broader scale, multi-agent scenarios
with logic programs has been studied in social logic programs [6] and communicating ASP [4].

3 Goal of the Research

As described above, several semantics exist that deal with modularity in ASP. Virtually
all semantics are defined such that mutual recursion between modules is disallowed. While
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Figure 1 Call graph of instantiated modules in Example 1

this helps to simplify the definitions of a semantics for modular ASP, in general this may
bring issues when different, possibly independently developed modules are combined. Many
natural problems exist that have an inherent cyclic flavor, and ruling out the chance to model
problems using modules that depend on each other may be too restrictive in practice, or
even force to use unintuitive encodings. We aim at defining a model-theoretic semantics that
caters for this situation, investigate its semantic properties and computational complexity,
and develop novel evaluation algorithms for such modular nonmonotonic logic programs. The
next example illustrates cycles in modular logic programming using Modular Nonmonotonic
Logic Programs (MLP) as defined in [10], a formalism that admits arbitrary non-ground
disjunctive nonmonotonic logic programs as modules. MLPs can be seen as a proponent
of the programming-in-the-small approach to modular programming, as it is using module
atoms as a language construct to access knowledge encoded in other modules. We sketch the
basic building blocks of MLPs and refer to [10] for proper formal definitions.

I Example 1. Consider the following recursive module Parity[q/1] consisting of four rules,
which determines whether a set has an even respectively odd number of elements:

q̄(X) ∨ q̄(Y ) ← q(X), q(Y ), X 6= Y odd ← skip(X), Parity[q̄].even
skip(X) ← q(X), not q̄(X) even ← not odd

Here, q/1 is a (formal) unary input predicate that stores the set. The first two rules on
the left have the effect, by stability of answer sets, that q becomes q̄ with one element
randomly removed (for which skip is true, as defined in the lower left rule). The third rule top
right determines recursively whether q stores an odd number of elements using the module
atom Parity[q̄].even, while the last rule bottom right defines even as the complement of odd.
Intuitively, if we call the module Parity with a predicate p for input, then even is computed
true, which is expressed by Parity[p].even, whenever p stores an even number of elements.
Note that Parity is recursive, and for empty input p it calls itself with the same input.

We demonstrate the use of Parity in an MLP with the (main) module P [] with empty
input, which calls Parity with a set p of two elements:

p(1) ← p(2) ← pev ← Parity[p].even

The combination of both modules gives the cyclic MLP P = (P [], Parity[q/1]). On the
surface, P can be seen as an “uninstantiated” modular program, whose semantics is given by
characterizing models at modules which have been instantiated with a set of input facts: the
value calls. Figure 1 depicts the call graph (the principle dependencies) of P with value calls
as nodes and edges labeled with input predicates; e.g., value call P [∅] calls Parity[{q(1), q(2)}]
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on input p. The dotted boxes highlight the modules from which the value calls on the inside
have been generated. Loosely speaking, MLPs encode schematic dependencies between
modules, and instantiated modules then can be used to define a semantics that takes module
input into account which is defined over possibly cyclic modules. Different interpretations
of an MLP select different subgraphs of its call graph, and answer sets are defined based
on the selected subgraphs. For instance, P has two answer sets in which pev is true at the
main instantiation P [∅] and even is true at Parity[{q(1), q(2)}] and Parity[∅], whereas odd is
satisfied at Parity[{q(1)}] and Parity[{q(2)}]. Both answer sets are symmetric on the guess
of q̄ at Parity[{q(1), q(2)}], but otherwise equal.

4 Current Status

We have an advanced understanding of peculiar issues that arise when we allow for module
cycles in MLPs. One key aspect is the use of the FLP-reduct [16] instead of the traditional
GL-reduct [19] to cure semantic issues when dealing with negation-as-failure over potential
nonmonotonic module atoms. Roughly, given an interpretation of a program, the GL-reduct
first removes each rule whose negative body is false in the interpretation, and then cut offs
the negative literals from remaining rules. On the other hand, the FLP-reduct just removes
rules whose body is unsatisfied in a given interpretation, which leaves negative literals in
the result of this translation. Applied to traditional answer set programs, both reducts are
equivalent, but FLP-semantics is beneficial for language extensions of ASP such as logic
programs with aggregates. In the context of MLPs, the FLP-semantics guarantees that
models are minimal, thus we retain groundedness of the semantics and prohibit unfounded
answer sets. Another aspect of MLP is to contextualize module instantiation. Here, relevant
instantiations are a concept to concentrate on the important part of all instantiated modules.
In general, module instantiation plays a key role for the definition of a semantics for MLPs.
Akin to the call semantics of imperative programming languages, the module instantiation
employed in MLPs can be seen as call-by-value mechanism, where module instantiation calls
other instantiations with explicit input facts. This is in contrast to the module framework
of DLP-functions [21], which can be classified as call-by-reference mechanism; input here is
given implicitly by the models of each module.

Further results show that MLPs have an increase in computational complexity compared
to standard ASP: propositional Horn-MLPs with unrestricted cyclic input over modules
are EXP-complete, and non-ground ones are 2EXP-complete. If we restrict propositional
MLPs such that modules have no input predicates, we obtain for instance that checking
satisfiability of normal propositional MLPs is NP-complete, and for disjunctive MLP it
is Σp

2-complete. In general, checking answer set existence of arbitrary normal non-ground
MLPs is 2NEXP-complete, and 2NEXPNP-complete for the disjunctive case.

5 Preliminary Results

The work in [10] devised a novel semantics for MLPs that allows for mutual recursion between
modules. We have studied the semantic properties of MLPs, their computational complexity,
and compared it to DLP-functions [21]; interestingly, DLP-functions can be seen as MLPs
that have no module input parameters. MLPs conservatively extend ordinary logic programs,
and many semantic properties of answer set programs generalize to MLPs. For instance, the
important property that every answer set of an MLP is a minimal model implies that answer
sets in the MLP setting are grounded (see discussion above).
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In [13], we investigated the relationships between various semantics for modular logic
programs and other nonmonotonic formalisms. We have provided a more systematic view of
approaches in combining nonmonotonic knowledge bases and classified formalisms based on
the program reduct and on the environment view, i.e., whether their semantics is defined
in terms of local models for each individual knowledge base that implicitly converge to a
semantics for the combined system, or whether the formalism has a global state using a
collection of explicitly accessible local models.

We developed a novel evaluation algorithm for MLPs in [11]. Here, we concentrated on an
MLP fragment called input- and call-stratified MLPs, whose stratification can be evaluated
in a top-down fashion starting from uninstantiated modules. This way we could generalize
the splitting sets technique to MLPs and develop an evaluation algorithm that traverses the
call graph and instantiates modules on-the-fly. Example 1 above is input-call-stratified, and
the techniques developed in [11] are applicable to it.

We worked on two characterizations of MLPs in terms of classical models by investigating
the notions of loop formulas [23] and ordered completion [2] in MLPs [12]. The results
include (i) modular loop formulas based on loops over module instantiations, and (ii) ordered
completion for MLPs without using explicit loop formulas. We generalized Clark’s completion
and positive dependency graph to MLPs with respect to different module instantiations.
Based on these results, we defined modular loop formulas that capture MLP semantics.
The second contribution was to explore ordered completion in the realm of MLPs. Here,
fresh predicates ensures a derivation order, and program completion is only active for those
predicates that do not participate in a positive loop, possibly involving module instantiations.

6 Open Issues

Future work includes to find further useful fragments of MLPs and characterize their
computational complexity. Based on first results on loop formulas and ordered completion for
MLPs [12] we seek to develop new algorithms that interweave conflict-driven model building
with module instantiation. Related to this is to investigate first-order theorem proving
techniques in the context of MLPs. Another line of research is to improve the understanding
of MLP semantics and give it a logical foundation using (generalized) equilibrium logic [26]
and applying results on FLP-semantics in [27]. Furthermore, we want to relax the restriction
to minimal models in non-relevant instantiations and use semi-equilibrium models [14] instead.
As a prospective application we want to investigate dl-programs with Datalog-rewritable
Description Logics [20]. Intuitively, the Description Logic knowledge base can be rewritten to
a module, and dl-atoms that appear in the logic program of the dl-program can be rewritten
as module atoms that refer to this module. Moreover, we are currently developing a prototype
implementation to evaluate input-call stratified MLPs.
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Abstract
In this PhD project, we present an approach to the problem of determinacy inference in logic
programs with cut, which treats cut uniformly and contextually. The overall aim is to develop
a theoretical analysis, abstract it to a suitable domain and prove both the concrete analysis
and the abstraction correct in a formal theorem prover (Coq). A crucial advantage of this
approach, besides the guarantee of correctness, is the possibility of automatically extracting an
implementation of the analysis.
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1 Introduction and problem description

The focus of my work lies on provably correct static analysis of logic programs, in particular
on determinacy inference for logic programs containing cut, and on verified implementations
thereof.

For reasons which hardly need spelling out here, the question of whether a goal is de-
terministic or not is central in logic programming. In practice, logic programmers often use
in-build control mechanisms, like the cut in Prolog, to ensure determinacy of certain goals.
Yet, todate methods for inferring determinacy conditions on goals have not addressed this
close connection between the cuts in a program and the determinacy of its goals. One of the
problems I address in my PhD work is to apply well-known techniques in program analysis
(abstract interpretation) to develop and prove correct a method for determinacy inference
that takes account of this.

Furthermore, I would like to build on the work of Cachera, Pichardie and others ([3],
[4], etc.), who observe that "[i]n spite of the nice mathematical theory of program analysis
and the solid algorithmic techniques available one problematic issue persists, viz., the gap
between the analysis that is proved correct on paper and the analyser that actually runs
on the machine" [3]. Thanks to advances in theorem proving, and in particular to the Coq
system, this gap can be bridged. Coq provides a framework in which the development of
a well-defined determinacy inferrence, its correctness proof with respect to an underlying
program semantics and its implementation can be part of one integrated process. I would
like to use Coq to prove correct the determinacy analysis discussed above and to obtain a
verified implementation of it.
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2 Background and overview of the existing literature

Logic Programming

[11], [13], [15] are standard works on logic programming and as such have been most helpful
so far and will in all likelihood continue to be so.

Determinacy Inference in Logic Programs

[5] present a method for inferring determinacy information from a program by adding con-
straints to the clauses of a predicate which allow the inference of mutual exclusion conditions
between these clauses rather than determinacy conditions for a whole predicate. [14] presents
a method for determinacy analysis, based on a partial evaluation technique for full Prolog
which detects whether there are none, one or more than one ways a goal can succeed. [10]
present a top-down framework for abstract interpretation of Prolog which is based on se-
quences of substitutions and can be instantiated to derive an analysis equivalent to that of
[14]. Finally, my own supervisor has worked on the problem of determinacy inference before
(see [6], [7], [12]). These works form the starting point of my own research.

Coq and Automated Abstract Interpretaion

I have spent less time aquiring background in on Coq and Automated Abstract Interpret-
ation. [1] is a standard reference for Coq and should provide a good starting point. David
Cachera, David Pichardie and others have published on abstract interpretation in Coq (see
[3], [4]).

3 Goal of the research

My goal is to develop a determinacy analysis for logic programs including cut, that is as
tight as possible, to prove it correct using a framework for automated theorem proving and
to obtain a verified implementation of the same.

4 Current status of the research

During the first six months of my PhD work I have focused on the following:
Acquiring the necessary background and techniques in program analysis, in particular in
abstract interpretation.
Researching previous work on determinacy in logic programs and on formal semantics
for logic programs including cut.
Applying the understanding of these two areas to develop and prove correct a determin-
acy inference for logic programs including cut.

This work has led to a paper submitted to ICLP 2011 (see Section 5 below). There are
some issues arising from this work, that will need to be addressed, before I can move to the
next stage in my overall project (see Section 6 below).

5 Preliminary results accomplished

In collaboration with my supervisor Dr Andy King, I have written a paper presenting and
manually proving correct a method for inferring determinacy conditions for Prolog with cut
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which has been accepted to ICLP 2011 and for publication in a special issue of the journal
“Theory and Practice of Logic Programming” [9, 8].

In the process of implementing this method, I found one difficulty in computational elim-
ination of existential quantifiers in constraint systems. In addressing this problem I have
developed, in collaboration with Jörg Brauer and my supervisor, a method for reducing ex-
istential quantifier elimination to incremental SAT, a paper on which has just been accepted
for publication in the conference Computed Aided Verification (see [2]).

6 Open issues and expected achievements

In the short term, I am addressing a further difficulty arising from the manual implement-
ation of the determinacy inference, other than the issue of existential quantifier elimination
mentioned in the last section, namely how to efficiently compute a mutual exclusion condi-
tion for two sets of constraints. I am reasonably confident that this problem can be addressed
in a similar fashion by reformulating it as an incremental SAT problem.

In the long term, to achieve the goals outlined in the previous sections, I plan to re-
formulate and implement the determinacy inferrence mentioned above and its underlying
semantics for Prolog with cut in the Coq system and mechanize my manual correctness prove.
For this, I will need to gain considerable background in automated theorem proving.
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Abstract
Preference is a natural part of common sense reasoning. It allows us to select preferred conclusions
from broader range of alternative conclusions. It is typically specified on parts of conclusions or
on rules. Different semantics have been proposed that deal with preference on rules. None fully
meets our requirements.

We are interested in a descriptive approach to preference handling in logic programs under
answer set semantics that always selects preferred answer set when standard one exists. Existing
semantics that meet this criterion also give non intuitive conclusions on some programs. We think
this kind of problem is related to the problem of not accepting natural order of rules induced by
underlying answer set semantics.

Our goal is to define semantics that would always select preferred answer set when standard
one exists, accept natural order on rules, and satisfy principles for preference handling.
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1 Introduction and problem description

In common sense reasoning some form of preference is usually used. One can prefer some
conclusion over another, e.g., doctors and patients tend to prefer non invasive procedures
over invasive ones. Preferences are also used to solve conflicts among rules. Having two
applicable rules with contradictory effects we want to apply only preferred one.

In the last two decades logic programming has emerged as a favourite framework for
knowledge representation. Especially answer set semantics of logic programming is widely
used. Logic program consists of rules of the form "If a is true, and there is no evidence that
b is true then also c is true". In such a program, answer set semantics gives us answer sets –
sets of alternative conclusions. Existence of multiple answer sets is due to the use of default
negation.

Natural questions arise: 1. How to encode preference in logic program? 2. How to extend
answer set semantics in presence of preference?

These two questions have already been explored in literature. In next section we give an
overview of existing approaches and identify places for improvement. We mainly focus on
approaches that deal with preference on rules.
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2 Background and overview of the existing literature

As mentioned earlier, one can consider preference on literals (e.g., [7], [2], [6]). Another
option is to consider preference on rules (e.g., [1], [3], [14], [12]). [7] also provides a way for
handling preferences on rules – via transformation to preference on literals.

Meaning of a logic program without preferences is a set of answer sets. Similarly, meaning
of a logic program with preferences is a set of preferred answer sets. Difference between an
answer set and a preferred answer set is only that in later one preferences are considered.

In a selective approach, we select some standard answer sets to be preferred answer sets
[8]. We only pick from existing answer sets and do not generate new ones. In a non selective
approach a preferred answer set does not have to be a standard answer set. We see such a
thing as a step outside of the answer set semantics. For the purpose of this summary we
restrict our focus only to selective approaches.

Approaches that deal with preference on rules are traditionally divided into two groups:
prescriptive and descriptive. Prescriptive approaches (e.g., [1], [3], [14]) view preference
on rules as an order in which rules are to be applied in process of generating answer set.
Descriptive approaches (e.g., [15], [7], [10], [12]) do not follow this view. Instead, they see
preferences as a wish list one tries to satisfy [4].

Principles for preference handling relate a preference on rules with a preference on answer
sets. First two principles were proposed in [1]. [1] also considers additional condition for
preference handling: If a program has a standard answer set then it also has a preferred one.
If we assume this condition the second principle is violated [1]. This additional condition is
not satisfied in semantics of [1], [3], [14]. [1] also propose a relaxation of their approach, that
always yields a preferred answer set when a standard one exists. But this approach satisfies
none of the principles from [1].

A problem with existence of a preferred answer set is related to the view prescriptive
approaches adapt. They see preference as an order in which rules are to be applied. But
the answer set semantics already induces an order on rules. It is well known that stratified
program induces the natural order in which rules must to be applied [9]. But the order
specified by preference on rules can be in conflict with the natural order. In such case,
prescriptive approaches can have difficulties to select a preferred answer sets.

[7] deals with a preference on literals. It also provides a way one can transfer a preference
on rules to a preference on literals. Use of this transformation leads to the comparison of
generating sets of answer sets. But the transformation is unable to track blocking between
rules. If head of a rule r1 is default negated in the body of a rule r2 we say that r1 blocks
r2. As shown in [11] concept of blocking is important when we compare generating sets.
Preference alone is not sufficient.

[10] uses preference on rules to select “best” extended answer set. Selection of a preferred
extended answer set is done by comparing program reducts – set of rules. When the
comparison is made, only preference on rules is used . This semantics does not satisfy the
first principle from [1]. It is also on the edge of our focus as it introduces preference in a
modified semantics (extended answer set semantics).

[15] always selects a preferred answer set when a standard one exists [1]. On the other
hand it gives some results that we consider counterintuitive:

I Example 1. Consider the program from Example 6 from [15].

r1 : p← not q, not r

r2 : q ← not p

r3 : r ← not p r1 is preferred over r2
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It has two answer sets, A1 = {p} and A2 = {q, r}, generated by R1 = {r1} and R2 = {r2, r3},
respectively. According to [15] both A1 and A2 are preferred.

We argue that only A1 should be preferred. r1 ∈ R1 blocks both r2, r3 ∈ R2. Also every
r ∈ R2 blocks r1. But r1 is preferred over r2 and on its own generates A1. R2 contains one
less preferred rule and no preferred one.

3 Goal of research

We also do not adopt the view of prescriptive approaches. It is well known that a stratified
program induces a natural order on rules [9]. It tells us which rule must be applied before
another. Moreover, every non stratified program is transformed to stratified one during the
Gelfond-Lifschitz transformation – the guess phase of the answer set semantics. Rules that
are filtered out in this transformation are not applicable in an answer set candidate. Note
that rules, which pass this transformation for a given answer set, form a set of generating
rules.

We understand this in the following way. There is no need to consider order on rules
from the same generating set of an answer set. Such order is already defined. We know that
every rule from generating set is applicable, and none of default negated literals in the body
of rule is derivable (in a corresponding answer set). A rule can only be applied after we have
derived its prerequisites. Hence, rules deriving prerequisites must be applied first. On the
other hand, rules not being part of any generating set will never be applied. “Order in which
they will be applied” has no meaning. Similarly, order of application between rules from
different generating sets has no meaning. When we are generating answer set, we work with
one generating set.

There is also another view. In a selective approach, a set of preferred answer sets is a
subset of a set of standard answer sets. When we accept the principle that there must be a
preferred answer set when a standard one exists and a program has only one answer set, it
clearly must be a preferred one. In such a program there is no need to consider preference on
rules since there is only one candidate we can choose from. Preference turns to be interesting
if we have rules that produce alternative conclusions – multiple answer sets.

In accordance with this we see another interpretation of preference. We understand
preference “r2 is preferred over r1” as follows. When rules r1 and r2 lead to alternative
conclusions (answer sets), prefer one that uses rule r2. But when rules participate on same
conclusion or one of them is inapplicable at all (in every answer set), preference does not
matter.

Condition “when rules lead to alternative conclusions” fits well into the concept of
generating sets. Rules from the same generating set produce the same answer set. Different
answer sets are represented by different generating sets. Same answer sets can also be
represented by different generating sets. It does not cause any complication. In fact, it
enables us to reason about alternative derivations. That is why we understand selection of
preferred answer sets as a comparison of generating sets.

As shown in [11], preference alone is not sufficient to compare generating sets. Blocking
between rules is important to determine which preference is more important.

Goal of our current research is to develop a descriptive approach to preference handling
in logic programming that would: 1. handle preference on rules, 2. be selective, 3. always
give a preferred answer set when a standard one exists, 4. accept natural order in which
rules must to be applied, 5. satisfy principles for preference handling (first principle from [1],
fourth principle from [12], and sixth principle from [13]).
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In a long term we also plan to provide an implementation and a detailed comparison to
existing approaches.

4 Preliminary results accomplished

In our previous work [12], we have tried to refine approach from [11]. We have proposed an
approach to preference handling that always selects a preferred answer set. It is inspired
by some form of argumentation. Rules are seen as an argumentation structures. The key
point is not to consider all preferences but only those among blocking rules. Such preferences
are called attacks. Next, there are nine rules to combine argumentation structures into
answer sets and to derive attacks on argumentation structures. Roughly speaking, preferred
answer sets are then defined in terms of attacks on answer sets. We have also proposed new
principles to preference handling (based on notion of attack) that enable us to correctly
solve problematic examples from literature. We submitted this work to ICLP 2011. Detailed
description of this approach is technically complicated and it is beyond the scope of this
paper.

In order to be able to provide implementation for [12] we needed to simplify technical
aspects of our approach. We have also realized that our argumentation structures represent
subsets of generating rules of an answer set. We have focused on translating attacks on
argumentation structures to attacks on generating sets. In [13], we have proposed a descriptive
approach to preference handling that is based on the concept of attacks on generating sets.
We did not try to propose equivalent approach to the one in [12]. We have proposed similar
approach that tries to be compatible, satisfies principles from [12], and is based on the same
understanding of preference on rules. The main idea of our approach is that a generating
set being under attack cannot generate a preferred answer set. We have also proposed a
new principle that expresses our understanding of preference. Preference on rules that do
not generate any answer set should not matter. We have submitted [13] to ŠVK 2011, a
student science conference at our university. We have also presented it there and applied it
for publication in conference proceeding.

Both our approaches share a common drawback. The way they handle mutual at-
tacks of argumentation structures/generating sets is technically oriented. It lacks intuitive
interpretation and ignores a natural order of rules in logic program.

Work on approaches [12] and [13] have helped us to better understand the connection
between preference on rules and blocking of rules. It is clear that not all preferences have
the same importance. Preference on blocking rules should be more important.

5 Current status of the research and expected achievements

Our current research is focused on figuring out the details around the concept of preference
importance. We consider the concept of preference importance to be important for our goals:
to accept natural order in which rules have to be applied, and to produce intuitive results.

We see a promising direction. Splitting [5] shows that we can consider rules in a iterative
manner, similar to the one we use to compute the answer set of a stratified program. The
important difference is that there exist decision points where we must decide which of
mutually blocking rules we want to use. These decision points are responsible for multiple
answer sets. In other words, splitting creates a decision tree of rule application. In order to
decide which rule to use in a decision point we have to decide which rules to apply in all
former decision points. If we do not choose a particular branch of a decision tree there is no
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need to consider rules in it. Hence, preference on rules on former decision points is more
important than on later ones.

Next example demonstrates the concept of preference importance and sketches solution
to selection of preferred answer sets.

I Example 2. Consider the following program with one decision point:

r1 : a← not b r2 : b← not a

r3 : c← a, not d r4 : d← b

r1 is preferred over r2
r4 is preferred over r3

It has two answer sets, A1 = {a, c} and A2 = {b, d}, generated by R1 = {r1, r3} and
R2 = {r2, r4}, respectively.

Splitting sequence 〈{a, b}, {a, b, d}, {a, b, c, d}〉 divides rules into three groups Π0 =
{r1, r2}, Π1 = {r4} and Π2 = {r3}. Due to the literal b in the body of rule r4, group
Π1 depends on group Π0. So there is natural order. Rules from Π0 must be considered before
rules in Π1, and similarly Π1 before Π2.

In the first place, we must settle down the question of rule application for rules from Π0.
Answer sets of Π0 are {a} and {b}. It means that the first (also the only) decision point is
whether to use rule r1 or r2. Since r1 is preferred over r2, we select to use rule r1. We do
not use r2, so there is no way to generate A2. Thus, A2 is not preferred. And since r2 is not
used, also r4 cannot be used. Consequently, there is no need to consider preference of rule r4
over any other rule. Preference of r4 over r3 would be considered only if r1 is not preferred
over r2 and r2 is not preferred over r1.

To sum up, we expect to propose a descriptive approach to preference handling for
extended logic programs under answer set semantics with preference on rules. Our semantics
should be selective, and conceptually based on comparison of generating sets. We hope to
meet Principle I, III, IV and VI (from [1], [12], [13]). More importantly, we think that the
use of preference importance as described above, will allow us to accept natural order of a
program, and to have a semantics with intuitive conclusions. Once the semantics is defined,
we plan to provide an implementation and a comparison to existing approaches.
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Abstract
This report summarizes a PhD research effort to implement a type of logic programming language
called “axiomatic language”. Axiomatic language is intended as a specification language, so its
implementation involves the transformation of specifications to efficient algorithms. The language
is described and the implementation task is discussed.
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1 Introduction and Problem Description

This research project investigates a type of logic programming language called “axiomatic
language” [1,2]. Axiomatic language is intended as a specification language where the user
defines the external behavior of a program without giving an algorithm. The language
implementation has the task of transforming this input specification into an equivalent
efficient algorithm. This research project will attempt to make progress on this difficult
problem. A secondary goal will be to make a software engineering case for axiomatic language
as a specification language through example applications. Section 2 describes axiomatic
language and its attributes and sections 3-6 discuss the transformation problem.

2 Background and Existing Literature

This section defines axiomatic language and discusses its novel aspects in comparison to
other languages. Axiomatic language has three goals:

1. a pure specification language - what, not how
2. minimal, but extensible - as small and simple as possible
3. a meta-language - able to imitate and thus subsume other languages

We also have the goal of beauty and elegance for the language.
Axiomatic language is based on the idea that the external behavior of a function or

program – even an interactive program – can be specified by a static infinite set of symbolic
expressions that enumerate all possible inputs – or sequences of inputs – along with the
corresponding outputs. The language is just a formal system for defining this symbolic
expression set.
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2.1 An Informal Overview
Axiomatic language can be described as pure definite Prolog with Lisp syntax, HiLog [3]
higher-order generalization, and “string variables”, which match a substring in a sequence.
A typical Prolog predicate is represented in axiomatic language as follows,

father(bob,X) -> (father Bob %x)

where (expression) variables start with % and both upper and lowercase letters (as well as
many special characters) can be used for symbols.

Natural numbers and their addition can be defined by the following “axioms”:

(number 0). ! set of natural numbers
(number (s %n))< (number %n).

(plus % 0 %)< (number %). ! natural number addition
(plus %1 (s %2) (s %3))< (plus %1 %2 %3).

These axioms generate “valid expressions” such as (plus (s 0) (s 0) (s (s 0))), which
is interpreted as the statement “1 + 1 = 2”. Comments start after !.

String variables, which start with $, match a string of elements within a sequence. They
enable more concise definitions of predicates on lists:

(concat ($1) ($2) ($1 $2)) ! list concatenation

(member % ($1 % $2)). ! member of a sequence

(reverse () ()). ! reversing a sequence
(reverse (% $) ($rev %))< (reverse ($) ($rev)).

Some example valid expressions are (concat (a b) (c d) (a b c d)) and (member c (a
b c)). String variables can be considered a generalization of Prolog’s list tail variables.

2.2 The Core Language
In axiomatic language a finite set of axioms generates a (usually) infinite set of valid
expressions. An expression is:

an atom - a primitive, indivisible element,
an expression variable,
or a sequence of zero or more expressions and string variables.

Atoms are represented syntactically by symbols starting with the backquote ` (so the symbols
seen previously are not atoms). A sequence is represented by a string of expressions and
string variables separated by blanks and enclosed in parentheses: (`abc %n), (`M $ ()).

An axiom consists of a conclusion expression and zero or more condition expressions,
represented as follows:

<conclu> < <cond1>, . . . , <condn>.
<conclu>. ! an unconditional axiom
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An axiom generates an axiom instance by the substitution of values for the expression
and string variables. An expression variable can be replaced by an arbitrary expression,
the same value replacing the same variable throughout the axiom. A string varable can be
replaced by a string of expressions and string variables. For example, the axiom,

(`a %x $w)< (`b %y $w), (`c (%x %y) $1).

has the instance,

(`a (` %) () `v)< (`b `y () `v), (`c ((` %) `y)).

by the substitution of (` %) for %x, `y for %y, ‘() `v’ for $w, and ‘’ (the null string) for $1.
The conclusion expression of an axiom instance is a valid expression if all the condition

expressions of the axiom instance are valid expressions. By default, the conclusion of an
unconditional axiom instance is a valid expression. For example, the two axioms,

(`a `b).
((%) $ $) < (% $).

generate the valid expressions (`a `b), ((`a) `b `b), (((`a)) `b `b `b `b), etc.

2.3 Syntax Extensions
The expressiveness of axiomatic language is enhanced by adding certain syntax extensions to
the core language. We let a single character in single quotes be syntactic shorthand for an
expression that gives the 8-bit character code:

’A’ = (`char (`0 `1 `0 `0 `0 `0 `0 `1))

A string of characters in single quotes within a sequence is equivalent to writing those
single characters separately:

(... ’abc’ ...) = (... ’a’ ’b’ ’c’ ...)

A string of characters in double quotes is equivalent to the sequence of those characters:

"abc" = (’abc’) = (’a’ ’b’ ’c’)

(A quote character is repeated when it occurs in a character string enclosed by the same
quote character: "’""" = (”’"’).)

A symbol that does not begin with one of the special characters ` % $ ( ) ’ " ! is
equivalent to an expression that contains the symbol as a character string:

abc = (` "abc")

2.4 Specification by Enumeration [4]
We want to specify the external behavior of a program using a set of valid expressions. A
program that maps an input file to an output file can be specified by an infinite set of
symbolic expressions of the form,

(Program <input> <output>)
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where <input> is a symbolic expression for a possible input file and <output> is the
corresponding output file. For example, a program that sorts the lines of a text file could be
represented by valid expressions such as the following:

(Program ("dog" "horse" "cow") ! 3-line input file
("cow" "dog" "horse")) ! sorted output file

Axioms would define these valid expressions for all possible input files.
An interactive program where the user types lines of text and the computer types lines

in response could be represented by valid expressions such as,

(Program <out> <in> <out> <in> ... <out> <in> <out>)

where <out> is a sequence of zero or more output lines typed by the computer and <in> is
a single input line typed by the user. Each Program expression gives a possible execution
history. Valid expressions would be generated for all possible execution histories.

2.5 Novelty and Existing Work
This section lists some of the novel aspects of axiomatic language:

1. goal of pure specification – Axiomatic language has the ambitious and idealistic goal of
completely freeing the user from thinking about implementation and efficiency.

2. specification by enumeration – We specify the external behavior of programs by enumer-
ating all possible inputs/outputs represented as static symbolic expressions. This is a
completely pure approach to the awkward problem of i/o in declarative languages [5].

3. definition vs. computation semantics – Axiomatic language is just a formal system for
defining infinite sets of symbolic expressions, which are then interpreted. Prolog semantics,
in contrast, are based on a model of computation.

4. minimal language – We see elegance in having minimal size with maximum expressiveness.
Axiomatic language shares this goal with minimal Lisp systems.

5. Lisp syntax – Axiomatic language, like some other LP languages (MicroProlog [6], Allegro
[7]) uses Lisp syntax instead of Edinburgh syntax. Predicate and function names are
moved inside the parentheses and commas are replaced with blanks. Data lists also use
this notation, which supports representing code as data.

6. higher-order syntax – Predicate and function names can be arbitrary expressions, including
variables, and entire predicates can be represented by variables. This is the same as in
HiLog, but with Lisp syntax.

7. non-atomic characters – Axiomatic language separates the definitions and rules of its
semantics, which are fixed, from its syntax and syntax extensions such as character sets
and their representation, which are likely to evolve. Non-atomic characters make character
representations more explicit, but should be hideable with a well-designed library.

8. non-atomic symbols – Non-atomic symbols eliminate the need for built-in decimal numbers,
since they can be easily defined through library utilities.

9. string variables – These provide pattern matching and meta-language support.
10. meta-language – Axiomatic language has the goal of being a single language that can

provide the user with the features and expressiveness of any other language. Its flexible
syntax and higher order capability should make it well-suited to metaprogramming,
language-oriented programming [8], and embedded domain-specific languages [9].
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11. no built-in arithmetic or other functions – The minimal nature and extensibility of
axiomatic language means that basic arithmetic and other functions are provided through
a library rather than built-in. But this also means that such functions have explicitly
defined semantics and can be formally treated like regular code.

12. explicit definition of approximate arithmetic – Since there is no built-in floating point
arithmetic, approximate arithmetic must also be defined in a library. But this means
that symbolically defined numerical results would always be identical down to the last
bit, regardless of future floating point hardware.

13. no built-in inequality between distinct symbols – Symbol inequality is easily defined from
the non-atomic nature of symbols and characters.

14. no built-in negation – Axiomatic language defines recursively enumerable sets but not
their complement. One can, however, define negation-as-failure on encoded axioms.

15. no non-logical operations such as cut – This follows from there being no procedural
interpretation in axiomatic language.

16. no meta-logical operations such as var, set_of, find_all – These would have to be defined
on encoded axioms.

17. no assert/retract - A set of axioms is static. Modifying this set must be done “outside”
the language.

3 Goal of this Research

The ultimate goal of this research is the efficient implementation of axiomatic language. This
means the automatic transformation of specifications to efficient algorithms. Unlike Prolog,
where the user is careful to write clauses that will execute efficiently, we want the axiomatic
language user to write specifications without concern about efficiency. A further goal is that
this transformation be proven correct — the implementation algorithm is guaranteed to be
equivalent to the specification.

One can argue that no finite system can successfully transform all possible user specifica-
tions. Just knowing whether or not a specification defines no output is, of course, undecidable.
The best we can hope for is a system that can successfully transform the specifications of
most “typical” programs.

In addition to their purpose of specification, axioms should be able to define an imple-
mentation algorithm, either by executing them in a Prolog-like manner or by modeling, say,
a C subset. Thus, this transformation problem can be reduced to transforming one set of
axioms to an equivalent set. Unfold/fold transformations [10] can be used here and will
provide the guarantee of correctness for the resulting implementation.

4 Current Status and Preliminary Results

My initial work on proof involves proving “valid clauses”. We define a “clause” to be the same
as an axiom – a conclusion expression and zero or more condition expressions. A clause is
“valid” with respect to a set of axioms if no additional valid expressions are generated when
the clause is added to the set of axioms. For example, consider the set of axioms consisting
of the number and plus axioms along with the following equality axiom:

(== % %). ! identical expressions

The following clause,

(== %3a %3b)< (plus %1 %2 %3a), (plus %2 %1 %3b).
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would be valid since no new equality expressions would be generated if this clause were added
to the set of axioms. This clause states the commutativity of addition. Unfold/fold rules for
proving valid clauses are being worked out and should be a basis for proving equivalent sets of
axioms. Proving valid clauses may also be useful for proving assertions about specifications.

The initial work on transformation has involved developing a framework for manipulating
axioms as data.

5 Open Issues and Expected Achievements

The automatic transformation of specifications to efficient algorithms is widely considered
unsolvable [11]. Other work, however, shows more positive results [12]. The axiomatic
language implementation problem has the advantage that the specifications will be completely
detailed and the specification language is an extremely simple formal system. Unlike an
interactive transformation system [13], we don’t expect the user to manually transform
his program; instead the transformation system will have to do its job on its own. We
acknowledge that the system may not be able to do a good job on a given input specification,
in which case an expert will be called on to add new knowledge. We hope that as knowledge
continues to be added and generalized, the need for an expert’s intervention will decline.

I wish to thank my advisor, Dr. Jeff Lei, for our discussions.
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Abstract
Description Logics are used more and more frequently for knowledge representation, creating an
increasing demand for efficient automated DL reasoning. However, the existing implementations
are inefficient in the presence of large amounts of data. This paper summarizes the results in
transforming DL axioms to a set of function-free clauses of first-order logic which can be used
for efficient, query oriented data reasoning. The described method has been implemented in a
module of the DLog reasoner openly available on SourceForge to download.

1998 ACM Subject Classification I.2.3: Deduction and Theorem Proving

Keywords and phrases reasoning, Description Logics, DLog, resolution

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.296

1 Overview

Description Logics (DLs) [1] is family of logic languages designed to be a convenient means
of knowledge representation. They can be embedded into FOL, but – contrary to the latter
– they are decidable which gives them a great practical applicability. A DL knowledge base
consists of two parts: the TBox (terminology box) and the ABox (assertion box). The
TBox contains general background knowledge in the form of rules that hold in a specific
domain. The ABox stores knowledge about individuals. For example, let us imagine an
ontology about the structure of a university. The TBox might contain statements like “Every
department has exactly one chair”, “Departments are responsible for at least 4 courses and
for each course there is a department responsible for it”. In contrast, the ABox might
state that “The Department of Computer Science is responsible for the course Information
Theory” or that “Andrew is the chair of the the Department of Music”.

As DL languages are being used more and more frequently, there is an increasing demand
for efficent automated reasoning services. Some reasoning tasks involve the TBox only. This
is the case, for example, when we want to know what rules follow from the ones that we
already know, or we want to verify that the model of a certain domain does not contain
obvious mistakes in the form of contradictions and unsatisfiable concepts. We might want
to make sure that there are not so many restrictions on the chair that it is impossible to
be one (which is the case if he has to spend 70 percent of his time on research an another
70 percent on teaching). Other reasoning problems use both the ABox and the TBox: in
such cases we might ask if a certain property holds for a certain individual (instance check
– Is Andrew a chair?) or we might want to collect all individuals satisfying a given property
(instance retrieval – What are the courses taught by the Department of Music?).
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The Tableau Method [1] has long provided the theoretical background for DL reasoning
and most existing DL reasoners implement some of its variants. Typical DL reasoning
tasks can be reduced to concept consistency checking and this is exactly what the Tableau
Method provides. While the Tableau itself has proven to be very efficient, the reduction to
consistency check is rather costly for some ABox reasoning tasks. In particular, instance
retrieval (i.e., to enumerate those individuals that belong to a given concept) requires running
the Tableau Method for every single individual that appears in the knowledge base. Several
techniques have been developed to make tableau-based reasoning more efficient on large data
sets, (see e.g. [3]), that are used by the state-of-the-art DL reasoners, such as RacerPro [4]
or Pellet [9].

Other approaches use first-order resolution for reasoning. A resolution-based inference
algorithm is described in [5] which is not as sensitive to the increase of the ABox size as
the tableau-based methods. The system KAON2 [8] is an implementation of this approach,
providing reasoning services over the description logic language SHIQ. The algorithm used
in KAON2 in itself is not any more efficient for instance retrieval than the Tableau, but
several steps that involve only the TBox can be performed before accessing the ABox, after
which some axioms can be eliminated because they play no further role in the reasoning.
This yields a qualitatively simpler set of axioms which then can be used for an efficient,
query driven data reasoning. For the second phase of reasoning KAON2 uses a disjunctive
datalog engine and not the original calculus. Thanks to the preprocessing, query answering
is very focused, i.e., it accesses as little part of the ABox as possible. However, in order for
this to work, KAON2 still needs to go through the whole ABox once at the end of the first
phase.

2 Research Direction

In my PhD work I try to develop algorithms that can be used for reasoning over large ABoxes
while the TBox is relatively small. These assumptions do not hold for all ontologies, but
there are some very important examples when this is the case: one can, for instance, think
of searching the WEB in the context of a specific, well characterized domain.

It seems that the complexity comes from two sources: on one hand the TBox contains
complex background knowledge that requires sophisticated reasoning, and on the other the
size of the ABox makes the sophisticated algorithm too slow in practice. An important
lesson to be learned from KAON2 is that we might be able to cope with these two sources
separately: let us perform the complex reasoning on the TBox – which we assume to be small
– and turn it into a syntactically simpler set of rules before accessing the ABox. Afterwards,
the simpler rules can be used for a focused, query driven ABox reasoning.

It is not clear how to separate the reasoning for the Tableau. This algorithm tries to
build a model of the knowledge base, but a model of a small part of the knowledge base is
not necessarily useful for constructing a model of the whole. Resolution approaches are more
suitable: we can deduce implicit consequences of the axioms in one way at the beginning
and then deduce further consequences in another way. In particular, we will be interested
in solutions where we start with a bottom-up strategy and finish with a focused top-down
strategy.

To perform first-order resolution, we need to transform the initial axioms to first-order
clauses. While the initial knowledge base does not contain function symbols (there are no
functions in DLs), existential restrictions and minimum restrictions in the TBox translate
to existential quanifiers, which are eliminated by introducing new function symbols, called
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skolem functions. This is problematic, because termination is hard to guarantee if we can
obtain terms of ever increasing depth. Furthermore, some top-down reasoning algorithms
(top-down reasoning is a must if the ABox is really large), such as datalog only work if
there are no function symbols. For this reason, it is very important to find some way to
eliminate function symbols before performing the data reasoning. Note that this is intuitively
very possible: the ABox does not contain any knowledge about functions since they were
introduced by us during clausifying the axioms from the TBox. Hence, everything that is
to know about function symbols is in the clauses derived from the TBox and whatever role
they play, they should be able to play it at the beginning of the reasoning.

3 Two Phase Reasoning

The above considerations motivate a two phase reasoning algorithm. In the first phase we
only work with the clauses derived from the TBox. We use a bottom-up algorithm, deduce
lots of consequences of the TBox, in particular all the important consequences of the clauses
containing function symbols. By the end of the first phase, function symbols can play no
further role and hence the clauses containing them can be eliminated. The second phase
now begins and the reduced clause set can be used for a focused, top-down reasoning on the
ABox.

This separation of TBox and ABox reasoning is only partially achieved in [8]. By the
end of the first phase, we can only eliminate clauses with term depth greater than one. So,
while function symbols persist, there is no more nesting of functions into each other. In
order for the second phase to work, all function symbols are eliminated using a syntactic
transformation: for every function symbol and every constant in the ABox a new constant
is introduced. Note that this step involves scanning through the ABox and results in adding
new constants whose number is linear in the size of the ABox.

Reading the whole ABox even once is not a feasible option in case the ABox contains
billions of assertions or the content of the ABox changes so frequently that on-the-fly ABox
access is an utmost necessity. Such scenarios include reasoning on web-scale or using de-
scription logic ontologies directly on top of existing information sources, such as in a DL
based information integration system.

4 Results

I started my PhD at Budapest University of Technology in September 2009. I work as
member of a team developing the DLog DL data reasoner [7], available to download at
http://www.dlog-reasoner.org. This is a resolution based reasoner, built on principles
similar to KAON2. One difference is that instead of a datalog engine, we use the reasoning
mechanism of the Prolog language [2] to perform the second phase [6]. Reasoning with
function symbols using Prolog is possible, unlike the datalog engine, but for considerations
about termination it is equally important to eliminate function symbols during the first
phase.

I work to provide DLog with a purely two phase reasoning algorithm. In [10] I presented
a modified resolution calculus for the SHIQ language that allows us to perform more infer-
ences in the first phase (compared with KAON2), yielding a simpler TBox to work with in
the second phase. Namely, the new calculus ensures that no function symbols remain at all,
without the need to go through the ABox. The modification makes the first phase somewhat
slower, however, the speed of the second phase becomes independent of the amount of data
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that is irrelevant to the query. The greater the ABox the better DLog performs compared
to its peers. Another great advantage of DLog is that its architecture allows for storing the
ABox in an external database that is assessed through direct database queries.

Afterwards, I worked on a new DL calculus ([12] and [11]) where we move resolution from
first-order clauses to DL axioms, saving many intermediary transformation steps. Even if
the speed of the first phase is not as critical as that of the second, this optimisation is
important. With the increase of the TBox the first phase can become hopelessly slow, such
that DLog is impossible to use. Making the first phase faster slightly increases the critical
TBox size within which it is still worth reasoning with DLog. On the other hand, the DL
calculus is a complete algorithm for TBox reasoning. It is novel in that the metodology is
still resolution, but the inference rules are given directly for DL expressions. It is not as fast
for TBox reasoning as the Tableau, but it provides an alternative and I hope that it will
motivate research in the area. I tried to extend the DL calculus to ABox reasoning, but I
have not yet been successful in doing that.

I managed to make DLog support the RIQ language which extends SHIQ with complex
role hierarchies. I also tried to incorporate nominals into the reasoner, i.e., move from RIQ
to ROIQ, however, this work yielded only negative results. It turned out that the presence of
nominals blurs the distinction between TBox and ABox (the whole content of the ABox can
be rephrased using TBox axioms), hence there is no possibility of separating terminology
and data reasoning into two separate phases. These last two results have not yet been
published.

5 Current Work

I would like to fully explore the relation between DLog and the SROIQ language on which
the new web ontology language OWL 2 is based. This exploration involves partly to extend
DLog towards more expressive language constructs and partly to understand its limitations.

I also am working to better explore the complexity of our algorithms. Bottom up reason-
ing in the first phase is very costly: it is at most triply exponential in the size of the TBox,
although our experiments indicate that there could be a better upper bound. We also need
to better explore the clauses that are deduced from the TBox. While our main interest is
to eliminate function symbols, we deduce other consequences as well. Some of them make
the data reasoning faster, some of them do not, and we cannot yet well characterize them.

6 Concluding Remarks

With the proliferation of knowledge intensive applications, there is a vivid research in the
domain of knowledge representation. Description Logics are designed to be a convenient
means for such representation task. One of the main advantages over other formalisms is
a clearly defined semantics. This opens the possibility to provide reasoning services with
mathematical rigorousness.

My PhD work is concerned with Description Logic reasoning. I am particularly interested
in ABox reasoning when the available data is really large. This domain is much less explored
than TBox reasoning. Nevertheless, reasoning over large ABoxes is useful for problems like
web-based reasoning.

I am one of the developers of the DLog data reasoner which implements a two phase
reasoning: the first phase uses complex reasoning to turn the TBox into simple rules, while
the second phase is geared towards fast query answering over large ABoxes. DLog currently
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supports the SHIQ DL language, but we plan to extend it as far as SROIQ, the logic
behind OWL 2.
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